1
|
Ruan W, Xie Z, Wang Y, Xia L, Guo Y, Qiao D. An Overview of Naphthylimide as Specific Scaffold for New Drug Discovery. Molecules 2024; 29:4529. [PMID: 39407459 PMCID: PMC11478049 DOI: 10.3390/molecules29194529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Naphthylimides play a pivotal role as aromatic heterocyclic compounds, serving as the foundational structures for numerous pharmacologically significant drugs. These drugs encompass antibacterial, antifungal, anticancer, antimalarial, antiviral, anti-inflammatory, antithrombotic, and antiprotozoal agents. The planar and heteroaromatic characteristics of naphthylimides grant them a strong ability to intercalate into DNA. This intercalation property renders naphthylimide derivatives highly valuable for various biological activities. The advantageous pharmacological activity and ease of synthesis associated with naphthylimides and their derivatives provide significant benefits in the design and development of new compounds within this class. Currently, only a few such molecules are undergoing preclinical and clinical evaluations. In this paper, we have compiled the literature on naphthylimides reported by researchers from 2006 to 2024. Our focus lies on exploring the pharmacological activities of their analogues from a drug development and discovery perspective, while examining their structure-activity relationship and mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | - Yuping Guo
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (W.R.); (Z.X.); (Y.W.); (L.X.)
| | - Dan Qiao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (W.R.); (Z.X.); (Y.W.); (L.X.)
| |
Collapse
|
2
|
Panchenko PA, Efremenko AV, Polyakova AS, Feofanov AV, Ustimova MA, Fedorov YV, Fedorova OA. Application of RET Approach for Ratiometric Response Enhancement of ICT Fluorescent Hg 2+ Probe based on Crown-containing Styrylpyridinium Dye. Chem Asian J 2024:e202400777. [PMID: 39312207 DOI: 10.1002/asia.202400777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/14/2024] [Indexed: 11/09/2024]
Abstract
Styrylpyridinium dye bearing azadithia-15-crown-5 ether receptor group SP and 4-alkoxy-1,8-naphthalimide fluorophore were linked using copper-catalyzed azide-alkyne cycloaddition click reaction to afford dyad compound NI-SP. Chemosensor NI-SP exhibited selective ratiometric fluorescent response to the presence of Hg2+ in aqueous solution due to the interplay between resonance energy transfer (RET) and intramolecular charge transfer (ICT) processes occurred upon excitation. The observed switching of the ratio of emission intensities in the blue and red channels R was higher than in the case of monochromophoric styrylpyridine derivative SP showing ratiometric response based on ICT mechanism only. Biological studies revealed that NI-SP penetrates into human lung adenocarcinoma A549 cells and accumulates in cytoplasm and lysosomes. When cells were pre-incubated with mercury (II) perchlorate, the ratio R was increased 2.6 times, which enables detection of intracellular Hg2+ ions and their quantitative analysis in the 0.7-6.0 μM concentration range.
Collapse
Affiliation(s)
- Pavel A Panchenko
- Laboratoty of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova str. 28, Moscow, 119334, Russia
- Department of Technology of Fine Organic Synthesis and Chemistry of Dyes, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sqr. 9, Moscow, 125047, Russia
| | - Anastasija V Efremenko
- Laboratory of Optical Microscopy and Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, Moscow, 117997, Russia
| | - Anna S Polyakova
- Laboratoty of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova str. 28, Moscow, 119334, Russia
| | - Alexey V Feofanov
- Laboratory of Optical Microscopy and Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gori 1/12, Moscow, 119234, Russia
| | - Maria A Ustimova
- Laboratoty of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova str. 28, Moscow, 119334, Russia
| | - Yuri V Fedorov
- Laboratoty of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova str. 28, Moscow, 119334, Russia
| | - Olga A Fedorova
- Laboratoty of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova str. 28, Moscow, 119334, Russia
- Department of Technology of Fine Organic Synthesis and Chemistry of Dyes, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sqr. 9, Moscow, 125047, Russia
| |
Collapse
|
3
|
Synthesis and Characterization of Pt(II) and Pd(II) Complexes with Planar Aromatic Oximes. INORGANICS 2023. [DOI: 10.3390/inorganics11030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
A series of four Werner-type complexes of Pd(II) and Pt(II) with planar, isomeric conjugated aromatic naphtoquinone oximes were synthesized for the first time. These ligands were 1-oxime-2-naphtoquinone (HL1) and 2-oxime-1-napthoquinone (HL2). Compounds were characterized using thermal analysis, spectroscopic methods, and X-ray analysis. TG/DSC data were collected for pure starting organic ligands, their complexes, and indicated vigorous exothermic decomposition with at ~155 °C for starting HL and ~350 °C for transition metal complexes. Crystal structures for two Pt compounds with 2-oxime-1-quinone were determined and revealed the formation of the cis-geometry complexes and incorporation of molecules of stoichiometric solvents in the lattice: acetonitrile and nitrobenzene. Both solvents of crystallization displayed attractive interactions between their C-H groups and the oxygen atoms of the nitroso groups in complexes, leading to short distances in those fragments. Despite the presence of solvents of inclusion, the overall structure motifs in both compounds represent 1D columnar coordination polymer, in which the PtL2 units are held together via metallophilic interactions, thereby forming ‘Pt-wires’. The Hirshfield surface analysis was performed for both crystallographically characterized complexes. The results showed intermolecular π–π stacking and Pt–Pt interactions among the planar units of both complexes. In addition, the analysis also verified the presence of hydrogen bonding interactions between the platinum unit and solvent molecules. Solid bulk powdery samples of both PtL12 and PtL22 demonstrated pronounced photoluminescence in the near infrared region of spectrum at ~980 nm, being excited in the range of 750–800 nm. The NIR emission was observed only for Pt-complexes and not for pure starting organic ligands or Pd-complexes. Additionally, synthesized Pt-naphtoquinone oximes do not show luminescence in solutions, which suggests the importance of a 1D ‘metal wire’ structure for this process.
Collapse
|
4
|
Gauci G, Magri DC. Solvent-polarity reconfigurable fluorescent 4-piperazino- N-aryl-1,8-naphthalimide crown ether logic gates. RSC Adv 2022; 12:35270-35278. [PMID: 36540226 PMCID: PMC9732761 DOI: 10.1039/d2ra07568g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 09/19/2023] Open
Abstract
Four compounds 1-4 were designed and synthesised, comprising a 4-amino-N-aryl-1,8-naphthalimide fluorophore, a piperazine receptor, and an aryl group, as fluorescent logic gates. At the imide position, the substituent is phenyl (1), 1,2-dimethoxyphenyl (2), benzo-15-crown-5 (3), or benzo-18-crown-6 (4). Molecules 1 and 2 are constructed according to a fluorophore-spacer-receptor format, while 3 and 4 are engineered according to a receptor1-spacer1-fluorophore-spacer2-receptor2 format based on photoinduced electron transfer and internal charge transfer mechanisms. The compounds were studied in water, water/methanol mixtures of different ratios, and methanol by UV-visible absorption and steady-state fluorescence spectroscopy, as a function of pH, metal ions and solvent polarity. The excited state of 1-4 is 8.4 ± 0.2 in water, 7.6 ± 0.1 in 1 : 1 (v/v) water/methanol, and 7.1 ± 0.3 in methanol. The of 3 in water is 0.92 and the and of 4 in water are 2.3 and 2.9. 1H NMR data in D2O and CD3OD confirm H+ interaction at the piperazine moiety, and Na+ and Ba2+ binding at the benzo-15-crown-5 and benzo-18-crown-6 moieties of 3 and 4. By altering the solvent polarity, the fluorescent logic gates can be reconfigured between TRANSFER logic and AND logic. Molecules with polarity reconfigurable logic could be useful tools for probing the microenvironment of cellular membranes and protein interfaces.
Collapse
Affiliation(s)
- Gabriel Gauci
- Department of Chemistry, Faculty of Science, University of Malta Msida MSD 2080 Malta
| | - David C Magri
- Department of Chemistry, Faculty of Science, University of Malta Msida MSD 2080 Malta
| |
Collapse
|
5
|
Fluorescent RET-Based Chemosensor Bearing 1,8-Naphthalimide and Styrylpyridine Chromophores for Ratiometric Detection of Hg2+ and Its Bio-Application. BIOSENSORS 2022; 12:bios12090770. [PMID: 36140155 PMCID: PMC9497167 DOI: 10.3390/bios12090770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
Dyad compound NI-SP bearing 1,8-naphthalimide (NI) and styrylpyridine (SP) photoactive units, in which the N-phenylazadithia-15-crown-5 ether receptor is linked with the energy donor naphthalimide chromophore, has been evaluated as a ratiometric fluorescent chemosensor for mercury (II) ions in living cells. In an aqueous solution, NI-SP selectively responds to the presence of Hg2+ via the enhancement in the emission intensity of NI due to the inhibition of the photoinduced electron transfer from the receptor to the NI fragment. At the same time, the long wavelength fluorescence band of SP, arising as a result of resonance energy transfer from the excited NI unit, appears to be virtually unchanged upon Hg2+ binding. This allows self-calibration of the optical response. The observed spectral behavior is consistent with the formation of the (NI-SP)·Hg2+ complex (dissociation constant 0.13 ± 0.04 µM). Bio-imaging studies showed that the ratio of fluorescence intensity in the 440–510 nm spectral region to that in the 590–650 nm region increases from 1.1 to 2.8 when cells are exposed to an increasing concentration of mercury (II) ions, thus enabling the detection of intracellular Hg2+ ions and their quantitative analysis in the 0.04–1.65 μM concentration range.
Collapse
|
6
|
Staneva D, Said AI, Vasileva-Tonkova E, Grabchev I. Enhanced Photodynamic Efficacy Using 1,8-Naphthalimides: Potential Application in Antibacterial Photodynamic Therapy. Molecules 2022; 27:molecules27185743. [PMID: 36144479 PMCID: PMC9504615 DOI: 10.3390/molecules27185743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
This study addresses the need for antibacterial medication that can overcome the current problems of antibiotics. It does so by suggesting two 1,8-naphthalimides (NI1 and NI2) containing a pyridinium nucleus become attached to the imide-nitrogen atom via a methylene spacer. Those fluorescent derivatives are covalently bonded to the surface of a chloroacetyl-chloride-modified cotton fabric. The iodometric method was used to study the generation of singlet oxygen (1O2) by irradiation of KI in the presence of monomeric 1,8-naphthalimides and the dyed textile material. Both compounds generated reactive singlet oxygen, and their activity was preserved even after they were deposited onto the cotton fabric. The antibacterial activity of NI1 and NI2 in solution and after their covalent bonding to the cotton fabric was investigated. In vitro tests were performed against the model gram-positive bacteria B. cereus and gram-negative P. aeruginosa bacteria in dark and under light iradiation. Compound NI2 showed higher antibacterial activity than compound NI1. The light irradiation enhanced the antimicrobial activity of the compounds, with a better effect achieved against B. cereus.
Collapse
Affiliation(s)
- Desislava Staneva
- Department of Textile, Leader and Fuels, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Awad I. Said
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
- Department of Chemistry and Biochemistry, Physiology and Pathophysiology, Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
| | - Evgenia Vasileva-Tonkova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ivo Grabchev
- Department of Chemistry and Biochemistry, Physiology and Pathophysiology, Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
7
|
Jothi D, Kulathu Iyer S. Recognition of Hg2+ ion in an organic semi-aqueous medium by a new napthalimide based fluorescent probe and its bioimaging applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Solid Fluorescence pH Sensors Based on 1,8-Naphthalimide Copolymers Synthesized by UV Curing. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Novel water-swollen photo-crosslinked membranes were obtained by copolymerization of the N-vinylpyrrolidone, butyl acrylate and ethyl methacrylate monomers functionalized with naphthalimide groups, as pH sensitive fluorescence probes. For that purpose, two monomers with pending naphthalimide groups anchored to ethyl methacrylate through alkyl chains with different length, were previously synthesized. The membranes were characterized using different techniques. The pH dependence of absorbance and the corresponding quenching of fluorescence were investigated and related to the structure of naphthalimide substituents linked to the membrane. The new solid sensors exhibited sensitive fluorescence changes at pH < 3, and lower time response was determined for membranes where the sensing group was linked through longer alkyl chain to the polymer matrix. The membranes were solid, thermally stable and easily handled to be applied as sensor materials, and showed a reversible behavior, which is an important feature for further fabrication of an economical on-site tool for the acidity detection in aqueous environments.
Collapse
|
9
|
Kinzhalov MA, Luzyanin KV. Synthesis and Contemporary Applications of Platinum Group Metals Complexes with Acyclic Diaminocarbene Ligands (Review). RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622010065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Kwon NY, Kim Y, Kataria M, Park SH, Cho S, Harit AK, Woo HY, Cho MJ, Park S, Choi DH. Donor-σ-Acceptor Dyad-Based Polymers for Portable Sensors: Controlling Photoinduced Electron Transfer via Tuning the Frontier Molecular Orbital Energies of Acceptors. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Na Yeon Kwon
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Youngseo Kim
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Meenal Kataria
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Su Hong Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Seunguk Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Amit Kumar Harit
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Han Young Woo
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Sungnam Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
11
|
Mahata S, Kumar S, Dey S, Mandal BB, Manivannan V. A probe with hydrazinecarbothioamide and 1,8-naphthalimide groups for “turn-on” fluorescence detection of Hg2+ and Ag+ ions and live-cell imaging studies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Naphthalimide-NHC complexes: Synthesis and properties in catalytic, biological and photophysical applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Fluorescent chemosensor for mercury(II) cations in an aqueous solution based on 4-acetylamino-1, 8-naphthalimide derivative containing the N-phenylazadithia-15-crown-5-ether receptor. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Photosensitive dendrimers as a good alternative to antimicrobial photodynamic therapy of Gram-negative bacteria. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
|
16
|
Panchenko PA, Fedorov YV, Polyakova AS, Fedorova OA. Fluorimetric detection of Ag+ cations in aqueous solutions using a polyvinyl chloride sensor film doped with crown-containing 1,8-naphthalimide. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Synthesis and characterization of fluorescent PAMAM dendrimer modified with 1,8-naphthalimide units and its Cu(II) complex designed for specific biomedical application. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Izawa H, Yasufuku F, Nokami T, Ifuku S, Saimoto H, Matsui T, Morihashi K, Sumita M. Unique Photophysical Properties of 1,8-Naphthalimide Derivatives: Generation of Semi-stable Radical Anion Species by Photo-Induced Electron Transfer from a Carboxy Group. ACS OMEGA 2021; 6:13456-13465. [PMID: 34056493 PMCID: PMC8158823 DOI: 10.1021/acsomega.1c01685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The development of anion sensors for selective detection of a specific anion is a crucial research topic. We previously reported a selective photo-induced colorimetric reaction of 1-methyl-3-(N-(1,8-naphthalimidyl)ethyl)imidazolium (MNEI) having a cationic receptor in the presence of molecules having multiple carboxy groups, such as succinate, citrate, and polyacrylate. However, the mechanism underlying this reaction was not clarified. Here, we investigate the photo-induced colorimetric reaction of N-[2-(trimethylammonium)ethyl]-1,8-naphthalimide (TENI), which has a different cationic receptor from MNEI and undergoes the photo-induced colorimetric reaction, and its analogues to clarify the reaction mechanism. The TENI analogues having substituents on the naphthalene ring provide important evidence, suggesting that the colorimetric chemical species were radical anions generated via photo-induced electron transfer from carboxylate to the naphthalimide derivative. The generation of the naphthalimide-based radical anion is verified by 1H NMR and cyclic voltammetry analyses, and photo-reduction of methylene blue is mediated by TENI. In addition, the role of the cationic receptor for the photo-induced colorimetric reaction is investigated with TENI analogues having different hydrophilic groups instead of the trimethylammonium group. Interestingly, the photo-induced colorimetric reaction is observed in a nonionic analogue having a polyethylene glycol group, indicating that the colorimetric reaction does not require a cationic receptor. On the other hand, we reveal that the trimethylammonium group stabilizes the radical anion species. These generation and stabilization phenomena of naphthalimide-based radical anion species will contribute to the development of sophisticated detection systems specific for carboxylate.
Collapse
Affiliation(s)
- Hironori Izawa
- Department
of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
- Center
for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
| | - Fumika Yasufuku
- Graduate
School of Sustainable Science, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
| | - Toshiki Nokami
- Department
of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
- Center
for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
| | - Shinsuke Ifuku
- Department
of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
- Center
for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
| | - Hiroyuki Saimoto
- Department
of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
- Center
for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
| | - Toru Matsui
- Department
of Chemistry, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Kenji Morihashi
- Department
of Chemistry, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Masato Sumita
- Center
for Advanced Intelligence Project, RIKEN, Nihombashi 1-chome Mitsui Building, 15th Floor,
1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
19
|
Nature of Linear Spectral Properties and Fast Electronic Relaxations in Green Fluorescent Pyrrolo[3,4-c]Pyridine Derivative. Int J Mol Sci 2021; 22:ijms22115592. [PMID: 34070488 PMCID: PMC8197551 DOI: 10.3390/ijms22115592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
The electronic nature of 4-hydroxy-1H-pyrrolo[3,4-c]pyridine-1,3,6(2H,5H)-trione (HPPT) was comprehensively investigated in liquid media at room temperature using steady-state and time-resolved femtosecond transient absorption spectroscopic techniques. The analysis of the linear photophysical and photochemical parameters of HPPT, including steady-state absorption, fluorescence and excitation anisotropy spectra, along with the lifetimes of fluorescence emission and photodecomposition quantum yields, revealed the nature of its large Stokes shift, specific changes in the permanent dipole moments under electronic excitation, weak dipole transitions with partially anisotropic character, and high photostability. Transient absorption spectra of HPPT were obtained with femtosecond resolution and no characteristic solvate relaxation processes in protic (methanol) solvent were revealed. Efficient light amplification (gain) was observed in the fluorescence spectral range of HPPT, but no super-luminescence and lasing phenomena were detected. The electronic structure of HPPT was also analyzed with quantum-chemical calculations using a DFT/B3LYP method and good agreement with experimental data was shown. The development and investigation of new pyrrolo[3,4-c]pyridine derivatives are important due to their promising fluorescent properties and potential for use in physiological applications.
Collapse
|
20
|
Kumar G, Singh I, Goel R, Paul K, Luxami V. Dual-channel ratiometric recognition of Al 3+ and F - ions through an ESIPT-ESICT signalling mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119112. [PMID: 33189981 DOI: 10.1016/j.saa.2020.119112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/11/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
An optical probe 1 has been synthesized comprising naphthalimide unit conjugated with Schiff base, exhibiting excited state intramolecular proton transfer and intramolecular charge transfer as a potential sensor for Al3+ and F- ions using standard spectroscopic techniques. The probe 1 exhibited local and charge-transfer excitation at 340 nm and 460 nm, respectively. On excitation at 460 nm, probe 1 displayed two emission bands at 510 nm and 610 nm, accompanied by Stokes' shift of 50 nm and 150 nm, respectively. The solvatochromic effect and theoretical calculation depicted that the representative emissions resulted from the ESICT/ESIPT phenomenon. Upon addition of Al3+ ions, the charge transfer excitation at 460 nm was enhanced ratiometrically to local excitation at 340 nm and showed a color change from orange to yellow. Similarily, probe 1.Al3+ displayed emission enhancement at 540 nm in H2O/CH3CN (1:9; v/v) and showed a color change from yellow to blue-green emission. Following the detection of Al3+ ions, hydrolysis of probe 1 to its reacting precursors was observed. The detection of Al3+ ions was also demonstrated in surfactant-containing water. The limit of detection (LOD) of probe 1 (H2O/CH3CN (1:9; v/v)) towards Al3+ ions was measured to be 3.2 × 10-8 M. The probe 1 displayed a ratiometric absorption response towards F- ions with a new peak at 570 nm and showed a color change from orange to purple. The probe 1.F- displayed a decrease in emission at 635 nm. The LOD of probe 1 (CH3CN) towards F- ions was measured to be 7.5 × 10-7 M.
Collapse
Affiliation(s)
- Gulshan Kumar
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - Iqubal Singh
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - Richa Goel
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147004, India.
| |
Collapse
|
21
|
Thapa P, Byrnes NK, Denisenko AA, Mao JX, McDonald AD, Newhouse CA, Vuong TT, Woodruff K, Nam K, Nygren DR, Jones BJP, Foss FW. Demonstration of Selective Single-Barium Ion Detection with Dry Diazacrown Ether Naphthalimide Turn-on Chemosensors. ACS Sens 2021; 6:192-202. [PMID: 33400506 DOI: 10.1021/acssensors.0c02104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-molecule fluorescence imaging (SMFI) of gas-phase ions has been proposed for "barium tagging," a burgeoning area of research in particle physics to detect individual barium daughter ions. This has potential to significantly enhance the sensitivity of searches for neutrinoless double-beta decay (0νββ) that is obscured by background radiation events. The chemistry required to make such sensitive detection of Ba2+ by SMFI in dry Xe gas at solid interfaces has implications for solid-phase detection methods but has not been demonstrated. Here, we synthesized simple, robust, and effective Ba2+-selective chemosensors capable of function within ultrapure high-pressure 136Xe gas. Turn-on fluorescent naphthalimide-(di)azacrown ether chemosensors were Ba2+-selective and achieved SMFI in a polyacrylamide matrix. Fluorescence and NMR experiments supported a photoinduced electron transfer mechanism for turn-on sensing. Ba2+ selectivity was achieved with computational calculations correctly predicting the fluorescence responses of sensors to barium, mercury, and potassium ions. With these molecules, dry-phase single-Ba2+ ion imaging with turn-on fluorescence was realized using an oil-free microscopy technique for the first time-a significant advance toward single-Ba2+ ion detection within large volumes of 136Xe, plausibly enabling a background-independent technique to search for the hypothetical process of 0νββ.
Collapse
Affiliation(s)
- Pawan Thapa
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
- Department of Physics, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Nicholas K. Byrnes
- Department of Physics, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Alena A. Denisenko
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - James X. Mao
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Austin D. McDonald
- Department of Physics, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Charleston A. Newhouse
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Thanh T. Vuong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Katherine Woodruff
- Department of Physics, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - David R. Nygren
- Department of Physics, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Benjamin J. P. Jones
- Department of Physics, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Frank W. Foss
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
22
|
Fang Y, Dehaen W. Small-molecule-based fluorescent probes for f-block metal ions: A new frontier in chemosensors. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213524] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Fluorescent photochromic complex of 1,8-naphthalimide derivative and benzopyrane containing benzo-18-crown-6 ether. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Synthesis, photophysical characterisation and antimicrobial activity of a new anionic PAMAM dendrimer. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
|
26
|
Staneva D, Vasileva-Tonkova E, Grozdanov P, Vilhelmova-Ilieva N, Nikolova I, Grabchev I. Synthesis and photophysical characterisation of 3-bromo-4-dimethylamino-1,8-naphthalimides and their evaluation as agents for antibacterial photodynamic therapy. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Staneva D, Manov H, Yordanova S, Vasileva‐Tonkova E, Stoyanov S, Grabchev I. Synthesis, spectral properties and antimicrobial activity of a new cationic water‐soluble pH‐dependent poly(propylene imine) dendrimer modified with 1,8‐naphthalimides. LUMINESCENCE 2020; 35:947-954. [DOI: 10.1002/bio.3809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/28/2020] [Accepted: 04/01/2020] [Indexed: 01/28/2023]
Affiliation(s)
| | - Hristo Manov
- Faculty of Chemistry and PharmacySofia University ‘St. Kliment Ohridski’ Sofia Bulgaria
| | - Stanislava Yordanova
- Faculty of Chemistry and PharmacySofia University ‘St. Kliment Ohridski’ Sofia Bulgaria
| | | | - Stanimir Stoyanov
- Faculty of Chemistry and PharmacySofia University ‘St. Kliment Ohridski’ Sofia Bulgaria
| | - Ivo Grabchev
- Faculty of MedicineSofia University ‘St. Kliment Ohridski’ Sofia Bulgaria
| |
Collapse
|
28
|
Tian M, Wang C, Ma Q, Bai Y, Sun J, Ding C. A Highly Selective Fluorescent Probe for Hg 2+ Based on a 1,8-Naphthalimide Derivative. ACS OMEGA 2020; 5:18176-18184. [PMID: 32743192 PMCID: PMC7391857 DOI: 10.1021/acsomega.0c01790] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/29/2020] [Indexed: 05/31/2023]
Abstract
Hg2+ has a significant hazardous impact on the environment and ecosystem. There is a great demand for new methods with high selectivity and sensitivity to determine mercury in life systems and environments. In this paper, a novel turn-on Hg2+ fluorescent probe has been reported with a naphthalimide group. The Hg2+ fluorescent probe was designed by the inspiration of the well-known specific Hg2+-triggered thioacetal deprotection reaction. A 1,2-dithioalkyl group was chosen as the specific recognition site of Hg2+. The probe showed weak fluorescence without Hg2+, and the color of the solution was light yellow. In the presence of Hg2+, the probe reacted specifically with the mercury ion to produce an aldehyde and emitted strong fluorescence, and the color of the solution also turned light green, thus realizing the monitoring of the mercury ion. The Hg2+ fluorescent probe showed outstanding sensitivity and selectivity toward Hg2+. Furthermore, the Hg2+ fluorescent probe could work in a wide pH range. The linear relationship between the fluorescence intensity at 510 nm and the concentration of Hg2+ was obtained in a range of Hg2+ concentration from 2.5 × 10-7 to 1.0 × 10-5 M. The detection limit was found to be 4.0 × 10-8 M for Hg2+. Furthermore, with little cell toxicity, the probe was successfully applied to the confocal image of Hg2+ in PC-12 cells.
Collapse
Affiliation(s)
- Meiju Tian
- School
of Pharmacy, Henan University of Traditional
Chinese Medicine, Zhengzhou 450046, PR China
| | - Chunyan Wang
- School
of Pharmacy, Henan University of Traditional
Chinese Medicine, Zhengzhou 450046, PR China
| | - Qiujuan Ma
- School
of Pharmacy, Henan University of Traditional
Chinese Medicine, Zhengzhou 450046, PR China
- Zhengzhou
Key Laboratory of Chinese Medicine Quality Control and Evaluation, Zhengzhou 450046, PR China
| | - Yu Bai
- School
of Pharmacy, Henan University of Traditional
Chinese Medicine, Zhengzhou 450046, PR China
| | - Jingguo Sun
- School
of Pharmacy, Henan University of Traditional
Chinese Medicine, Zhengzhou 450046, PR China
| | - Chunfeng Ding
- Henan
Key Laboratory of Laser and Optoelectric Information Technology, School
of Information Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
29
|
Zakharko MA, Panchenko PA, Zarezin DP, Nenajdenko VG, Pritmov DA, Grin MA, Mironov AF, Fedorova OA. Conjugates of 3,4-dimethoxy-4-styrylnaphthalimide and bacteriochlorin for theranostics in photodynamic therapy. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2885-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Yordanova-Tomova S, Cheshmedzhieva D, Stoyanov S, Dudev T, Grabchev I. Synthesis, Photophysical Characterization, and Sensor Activity of New 1,8-Naphthalimide Derivatives. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20143892. [PMID: 32668630 PMCID: PMC7411986 DOI: 10.3390/s20143892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Three new 1,8-naphthalimide derivatives M1-M3 with different substituents at the C-4 position have been synthesized and characterized. Their photophysical properties have been investigated in organic solvents of different polarity, and their fluorescence intensity was found to depend strongly on both the polarity of the solvents and the type of substituent at C-4. For compounds M1 and M2 having a tertiary amino group linked via an ethylene bridge to the chromophore system, high quantum yield was observed only in non-polar media, whereas for compound M3, the quantum efficiency did not depend on the medium polarity. The effect of different metal ions (Ag+, Ba2+, Cu2+, Co2+, Mg2+, Pb2+, Sr2+, Fe3+, and Sn2+) on the fluorescence emission of compounds M1 and M2 was investigated. A significant enhancement has been observed in the presence of Ag+, Pb2+, Sn2+, Co2+, Fe3+, as this effect is expressed more preferably in the case of M2. Both compounds have shown significant pH dependence, as the fluorescence intensity was low in alkaline medium and has been enhanced more than 20-fold in acidic medium. The metal ions and pH do not affect the fluorescence intensity of M3. Density-functional theory (DFT) and Time-dependent density-functional theory (TDDFT) quantum chemical calculations are employed in deciphering the intimate mechanism of sensor mechanism. The functional properties of M1 and M2 were compared with polyamidoamine (PAMAM) dendrimers of different generations modified with 1,8-naphthalimide.
Collapse
Affiliation(s)
- Stanislava Yordanova-Tomova
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Baurchier blvd., 1164 Sofia, Bulgaria; (S.Y.-T.); (D.C.); (S.S.); (T.D.)
| | - Diana Cheshmedzhieva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Baurchier blvd., 1164 Sofia, Bulgaria; (S.Y.-T.); (D.C.); (S.S.); (T.D.)
| | - Stanimir Stoyanov
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Baurchier blvd., 1164 Sofia, Bulgaria; (S.Y.-T.); (D.C.); (S.S.); (T.D.)
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Baurchier blvd., 1164 Sofia, Bulgaria; (S.Y.-T.); (D.C.); (S.S.); (T.D.)
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1 Koziak str., 1407 Sofia, Bulgaria
| |
Collapse
|
31
|
Staneva D, Angelova S, Grabchev I. Spectral Characteristics and Sensor Ability of a New 1,8-Naphthalimide and Its Copolymer with Styrene. SENSORS 2020; 20:s20123501. [PMID: 32575857 PMCID: PMC7349821 DOI: 10.3390/s20123501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/02/2022]
Abstract
In this study, a novel 6-(allylamino)-2-(2-(dimethylamino)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (NI3) was synthesized and characterized. Its copolymer with styrene was also obtained. The photophysical characteristics of NI3 were investigated in organic solvents and the results were compared with those of its structural analogue, 2-allyl-6-((2-(dimethylamino)ethyl)amino)-1H-benzo[de]isoquinoline-1,3(2H)-dione (NI4). The influences of the pH in the medium and different metal ions on the fluorescent intensity of monomers and polymers were also investigated. Computational tools (DFT and TDDFT calculations) were employed when studying the structure and properties of the 1,8-naphthalimide-based chromophores. Although the position of the N,N-dimethylaminoethylamine receptor fragment did not significantly impact proton detection, it was still important for detecting metal ion sensor ability, especially for monomeric 1,8-naphthalimide structures and their copolymers with styrene.
Collapse
Affiliation(s)
- Desislava Staneva
- Department of Textile and Leather, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. Jordan Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-2-816-1319
| |
Collapse
|
32
|
Traven VF, Cheptsov DA. Sensory effects of fluorescent organic dyes. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Pati C, Chattopadhyay AP, Ghosh K. Diamino malenonitrile-linked naphthalimide in selective sensing of F-, CN-, Hg2+ and Cu2+ under different experimental conditions. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1749628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Chiranjit Pati
- Department of Chemistry, University of Kalyani, Kalyani, India
| | | | - Kumaresh Ghosh
- Department of Chemistry, University of Kalyani, Kalyani, India
| |
Collapse
|
34
|
Zakharko MA, Panchenko PA, Ignatov PA, Fedorov YV, Fedorova OA. New conjugate of bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetate with naphthalimide as a fluorescent sensor for calcium cations. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Microwave-Assisted Synthesis and Fluorescent Properties of 4-Phenyl-1,8-naphthalimide. MOLBANK 2020. [DOI: 10.3390/m1127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
4-Phenyl-1,8-naphthalimide was synthesized by imidation of commercially available 4-bromo-1,8-naphthalic anhydride, followed by Suzuki coupling with phenyl boronic acid, both under microwave heating. The microwave-assisted reactions were found to be faster and more efficient than reactions carried out by heating in oil-baths. While this compound was quite fluorescent in solvents such as chloroform, methanol and ethanol, it is virtually non-fluorescent in DMSO; however, upon the addition of water to DMSO solutions of this dye, fluorescence was restored, suggesting a tendency for aggregation-induced emission. The fluorescent properties of 4-phenyl-1,8-naphthalimide were found to be influenced by salt concentrations, likely as a result of hydrophobic effects. While this dye does not show binding to DNA, presence of bovine serum albumin leads to effective fluorescence quenching.
Collapse
|
36
|
Liang S, Tong Q, Qin X, Liao X, Li Q, Yan G. A hydrophilic naphthalimide-based fluorescence chemosensor forCu 2+ ion: Sensing properties, cell imaging and molecular logic behavior. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118029. [PMID: 31945712 DOI: 10.1016/j.saa.2020.118029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
In this work, a hydrophilic naphthalimide-based fluorescence chemosensor (sensor 1) was synthesized for Cu2+ recognition, in which 2-(2-aminoethoxy)ethanol was introduced to improve the hydrophily and Schiff base acted as the multidentate ligand for Cu2+. The effect factors, sensing mechanism and regenerability of sensor 1 for Cu2+ sensing were systematically investigated. It was found that sensor 1 displayed a long emission wavelength of 532 nm upon excited in visible light region (436 nm), and the good water solubility made it utilized in aqueous media. It could selectively react with Cu2+ over other common metal ions to form a 2:1 complex within 1 min and result in significant fluorescence quench. The fluorescence change was linear to 0.5-10.0 μmol L-1 of Cu2+ with a low detection limit of 3.74 × 10-8 mol L-1. Sensor 1 has been successfully utilized for analyzing Cu2+ in water samples as well as imaging cellular Cu2+. Moreover, in view of fluorescence "on-off-on" switches of sensor 1 induced by Cu2+ and EDTA, an IMPLICATION logic gate was constructed based on fluorescence mode with Cu2+ and EDTA as inputs.
Collapse
Affiliation(s)
- Shucai Liang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China.
| | - Qiao Tong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoning Qin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyan Liao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Qian Li
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430074, China
| | - Guoping Yan
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430074, China.
| |
Collapse
|
37
|
Panchenko PA, Ignatov PA, Zakharko MA, Fedorov YV, Fedorova OA. A fluorescent PET chemosensor for Zn2+ cations based on 4-methoxy-1,8-naphthalimide derivative containing salicylideneamino receptor group. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
38
|
Diacono A, Aquilina MC, Calleja A, Agius G, Gauci G, Szaciłowski K, Magri DC. Enhanced ion binding by the benzocrown receptor and a carbonyl of the aminonaphthalimide fluorophore in water-soluble logic gates. Org Biomol Chem 2020; 18:4773-4782. [DOI: 10.1039/d0ob00059k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent logic gates with benzocrown ethers attached at the imide naphthalimide exhibit synergistic binding of Na+ and K+ in aqueous methanol and water.
Collapse
Affiliation(s)
- Andreas Diacono
- Department of Chemistry
- Faculty of Science
- University of Malta
- Msida
- Malta
| | | | - Andrej Calleja
- Department of Chemistry
- Faculty of Science
- University of Malta
- Msida
- Malta
| | - Godfrey Agius
- Department of Chemistry
- Faculty of Science
- University of Malta
- Msida
- Malta
| | - Gabriel Gauci
- Department of Chemistry
- Faculty of Science
- University of Malta
- Msida
- Malta
| | | | - David C. Magri
- Department of Chemistry
- Faculty of Science
- University of Malta
- Msida
- Malta
| |
Collapse
|
39
|
Qian B, Váradi L, Trinchi A, Reichman SM, Bao L, Lan M, Wei G, Cole IS. The Design and Synthesis of Fluorescent Coumarin Derivatives and Their Study for Cu 2+ Sensing with an Application for Aqueous Soil Extracts. Molecules 2019; 24:molecules24193569. [PMID: 31581746 PMCID: PMC6804054 DOI: 10.3390/molecules24193569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
A series of fluorescent coumarin derivatives 2a–e were systematically designed, synthesized and studied for their Cu2+ sensing performance in aqueous media. The sensitivities and selectivities of the on-to-off fluorescent Cu2+ sensing signal were in direct correlation with the relative arrangements of the heteroatoms within the coordinating moieties of these coumarins. Probes 2b and 2d exhibited Cu2+ concentration dependent and selective fluorescence quenching, with linear ranges of 0–80 μM and 0–10 μM, and limits of detection of 0.14 μM and 0.38 μM, respectively. Structural changes of 2b upon Cu2+ coordination were followed by fluorescence titration, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), mass spectrometry, and single crystal X-ray diffraction on the isolated Cu2+-coumarin complex. The results revealed a 1:1 stoichiometry between 2b and Cu2+, and that the essential structural features for Cu2+-selective coordination are the coumarin C=O and a three-bond distance between the amide NH and heterocyclic N. Probe 2b was also used to determine copper (II) levels in aqueous soil extracts, with recovery rates over 80% when compared to the standard soil analysis method: inductively coupled plasma-mass spectrometry (ICP-MS).
Collapse
Affiliation(s)
- Bin Qian
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
| | - Linda Váradi
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3169, Australia.
| | - Adrian Trinchi
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3169, Australia.
| | - Suzie M Reichman
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
| | - Lei Bao
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Gang Wei
- CSIRO Mineral Resources, PO Box 218, Lindfield, NSW 2070, Australia.
| | - Ivan S Cole
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
40
|
Staneva D, Vasileva-Tonkova E, Grabchev I. Chemical modification of cotton fabric with 1,8-naphthalimide for use as heterogeneous sensor and antibacterial textile. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Surface Functionalization of Cotton Fabric with Fluorescent Dendrimers, Spectral Characterization, Cytotoxicity, Antimicrobial and Antitumor Activity. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7020017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poly(propylenimine) dendrimers from first and third generations modified with 1,8-naphthalimide units and their Zn(II) complexes have been investigated by absorption and fluorescence spectroscopy. These dendrimers have been deposited on a cotton cloth by the extraction method, producing yellow-colored textile materials. They have been characterized by defining their color coordinates L*a*b*, XYZ and xy. The antimicrobial activity of dendrimers has been investigated in vitro against model gram-positive and gram-negative bacteria and yeasts. Being deposited onto the surface of cotton fabric, the studied dendrimers reduced bacterial growth and prevented the formation of bacterial biofilm. Anticancer and cytotoxicity activities have also been performed against HeLa and Lep-3 human tumor cell lines as model systems.
Collapse
|
42
|
A novel dithiourea-appended naphthalimide "on-off" fluorescent probe for detecting Hg 2+ and Ag + and its application in cell imaging. Talanta 2019; 200:494-502. [PMID: 31036214 DOI: 10.1016/j.talanta.2019.03.076] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/31/2023]
Abstract
An effective dithiourea-appended 1,8-naphthalimide fluorescent probe was designed and synthesized. This probe could recognize Hg2+ and Ag+ sensitively and selectively in neutral and alkaline conditions. Moreover, the probe detected Hg2+ alone at pH between 2 and 6. The sensing ability of the probe was explored by UV-vis, fluorescence, FTIR and 1H NMR spectroscopy. The probe was quenched by Hg2+ and Ag+ with 1:1 binding ratios in MeCN/H2O (4/1, v/v) mixed solution with binding constants of 3.76 × 104 L mol-1 and 2.47 × 104 L mol-1, respectively. The linear concentration ranges for Hg2+ and Ag+ were 0-17 μmol L-1 and 0-24 μmol L-1 with detection limits of 0.83 μmol L-1 and 1.20 μmol L-1, respectively, which allowed for the quantitative determination of Hg2+ and Ag+. The new probe, 3a, was successfully applied to the fluorescence imaging of Hg2+ and Ag+ in HepG2 cells, demonstrating its potential application in biological science. Moreover, 3a was used to measure Hg2+ and Ag+ in tap water, drinking water and ultrapure water samples. The recoveries of Hg2+ and Ag+ in water samples were 96-99% and 98-103%, respectively. Therefore, the proposed method showed promising perspectives for its application, aimed at detecting Hg2+ and Ag+ in fluorescence imaging and real water samples.
Collapse
|
43
|
Panchenko PA, Polyakova AS, Fedorov YV, Fedorova OA. Chemoselective detection of Ag+ in purely aqueous solution using fluorescence ‘turn-on’ probe based on crown-containing 4-methoxy-1,8-naphthalimide. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Shepeleva II, Shokurov AV, Konovalova NV, Arslanov VV, Panchenko PA, Selektor SL. Nonradiative energy transfer in mixed Langmuir monolayers and Langmuir–Blodgett films of compounds of different chemical composition and structure. Russ Chem Bull 2019. [DOI: 10.1007/s11172-018-2348-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Ivanova IS, Ilyukhin AB, Polyakova IN, Rogacheva YI, Pyatova EN, Tsebrikova GS, Baulin VE, Tsivadze AY. 1,8-Bis[2-(diphenylphosphoryl)phenoxy-4-phenyldiazenyl)]-3,6-dioxaoctane (L): Synthesis and Complexing and Ion-Selective Properties. Crystal and Molecular Structures of L · 0.25H2O and [LiL]I3 · MePh. RUSS J INORG CHEM+ 2019. [DOI: 10.1134/s0036023619020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Ma Y, Gao W, Zhu L, Zhao Y, Lin W. Development of a unique reversible fluorescent probe for tracking endogenous sulfur dioxide and formaldehyde fluctuation in vivo. Chem Commun (Camb) 2019; 55:11263-11266. [DOI: 10.1039/c9cc04411f] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A FRET-based reversible fluorescent probe for sensing SO2 and FA was designed. The probe was first used for imaging endogenous SO2 and FA in vitro and in vivo. Moreover, we first found that the interaction of SO2 and FA can reduce the cytotoxicity.
Collapse
Affiliation(s)
- Yanyan Ma
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Wenjie Gao
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Linlin Zhu
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Yuping Zhao
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| |
Collapse
|
47
|
Jiao C, Pang J, Shen L, Lu W, Zhang P, Liu Y, Li J, Jia X, Wang Y. A “weak acid and weak base” type fluorescent probe for sensing pH: mechanism and application in living cells. RSC Adv 2019; 9:20982-20988. [PMID: 35515522 PMCID: PMC9066030 DOI: 10.1039/c9ra03203g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/30/2019] [Indexed: 12/14/2022] Open
Abstract
A simple pH fluorescent probe, N-(6-morpholino-1, 3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl) isonicotinamide (NDI), based on naphthalimide as the fluorophore and isonicotinic acid hydrazide as the reaction site was synthesized and characterized. It is useful for monitoring acidic and alkaline pH. The results of pH titration indicated that NDI exhibits obvious emission enhancement with a pKa of 4.50 and linear response to small pH fluctuations within the acidic range of 3.00–6.50. Interestingly, NDI also displayed strong pH-dependent characteristics with pKa 9.34 and linearly responded to an alkaline range of 8.30–10.50. The sensing response mechanism was confirmed by 1H NMR and ESI-MS spectroscopy. The mechanism of the optical responses of NDI toward pH was also determined by density functional theory (DFT) calculations. In addition, NDI displayed a highly selective and sensitive response to hydrogen ions and hydroxyl ions. The probe was successfully applied to image acidic and alkaline pH value fluctuations in HeLa cells and has lysosomal targeting ability. When the probe was in the protonation process, the fluorescence intensity gradually decreased, whereas when the probe was in the deprotonation process, the fluorescence intensity gradually increased.![]()
Collapse
Affiliation(s)
- Chunpeng Jiao
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| | - Jingxiang Pang
- Shandong Medicinal Biotechnology Center
- Shandong Academy of Medical Sciences
- Jinan
- China
| | - Li Shen
- College of Science
- China University of Petroleum (East China)
- Qingdao
- China
- College of Chemical Engineering and Environmental Chemistry
| | - Wenjuan Lu
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| | - Pingping Zhang
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| | - Yuanyuan Liu
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| | - Jing Li
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| | - Xianhui Jia
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| | - Yanfeng Wang
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| |
Collapse
|
48
|
Ultrathin film sensory system based on resonance energy transfer between the monolayers consisting of non-covalently linked fluorophores. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Recent Progress on the Evolution of Pourbaix Sensors: Molecular Logic Gates for Protons and Oxidants. CHEMOSENSORS 2018. [DOI: 10.3390/chemosensors6040048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent progress in the area of molecular logic, in particular molecules capable of sensing for acidity and oxidizability, are gathered together in this short review. Originally proposed as AND logic gates that provide a high fluorescence output when simultaneously protonated and oxidized, the concept has been extended from two-input to three-input variants and to include molecules that function as INHIBIT logic gates. Photochemical concepts such as photoinduced electron transfer (PET) and internal charge transfer (ICT) are exploited as favorite design concepts. This review highlights the evolution of Pourbaix sensors with anthracene, pyrazoline, and naphthalimide fluorophores. Future applications abound in various disciplines from corrosion science, material science, geochemistry to cell imaging.
Collapse
|
50
|
Panchenko PA, Fedorov YV, Fedorova OA. Selective fluorometric sensing of Hg2+ in aqueous solution by the inhibition of PET from dithia-15-crown-5 ether receptor conjugated to 4-amino-1,8-naphthalimide fluorophore. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|