1
|
Jayadev R, Chi Q, Sherwood DR. Post-embryonic endogenous expression and localization of LET-60/Ras in C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000931. [PMID: 37692087 PMCID: PMC10492041 DOI: 10.17912/micropub.biology.000931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
Ras GTPases regulate many developmental and physiological processes and mutations in Ras are associated with numerous human cancers. Here, we report the function, levels, and localization of an N-terminal knock-in of mNeonGreen (mNG) into C. elegans LET-60 /Ras. mNG:: LET-60 interferes with some but not all LET-60 /Ras functions. mNG:: LET-60 is broadly present in tissues, found at different levels in cells, and concentrates in distinct subcellular compartments, including the nucleolus, nucleus, intracellular region, and plasma membrane. These results suggest that mNG:: LET-60 can be a useful tool for determining LET-60 levels and localization once its functionality in a developmental or physiological process is established.
Collapse
Affiliation(s)
| | - Qiuyi Chi
- Department of Biology, Duke University, Durham, NC, USA
| | | |
Collapse
|
2
|
Illukkumbura R, Hirani N, Borrego-Pinto J, Bland T, Ng K, Hubatsch L, McQuade J, Endres RG, Goehring NW. Design principles for selective polarization of PAR proteins by cortical flows. J Cell Biol 2023; 222:e202209111. [PMID: 37265444 PMCID: PMC10238861 DOI: 10.1083/jcb.202209111] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/08/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Clustering of membrane-associated molecules is thought to promote interactions with the actomyosin cortex, enabling size-dependent transport by actin flows. Consistent with this model, in the Caenorhabditis elegans zygote, efficient anterior segregation of the polarity protein PAR-3 requires oligomerization. However, through direct assessment of local coupling between motion of PAR proteins and the underlying cortex, we find no links between PAR-3 oligomer size and the degree of coupling. Indeed, both anterior and posterior PAR proteins experience similar advection velocities, at least over short distances. Consequently, differential cortex engagement cannot account for selectivity of PAR protein segregation by cortical flows. Combining experiment and theory, we demonstrate that a key determinant of differential segregation of PAR proteins by cortical flow is the stability of membrane association, which is enhanced by clustering and enables transport across cellular length scales. Thus, modulation of membrane binding dynamics allows cells to achieve selective transport by cortical flows despite widespread coupling between membrane-associated molecules and the cell cortex.
Collapse
Affiliation(s)
- Rukshala Illukkumbura
- The Francis Crick Institute, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | | | | | - Tom Bland
- The Francis Crick Institute, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - KangBo Ng
- The Francis Crick Institute, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Lars Hubatsch
- The Francis Crick Institute, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Jessica McQuade
- Department of Life Sciences, Imperial College London, London, UK
| | - Robert G. Endres
- Department of Life Sciences, Imperial College London, London, UK
| | - Nathan W. Goehring
- The Francis Crick Institute, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| |
Collapse
|
3
|
Pham TV, Hsiao WY, Wang YT, Yeh SD, Wang SW. Protein S-palmitoylation regulates different stages of meiosis in Schizosaccharomyces pombe. Life Sci Alliance 2023; 6:e202201755. [PMID: 36650056 PMCID: PMC9845910 DOI: 10.26508/lsa.202201755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Posttranslational protein S-palmitoylation regulates the localization and function of its target proteins involved in diverse cellular processes including meiosis. In this study, we demonstrate that S-palmitoylation mediated by Erf2-Erf4 and Akr1 palmitoylacyltransferases is required at multiple meiotic stages in the fission yeast Schizosaccharomyces pombe We find that S-palmitoylation by Erf2-Erf4 is required for Ras1 localization at the cell periphery to enrich at the cell conjugation site for mating pheromone response. In the absence of Erf2 or Erf4, mutant cells are sterile. A role of Akr1 S-palmitoylating the nuclear fusion protein Tht1 to function in karyogamy is identified. We demonstrate that S-palmitoylation stabilizes and localizes Tht1 to ER, interacting with Sey1 ER fusion GTPase for proper meiotic nuclear fusion. In akr1, tht1, or sey1 mutant, meiotic cells, haploid nuclei are unfused with subsequent chromosome segregation defects. Erf2-Erf4 has an additional substrate of the spore coat protein Isp3. In the absence of Erf2, Isp3 is mislocalized from the spore coat. Together, these results highlight the versatility of the cellular processes in which protein S-palmitoylation participates.
Collapse
Affiliation(s)
- Thanh-Vy Pham
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Wan-Yi Hsiao
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Taiwan
| | - Yi-Ting Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Taiwan
| | - Shu-Dan Yeh
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Shao-Win Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Taiwan
| |
Collapse
|
4
|
|
5
|
Gerganova V, Lamas I, Rutkowski DM, Vještica A, Castro DG, Vincenzetti V, Vavylonis D, Martin SG. Cell patterning by secretion-induced plasma membrane flows. SCIENCE ADVANCES 2021; 7:eabg6718. [PMID: 34533984 PMCID: PMC8448446 DOI: 10.1126/sciadv.abg6718] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/26/2021] [Indexed: 05/20/2023]
Abstract
Cells self-organize using reaction-diffusion and fluid-flow principles. Whether bulk membrane flows contribute to cell patterning has not been established. Here, using mathematical modeling, optogenetics, and synthetic probes, we show that polarized exocytosis causes lateral membrane flows away from regions of membrane insertion. Plasma membrane–associated proteins with sufficiently low diffusion and/or detachment rates couple to the flows and deplete from areas of exocytosis. In rod-shaped fission yeast cells, zones of Cdc42 GTPase activity driving polarized exocytosis are limited by GTPase activating proteins (GAPs). We show that membrane flows pattern the GAP Rga4 distribution and that coupling of a synthetic GAP to membrane flows is sufficient to establish the rod shape. Thus, membrane flows induced by Cdc42-dependent exocytosis form a negative feedback restricting the zone of Cdc42 activity.
Collapse
Affiliation(s)
- Veneta Gerganova
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | - Iker Lamas
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | | | - Aleksandar Vještica
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | - Daniela Gallo Castro
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | - Vincent Vincenzetti
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA
- Corresponding author. (S.G.M.); (D.V.)
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
- Corresponding author. (S.G.M.); (D.V.)
| |
Collapse
|
6
|
Campbell SL, Philips MR. Post-translational modification of RAS proteins. Curr Opin Struct Biol 2021; 71:180-192. [PMID: 34365229 DOI: 10.1016/j.sbi.2021.06.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022]
Abstract
Mutations of RAS genes drive cancer more frequently than any other oncogene. RAS proteins integrate signals from a wide array of receptors and initiate downstream signaling through pathways that control cellular growth. RAS proteins are fundamentally binary molecular switches in which the off/on state is determined by the binding of GDP or GTP, respectively. As such, the intrinsic and regulated nucleotide-binding and hydrolytic properties of the RAS GTPase were historically believed to account for the entirety of the regulation of RAS signaling. However, it is increasingly clear that RAS proteins are also regulated by a vast array of post-translational modifications (PTMs). The current challenge is to understand what are the functional consequences of these modifications and which are physiologically relevant. Because PTMs are catalyzed by enzymes that may offer targets for drug discovery, the study of RAS PTMs has been a high priority for RAS biologists.
Collapse
Affiliation(s)
| | - Mark R Philips
- Perlmutter Cancer Center, NYU Grossman School of Medicine, USA
| |
Collapse
|
7
|
Nussinov R, Zhang M, Maloney R, Jang H. Ras isoform-specific expression, chromatin accessibility, and signaling. Biophys Rev 2021; 13:489-505. [PMID: 34466166 PMCID: PMC8355297 DOI: 10.1007/s12551-021-00817-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
The anchorage of Ras isoforms in the membrane and their nanocluster formations have been studied extensively, including their detailed interactions, sizes, preferred membrane environments, chemistry, and geometry. However, the staggering challenge of their epigenetics and chromatin accessibility in distinct cell states and types, which we propose is a major factor determining their specific expression, still awaits unraveling. Ras isoforms are distinguished by their C-terminal hypervariable region (HVR) which acts in intracellular transport, regulation, and membrane anchorage. Here, we review some isoform-specific activities at the plasma membrane from a structural dynamic standpoint. Inspired by physics and chemistry, we recognize that understanding functional specificity requires insight into how biomolecules can organize themselves in different cellular environments. Within this framework, we suggest that isoform-specific expression may largely be controlled by the chromatin density and physical compaction, which allow (or curb) access to "chromatinized DNA." Genes are preferentially expressed in tissues: proteins expressed in pancreatic cells may not be equally expressed in lung cells. It is the rule-not an exception, and it can be at least partly understood in terms of chromatin organization and accessibility state. Genes are expressed when they can be sufficiently exposed to the transcription machinery, and they are less so when they are persistently buried in dense chromatin. Notably, chromatin accessibility can similarly determine expression of drug resistance genes.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine Tel Aviv University, 69978 Tel Aviv, Israel
| | - Mingzhen Zhang
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| | - Ryan Maloney
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| |
Collapse
|
8
|
Scaffold association factor B (SAFB) is required for expression of prenyltransferases and RAS membrane association. Proc Natl Acad Sci U S A 2020; 117:31914-31922. [PMID: 33257571 DOI: 10.1073/pnas.2005712117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inhibiting membrane association of RAS has long been considered a rational approach to anticancer therapy, which led to the development of farnesyltransferase inhibitors (FTIs). However, FTIs proved ineffective against KRAS-driven tumors. To reveal alternative therapeutic strategies, we carried out a genome-wide CRISPR-Cas9 screen designed to identify genes required for KRAS4B membrane association. We identified five enzymes in the prenylation pathway and SAFB, a nuclear protein with both DNA and RNA binding domains. Silencing SAFB led to marked mislocalization of all RAS isoforms as well as RAP1A but not RAB7A, a pattern that phenocopied silencing FNTA, the prenyltransferase α subunit shared by farnesyltransferase and geranylgeranyltransferase type I. We found that SAFB promoted RAS membrane association by controlling FNTA expression. SAFB knockdown decreased GTP loading of RAS, abrogated alternative prenylation, and sensitized RAS-mutant cells to growth inhibition by FTI. Our work establishes the prenylation pathway as paramount in KRAS membrane association, reveals a regulator of prenyltransferase expression, and suggests that reduction in FNTA expression may enhance the efficacy of FTIs.
Collapse
|
9
|
Rsr1 Palmitoylation and GTPase Activity Status Differentially Coordinate Nuclear, Septin, and Vacuole Dynamics in Candida albicans. mBio 2020; 11:mBio.01666-20. [PMID: 33051364 PMCID: PMC7554666 DOI: 10.1128/mbio.01666-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Directional growth and tissue invasion by hyphae of the pathogenic fungus, Candida albicans, are disrupted by deletion of the small GTPase, Rsr1, which localizes Cdc42 and its kinase, Cla4, to the site of polarized growth. We investigated additional abnormalities observed in rsr1Δ hyphae, including vacuole development, cytoplasm inheritance, mitochondrial morphology, septin ring organization, nuclear division and migration, and branching frequency, which together demonstrate a fundamental role for Rsr1 in cellular organization. Rsr1 contains a C-terminal CCAAX box, which putatively undergoes both reversible palmitoylation and farnesylation for entry into the secretory pathway. We expressed variants of Rsr1 with mutated C244 or C245, or which lacked GTPase activity (Rsr1K16N and Rsr1G12V), in the rsr1Δ background and compared the resulting phenotypes with those of mutants lacking Bud5 (Rsr1 GEF), Bud2 (Rsr1 GAP), or Cla4. Bud5 was required only for cell size and bud site selection in yeast, suggesting there are alternative activators for Rsr1 in hyphae. Septin ring and vacuole dynamics were restored by expression of unpalmitoylated Rsr1C244S, which localized to endomembranes, but not by cytoplasmic Rsr1C245A or GTP/GDP-locked Rsr1, suggesting Rsr1 functions at intracellular membranes in addition to the plasma membrane. Rsr1K16N or cytoplasmic Rsr1C245A restored normal nuclear division but not septin ring or vacuole dynamics. Rsr1-GDP therefore plays a specific role in suppressing START, which can be signaled from the cytosol. Via differential palmitoylation and activity states, Rsr1 operates at diverse cell sites to orchestrate proper nuclear division and inheritance during constitutive polarized growth. As cla4Δ phenocopied rsr1Δ, it is likely these functions involve Cdc42-Cla4 activity.IMPORTANCE Understanding how single eukaryotic cells self-organize to replicate and migrate is relevant to health and disease. In the fungal pathogen, Candida albicans, the small GTPase, Rsr1, guides the directional growth of hyphae that invade human tissue during life-threatening infections. Rsr1 is a Ras-like GTPase and a homolog of the conserved Rap1 subfamily, which directs migration in mammalian cells. Research into how this single GTPase delivers complex intracellular patterning is challenging established views of GTPase regulation, trafficking, and interaction. Here, we show that Rsr1 directly and indirectly coordinates the spatial and temporal development of key intracellular macrostructures, including septum formation and closure, vacuole dynamics, and nuclear division and segregation, as well as whole-cell morphology by determining branching patterns. Furthermore, we categorize these functions by differential Rsr1 localization and activity state and provide evidence to support the emerging view that the cytosolic pool of Ras-like GTPases is functionally active.
Collapse
|
10
|
Vještica A, Marek M, Nkosi PJ, Merlini L, Liu G, Bérard M, Billault-Chaumartin I, Martin SG. A toolbox of stable integration vectors in the fission yeast Schizosaccharomyces pombe. J Cell Sci 2020; 133:jcs.240754. [PMID: 31801797 DOI: 10.1242/jcs.240754] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022] Open
Abstract
Schizosaccharomyces pombe is a widely used model organism to study many aspects of eukaryotic cell physiology. Its popularity as an experimental system partially stems from the ease of genetic manipulations, where the innate homology-targeted repair is exploited to precisely edit the genome. While vectors to incorporate exogenous sequences into the chromosomes are available, most are poorly characterized. Here, we show that commonly used fission yeast vectors, which upon integration produce repetitive genomic regions, give rise to unstable genomic loci. We overcome this problem by designing a new series of stable integration vectors (SIVs) that target four different prototrophy genes. SIVs produce non-repetitive, stable genomic loci and integrate predominantly as single copy. Additionally, we develop a set of complementary auxotrophic alleles that preclude false-positive integration events. We expand the vector series to include antibiotic resistance markers, promoters, fluorescent tags and terminators, and build a highly modular toolbox to introduce heterologous sequences. Finally, as proof of concept, we generate a large set of ready-to-use, fluorescent probes to mark organelles and cellular processes with a wide range of applications in fission yeast research.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Aleksandar Vještica
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Magdalena Marek
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Pedro Junior Nkosi
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Laura Merlini
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Gaowen Liu
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Melvin Bérard
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Ingrid Billault-Chaumartin
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Chen C, Rodriguez Pino M, Haller PR, Verde F. Conserved NDR/LATS kinase controls RAS GTPase activity to regulate cell growth and chronological lifespan. Mol Biol Cell 2019; 30:2598-2616. [PMID: 31390298 PMCID: PMC6740195 DOI: 10.1091/mbc.e19-03-0172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adaptation to the nutritional environment is critical for all cells. RAS GTPase is a highly conserved GTP-binding protein with crucial functions for cell growth and differentiation in response to environmental conditions. Here, we describe a novel mechanism connecting RAS GTPase to nutrient availability in fission yeast. We report that the conserved NDR/LATS kinase Orb6 responds to nutritional cues and regulates Ras1 GTPase activity. Orb6 increases the protein levels of an Ras1 GTPase activator, the guanine nucleotide exchange factor Efc25, by phosphorylating Sts5, a protein bound to efc25 mRNA. By manipulating the extent of Orb6-mediated Sts5 assembly into RNP granules, we can modulate Efc25 protein levels, Ras1 GTPase activity, and, as a result, cell growth and cell survival. Thus, we conclude that the Orb6-Sts5-Ras1 regulatory axis plays a crucial role in promoting cell adaptation, balancing the opposing demands of promoting cell growth and extending chronological lifespan.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Marbelys Rodriguez Pino
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Patrick Roman Haller
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Fulvia Verde
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
12
|
Nozaki S, Furuya K, Niki H. The Ras1-Cdc42 pathway is involved in hyphal development of Schizosaccharomyces japonicus. FEMS Yeast Res 2019; 18:4939477. [PMID: 29566183 DOI: 10.1093/femsyr/foy031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/14/2018] [Indexed: 01/23/2023] Open
Abstract
Dimorphic yeasts transform into filamentous cells or hyphae in response to environmental cues. The mechanisms for the hyphal transition of dimorphic yeasts have mainly been studied in Candida albicans, an opportunistic human fungal pathogen. The Ras1-MAPK pathway is a major signal transduction pathway for hyphal transition in C. albicans. Recently, the non-pathogenic dimorphic yeast Schizosaccharomyces japonicus has also been used for genetic analyses of hyphal induction. We confirmed that Ras1-MAPK and other MAPK pathways exist in Sz. japonicus. To examine how hyphal transition is induced by environmental stress-triggered signal transduction, we studied the hyphal transition of deletion mutants of MAPK pathways in Sz. japonicus. We found that the MAPK pathways are not involved in hyphal induction, although the mating response is dependent on these pathways. However, only Ras1 deletion caused a severe defect in hyphal development via both DNA damage and environmental stressors. In fact, genes on the Cdc42 branch of the Ras1 (Ras1-Cdc42) pathway, efc25Sj, scd1Sj and scd2Sj, are required for hyphal development. Cell morphology analysis indicated that the apical growth of hyphal cells was inhibited in Ras1-Cdc42-pathway deletion mutants. Thus, the control of cell polarity by the Ras1-Cdc42 pathway is crucial for hyphal development.
Collapse
Affiliation(s)
- Shingo Nozaki
- Microbial Genetics Laboratory, Genetic Strains Research Center, National institute of Genetics, 1111, Yata, Mishima, Shizuoka 411-8540, Japan
| | - Kanji Furuya
- Radiation Biology Center, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hironori Niki
- Microbial Genetics Laboratory, Genetic Strains Research Center, National institute of Genetics, 1111, Yata, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, the Graduate University for Advanced Studies (SOKENDAI), 1111, Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
13
|
Ahearn I, Zhou M, Philips MR. Posttranslational Modifications of RAS Proteins. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031484. [PMID: 29311131 DOI: 10.1101/cshperspect.a031484] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The three human RAS genes encode four proteins that play central roles in oncogenesis by acting as binary molecular switches that regulate signaling pathways for growth and differentiation. Each is subject to a set of posttranslational modifications (PTMs) that modify their activity or are required for membrane targeting. The enzymes that catalyze the various PTMs are potential targets for anti-RAS drug discovery. The PTMs of RAS proteins are the focus of this review.
Collapse
Affiliation(s)
- Ian Ahearn
- Department of Medicine, Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016
| | - Mo Zhou
- Department of Medicine, Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016
| | - Mark R Philips
- Department of Medicine, Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
14
|
Cohen BE. Membrane Thickness as a Key Factor Contributing to the Activation of Osmosensors and Essential Ras Signaling Pathways. Front Cell Dev Biol 2018; 6:76. [PMID: 30087894 PMCID: PMC6066546 DOI: 10.3389/fcell.2018.00076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022] Open
Abstract
The cell membrane provides a functional link between the external environment and the replicating DNA genome by using ligand-gated receptors and chemical signals to activate signaling transduction pathways. However, increasing evidence has also indicated that the phospholipid bilayer itself by altering various physical parameters serves as a sensor that regulate membrane proteins in a specific manner. Changes in thickness and/or curvature of the membrane have been shown to be induced by mechanical forces and transmitted through the transmembrane helices of several types of mechanosensitive (MS) ion channels underlying functions such as osmoregulation in bacteria and sensory processing in mammalian cells. This review focus on recent protein functional and structural data indicating that the activation of bacterial and yeast osmosensors is consistent with thickness-induced tilting changes of the transmembrane domains of these proteins. Membrane thinning in combination with curvature changes may also lead to the lateral transfer of the small lipid-anchored GTPases Ras1 and H-Ras out of lipid rafts for clustering and signaling. The modulation of signaling pathways by amphiphilic peptides and the membrane-active antibiotics colistin and Amphotericin B is also discussed.
Collapse
Affiliation(s)
- B Eleazar Cohen
- Division of External Activities, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| |
Collapse
|
15
|
Tebar F, Enrich C, Rentero C, Grewal T. GTPases Rac1 and Ras Signaling from Endosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:65-105. [PMID: 30097772 DOI: 10.1007/978-3-319-96704-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endocytic compartment is not only the functional continuity of the plasma membrane but consists of a diverse collection of intracellular heterogeneous complex structures that transport, amplify, sustain, and/or sort signaling molecules. Over the years, it has become evident that early, late, and recycling endosomes represent an interconnected vesicular-tubular network able to form signaling platforms that dynamically and efficiently translate extracellular signals into biological outcome. Cell activation, differentiation, migration, death, and survival are some of the endpoints of endosomal signaling. Hence, to understand the role of the endosomal system in signal transduction in space and time, it is therefore necessary to dissect and identify the plethora of decoders that are operational in the different steps along the endocytic pathway. In this chapter, we focus on the regulation of spatiotemporal signaling in cells, considering endosomes as central platforms, in which several small GTPases proteins of the Ras superfamily, in particular Ras and Rac1, actively participate to control cellular processes like proliferation and cell mobility.
Collapse
Affiliation(s)
- Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
16
|
Cansado J. To finish things well: cysteine methylation ensures selective GTPase membrane localization and signalling. Curr Genet 2017; 64:341-344. [PMID: 28929213 DOI: 10.1007/s00294-017-0756-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/15/2022]
Abstract
Isoprenylcysteine-O-Carboxyl Methyltransferase (ICMT) catalyzes the final step in the prenylation process of different proteins including members of the Ras superfamily of GTPases. While cysteine methylation is essential in mammalian cells for growth, membrane association, and signalling by Ras and Rho GTPases, its role during signal transduction events in simple eukaryotes like yeasts appears irrelevant. By using a multidisciplinary approach our group has recently shown that, contrary to this initial assumption, in the fission yeast Schizosaccharomyces pombe ICMT activity encoded by the Mam4 gene is not only important to promote selective plasma membrane targeting of Ras and specific Rho GTPases, but also to allow precise downstream signalling to the mitogen-activated protein kinase and target of rapamycin pathways in response to diverse environmental cues. Thus, the dynamic regulation of in vivo methylation as a modulator of GTPase localization and function is an evolutionary conserved mechanism, making fission yeast an appealing model organism to study the regulation of this process.
Collapse
Affiliation(s)
- José Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain.
| |
Collapse
|
17
|
Protein S-palmitoylation in cellular differentiation. Biochem Soc Trans 2017; 45:275-285. [PMID: 28202682 PMCID: PMC5310721 DOI: 10.1042/bst20160236] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 01/01/2023]
Abstract
Reversible protein S-palmitoylation confers spatiotemporal control of protein function by modulating protein stability, trafficking and activity, as well as protein-protein and membrane-protein associations. Enabled by technological advances, global studies revealed S-palmitoylation to be an important and pervasive posttranslational modification in eukaryotes with the potential to coordinate diverse biological processes as cells transition from one state to another. Here, we review the strategies and tools to analyze in vivo protein palmitoylation and interrogate the functions of the enzymes that put on and take off palmitate from proteins. We also highlight palmitoyl proteins and palmitoylation-related enzymes that are associated with cellular differentiation and/or tissue development in yeasts, protozoa, mammals, plants and other model eukaryotes.
Collapse
|
18
|
Franco A, Soto T, Martín-García R, Madrid M, Vázquez-Marín B, Vicente-Soler J, Coll PM, Gacto M, Pérez P, Cansado J. Distinct functional relevance of dynamic GTPase cysteine methylation in fission yeast. Sci Rep 2017; 7:6057. [PMID: 28729673 PMCID: PMC5519673 DOI: 10.1038/s41598-017-06053-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/07/2017] [Indexed: 12/11/2022] Open
Abstract
The final step in post-translational processing of Ras and Rho GTPases involves methylation of the prenylated cysteine residue by an isoprenylcysteine-O-carboxyl methyltransferase (ICMT). ICMT activity is essential for cell growth and development in higher eukaryotes, and inhibition of GTPase methylation has become an attractive target in cancer therapy to inactivate prenylated oncoproteins. However, the specificity and dynamics of the GTPase methylation process remain to be fully clarified. Notably, cells lacking Mam4, the ICMT ortholog in the fission yeast Schizosaccharomyces pombe, are viable. We have exploited this feature to analyze the role of methylation on GTPase localization and function. We show that methylation differentially affects GTPase membrane localization, being particularly relevant for plasma membrane tethering and downstream signaling of palmitoylated and farnesylated GTPases Ras1 and Rho2 lacking C-terminal polybasic motifs. Indeed, Ras1 and Rho2 cysteine methylation is required for proper regulation of differentiation elicited by MAPK Spk1 and for stress-dependent activation of the cell integrity pathway (CIP) and its main effector MAPK Pmk1. Further, Mam4 negatively regulates TORC2 signaling by a cross-inhibitory mechanism relying on Rho GTPase methylation. These results highlight the requirement for a tight control of GTPase methylation in vivo to allow adequate GTPase function.
Collapse
Affiliation(s)
- Alejandro Franco
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain
| | - Teresa Soto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain
| | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas/Departamento de Microbiología y Genética, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Marisa Madrid
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain
| | - Beatriz Vázquez-Marín
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain
| | - Jero Vicente-Soler
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain
| | - Pedro M Coll
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas/Departamento de Microbiología y Genética, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Mariano Gacto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas/Departamento de Microbiología y Genética, Universidad de Salamanca, 37007, Salamanca, Spain
| | - José Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain.
| |
Collapse
|
19
|
The spatiotemporal regulation of RAS signalling. Biochem Soc Trans 2017; 44:1517-1522. [PMID: 27911734 DOI: 10.1042/bst20160127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 12/30/2022]
Abstract
Nearly 30% of human tumours harbour mutations in RAS family members. Post-translational modifications and the localisation of RAS within subcellular compartments affect RAS interactions with regulator, effector and scaffolding proteins. New insights into the control of spatiotemporal RAS signalling reveal that activation kinetics and subcellular compartmentalisation are tightly coupled to the generation of specific biological outcomes. Computational modelling can help utilising these insights for the identification of new targets and design of new therapeutic approaches.
Collapse
|
20
|
A Fungus-Specific Protein Domain Is Essential for RasA-Mediated Morphogenetic Signaling in Aspergillus fumigatus. mSphere 2016; 1:mSphere00234-16. [PMID: 27921081 PMCID: PMC5137380 DOI: 10.1128/msphere.00234-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/03/2016] [Indexed: 02/07/2023] Open
Abstract
Ras proteins function as conserved regulators of eukaryotic growth and differentiation and are essential signaling proteins orchestrating virulence in pathogenic fungi. Here, we report the identification of a novel N-terminal domain of the RasA protein in the filamentous fungus Aspergillus fumigatus. Whereas this domain is absent in Ras homologs of higher eukaryotes, the N-terminal extension is conserved among fungi and is characterized by a short string of two to eight amino acids terminating in an invariant arginine. For this reason, we have termed the RasA N-terminal domain the invariant arginine domain (IRD). Through mutational analyses, the IRD was found to be essential for polarized morphogenesis and asexual development, with the invariant arginine residue being most essential. Although IRD truncation resulted in a nonfunctional Ras phenotype, IRD mutation was not associated with mislocalization of the RasA protein or significant changes in steady-state RasA activity levels. Mutation of the RasA IRD diminished protein kinase A (PKA) activation and resulted in decreased interaction with the Rho-type GTPase, Cdc42. Taken together, our findings reveal novel, fungus-specific mechanisms for Ras protein function and signal transduction. IMPORTANCEAspergillus fumigatus is an important fungal pathogen against which limited treatments exist. During invasive disease, A. fumigatus hyphae grow in a highly polarized fashion, forming filaments that invade blood vessels and disseminate to distant sites. Once invasion and dissemination occur, mortality rates are high. We have previously shown that the Ras signaling pathway is an important regulator of the hyphal growth machinery supporting virulence in A. fumigatus. Here, we show that functional Ras signaling in A. fumigatus requires a novel, fungus-specific domain within the Ras protein. This domain is highly conserved among fungi, yet absent in higher eukaryotes, suggesting a potentially crucial difference in the regulation of Ras pathway activity between the human host and the fungal pathogen. Exploration of the mechanisms through which this domain regulates signaling could lead to novel antifungal therapies specifically targeting fungal Ras pathways.
Collapse
|
21
|
Wu RF, Liao C, Hatoum H, Fu G, Ochoa CD, Terada LS. RasGRF Couples Nox4-Dependent Endoplasmic Reticulum Signaling to Ras. Arterioscler Thromb Vasc Biol 2016; 37:98-107. [PMID: 27856453 DOI: 10.1161/atvbaha.116.307922] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 11/04/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVES In response to endoplasmic reticulum (ER) stress, endothelial cells initiate corrective pathways such as the unfolded protein response. Recent studies suggest that reactive oxygen species produced on the ER may participate in homeostatic signaling through Ras in response to ER stress. We sought to identify mechanisms responsible for this focal signaling pathway. APPROACH AND RESULTS In endothelial cells, we found that ER stress induced by tunicamycin activates the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase Nox4 focally on the ER surface but not on the plasma membrane. Ras activation is also restricted to the ER, occurs downstream of Nox4, and is required for activation of the unfolded protein response. In contrast, treatment with the growth factor VEGF (vascular endothelial growth factor) results in Ras activation and reactive oxygen species production confined instead to the plasma membrane and not to the ER, demonstrating local coupling of reactive oxygen species and Ras signals. We further identify the calcium-responsive, ER-resident guanyl exchange factors RasGRF1 and RasGRF2 as novel upstream mediators linking Nox4 with Ras activation in response to ER stress. Oxidation of the sarcoendoplasmic reticulum calcium ATPase and increases in cytosolic calcium caused by ER stress are blocked by Nox4 knockdown, and reduction in cytosolic free calcium prevents both Ras activation and the unfolded protein response. CONCLUSIONS ER stress triggers a localized signaling module on the ER surface involving Nox4-dependent calcium mobilization, which directs local Ras activation through ER-associated, calcium-responsive RasGRF.
Collapse
Affiliation(s)
- Ru Feng Wu
- From the Division of Pulmonary and Critical Care, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas
| | - Chengxu Liao
- From the Division of Pulmonary and Critical Care, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas
| | - Hadi Hatoum
- From the Division of Pulmonary and Critical Care, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas
| | - Guosheng Fu
- From the Division of Pulmonary and Critical Care, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas
| | - Cristhiaan D Ochoa
- From the Division of Pulmonary and Critical Care, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas
| | - Lance S Terada
- From the Division of Pulmonary and Critical Care, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas.
| |
Collapse
|
22
|
Lu S, Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R, Zhang J. Ras Conformational Ensembles, Allostery, and Signaling. Chem Rev 2016; 116:6607-65. [PMID: 26815308 DOI: 10.1021/acs.chemrev.5b00542] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ras proteins are classical members of small GTPases that function as molecular switches by alternating between inactive GDP-bound and active GTP-bound states. Ras activation is regulated by guanine nucleotide exchange factors that catalyze the exchange of GDP by GTP, and inactivation is terminated by GTPase-activating proteins that accelerate the intrinsic GTP hydrolysis rate by orders of magnitude. In this review, we focus on data that have accumulated over the past few years pertaining to the conformational ensembles and the allosteric regulation of Ras proteins and their interpretation from our conformational landscape standpoint. The Ras ensemble embodies all states, including the ligand-bound conformations, the activated (or inactivated) allosteric modulated states, post-translationally modified states, mutational states, transition states, and nonfunctional states serving as a reservoir for emerging functions. The ensemble is shifted by distinct mutational events, cofactors, post-translational modifications, and different membrane compositions. A better understanding of Ras biology can contribute to therapeutic strategies.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China.,Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | | | | | | | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States.,Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China
| |
Collapse
|
23
|
Hernandez-Valladares M, Prior IA. Comparative proteomic analysis of compartmentalised Ras signalling. Sci Rep 2015; 5:17307. [PMID: 26620772 PMCID: PMC4664896 DOI: 10.1038/srep17307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 10/28/2015] [Indexed: 12/27/2022] Open
Abstract
Ras proteins are membrane bound signalling hubs that operate from both the cell surface and endomembrane compartments. However, the extent to which intracellular pools of Ras can contribute to cell signalling is debated. To address this, we have performed a global screen of compartmentalised Ras signalling. We find that whilst ER/Golgi- and endosomal-Ras only generate weak outputs, Ras localised to the mitochondria or Golgi significantly and distinctly influence both the abundance and phosphorylation of a wide range of proteins analysed. Our data reveal that ~80% of phosphosites exhibiting large (≥1.5-fold) changes compared to control can be modulated by organellar Ras signalling. The majority of compartmentalised Ras-specific responses are predicted to influence gene expression, RNA splicing and cell proliferation. Our analysis reinforces the concept that compartmentalisation influences Ras signalling and provides detailed insight into the widespread modulation of responses downstream of endomembranous Ras signalling.
Collapse
Affiliation(s)
- Maria Hernandez-Valladares
- Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom
| | - Ian A Prior
- Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
24
|
Croft W, Elliott CM, Ladds G, Stinner B, Venkataraman C, Weston C. Parameter identification problems in the modelling of cell motility. J Math Biol 2015; 71:399-436. [PMID: 25174444 DOI: 10.1007/s00285-014-0823-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 06/14/2014] [Indexed: 11/29/2022]
Abstract
We present a novel parameter identification algorithm for the estimation of parameters in models of cell motility using imaging data of migrating cells. Two alternative formulations of the objective functional that measures the difference between the computed and observed data are proposed and the parameter identification problem is formulated as a minimisation problem of nonlinear least squares type. A Levenberg-Marquardt based optimisation method is applied to the solution of the minimisation problem and the details of the implementation are discussed. A number of numerical experiments are presented which illustrate the robustness of the algorithm to parameter identification in the presence of large deformations and noisy data and parameter identification in three dimensional models of cell motility. An application to experimental data is also presented in which we seek to identify parameters in a model for the monopolar growth of fission yeast cells using experimental imaging data. Our numerical tests allow us to compare the method with the two different formulations of the objective functional and we conclude that the results with both objective functionals seem to agree.
Collapse
Affiliation(s)
- Wayne Croft
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | | | | | | | | |
Collapse
|
25
|
Guan Y, Wang DY, Ying SH, Feng MG. A novel Ras GTPase (Ras3) regulates conidiation, multi-stress tolerance and virulence by acting upstream of Hog1 signaling pathway in Beauveria bassiana. Fungal Genet Biol 2015; 82:85-94. [PMID: 26162967 DOI: 10.1016/j.fgb.2015.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 12/18/2022]
Abstract
Two Ras ATPases (Ras1 and Ras2) are well known to regulate antagonistically or cooperatively various cellular events in many fungi. Here we show the significance of a novel Ras homolog (Ras3) for Beauveria bassiana. Ras3 possesses five domains and two GTP/GDP switches typical for Ras family and was proven to localize to plasma membrane despite the position change of a membrane-targeting cysteine in C-terminal CAAX motif. Deletion of ras3 altered temporal transcription pattern of ras1 instead of ras2. Compared with wild-type, Δras3 grew significantly faster in a rich medium but slower in some minimal media, and produced far fewer conidia with impaired quality, which was evident with slower germination, attenuated virulence, reduced thermotolerance and decreased UV-B resistance. Moreover, Δras3 was much more sensitive to the oxidative stress of menadione than of H2O2 and to the stress of high osmolarity than of cell wall perturbation during growth. The high sensitivity of Δras3 to menadione was concurrent with reductions in both gene transcripts and total activity of superoxide dismutases. Intriguingly, the high osmosensitivity was concurrent with not only reduced transcripts of a critical transcription factor (Msn2) and most signaling proteins in the high-osmolarity-glycerol pathway of Δras3 but nearly undetectable phosphorylation signal of Hog1 hallmarking the pathway. All the changes were restored by ras3 complementation. Taken together, Ras3 is involved in the Hog1 pathway required for osmoregulation and hence can positively regulate conidiation, germination, multi-stress tolerance and virulence linked to the biological control potential of the filamentous insect pathogen.
Collapse
Affiliation(s)
- Yi Guan
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ding-Yi Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.
| |
Collapse
|
26
|
Fortwendel JR. Orchestration of Morphogenesis in Filamentous Fungi: Conserved Roles for Ras Signaling Networks. FUNGAL BIOL REV 2015; 29:54-62. [PMID: 26257821 DOI: 10.1016/j.fbr.2015.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Filamentous fungi undergo complex developmental programs including conidial germination, polarized morphogenesis, and differentiation of sexual and asexual structures. For many fungi, the coordinated completion of development is required for pathogenicity, as specialized morphological structures must be produced by the invading fungus. Ras proteins are highly conserved GTPase signal transducers and function as major regulators of growth and development in eukaryotes. Filamentous fungi typically express two Ras homologues, comprising distinct groups of Ras1-like and Ras2-like proteins based on sequence homology. Recent evidence suggests shared roles for both Ras1 and Ras2 homologues, but also supports the existence of unique functions in the areas of stress response and virulence. This review focuses on the roles played by both Ras protein groups during growth, development, and pathogenicity of a diverse array of filamentous fungi.
Collapse
Affiliation(s)
- Jarrod R Fortwendel
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
27
|
Arkowitz RA, Bassilana M. Regulation of hyphal morphogenesis by Ras and Rho small GTPases. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Bendezú FO, Vincenzetti V, Vavylonis D, Wyss R, Vogel H, Martin SG. Spontaneous Cdc42 polarization independent of GDI-mediated extraction and actin-based trafficking. PLoS Biol 2015; 13:e1002097. [PMID: 25837586 PMCID: PMC4383620 DOI: 10.1371/journal.pbio.1002097] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 02/06/2015] [Indexed: 11/26/2022] Open
Abstract
The small Rho-family GTPase Cdc42 is critical for cell polarization and polarizes spontaneously in absence of upstream spatial cues. Spontaneous polarization is thought to require dynamic Cdc42 recycling through Guanine nucleotide Dissociation Inhibitor (GDI)-mediated membrane extraction and vesicle trafficking. Here, we describe a functional fluorescent Cdc42 allele in fission yeast, which demonstrates Cdc42 dynamics and polarization independent of these pathways. Furthermore, an engineered Cdc42 allele targeted to the membrane independently of these recycling pathways by an amphipathic helix is viable and polarizes spontaneously to multiple sites in fission and budding yeasts. We show that Cdc42 is highly mobile at the membrane and accumulates at sites of activity, where it displays slower mobility. By contrast, a near-immobile transmembrane domain-containing Cdc42 allele supports viability and polarized activity, but does not accumulate at sites of activity. We propose that Cdc42 activation, enhanced by positive feedback, leads to its local accumulation by capture of fast-diffusing inactive molecules. This study of fission yeast reveals that the active and inactive forms of the small GTPase Cdc42 have different rates of lateral diffusion in the membrane, providing insights into how it becomes spontaneously polarized, thereby determining the polarity of the cell. Cell polarization is a critical feature of most cells that underlies their functional organization. A central polarity factor called Cdc42, a small GTPase targeted to the plasma membrane by prenylation, promotes cell polarization in its active GTP-bound form. Cdc42 is a key polarity factor because it accumulates at presumptive sites of polarity, which previous work suggested involves Cdc42 recycling on and off the plasma membrane. In addition, its activity can spontaneously polarize cells in a single location by self-enhancing positive feedback mechanisms, even in the absence of any pre-localized landmarks. In this study, we constructed the first functional fluorescently tagged allele of Cdc42 that replaces the endogenous genomic copy in Schizosaccharomyces pombe. This allowed measurements of Cdc42 dynamics at the plasma membrane by live microscopy. Unexpectedly, this approach revealed that Cdc42 primarily moves through lateral diffusion, rather than on and off the plasma membrane. Engineered Cdc42 alleles with alternative membrane-targeting mechanisms demonstrated that Cdc42 activity, indeed, polarizes in the absence of known pathways that recycle Cdc42 on and off the membrane. We further show that the active form, Cdc42-GTP, is less mobile than Cdc42-GDP. We thus propose that Cdc42 polarization occurs as a consequence of its local activation—either through self-enhanced feedback or in response to upstream cues—by a reduction in the active Cdc42 diffusion rate.
Collapse
Affiliation(s)
- Felipe O. Bendezú
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vincent Vincenzetti
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Romain Wyss
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Horst Vogel
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
29
|
Rho2 palmitoylation is required for plasma membrane localization and proper signaling to the fission yeast cell integrity mitogen- activated protein kinase pathway. Mol Cell Biol 2014; 34:2745-59. [PMID: 24820419 DOI: 10.1128/mcb.01515-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fission yeast small GTPase Rho2 regulates morphogenesis and is an upstream activator of the cell integrity pathway, whose key element, mitogen-activated protein kinase (MAPK) Pmk1, becomes activated by multiple environmental stimuli and controls several cellular functions. Here we demonstrate that farnesylated Rho2 becomes palmitoylated in vivo at cysteine-196 within its carboxyl end and that this modification allows its specific targeting to the plasma membrane. Unlike that of other palmitoylated and prenylated GTPases, the Rho2 control of morphogenesis and Pmk1 activity is strictly dependent upon plasma membrane localization and is not found in other cellular membranes. Indeed, artificial plasma membrane targeting bypassed the Rho2 need for palmitoylation in order to signal. Detailed functional analysis of Rho2 chimeras fused to the carboxyl end from the essential GTPase Rho1 showed that GTPase palmitoylation is partially dependent on the prenylation context and confirmed that Rho2 signaling is independent of Rho GTP dissociation inhibitor (GDI) function. We further demonstrate that Rho2 is an in vivo substrate for DHHC family acyltransferase Erf2 palmitoyltransferase. Remarkably, Rho3, another Erf2 target, negatively regulates Pmk1 activity in a Rho2-independent fashion, thus revealing the existence of cross talk whereby both GTPases antagonistically modulate the activity of this MAPK cascade.
Collapse
|
30
|
Zhou X, Zhao X, Xue C, Dai Y, Xu JR. Bypassing both surface attachment and surface recognition requirements for appressorium formation by overactive ras signaling in Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:996-1004. [PMID: 24835254 DOI: 10.1094/mpmi-02-14-0052-r] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Magnaporthe oryzae forms a highly specialized infection structure called an appressorium for plant penetration. In M. oryzae and many other plant-pathogenic fungi, surface attachment and surface recognition are two essential requirements for appressorium formation. Development of appressoria in the air has not been reported. In this study, we found that expression of a dominant active MoRAS2(G18V) allele in M. oryzae resulted in the formation of morphologically abnormal appressoria on nonconducive surfaces, in liquid suspensions, and on aerial hyphae without attachment to hard surfaces. Both the Pmk1 mitogen-activated protein kinase cascade and cAMP signaling pathways that regulate surface recognition and appressorium morphogenesis in M. oryzae were overactivated in the MoRAS2(G18V) transformant. In mutants deleted of PMK1 or CPKA, expression of MoRAS2(G18V) had no significant effects on appressorium morphogenesis. Furthermore, expression of dominant MoRAS2 in Colletotrichum graminicola and C. gloeosporioides also caused the formation of appressorium-like structures in aerial hyphae. Overall, our data indicate that MoRas2 functions upstream from both the cAMP-PKA and Pmk1 pathways and overactive Ras signaling leads to improper activation of these two pathways and appressorium formation without surface attachment in appressorium-forming pathogens.
Collapse
|
31
|
Chang YC, Khanal Lamichhane A, Garraffo HM, Walter PJ, Leerkes M, Kwon-Chung KJ. Molecular mechanisms of hypoxic responses via unique roles of Ras1, Cdc24 and Ptp3 in a human fungal pathogen Cryptococcus neoformans. PLoS Genet 2014; 10:e1004292. [PMID: 24762475 PMCID: PMC3998916 DOI: 10.1371/journal.pgen.1004292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/21/2014] [Indexed: 12/26/2022] Open
Abstract
Cryptococcus neoformans encounters a low oxygen environment when it enters the human host. Here, we show that the conserved Ras1 (a small GTPase) and Cdc24 (the guanine nucleotide exchange factor for Cdc42) play an essential role in cryptococcal growth in hypoxia. Suppressor studies indicate that PTP3 functions epistatically downstream of both RAS1 and CDC24 in regulating hypoxic growth. Ptp3 shares sequence similarity to the family of phosphotyrosine-specific protein phosphatases and the ptp3Δ strain failed to grow in 1% O2. We demonstrate that RAS1, CDC24 and PTP3 function in parallel to regulate thermal tolerance but RAS1 and CDC24 function linearly in regulating hypoxic growth while CDC24 and PTP3 reside in compensatory pathways. The ras1Δ and cdc24Δ strains ceased to grow at 1% O2 and became enlarged but viable single cells. Actin polarization in these cells, however, was normal for up to eight hours after transferring to hypoxic conditions. Double deletions of the genes encoding Rho GTPase Cdc42 and Cdc420, but not of the genes encoding Rac1 and Rac2, caused a slight growth retardation in hypoxia. Furthermore, growth in hypoxia was not affected by the deletion of several central genes functioning in the pathways of cAMP, Hog1, or the two-component like phosphorylation system that are critical in the cryptococcal response to osmotic and genotoxic stresses. Interestingly, although deletion of HOG1 rescued the hypoxic growth defect of ras1Δ, cdc24Δ, and ptp3Δ, Hog1 was not hyperphosphorylated in these three mutants in hypoxic conditions. RNA sequencing analysis indicated that RAS1, CDC24 and PTP3 acted upon the expression of genes involved in ergosterol biosynthesis, chromosome organization, RNA processing and protein translation. Moreover, growth of the wild-type strain under low oxygen conditions was affected by sub-inhibitory concentrations of the compounds that inhibit these biological processes, demonstrating the importance of these biological processes in the cryptococcal hypoxia response. When Cryptococcus neoformans, an environmental fungal pathogen, enters the human host, it encounters a low oxygen condition. The well conserved Ras1 and Cdc24 proteins are known for their key roles in maintenance of the actin cytoskeletal integrity in eukaryotic cells. In this work, we show a unique role of RAS1 and CDC24 in the growth of C. neoformans in a low oxygen environment. Actin polarization, however, appeared normal in the ras1Δ and cdc24Δ strains under hypoxic conditions for up to eight hours. We show that PTP3 is required for hypoxic growth and it can rescue the hypoxic growth defect in ras1Δ and cdc24Δ. Genetic analysis suggested that RAS1 and CDC24 function linearly while CDC24 and PTP3 function parallelly in regulating hypoxic growth. RNA sequencing combined with analysis by small molecular inhibitors revealed that RAS1, CDC24 and PTP3 regulate several biological processes such as ergosterol biosynthesis, chromosome organization, RNA processing and protein translation which are required in the cryptococcal response to hypoxic conditions.
Collapse
Affiliation(s)
- Yun C. Chang
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH Bethesda, Maryland, United States of America
- * E-mail:
| | - Ami Khanal Lamichhane
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH Bethesda, Maryland, United States of America
| | - H. Martin Garraffo
- Clinical Mass Spectrometry Core, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Peter J. Walter
- Clinical Mass Spectrometry Core, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Maarten Leerkes
- Bioinformatics and Computational Biosciences Branch, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Kyung J. Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH Bethesda, Maryland, United States of America
| |
Collapse
|
32
|
Young E, Zheng ZY, Wilkins AD, Jeong HT, Li M, Lichtarge O, Chang EC. Regulation of Ras localization and cell transformation by evolutionarily conserved palmitoyltransferases. Mol Cell Biol 2014; 34:374-85. [PMID: 24248599 PMCID: PMC3911504 DOI: 10.1128/mcb.01248-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/16/2013] [Accepted: 11/09/2013] [Indexed: 01/06/2023] Open
Abstract
Ras can act on the plasma membrane (PM) to mediate extracellular signaling and tumorigenesis. To identify key components controlling Ras PM localization, we performed an unbiased screen to seek Schizosaccharomyces pombe mutants with reduced PM Ras. Five mutants were found with mutations affecting the same gene, S. pombe erf2 (sp-erf2), encoding sp-Erf2, a palmitoyltransferase, with various activities. sp-Erf2 localizes to the trans-Golgi compartment, a process which is mediated by its third transmembrane domain and the Erf4 cofactor. In fission yeast, the human ortholog zDHHC9 rescues the phenotypes of sp-erf2 null cells. In contrast, expressing zDHHC14, another sp-Erf2-like human protein, did not rescue Ras1 mislocalization in these cells. Importantly, ZDHHC9 is widely overexpressed in cancers. Overexpressing ZDHHC9 promotes, while repressing it diminishes, Ras PM localization and transformation of mammalian cells. These data strongly demonstrate that sp-Erf2/zDHHC9 palmitoylates Ras proteins in a highly selective manner in the trans-Golgi compartment to facilitate PM targeting via the trans-Golgi network, a role that is most certainly critical for Ras-driven tumorigenesis.
Collapse
Affiliation(s)
- Evelin Young
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Ze-Yi Zheng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Angela D. Wilkins
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- CIBR Center for Computational and Integrative Biomedical Research, Baylor College of Medicine, Houston, Texas, USA
| | - Hee-Tae Jeong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Min Li
- Department of Oncology, Nanjing Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- CIBR Center for Computational and Integrative Biomedical Research, Baylor College of Medicine, Houston, Texas, USA
| | - Eric C. Chang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
33
|
Abstract
Polarized cell growth requires a well-orchestrated number of events, namely selection of growth site, organization of cytoskeleton elements and delivery of new material to the growth region. The small Rho GTPase Cdc42 has emerged as a major organizer of polarized growth through its participation in many of these events. In the present short review, we focus on the regulation of Cdc42 activity and localization as well as how it controls downstream events necessary for polarized cell growth in Schizosaccharomyces pombe. Owing to the high level of similarity of the polarity pathways, analogies between fission yeast and other model systems can be useful to decipher how cells can actively define their shape by polarized growth.
Collapse
|
34
|
Abstract
For centuries yeast species have been popular hosts for classical biotechnology processes, such as baking, brewing, and wine making, and more recently for recombinant proteins production, thanks to the advantages of unicellular organisms (i.e., ease of genetic manipulation and rapid growth) together with the ability to perform eukaryotic posttranslational modifications. Moreover, yeast cells have been used for few decades as a tool for identifying the genes and pathways involved in basic cellular processes such as the cell cycle, aging, and stress response. In the budding yeast S. cerevisiae the Ras/cAMP/PKA pathway is directly involved in the regulation of metabolism, cell growth, stress resistance, and proliferation in response to the availability of nutrients and in the adaptation to glucose, controlling cytosolic cAMP levels and consequently the cAMP-dependent protein kinase (PKA) activity. Moreover, Ras signalling has been identified in several pathogenic yeasts as a key controller for virulence, due to its involvement in yeast morphogenesis. Nowadays, yeasts are still useful for Ras-like proteins investigation, both as model organisms and as a test tube to study variants of heterologous Ras-like proteins.
Collapse
Affiliation(s)
- Renata Tisi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | |
Collapse
|
35
|
A bimolecular fluorescent complementation screen reveals complex roles of endosomes in Ras-mediated signaling. Methods Enzymol 2014; 535:25-38. [PMID: 24377915 DOI: 10.1016/b978-0-12-397925-4.00002-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While Ras GTPases are best known for mediating growth factor signaling on the plasma membrane, these proteins also have surprisingly complex activities in the endosome. Assisted by a method called bimolecular fluorescent complementation (BiFC), which can detect weak and transient protein-protein interactions and reveal where the binding takes place in live cells, we have identified three effectors, Cdc42, CHMP6, and VPS4A that interact with Ras proteins in endosomes. These effectors are all necessary for Ras-induced transformation, suggesting that for Ras proteins to efficiently induce tumor formation, they must also activate effectors in cytoplasm, such as those in endosomes. Here, we describe how BiFC can be used to detect and screen for Ras effectors and for readily revealing where in the cell the binding occurs.
Collapse
|
36
|
Li M, Li YQ, Zhao XF, Gao XD. Roles of the three Ras proteins in the regulation of dimorphic transition in the yeastYarrowia lipolytica. FEMS Yeast Res 2013; 14:451-63. [DOI: 10.1111/1567-1364.12129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/28/2013] [Accepted: 12/05/2013] [Indexed: 12/30/2022] Open
Affiliation(s)
- Min Li
- Department of Microbiology; College of Life Sciences; Wuhan University; Wuhan China
| | - Yun-Qing Li
- Department of Microbiology; College of Life Sciences; Wuhan University; Wuhan China
| | - Xiao-Feng Zhao
- Department of Microbiology; College of Life Sciences; Wuhan University; Wuhan China
| | - Xiang-Dong Gao
- Department of Microbiology; College of Life Sciences; Wuhan University; Wuhan China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation; Wuhan China
| |
Collapse
|
37
|
Weston C, Bond M, Croft W, Ladds G. The coordination of cell growth during fission yeast mating requires Ras1-GTP hydrolysis. PLoS One 2013; 8:e77487. [PMID: 24147005 PMCID: PMC3797800 DOI: 10.1371/journal.pone.0077487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 08/31/2013] [Indexed: 12/30/2022] Open
Abstract
The spatial and temporal control of polarity is fundamental to the survival of all organisms. Cells define their polarity using highly conserved mechanisms that frequently rely upon the action of small GTPases, such as Ras and Cdc42. Schizosaccharomyces pombe is an ideal system with which to study the control of cell polarity since it grows from defined tips using Cdc42-mediated actin remodeling. Here we have investigated the importance of Ras1-GTPase activity for the coordination of polarized cell growth during fission yeast mating. Following pheromone stimulation, Ras1 regulates both a MAPK cascade and the activity of Cdc42 to enable uni-directional cell growth towards a potential mating partner. Like all GTPases, when bound to GTP, Ras1 adopts an active conformation returning to an inactive state upon GTP-hydrolysis, a process accelerated through interaction with negative regulators such as GAPs. Here we show that, at low levels of pheromone stimulation, loss of negative regulation of Ras1 increases signal transduction via the MAPK cascade. However, at the higher concentrations observed during mating, hyperactive Ras1 mutations promote cell death. We demonstrate that these cells die due to their failure to coordinate active Cdc42 into a single growth zone resulting in disorganized actin deposition and unsustainable elongation from multiple tips. These results provide a striking demonstration that the deactivation stage of Ras signaling is fundamentally important in modulating cell polarity.
Collapse
Affiliation(s)
- Cathryn Weston
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail:
| | - Michael Bond
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Wayne Croft
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Graham Ladds
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
38
|
Ballou ER, Kozubowski L, Nichols CB, Alspaugh JA. Ras1 acts through duplicated Cdc42 and Rac proteins to regulate morphogenesis and pathogenesis in the human fungal pathogen Cryptococcus neoformans. PLoS Genet 2013; 9:e1003687. [PMID: 23950731 PMCID: PMC3738472 DOI: 10.1371/journal.pgen.1003687] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/17/2013] [Indexed: 02/07/2023] Open
Abstract
Proliferation and morphogenesis in eukaryotic cells depend on the concerted activity of Rho-type GTPases, including Ras, Cdc42, and Rac. The sexually dimorphic fungus Cryptococcus neoformans, which encodes paralogous, non-essential copies of all three, provides a unique model in which to examine the interactions of these conserved proteins. Previously, we demonstrated that RAS1 mediates C. neoformans virulence by acting as a central regulator of both thermotolerance and mating. We report here that ras1Δ mutants accumulate defects in polarized growth, cytokinesis, and cell cycle progression. We demonstrate that the ras1Δ defects in thermotolerance and mating can be largely explained by the compromised activity of four downstream Rho-GTPases: the Cdc42 paralogs, Cdc42 and Cdc420; and the Rac paralogs, Rac1 and Rac2. Further, we demonstrate that the separate GTPase classes play distinct Ras-dependent roles in C. neoformans morphogenesis and pathogenesis. Cdc42 paralogs primarily control septin localization and cytokinesis, while Rac paralogs play a primary role in polarized cell growth. Together, these duplicate, related signaling proteins provide a robust system to allow microbial proliferation in the presence of host-derived cell stresses.
Collapse
Affiliation(s)
- Elizabeth Ripley Ballou
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Lukasz Kozubowski
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Connie B. Nichols
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - J. Andrew Alspaugh
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
39
|
Low concentrations of hydrogen peroxide or nitrite induced of Paracoccidioides brasiliensis cell proliferation in a Ras-dependent manner. PLoS One 2013; 8:e69590. [PMID: 23922749 PMCID: PMC3726682 DOI: 10.1371/journal.pone.0069590] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 06/10/2013] [Indexed: 01/27/2023] Open
Abstract
Paracoccidioides brasiliensis, a causative agent of paracoccidioidomycosis (PCM), should be able to adapt to dramatic environmental changes inside the infected host after inhalation of air-borne conidia and transition to pathogenic yeasts. Proteins with antioxidant functions may protect fungal cells against reactive oxygen (ROS) and nitrogen (RNS) species generated by phagocytic cells, thus acting as potential virulence factors. Ras GTPases are involved in stress responses, cell morphology, and differentiation in a range of organisms. Ras, in its activated form, interacts with effector proteins and can initiate a kinase cascade. In lower eukaryotes, Byr2 kinase represents a Ras target. The present study investigated the role of Ras in P. brasiliensis after in vitro stimulus with ROS or RNS. We have demonstrated that low concentrations of H2O2 (0.1 mM) or NO2 (0.1–0.25 µM) stimulated P. brasiliensis yeast cell proliferation and that was not observed when yeast cells were pre-incubated with farnesyltransferase inhibitor. We constructed an expression plasmid containing the Byr2 Ras-binding domain (RBD) fused with GST (RBD-Byr2-GST) to detect the Ras active form. After stimulation with low concentrations of H2O2 or NO2, the Ras active form was observed in fungal extracts. Besides, NO2 induced a rapid increase in S-nitrosylated Ras levels. This alternative posttranslational modification of Ras, probably in residue Cys123, would lead to an exchange of GDP for GTP and consequent GTPase activation in P. brasiliensis. In conclusion, low concentrations of H2O2 or NO2 stimulated P. brasiliensis proliferation through Ras activation.
Collapse
|
40
|
Zhang MM, Wu PYJ, Kelly FD, Nurse P, Hang HC. Quantitative control of protein S-palmitoylation regulates meiotic entry in fission yeast. PLoS Biol 2013; 11:e1001597. [PMID: 23843742 PMCID: PMC3699447 DOI: 10.1371/journal.pbio.1001597] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/13/2013] [Indexed: 11/18/2022] Open
Abstract
Protein S-palmitoylation, a lipid modification mediated by members of the palmitoyltransferase family, serves as an important membrane-targeting mechanism in eukaryotes. Although changes in palmitoyltransferase expression are associated with various physiological and disease states, how these changes affect global protein palmitoylation and cellular function remains unknown. Using a bioorthogonal chemical reporter and labeling strategy to identify and analyze multiple cognate substrates of a single Erf2 palmitoyltransferase, we demonstrate that control of Erf2 activity levels underlies the differential modification of key substrates such as the Rho3 GTPase in vegetative and meiotic cells. We show further that modulation of Erf2 activity levels drives changes in the palmitoylome as cells enter meiosis and affects meiotic entry. Disruption of Erf2 function delays meiotic entry, while increasing Erf2 palmitoyltransferase activity triggers aberrant meiosis in sensitized cells. Erf2-induced meiosis requires the function of the Rho3 GTPase, which is regulated by its palmitoylation state. We propose that control of palmitoyltransferase activity levels provides a fundamental mechanism for modulating palmitoylomes and cellular functions.
Collapse
Affiliation(s)
- Mingzi M. Zhang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York, United States of America
| | - Pei-Yun Jenny Wu
- Laboratory of Yeast Genetics and Cell Biology, The Rockefeller University, New York, New York, United States of America
| | - Felice D. Kelly
- Laboratory of Yeast Genetics and Cell Biology, The Rockefeller University, New York, New York, United States of America
| | - Paul Nurse
- Laboratory of Yeast Genetics and Cell Biology, The Rockefeller University, New York, New York, United States of America
| | - Howard C. Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
41
|
Piispanen AE, Grahl N, Hollomon JM, Hogan DA. Regulated proteolysis of Candida albicans Ras1 is involved in morphogenesis and quorum sensing regulation. Mol Microbiol 2013; 89:166-78. [PMID: 23692372 DOI: 10.1111/mmi.12268] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 12/23/2022]
Abstract
In Candida albicans, a fungal pathogen, the small G-protein Ras1 regulates many important behaviors including white-opaque switching, biofilm formation, and the induction and maintenance of hyphal growth. Like other Ras proteins, Ras1 is activated upon guanine triphosphate binding, and its activity is further modulated by post-translational lipid modifications. Here, we report that the levels of membrane-associated, full-length Ras1 were higher in hyphae than in yeast, and that yeast contained a shorter, soluble Ras1 species that resulted from cleavage. Deletion of the putative cleavage site led to more rapid induction of hyphal growth and delayed hypha-to-yeast transitions. The cleaved Ras1 species was less able to activate its effector, adenylate cyclase (Cyr1), unless tethered to the membrane by a heterologous membrane-targeting domain. Ras1 cleavage was repressed by cAMP-signalling, indicating the presence of a positive feedback loop in which Cyr1 and cAMP influence Ras1. The C. albicans quorum sensing molecule farnesol, which inhibits Cyr1 and represses filamentation, caused an increase in the fraction of Ras1 in the cleaved form, particularly in nascent yeast formed from hyphae. This newly recognized mode of Ras regulation may control C. albicans Ras1 activity in important ways.
Collapse
Affiliation(s)
- Amy E Piispanen
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Small GTPases regulate a wide range of homeostatic processes such as cytoskeletal dynamics, organelle homeostasis, cell migration and vesicle trafficking, as well as in pathologic conditions such as carcinogenesis and metastatic spreading. Therefore, it is important to understand the regulation of small GTPase signaling, but this is complicated by the fact that crosstalk exists between different GTPase families and that we have to understand how they signal in time and space. The Golgi apparatus represents a hub for several signaling molecules and its importance in this field is constantly increasing. In this review we will discuss small GTPases signaling at the Golgi apparatus. Then, we will highlight recent work that contributed to a better understanding of crosstalk between different small GTPase families, with a special emphasis on their crosstalk at the Golgi apparatus. Finally, we will give a brief overview of available methods and tools to investigate spatio-temporal small GTPase crosstalk.
Collapse
Affiliation(s)
- Francesco Baschieri
- Department of Biology, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | | |
Collapse
|
43
|
Harmon RM, Simpson CL, Johnson JL, Koetsier JL, Dubash AD, Najor NA, Sarig O, Sprecher E, Green KJ. Desmoglein-1/Erbin interaction suppresses ERK activation to support epidermal differentiation. J Clin Invest 2013; 123:1556-70. [PMID: 23524970 DOI: 10.1172/jci65220] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 01/17/2013] [Indexed: 01/27/2023] Open
Abstract
Genetic disorders of the Ras/MAPK pathway, termed RASopathies, produce numerous abnormalities, including cutaneous keratodermas. The desmosomal cadherin, desmoglein-1 (DSG1), promotes keratinocyte differentiation by attenuating MAPK/ERK signaling and is linked to striate palmoplantar keratoderma (SPPK). This raises the possibility that cutaneous defects associated with SPPK and RASopathies share certain molecular faults. To identify intermediates responsible for executing the inhibition of ERK by DSG1, we conducted a yeast 2-hybrid screen. The screen revealed that Erbin (also known as ERBB2IP), a known ERK regulator, binds DSG1. Erbin silencing disrupted keratinocyte differentiation in culture, mimicking aspects of DSG1 deficiency. Furthermore, ERK inhibition and the induction of differentiation markers by DSG1 required both Erbin and DSG1 domains that participate in binding Erbin. Erbin blocks ERK signaling by interacting with and disrupting Ras-Raf scaffolds mediated by SHOC2, a protein genetically linked to the RASopathy, Noonan-like syndrome with loose anagen hair (NS/LAH). DSG1 overexpression enhanced this inhibitory function, increasing Erbin-SHOC2 interactions and decreasing Ras-SHOC2 interactions. Conversely, analysis of epidermis from DSG1-deficient patients with SPPK demonstrated increased Ras-SHOC2 colocalization and decreased Erbin-SHOC2 colocalization, offering a possible explanation for the observed epidermal defects. These findings suggest a mechanism by which DSG1 and Erbin cooperate to repress MAPK signaling and promote keratinocyte differentiation.
Collapse
Affiliation(s)
- Robert M Harmon
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bond M, Croft W, Tyson R, Bretschneider T, Davey J, Ladds G. Quantitative analysis of human ras localization and function in the fission yeast Schizosaccharomyces pombe. Yeast 2013; 30:145-56. [PMID: 23447405 DOI: 10.1002/yea.2949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 02/06/2013] [Accepted: 02/12/2013] [Indexed: 12/30/2022] Open
Abstract
Ras signalling is central to fundamental and diverse cellular processes. In higher eukaryotes ras signalling is highly complex, involving multiple isoforms, regulatory proteins and effectors. As a consequence, the study of ras activity in mammalian systems presents a number of technical challenges. The model organism Schizosaccharomyces pombe has previously proved a key system for the study of human signalling components and provides an ideal model for the study of ras, as it contains just one ras protein (Ras1p), which is non-essential and controls a number of downstream processes. Here we present data demonstrating the quantitative analysis of three distinct Ras1-related signalling outputs, utilizing the three most abundant human ras isoforms, H-Ras, N-Ras and K-Ras4B, in Sz. pombe. Further, we have characterized the localization of these three human ras isoforms in Sz. pombe, utilizing quantitative image analysis techniques. These data indicate that all three human ras isoforms are functional in fission yeast, displaying differing localization patterns which correlate strongly with function in the regulation of pheromone response and cell shape. These data demonstrate that such yeast strains could provide powerful tools for the investigation of ras biology, and potentially in the development of cancer therapies.
Collapse
Affiliation(s)
- Michael Bond
- Division of Clinical Sciences, Warwick Medical School, Coventry, CV4 7AL, UK; Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Many cells are able to orient themselves in a non-uniform environment by responding to localized cues. This leads to a polarized cellular response, where the cell can either grow or move towards the cue source. Fungal haploid cells secrete pheromones to signal mating, and respond by growing a mating projection towards a potential mate. Upon contact of the two partner cells, these fuse to form a diploid zygote. In this review, we present our current knowledge on the processes of mating signalling, pheromone-dependent polarized growth and cell fusion in Saccharomyces cerevisiae and Schizosaccharomyces pombe, two highly divergent ascomycete yeast models. While the global architecture of the mating response is very similar between these two species, they differ significantly both in their mating physiologies and in the molecular connections between pheromone perception and downstream responses. The use of both yeast models helps enlighten both conserved solutions and species-specific adaptations to a general biological problem.
Collapse
Affiliation(s)
- Laura Merlini
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | | | | |
Collapse
|
46
|
Abstract
Ras proteins are best known to function on the plasma membrane to mediate growth factor signaling. Controlling the length of time that Ras proteins stay on the plasma membrane is an effective way to properly modulate the intensity and duration of growth factor signaling. It has been shown previously that H- and N-Ras proteins in the GTP-bound state can be ubiquitylated via a K-63 linkage, which leads to endosome internalization and results in a negative-feedback loop for efficient signal attenuation. In a more recent study, two new Ras effectors have been isolated, CHMP6 and VPS4A, which are components of the ESCRT-III complex, best known for mediating protein sorting in the endosomes. Surprisingly, these molecules are required for efficient Ras-induced transformation. They apparently do so by controlling recycling of components of the Ras pathway back to the plasma membrane, thus creating a positive-feedback loop to enhance growth factor signaling. These results suggest the fates of endosomal Ras proteins are complex and dynamic — they can be either stored and/or destroyed or recycled. Further work is needed to decipher how the fate of these endosomal Ras proteins is determined.
Collapse
Affiliation(s)
- Ze-Yi Zheng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
47
|
Sánchez-Mir L, Franco A, Madrid M, Vicente-Soler J, Villar-Tajadura MA, Soto T, Pérez P, Gacto M, Cansado J. Biological significance of nuclear localization of mitogen-activated protein kinase Pmk1 in fission yeast. J Biol Chem 2012; 287:26038-51. [PMID: 22685296 DOI: 10.1074/jbc.m112.345611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways play a fundamental role in the response of eukaryotic cells to environmental changes. Also, much evidence shows that the stimulus-dependent nuclear targeting of this class of regulatory kinases is crucial for adequate regulation of distinct cellular events. In the fission yeast Schizosaccharomyces pombe, the cell integrity MAPK pathway, whose central element is the MAPK Pmk1, regulates multiple processes such as cell wall integrity, vacuole fusion, cytokinesis, and ionic homeostasis. In non-stressed cells Pmk1 is constitutively localized in both cytoplasm and nucleus, and its localization pattern appears unaffected by its activation status or in response to stress, thus questioning the biological significance of the presence of this MAPK into the nucleus. We have addressed this issue by characterizing mutants expressing Pmk1 versions excluded from the cell nucleus and anchored to the plasma membrane in different genetic backgrounds. Although nuclear Pmk1 partially regulates cell wall integrity at a transcriptional level, membrane-tethered Pmk1 performs many of the biological functions assigned to wild type MAPK like regulation of chloride homeostasis, vacuole fusion, and cellular separation. However, we found that down-regulation of nuclear Pmk1 by MAPK phosphatases induced by the stress activated protein kinase pathway is important for the fine modulation of extranuclear Pmk1 activity. These results highlight the importance of the control of MAPK activity at subcellular level.
Collapse
Affiliation(s)
- Laura Sánchez-Mir
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología. Universidad de Murcia, 30071 Murcia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Plasma membrane localization is required for RasA-mediated polarized morphogenesis and virulence of Aspergillus fumigatus. EUKARYOTIC CELL 2012; 11:966-77. [PMID: 22562470 DOI: 10.1128/ec.00091-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ras is a highly conserved GTPase protein that is essential for proper polarized morphogenesis of filamentous fungi. Localization of Ras proteins to the plasma membrane and endomembranes through posttranslational addition of farnesyl and palmitoyl residues is an important mechanism through which cells provide specificity to Ras signal output. Although the Aspergillus fumigatus RasA protein is known to be a major regulator of growth and development, the membrane distribution of RasA during polarized morphogenesis and the role of properly localized Ras signaling in virulence of a pathogenic mold remain unknown. Here we demonstrate that Aspergillus fumigatus RasA localizes primarily to the plasma membrane of actively growing hyphae. We show that treatment with the palmitoylation inhibitor 2-bromopalmitate disrupts normal RasA plasma membrane association and decreases hyphal growth. Targeted mutations of the highly conserved RasA palmitoylation motif also mislocalized RasA from the plasma membrane and led to severe hyphal abnormalities, cell wall structural changes, and reduced virulence in murine invasive aspergillosis. Finally, we provide evidence that proper RasA localization is independent of the Ras palmitoyltransferase homolog, encoded by erfB, but requires the palmitoyltransferase complex subunit, encoded by erfD. Our results demonstrate that plasma membrane-associated RasA is critical for polarized morphogenesis, cell wall stability, and virulence in A. fumigatus.
Collapse
|
49
|
Lee LC, Chen CM, Wang HC, Hsieh HH, Chiu IS, Su MT, Hsieh-Li HM, Wu CH, Lee GC, Lee-Chen GJ, Lin JY. Role of the CCAAT-binding protein NFY in SCA17 pathogenesis. PLoS One 2012; 7:e35302. [PMID: 22530004 PMCID: PMC3328435 DOI: 10.1371/journal.pone.0035302] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/13/2012] [Indexed: 01/08/2023] Open
Abstract
Spinocerebellar ataxia 17 (SCA17) is caused by expansion of the polyglutamine (polyQ) tract in human TATA-box binding protein (TBP) that is ubiquitously expressed in both central nervous system and peripheral tissues. The spectrum of SCA17 clinical presentation is broad. The precise pathogenic mechanism in SCA17 remains unclear. Previously proteomics study using a cellular model of SCA17 has revealed reduced expression of heat shock 70 kDa protein 5 (HSPA5) and heat shock 70 kDa protein 8 (HSPA8), suggesting that impaired protein folding may contribute to the cell dysfunction of SCA17 (Lee et al., 2009). In lymphoblastoid cells, HSPA5 and HSPA8 expression levels in cells with mutant TBP were also significantly lower than that of the control cells (Chen et al., 2010). As nuclear transcription factor Y (NFY) has been reported to regulate HSPA5 transcription, we focused on if NFY activity and HSPA5 expression in SCA17 cells are altered. Here, we show that TBP interacts with NFY subunit A (NFYA) in HEK-293 cells and NFYA incorporated into mutant TBP aggregates. In both HEK-293 and SH-SY5Y cells expressing TBP/Q(61~79), the level of soluble NFYA was significantly reduced. In vitro binding assay revealed that the interaction between TBP and NFYA is direct. HSPA5 luciferase reporter assay and endogenous HSPA5 expression analysis in NFYA cDNA and siRNA transfection cells further clarified the important role of NFYA in regulating HSPA5 transcription. In SCA17 cells, HSPA5 promoter activity was activated as a compensatory response before aggregate formation. NFYA dysfunction was indicated in SCA17 cells as HSPA5 promoter activity reduced along with TBP aggregate formation. Because essential roles of HSPA5 in protection from neuronal apoptosis have been shown in a mouse model, NFYA could be a target of mutant TBP in SCA17.
Collapse
Affiliation(s)
- Li-Ching Lee
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang-Gung University College of Medicine, Taipei, Taiwan
| | - Hao-Chun Wang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiao-Han Hsieh
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - I-Sheng Chiu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiu-Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chung-Hsin Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Guan-Chiun Lee
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- * E-mail: (G-JL-C); (J-YL)
| | - Jung-Yaw Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (G-JL-C); (J-YL)
| |
Collapse
|
50
|
Chan PC, Chen HC. p120RasGAP-mediated activation of c-Src is critical for oncogenic Ras to induce tumor invasion. Cancer Res 2012; 72:2405-15. [PMID: 22411953 DOI: 10.1158/0008-5472.can-11-3078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ras genes are the most common targets for somatic gain-of-function mutations in human cancers. In this study, we found a high incidence of correlation between Ras oncogenic mutations and c-Src activation in human cancer cells. We showed that oncogenic Ras induces c-Src activation mainly on the Golgi complex and endoplasmic reticulum. Moreover, we identified p120RasGAP as an effector for oncogenic Ras to activate c-Src. The recruitment of p120RasGAP to the Golgi complex by oncogenic Ras facilitated its interaction with c-Src, thereby leading to c-Src activation, and this p120RasGAP-mediated activation of c-Src was important for tumor invasion induced by oncogenic Ras. Collectively, our findings unveil a relationship between oncogenic Ras, p120RasGAP, and c-Src, suggesting a critical role for c-Src in cancers evoked by oncogenic mutations in Ras genes.
Collapse
Affiliation(s)
- Po-Chao Chan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | | |
Collapse
|