1
|
Váczy KZ, Otto M, Gomba-Tóth A, Geiger A, Golen R, Hegyi-Kaló J, Cels T, Geml J, Zsófi Z, Hegyi ÁI. Botrytis cinerea causes different plant responses in grape ( Vitis vinifera) berries during noble and grey rot: diverse metabolism versus simple defence. FRONTIERS IN PLANT SCIENCE 2024; 15:1433161. [PMID: 39166245 PMCID: PMC11333459 DOI: 10.3389/fpls.2024.1433161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
The complexity of the interaction between the necrotrophic pathogen Botrytis cinerea and grape berries (Vitis vinifera spp.) can result in the formation of either the preferred noble rot (NR) or the loss-making grey rot (GR), depending on the prevailing climatic conditions. In this study, we focus on the functional gene set of V. vinifera by performing multidimensional scaling followed by differential expression and enrichment analyses. The aim of this study is to identify the differences in gene expression between grape berries in the phases of grey rot, noble rot, and developing rot (DR, in its early stages) phases. The grapevine transcriptome at the NR phase was found to exhibit significant differences from that at the DR and GR stages, which displayed strong similarities. Similarly, several plant defence-related pathways, including plant-pathogen interactions as hypersensitive plant responses were found to be enriched. The results of the analyses identified a potential plant stress response pathway (SGT1 activated hypersensitive response) that was found to be upregulated in the GR berry but downregulated in the NR berry. The study revealed a decrease in defence-related in V. vinifera genes during the NR stages, with a high degree of variability in functions, particularly in enriched pathways. This indicates that the plant is not actively defending itself against Botrytis cinerea, which is otherwise present on its surface with high biomass. This discrepancy underscores the notion that during the NR phase, the grapevine and the pathogenic fungi interact in a state of equilibrium. Conversely the initial stages of botrytis infection manifest as a virulent fungus-plant interaction, irrespective of whether the outcome is grey or noble rot.
Collapse
Affiliation(s)
- Kálmán Z. Váczy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Margot Otto
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, Stellenbosch, South Africa
| | - Adrienn Gomba-Tóth
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Adrienn Geiger
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Richárd Golen
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Júlia Hegyi-Kaló
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Thomas Cels
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - József Geml
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
- HUN-REN-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
| | - Zsolt Zsófi
- Institute for Viticulture and Enology, Eszterházy Károly Catholic University, Eger, Hungary
| | - Ádám István Hegyi
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| |
Collapse
|
2
|
Cui JR, Zhou B, Tang YJ, Zhou JY, Ren L, Liu F, Hoffmann AA, Hong XY. A new spider mite elicitor triggers plant defence and promotes resistance to herbivores. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1493-1509. [PMID: 37952109 DOI: 10.1093/jxb/erad452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Herbivore-associated elicitors (HAEs) are active molecules produced by herbivorous insects. Recognition of HAEs by plants induces defence that resist herbivore attacks. We previously demonstrated that the tomato red spider mite Tetranychus evansi triggered defence in Nicotiana benthamiana. However, our knowledge of HAEs from T. evansi remains limited. Here, we characterize a novel HAE, Te16, from T. evansi and dissect its function in mite-plant interactions. We investigate the effects of Te16 on spider mites and plants by heterologous expression, virus-induced gene silencing assay, and RNA interference. Te16 induces cell death, reactive oxygen species (ROS) accumulation, callose deposition, and jasmonate (JA)-related responses in N. benthamiana leaves. Te16-mediated cell death requires a calcium signalling pathway, cytoplasmic localization, the plant co-receptor BAK1, and the signalling components SGT1 and HSP90. The active region of Te16-induced cell death is located at amino acids 114-293. Moreover, silencing Te16 gene in T. evansi reduces spider mite survival and hatchability, but expressing Te16 in N. benthamiana leaves enhances plant resistance to herbivores. Finally, Te16 gene is specific to Tetranychidae species and is highly conserved in activating plant immunity. Our findings reveal a novel salivary protein produced by spider mites that elicits plant defence and resistance to insects, providing valuable clues for pest management.
Collapse
Affiliation(s)
- Jia-Rong Cui
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Bin Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi-Jing Tang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia-Yi Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lu Ren
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Xiao-Yue Hong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
3
|
Peng W, Garcia N, Servage KA, Kohler JJ, Ready JM, Tomchick DR, Fernandez J, Orth K. Pseudomonas effector AvrB is a glycosyltransferase that rhamnosylates plant guardee protein RIN4. SCIENCE ADVANCES 2024; 10:eadd5108. [PMID: 38354245 PMCID: PMC10866546 DOI: 10.1126/sciadv.add5108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
The plant pathogen Pseudomonas syringae encodes a type III secretion system avirulence effector protein, AvrB, that induces a form of programmed cell death called the hypersensitive response in plants as a defense mechanism against systemic infection. Despite the well-documented catalytic activities observed in other Fido (Fic, Doc, and AvrB) proteins, the enzymatic activity and target substrates of AvrB have remained elusive. Here, we show that AvrB is an unprecedented glycosyltransferase that transfers rhamnose from UDP-rhamnose to a threonine residue of the Arabidopsis guardee protein RIN4. We report structures of various enzymatic states of the AvrB-catalyzed rhamnosylation reaction of RIN4, which reveal the structural and mechanistic basis for rhamnosylation by a Fido protein. Collectively, our results uncover an unexpected reaction performed by a prototypical member of the Fido superfamily while providing important insights into the plant hypersensitive response pathway and foreshadowing more diverse chemistry used by Fido proteins and their substrates.
Collapse
Affiliation(s)
- Wei Peng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nalleli Garcia
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Kelly A. Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer J. Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph M. Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Diana R. Tomchick
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jessie Fernandez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Li P, Li W, Zhou X, Situ J, Xie L, Xi P, Yang B, Kong G, Jiang Z. Peronophythora litchii RXLR effector P. litchii avirulence homolog 202 destabilizes a host ethylene biosynthesis enzyme. PLANT PHYSIOLOGY 2023; 193:756-774. [PMID: 37232407 DOI: 10.1093/plphys/kiad311] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/24/2023] [Indexed: 05/27/2023]
Abstract
Oomycete pathogens can secrete hundreds of effectors into plant cells to interfere with the plant immune system during infection. Here, we identified a Arg-X-Leu-Arg (RXLR) effector protein from the most destructive pathogen of litchi (Litchi chinensis Sonn.), Peronophythora litchii, and named it P. litchii avirulence homolog 202 (PlAvh202). PlAvh202 could suppress cell death triggered by infestin 1 or avirulence protein 3a/resistance protein 3a in Nicotiana benthamiana and was essential for P. litchii virulence. In addition, PlAvh202 suppressed plant immune responses and promoted the susceptibility of N. benthamiana to Phytophthora capsici. Further research revealed that PlAvh202 could suppress ethylene (ET) production by targeting and destabilizing plant S-adenosyl-L-methionine synthetase (SAMS), a key enzyme in the ET biosynthesis pathway, in a 26S proteasome-dependent manner without affecting its expression. Transient expression of LcSAMS3 induced ET production and enhanced plant resistance, whereas inhibition of ET biosynthesis promoted P. litchii infection, supporting that litchi SAMS (LcSAMS) and ET positively regulate litchi immunity toward P. litchii. Overall, these findings highlight that SAMS can be targeted by the oomycete RXLR effector to manipulate ET-mediated plant immunity.
Collapse
Affiliation(s)
- Peng Li
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen Li
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofan Zhou
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Junjian Situ
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lizhu Xie
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Pinggen Xi
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Bo Yang
- College of Grassland Science/Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghui Kong
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zide Jiang
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Chen J, Luo M, Hands P, Rolland V, Zhang J, Li Z, Outram M, Dodds P, Ayliffe M. A split GAL4 RUBY assay for visual in planta detection of protein-protein interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1209-1226. [PMID: 37323061 DOI: 10.1111/tpj.16234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 06/17/2023]
Abstract
Protein-protein interactions (PPIs) are a fundamental process in cellular biogenesis. Here we have developed a split GAL4 RUBY assay that enables macroscopically visual PPI detection in plant leaves in real time. Candidate interacting protein partners are fused to specific domains of the yeast GAL4 and herpes simplex virus VP16 transcription factors and transiently expressed in Nicotiana benthamina leaves by Agrobacterium infiltration. PPI, that may be either direct or indirect, results in transcriptional activation of a RUBY reporter gene leading to the production of the highly visual metabolite, betalain, in leaf tissue of living plants. Samples require no processing for in planta visual qualitative assessment, but with very simple processing steps the assay is quantitative. Its accuracy is demonstrated using a series of known interacting protein partners and mutant derivatives including transcription factors, signalling molecules and plant resistance proteins with cognate pathogen effectors. Using this assay, association between the wheat Sr27 stem rust disease resistance protein and corresponding AvrSr27 avirulence effector family produced by the rust pathogen is detected. Interaction is also observed between this resistance protein and the effector encoded by the corresponding avrSr27-3 virulence allele. However, this association appears weaker in the split GAL4 RUBY assay, which coupled with lower avrSr27-3 expression during stem rust infection, likely enables virulent races of the rust pathogen to avoid Sr27-mediated detection.
Collapse
Affiliation(s)
- Jian Chen
- CSIRO Agriculture and Food, Box 1700, Clunies Ross St, Canberra, Australia, 2601
| | - Ming Luo
- CSIRO Agriculture and Food, Box 1700, Clunies Ross St, Canberra, Australia, 2601
| | - Phillip Hands
- CSIRO Agriculture and Food, Box 1700, Clunies Ross St, Canberra, Australia, 2601
| | - Vivien Rolland
- CSIRO Agriculture and Food, Box 1700, Clunies Ross St, Canberra, Australia, 2601
| | - Jianping Zhang
- CSIRO Agriculture and Food, Box 1700, Clunies Ross St, Canberra, Australia, 2601
| | - Zhao Li
- Australian National University, Canberra, Australia, 2601
| | - Megan Outram
- CSIRO Agriculture and Food, Box 1700, Clunies Ross St, Canberra, Australia, 2601
| | - Peter Dodds
- CSIRO Agriculture and Food, Box 1700, Clunies Ross St, Canberra, Australia, 2601
| | - Michael Ayliffe
- CSIRO Agriculture and Food, Box 1700, Clunies Ross St, Canberra, Australia, 2601
| |
Collapse
|
6
|
Yoon M, Middleditch MJ, Rikkerink EHA. A conserved glutamate residue in RPM1-INTERACTING PROTEIN4 is ADP-ribosylated by the Pseudomonas effector AvrRpm2 to activate RPM1-mediated plant resistance. THE PLANT CELL 2022; 34:4950-4972. [PMID: 36130293 PMCID: PMC9710000 DOI: 10.1093/plcell/koac286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Gram-negative bacterial plant pathogens inject effectors into their hosts to hijack and manipulate metabolism, eluding surveillance at the battle frontier on the cell surface. The effector AvrRpm1Pma from Pseudomonas syringae pv. maculicola functions as an ADP-ribosyl transferase that modifies RESISTANCE TO P. SYRINGAE PV MACULICOLA1 (RPM1)-INTERACTING PROTEIN4 (RIN4), leading to the activation of Arabidopsis thaliana (Arabidopsis) resistance protein RPM1. Here we confirmed the ADP-ribosyl transferase activity of another bacterial effector, AvrRpm2Psa from P. syringae pv. actinidiae, via sequential inoculation of Pseudomonas strain Pto DC3000 harboring avrRpm2Psa following Agrobacterium-mediated transient expression of RIN4 in Nicotiana benthamiana. We conducted mutational analysis in combination with mass spectrometry to locate the target site in RIN4. A conserved glutamate residue (Glu156) is the most likely target for AvrRpm2Psa, as only Glu156 could be ADP-ribosylated to activate RPM1 among candidate target residues identified from the MS/MS fragmentation spectra. Soybean (Glycine max) and snap bean (Phaseolus vulgaris) RIN4 homologs without glutamate at the positions corresponding to Glu156 of Arabidopsis RIN4 are not ADP-ribosylated by bacterial AvrRpm2Psa. In contrast to the effector AvrB, AvrRpm2Psa does not require the phosphorylation of Thr166 in RIN4 to activate RPM1. Therefore, separate biochemical reactions by different pathogen effectors may trigger the activation of the same resistance protein via distinct modifications of RIN4.
Collapse
Affiliation(s)
- Minsoo Yoon
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Martin J Middleditch
- The School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Erik H A Rikkerink
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
7
|
Effector-Dependent and -Independent Molecular Mechanisms of Soybean-Microbe Interaction. Int J Mol Sci 2022; 23:ijms232214184. [PMID: 36430663 PMCID: PMC9695568 DOI: 10.3390/ijms232214184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Soybean is a pivotal staple crop worldwide, supplying the main food and feed plant proteins in some countries. In addition to interacting with mutualistic microbes, soybean also needs to protect itself against pathogens. However, to grow inside plant tissues, plant defense mechanisms ranging from passive barriers to induced defense reactions have to be overcome. Pathogenic but also symbiotic micro-organisms effectors can be delivered into the host cell by secretion systems and can interfere with the immunity system and disrupt cellular processes. This review summarizes the latest advances in our understanding of the interaction between secreted effectors and soybean feedback mechanism and uncovers the conserved and special signaling pathway induced by pathogenic soybean cyst nematode, Pseudomonas, Xanthomonas as well as by symbiotic rhizobium.
Collapse
|
8
|
Ahmad S, Chen G, Huang J, Yang K, Hao Y, Zhou Y, Zhao K, Lan S, Liu Z, Peng D. Beauty and the pathogens: A leaf-less control presents a better image of Cymbidium orchids defense strategy. FRONTIERS IN PLANT SCIENCE 2022; 13:1001427. [PMID: 36176684 PMCID: PMC9513425 DOI: 10.3389/fpls.2022.1001427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Biological control is a safe way of combating plant diseases using the living organisms. For the precise use of microbial biological control agents, the genetic information on the hypersensitive response (HR), and defense-related gene induction pathways of plants are necessary. Orchids are the most prominent stakeholders of floriculture industry, and owing to their long-awaited flowering pattern, disease control is imperative to allow healthy vegetative growth that spans more than 2 years in most of the orchids. We observed leaf-less flowering in three orchid species (Cymbidium ensifolium, C. goeringii and C. sinense). Using these materials as reference, we performed transcriptome profiling for healthy leaves from non-infected plants to identify genes specifically involved in plant-pathogen interaction pathway. For this pathway, a total of 253 differentially expressed genes (DEGs) were identified in C. ensifolium, 189 DEGs were identified in C. goeringii and 119 DEGs were found in C. sinense. These DEGs were mainly related to bacterial secretion systems, FLS2, CNGCs and EFR, regulating HR, stomatal closure and defense-related gene induction. FLS2 (LRR receptor-like serine/threonine kinase) contained the highest number of DEGs among three orchid species, followed by calmodulin. Highly upregulated gene sets were found in C. sinense as compared to other species. The great deal of DEGs, mainly the FLS2 and EFR families, related to defense and immunity responses can effectively direct the future of biological control of diseases for orchids.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guizhen Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kang Yang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Hao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuzhen Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Schreiber KJ, Chau-Ly IJ, Lewis JD. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms 2021; 9:1029. [PMID: 34064647 PMCID: PMC8150971 DOI: 10.3390/microorganisms9051029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/05/2023] Open
Abstract
Phytopathogenic bacteria possess an arsenal of effector proteins that enable them to subvert host recognition and manipulate the host to promote pathogen fitness. The type III secretion system (T3SS) delivers type III-secreted effector proteins (T3SEs) from bacterial pathogens such as Pseudomonas syringae, Ralstonia solanacearum, and various Xanthomonas species. These T3SEs interact with and modify a range of intracellular host targets to alter their activity and thereby attenuate host immune signaling. Pathogens have evolved T3SEs with diverse biochemical activities, which can be difficult to predict in the absence of structural data. Interestingly, several T3SEs are activated following injection into the host cell. Here, we review T3SEs with documented enzymatic activities, as well as T3SEs that facilitate virulence-promoting processes either indirectly or through non-enzymatic mechanisms. We discuss the mechanisms by which T3SEs are activated in the cell, as well as how T3SEs modify host targets to promote virulence or trigger immunity. These mechanisms may suggest common enzymatic activities and convergent targets that could be manipulated to protect crop plants from infection.
Collapse
Affiliation(s)
- Karl J. Schreiber
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Ilea J. Chau-Ly
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Jennifer D. Lewis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
- Plant Gene Expression Center, United States Department of Agriculture, University of California, Berkeley, CA 94710, USA
| |
Collapse
|
10
|
Kaewcheenchai R, Vejchasarn P, Hanada K, Shirai K, Jantasuriyarat C, Juntawong P. Genome-Wide Association Study of Local Thai Indica Rice Seedlings Exposed to Excessive Iron. PLANTS 2021; 10:plants10040798. [PMID: 33921675 PMCID: PMC8073664 DOI: 10.3390/plants10040798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022]
Abstract
Excess soluble iron in acidic soil is an unfavorable environment that can reduce rice production. To better understand the tolerance mechanism and identify genetic loci associated with iron toxicity (FT) tolerance in a highly diverse indica Thai rice population, a genome-wide association study (GWAS) was performed using genotyping by sequencing and six phenotypic data (leaf bronzing score (LBS), chlorophyll content, shoot height, root length, shoot biomass, and root dry weight) under both normal and FT conditions. LBS showed a high negative correlation with the ratio of chlorophyll content and shoot biomass, indicating the FT-tolerant accessions can regulate cellular homeostasis when encountering stress. Sixteen significant single nucleotide polymorphisms (SNPs) were identified by association mapping. Validation of candidate SNP using other FT-tolerant accessions revealed that SNP:2_21262165 might be associated with tolerance to FT; therefore, it could be used for SNP marker development. Among the candidate genes controlling FT tolerance, RAR1 encodes an innate immune responsive protein that links to cellular redox homeostasis via interacting with abiotic stress-responsive Hsp90. Future research may apply the knowledge obtained from this study in the molecular breeding program to develop FT-tolerant rice varieties.
Collapse
Affiliation(s)
- Reunreudee Kaewcheenchai
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (R.K.); (C.J.)
- Rice Department, Chatuchak Bangkok, 10900, Thailand;
| | | | - Kousuke Hanada
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan; (K.H.); (K.S.)
| | - Kazumasa Shirai
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan; (K.H.); (K.S.)
| | - Chatchawan Jantasuriyarat
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (R.K.); (C.J.)
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Piyada Juntawong
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (R.K.); (C.J.)
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Correspondence:
| |
Collapse
|
11
|
Ku YS, Cheng SS, Gerhardt A, Cheung MY, Contador CA, Poon LYW, Lam HM. Secretory Peptides as Bullets: Effector Peptides from Pathogens against Antimicrobial Peptides from Soybean. Int J Mol Sci 2020; 21:E9294. [PMID: 33291499 PMCID: PMC7730307 DOI: 10.3390/ijms21239294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Soybean is an important crop as both human food and animal feed. However, the yield of soybean is heavily impacted by biotic stresses including insect attack and pathogen infection. Insect bites usually make the plants vulnerable to pathogen infection, which causes diseases. Fungi, oomycetes, bacteria, viruses, and nematodes are major soybean pathogens. The infection by pathogens and the defenses mounted by soybean are an interactive and dynamic process. Using fungi, oomycetes, and bacteria as examples, we will discuss the recognition of pathogens by soybean at the molecular level. In this review, we will discuss both the secretory peptides for soybean plant infection and those for pathogen inhibition. Pathogenic secretory peptides and peptides secreted by soybean and its associated microbes will be included. We will also explore the possible use of externally applied antimicrobial peptides identical to those secreted by soybean and its associated microbes as biopesticides.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Sau-Shan Cheng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Aisha Gerhardt
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ming-Yan Cheung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Carolina A. Contador
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Lok-Yiu Winnie Poon
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| |
Collapse
|
12
|
Gupta A, Bhardwaj M, Tran LSP. Jasmonic Acid at the Crossroads of Plant Immunity and Pseudomonas syringae Virulence. Int J Mol Sci 2020; 21:E7482. [PMID: 33050569 PMCID: PMC7589129 DOI: 10.3390/ijms21207482] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
Sensing of pathogen infection by plants elicits early signals that are transduced to affect defense mechanisms, such as effective blockage of pathogen entry by regulation of stomatal closure, cuticle, or callose deposition, change in water potential, and resource acquisition among many others. Pathogens, on the other hand, interfere with plant physiology and protein functioning to counteract plant defense responses. In plants, hormonal homeostasis and signaling are tightly regulated; thus, the phytohormones are qualified as a major group of signaling molecules controlling the most widely tinkered regulatory networks of defense and counter-defense strategies. Notably, the phytohormone jasmonic acid mediates plant defense responses to a wide array of pathogens. In this review, we present the synopsis on the jasmonic acid metabolism and signaling, and the regulatory roles of this hormone in plant defense against the hemibiotrophic bacterial pathogen Pseudomonas syringae. We also elaborate on how this pathogen releases virulence factors and effectors to gain control over plant jasmonic acid signaling to effectively cause disease. The findings discussed in this review may lead to ideas for the development of crop cultivars with enhanced disease resistance by genetic manipulation.
Collapse
Affiliation(s)
- Aarti Gupta
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Mamta Bhardwaj
- Department of Botany, Hindu Girls College, Maharshi Dayanand University, Sonipat 131001, India;
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-19 22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
13
|
Madina MH, Rahman MS, Huang X, Zhang Y, Zheng H, Germain H. A Poplar Rust Effector Protein Associates with Protein Disulfide Isomerase and Enhances Plant Susceptibility. BIOLOGY 2020; 9:E294. [PMID: 32947987 PMCID: PMC7564345 DOI: 10.3390/biology9090294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2022]
Abstract
Melampsora larici-populina (Mlp), the causal agent of Populus leaf rust, secretes an array of effectors into the host through the haustorium to gain nutrients and suppress immunity. The precise mechanisms by which these effectors promote virulence remain unclear. To address this question, we developed a transgenic Arabidopsis line expressing a candidate effector, Mlp124357. Constitutive expression of the effector increased plant susceptibility to pathogens. A GxxxG motif present in Mlp124357 is required for its subcellular localization at the vacuolar membrane of the plant cell, as replacement of the glycine residues with alanines led to the delocalization of Mlp124357 to the nucleus and cytoplasm. We used immunoprecipitation and mass spectrometry (MS) to identify Mlp124357 interaction partners. Only one of the putative interaction partners knock-out line caused delocalization of the effector, indicating that Arabidopsis protein disulfide isomerase-11 (AtPDI-11) is required for the effector localization. This interaction was further confirmed by a complementation test, a yeast-two hybrid assay and a molecular modeling experiment. Moreover, localization results and infection assays suggest that AtPDI-11 act as a helper for Mlp124357. In summary, our findings established that one of Mlp effectors resides at the vacuole surface and modulates plant susceptibility.
Collapse
Affiliation(s)
- Mst Hur Madina
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada; (M.H.M.); (M.S.R.)
| | - Md Saifur Rahman
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada; (M.H.M.); (M.S.R.)
| | - Xiaoqiang Huang
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA; (X.H.); (Y.Z.)
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA; (X.H.); (Y.Z.)
| | - Huanquan Zheng
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC H3A 1B1, Canada;
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada; (M.H.M.); (M.S.R.)
| |
Collapse
|
14
|
Harvey S, Kumari P, Lapin D, Griebel T, Hickman R, Guo W, Zhang R, Parker JE, Beynon J, Denby K, Steinbrenner J. Downy Mildew effector HaRxL21 interacts with the transcriptional repressor TOPLESS to promote pathogen susceptibility. PLoS Pathog 2020; 16:e1008835. [PMID: 32785253 PMCID: PMC7446885 DOI: 10.1371/journal.ppat.1008835] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/24/2020] [Accepted: 07/24/2020] [Indexed: 01/22/2023] Open
Abstract
Hyaloperonospora arabidopsidis (Hpa) is an oomycete pathogen causing Arabidopsis downy mildew. Effector proteins secreted from the pathogen into the plant play key roles in promoting infection by suppressing plant immunity and manipulating the host to the pathogen's advantage. One class of oomycete effectors share a conserved 'RxLR' motif critical for their translocation into the host cell. Here we characterize the interaction between an RxLR effector, HaRxL21 (RxL21), and the Arabidopsis transcriptional co-repressor Topless (TPL). We establish that RxL21 and TPL interact via an EAR motif at the C-terminus of the effector, mimicking the host plant mechanism for recruiting TPL to sites of transcriptional repression. We show that this motif, and hence interaction with TPL, is necessary for the virulence function of the effector. Furthermore, we provide evidence that RxL21 uses the interaction with TPL, and its close relative TPL-related 1, to repress plant immunity and enhance host susceptibility to both biotrophic and necrotrophic pathogens.
Collapse
Affiliation(s)
- Sarah Harvey
- Department of Biology, University of York, York, United Kingdom
| | - Priyanka Kumari
- Institut für Phytopathologie, Universität Gießen, Gießen, Germany
| | - Dmitry Lapin
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
- Cluster of Excellence in Plant Sciences (CEPLAS), Cologne, Germany
| | - Thomas Griebel
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, Berlin, Germany
| | - Richard Hickman
- Department of Biology, University of York, York, United Kingdom
| | - Wenbin Guo
- The James Hutton Institute, Invergowrie, Dundee, Scotland United Kingdom
| | - Runxuan Zhang
- The James Hutton Institute, Invergowrie, Dundee, Scotland United Kingdom
| | - Jane E. Parker
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
- Cluster of Excellence in Plant Sciences (CEPLAS), Cologne, Germany
| | - Jim Beynon
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Katherine Denby
- Department of Biology, University of York, York, United Kingdom
| | | |
Collapse
|
15
|
Poon JSY, Le Fevre RE, Carr JP, Hanke DE, Murphy AM. Inositol hexakisphosphate biosynthesis underpins PAMP-triggered immunity to Pseudomonas syringae pv. tomato in Arabidopsis thaliana but is dispensable for establishment of systemic acquired resistance. MOLECULAR PLANT PATHOLOGY 2020; 21:376-387. [PMID: 31876373 PMCID: PMC7036367 DOI: 10.1111/mpp.12902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 05/27/2023]
Abstract
Phytic acid (inositol hexakisphosphate, InsP6 ) is an important phosphate store and signal molecule necessary for maintenance of basal resistance to plant pathogens. Arabidopsis thaliana ('arabidopsis') has three genes encoding myo-inositol phosphate synthases (IPS1-3), the enzymes that catalyse conversion of glucose-6-phosphate to InsP, the first step in InsP6 biosynthesis. There is one gene for inositol-(1,3,4,5,6)-pentakisphosphate 2-kinase (IPK1), which catalyses the final step. Previously, we showed that mutation of IPS2 and IPK1 but not IPS1 increased susceptibility to pathogens. Our aim was to better understand the InsP6 biosynthesis pathway in plant defence. Here we found that the susceptibility of arabidopsis (Col-0) to virulent and avirulent Pseudomonas syringae pv. tomato was also increased in ips3 and ips2/3 double mutants. Also, ipk1 plants had compromised expression of local acquired resistance induced by treatment with the pathogen-derived molecular pattern (PAMP) molecule flg22, but were unaffected in other responses to flg22, including Ca2+ influx and the oxidative burst, seedling root growth inhibition, and transcriptional up-regulation of the PAMP-triggered genes MITOGEN-ACTIVATED PROTEIN KINASE (MPK) 3, MPK11, CINNAMYL ALCOHOL DEHYDROGENASE 5, and FLG22-INDUCED RECEPTOR-LIKE KINASE 1. IPK1 mutation did not prevent the induction of systemic acquired resistance by avirulent P. syringae. Also, ips2 and ips2/3 double mutant plants, like ipk1, were hypersusceptible to P. syringae but were not compromised in flg22-induced local acquired resistance. The results support the role of InsP6 biosynthesis enzymes in effective basal resistance and indicate that there is more than one basal resistance mechanism dependent upon InsP6 biosynthesis.
Collapse
Affiliation(s)
| | - Ruth E. Le Fevre
- Department of Plant SciencesUniversity of CambridgeCambridgeUnited Kingdom
| | - John P. Carr
- Department of Plant SciencesUniversity of CambridgeCambridgeUnited Kingdom
| | - David E. Hanke
- Department of Plant SciencesUniversity of CambridgeCambridgeUnited Kingdom
| | - Alex M. Murphy
- Department of Plant SciencesUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
16
|
Ray SK, Macoy DM, Kim WY, Lee SY, Kim MG. Role of RIN4 in Regulating PAMP-Triggered Immunity and Effector-Triggered Immunity: Current Status and Future Perspectives. Mol Cells 2019; 42:503-511. [PMID: 31362467 PMCID: PMC6681865 DOI: 10.14348/molcells.2019.2433] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
As sessile organisms, plants have developed sophisticated system to defend themselves against microbial attack. Since plants do not have specialized immune cells, all plant cells appear to have the innate ability to recognize pathogens and turn on an appropriate defense response. The plant innate immune system has two major branches: PAMPs (pathogen associated molecular patterns)-triggered immunity (PTI) and effector-triggered immunity (ETI). The ability to discriminate between self and non-self is a fundamental feature of living organisms, and it is a prerequisite for the activation of plant defenses specific to microbial infection. Arabidopsis cells express receptors that detect extracellular molecules or structures of the microbes, which are called collectively PAMPs and activate PTI. However, nucleotidebinding site leucine-rich repeats (NB-LRR) proteins mediated ETI is induced by direct or indirect recognition of effector molecules encoded by avr genes. In Arabidopsis, plasmamembrane localized multifunctional protein RIN4 (RPM1interacting protein 4) plays important role in both PTI and ETI. Previous studies have suggested that RIN4 functions as a negative regulator of PTI. In addition, many different bacterial effector proteins modify RIN4 to destabilize plant immunity and several NB-LRR proteins, including RPM1 (resistance to Pseudomonas syringae pv. maculicola 1), RPS2 (resistance to P. syringae 2) guard RIN4. This review summarizes the current studies that have described signaling mechanism of RIN4 function, modification of RIN4 by bacterial effectors and different interacting partner of RIN4 in defense related pathway. In addition, the emerging role of the RIN4 in plant physiology and intercellular signaling as it presents in exosomes will be discussed.
Collapse
Affiliation(s)
- Sujit Kumar Ray
- College of Pharmacy, Research Institute of Pharmaceutical Science, and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828,
Korea
| | - Donah Mary Macoy
- College of Pharmacy, Research Institute of Pharmaceutical Science, and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828,
Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Science (RILS), Gyeongsang National University, Jinju 52828,
Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21 Plus), Graduate School of Gyeongsang National University, Jinju 52828,
Korea
| | - Min Gab Kim
- College of Pharmacy, Research Institute of Pharmaceutical Science, and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
17
|
Saad RB, Hsouna AB, Saibi W, Hamed KB, Brini F, Ghneim-Herrera T. A stress-associated protein, LmSAP, from the halophyte Lobularia maritima provides tolerance to heavy metals in tobacco through increased ROS scavenging and metal detoxification processes. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:234-243. [PMID: 30312968 DOI: 10.1016/j.jplph.2018.09.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Agricultural soil pollution by heavy metals is a severe global ecological problem. We recently showed that overexpression of LmSAP, a member of the stress-associated protein (SAP) gene family isolated from Lobularia maritima, in transgenic tobacco led to enhanced tolerance to abiotic stress. In this study, we characterised the response of LmSAP transgenic tobacco plants to metal stresses (cadmium (Cd), copper (Cu), manganese (Mn), and zinc (Zn)). In L. maritima, LmSAP expression increased after 12 h of treatment with these metals, suggesting its involvement in the plant response to heavy metal stress. LmSAP transgenic tobacco plants subjected to these stress conditions were healthy, experienced higher seedling survival rates, and had longer roots than non-transgenic plants (NT). However, they exhibited higher tolerance towards cadmium and manganese than towards copper and zinc. LmSAP-overexpressing tobacco seedlings accumulated more cadmium, copper, and manganese compared with NT plants, but displayed markedly decreased hydrogen peroxide (H2O2) and lipid peroxidation levels after metal treatment. Activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were significantly higher in transgenic plants than in NT plants after exposure to metal stress. LmSAP overexpression also enhanced the transcription of several genes encoding metallothioneins (Met1, Met2, Met3, Met4, and Met5), a copper transport protein CCH, a Cys and His-rich domain-containing protein RAR1 (Rar1), and a ubiquitin-like protein 5 (PUB1), which are involved in metal tolerance in tobacco. Our findings indicate that LmSAP overexpression in tobacco enhanced tolerance to heavy metal stress by protecting the plant cells against oxidative stress, scavenging reactive oxygen species (ROS), and decreasing the intracellular concentration of free heavy metals through its effect on metal-binding proteins in the cytosol.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia; Departments of Life Sciences, Faculty of Sciences of Gafsa, Zarroug, 2112, Gafsa, Tunisia
| | - Walid Saibi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Karim Ben Hamed
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901, Hammam Lif, 2050, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | | |
Collapse
|
18
|
Xu N, Luo X, Li W, Wang Z, Liu J. The Bacterial Effector AvrB-Induced RIN4 Hyperphosphorylation Is Mediated by a Receptor-Like Cytoplasmic Kinase Complex in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:502-512. [PMID: 28353399 DOI: 10.1094/mpmi-01-17-0017-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacterial pathogen Pseudomonas syringae delivers diverse type III effectors into host cells to interfere with their immune responses. One of the effectors, AvrB, targets a host guardee protein RIN4 and induces RIN4 phosphorylation in Arabidopsis. Phosphorylated RIN4 activates the immune receptor RPM1 to mount defense. AvrB-induced RIN4 phosphorylation depends on RIPK, a receptor-like cytoplasmic kinase (RLCK). In this study, we found several other RLCKs that were also able to phosphorylate RIN4. We demonstrated that these RLCKs formed a complex with RIPK and were functionally redundant to RIPK. We also found that unphosphorylated RIN4 was epistatic to phosphorylated RIN4 in terms of RPM1 activation. AvrB-induced RLCK gene expression and phosphorylated RIN4-triggered RPM1 activation required RAR1, a central regulator in plant innate immunity. Our results unravel a mechanism in which plants employ multiple kinases to hyperphosphorylate the guardee protein RIN4 to ensure immune activation during pathogen invasion.
Collapse
Affiliation(s)
- Ning Xu
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuming Luo
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- 2 College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; and
| | - Wen Li
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zongyi Wang
- 3 Beijing Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides, Beijing University of Agriculture, Beijing, 102206, China
| | - Jun Liu
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- 2 College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; and
| |
Collapse
|
19
|
Wang X, Wang Y, Liu P, Ding Y, Mu X, Liu X, Wang X, Zhao M, Huai B, Huang L, Kang Z. TaRar1 Is Involved in Wheat Defense against Stripe Rust Pathogen Mediated by YrSu. FRONTIERS IN PLANT SCIENCE 2017; 8:156. [PMID: 28261230 PMCID: PMC5306363 DOI: 10.3389/fpls.2017.00156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/25/2017] [Indexed: 05/28/2023]
Abstract
RAR1 is a eukaryotic zinc-binding protein first identified as required for race-specific resistance to powdery mildew in barley. To study the function of TaRAR1 involvement in wheat (Triticum aestivum L.) defense against the infection of stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst), we identified and cloned three wheat homeologous genes highly similar to the barley HvRar1, designated as TaRar1-2A, TaRar1-2B, and TaRar1-2D. The three TaRAR1 proteins all contain two conserved cysteine-and histidine-rich domains (CHORD-I and -II) shared by known RAR1-like proteins. Characterization of TaRar1 expression revealed that the expression was tissue-specific and up-regulated in wheat during stripe rust infection. Moreover, the transcription of TaRar1 was induced by methyl jasmonate, ethylene, and abscisic acid hormones. The same results were observed with drought and wound treatments. After TaRar1 was silenced in wheat cultivar Suwon11 containing the stripe rust resistance gene YrSu, the endogenous salicylic acid (SA) level, the hydrogen peroxide (H2O2) accumulation and the degree of hypersensitive response (HR) were significantly decreased, and the resistance to the avirulent pathotype of stripe rust was compromised. Meanwhile, the expression of catalase, an enzyme required for H2O2-scavenging, was up-regulated. Taken together, we concluded that TaRar1 is involved in wheat defense against stripe rust mediated by YrSu, and the defense was through SA to influence reactive oxygen species accumulation and HR.
Collapse
Affiliation(s)
- Xiaojing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Yaru Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Yan Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Xiaoqian Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Xiping Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Mengxin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Baoyu Huai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Li Huang
- Department of Plant Sciences and Plant Pathology, Montana State University, BozemanMT, USA
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
- China–Australia Joint Research Centre for Abiotic and Biotic Stress Management, Northwest A&F UniversityYangling, China
| |
Collapse
|
20
|
Han SW, Hwang BK. Molecular functions of Xanthomonas type III effector AvrBsT and its plant interactors in cell death and defense signaling. PLANTA 2017; 245:237-253. [PMID: 27928637 DOI: 10.1007/s00425-016-2628-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/30/2016] [Indexed: 05/20/2023]
Abstract
Xanthomonas effector AvrBsT interacts with plant defense proteins and triggers cell death and defense response. This review highlights our current understanding of the molecular functions of AvrBsT and its host interactor proteins. The AvrBsT protein is a member of a growing family of effector proteins in both plant and animal pathogens. Xanthomonas type III effector AvrBsT, a member of the YopJ/AvrRxv family, suppresses plant defense responses in susceptible hosts, but triggers cell death signaling leading to hypersensitive response (HR) and defense responses in resistant plants. AvrBsT interacts with host defense-related proteins to trigger the HR cell death and defense responses in plants. Here, we review and discuss recent progress in understanding the molecular functions of AvrBsT and its host interactor proteins in pepper (Capsicum annuum). Pepper arginine decarboxylase1 (CaADC1), pepper aldehyde dehydrogenase1 (CaALDH1), pepper heat shock protein 70a (CaHSP70a), pepper suppressor of the G2 allele of skp1 (CaSGT1), pepper SNF1-related kinase1 (SnRK1), and Arabidopsis acetylated interacting protein1 (ACIP1) have been identified as AvrBsT interactors in pepper and Arabidopsis. Gene expression profiling, virus-induced gene silencing, and transient transgenic overexpression approaches have advanced the functional characterization of AvrBsT-interacting proteins in plants. AvrBsT is localized in the cytoplasm and forms protein-protein complexes with host interactors. All identified AvrBsT interactors regulate HR cell death and defense responses in plants. Notably, CaSGT1 physically binds to both AvrBsT and pepper receptor-like cytoplasmic kinase1 (CaPIK1) in the cytoplasm. During infection with Xanthomonas campestris pv. vesicatoria strain Ds1 (avrBsT), AvrBsT is phosphorylated by CaPIK1 and forms the active AvrBsT-CaSGT1-CaPIK1 complex, which ultimately triggers HR cell death and defense responses. Collectively, the AvrBsT interactor proteins are involved in plant cell death and immunity signaling.
Collapse
Affiliation(s)
- Sang Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 02841, Republic of Korea.
| |
Collapse
|
21
|
Chen J, Shen ZJ, Lu WZ, Liu X, Wu FH, Gao GF, Liu YL, Wu CS, Yan CL, Fan HQ, Zhang YH, Zheng HL, Tsai CJ. Leaf miner-induced morphological, physiological and molecular changes in mangrove plant Avicennia marina (Forsk.) Vierh. TREE PHYSIOLOGY 2017; 37:82-97. [PMID: 28173596 DOI: 10.1093/treephys/tpw097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/18/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
Avicennia marina (Forsk.) Vierh is a widespread mangrove species along the southeast coasts of China. Recently, the outbreak of herbivorous insect, Phyllocnistis citrella Stainton, a leaf miner, have impacted on the growth of A. marina. Little is reported about the responses of A. marina to leaf miner infection at the biochemical, physiological and molecular levels. Here, we reported the responses of A. marina to leaf miner infection from the aspects of leaf structure, photosynthesis, and antioxidant system and miner responsive genes expression. A. marina leaves attacked by the leaf miner exhibited significant decreases in chlorophyll, carbon and nitrogen contents, as well as a decreased photosynthetic rate. Scanning and transmission electron microscopic observations revealed that the leaf miner only invaded the upper epidermis and destroyed the epidermal cell, which lead to the exposure of salt glands. In addition, the chloroplasts of mined leaves (ML) were swollen and the thylakoids degraded. The maximal net photosynthetic rate, stomatal conductance (Gs), carboxylation efficiency (CE), dark respiration (Rd), light respiration (Rp) and quantum yields (AQE) significantly decreased in the ML, whereas the light saturation point (Lsp), light compensation point (Lcp), water loss and CO2 compensation point (Г) increased in the ML. Moreover, chlorophyll fluorescence features also had been changed by leaf miner attacks. Interestingly, higher generation rate of O2ˉ· and lower antioxidant enzyme expression in the mined portion (MP) were found; on the contrary, higher H2O2 level and higher antioxidant enzyme expression in the non-mined portion (NMP) were revealed, implying that the NMP may be able to sense that the leaf miner attacks had happened in the MP of the A. marina leaf via H2O2 signaling. Besides, the protein expression of glutathione S-transferase (GST) and the glutathione (GSH) content were increased in the ML. In addition, insect resistance-related gene expression such as chitinase 3, RAR1, topless and PIF3 had significantly increased in the ML. Taken together, our data suggest that leaf miners could significantly affect leaf structure, photosynthesis, the antioxidant system and miner responsive gene expression in A. marina leaves.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Zhi-Jun Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
| | - Wei-Zhi Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
- National Marine Environmental Monitoring Center, State Oceanic Administration, Dalian, China
| | - Xiang Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
| | - Fei-Hua Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
| | - Gui-Feng Gao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
| | - Yi-Ling Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
| | - Chun-Sheng Wu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Chong-Ling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
| | - Hang-Qing Fan
- Guangxi Mangrove Research Center, Beihai, Guangxi, China
| | - Yi-Hui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P.R. China
| | | |
Collapse
|
22
|
Zhang M, Mo H, Sun W, Guo Y, Li J. Systematic Isolation and Characterization of Cadmium Tolerant Genes in Tobacco: A cDNA Library Construction and Screening Approach. PLoS One 2016; 11:e0161147. [PMID: 27579677 PMCID: PMC5007098 DOI: 10.1371/journal.pone.0161147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/01/2016] [Indexed: 11/29/2022] Open
Abstract
Heavy metal pollution is a major limiting factor that severely affects plant growth worldwide, and the accumulation of heavy metal in the plant may be hazardous to human health. To identify the processes involved in cadmium detoxification, we constructed a cDNA library of tobacco roots acclimated to cadmium (Cd) stress. According to the results of functional screening cDNA library with a yeast Cd-sensitive mutant, ycf1Δ, we obtained a series of candidate genes that were involved in Cd response. Sequence analysis and yeast functional complementation of 24 positive cDNA clones revealed that, in addition to antioxidant genes, genes implicated in abiotic and biotic stress defenses, cellular metabolism, and signal transduction showed Cd detoxification effects in yeast. The real time RT-PCR analyses revealed that some Cd tolerance/ detoxification genes may be able to anticipate in other stresses such as biotic defense and water balance in tobacco. Taken together, our data suggest that plants' acclimation to Cd stress is a highly complex process associated with broad gene functions. Moreover, our results provide insights into the Cd detoxification mechanisms along with the antioxidant system, defense gene induction, and calcium signal pathway.
Collapse
Affiliation(s)
- Mei Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hui Mo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Wen Sun
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Yan Guo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Jing Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
23
|
Zou Y, Chintamanani S, He P, Fukushige H, Yu L, Shao M, Zhu L, Hildebrand DF, Tang X, Zhou JM. A gain-of-function mutation in Msl10 triggers cell death and wound-induced hyperaccumulation of jasmonic acid in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:600-9. [PMID: 26356550 DOI: 10.1111/jipb.12427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/09/2015] [Indexed: 05/02/2023]
Abstract
Jasmonates (JAs) are rapidly induced after wounding and act as key regulators for wound induced signaling pathway. However, what perceives the wound signal and how that triggers JA biosynthesis remains poorly understood. To identify components involved in Arabidopsis wound and JA signaling pathway, we screened for mutants with abnormal expression of a luciferase reporter, which is under the control of a wound-responsive promoter of an ethylene response factor (ERF) transcription factor gene, RAP2.6 (Related to APetala 2.6). The rea1 (RAP2.6 expresser in shoot apex) mutant constitutively expressed the RAP2.6-LUC reporter gene in young leaves. Along with the typical JA phenotypes including shorter petioles, loss of apical dominance, accumulation of anthocyanin pigments and constitutive expression of JA response gene, rea1 plants also displayed cell death and accumulated high levels of JA in response to wounding. The phenotype of rea1 mutant is caused by a gain-of-function mutation in the C-terminus of a mechanosensitive ion channel MscS-like 10 (MSL10). MSL10 is localized in the plasma membrane and is expressed predominantly in root tip, shoot apex and vascular tissues. These results suggest that MSL10 is involved in the wound-triggered early signal transduction pathway and possibly in regulating the positive feedback synthesis of JA.
Collapse
Affiliation(s)
- Yan Zou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | | | - Ping He
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, Texas, 77840, USA
| | - Hirotada Fukushige
- Department of Agronomy, Agricultural Sciences Center-Noth, University of Kentucky, Lexington, Kentucky, 40546-0091, USA
| | - Liping Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meiyu Shao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - David F Hildebrand
- Department of Agronomy, Agricultural Sciences Center-Noth, University of Kentucky, Lexington, Kentucky, 40546-0091, USA
| | - Xiaoyan Tang
- School of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
24
|
Abstract
Most reviews of climate change are epidemiological, focusing on impact assessment and risk mapping. However, there are many reports of the effects of environmental stress factors on defense mechanisms in plants against pathogens. We review those representative of key climate change-related stresses to determine whether there are any patterns or trends in adaptation responses. We recognize the complexity of climate change itself and the multitrophic nature of the complex biological interactions of plants, microbes, soil, and the environment and, therefore, the difficulty of reductionist dissection approaches to resolving the problems. We review host defense genes, germplasm, and environmental interactions in different types of organisms but find no significant group-specific trends. Similarly, we review by host defense mechanism type and by host-pathogen trophic relationship but identify no dominating mechanism for stress response. However, we do identify core stress response mechanisms playing key roles in multiple response pathways whether to biotic or abiotic stress. We suggest that these should be central to mechanistic climate change plant defense research. We also recognize biodiversity, heterogeneity, and the need for understanding stress in a true systems biology approach as being essential components of progressing our understanding of and response to climate change.
Collapse
|
25
|
Geng X, Shen M, Kim JH, Mackey D. The Pseudomonas syringae type III effectors AvrRpm1 and AvrRpt2 promote virulence dependent on the F-box protein COI1. PLANT CELL REPORTS 2016; 35:921-32. [PMID: 26795143 DOI: 10.1007/s00299-016-1932-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/19/2015] [Accepted: 01/05/2016] [Indexed: 05/13/2023]
Abstract
Type III effectors AvrRpm1 and AvrRpt2 promote bacterial growth dependent on a COI1-mediated pathway in the absence of the RPM1 and RPS2 resistance proteins. The type III effectors, AvrRpm1 and AvrRpt2, promote bacterial virulence by suppressing host defense responses. The defense suppressing activities of AvrRpm1 and AvrRpt2 are best studied in the absence of the resistance proteins RPM1 and RPS2, which induce defense responses to them. We tested whether the type III effectors could modulate a CORONATINE INSENSITIVE1 (COI1)-mediated hormone signaling pathway to promote virulence. COI1 has been demonstrated to contribute in the induction of chlorosis during Pseudomonas syringae infection. By comparing the activity of inducibly expressed AvrRpm1-HA or AvrRpt2-HA in rpm1rps2 and rpm1rps2coi1 backgrounds, we demonstrate that both effectors promote bacterial growth dependent on a COI1-mediated pathway and additively with the action of coronatine (COR) and that AvrRpt2-HA induces COI1-dependent chlorosis. Further, PATHOGENESIS RELATED1 (PR-1) expression resulting from inducible expression of AvrRpm1-HA or AvrRpt2-HA is elevated in coi1 plants consistent with the effectors activating JA-signaling to antagonize SA-signaling. In addition, we found that AvrRpm1-HA or AvrRpt2-HA requires COI1 to promote bacterial growth through suppression of both SA-dependent and SA-independent defense responses. Collectively, these results indicate that type III effectors AvrRpm1 and AvrRpt2 promote bacterial virulence by targeting a COI1-dependent signaling pathway.
Collapse
Affiliation(s)
- Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
- Department of Horticulture and Crop Science, The Ohio State Univerity, Rm. 306C Kottman Hall, 2021 Coffey Rd, Columbus, OH, 43210, USA.
| | - Mingzhe Shen
- Department of Horticulture and Crop Science, The Ohio State Univerity, Rm. 306C Kottman Hall, 2021 Coffey Rd, Columbus, OH, 43210, USA
| | - Jin Hee Kim
- Department of Horticulture and Crop Science, The Ohio State Univerity, Rm. 306C Kottman Hall, 2021 Coffey Rd, Columbus, OH, 43210, USA
- Academy of New Biology for Plant Senescence and Life History/New Biology, DGIST, 50-1 Sang-Ri, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 711-873, Korea
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State Univerity, Rm. 306C Kottman Hall, 2021 Coffey Rd, Columbus, OH, 43210, USA.
- Department of Molecular and Genetics, The Ohio State Univerity, Columbus, USA.
| |
Collapse
|
26
|
Pennington HG, Gheorghe DM, Damerum A, Pliego C, Spanu PD, Cramer R, Bindschedler LV. Interactions between the Powdery Mildew Effector BEC1054 and Barley Proteins Identify Candidate Host Targets. J Proteome Res 2016; 15:826-39. [DOI: 10.1021/acs.jproteome.5b00732] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Helen G. Pennington
- Department
of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Dana M. Gheorghe
- Department
of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Annabelle Damerum
- Department
of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Clara Pliego
- Department
of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Pietro D. Spanu
- Department
of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Rainer Cramer
- Department
of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom
| | - Laurence V. Bindschedler
- Department
of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom
- School
of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, United Kingdom
| |
Collapse
|
27
|
How Microbes Twist Jasmonate Signaling around Their Little Fingers. PLANTS 2016; 5:plants5010009. [PMID: 27135229 PMCID: PMC4844426 DOI: 10.3390/plants5010009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/29/2015] [Accepted: 12/31/2015] [Indexed: 01/12/2023]
Abstract
Plant immunity relies on a complex network of hormone signaling pathways in which jasmonic acid (JA) plays a central role. Successful microbial pathogens or symbionts have developed strategies to manipulate plant hormone signaling pathways to cause hormonal imbalances for their own benefit. These strategies include the production of plant hormones, phytohormone mimics, or effector proteins that target host components to disrupt hormonal signaling pathways and enhance virulence. Here, we describe the molecular details of the most recent and best-characterized examples of specific JA hormonal manipulation by microbes, which exemplify the ingenious ways by which pathogens can take control over the plant’s hormone signaling network to suppress host immunity.
Collapse
|
28
|
Yan C, Xie D. Jasmonate in plant defence: sentinel or double agent? PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1233-40. [PMID: 26096226 DOI: 10.1111/pbi.12417] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 05/21/2023]
Abstract
Plants and their biotic enemies, such as microbial pathogens and herbivorous insects, are engaged in a desperate battle which would determine their survival-death fate. Plants have evolved efficient and sophisticated systems to defend against such attackers. In recent years, significant progress has been made towards a comprehensive understanding of inducible defence system mediated by jasmonate (JA), a vital plant hormone essential for plant defence responses and developmental processes. This review presents an overview of JA action in plant defences and discusses how microbial pathogens evade plant defence system through hijacking the JA pathway.
Collapse
Affiliation(s)
- Chun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
29
|
Zhou Z, Wu Y, Yang Y, Du M, Zhang X, Guo Y, Li C, Zhou JM. An Arabidopsis Plasma Membrane Proton ATPase Modulates JA Signaling and Is Exploited by the Pseudomonas syringae Effector Protein AvrB for Stomatal Invasion. THE PLANT CELL 2015; 27:2032-41. [PMID: 26198069 PMCID: PMC4531362 DOI: 10.1105/tpc.15.00466] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 05/20/2023]
Abstract
Stomata are natural openings through which many pathogenic bacteria enter plants. Successful bacterial pathogens have evolved various virulence factors to promote stomatal opening. Here, we show that the Pseudomonas syringae type III effector protein AvrB induces stomatal opening and enhances bacterial virulence in a manner dependent on RPM1-INTERACTING4 (RIN4), which promotes stomatal opening by positively regulating the Arabidopsis plasma membrane H(+)-ATPase (AHA1), which is presumed to directly regulate guard cell turgor pressure. In support of a role of AHA1 in AvrB-induced stomatal opening, AvrB enhances ATPase activity in plants. Unexpectedly, AHA1 promotes the interaction between the jasmonate (JA) receptor CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM-DOMAIN (JAZ) proteins and enhances JA signaling. JA signaling is required for optimum stomatal infection in AHA1-active plants. Similarly, AvrB also induces the COI1-JAZ9 interaction and the degradation of multiple JAZ proteins. AvrB-induced stomatal opening and virulence require the canonical JA signaling pathway, which involves the COI1 and NAC transcription factors. The findings thus point to a previously unknown pathway exploited by P. syringae that acts upstream of COI1 to regulate JA signaling and stomatal opening.
Collapse
Affiliation(s)
- Zhaoyang Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| | - Yujiao Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Minmin Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| |
Collapse
|
30
|
Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Curr Opin Microbiol 2015; 23:14-22. [DOI: 10.1016/j.mib.2014.10.009] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/16/2014] [Accepted: 10/24/2014] [Indexed: 01/08/2023]
|
31
|
Ito M, Ohnishi K, Hikichi Y, Kiba A. Molecular chaperons and co-chaperons, Hsp90, RAR1, and SGT1 negatively regulate bacterial wilt disease caused by Ralstonia solanacearum in Nicotiana benthamiana. PLANT SIGNALING & BEHAVIOR 2015; 10:e970410. [PMID: 25482800 PMCID: PMC4622423 DOI: 10.4161/15592316.2014.970410] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/09/2014] [Accepted: 07/09/2014] [Indexed: 05/29/2023]
Abstract
Ralstonia solanacearum is the causal agent of bacterial wilt disease. To better understand the molecular mechanisms involved in interaction between Nicotiana benthamiana and R. solanacearum, we focused on Hsp90, RAR1 and SGT1. Appearances of wilt symptom were significantly suppressed in Hsp90, RAR1 and SGT1-silenced plants compared with control plants. In RAR1-silenced plants, population of R. solanacearum increased in a similar manner to control plants. In contrast, multiplication of R. solanacearum was significantly suppressed in Hsp90 and SGT1-silenced plants. In addition, expression of PR genes were increased in Hsp90 and SGT1-silenced plants challenged with R. solanacearum. Therefore, RAR1 might be required for disease development or suppression of disease tolerance. These results also suggested that Hsp90 and/or SGT1 might play an important role in suppression of plant defenses leading to disease susceptibility and disease development.
Collapse
Affiliation(s)
- Makoto Ito
- Laboratory of Plant Pathology and Biotechnology; Faculty of Agriculture; Kochi University; Nankoku, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics; Kochi University; Nankoku, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology; Faculty of Agriculture; Kochi University; Nankoku, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology; Faculty of Agriculture; Kochi University; Nankoku, Japan
| |
Collapse
|
32
|
Wendehenne D, Gao QM, Kachroo A, Kachroo P. Free radical-mediated systemic immunity in plants. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:127-34. [PMID: 24929297 DOI: 10.1016/j.pbi.2014.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 05/04/2023]
Abstract
Systemic acquired resistance (SAR) is a form of defense that protects plants against a broad-spectrum of secondary infections by related or unrelated pathogens. SAR related research has witnessed considerable progress in recent years and a number of chemical signals and proteins contributing to SAR have been identified. All of these diverse constituents share their requirement for the phytohormone salicylic acid, an essential downstream component of the SAR pathway. However, recent work demonstrating the essential parallel functioning of nitric oxide (NO)-derived and reactive oxygen species (ROS)-derived signaling together with SA provides important new insights in the overlapping pathways leading to SAR. This review discusses the potential significance of branched pathways and the relative contributions of NO/ROS-derived and SA-derived pathways in SAR.
Collapse
Affiliation(s)
- David Wendehenne
- Université de Bourgogne, UMR 1347 Agroécologie, Pôle Mécanisme et Gestion des Interactions Plantes-microorganismes, ERL CNRS 6300, Dijon, France
| | - Qing-Ming Gao
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States.
| |
Collapse
|
33
|
Kazan K, Lyons R. Intervention of Phytohormone Pathways by Pathogen Effectors. THE PLANT CELL 2014; 26:2285-2309. [PMID: 24920334 PMCID: PMC4114936 DOI: 10.1105/tpc.114.125419] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/16/2014] [Accepted: 05/24/2014] [Indexed: 05/18/2023]
Abstract
The constant struggle between plants and microbes has driven the evolution of multiple defense strategies in the host as well as offense strategies in the pathogen. To defend themselves from pathogen attack, plants often rely on elaborate signaling networks regulated by phytohormones. In turn, pathogens have adopted innovative strategies to manipulate phytohormone-regulated defenses. Tactics frequently employed by plant pathogens involve hijacking, evading, or disrupting hormone signaling pathways and/or crosstalk. As reviewed here, this is achieved mechanistically via pathogen-derived molecules known as effectors, which target phytohormone receptors, transcriptional activators and repressors, and other components of phytohormone signaling in the host plant. Herbivores and sap-sucking insects employ obligate pathogens such as viruses, phytoplasma, or symbiotic bacteria to intervene with phytohormone-regulated defenses. Overall, an improved understanding of phytohormone intervention strategies employed by pests and pathogens during their interactions with plants will ultimately lead to the development of new crop protection strategies.
Collapse
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Queensland Bioscience Precinct, Brisbane 4069, Queensland, Australia
| | - Rebecca Lyons
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Queensland Bioscience Precinct, Brisbane 4069, Queensland, Australia
| |
Collapse
|
34
|
Gao QM, Kachroo A, Kachroo P. Chemical inducers of systemic immunity in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1849-55. [PMID: 24591049 DOI: 10.1093/jxb/eru010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Systemic acquired resistance (SAR) is a highly desirable form of resistance that protects against a broad-spectrum of related or unrelated pathogens. SAR involves the generation of multiple signals at the site of primary infection, which arms distal portions against subsequent secondary infections. The last decade has witnessed considerable progress, and a number of chemical signals contributing to SAR have been isolated and characterized. The diverse chemical nature of these chemicals had led to the growing belief that SAR might involve interplay of multiple diverse and independent signals. However, recent results suggest that coordinated signalling from diverse signalling components facilitates SAR in plants. This review mainly discusses organized signalling by two such chemicals, glycerol-3-phoshphate and azelaic acid, and the role of basal salicylic acid levels in G3P-conferred SAR.
Collapse
Affiliation(s)
- Qing-Ming Gao
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | | | |
Collapse
|
35
|
Afzal AJ, Kim JH, Mackey D. The role of NOI-domain containing proteins in plant immune signaling. BMC Genomics 2013; 14:327. [PMID: 23672422 PMCID: PMC3661340 DOI: 10.1186/1471-2164-14-327] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 03/26/2013] [Indexed: 02/04/2023] Open
Abstract
Here we present an overview of our existing knowledge on the function of RIN4 as a regulator of plant defense and as a guardee of multiple plant R-proteins. Domain analysis of RIN4 reveals two NOI domains. The NOI domain was originally identified in a screen for nitrate induced genes. The domain is comprised of approximately 30 amino acids and contains 2 conserved motifs (PXFGXW and Y/FTXXF). The NOI gene family contains members exclusively from the plant lineage as far back as moss. In addition to the conserved NOI domain, members within the family also contain conserved C-terminal cysteine residue(s) which are sites for acylation and membrane tethering. Other than these two characteristic features, the sequence of the family of NOI-containing proteins is diverse and, with the exception of RIN4, their functions are not known. Recently published interactome data showing interactions between RIN4 and components of the exocyst complex prompt us to raise the hypothesis that RIN4 might be involved in defense associated vesicle trafficking.
Collapse
Affiliation(s)
- Ahmed J Afzal
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA.
| | | | | |
Collapse
|
36
|
Ho YP, Tan CM, Li MY, Lin H, Deng WL, Yang JY. The AvrB_AvrC domain of AvrXccC of Xanthomonas campestris pv. campestris is required to elicit plant defense responses and manipulate ABA homeostasis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:419-30. [PMID: 23252460 DOI: 10.1094/mpmi-06-12-0164-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant disease induced by Xanthomonas campestris pv. campestris depends on type III effectors but the molecular basis is poorly understood. Here, AvrXccC8004 was characterized, and it was found that the AvrB_AvrC domain was essential and sufficient to elicit defense responses in an Arabidopsis-resistant ecotype (Col-0). An upregulation of genes in responding to the AvrB_AvrC domain of AvrXccC8004 was shown in a profile of host gene expression. The molecular changes were correlated with morphological changes observed in phenotypic and ultrastructural characterizations. Interestingly, the abscisic acid (ABA)-signaling pathway was also a prominent target for the AvrB_AvrC domain of AvrXccC8004. The highly elicited NCED5, encoding a key enzyme of ABA biosynthesis, was increased in parallel with ABA levels in AvrXccC8004 transgenic plants. Consistently, the X. campestris pv. campestris 8004 ΔavrXccC mutant was severely impaired in the ability to manipulate the accumulation of ABA and induction of ABA-related genes in challenged leaves. Moreover, exogenous application of ABA also enhanced the susceptibility of Arabidopsis to the X. campestris pv. campestris strains. These results indicate that the AvrB_AvrC domain of AvrXccC8004 alone has the activity to manipulate ABA homeostasis, which plays an important role in regulating the interactions of X. campestris pv. campestris and Arabidopsis.
Collapse
Affiliation(s)
- Yi-Ping Ho
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Dou D, Zhou JM. Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host Microbe 2013; 12:484-95. [PMID: 23084917 DOI: 10.1016/j.chom.2012.09.003] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phytopathogenic bacteria, fungi, and oomycetes invade and colonize their host plants through distinct routes. These pathogens secrete diverse groups of effector proteins that aid infection and establishment of different parasitic lifestyles. Despite this diversity, a comparison of different plant-pathogen systems has revealed remarkable similarities in the host immune pathways targeted by effectors from distinct pathogen groups. Immune signaling pathways mediated by pattern recognition receptors, phytohormone homeostasis or signaling, defenses associated with host secretory pathways and pathogen penetrations, and plant cell death represent some of the key processes controlling disease resistance against diverse pathogens. These immune pathways are targeted by effectors that carry a wide range of biochemical functions and are secreted by completely different pathogen groups, suggesting that these pathways are a common battleground encountered by many plant pathogens.
Collapse
Affiliation(s)
- Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | | |
Collapse
|
38
|
Deslandes L, Rivas S. Catch me if you can: bacterial effectors and plant targets. TRENDS IN PLANT SCIENCE 2012; 17:644-55. [PMID: 22796464 DOI: 10.1016/j.tplants.2012.06.011] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 05/18/2023]
Abstract
To suppress plant defense responses and favor the establishment of disease, phytopathogenic bacteria have gained the ability to deliver effector molecules inside host cells through the type III secretion system. Inside plant cells, bacterial effector proteins may be addressed to different subcellular compartments where they are able to manipulate a variety of host cellular components and molecular functions. Here we review how the recent identification and functional characterization of plant components targeted by bacterial effectors, as well as the discovery of new pathogen recognition capabilities evolved in turn by plant cells, have significantly contributed to further our knowledge about the intricate molecular interactions that are established between plants and their invading bacteria.
Collapse
Affiliation(s)
- Laurent Deslandes
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, F-31326 Castanet-Tolosan, France
| | | |
Collapse
|
39
|
Hwang IS, Kim NH, Choi DS, Hwang BK. Overexpression of Xanthomonas campestris pv. vesicatoria effector AvrBsT in Arabidopsis triggers plant cell death, disease and defense responses. PLANTA 2012; 236:1191-1204. [PMID: 22678032 DOI: 10.1007/s00425-012-1672-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 05/19/2012] [Indexed: 06/01/2023]
Abstract
Recognition of bacterial effector proteins by plant cells is crucial for plant disease and defense response signaling. The Xanthomonas campestris pv. vesicatoria (Xcv) type III effector protein, AvrBsT, is secreted into plant cells from Xcv strain Bv5-4a. Here, we demonstrate that dexamethasone (DEX): avrBsT overexpression triggers cell death signaling in healthy transgenic Arabidopsis plants. AvrBsT overexpression in Arabidopsis also reduced susceptibility to infection with the obligate biotrophic oomycete Hyaloperonospora arabidopsidis. Overexpression of avrBsT significantly induced some defense-related genes in Arabidopsis leaves. A high-throughput in planta proteomics screen identified TCP-1 chaperonin, SEC7-like guanine nucleotide exchange protein and calmodulin-like protein, which were differentially expressed in DEX:avrBsT-overexpression (OX) Arabidopsis plants during Hp. arabidopsidis infection. Treatment with purified GST-tagged AvrBsT proteins distinctly inhibited the growth and sporulation of Hp. arabidopsidis on Arabdiopsis cotyledons. In contrast, DEX:avrBsT-OX plants exhibited enhanced susceptibility to Pseudomonas syringae pv. tomato (Pst) DC3000 infection. Notably, susceptible cell death and enhanced electrolyte leakage were significantly induced in the Pst-infected leaves of DEX:avrBsT-OX plants. Together, these results suggest that Xcv effector AvrBsT overexpression triggers plant cell death, disease and defense signaling leading to both disease and defense responses to microbial pathogens of different lifestyles.
Collapse
Affiliation(s)
- In Sun Hwang
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Republic of Korea
| | | | | | | |
Collapse
|
40
|
Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S. The ubiquitin-proteasome system: central modifier of plant signalling. THE NEW PHYTOLOGIST 2012; 196:13-28. [PMID: 22897362 DOI: 10.1111/j.1469-8137.2012.04266.x] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/05/2012] [Indexed: 05/19/2023]
Abstract
Ubiquitin is well established as a major modifier of signalling in eukaryotes. However, the extent to which plants rely on ubiquitin for regulating their lifecycle is only recently becoming apparent. This is underlined by the over-representation of genes encoding ubiquitin-metabolizing enzymes in Arabidopsis when compared with other model eukaryotes. The main characteristic of ubiquitination is the conjugation of ubiquitin onto lysine residues of acceptor proteins. In most cases the targeted protein is rapidly degraded by the 26S proteasome, the major proteolysis machinery in eukaryotic cells. The ubiquitin-proteasome system is responsible for removing most abnormal peptides and short-lived cellular regulators, which, in turn, control many processes. This allows cells to respond rapidly to intracellular signals and changing environmental conditions. This review maps out the roles of the components of the ubiquitin-proteasome system with emphasis on areas where future research is urgently needed. We provide a flavour of the diverse aspects of plant lifecycle where the ubiquitin-proteasome system is implicated. We aim to highlight common themes using key examples that reiterate the importance of the ubiquitin-proteasome system to plants. The future challenge in plant biology is to define the targets for ubiquitination, their interactors and their molecular function within the regulatory context.
Collapse
Affiliation(s)
- Ari Sadanandom
- School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3HP, UK
| | - Mark Bailey
- School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3HP, UK
| | - Richard Ewan
- The Scottish Institute for Cell Signalling (SCILLS), Sir James Black Centre, University of Dundee, Dundee, DD1 5EH, UK
| | - Jack Lee
- School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3HP, UK
| | - Stuart Nelis
- School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3HP, UK
| |
Collapse
|
41
|
Lee JH, Yun HS, Kwon C. Molecular communications between plant heat shock responses and disease resistance. Mol Cells 2012; 34:109-16. [PMID: 22710621 PMCID: PMC3887810 DOI: 10.1007/s10059-012-0121-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 12/24/2022] Open
Abstract
As sessile, plants are continuously exposed to potential dangers including various abiotic stresses and pathogen attack. Although most studies focus on plant responses under an ideal condition to a specific stimulus, plants in nature must cope with a variety of stimuli at the same time. This indicates that it is critical for plants to fine-control distinct signaling pathways temporally and spatially for simultaneous and effective responses to various stresses. Global warming is currently a big issue threatening the future of humans. Reponses to high temperature affect many physiological processes in plants including growth and disease resistance, resulting in decrease of crop yield. Although plant heat stress and defense responses share important mediators such as calcium ions and heat shock proteins, it is thought that high temperature generally suppresses plant immunity. We therefore specifically discuss on interactions between plant heat and defense responses in this review hopefully for an integrated understanding of these responses in plants.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Busan 609-735,
Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul 143-701,
Korea
| | - Chian Kwon
- Department of Molecular Biology, Brain Korea 21 Graduate Program for RNA Biology, Dankook University, Yongin 448-701,
Korea
| |
Collapse
|
42
|
Macho AP, Zumaquero A, Gonzalez-Plaza JJ, Ortiz-Martín I, Rufián JS, Beuzón CR. Genetic analysis of the individual contribution to virulence of the type III effector inventory of Pseudomonas syringae pv. phaseolicola. PLoS One 2012; 7:e35871. [PMID: 22558247 PMCID: PMC3338808 DOI: 10.1371/journal.pone.0035871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/23/2012] [Indexed: 12/02/2022] Open
Abstract
Several reports have recently contributed to determine the effector inventory of the sequenced strain Pseudomonas syringae pv. phaseolicola (Pph) 1448a. However, the contribution to virulence of most of these effectors remains to be established. Genetic analysis of the contribution to virulence of individual P. syringae effectors has been traditionally hindered by the lack of phenotypes of the corresponding knockout mutants, largely attributed to a high degree of functional redundancy within their effector inventories. In support of this notion, effectors from Pseudomonas syringae pv. tomato (Pto) DC3000 have been classified into redundant effector groups (REGs), analysing virulence of polymutants in the model plant Nicotiana benthamiana. However, using competitive index (CI) as a virulence assay, we were able to establish the individual contribution of AvrPto1(Pto) (DC3000) to Pto DC3000 virulence in tomato, its natural host, even though typically, contribution to virulence of AvrPto1 is only shown in strains also lacking AvrPtoB (also called HopAB2), a member of its REG. This report raised the possibility that even effectors targeting the same defence signalling pathway may have an individual contribution to virulence, and pointed out to CI assays as the means to establish such a contribution for individual effectors. In this work, we have analysed the individual contribution to virulence of the majority of previously uncharacterised Pph 1448a effectors, by monitoring the development of disease symptoms and determining the CI of single knockout mutants at different stages of growth within bean, its natural host. Despite their potential functional redundancy, we have found individual contributions to virulence for six out of the fifteen effectors analysed. In addition, we have analysed the functional relationships between effectors displaying individual contribution to virulence, highlighting the diversity that these relationships may present, and the interest of analysing their functions within the context of the infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Carmen R. Beuzón
- Department of Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
43
|
Tsuda K, Qi Y, Nguyen LV, Bethke G, Tsuda Y, Glazebrook J, Katagiri F. An efficient Agrobacterium-mediated transient transformation of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:713-9. [PMID: 22004025 DOI: 10.1111/j.1365-313x.2011.04819.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Agrobacterium tumefaciens-mediated transient transformation has been a useful procedure for characterization of proteins and their functions in plants, including analysis of protein-protein interactions. Agrobacterium-mediated transient transformation of Nicotiana benthamiana by leaf infiltration has been widely used due to its ease and high efficiency. However, in Arabidopsis this procedure has been challenging. Previous studies suggested that this difficulty was caused by plant immune responses triggered by perception of Agrobacterium. Here, we report a simple and robust method for Agrobacterium-mediated transient transformation in Arabidopsis. AvrPto is an effector protein from the bacterial plant pathogen Pseudomonas syringae that suppresses plant immunity by interfering with plant immune receptors. We used transgenic Arabidopsis plants that conditionally express AvrPto under the control of a dexamethasone (DEX)-inducible promoter. When the transgenic plants were pretreated with DEX prior to infection with Agrobacterium carrying a β-glucuronidase (GUS, uidA) gene with an artificial intron and driven by the CaMV 35S promoter, transient GUS expression was dramatically enhanced compared to that in mock-pretreated plants. This transient expression system was successfully applied to analysis of the subcellular localization of a cyan fluorescent protein (CFP) fusion and a protein-protein interaction in Arabidopsis. Our findings enable efficient use of Agrobacterium-mediated transient transformation in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kenichi Tsuda
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Afzal AJ, da Cunha L, Mackey D. Separable fragments and membrane tethering of Arabidopsis RIN4 regulate its suppression of PAMP-triggered immunity. THE PLANT CELL 2011; 23:3798-811. [PMID: 21984695 PMCID: PMC3229150 DOI: 10.1105/tpc.111.088708] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
RPM1-interacting protein 4 (RIN4) is a multifunctional Arabidopsis thaliana protein that regulates plant immune responses to pathogen-associated molecular patterns (PAMPs) and bacterial type III effector proteins (T3Es). RIN4, which is targeted by multiple defense-suppressing T3Es, provides a mechanistic link between PAMP-triggered immunity (PTI) and effector-triggered immunity and effector suppression of plant defense. Here we report on a structure-function analysis of RIN4-mediated suppression of PTI. Separable fragments of RIN4, including those produced when the T3E AvrRpt2 cleaves RIN4 and each containing a plant-specific nitrate-induced (NOI) domain, suppress PTI. The N-terminal and C-terminal NOIs each contribute to PTI suppression and are evolutionarily conserved. Native RIN4 is anchored to the plasma membrane by C-terminal acylation. Nonmembrane-tethered derivatives of RIN4 activate a cell death response in wild-type Arabidopsis and are hyperactive PTI suppressors in a mutant background that lacks the cell death response. Our results indicate that RIN4 is a multifunctional suppressor of PTI and that a virulence function of AvrRpt2 may include cleaving RIN4 into active defense-suppressing fragments.
Collapse
Affiliation(s)
- Ahmed J. Afzal
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210
| | - Luis da Cunha
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210
| | - David Mackey
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210
- Address correspondence to
| |
Collapse
|
45
|
Choi J, Choi D, Lee S, Ryu CM, Hwang I. Cytokinins and plant immunity: old foes or new friends? TRENDS IN PLANT SCIENCE 2011; 16:388-94. [PMID: 21470894 DOI: 10.1016/j.tplants.2011.03.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/28/2011] [Accepted: 03/07/2011] [Indexed: 05/19/2023]
Abstract
Cytokinins are plant growth promoting hormones involved in the specification of embryonic cells, maintenance of meristematic cells, shoot formation and development of vasculature. Cytokinins have also emerged as a major factor in plant-microbe interactions during nodule organogenesis and pathogenesis. Microbe-originated cytokinins confer abnormal hypersensitivity of cytokinins to plants, augmenting the sink activity of infected regions. However, recent findings have shed light on a distinct role of cytokinins in plant immune responses. Plant-borne cytokinins systemically induce resistance against pathogen infection. This resistance is orchestrated by endogenous cytokinin and salicylic acid signaling. Here, we discuss how plant- and pathogen-derived cytokinins inversely affect the plant defense response. In addition, we consider the molecular mechanisms underlying plant-derived cytokinin action in plant immunity.
Collapse
Affiliation(s)
- Jaemyung Choi
- Department of Life Sciences, Pohang University of Science and Technology, Korea
| | | | | | | | | |
Collapse
|
46
|
A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor. Cell Host Microbe 2011; 9:137-46. [PMID: 21320696 DOI: 10.1016/j.chom.2011.01.010] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/29/2010] [Accepted: 01/21/2011] [Indexed: 11/22/2022]
Abstract
Plants have evolved sophisticated surveillance systems to recognize pathogen effectors delivered into host cells. RPM1 is an NB-LRR immune receptor that recognizes the Pseudomonas syringae effectors AvrB and AvrRpm1. Both effectors associate with and affect the phosphorylation of RIN4, an immune regulator. Although the kinase and the specific mechanisms involved are unclear, it has been hypothesized that RPM1 recognizes phosphorylated RIN4. Here, we identify RIPK as a RIN4-interacting receptor-like protein kinase that phosphorylates RIN4. In response to bacterial effectors, RIPK phosphorylates RIN4 at amino acid residues T21, S160, and T166. RIN4 phosphomimetic mutants display constitutive activation of RPM1-mediated defense responses and RIN4 phosphorylation is induced by AvrB and AvrRpm1 during P. syringae infection. RIPK knockout lines exhibit reduced RIN4 phosphorylation and blunted RPM1-mediated defense responses. Taken together, our results demonstrate that the RIPK kinase associates with and modifies an effector-targeted protein complex to initiate host immunity.
Collapse
|
47
|
Seo YS, Chern M, Bartley LE, Han M, Jung KH, Lee I, Walia H, Richter T, Xu X, Cao P, Bai W, Ramanan R, Amonpant F, Arul L, Canlas PE, Ruan R, Park CJ, Chen X, Hwang S, Jeon JS, Ronald PC. Towards establishment of a rice stress response interactome. PLoS Genet 2011; 7:e1002020. [PMID: 21533176 PMCID: PMC3077385 DOI: 10.1371/journal.pgen.1002020] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/20/2011] [Indexed: 01/01/2023] Open
Abstract
Rice (Oryza sativa) is a staple food for more than half the world and a model for studies of monocotyledonous species, which include cereal crops and candidate bioenergy grasses. A major limitation of crop production is imposed by a suite of abiotic and biotic stresses resulting in 30%-60% yield losses globally each year. To elucidate stress response signaling networks, we constructed an interactome of 100 proteins by yeast two-hybrid (Y2H) assays around key regulators of the rice biotic and abiotic stress responses. We validated the interactome using protein-protein interaction (PPI) assays, co-expression of transcripts, and phenotypic analyses. Using this interactome-guided prediction and phenotype validation, we identified ten novel regulators of stress tolerance, including two from protein classes not previously known to function in stress responses. Several lines of evidence support cross-talk between biotic and abiotic stress responses. The combination of focused interactome and systems analyses described here represents significant progress toward elucidating the molecular basis of traits of agronomic importance.
Collapse
Affiliation(s)
- Young-Su Seo
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Mawsheng Chern
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- The Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Laura E. Bartley
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- The Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Muho Han
- Plant Metabolism Research Center and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Ki-Hong Jung
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- The Joint Bioenergy Institute, Emeryville, California, United States of America
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Korea
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Harkamal Walia
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Todd Richter
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Xia Xu
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Peijian Cao
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Wei Bai
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Rajeshwari Ramanan
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- Plant Sciences, Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Fawn Amonpant
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Loganathan Arul
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Patrick E. Canlas
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Randy Ruan
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Chang-Jin Park
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Xuewei Chen
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Sohyun Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jong-Seong Jeon
- Plant Metabolism Research Center and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Pamela C. Ronald
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- The Joint Bioenergy Institute, Emeryville, California, United States of America
- Plant Metabolism Research Center and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| |
Collapse
|
48
|
Uppalapati SR, Ishiga Y, Ryu CM, Ishiga T, Wang K, Noël LD, Parker JE, Mysore KS. SGT1 contributes to coronatine signaling and Pseudomonas syringae pv. tomato disease symptom development in tomato and Arabidopsis. THE NEW PHYTOLOGIST 2011; 189:83-93. [PMID: 20854394 DOI: 10.1111/j.1469-8137.2010.03470.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
• Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) causes an economically important bacterial speck disease on tomato and produces symptoms with necrotic lesions surrounded by chlorosis. The chlorosis is mainly attributed to a jasmonic acid (JA)-isoleucine analogue, coronatine (COR), produced by Pst DC3000. However, the molecular processes underlying lesion development and COR-induced chlorosis are poorly understood. • In this study, we took advantage of a chlorotic phenotype elicited by COR on Nicotiana benthamiana leaves and virus-induced gene silencing (VIGS) as a rapid reverse genetic screening tool and identified a role for SGT1 (suppressor of G2 allele of skp1) in COR-induced chlorosis. • Silencing of SGT1 in tomato resulted in reduction of disease-associated symptoms (cell death and chlorosis), suggesting a molecular connection between COR-induced chlorosis and cell death. In Arabidopsis, AtSGT1b but not AtSGT1a was required for COR responses, including root growth inhibition and Pst DC3000 symptom (water soaked lesion) development. Notably, overexpression of AtSGT1b did not alter Pst DC3000 symptoms or sensitivity to COR. • Taken together, our results demonstrate that SGT1/SGT1b is required for COR-induced chlorosis and subsequent necrotic disease development in tomato and Arabidopsis. SGT1 is therefore a component of the COR/JA-mediated signal transduction pathway.
Collapse
|
49
|
Bos JIB, Prince D, Pitino M, Maffei ME, Win J, Hogenhout SA. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genet 2010; 6:e1001216. [PMID: 21124944 PMCID: PMC2987835 DOI: 10.1371/journal.pgen.1001216] [Citation(s) in RCA: 309] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 10/21/2010] [Indexed: 12/21/2022] Open
Abstract
Aphids are amongst the most devastating sap-feeding insects of plants. Like most plant parasites, aphids require intimate associations with their host plants to gain access to nutrients. Aphid feeding induces responses such as clogging of phloem sieve elements and callose formation, which are suppressed by unknown molecules, probably proteins, in aphid saliva. Therefore, it is likely that aphids, like plant pathogens, deliver proteins (effectors) inside their hosts to modulate host cell processes, suppress plant defenses, and promote infestation. We exploited publicly available aphid salivary gland expressed sequence tags (ESTs) to apply a functional genomics approach for identification of candidate effectors from Myzus persicae (green peach aphid), based on common features of plant pathogen effectors. A total of 48 effector candidates were identified, cloned, and subjected to transient overexpression in Nicotiana benthamiana to assay for elicitation of a phenotype, suppression of the Pathogen-Associated Molecular Pattern (PAMP)-mediated oxidative burst, and effects on aphid reproductive performance. We identified one candidate effector, Mp10, which specifically induced chlorosis and local cell death in N. benthamiana and conferred avirulence to recombinant Potato virus X (PVX) expressing Mp10, PVX-Mp10, in N. tabacum, indicating that this protein may trigger plant defenses. The ubiquitin-ligase associated protein SGT1 was required for the Mp10-mediated chlorosis response in N. benthamiana. Mp10 also suppressed the oxidative burst induced by flg22, but not by chitin. Aphid fecundity assays revealed that in planta overexpression of Mp10 and Mp42 reduced aphid fecundity, whereas another effector candidate, MpC002, enhanced aphid fecundity. Thus, these results suggest that, although Mp10 suppresses flg22-triggered immunity, it triggers a defense response, resulting in an overall decrease in aphid performance in the fecundity assays. Overall, we identified aphid salivary proteins that share features with plant pathogen effectors and therefore may function as aphid effectors by perturbing host cellular processes.
Collapse
Affiliation(s)
- Jorunn I. B. Bos
- Department of Disease and Stress Biology, The John Innes Centre, Norwich, United Kingdom
| | - David Prince
- Department of Disease and Stress Biology, The John Innes Centre, Norwich, United Kingdom
| | - Marco Pitino
- Department of Disease and Stress Biology, The John Innes Centre, Norwich, United Kingdom
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Plant Biology and Centre of Excellence CEBIOVEM, University of Turin, Turin, Italy
| | - Joe Win
- The Sainsbury Laboratory, Norwich, United Kingdom
| | - Saskia A. Hogenhout
- Department of Disease and Stress Biology, The John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
50
|
Rong W, Feng F, Zhou J, He C. Effector-triggered innate immunity contributes Arabidopsis resistance to Xanthomonas campestris. MOLECULAR PLANT PATHOLOGY 2010; 11:783-93. [PMID: 21029323 PMCID: PMC6640269 DOI: 10.1111/j.1364-3703.2010.00642.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Xanthomonas campestris pv. campestris, the causal agent of black rot disease, depends on its type III secretion system (TTSS) to infect cruciferous plants, including Brassica oleracea, B. napus and Arabidopsis. Previous studies on the Arabidopsis-Pseudomonas syringae model pathosystem have indicated that a major function of TTSS from virulent bacteria is to suppress host defences triggered by pathogen-associated molecular patterns. Similar analyses have not been made for the Arabidopsis-X. campestris pv. campestris pathosystem. In this study, we report that X. campestris pv. campestris strain 8004, which is modestly pathogenic on Arabidopsis, induces strong defence responses in Arabidopsis in a TTSS-dependent manner. Furthermore, the induction of defence responses and disease resistance to X. campestris pv. campestris strain 8004 requires NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE1), RAR1 (required for Mla12 resistance) and SGT1b (suppressor of G2 allele of skp1), suggesting that effector-triggered immunity plays a large role in resistance to this strain. Consistent with this notion, AvrXccC, an X. campestris pv. campestris TTSS effector protein, induces PR1 expression and confers resistance in Arabidopsis in a RAR1- and SGT1b-dependent manner. In rar1 and sgt1b mutants, AvrXccC acts as a virulence factor, presumably because of impaired resistance gene function.
Collapse
Affiliation(s)
- Wei Rong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|