1
|
Khare S, Villalba MI, Canul-Tec JC, Cajiao AB, Kumar A, Backovic M, Rey FA, Pardon E, Steyaert J, Perez C, Reyes N. Receptor-recognition and antiviral mechanisms of retrovirus-derived human proteins. Nat Struct Mol Biol 2024; 31:1368-1376. [PMID: 38671230 DOI: 10.1038/s41594-024-01295-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Human syncytin-1 and suppressyn are cellular proteins of retroviral origin involved in cell-cell fusion events to establish the maternal-fetal interface in the placenta. In cell culture, they restrict infections from members of the largest interference group of vertebrate retroviruses, and are regarded as host immunity factors expressed during development. At the core of the syncytin-1 and suppressyn functions are poorly understood mechanisms to recognize a common cellular receptor, the membrane transporter ASCT2. Here, we present cryo-electron microscopy structures of human ASCT2 in complexes with the receptor-binding domains of syncytin-1 and suppressyn. Despite their evolutionary divergence, the two placental proteins occupy similar positions in ASCT2, and are stabilized by the formation of a hybrid β-sheet or 'clamp' with the receptor. Structural predictions of the receptor-binding domains of extant retroviruses indicate overlapping binding interfaces and clamping sites with ASCT2, revealing a competition mechanism between the placental proteins and the retroviruses. Our work uncovers a common ASCT2 recognition mechanism by a large group of endogenous and disease-causing retroviruses, and provides high-resolution views on how placental human proteins exert morphological and immunological functions.
Collapse
Affiliation(s)
- Shashank Khare
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France
| | - Miryam I Villalba
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France
| | - Juan C Canul-Tec
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France
| | | | - Anand Kumar
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France
| | - Marija Backovic
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Felix A Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Camilo Perez
- Biozentrum, University of Basel, Basel, Switzerland.
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| | - Nicolas Reyes
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France.
| |
Collapse
|
2
|
Swapna GVT, Dube N, Roth MJ, Montelione GT. Modeling Alternative Conformational States of Pseudo-Symmetric Solute Carrier Transporters using Methods from Machine Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603529. [PMID: 39071413 PMCID: PMC11275918 DOI: 10.1101/2024.07.15.603529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The Solute Carrier (SLC) superfamily of integral membrane proteins function to transport a wide array of solutes across the plasma and organelle membranes. SLC proteins also function as important drug transporters and as viral receptors. Despite being classified as a single superfamily, SLC proteins do not share a single common fold classification; however, most belong to multi-pass transmembrane helical protein fold families. SLC proteins populate different conformational states during the solute transport process, including outward open, intermediate (occluded), and inward open conformational states. For some SLC fold families this structural "flipping" corresponds to swapping between conformations of their N-terminal and C-terminal symmetry-related sub-structures. Conventional AlphaFold2 or Evolutionary Scale Modeling methods typically generate models for only one of these multiple conformational states of SLC proteins. Here we describe a fast and simple approach for modeling multiple conformational states of SLC proteins using a combined ESM - AF2 process. The resulting multi-state models are validated by comparison with sequence-based evolutionary co-variance data (ECs) that encode information about contacts present in the various conformational states adopted by the protein. We also explored the impact of mutations on conformational distributions of SLC proteins modeled by AlphaFold2 using both conventional and enhanced sampling methods. This approach for modeling conformational landscapes of pseudo-symmetric SLC proteins is demonstrated for several integral membrane protein transporters, including SLC35F2 the receptor of a feline leukemia virus envelope protein required for viral entry into eukaryotic cells.
Collapse
Affiliation(s)
- G V T Swapna
- Dept. of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180 USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway NJ 08854 USA
| | - Namita Dube
- Dept. of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180 USA
| | - Monica J Roth
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway NJ 08854 USA
| | - Gaetano T Montelione
- Dept. of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180 USA
| |
Collapse
|
3
|
Reddy KD, Rasool B, Akher FB, Kutlešić N, Pant S, Boudker O. Evolutionary analysis reveals the origin of sodium coupling in glutamate transporters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.03.569786. [PMID: 38106174 PMCID: PMC10723334 DOI: 10.1101/2023.12.03.569786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Secondary active membrane transporters harness the energy of ion gradients to concentrate their substrates. Homologous transporters evolved to couple transport to different ions in response to changing environments and needs. The bases of such diversification, and thus principles of ion coupling, are unexplored. Employing phylogenetics and ancestral protein reconstruction, we investigated sodium-coupled transport in prokaryotic glutamate transporters, a mechanism ubiquitous across life domains and critical to neurotransmitter recycling in humans. We found that the evolutionary transition from sodium-dependent to independent substrate binding to the transporter preceded changes in the coupling mechanism. Structural and functional experiments suggest that the transition entailed allosteric mutations, making sodium binding dispensable without affecting ion-binding sites. Allosteric tuning of transporters' energy landscapes might be a widespread route of their functional diversification.
Collapse
Affiliation(s)
- Krishna D. Reddy
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Burha Rasool
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Farideh Badichi Akher
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Nemanja Kutlešić
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Swati Pant
- Dept. of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Olga Boudker
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
- Howard Hughes Medical Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| |
Collapse
|
4
|
Karagöl A, Karagöl T, Smorodina E, Zhang S. Structural bioinformatics studies of glutamate transporters and their AlphaFold2 predicted water-soluble QTY variants and uncovering the natural mutations of L->Q, I->T, F->Y and Q->L, T->I and Y->F. PLoS One 2024; 19:e0289644. [PMID: 38598436 PMCID: PMC11006163 DOI: 10.1371/journal.pone.0289644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/22/2023] [Indexed: 04/12/2024] Open
Abstract
Glutamate transporters play key roles in nervous physiology by modulating excitatory neurotransmitter levels, when malfunctioning, involving in a wide range of neurological and physiological disorders. However, integral transmembrane proteins including the glutamate transporters remain notoriously difficult to study, due to their localization within the cell membrane. Here we present the structural bioinformatics studies of glutamate transporters and their water-soluble variants generated through QTY-code, a protein design strategy based on systematic amino acid substitutions. These include 2 structures determined by X-ray crystallography, cryo-EM, and 6 predicted by AlphaFold2, and their predicted water-soluble QTY variants. In the native structures of glutamate transporters, transmembrane helices contain hydrophobic amino acids such as leucine (L), isoleucine (I), and phenylalanine (F). To design water-soluble variants, these hydrophobic amino acids are systematically replaced by hydrophilic amino acids, namely glutamine (Q), threonine (T) and tyrosine (Y). The QTY variants exhibited water-solubility, with four having identical isoelectric focusing points (pI) and the other four having very similar pI. We present the superposed structures of the native glutamate transporters and their water-soluble QTY variants. The superposed structures displayed remarkable similarity with RMSD 0.528Å-2.456Å, despite significant protein transmembrane sequence differences (41.1%->53.8%). Additionally, we examined the differences of hydrophobicity patches between the native glutamate transporters and their QTY variants. Upon closer inspection, we discovered multiple natural variations of L->Q, I->T, F->Y and Q->L, T->I, Y->F in these transporters. Some of these natural variations were benign and the remaining were reported in specific neurological disorders. We further investigated the characteristics of hydrophobic to hydrophilic substitutions in glutamate transporters, utilizing variant analysis and evolutionary profiling. Our structural bioinformatics studies not only provided insight into the differences between the hydrophobic helices and hydrophilic helices in the glutamate transporters, but they are also expected to stimulate further study of other water-soluble transmembrane proteins.
Collapse
Affiliation(s)
- Alper Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Taner Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Eva Smorodina
- Laboratory for Computational and Systems Immunology, Department of Immunology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
5
|
Zielewicz LJ, Wang J, Ndaru E, Maney B, Yu X, Albers T, Grewer C. Design and Characterization of Prodrug-like Inhibitors for Preventing Glutamate Efflux through Reverse Transport. ACS Chem Neurosci 2023; 14:4252-4263. [PMID: 37994790 DOI: 10.1021/acschemneuro.3c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Abstract
Glutamate transporters are responsible for active transport of the major excitatory neurotransmitter glutamate across the cell membrane, regulating the extracellular glutamate concentration in the mammalian brain. Extracellular glutamate levels in the brain are usually in the submicromolar range but can increase by exocytosis, inhibition of cellular uptake, or through glutamate release by reverse transport, as well as other mechanisms, which can lead to neurodegeneration and neuronal cell death. Such conditions can be encountered upon energy deprivation during an ischemic stroke. Here, we developed acetoxymethyl (AM) ester prodrug-like derivatives of excitatory amino acid transporter (EAAT) inhibitors that permeate the cell membrane and are activated, most likely through hydrolysis by endogenous cellular esterases, to form the active EAAT inhibitor. Upon increase in external K+ concentration, the inhibitors block glutamate efflux by EAAT reverse transport. Using a novel high-affinity fluorescent prodrug-like inhibitor, dl-threo-9-anthracene-methoxy-aspartate (TAOA) AM ester, we demonstrate that the precursor rapidly accumulates inside cells. Electrophysiological methods and fluorescence assays utilizing the iGluSnFR external glutamate sensor were used to demonstrate the efficacy of AM ester-protected inhibitors in inhibiting K+-mediated glutamate release. Together, our results provide evidence for a novel method to potentially prevent glutamate release by reverse transport under pathophysiological conditions in a model cell system, as well as in human astrocytes, while leaving glutamate uptake under physiological conditions operational. This method could have wide-ranging applications in the prevention of glutamate-induced neuronal cell death.
Collapse
Affiliation(s)
- Laura J Zielewicz
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Jiali Wang
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Elias Ndaru
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Brien Maney
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Xiaozhen Yu
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Thomas Albers
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Christof Grewer
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| |
Collapse
|
6
|
Dong Y, Wang J, Garibsingh RA, Hutchinson K, Shi Y, Eisenberg G, Yu X, Schlessinger A, Grewer C. Conserved allosteric inhibition mechanism in SLC1 transporters. eLife 2023; 12:e83464. [PMID: 36856089 PMCID: PMC10017108 DOI: 10.7554/elife.83464] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/27/2023] [Indexed: 03/02/2023] Open
Abstract
Excitatory amino acid transporter 1 (EAAT1) is a glutamate transporter belonging to the SLC1 family of solute carriers. It plays a key role in the regulation of the extracellular glutamate concentration in the mammalian brain. The structure of EAAT1 was determined in complex with UCPH-101, apotent, non-competitive inhibitor of EAAT1. Alanine serine cysteine transporter 2 (ASCT2) is a neutral amino acid transporter, which regulates pools of amino acids such as glutamine between intracellular and extracellular compartments . ASCT2 also belongs to the SLC1 family and shares 58% sequence similarity with EAAT1. However, allosteric modulation of ASCT2 via non-competitive inhibitors is unknown. Here, we explore the UCPH-101 inhibitory mechanisms of EAAT1 and ASCT2 by using rapid kinetic experiments. Our results show that UCPH-101 slows substrate translocation rather than substrate or Na+ binding, confirming a non-competitive inhibitory mechanism, but only partially inhibits wild-type ASCT2. Guided by computational modeling using ligand docking and molecular dynamics simulations, we selected two residues involved in UCPH-101/EAAT1 interaction, which were mutated in ASCT2 (F136Y, I237M, F136Y/I237M) in the corresponding positions. We show that in the F136Y/I237M double-mutant transporter, 100% of the inhibitory effect of UCPH-101 could be restored, and the apparent affinity was increased (Ki = 4.3 μM), much closer to the EAAT1 value of 0.6 μM. Finally, we identify a novel non-competitive ASCT2 inhibitor, through virtual screening and experimental testing against the allosteric site, further supporting its localization. Together, these data indicate that the mechanism of allosteric modulation is conserved between EAAT1 and ASCT2. Due to the difference in binding site residues between ASCT2 and EAAT1, these results raise the possibility that more potent, and potentially selective ASCT2 allosteric inhibitors can be designed .
Collapse
Affiliation(s)
- Yang Dong
- Department of Chemistry, Binghamton UniversityBinghamtonUnited States
| | - Jiali Wang
- Department of Chemistry, Binghamton UniversityBinghamtonUnited States
| | - Rachel-Ann Garibsingh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Keino Hutchinson
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Yueyue Shi
- Department of Chemistry, Binghamton UniversityBinghamtonUnited States
| | - Gilad Eisenberg
- Department of Chemistry, Binghamton UniversityBinghamtonUnited States
| | - Xiaozhen Yu
- Department of Chemistry, Binghamton UniversityBinghamtonUnited States
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Christof Grewer
- Department of Chemistry, Binghamton UniversityBinghamtonUnited States
| |
Collapse
|
7
|
Functional investigation of SLC1A2 variants associated with epilepsy. Cell Death Dis 2022; 13:1063. [PMID: 36543780 PMCID: PMC9772344 DOI: 10.1038/s41419-022-05457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Epilepsy is a common neurological disorder and glutamate excitotoxicity plays a key role in epileptic pathogenesis. Astrocytic glutamate transporter GLT-1 is responsible for preventing excitotoxicity via clearing extracellular accumulated glutamate. Previously, three variants (G82R, L85P, and P289R) in SLC1A2 (encoding GLT-1) have been clinically reported to be associated with epilepsy. However, the functional validation and underlying mechanism of these GLT-1 variants in epilepsy remain undetermined. In this study, we reported that these disease-linked mutants significantly decrease glutamate uptake, cell membrane expression of the glutamate transporter, and glutamate-elicited current. Additionally, we found that these variants may disturbed stromal-interacting molecule 1 (STIM1)/Orai1-mediated store-operated Ca2+ entry (SOCE) machinery in the endoplasmic reticulum (ER), in which GLT-1 may be a new partner of SOCE. Furthermore, knock-in mice with disease-associated variants showed a hyperactive phenotype accompanied by reduced glutamate transporter expression. Therefore, GLT-1 is a promising and reliable therapeutic target for epilepsy interventions.
Collapse
|
8
|
Yamagata A, Murata Y, Namba K, Terada T, Fukai S, Shirouzu M. Uptake mechanism of iron-phytosiderophore from the soil based on the structure of yellow stripe transporter. Nat Commun 2022; 13:7180. [PMID: 36424382 PMCID: PMC9691689 DOI: 10.1038/s41467-022-34930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Calcareous soils cover one-third of all land and cause severe growth defects in plants due to the poor water solubility of iron at high pH. Poaceae species use a unique chelation strategy, whereby plants secrete a high-affinity metal chelator, known as phytosiderophores (mugineic acids), and reabsorb the iron-phytosiderophore complex by the yellow stripe 1/yellow stripe 1-like (YS1/YSL) transporter for efficient uptake of iron from the soil. Here, we present three cryo-electron microscopy structures of barley YS1 (HvYS1) in the apo state, in complex with an iron-phytosiderophore complex, Fe(III)-deoxymugineic acid (Fe(III)-DMA), and in complex with the iron-bound synthetic DMA analog (Fe(III)-PDMA). The structures reveal a homodimeric assembly mediated through an anti-parallel β-sheet interaction with cholesterol hemisuccinate. Each protomer adopts an outward open conformation, and Fe(III)-DMA is bound near the extracellular space in the central cavity. Fe(III)-PDMA occupies the same binding site as Fe(III)-DMA, demonstrating that PDMA can function as a potent fertilizer in an essentially identical manner to DMA. Our results provide a structural framework for iron-phytosiderophore recognition and transport by YS1/YSL transporters, which will enable the rational design of new, high-potency fertilizers.
Collapse
Affiliation(s)
- Atsushi Yamagata
- grid.508743.dLaboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa Japan
| | - Yoshiko Murata
- grid.505709.e0000 0004 4672 7432Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Kosuke Namba
- grid.267335.60000 0001 1092 3579Department of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shoumachi, Tokushima-shi, Tokushima, Japan
| | - Tohru Terada
- grid.26999.3d0000 0001 2151 536XDepartment of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo Japan
| | - Shuya Fukai
- grid.258799.80000 0004 0372 2033Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Mikako Shirouzu
- grid.508743.dLaboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa Japan
| |
Collapse
|
9
|
Peter MF, Ruland JA, Depping P, Schneberger N, Severi E, Moecking J, Gatterdam K, Tindall S, Durand A, Heinz V, Siebrasse JP, Koenig PA, Geyer M, Ziegler C, Kubitscheck U, Thomas GH, Hagelueken G. Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter. Nat Commun 2022; 13:4471. [PMID: 35927235 PMCID: PMC9352664 DOI: 10.1038/s41467-022-31907-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are found widely in bacteria and archaea and consist of three structural domains, a soluble substrate-binding protein (P-domain), and two transmembrane domains (Q- and M-domains). HiSiaPQM and its homologs are TRAP transporters for sialic acid and are essential for host colonization by pathogenic bacteria. Here, we reconstitute HiSiaQM into lipid nanodiscs and use cryo-EM to reveal the structure of a TRAP transporter. It is composed of 16 transmembrane helices that are unexpectedly structurally related to multimeric elevator-type transporters. The idiosyncratic Q-domain of TRAP transporters enables the formation of a monomeric elevator architecture. A model of the tripartite PQM complex is experimentally validated and reveals the coupling of the substrate-binding protein to the transporter domains. We use single-molecule total internal reflection fluorescence (TIRF) microscopy in solid-supported lipid bilayers and surface plasmon resonance to study the formation of the tripartite complex and to investigate the impact of interface mutants. Furthermore, we characterize high-affinity single variable domains on heavy chain (VHH) antibodies that bind to the periplasmic side of HiSiaQM and inhibit sialic acid uptake, providing insight into how TRAP transporter function might be inhibited in vivo.
Collapse
Affiliation(s)
- Martin F Peter
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jan A Ruland
- Institute for Physical und Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53127, Bonn, Germany
| | - Peer Depping
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Aston Centre for Membrane Proteins and Lipids Research, Aston St., B4 7ET, Birmingham, UK
| | - Niels Schneberger
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Emmanuele Severi
- Department of Biology (Area 10), University of York, York, YO10 5YW, UK
- Biosciences Institute, Newcastle University, Newcastle, NE2 4HH, UK
| | - Jonas Moecking
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Karl Gatterdam
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sarah Tindall
- Department of Biology (Area 10), University of York, York, YO10 5YW, UK
| | - Alexandre Durand
- Institut de Génétique et de Biologie Molecule et Cellulaire, 1 Rue Laurent Fries, 67404, Illkirch Cedex, France
| | - Veronika Heinz
- Institute of Biophysics and Biophysical Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Jan Peter Siebrasse
- Institute for Physical und Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53127, Bonn, Germany
| | - Paul-Albert Koenig
- Core Facility Nanobodies, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Christine Ziegler
- Institute of Biophysics and Biophysical Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Ulrich Kubitscheck
- Institute for Physical und Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53127, Bonn, Germany
| | - Gavin H Thomas
- Department of Biology (Area 10), University of York, York, YO10 5YW, UK
| | - Gregor Hagelueken
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
10
|
Beckstein O, Naughton F. General principles of secondary active transporter function. BIOPHYSICS REVIEWS 2022; 3:011307. [PMID: 35434715 PMCID: PMC8984959 DOI: 10.1063/5.0047967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/23/2022] [Indexed: 04/13/2023]
Abstract
Transport of ions and small molecules across the cell membrane against electrochemical gradients is catalyzed by integral membrane proteins that use a source of free energy to drive the energetically uphill flux of the transported substrate. Secondary active transporters couple the spontaneous influx of a "driving" ion such as Na+ or H+ to the flux of the substrate. The thermodynamics of such cyclical non-equilibrium systems are well understood, and recent work has focused on the molecular mechanism of secondary active transport. The fact that these transporters change their conformation between an inward-facing and outward-facing conformation in a cyclical fashion, called the alternating access model, is broadly recognized as the molecular framework in which to describe transporter function. However, only with the advent of high resolution crystal structures and detailed computer simulations, it has become possible to recognize common molecular-level principles between disparate transporter families. Inverted repeat symmetry in secondary active transporters has shed light onto how protein structures can encode a bi-stable two-state system. Based on structural data, three broad classes of alternating access transitions have been described as rocker-switch, rocking-bundle, and elevator mechanisms. More detailed analysis indicates that transporters can be understood as gated pores with at least two coupled gates. These gates are not just a convenient cartoon element to illustrate a putative mechanism but map to distinct parts of the transporter protein. Enumerating all distinct gate states naturally includes occluded states in the alternating access picture and also suggests what kind of protein conformations might be observable. By connecting the possible conformational states and ion/substrate bound states in a kinetic model, a unified picture emerges in which the symporter, antiporter, and uniporter functions are extremes in a continuum of functionality. As usual with biological systems, few principles and rules are absolute and exceptions are discussed as well as how biological complexity may be integrated in quantitative kinetic models that may provide a bridge from the structure to function.
Collapse
Affiliation(s)
- Oliver Beckstein
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | | |
Collapse
|
11
|
Kovermann P, Engels M, Müller F, Fahlke C. Cellular Physiology and Pathophysiology of EAAT Anion Channels. Front Cell Neurosci 2022; 15:815279. [PMID: 35087380 PMCID: PMC8787812 DOI: 10.3389/fncel.2021.815279] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) optimize the temporal resolution and energy demand of mammalian excitatory synapses by quickly removing glutamate from the synaptic cleft into surrounding neuronal and glial cells and ensuring low resting glutamate concentrations. In addition to secondary active glutamate transport, EAATs also function as anion channels. The channel function of these transporters is conserved in all homologs ranging from archaebacteria to mammals; however, its physiological roles are insufficiently understood. There are five human EAATs, which differ in their glutamate transport rates. Until recently the high-capacity transporters EAAT1, EAAT2, and EAAT3 were believed to conduct only negligible anion currents, with no obvious function in cell physiology. In contrast, the low-capacity glutamate transporters EAAT4 and EAAT5 are thought to regulate neuronal signaling as glutamate-gated channels. In recent years, new experimental approaches and novel animal models, together with the discovery of a human genetic disease caused by gain-of-function mutations in EAAT anion channels have enabled identification of the first physiological and pathophysiological roles of EAAT anion channels.
Collapse
|
12
|
Canul‐Tec JC, Kumar A, Dhenin J, Assal R, Legrand P, Rey M, Chamot‐Rooke J, Reyes N. The ion-coupling mechanism of human excitatory amino acid transporters. EMBO J 2022; 41:e108341. [PMID: 34747040 PMCID: PMC8724772 DOI: 10.15252/embj.2021108341] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/07/2023] Open
Abstract
Excitatory amino acid transporters (EAATs) maintain glutamate gradients in the brain essential for neurotransmission and to prevent neuronal death. They use ionic gradients as energy source and co-transport transmitter into the cytoplasm with Na+ and H+ , while counter-transporting K+ to re-initiate the transport cycle. However, the molecular mechanisms underlying ion-coupled transport remain incompletely understood. Here, we present 3D X-ray crystallographic and cryo-EM structures, as well as thermodynamic analysis of human EAAT1 in different ion bound conformations, including elusive counter-transport ion bound states. Binding energies of Na+ and H+ , and unexpectedly Ca2+ , are coupled to neurotransmitter binding. Ca2+ competes for a conserved Na+ site, suggesting a regulatory role for Ca2+ in glutamate transport at the synapse, while H+ binds to a conserved glutamate residue stabilizing substrate occlusion. The counter-transported ion binding site overlaps with that of glutamate, revealing the K+ -based mechanism to exclude the transmitter during the transport cycle and to prevent its neurotoxic release on the extracellular side.
Collapse
Affiliation(s)
- Juan C Canul‐Tec
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
- Membrane Protein Mechanisms GroupEuropean Institute of Chemistry and BiologyUniversity of BordeauxPessacFrance
- CNRS UMR 5234 Fundamental Microbiology and PathogenicityBordeauxFrance
| | - Anand Kumar
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
- Membrane Protein Mechanisms GroupEuropean Institute of Chemistry and BiologyUniversity of BordeauxPessacFrance
- CNRS UMR 5234 Fundamental Microbiology and PathogenicityBordeauxFrance
| | - Jonathan Dhenin
- Mass Spectrometry for Biology Unit, CNRS USR 2000Institut PasteurParisFrance
| | - Reda Assal
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
| | - Pierre Legrand
- Synchrotron SOLEILL'Orme des MerisiersGif‐sur‐YvetteFrance
| | - Martial Rey
- Mass Spectrometry for Biology Unit, CNRS USR 2000Institut PasteurParisFrance
| | - Julia Chamot‐Rooke
- Mass Spectrometry for Biology Unit, CNRS USR 2000Institut PasteurParisFrance
| | - Nicolas Reyes
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
- Membrane Protein Mechanisms GroupEuropean Institute of Chemistry and BiologyUniversity of BordeauxPessacFrance
- CNRS UMR 5234 Fundamental Microbiology and PathogenicityBordeauxFrance
| |
Collapse
|
13
|
Kovermann P, Kolobkova Y, Franzen A, Fahlke C. Mutations associated with epileptic encephalopathy modify EAAT2 anion channel function. Epilepsia 2021; 63:388-401. [PMID: 34961934 DOI: 10.1111/epi.17154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Mutations in the gene solute carrier family member 1A2 (SLC1A2) encoding the excitatory amino acid transporter 2 (EAAT2) are associated with severe forms of epileptic encephalopathy. EAAT2 is expressed in glial cells and presynaptic nerve terminals and represents the main l-glutamate uptake carrier in the mammalian brain. It does not only function as a secondary active glutamate transporter, but also as an anion channel. How naturally occurring mutations affect these two transport functions of EAAT2 and how such alterations cause epilepsy is insufficiently understood. METHODS Here we studied the functional consequences of three disease-associated mutations, which predict amino acid exchanges p.Gly82Arg (G82R), p.Leu85Pro (L85P), and p.Pro289Arg (P289R), by heterologous expression in mammalian cells, biochemistry, confocal imaging, and whole-cell patch-clamp recordings of EAAT2 l-glutamate transport and anion current. RESULTS G82R and L85P exchange amino acid residues contribute to the formation of the EAAT anion pore. They enlarge the pore diameter sufficiently to permit the passage of l-glutamate and thus function as l-glutamate efflux pathways. The mutation P289R decreases l-glutamate uptake, but increases anion currents despite a lower membrane expression. SIGNIFICANCE l-glutamate permeability of the EAAT anion pore is an unexpected functional consequence of naturally occurring single amino acid substitutions. l-glutamate efflux through mutant EAAT2 anion channels will cause glutamate excitotoxicity and neuronal hyperexcitability in affected patients. Antagonists that selectively suppress the EAAT anion channel function could serve as therapeutic agents in the future.
Collapse
Affiliation(s)
- Peter Kovermann
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| | - Yulia Kolobkova
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| | - Arne Franzen
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| | - Christoph Fahlke
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| |
Collapse
|
14
|
Ciftci D, Martens C, Ghani VG, Blanchard SC, Politis A, Huysmans GHM, Boudker O. Linking function to global and local dynamics in an elevator-type transporter. Proc Natl Acad Sci U S A 2021; 118:e2025520118. [PMID: 34873050 PMCID: PMC8670510 DOI: 10.1073/pnas.2025520118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 11/24/2022] Open
Abstract
Transporters cycle through large structural changes to translocate molecules across biological membranes. The temporal relationships between these changes and function, and the molecular properties setting their rates, determine transport efficiency-yet remain mostly unknown. Using single-molecule fluorescence microscopy, we compare the timing of conformational transitions and substrate uptake in the elevator-type transporter GltPh We show that the elevator-like movements of the substrate-loaded transport domain across membranes and substrate release are kinetically heterogeneous, with rates varying by orders of magnitude between individual molecules. Mutations increasing the frequency of elevator transitions and reducing substrate affinity diminish transport rate heterogeneities and boost transport efficiency. Hydrogen deuterium exchange coupled to mass spectrometry reveals destabilization of secondary structure around the substrate-binding site, suggesting that increased local dynamics leads to faster rates of global conformational changes and confers gain-of-function properties that set transport rates.
Collapse
Affiliation(s)
- Didar Ciftci
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
- Tri-Institutional Training Program in Chemical Biology, New York, NY 10065
| | - Chloe Martens
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| | - Vishnu G Ghani
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Argyris Politis
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| | - Gerard H M Huysmans
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065;
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065;
- Tri-Institutional Training Program in Chemical Biology, New York, NY 10065
- Howard Hughes Medical Institute, Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|
15
|
Duan H, Zhou Y, Shi X, Luo Q, Gao J, Liang L, Liu W, Peng L, Deng D, Hu J. Allosteric and transport modulation of human concentrative nucleoside transporter 3 at the atomic scale. Phys Chem Chem Phys 2021; 23:25401-25413. [PMID: 34751688 DOI: 10.1039/d1cp03756k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nucleosides are important precursors of nucleotide synthesis in cells, and nucleoside transporters play an important role in many physiological processes by mediating transmembrane transport and absorption. During nucleoside transport, such proteins undergo a significant conformational transition between the outward- and inward-facing states, which leads to alternating access of the substrate-binding site to either side of the membrane. In this work, a variety of molecular simulation methods have been applied to comparatively investigate the motion modes of human concentrative nucleoside transporter 3 (hCNT3) in three states, as well as global and local cavity conformational changes; and finally, a possible elevator-like transport mechanism consistent with experimental data was proposed. The results of the Gaussian network model (GNM) and anisotropic network model (ANM) show that hCNT3 as a whole tends to contract inwards and shift towards a membrane inside, exhibiting an allosteric process that is more energetically favorable than the rigid conversion. To reveal the complete allosteric process of hCNT3 in detail, a series of intermediate conformations were obtained by an adaptive anisotropic network model (aANM). One of the simulated intermediate states is similar to that of a crystal structure, which indicates that the allosteric process is reliable; the state with lower energy is slightly inclined to the inward-facing structure rather than the expected intermediate crystal structure. The final HOLE analysis showed that except for the outward-facing state, the transport channels were gradually enlarged, which was conductive to the directional transport of nucleosides. Our work provides a theoretical basis for the multistep elevator-like transportation mechanism of nucleosides, which helps to further understand the dynamic recognition between nucleoside substrates and hCNT3 as well as the design of nucleoside anticancer drugs.
Collapse
Affiliation(s)
- Huaichuan Duan
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
| | - Yanxia Zhou
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Xiaodong Shi
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
| | - Qing Luo
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
| | - Jiaxing Gao
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
| | - Li Liang
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
| | - Wei Liu
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
| | - Lianxin Peng
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
| | - Dong Deng
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Jianping Hu
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
| |
Collapse
|
16
|
Qu Q, Wang J, Li G, Chen R, Qu S. The Conformationally Sensitive Spatial Distance Between the TM3-4 Loop and Transmembrane Segment 7 in the Glutamate Transporter Revealed by Paired-Cysteine Mutagenesis. Front Cell Dev Biol 2021; 9:737629. [PMID: 34621751 PMCID: PMC8490817 DOI: 10.3389/fcell.2021.737629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
Excitatory amino acid transporters can maintain extracellular glutamate concentrations lower than neurotoxic levels by transferring neurotransmitters from the synaptic cleft into surrounding glial cells and neurons. Previous work regarding the structural studies of GltPh, GltTK, excitatory amino acid transporter 1 (EAAT1), EAAT3 and alanine serine cysteine transporter 2 described the transport mechanism of the glutamate transporter in depth. However, much remains unknown about the role of the loop between transmembrane segment 3 and 4 during transport. To probe the function of this loop in the transport cycle, we engineered a pair of cysteine residues between the TM3-TM4 loop and TM7 in cysteine-less EAAT2. Here, we show that the oxidative cross-linking reagent CuPh inhibits transport activity of the paired mutant L149C/M414C, whereas DTT inhibits the effect of CuPh on transport activity of L149C/M414C. Additionally, we show that the effect of cross-linking in the mutant is due to the formation of the disulfide bond within the molecules of EAAT2. Further, L-glutamate or KCl protect, and D,L-threo-β-benzyloxy-aspartate (TBOA) increases, CuPh-induced inhibition in the L149C/M414 mutant, suggesting that the L149C and M414C cysteines are closer or farther away in the outward- or inward-facing conformations, respectively. Together, our findings provide evidence that the distance between TM3-TM4 loop and TM7 alter when substrates are transported.
Collapse
Affiliation(s)
- Qi Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Ji Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Guiping Li
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rongqing Chen
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Rodríguez-Campuzano AG, Ortega A. Glutamate transporters: Critical components of glutamatergic transmission. Neuropharmacology 2021; 192:108602. [PMID: 33991564 DOI: 10.1016/j.neuropharm.2021.108602] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. Once released, it binds to specific membrane receptors and transporters activating a wide variety of signal transduction cascades, as well as its removal from the synaptic cleft in order to avoid its extracellular accumulation and the overstimulation of extra-synaptic receptors that might result in neuronal death through a process known as excitotoxicity. Although neurodegenerative diseases are heterogenous in clinical phenotypes and genetic etiologies, a fundamental mechanism involved in neuronal degeneration is excitotoxicity. Glutamate homeostasis is critical for brain physiology and Glutamate transporters are key players in maintaining low extracellular Glutamate levels. Therefore, the characterization of Glutamate transporters has been an active area of glutamatergic research for the last 40 years. Transporter activity its regulated at different levels: transcriptional and translational control, transporter protein trafficking and membrane mobility, and through extensive post-translational modifications. The elucidation of these mechanisms has emerged as an important piece to shape our current understanding of glutamate actions in the nervous system.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
| |
Collapse
|
18
|
Mai D, Chen R, Wang J, Zheng J, Zhang X, Qu S. Critical amino acids in the TM2 of EAAT2 are essential for membrane-bound localization, substrate binding, transporter function and anion currents. J Cell Mol Med 2021; 25:2530-2548. [PMID: 33523598 PMCID: PMC7933967 DOI: 10.1111/jcmm.16212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/12/2020] [Accepted: 11/28/2020] [Indexed: 12/25/2022] Open
Abstract
Excitatory amino acid transporter 2 (EAAT2), the gene of which is known as solute carrier family 1 member 2 (SLC1A2), is an important membrane-bound transporter that mediates approximately 90% of the transport and clearance of l-glutamate at synapses in the central nervous system (CNS). Transmembrane domain 2 (TM2) of EAAT2 is close to hairpin loop 2 (HP2) and far away from HP1 in the inward-facing conformation. In the present study, 14 crucial amino acid residues of TM2 were identified via alanine-scanning mutations. Further analysis in EAAT2-transfected HeLa cells in vitro showed that alanine substitutions of these residues resulted in a decrease in the efficiency of trafficking/targeting to the plasma membrane and/or reduced functionality of membrane-bound, which resulted in impaired transporter activity. After additional mutations, the transporter activities of some alanine-substitution mutants recovered. Specifically, the P95A mutant decreased EAAT2-associated anion currents. The Michaelis constant (Km ) values of the mutant proteins L85A, L92A and L101A were increased significantly, whereas R87 and P95A were decreased significantly, indicating that the mutations L85A, L92A and L101A reduced the affinity of the transporter and the substrate, whereas R87A and P95A enhanced this affinity. The maximum velocity (Vmax) values of all 14 alanine mutant proteins were decreased significantly, indicating that all these mutations reduced the substrate transport rate. These results suggest that critical residues in TM2 affect not only the protein expression and membrane-bound localization of EAAT2, but also its interactions with substrates. Additionally, our findings elucidate that the P95A mutant decreased EAAT2-related anion currents. Our results indicate that the TM2 of EAAT2 plays a vital role in the transport process. The key residues in TM2 affect protein expression in the membrane, substrate transport and the anion currents of EAAT2.
Collapse
Affiliation(s)
- Dongmei Mai
- Department of NeurologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Key Laboratory of Mental Health of the Ministry of EducationSouthern Medical UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangzhouChina
| | - Rongqing Chen
- Department of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Ji Wang
- Department of NeurologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Key Laboratory of Mental Health of the Ministry of EducationSouthern Medical UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangzhouChina
| | - Jiawei Zheng
- Department of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xiuping Zhang
- Teaching Center of Experimental MedicineSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Shaogang Qu
- Department of NeurologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Key Laboratory of Mental Health of the Ministry of EducationSouthern Medical UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangzhouChina
| |
Collapse
|
19
|
Elevator-type mechanisms of membrane transport. Biochem Soc Trans 2021; 48:1227-1241. [PMID: 32369548 PMCID: PMC7329351 DOI: 10.1042/bst20200290] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
Membrane transporters are integral membrane proteins that mediate the passage of solutes across lipid bilayers. These proteins undergo conformational transitions between outward- and inward-facing states, which lead to alternating access of the substrate-binding site to the aqueous environment on either side of the membrane. Dozens of different transporter families have evolved, providing a wide variety of structural solutions to achieve alternating access. A sub-set of structurally diverse transporters operate by mechanisms that are collectively named 'elevator-type'. These transporters have one common characteristic: they contain a distinct protein domain that slides across the membrane as a rigid body, and in doing so it 'drags" the transported substrate along. Analysis of the global conformational changes that take place in membrane transporters using elevator-type mechanisms reveals that elevator-type movements can be achieved in more than one way. Molecular dynamics simulations and experimental data help to understand how lipid bilayer properties may affect elevator movements and vice versa.
Collapse
|
20
|
Alleva C, Machtens JP, Kortzak D, Weyand I, Fahlke C. Molecular Basis of Coupled Transport and Anion Conduction in Excitatory Amino Acid Transporters. Neurochem Res 2021; 47:9-22. [PMID: 33587237 PMCID: PMC8763778 DOI: 10.1007/s11064-021-03252-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After its release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by excitatory amino acid transporters (EAATs) 1–5, a subfamily of glutamate transporters. The five proteins utilize a complex transport stoichiometry that couples glutamate transport to the symport of three Na+ ions and one H+ in exchange with one K+ to accumulate glutamate against up to 106-fold concentration gradients. They are also anion-selective channels that open and close during transitions along the glutamate transport cycle. EAATs belong to a larger family of secondary-active transporters, the SLC1 family, which also includes purely Na+- or H+-coupled prokaryotic transporters and Na+-dependent neutral amino acid exchangers. In recent years, molecular cloning, heterologous expression, cellular electrophysiology, fluorescence spectroscopy, structural approaches, and molecular simulations have uncovered the molecular mechanisms of coupled transport, substrate selectivity, and anion conduction in EAAT glutamate transporters. Here we review recent findings on EAAT transport mechanisms, with special emphasis on the highly conserved hairpin 2 gate, which has emerged as the central processing unit in many of these functions.
Collapse
Affiliation(s)
- Claudia Alleva
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Jan-Philipp Machtens
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany.,Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Daniel Kortzak
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Ingo Weyand
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
21
|
Zhou W, Trinco G, Slotboom DJ, Forrest LR, Faraldo-Gómez JD. On the Role of a Conserved Methionine in the Na +-Coupling Mechanism of a Neurotransmitter Transporter Homolog. Neurochem Res 2021; 47:163-175. [PMID: 33565025 PMCID: PMC8431971 DOI: 10.1007/s11064-021-03253-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 11/26/2022]
Abstract
Excitatory amino acid transporters (EAAT) play a key role in glutamatergic synaptic communication. Driven by transmembrane cation gradients, these transporters catalyze the reuptake of glutamate from the synaptic cleft once this neurotransmitter has been utilized for signaling. Two decades ago, pioneering studies in the Kanner lab identified a conserved methionine within the transmembrane domain as key for substrate turnover rate and specificity; later structural work, particularly for the prokaryotic homologs GltPh and GltTk, revealed that this methionine is involved in the coordination of one of the three Na+ ions that are co-transported with the substrate. Albeit extremely atypical, the existence of this interaction is consistent with biophysical analyses of GltPh showing that mutations of this methionine diminish the binding cooperativity between substrates and Na+. It has been unclear, however, whether this intriguing methionine influences the thermodynamics of the transport reaction, i.e., its substrate:ion stoichiometry, or whether it simply fosters a specific kinetics in the binding reaction, which, while influential for the turnover rate, do not fundamentally explain the ion-coupling mechanism of this class of transporters. Here, studies of GltTk using experimental and computational methods independently arrive at the conclusion that the latter hypothesis is the most plausible, and lay the groundwork for future efforts to uncover the underlying mechanism.
Collapse
Affiliation(s)
- Wenchang Zhou
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gianluca Trinco
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Dirk J Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Wang J, Zielewicz L, Dong Y, Grewer C. Pre-Steady-State Kinetics and Reverse Transport in Rat Glutamate Transporter EAAC1 with an Immobilized Transport Domain. Neurochem Res 2021; 47:148-162. [PMID: 33550531 DOI: 10.1007/s11064-021-03247-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/01/2023]
Abstract
Plasma membrane glutamate transporters move glutamate across the cell membrane in a process that is thought to involve elevator-like movement of the transport domain relative to the static trimerization domain. Conformational changes associated with this elevator-like movement have been blocked by covalent crosslinking of cysteine pairs inserted strategically in several positions in the transporter structure, resulting in inhibition of steady-state transport activity. However, it is not known how these crosslinking restraints affect other partial reactions of the transporter that were identified based on pre-steady-state kinetic analysis. Here, we re-examine two different introduced cysteine pairs in the rat glutamate transporter EAAC1 recombinantely expressed in HEK293 cells, W440C/K268C and K64C/V419C, with respect to the molecular mechanism of their impairment of transporter function. Pre-steady-state kinetic studies of glutamate-induced partial reactions were performed using laser photolysis of caged glutamate to achieve sub-millisecond time resolution. Crosslinking of both cysteine pairs abolished steady-state transport current, as well as the majority of pre-steady-state glutamate-induced charge movements, in both forward and reverse transport mode, suggesting that it is not only the elevator-like movement associated with translocation, but also other transporter partial reactions that are inhibited. In contrast, sodium binding to the empty transporter, and glutamate-induced anion conductance were still intact after the W440C/K268C crosslink. Our results add to the previous mechanistic view of how covalent restraints of the transporter affect function and structural changes linked to individual steps in the transport cycle.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Laura Zielewicz
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Yang Dong
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Christof Grewer
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA.
| |
Collapse
|
23
|
Wang J, Qu S. Conformationally Sensitive Proximity Between the TM3-4 Loop and Hairpin Loop 2 of the Glutamate Transporter EAAT2 Revealed by Paired-Cysteine Mutagenesis. ACS Chem Neurosci 2021; 12:163-175. [PMID: 33315395 DOI: 10.1021/acschemneuro.0c00645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) serve to maintain extracellular neurotransmitter concentrations below neurotoxic levels by transporting glutamate from the synaptic cleft into apposed glia and neurons. Although the crystal structures of the archaeal EAAT homologue from Pyrococcus horikoshii, GltPh, and the human glutamate transporter, EAAT1cryst, have been resolved, the transport mechanism of the transmembrane 3-4 (TM3-4) loop and its structural rearrangement during transport have remained poorly understood. In order to explore the spatial position and function of the TM3-4 loop in the transport cycle, we engineered a pair of cysteine residues between the TM3-4 loop and hairpin loop 2 (HP2) in cysteine-less EAAT2 (CL-EAAT2). We observed that the oxidative cross-linking reagent Cu(II)(1,10-phenanthroline)3 (CuPh) had a significant inhibitory effect on transport in the disubstituted A167C/G437C mutant, whereas dl-dithiothreitol (DTT) reversed the effect of cross-linking A167C/G437C on transport activity, as assayed by d-[3H]-aspartate uptake. Furthermore, we found that the effect of CuPh in this mutant was due to the formation of disulfide bonds in the transporter molecule. Moreover, dl-threo-β-benzyloxyaspartic acid (TBOA) attenuated, while l-glutamate or KCl enhanced, the CuPh-mediated inhibitory effect in the A167C/G437C mutant, suggesting that the A167C and G437C cysteines were farther apart in the outward-facing configuration and closer in the inward-facing configuration. Taken together, our findings provide evidence that the TM3-4 loop and HP2 change spatial proximity during the transport cycle.
Collapse
Affiliation(s)
- Ji Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
24
|
Huysmans GHM, Ciftci D, Wang X, Blanchard SC, Boudker O. The high-energy transition state of the glutamate transporter homologue GltPh. EMBO J 2021; 40:e105415. [PMID: 33185289 PMCID: PMC7780239 DOI: 10.15252/embj.2020105415] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/03/2023] Open
Abstract
Membrane transporters mediate cellular uptake of nutrients, signaling molecules, and drugs. Their overall mechanisms are often well understood, but the structural features setting their rates are mostly unknown. Earlier single-molecule fluorescence imaging of the archaeal model glutamate transporter homologue GltPh from Pyrococcus horikoshii suggested that the slow conformational transition from the outward- to the inward-facing state, when the bound substrate is translocated from the extracellular to the cytoplasmic side of the membrane, is rate limiting to transport. Here, we provide insight into the structure of the high-energy transition state of GltPh that limits the rate of the substrate translocation process. Using bioinformatics, we identified GltPh gain-of-function mutations in the flexible helical hairpin domain HP2 and applied linear free energy relationship analysis to infer that the transition state structurally resembles the inward-facing conformation. Based on these analyses, we propose an approach to search for allosteric modulators for transporters.
Collapse
Affiliation(s)
- Gerard H M Huysmans
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Mass Spectrometry for Biology Unit, USR 2000CNRSInstitut PasteurParisFrance
| | - Didar Ciftci
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
| | - Xiaoyu Wang
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
| | - Scott C Blanchard
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
- St. Jude Children’s Research HospitalMemphisTNUSA
| | - Olga Boudker
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
- Howard Hughes Medical InstituteChevy ChaseMDUSA
| |
Collapse
|
25
|
Wang J, Wang F, Mai D, Qu S. Molecular Mechanisms of Glutamate Toxicity in Parkinson's Disease. Front Neurosci 2020; 14:585584. [PMID: 33324150 PMCID: PMC7725716 DOI: 10.3389/fnins.2020.585584] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disease, the pathological features of which include the presence of Lewy bodies and the neurodegeneration of dopaminergic neurons in the substantia nigra pars compacta. However, until recently, research on the pathogenesis and treatment of PD have progressed slowly. Glutamate and dopamine are both important central neurotransmitters in mammals. A lack of enzymatic decomposition of extracellular glutamate results in glutamate accumulating at synapses, which is mainly absorbed by excitatory amino acid transporters (EAATs). Glutamate exerts its physiological effects by binding to and activating ligand-gated ion channels [ionotropic glutamate receptors (iGluRs)] and a class of G-protein-coupled receptors [metabotropic glutamate receptors (mGluRs)]. Timely clearance of glutamate from the synaptic cleft is necessary because high levels of extracellular glutamate overactivate glutamate receptors, resulting in excitotoxic effects in the central nervous system. Additionally, increased concentrations of extracellular glutamate inhibit cystine uptake, leading to glutathione depletion and oxidative glutamate toxicity. Studies have shown that oxidative glutamate toxicity in neurons lacking functional N-methyl-D-aspartate (NMDA) receptors may represent a component of the cellular death pathway induced by excitotoxicity. The association between inflammation and excitotoxicity (i.e., immunoexcitotoxicity) has received increased attention in recent years. Glial activation induces neuroinflammation and can stimulate excessive release of glutamate, which can induce excitotoxicity and, additionally, further exacerbate neuroinflammation. Glutamate, as an important central neurotransmitter, is closely related to the occurrence and development of PD. In this review, we discuss recent progress on elucidating glutamate as a relevant neurotransmitter in PD. Additionally, we summarize the relationship and commonality among glutamate excitotoxicity, oxidative toxicity, and immunoexcitotoxicity in order to posit a holistic view and molecular mechanism of glutamate toxicity in PD.
Collapse
Affiliation(s)
- Ji Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Fushun Wang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China.,Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, United States
| | - Dongmei Mai
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Alleva C, Kovalev K, Astashkin R, Berndt MI, Baeken C, Balandin T, Gordeliy V, Fahlke C, Machtens JP. Na +-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters. SCIENCE ADVANCES 2020; 6:6/47/eaba9854. [PMID: 33208356 PMCID: PMC7673805 DOI: 10.1126/sciadv.aba9854] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 10/02/2020] [Indexed: 05/22/2023]
Abstract
Excitatory amino acid transporters (EAATs) harness [Na+], [K+], and [H+] gradients for fast and efficient glutamate removal from the synaptic cleft. Since each glutamate is cotransported with three Na+ ions, [Na+] gradients are the predominant driving force for glutamate uptake. We combined all-atom molecular dynamics simulations, fluorescence spectroscopy, and x-ray crystallography to study Na+:substrate coupling in the EAAT homolog GltPh A lipidic cubic phase x-ray crystal structure of wild-type, Na+-only bound GltPh at 2.5-Å resolution revealed the fully open, outward-facing state primed for subsequent substrate binding. Simulations and kinetic experiments established that only the binding of two Na+ ions to the Na1 and Na3 sites ensures complete HP2 gate opening via a conformational selection-like mechanism and enables high-affinity substrate binding via electrostatic attraction. The combination of Na+-stabilized gate opening and electrostatic coupling of aspartate to Na+ binding provides a constant Na+:substrate transport stoichiometry over a broad range of neurotransmitter concentrations.
Collapse
Affiliation(s)
- C Alleva
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| | - K Kovalev
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
- JuStruct: Jülich Centre for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - R Astashkin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - M I Berndt
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| | - C Baeken
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Centre for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - T Balandin
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Centre for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - V Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- JuStruct: Jülich Centre for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Ch Fahlke
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - J-P Machtens
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
27
|
Kolen B, Kortzak D, Franzen A, Fahlke C. An amino-terminal point mutation increases EAAT2 anion currents without affecting glutamate transport rates. J Biol Chem 2020; 295:14936-14947. [PMID: 32820048 DOI: 10.1074/jbc.ra120.013704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) are prototypical dual function proteins that function as coupled glutamate/Na+/H+/K+ transporters and as anion-selective channels. Both transport functions are intimately intertwined at the structural level: Secondary active glutamate transport is based on elevator-like movements of the mobile transport domain across the membrane, and the lateral movement of this domain results in anion channel opening. This particular anion channel gating mechanism predicts the existence of mutant transporters with changed anion channel properties, but without alteration in glutamate transport. We here report that the L46P mutation in the human EAAT2 transporter fulfills this prediction. L46 is a pore-forming residue of the EAAT2 anion channels at the cytoplasmic entrance into the ion conduction pathway. In whole-cell patch clamp recordings, we observed larger macroscopic anion current amplitudes for L46P than for WT EAAT2. Rapid l-glutamate application under forward transport conditions demonstrated that L46P does not reduce the transport rate of individual transporters. In contrast, changes in selectivity made gluconate permeant in L46P EAAT2, and nonstationary noise analysis revealed slightly increased unitary current amplitudes in mutant EAAT2 anion channels. We used unitary current amplitudes and individual transport rates to quantify absolute open probabilities of EAAT2 anion channels from ratios of anion currents by glutamate uptake currents. This analysis revealed up to 7-fold increased absolute open probability of L46P EAAT2 anion channels. Our results reveal an important determinant of the diameter of EAAT2 anion pore and demonstrate the existence of anion channel gating processes outside the EAAT uptake cycle.
Collapse
Affiliation(s)
- Bettina Kolen
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Kortzak
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Arne Franzen
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
28
|
Target the human Alanine/Serine/Cysteine Transporter 2(ASCT2): Achievement and Future for Novel Cancer Therapy. Pharmacol Res 2020; 158:104844. [DOI: 10.1016/j.phrs.2020.104844] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
|
29
|
Transport rate of EAAT2 is regulated by amino acid located at the interface between the scaffolding and substrate transport domains. Neurochem Int 2020; 139:104792. [PMID: 32668264 DOI: 10.1016/j.neuint.2020.104792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/19/2020] [Accepted: 06/21/2020] [Indexed: 01/24/2023]
Abstract
Excitatory Amino Acid Transporters (EAATs) are plasma membrane proteins responsible for maintenance of low extracellular concentrations of glutamate in the CNS. Dysfunction in their activity is implicated in various neurological disorders. Glutamate transport by EAATs occurs through the movement of the central transport domain relative to the scaffold domain in the EAAT membrane protein. Previous studies suggested that residues located within the interface of these two domains in EAAT2, the main subtype of glutamate transporter in the brain, are involved in regulating transport rates. We used mutagenesis, structure-function relationship, surface protein expression and electrophysiology studies, in transfected COS-7 cells and oocytes, to examine residue glycine at position 298, which is located within this interface. Mutation G298A results in increased transport rate without changes in surface expression, suggesting a more hydrophobic and larger alanine results in facilitated transport movement. The increased transport rate does not involve changes in sodium affinity. Electrophysiological currents show that G298A increase both transport and anion currents, suggesting faster transitions through the transport cycle. This work identifies a region critically involved in setting the glutamate transport rate.
Collapse
|
30
|
Melone M, Ciriachi C, Pietrobon D, Conti F. Heterogeneity of Astrocytic and Neuronal GLT-1 at Cortical Excitatory Synapses, as Revealed by its Colocalization With Na+/K+-ATPase α Isoforms. Cereb Cortex 2020; 29:3331-3350. [PMID: 30260367 DOI: 10.1093/cercor/bhy203] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/29/2022] Open
Abstract
GLT-1, the major glutamate transporter, is expressed at perisynaptic astrocytic processes (PAP) and axon terminals (AxT). GLT-1 is coupled to Na+/K+-ATPase (NKA) α1-3 isoforms, whose subcellular distribution and spatial organization in relationship to GLT-1 are largely unknown. Using several microscopy techniques, we showed that at excitatory synapses α1 and α3 are exclusively neuronal (mainly in dendrites and in some AxT), while α2 is predominantly astrocytic. GLT-1 displayed a differential colocalization with α1-3. GLT-1/α2 and GLT-1/α3 colocalization was higher in GLT-1 positive puncta partially (for GLT-1/α2) or almost totally (for GLT-1/α3) overlapping with VGLUT1 positive terminals than in nonoverlapping ones. GLT-1 colocalized with α2 at PAP, and with α1 and α3 at AxT. GLT-1 and α2 gold particles were ∼1.5-2 times closer than GLT-1/α1 and GLT-1/α3 particles. GLT-1/α2 complexes (edge to edge interdistance of gold particles ≤50 nm) concentrated at the perisynaptic region of PAP membranes, whereas neuronal GLT-1/α1 and GLT-1/α3 complexes were fewer and more uniformly distributed in AxT. These data unveil different composition of GLT-1 and α subunits complexes in the glial and neuronal domains of excitatory synapses. The spatial organization of GLT-1/α1-3 complexes suggests that GLT-1/NKA interaction is more efficient in astrocytes than in neurons, further supporting the dominant role of astrocytic GLT-1 in glutamate homeostasis.
Collapse
Affiliation(s)
- Marcello Melone
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Chiara Ciriachi
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Daniela Pietrobon
- Department of Biomedical Sciences, University of Padova, and CNR Institute of Neuroscience, Padova, Italy
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.,Foundation for Molecular Medicine, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
31
|
Functional (un)cooperativity in elevator transport proteins. Biochem Soc Trans 2020; 48:1047-1055. [PMID: 32573703 DOI: 10.1042/bst20190970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022]
Abstract
The activity of enzymes is subject to regulation at multiple levels. Cooperativity, the interconnected behavior of active sites within a protein complex, directly affects protein activity. Cooperativity is a mode of regulation that requires neither extrinsic factors nor protein modifications. Instead, it allows enzymes themselves to modulate reaction rates. Cooperativity is an important regulatory mechanism in soluble proteins, but also examples of cooperative membrane proteins have been described. In this review, we summarize the current knowledge on interprotomer cooperativity in elevator-type proteins, a class of membrane transporters characterized by large rigid-body movements perpendicular to the membrane, and highlight well-studied examples and experimental approaches.
Collapse
|
32
|
Chavan TS, Cheng RC, Jiang T, Mathews II, Stein RA, Koehl A, Mchaourab HS, Tajkhorshid E, Maduke M. A CLC-ec1 mutant reveals global conformational change and suggests a unifying mechanism for the CLC Cl -/H + transport cycle. eLife 2020; 9:53479. [PMID: 32310757 PMCID: PMC7253180 DOI: 10.7554/elife.53479] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
Among coupled exchangers, CLCs uniquely catalyze the exchange of oppositely charged ions (Cl– for H+). Transport-cycle models to describe and explain this unusual mechanism have been proposed based on known CLC structures. While the proposed models harmonize with many experimental findings, gaps and inconsistencies in our understanding have remained. One limitation has been that global conformational change – which occurs in all conventional transporter mechanisms – has not been observed in any high-resolution structure. Here, we describe the 2.6 Å structure of a CLC mutant designed to mimic the fully H+-loaded transporter. This structure reveals a global conformational change to improve accessibility for the Cl– substrate from the extracellular side and new conformations for two key glutamate residues. Together with DEER measurements, MD simulations, and functional studies, this new structure provides evidence for a unified model of H+/Cl– transport that reconciles existing data on all CLC-type proteins. Cells are shielded from harmful molecules and other threats by a thin, flexible layer called the membrane. However, this barrier also prevents chloride, sodium, protons and other ions from moving in or out of the cell. Channels and transporters are two types of membrane proteins that form passageways for these charged particles. Channels let ions flow freely from one side of the membrane to the other. To do so, these proteins change their three-dimensional shape to open or close as needed. On the other hand, transporters actively pump ions across the membrane to allow the charged particles to accumulate on one side. The shape changes needed for that type of movement are different: the transporters have to open a passageway on one side of the membrane while closing it on the other side, alternating openings to one side or the other. In general, channels and transporters are not related to each other, but one exception is a group called CLCs proteins. Present in many organisms, this family contains a mixture of channels and transporters. For example, humans have nine CLC proteins: four are channels that allow chloride ions in and out, and five are ‘exchange transporters’ that make protons and chloride ions cross the membrane in opposite directions. These proteins let one type of charged particle move freely across the membrane, which generates energy that the transporter then uses to actively pump the other ion in the direction needed by the cell. Yet, the exact three-dimensional changes required for CLC transporters and channels to perform their roles are still unknown. To investigate this question, Chavan, Cheng et al. harnessed a technique called X-ray crystallography, which allows scientists to look at biological molecules at the level of the atom. This was paired with other methods to examine a CLC mutant that adopts the shape of a normal CLC transporter when it is loaded with a proton. The experiments revealed how various elements in the transporter move relative to each other to adopt a structure that allows protons and chloride ions to enter the protein from opposite sides of the membrane, using separate pathways. While obtained on a bacterial CLC, these results can be applied to other CLC channels and transporters (including those in humans), shedding light on how this family transports charged particles across membranes. From bone diseases to certain types of seizures, many human conditions are associated with poorly functioning CLCs. Understanding the way these structures change their shapes to perform their roles could help to design new therapies for these health problems.
Collapse
Affiliation(s)
- Tanmay S Chavan
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Ricky C Cheng
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, United States
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Antoine Koehl
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Merritt Maduke
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
33
|
Wang X, Boudker O. Large domain movements through the lipid bilayer mediate substrate release and inhibition of glutamate transporters. eLife 2020; 9:58417. [PMID: 33155546 PMCID: PMC7682989 DOI: 10.7554/elife.58417] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/05/2020] [Indexed: 01/21/2023] Open
Abstract
Glutamate transporters are essential players in glutamatergic neurotransmission in the brain, where they maintain extracellular glutamate below cytotoxic levels and allow for rounds of transmission. The structural bases of their function are well established, particularly within a model archaeal homolog, sodium, and aspartate symporter GltPh. However, the mechanism of gating on the cytoplasmic side of the membrane remains ambiguous. We report Cryo-EM structures of GltPh reconstituted into nanodiscs, including those structurally constrained in the cytoplasm-facing state and either apo, bound to sodium ions only, substrate, or blockers. The structures show that both substrate translocation and release involve movements of the bulky transport domain through the lipid bilayer. They further reveal a novel mode of inhibitor binding and show how solutes release is coupled to protein conformational changes. Finally, we describe how domain movements are associated with the displacement of bound lipids and significant membrane deformations, highlighting the potential regulatory role of the bilayer.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States,Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
34
|
Mühleip A, McComas SE, Amunts A. Structure of a mitochondrial ATP synthase with bound native cardiolipin. eLife 2019; 8:51179. [PMID: 31738165 PMCID: PMC6930080 DOI: 10.7554/elife.51179] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/16/2019] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial ATP synthase fuels eukaryotic cells with chemical energy. Here we report the cryo-EM structure of a divergent ATP synthase dimer from mitochondria of Euglena gracilis, a member of the phylum Euglenozoa that also includes human parasites. It features 29 different subunits, 8 of which are newly identified. The membrane region was determined to 2.8 Å resolution, enabling the identification of 37 associated lipids, including 25 cardiolipins, which provides insight into protein-lipid interactions and their functional roles. The rotor-stator interface comprises four membrane-embedded horizontal helices, including a distinct subunit a. The dimer interface is formed entirely by phylum-specific components, and a peripherally associated subcomplex contributes to the membrane curvature. The central and peripheral stalks directly interact with each other. Last, the ATPase inhibitory factor 1 (IF1) binds in a mode that is different from human, but conserved in Trypanosomatids. Every living thing uses the energy-rich molecule called adenosine triphosphate, or ATP, as fuel. It is the universal molecular currency for transferring energy. Cells trade it, mitochondria make it, and the energy extracted from it is used to drive chemical reactions, transport molecules across cell membranes, energize nerve impulses and contract muscles. ATP synthase is the enzyme that makes ATP molecules. It is a multi-part complex that straddles the inner membrane of mitochondria, the energy factories in cells. The enzyme complex interacts with fatty molecules in the mitochondrial inner membrane, creating a curvature that is required to produce ATP more efficiently. The mitochondrial ATP synthase has been studied in many different organisms, including yeast, algae, plants, pigs, cows and humans. These studies show that most of these ATP synthases are similar to each other, but obtaining a high resolution structure has been a challenge. Some single-cell organisms have unusual ATP synthases, which provide clues about how the enzyme evolved in pursuit of the most energy efficient arrangement. One such organism is the photosynthetic Euglena gracilis, which is closely related to the human parasites that cause sleeping sickness and Chagas disease. Now, Mü̈hleip et al. have extracted ATP synthase from E. gracilis and reconstructed its structure using electron cryo-microscopy. The high resolution of this reconstruction allowed for the first time to examine the fatty molecules associated with ATP synthase, called cardiolipins. This is important, because cardiolipins are thought to modulate the rotating motor of the enzyme and affect how the complex sits in the membrane. The analysis revealed that the ATP synthase in E. gracilis has 29 different protein subunits, 13 of which are only found in organisms of the same family. Some of the newly discovered subunits are glued together by fatty molecules and extend into the surrounding mitochondrial membrane. This distinctive structure suggests an adaptation which likely evolved independently in E. gracilis for efficiency. These results represent an important advance in the field, and provide direct evidence for the functional roles of cardiolipin. This information will be used to reconstruct the evolution of this mighty molecule and to further study the roles of cardiolipin in energy conversion. Moreover, the analysis identified similarities between the ATP synthase in E. gracilis and human parasites, which could provide new therapeutic targets in disease-causing parasites.
Collapse
Affiliation(s)
- Alexander Mühleip
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sarah E McComas
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
He S, Zhang W, Zhang X, Xu P, Hong M, Qu S. The 4b-4c loop of excitatory amino acid transporter 1 containing four critical residues essential for substrate transport. J Biomol Struct Dyn 2019; 38:3599-3609. [PMID: 31496428 DOI: 10.1080/07391102.2019.1664935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the mammalians, the 4b-4c loop of excitatory amino acid transporters (EAATs) spans more than 50 amino-acid residues that are absent in glutamate transporter homologue of Pyrococcus horikoshii (GltPh). This part of insertion is unique for metazoans and indispensable to the localization of EAATs. The excitatory amino acid transporter (EAAT) 1 is one of the two glial glutamate transporters, which are responsible for efficiently clearing glutamate from the synaptic cleft to prevent neurotoxicity and cell death. Although the crystal structure of EAAT1cryst (a human thermostable EAAT1) was resolved in 2017, the structure-function relationship of the 4b-4c loop has not been elucidated in EAAT1cryst. To investigate the role of the 4b-4c loop, we performed alanine-scanning mutagenesis in the mutants and observed dramatically decreased transport activities in T192A, Y194A, N242A, and G245A mutants. The surface expression of T192A and Y194A mutants even decreased by more than 80%, and most of them were detained in the cytoplasm. However, when T192 and Y194 were substituted with conservative residues, the transport activities and the surface expressions of T192S and Y194F were largely recovered, and their kinetic parameters (Km values) were comparable to the wild-type EAAT1 as well. In contrast, N242 and G245 substituted with conservative residues could not rescue the uptake function, suggesting that N242 and G245 may play irreplaceable roles in the glutamate uptake process. These results indicate that the 4b-4c loop of EAAT1 may not only affect the glutamate uptake activity, but also influence the surface localization of EAAT1 by T192 and Y194.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suifen He
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenlong Zhang
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mei Hong
- College of Life Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shaogang Qu
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Garaeva AA, Guskov A, Slotboom DJ, Paulino C. A one-gate elevator mechanism for the human neutral amino acid transporter ASCT2. Nat Commun 2019; 10:3427. [PMID: 31366933 PMCID: PMC6668440 DOI: 10.1038/s41467-019-11363-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/06/2019] [Indexed: 11/30/2022] Open
Abstract
The human Alanine Serine Cysteine Transporter 2 (ASCT2) is a neutral amino acid exchanger that belongs to the solute carrier family 1 (SLC1A). SLC1A structures have revealed an elevator-type mechanism, in which the substrate is translocated across the cell membrane by a large displacement of the transport domain, whereas a small movement of hairpin 2 (HP2) gates the extracellular access to the substrate-binding site. However, it has remained unclear how substrate binding and release is gated on the cytoplasmic side. Here, we present an inward-open structure of the human ASCT2, revealing a hitherto elusive SLC1A conformation. Strikingly, the same structural element (HP2) serves as a gate in the inward-facing as in the outward-facing state. The structures reveal that SLC1A transporters work as one-gate elevators. Unassigned densities near the gate and surrounding the scaffold domain, may represent potential allosteric binding sites, which could guide the design of lipidic-inhibitors for anticancer therapy.
Collapse
Affiliation(s)
- Alisa A Garaeva
- Membrane Enzymology, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Albert Guskov
- Structural Biology, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Dirk J Slotboom
- Membrane Enzymology, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands.
- University of Groningen, Zernike Institute for Advanced Materials, Groningen, The Netherlands.
| | - Cristina Paulino
- Membrane Enzymology, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands.
- Structural Biology, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands.
| |
Collapse
|
37
|
Zielewicz L, Wang J, Ndaru E, Grewer CT. Transient Kinetics Reveal Mechanism and Voltage Dependence of Inhibitor and Substrate Binding to Glutamate Transporters. ACS Chem Biol 2019; 14:1002-1010. [PMID: 31026143 DOI: 10.1021/acschembio.9b00194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Plasma-membrane glutamate transporters of the excitatory amino acid transporter (EAAT) family are important for maintaining a low glutamate concentration in the extracellular space of the mammalian brain. Glutamate is believed to be transported in its negatively charged form and energetically driven by the cotransport of three sodium ions, at least two of which are bound within the dielectric of the membrane. It was hypothesized that binding of substrates and competitive inhibitors is also electrogenic because the binding site is located near the center of the membrane. To test this hypothesis, we rapidly applied a low-affinity competitive inhibitor, kainate, to the glutamate transporter subtype EAAT2, resulting in outward transient current caused by movement of net negative charge of the inhibitor into the low dielectric of the protein/membrane. Consistent with these data, rate constants for inhibitor dissociation and binding were also voltage dependent. Our results are supported by electrostatic calculations and molecular dynamics simulations of spontaneous substrate dissociation, showing that the substrate and inhibitor binding site is located within the membrane environment of low dielectric constant. Charge movement caused by binding of negatively charged amino acid substrate is compensated by the charge of cotransported Na+ ion(s), thus preventing inhibition of substrate binding at negative membrane potentials. This charge compensation mechanism may be relevant for other Na+-driven transporters which recognize negatively charged substrates.
Collapse
Affiliation(s)
- Laura Zielewicz
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Jiali Wang
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Elias Ndaru
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Christof T. Grewer
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| |
Collapse
|
38
|
Qu S, Zhang W, He S, Zhang X. Paired-Cysteine Scanning Reveals Conformationally Sensitive Proximity between the TM4b-4c Loop and TM8 of the Glutamate Transporter EAAT1. ACS Chem Neurosci 2019; 10:2541-2550. [PMID: 30802031 DOI: 10.1021/acschemneuro.9b00048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) take up the neurotransmitter glutamate from the synaptic cleft and maintain glutamate concentrations below neurotoxic levels. Recently, the crystal structures of thermostable EAAT1 variants have been reported; however, little is understood regarding the functional mechanism of the transmembrane domain (TM) 4b-4c loop, which contains more than 50 amino acids in mammalian EAATs that are absent in prokaryotic homologues. To explore the spatial position and function of TM4 during the transport cycle, we introduced pairwise cysteine substitutions between the TM4b-4c loop and TM8 in a cysteine-less version of EAAT1, CL-EAAT1. We observed pronounced inhibition of transport by Cu(II)(1,10-phenanthroline)3 (CuPh) for doubly substituted V238C/I469C and A243C/I469C variants, but not for corresponding singly substituted CL-EAAT1 or for more than 20 other double-cysteine variants. Dithiothreitol treatment partially restored the uptake activity of the CuPh-treated V238C/I469C and A243C/I469C doubly substituted variants, confirming that the effects of CuPh on these variants were due to the formation of intramolecular disulfide bonds. Glutamate, KCl, and d,l-threo-β-benzyloxy-aspartate weakened CuPh inhibition of the V238C/I469C variant, but only KCl weakened CuPh inhibition of the V243C/I469C variant, suggesting that the TM4b-4c loop and TM8 are separated from each other in the inward-facing conformations of EAAT1. Our results suggest that the TM4b-4c loop and TM8 are positioned in close proximity during the transport cycle and are less closely spaced in the inward-facing conformation.
Collapse
Affiliation(s)
- Shaogang Qu
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong 528300, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wenlong Zhang
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong 528300, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Suifen He
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong 528300, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
39
|
Ponzoni L, Zhang S, Cheng MH, Bahar I. Shared dynamics of LeuT superfamily members and allosteric differentiation by structural irregularities and multimerization. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0177. [PMID: 29735731 PMCID: PMC5941172 DOI: 10.1098/rstb.2017.0177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
The LeuT-fold superfamily includes secondary active transporters from different functional families, which share a common tertiary structure, despite having a remarkably low sequence similarity. By identifying the common structural and dynamical features upon principal component analysis of a comprehensive ensemble of 90 experimentally resolved structures and anisotropic network model evaluation of collective motions, we provide a unified point of view for understanding the reasons why this particular fold has been selected by evolution to accomplish such a broad spectrum of functions. The parallel identification of conserved sequence features, localized at specific sites of transmembrane helices, sheds light on the role of broken helices (TM1 and TM6 in LeuT) in promoting ion/substrate binding and allosteric interconversion between the outward- and inward-facing conformations of transporters. Finally, the determination of the dynamics landscape for the structural ensemble provides a promising framework for the classification of transporters based on their dynamics, and the characterization of the collective movements that favour multimerization.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- Luca Ponzoni
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - She Zhang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
40
|
Zhang W, Zhang X, Qu S. Substrate-Induced Motion between TM4 and TM7 of the Glutamate Transporter EAAT1 Revealed by Paired Cysteine Mutagenesis. Mol Pharmacol 2018; 95:33-42. [PMID: 30348896 DOI: 10.1124/mol.118.113183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/16/2018] [Indexed: 01/23/2023] Open
Abstract
To maintain efficient synaptic communication, glutamate transporters reuptake glutamate from the synaptic cleft and prevent glutamate concentrations from reaching neurotoxic levels. The number of amino acid residues of the transmembrane (TM) domain 4b-4c loop of mammalian excitatory amino acid transporters (EAATs) is 50 amino acids more than that of the prokaryotic homolog. To investigate the spatial proximity and functional significance of residues in glutamate transporters, cysteine pairs were introduced at positions A243 of the TM4b-4c loop and T396 or A414 of TM7, respectively. The transport activity of double mutants A243C/T396C and A243C/A414C was inhibited by Cu(II) (1,10-phenanthroline)3 [copper phenanthroline (CuPh)] and cadmium ions, but the uptake activity of corresponding single mutants remained unchanged. Treatment with dithiothreitol after CuPh restored much of the transport activity. The inhibitory effects of CuPh and cadmium could only be detected when cysteine pairs are in the same polypeptide. Therefore, we suggest that the formation of these disulfide bonds occurs intramolecularly. Glutamate, potassium, and DL-threo-β-benzyloxyaspartate facilitated crosslinking in the A243C/T396C transporter and this suggests that the TM4b-4c loop and β-bridge region in TM7 were drawn into close proximity to each other in the inward- and outward-facing conformation of EAAT1. Thus, these data provide evidence that substrate-induced structural rearrangements occur between the TM4b-4c loop and TM7 during the transport cycle.
Collapse
Affiliation(s)
- Wenlong Zhang
- Central Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China (W.Z., S.Q.); and Key Laboratory of Mental Health of the Ministry of Education (W.Z., S.Q.) and Teaching Center of Experimental Medicine, School of Basic Medical Sciences (X.Z.), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiuping Zhang
- Central Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China (W.Z., S.Q.); and Key Laboratory of Mental Health of the Ministry of Education (W.Z., S.Q.) and Teaching Center of Experimental Medicine, School of Basic Medical Sciences (X.Z.), Southern Medical University, Guangzhou, Guangdong, China
| | - Shaogang Qu
- Central Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China (W.Z., S.Q.); and Key Laboratory of Mental Health of the Ministry of Education (W.Z., S.Q.) and Teaching Center of Experimental Medicine, School of Basic Medical Sciences (X.Z.), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
41
|
Cirri E, Brier S, Assal R, Canul-Tec JC, Chamot-Rooke J, Reyes N. Consensus designs and thermal stability determinants of a human glutamate transporter. eLife 2018; 7:40110. [PMID: 30334738 PMCID: PMC6209432 DOI: 10.7554/elife.40110] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/17/2018] [Indexed: 11/25/2022] Open
Abstract
Human excitatory amino acid transporters (EAATs) take up the neurotransmitter glutamate in the brain and are essential to maintain excitatory neurotransmission. Our understanding of the EAATs’ molecular mechanisms has been hampered by the lack of stability of purified protein samples for biophysical analyses. Here, we present approaches based on consensus mutagenesis to obtain thermostable EAAT1 variants that share up to ~95% amino acid identity with the wild type transporters, and remain natively folded and functional. Structural analyses of EAAT1 and the consensus designs using hydrogen-deuterium exchange linked to mass spectrometry show that small and highly cooperative unfolding events at the inter-subunit interface rate-limit their thermal denaturation, while the transport domain unfolds at a later stage in the unfolding pathway. Our findings provide structural insights into the kinetic stability of human glutamate transporters, and introduce general approaches to extend the lifetime of human membrane proteins for biophysical analyses.
Collapse
Affiliation(s)
- Erica Cirri
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Sébastien Brier
- Mass Spectrometry for Biology Unit, Institut Pasteur, Paris, France.,USR 2000, CNRS, Institut Pasteur, Paris, France
| | - Reda Assal
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Juan Carlos Canul-Tec
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Julia Chamot-Rooke
- Mass Spectrometry for Biology Unit, Institut Pasteur, Paris, France.,USR 2000, CNRS, Institut Pasteur, Paris, France
| | - Nicolas Reyes
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| |
Collapse
|
42
|
Silverstein N, Sliman A, Stockner T, Kanner BI. Both reentrant loops of the sodium-coupled glutamate transporters contain molecular determinants of cation selectivity. J Biol Chem 2018; 293:14200-14209. [PMID: 30026234 DOI: 10.1074/jbc.ra118.003261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/19/2018] [Indexed: 12/22/2022] Open
Abstract
In the brain, glutamate transporters terminate excitatory neurotransmission by removing this neurotransmitter from the synapse via cotransport with three sodium ions into the surrounding cells. Structural studies have identified the binding sites of the three sodium ions in glutamate transporters. The residue side-chains directly interact with the sodium ions at the Na1 and Na3 sites and are fully conserved from archaeal to eukaryotic glutamate transporters. The Na2 site is formed by three main-chain oxygens on the extracellular reentrant hairpin loop HP2 and one on transmembrane helix 7. A glycine residue on HP2 is located closely to the three main-chain oxygens in all glutamate transporters, except for the astroglial transporter GLT-1, which has a serine residue at that position. Unlike for WT GLT-1, substitution of the serine residue to glycine enables sustained glutamate transport also when sodium is replaced by lithium. Here, using functional and simulation studies, we studied the role of this serine/glycine switch on cation selectivity of substrate transport. Our results indicate that the side-chain oxygen of the serine residues can form a hydrogen bond with a main-chain oxygen on transmembrane helix 7. This leads to an expansion of the Na2 site such that water can participate in sodium coordination at Na2. Furthermore, we found other molecular determinants of cation selectivity on the nearby HP1 loop. We conclude that subtle changes in the composition of the two reentrant hairpin loops determine the cation specificity of acidic amino acid transport by glutamate transporters.
Collapse
Affiliation(s)
- Nechama Silverstein
- the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Alaa Sliman
- the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Thomas Stockner
- From the Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringerstr. 13A, 1090 Vienna, Austria and
| | - Baruch I Kanner
- the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
43
|
Cryo-EM structure of the human neutral amino acid transporter ASCT2. Nat Struct Mol Biol 2018; 25:515-521. [PMID: 29872227 DOI: 10.1038/s41594-018-0076-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022]
Abstract
Human ASCT2 belongs to the SLC1 family of secondary transporters and is specific for the transport of small neutral amino acids. ASCT2 is upregulated in cancer cells and serves as the receptor for many retroviruses; hence, it has importance as a potential drug target. Here we used single-particle cryo-EM to determine a structure of the functional and unmodified human ASCT2 at 3.85-Å resolution. ASCT2 forms a homotrimeric complex in which each subunit contains a transport and a scaffold domain. Prominent extracellular extensions on the scaffold domain form the predicted docking site for retroviruses. Relative to structures of other SLC1 members, ASCT2 is in the most extreme inward-oriented state, with the transport domain largely detached from the central scaffold domain on the cytoplasmic side. This domain detachment may be required for substrate binding and release on the intracellular side of the membrane.
Collapse
|
44
|
Yaffe D, Forrest LR, Schuldiner S. The ins and outs of vesicular monoamine transporters. J Gen Physiol 2018; 150:671-682. [PMID: 29666153 PMCID: PMC5940252 DOI: 10.1085/jgp.201711980] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/26/2018] [Indexed: 01/31/2023] Open
Abstract
Yaffe et al. review structure-guided studies that have provided insight into the mechanism of proton-monoamine antiport by VMATs. The H+-coupled vesicular monoamine transporter (VMAT) is a transporter essential for life. VMAT mediates packaging of the monoamines serotonin, dopamine, norepinephrine, and histamine from the neuronal cytoplasm into presynaptic vesicles, which is a key step in the regulated release of neurotransmitters. However, a detailed understanding of the mechanism of VMAT function has been limited by the lack of availability of high-resolution structural data. In recent years, a series of studies guided by homology models has revealed significant insights into VMAT function, identifying residues that contribute to the binding site and to specific steps in the transport cycle. Moreover, to characterize the conformational transitions that occur upon binding of the substrate and coupling ion, we have taken advantage of the unique and powerful pharmacology of VMAT as well as of mutants that affect the conformational equilibrium of the protein and shift it toward defined conformations. This has allowed us to identify an important role for the proton gradient in driving a shift from lumen-facing to cytoplasm-facing conformations.
Collapse
Affiliation(s)
- Dana Yaffe
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Shimon Schuldiner
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| |
Collapse
|
45
|
Zhang W, Zhang X, Qu S. Cysteine Scanning Mutagenesis of TM4b-4c Loop of Glutamate Transporter EAAT1 Reveals Three Conformationally Sensitive Residues. Mol Pharmacol 2018; 94:713-721. [PMID: 29654220 DOI: 10.1124/mol.117.111245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/11/2018] [Indexed: 12/31/2022] Open
Abstract
Glutamatergic synaptic transmitters are cleared from the synaptic cleft through excitatory amino acid transporters (EAATs) that are responsible for recycling glutamate and transporting it into neurons and glial cells. To probe the structural role of the TM4b-4c loop of EAAT1 (Rattus norvegicus), each of the 57 amino acid residues was mutated to cysteine. Thirteen of the single mutants have very low transport activity. Aqueous accessibility of the introduced cysteines from the remaining mutants was then explored by membrane-permeant and membrane-impermeant sulfhydryl reagents in different conditions. F190C, V238C, and A243C were affected by MTSET, whereas Q189C, F190C, V238C, A243C, and L244C were sensitive to MTSEA. Q189C and L244C transport activity was diminished in the presence of potassium, which is expected to favor the inward-facing conformation of the transporter. Inversely, L244C was protected by glutamate. The modification of A243C by MTSEA was enhanced by either potassium and glutamate or dl-threo-β-benzyloxyaspartate. From these results, we suggest that residues F190C, V238C, and A243C may be located near the extracellular surface, and the TM4b-4c loop forms multiple reentrant membrane loops on the cell surface. Alternatively, F190C, V238C, and A243C may function in the transport pathway, which is exposed to MTSET. In addition, Q189C, A243C, and L244C are conformationally sensitive and may play a role in the transport cycle.
Collapse
Affiliation(s)
- Wenlong Zhang
- Clinical Medicine Research Centre (W.Z., S.Q.) and Department of Neurology (W.Z., S.Q.), Shunde Hospital, Southern Medical University, Foshan, Guangdong, People's Republic of China; and Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China (X.Z.)
| | - Xiuping Zhang
- Clinical Medicine Research Centre (W.Z., S.Q.) and Department of Neurology (W.Z., S.Q.), Shunde Hospital, Southern Medical University, Foshan, Guangdong, People's Republic of China; and Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China (X.Z.)
| | - Shaogang Qu
- Clinical Medicine Research Centre (W.Z., S.Q.) and Department of Neurology (W.Z., S.Q.), Shunde Hospital, Southern Medical University, Foshan, Guangdong, People's Republic of China; and Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China (X.Z.)
| |
Collapse
|
46
|
Kortagere S, Mortensen OV, Xia J, Lester W, Fang Y, Srikanth Y, Salvino JM, Fontana ACK. Identification of Novel Allosteric Modulators of Glutamate Transporter EAAT2. ACS Chem Neurosci 2018; 9:522-534. [PMID: 29140675 DOI: 10.1021/acschemneuro.7b00308] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Dysfunction of excitatory amino acid transporters (EAATs) has been implicated in the pathogenesis of various neurological disorders, such as stroke, brain trauma, epilepsy, and neurodegenerative diseases, among others. EAAT2 is the main subtype responsible for glutamate clearance in the brain, having a key role in regulating transmission and preventing excitotoxicity. Therefore, compounds that increase the expression or activity of EAAT2 have therapeutic potential for neuroprotection. Previous studies identified molecular determinants for EAAT2 transport stimulation in a structural domain that lies at the interface of the rigid trimerization domain and the central substrate binding transport domain. In this work, a hybrid structure based approach was applied, based on this molecular domain, to create a high-resolution pharmacophore. Subsequently, virtual screening of a library of small molecules was performed, identifying 10 hit molecules that interact at the proposed domain. Among these, three compounds were determined to be activators, four were inhibitors, and three had no effect on EAAT2-mediated transport in vitro. Further characterization of the two best ranking EAAT2 activators for efficacy, potency, and selectivity for glutamate over monoamine transporters subtypes and NMDA receptors and for efficacy in cultured astrocytes is demonstrated. Mutagenesis studies suggest that the EAAT2 activators interact with residues forming the interface between the trimerization and transport domains. These compounds enhance the glutamate translocation rate, with no effect on substrate interaction, suggesting an allosteric mechanism. The identification of these novel positive allosteric modulators of EAAT2 offers an innovative approach for the development of therapies based on glutamate transport enhancement.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Department of Microbiology and Immunology, Centers for Molecular Parasitology, Virology and Translational Neuroscience, Institute for Molecular Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, United States
| | - Ole V. Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Jingsheng Xia
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - William Lester
- Analytical Chemistry, Division of Pre-Clinical Innovation (DPI), NCATS, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Yuhong Fang
- Analytical Chemistry, Division of Pre-Clinical Innovation (DPI), NCATS, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Yellamelli Srikanth
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Joseph M. Salvino
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Andréia C. K. Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
47
|
Wang J, Albers T, Grewer C. Energy Landscape of the Substrate Translocation Equilibrium of Plasma-Membrane Glutamate Transporters. J Phys Chem B 2017; 122:28-39. [PMID: 29218993 DOI: 10.1021/acs.jpcb.7b09059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glutamate transporters maintain a large glutamate concentration gradient across synaptic membranes and are, thus, critical for functioning of the excitatory synapse. Mammalian glutamate transporters concentrate glutamate inside cells through energetic coupling of glutamate flux to the transmembrane concentration gradient of Na+. Structural models based on an archeal homologue, GltPh, suggest an elevator-like carrier mechanism. However, the energetic determinants of this carrier-based movement are not well understood. Although electrostatics play an important role in governing these energetics, their implication on transport dynamics has not been studied. Here, we combine a pre-steady-state kinetic analysis of the translocation equilibrium with electrostatic computations to gain insight into the energetics of the translocation process. Our results show the biphasic nature of translocation, consistent with the existence of an intermediate on the translocation pathway. In the absence of voltage, the equilibrium is shifted to the outward-facing configuration. Electrostatic computations confirm the intermediate state and show that the elevator-like movement is energetically feasible in the presence of bound Na+ ions, whereas a substrate-hopping model is energetically prohibitive. Our results highlight the critical contribution of charge compensation to transport and add to results from previous molecular dynamics simulations for improved understanding of the glutamate translocation process.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Chemistry, Binghamton University , Binghamton, New York 13902, United States
| | - Thomas Albers
- Department of Chemistry, Binghamton University , Binghamton, New York 13902, United States
| | - Christof Grewer
- Department of Chemistry, Binghamton University , Binghamton, New York 13902, United States
| |
Collapse
|
48
|
Sedwick C. A new model for an old friend. J Gen Physiol 2017; 149:1059. [PMID: 29167181 PMCID: PMC5715913 DOI: 10.1085/jgp.201711941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
JGP study suggests the anion exchanger AE1 operates via an elevator-like mechanism.
Collapse
|
49
|
Ficici E, Faraldo-Gómez JD, Jennings ML, Forrest LR. Asymmetry of inverted-topology repeats in the AE1 anion exchanger suggests an elevator-like mechanism. J Gen Physiol 2017; 149:1149-1164. [PMID: 29167180 PMCID: PMC5715908 DOI: 10.1085/jgp.201711836] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/10/2017] [Indexed: 12/02/2022] Open
Abstract
Anion exchanger 1 catalyzes the transmembrane antiport of chloride and bicarbonate ions through a mechanism that has remained unclear. By modeling its inward-facing state and comparing it with the known outward-facing form, Ficici et al. hypothesize that this transporter features an elevator-like mechanism. The membrane transporter anion exchanger 1 (AE1), or band 3, is a key component in the processes of carbon-dioxide transport in the blood and urinary acidification in the renal collecting duct. In both erythrocytes and the basolateral membrane of the collecting-duct α-intercalated cells, the role of AE1 is to catalyze a one-for-one exchange of chloride for bicarbonate. After decades of biochemical and functional studies, the structure of the transmembrane region of AE1, which catalyzes the anion-exchange reaction, has finally been determined. Each protomer of the AE1 dimer comprises two repeats with inverted transmembrane topologies, but the structures of these repeats differ. This asymmetry causes the putative substrate-binding site to be exposed only to the extracellular space, consistent with the expectation that anion exchange occurs via an alternating-access mechanism. Here, we hypothesize that the unknown, inward-facing conformation results from inversion of this asymmetry, and we propose a model of this state constructed using repeat-swap homology modeling. By comparing this inward-facing model with the outward-facing experimental structure, we predict that the mechanism of AE1 involves an elevator-like motion of the substrate-binding domain relative to the nearly stationary dimerization domain and to the membrane plane. This hypothesis is in qualitative agreement with a wide range of biochemical and functional data, which we review in detail, and suggests new avenues of experimentation.
Collapse
Affiliation(s)
- Emel Ficici
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Michael L Jennings
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Lucy R Forrest
- Computational Structural Biology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
50
|
Kovermann P, Hessel M, Kortzak D, Jen JC, Koch J, Fahlke C, Freilinger T. Impaired K + binding to glial glutamate transporter EAAT1 in migraine. Sci Rep 2017; 7:13913. [PMID: 29066757 PMCID: PMC5654970 DOI: 10.1038/s41598-017-14176-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/06/2017] [Indexed: 12/28/2022] Open
Abstract
SLC1A3 encodes the glial glutamate transporter hEAAT1, which removes glutamate from the synaptic cleft via stoichiometrically coupled Na+-K+-H+-glutamate transport. In a young man with migraine with aura including hemiplegia, we identified a novel SLC1A3 mutation that predicts the substitution of a conserved threonine by proline at position 387 (T387P) in hEAAT1. To evaluate the functional effects of the novel variant, we expressed the wildtype or mutant hEAAT1 in mammalian cells and performed whole-cell patch clamp, fast substrate application, and biochemical analyses. T387P diminishes hEAAT1 glutamate uptake rates and reduces the number of hEAAT1 in the surface membrane. Whereas hEAAT1 anion currents display normal ligand and voltage dependence in cells internally dialyzed with Na+-based solution, no anion currents were observed with internal K+. Fast substrate application demonstrated that T387P abolishes K+-bound retranslocation. Our finding expands the phenotypic spectrum of genetic variation in SLC1A3 and highlights impaired K+ binding to hEAAT1 as a novel mechanism of glutamate transport dysfunction in human disease.
Collapse
Affiliation(s)
- Peter Kovermann
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Jülich, Germany
| | - Margarita Hessel
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Kortzak
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Jülich, Germany
| | - Joanna C Jen
- Departments of Neurology and Neurobiology, UCLA School of Medicine, Los Angeles, USA
| | - Johannes Koch
- Department of Paediatrics, Salzburger Universitätsklinikum, Salzburg, Austria
| | - Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Jülich, Germany
| | - Tobias Freilinger
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research (HIH), Tübingen, Germany.
| |
Collapse
|