1
|
Parra Bravo C, Naguib SA, Gan L. Cellular and pathological functions of tau. Nat Rev Mol Cell Biol 2024; 25:845-864. [PMID: 39014245 DOI: 10.1038/s41580-024-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Tau protein is involved in various cellular processes, including having a canonical role in binding and stabilization of microtubules in neurons. Tauopathies are neurodegenerative diseases marked by the abnormal accumulation of tau protein aggregates in neurons, as seen, for example, in conditions such as frontotemporal dementia and Alzheimer disease. Mutations in tau coding regions or that disrupt tau mRNA splicing, tau post-translational modifications and cellular stress factors (such as oxidative stress and inflammation) increase the tendency of tau to aggregate and interfere with its clearance. Pathological tau is strongly implicated in the progression of neurodegenerative diseases, and the propagation of tau aggregates is associated with disease severity. Recent technological advancements, including cryo-electron microscopy and disease models derived from human induced pluripotent stem cells, have increased our understanding of tau-related pathology in neurodegenerative conditions. Substantial progress has been made in deciphering tau aggregate structures and the molecular mechanisms that underlie protein aggregation and toxicity. In this Review, we discuss recent insights into the diverse cellular functions of tau and the pathology of tau inclusions and explore the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sarah A Naguib
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
2
|
Isidro F. Brain aging and Alzheimer's disease, a perspective from non-human primates. Aging (Albany NY) 2024; 16:13145-13171. [PMID: 39475348 DOI: 10.18632/aging.206143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/03/2024] [Indexed: 11/07/2024]
Abstract
Brain aging is compared between Cercopithecinae (macaques and baboons), non-human Hominidae (chimpanzees, orangutans, and gorillas), and their close relative, humans. β-amyloid deposition in the form of senile plaques (SPs) and cerebral β-amyloid angiopathy (CAA) is a frequent neuropathological change in non-human primate brain aging. SPs are usually diffuse, whereas SPs with dystrophic neurites are rare. Tau pathology, if present, appears later, and it is generally mild or moderate, with rare exceptions in rhesus macaques and chimpanzees. Behavior and cognitive impairment are usually mild or moderate in aged non-human primates. In contrast, human brain aging is characterized by early tau pathology manifested as neurofibrillary tangles (NFTs), composed of paired helical filaments (PHFs), progressing from the entorhinal cortex, hippocampus, temporal cortex, and limbic system to other brain regions. β-amyloid pathology appears decades later, involves the neocortex, and progresses to the paleocortex, diencephalon, brain stem, and cerebellum. SPs with dystrophic neurites containing PHFs and CAA are common. Cognitive impairment and dementia of Alzheimer's type occur in about 1-5% of humans aged 65 and about 25% aged 85. In addition, other proteinopathies, such as limbic-predominant TDP-43 encephalopathy, amygdala-predominant Lewy body disease, and argyrophilic grain disease, primarily affecting the archicortex, paleocortex, and amygdala, are common in aged humans but non-existent in non-human primates. These observations show that human brain aging differs from brain aging in non-human primates, and humans constitute the exception among primates in terms of severity and extent of brain aging damage.
Collapse
Affiliation(s)
- Ferrer Isidro
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
- Reial Acadèmia de Medicina de Catalunya, Barcelona, Spain
| |
Collapse
|
3
|
Taniguchi D, Shimonaka S, Imtiaz A, Elahi M, Hatano T, Imai Y, Hattori N. Legumain/asparaginyl endopeptidase-resistant tau fibril fold produces corticobasal degeneration-specific C-terminal tau fragment. Neurobiol Dis 2024; 201:106686. [PMID: 39353514 DOI: 10.1016/j.nbd.2024.106686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
Corticobasal degeneration (CBD) is a major four-repeat tauopathy along with progressive supranuclear palsy (PSP). Although detergent-insoluble 37-40-kDa carboxyl-terminal tau fragments (CTFs) are hallmarks of CBD pathology, the process of their formation is unknown. This study monitored the formation of CBD-type fibrils that exhibit astrocytic plaques, a characteristic CBD pathology, using its biochemical properties different from those of Alzheimer's disease/PSP-type fibrils. Tau fibrils from patients with CBD were amplified in non-astrocytic cultured cells, which maintained CBD-specific biochemical properties. We found that the lysosomal protease Legumain (LGMN) was involved in the generation of CBD-specific 37-40-kDa CTFs. While LGMN cleaved tau fibrils at Asn167 and Asn368 in the brain tissues of patients with Alzheimer's disease and PSP, tau fibrils from patients with CBD were predominantly resistant to cleavage at Asn368 by LGMN, resulting in the generation of CBD-specific CTFs. LGMN preference in tau fibrils was lost upon unraveling the tau fibril fold, suggesting that the CBD-specific tau fibril fold contributes to CBD-specific CTF production. From these findings, we found a way to differentiate astrocytic plaque from tufted astrocyte using the anti-Asn368 LGMN cleavage site-specific antibody. Inoculation of tau fibrils amplified in non-astrocytic cells into the mouse brain reproduced LGMN-resistant tau fibrils and recapitulated anti-Asn368-negative astrocytic plaques, which are characteristic of CBD pathology. This study supports the existence of disease-specific tau fibrils and contribute to further understanding of the tauopathy diagnosis. Our tau propagation mouse model using cellular tau seeds may contribute to uncovering disease mechanisms and screening for potential therapeutic compounds.
Collapse
Affiliation(s)
- Daisuke Taniguchi
- Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shotaro Shimonaka
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ahmed Imtiaz
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Montasir Elahi
- Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
4
|
Priyanka, Qamar SH, Visanji NP. Toward an animal model of Progressive Supranuclear Palsy. Front Neurosci 2024; 18:1433465. [PMID: 39420986 PMCID: PMC11484047 DOI: 10.3389/fnins.2024.1433465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024] Open
Abstract
Progressive Supranuclear Palsy (PSP) is a rare and fatal neurodegenerative tauopathy which, with a rapid clinical progression coupled to a strong degree of clinico-pathologic correlation, has been suggested to be a "frontrunner" in translational development for neurodegenerative proteinopathies. Elegant studies in animals have contributed greatly to our understanding of disease pathogenesis in PSP. However, presently no animal model replicates the key anatomical and cytopathologic hallmarks, the spatiotemporal spread of pathology, progressive neurodegeneration, or locomotor and cognitive symptoms that characterize PSP. Current models therefore likely fail to recapitulate the key mechanisms that underly the pathological progression of PSP, impeding their translational value. Here we review what we have learned about PSP from work in animals to date, examine the gaps in modeling the disease and discuss strategies for the development of refined animal models that will improve our understanding of disease pathogenesis and provide a critical platform for the testing of novel therapeutics for this devastating disease.
Collapse
Affiliation(s)
- Priyanka
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Syeda Hania Qamar
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Naomi P. Visanji
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
5
|
Sala-Jarque J, Gil V, Andrés-Benito P, Martínez-Soria I, Picón-Pagès P, Hernández F, Ávila J, Lanciego JL, Nuvolone M, Aguzzi A, Gavín R, Ferrer I, Del Río JA. The cellular prion protein does not affect tau seeding and spreading of sarkosyl-insoluble fractions from Alzheimer's disease. Sci Rep 2024; 14:21622. [PMID: 39284839 PMCID: PMC11405773 DOI: 10.1038/s41598-024-72232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024] Open
Abstract
The cellular prion protein (PrPC) plays many roles in the developing and adult brain. In addition, PrPC binds to several amyloids in oligomeric and prefibrillar forms and may act as a putative receptor of abnormal misfolded protein species. The role of PrPC in tau seeding and spreading is not known. In the present study, we have inoculated well-characterized sarkosyl-insoluble fractions of sporadic Alzheimer's disease (sAD) into the brain of adult wild-type mice (Prnp+/+), Prnp0/0 (ZH3 strain) mice, and mice over-expressing the secreted form of PrPC lacking their GPI anchor (Tg44 strain). Phospho-tau (ptau) seeding and spreading involving neurons and oligodendrocytes were observed three and six months after inoculation. 3Rtau and 4Rtau deposits from the host tau, as revealed by inoculating Mapt0/0 mice and by using specific anti-mouse and anti-human tau antibodies suggest modulation of exon 10 splicing of the host mouse Mapt gene elicited by exogenous sAD-tau. However, no tau seeding and spreading differences were observed among Prnp genotypes. Our results show that PrPC does not affect tau seeding and spreading in vivo.
Collapse
Affiliation(s)
- Julia Sala-Jarque
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri and Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Neuroscience Research Institute and Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri and Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Pol Andrés-Benito
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Inés Martínez-Soria
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri and Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Pol Picón-Pagès
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri and Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Félix Hernández
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain
| | - Jesús Ávila
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain
| | - José Luis Lanciego
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Department of Neurosciences, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Mario Nuvolone
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Amyloidosis Research and Treatment Center, Foundation Scientific Institute Policlinico San Matteo, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri and Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Isidro Ferrer
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri and Reixac 15-21, 08028, Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain.
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Mate de Gerando A, Khasnavis A, Welikovitch LA, Bhavsar H, Glynn C, Quittot N, Perbet R, Hyman BT. Aqueous extractable nonfibrillar and sarkosyl extractable fibrillar Alzheimer's disease tau seeds have distinct properties. Acta Neuropathol Commun 2024; 12:145. [PMID: 39252090 PMCID: PMC11382398 DOI: 10.1186/s40478-024-01849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Pathological tau fibrils in progressive supranuclear palsy, frontotemporal dementia, chronic traumatic encephalopathy, and Alzheimer's disease each have unique conformations, and post-translational modifications that correlate with unique disease characteristics. However, within Alzheimer's disease (AD), both fibrillar (sarkosyl insoluble (AD SARK tau)), and nonfibrillar (aqueous extractable high molecular weight (AD HMW tau)) preparations have been suggested to be seed-competent. We now explore if these preparations are similar or distinct in their in vivo seeding characteristics. Using an in vivo amplification and time-course paradigm we demonstrate that, for AD HMW and AD SARK tau species, the amplified material is biochemically similar to the original sample. The HMW and SARK materials also show different clearance, propagation kinetics, and propagation patterns. These data indicate the surprising co-occurrence of multiple distinct tau species within the same AD brain, supporting the idea that multiple tau conformers - both fibrillar and nonfibrillar- can impact phenotype in AD.
Collapse
Affiliation(s)
- Anastasie Mate de Gerando
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Anita Khasnavis
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Harshil Bhavsar
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Calina Glynn
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Noe Quittot
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Romain Perbet
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Cambridge, MA, USA.
| |
Collapse
|
7
|
Ayers J, Lopez TP, Steele IT, Oehler A, Roman-Albarran R, Cleveland E, Chong A, Carlson GA, Condello C, Prusiner SB. Severe neurodegeneration in brains of transgenic rats producing human tau prions. Acta Neuropathol 2024; 148:25. [PMID: 39160375 PMCID: PMC11333523 DOI: 10.1007/s00401-024-02771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024]
Abstract
Both wild-type and mutant tau proteins can misfold into prions and self-propagate in the central nervous system of animals and people. To extend the work of others, we investigated the molecular basis of tau prion-mediated neurodegeneration in transgenic (Tg) rats expressing mutant human tau (P301S); this line of Tg rats is denoted Tg12099. We used the rat Prnp promoter to drive the overexpression of mutant tau (P301S) in the human 0N4R isoform. In Tg12099(+/+) rats homozygous for the transgene, ubiquitous expression of mutant human tau resulted in the progressive accumulation of phosphorylated tau inclusions, including silver-positive tangles in the frontal cortices and limbic system. Signs of central nervous system dysfunction were found in terminal Tg12099(+/+) rats exhibiting severe neurodegeneration and profound atrophy of the amygdala and piriform cortex. The greatest increases in tau prion activity were found in the corticolimbic structures. In contrast to the homozygous Tg12099(+/+) rats, we found lower levels of mutant tau in the hemizygous rats, resulting in few neuropathologic changes up to 2 years of age. Notably, these hemizygous rats could be infected by intracerebral inoculation with recombinant tau fibrils or precipitated tau prions from the brain homogenates of sick, aged homozygous Tg12099(+/+) rats. Our studies argue that the regional propagation of tau prions and neurodegeneration in the Tg12099 rats resembles that found in human primary tauopathies. These findings seem likely to advance our understanding of human tauopathies and may lead to effective therapeutics for Alzheimer's disease and other tau prion disorders.
Collapse
Affiliation(s)
- Jacob Ayers
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - T Peter Lopez
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Ian T Steele
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Rigo Roman-Albarran
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Elisa Cleveland
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Alex Chong
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - George A Carlson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Carlo Condello
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
8
|
Catterson JH, Mouofo EN, López De Toledo Soler I, Lean G, Dlamini S, Liddell P, Voong G, Katsinelos T, Wang YC, Schoovaerts N, Verstreken P, Spires-Jones TL, Durrant CS. Drosophila appear resistant to trans-synaptic tau propagation. Brain Commun 2024; 6:fcae256. [PMID: 39130515 PMCID: PMC11316205 DOI: 10.1093/braincomms/fcae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
Alzheimer's disease is the most common cause of dementia in the elderly, prompting extensive efforts to pinpoint novel therapeutic targets for effective intervention. Among the hallmark features of Alzheimer's disease is the development of neurofibrillary tangles comprised of hyperphosphorylated tau protein, whose progressive spread throughout the brain is associated with neuronal death. Trans-synaptic propagation of tau has been observed in mouse models, and indirect evidence for tau spread via synapses has been observed in human Alzheimer's disease. Halting tau propagation is a promising therapeutic target for Alzheimer's disease; thus, a scalable model system to screen for modifiers of tau spread would be very useful for the field. To this end, we sought to emulate the trans-synaptic spread of human tau in Drosophila melanogaster. Employing the trans-Tango circuit mapping technique, we investigated whether tau spreads between synaptically connected neurons. Immunohistochemistry and confocal imaging were used to look for tau propagation. Examination of hundreds of flies expressing four different human tau constructs in two distinct neuronal populations reveals a robust resistance in Drosophila to the trans-synaptic spread of human tau. This resistance persisted in lines with concurrent expression of amyloid-β, in lines with global human tau knock-in to provide a template for human tau in downstream neurons, and with manipulations of temperature. These negative data are important for the field as we establish that Drosophila expressing human tau in subsets of neurons are unlikely to be useful to perform screens to find mechanisms to reduce the trans-synaptic spread of tau. The inherent resistance observed in Drosophila may serve as a valuable clue, offering insights into strategies for impeding tau spread in future studies.
Collapse
Affiliation(s)
- James H Catterson
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Edmond N Mouofo
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | | | - Gillian Lean
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Stella Dlamini
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Phoebe Liddell
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Graham Voong
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Taxiarchis Katsinelos
- Schaller Research Group at the University of Heidelberg and the DKFZ, German Cancer Research Center, Proteostasis in Neurodegenerative Disease (B180), INF 581, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, INF 234, 69120 Heidelberg, Germany
| | - Yu-Chun Wang
- VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
9
|
Zhang X, Wang J, Zhang Z, Ye K. Tau in neurodegenerative diseases: molecular mechanisms, biomarkers, and therapeutic strategies. Transl Neurodegener 2024; 13:40. [PMID: 39107835 PMCID: PMC11302116 DOI: 10.1186/s40035-024-00429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/05/2024] [Indexed: 09/14/2024] Open
Abstract
The deposition of abnormal tau protein is characteristic of Alzheimer's disease (AD) and a class of neurodegenerative diseases called tauopathies. Physiologically, tau maintains an intrinsically disordered structure and plays diverse roles in neurons. Pathologically, tau undergoes abnormal post-translational modifications and forms oligomers or fibrous aggregates in tauopathies. In this review, we briefly introduce several tauopathies and discuss the mechanisms mediating tau aggregation and propagation. We also describe the toxicity of tau pathology. Finally, we explore the early diagnostic biomarkers and treatments targeting tau. Although some encouraging results have been achieved in animal experiments and preclinical studies, there is still no cure for tauopathies. More in-depth basic and clinical research on the pathogenesis of tauopathies is necessary.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiangyu Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Torok J, Mezias C, Raj A. Directionality bias underpins divergent spatiotemporal progression of Alzheimer-related tauopathy in mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597478. [PMID: 38895243 PMCID: PMC11185722 DOI: 10.1101/2024.06.04.597478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mounting evidence implicates trans-synaptic connectome-based spread as a shared mechanism behind different tauopathic conditions, yet also suggests there is divergent spatiotemporal progression between them. A potential parsimonious explanation for this apparent contradiction could be that different conditions incur differential rates and directional biases in tau transmission along fiber tracts. In this meta-analysis we closely examined this hypothesis and quantitatively tested it using spatiotemporal tau pathology patterns from 11 distinct models across 4 experimental studies. For this purpose, we extended a network-based spread model by incorporating net directionality along the connectome. Our data unambiguously supports the directional transmission hypothesis. First, retrograde bias is an unambiguously better predictor of tau progression than anterograde bias. Second, while spread exhibits retrograde character, our best-fitting biophysical models incorporate the mixed effects of both retrograde- and anterograde-directed spread, with notable tau-strain-specific differences. We also found a nontrivial association between directionality bias and tau strain aggressiveness, with more virulent strains exhibiting less retrograde character. Taken together, our study implicates directional transmission bias in tau transmission along fiber tracts as a general feature of tauopathy spread and a strong candidate explanation for the diversity of spatiotemporal tau progression between conditions. This simple and parsimonious mechanism may potentially fill a critical gap in our knowledge of the spatiotemporal ramification of divergent tauopathies.
Collapse
Affiliation(s)
- Justin Torok
- University of California at San Francisco, Department of Radiology
| | | | - Ashish Raj
- University of California at San Francisco, Department of Radiology
| |
Collapse
|
11
|
Martinez P, Jury-Garfe N, Patel H, You Y, Perkins A, You Y, Lee-Gosselin A, Vidal R, Lasagna-Reeves CA. Phosphorylation at serine 214 correlates with tau seeding activity in an age-dependent manner in two mouse models for tauopathies and is required for tau transsynaptic propagation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604618. [PMID: 39211286 PMCID: PMC11361173 DOI: 10.1101/2024.07.22.604618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pathological aggregation and propagation of hyperphosphorylated and aberrant forms of tau are critical features of the clinical progression of Alzheimer's disease and other tauopathies. To better understand the correlation between these pathological tau species and disease progression, we profiled the temporal progression of tau seeding activity and the levels of various phospho- and conformational tau species in the brains of two mouse models of human tauopathies. Our findings indicate that tau seeding is an early event that occurs well before the appearance of AT8-positive NFT. Specifically, we observed that tau phosphorylation in serine 214 (pTau-Ser214) positively correlates to tau seeding activity during disease progression in both mouse models. Furthermore, we found that the histopathology of pTau-Ser214 appears much earlier and has a distinct pattern and compartmentalization compared to the pathology of AT8, demonstrating the diversity of tau species within the same region of the brain. Importantly, we also observed that preventing the phosphorylation of tau at Ser214 significantly decreases tau propagation in mouse primary neurons, and seeding activity in a Drosophila model of tauopathy, suggesting a role for this tau phosphorylation in spreading pathological forms of tau. Together, these results suggest that the diverse spectrum of soluble pathological tau species could be responsible for the distinct pathological properties of tau and that it is critical to dissect the nature of the tau seed in the context of disease progression.
Collapse
|
12
|
Eid S, Lee S, Verkuyl CE, Almanza D, Hanna J, Shenouda S, Belotserkovsky A, Zhao W, Watts JC. The importance of prion research. Biochem Cell Biol 2024. [PMID: 38996387 DOI: 10.1139/bcb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the "prion-like" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important "unsolved mysteries" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Claire E Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dustin Almanza
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph Hanna
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Nabizadeh F. Disruption in functional networks mediated tau spreading in Alzheimer's disease. Brain Commun 2024; 6:fcae198. [PMID: 38978728 PMCID: PMC11227975 DOI: 10.1093/braincomms/fcae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/27/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Alzheimer's disease may be conceptualized as a 'disconnection syndrome', characterized by the breakdown of neural connectivity within the brain as a result of amyloid-beta plaques, tau neurofibrillary tangles and other factors leading to progressive degeneration and shrinkage of neurons, along with synaptic dysfunction. It has been suggested that misfolded tau proteins spread through functional connections (known as 'prion-like' properties of tau). However, the local effect of tau spreading on the synaptic function and communication between regions is not well understood. I aimed to investigate how the spreading of tau aggregates through connections can locally influence functional connectivity. In total, the imaging data of 211 participants including 117 amyloid-beta-negative non-demented and 94 amyloid-beta-positive non-demented participants were recruited from the Alzheimer's Disease Neuroimaging Initiative. Furthermore, normative resting-state functional MRI connectomes were used to model tau spreading through functional connections, and functional MRI of the included participants was used to determine the effect of tau spreading on functional connectivity. I found that lower functional connectivity to tau epicentres is associated with tau spreading through functional connections in both amyloid-beta-negative and amyloid-beta-positive participants. Also, amyloid-beta-PET in tau epicentres mediated the association of tau spreading and functional connectivity to epicentres suggesting a partial mediating effect of amyloid-beta deposition in tau epicentres on the local effect of tau spreading on functional connectivity. My findings provide strong support for the notion that tau spreading through connection is locally associated with disrupted functional connectivity between tau epicentre and non-epicentre regions independent of amyloid-beta pathology. Also, I defined several groups based on the relationship between tau spreading and functional disconnection, which provides quantitative assessment to investigate susceptibility or resilience to functional disconnection related to tau spreading. I showed that amyloid-beta, other copathologies and the apolipoprotein E epsilon 4 allele can be a leading factor towards vulnerability to tau relative functional disconnection.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran 441265421414, Iran
| |
Collapse
|
14
|
Hulse J, Maphis N, Peabody J, Chackerian B, Bhaskar K. Virus-like particle (VLP)-based vaccine targeting tau phosphorylated at Ser396/Ser404 (PHF1) site outperforms phosphorylated S199/S202 (AT8) site in reducing tau pathology and restoring cognitive deficits in the rTg4510 mouse model of tauopathy. RESEARCH SQUARE 2024:rs.3.rs-4390998. [PMID: 38946961 PMCID: PMC11213181 DOI: 10.21203/rs.3.rs-4390998/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Tauopathies, including Alzheimer's disease (AD) and Frontotemporal Dementia (FTD), are histopathologically defined by the aggregation of hyperphosphorylated pathological tau (pTau) as neurofibrillary tangles in the brain. Site-specific phosphorylation of tau occurs early in the disease process and correlates with progressive cognitive decline, thus serving as targetable pathological epitopes for immunotherapeutic development. Previously, we developed a vaccine (Qβ-pT181) displaying phosphorylated Thr181 tau peptides on the surface of a Qβ bacteriophage virus-like particle (VLP) that induced robust antibody responses, cleared pathological tau, and rescued memory deficits in a transgenic mouse model of tauopathy. Here we report the characterization and comparison of two additional Qβ VLP-based vaccines targeting the dual phosphorylation sites Ser199/Ser202 (Qβ-AT8) and Ser396/Ser404 (Qβ-PHF1). Both Qβ-AT8 and Qβ-PHF1 vaccines elicited high-titer antibody responses against their pTau epitopes. However, only Qβ-PHF1 rescued cognitive deficits, reduced soluble and insoluble pathological tau, and reactive microgliosis in a 4-month rTg4510 model of FTD. Both sera from Qβ-AT8 and Qβ-PHF1 vaccinated mice were specifically reactive to tau pathology in human AD post-mortem brain sections. These studies further support the use of VLP-based immunotherapies to target pTau in AD and related tauopathies and provide potential insight into the clinical efficacy of various pTau epitopes in the development of immunotherapeutics.
Collapse
Affiliation(s)
- Jonathan Hulse
- Department of Molecular Genetics & Microbiology, University Of New Mexico, Albuquerque, NM. USA
| | - Nicole Maphis
- Department of Neurosciences, University Of New Mexico, Albuquerque, NM. USA
| | - Julianne Peabody
- Department of Molecular Genetics & Microbiology, University Of New Mexico, Albuquerque, NM. USA
| | - Bryce Chackerian
- Department of Molecular Genetics & Microbiology, University Of New Mexico, Albuquerque, NM. USA
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology, University Of New Mexico, Albuquerque, NM. USA
- Department of Neurology, University Of New Mexico, Albuquerque, NM. USA
| |
Collapse
|
15
|
Sárkány B, Dávid C, Hortobágyi T, Gombás P, Somogyi P, Acsády L, Viney TJ. Early and selective localization of tau filaments to glutamatergic subcellular domains within the human anterodorsal thalamus. Acta Neuropathol 2024; 147:98. [PMID: 38861157 PMCID: PMC11166832 DOI: 10.1007/s00401-024-02749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Widespread cortical accumulation of misfolded pathological tau proteins (ptau) in the form of paired helical filaments is a major hallmark of Alzheimer's disease. Subcellular localization of ptau at various stages of disease progression is likely to be informative of the cellular mechanisms involving its spread. Here, we found that the density of ptau within several distinct rostral thalamic nuclei in post-mortem human tissue (n = 25 cases) increased with the disease stage, with the anterodorsal nucleus (ADn) consistently being the most affected. In the ADn, ptau-positive elements were present already in the pre-cortical (Braak 0) stage. Tau pathology preferentially affected the calretinin-expressing subpopulation of glutamatergic neurons in the ADn. At the subcellular level, we detected ptau immunoreactivity in ADn cell bodies, dendrites, and in a specialized type of presynaptic terminal that expresses vesicular glutamate transporter 2 (vGLUT2) and likely originates from the mammillary body. The ptau-containing terminals displayed signs of degeneration, including endosomal/lysosomal organelles. In contrast, corticothalamic axon terminals lacked ptau. The data demonstrate the involvement of a specific cell population in ADn at the onset of the disease. The presence of ptau in subcortical glutamatergic presynaptic terminals supports hypotheses about the transsynaptic spread of tau selectively affecting specialized axonal pathways.
Collapse
Affiliation(s)
- Barbara Sárkány
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| | - Csaba Dávid
- Lendület Laboratory of Thalamus Research, Institute of Experimental Medicine, Budapest, 1083, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Tibor Hortobágyi
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Péter Gombás
- Department of Pathology, Szt. Borbála Hospital, Tatabánya, 2800, Hungary
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - László Acsády
- Lendület Laboratory of Thalamus Research, Institute of Experimental Medicine, Budapest, 1083, Hungary.
| | - Tim J Viney
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| |
Collapse
|
16
|
Collins HM, Greenfield S. Rodent Models of Alzheimer's Disease: Past Misconceptions and Future Prospects. Int J Mol Sci 2024; 25:6222. [PMID: 38892408 PMCID: PMC11172947 DOI: 10.3390/ijms25116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective treatments, not least due to the lack of authentic animal models. Typically, rodent models recapitulate the effects but not causes of AD, such as cholinergic neuron loss: lesioning of cholinergic neurons mimics the cognitive decline reminiscent of AD but not its neuropathology. Alternative models rely on the overexpression of genes associated with familial AD, such as amyloid precursor protein, or have genetically amplified expression of mutant tau. Yet transgenic rodent models poorly replicate the neuropathogenesis and protein overexpression patterns of sporadic AD. Seeding rodents with amyloid or tau facilitates the formation of these pathologies but cannot account for their initial accumulation. Intracerebral infusion of proinflammatory agents offer an alternative model, but these fail to replicate the cause of AD. A novel model is therefore needed, perhaps similar to those used for Parkinson's disease, namely adult wildtype rodents with neuron-specific (dopaminergic) lesions within the same vulnerable brainstem nuclei, 'the isodendritic core', which are the first to degenerate in AD. Site-selective targeting of these nuclei in adult rodents may recapitulate the initial neurodegenerative processes in AD to faithfully mimic its pathogenesis and progression, ultimately leading to presymptomatic biomarkers and preventative therapies.
Collapse
Affiliation(s)
- Helen M. Collins
- Neuro-Bio Ltd., Building F5 The Culham Campus, Abingdon OX14 3DB, UK;
| | | |
Collapse
|
17
|
Rabanal-Ruiz Y, Pedrero-Prieto CM, Sanchez-Rodriguez L, Flores-Cuadrado A, Saiz-Sanchez D, Frontinan-Rubio J, Ubeda-Banon I, Duran Prado M, Martinez-Marcos A, Peinado JR. Differential accumulation of human β-amyloid and tau from enriched extracts in neuronal and endothelial cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167204. [PMID: 38679217 DOI: 10.1016/j.bbadis.2024.167204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
While Aβ and Tau cellular distribution has been largely studied, the comparative internalization and subcellular accumulation of Tau and Aβ isolated from human brain extracts in endothelial and neuronal cells has not yet been unveiled. We have previously demonstrated that controlled enrichment of Aβ from human brain extracts constitutes a valuable tool to monitor cellular internalization in vitro and in vivo. Herein, we establish an alternative method to strongly enrich Aβ and Tau aggregates from human AD brains, which has allowed us to study and compare the cellular internalization, distribution and toxicity of both proteins within brain barrier endothelial (bEnd.3) and neuronal (Neuro2A) cells. Our findings demonstrate the suitability of human enriched brain extracts to monitor the intracellular distribution of human Aβ and Tau, which, once internalized, show dissimilar sorting to different organelles within the cell and differential toxicity, exhibiting higher toxic effects on neuronal cells than on endothelial cells. While tau is strongly concentrated preferentially in mitochondria, Aβ is distributed predominantly within the endolysosomal system in endothelial cells, whereas the endoplasmic reticulum was its preferential location in neurons. Altogether, our findings display a picture of the interactions that human Aβ and Tau might establish in these cells.
Collapse
Affiliation(s)
- Y Rabanal-Ruiz
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - C M Pedrero-Prieto
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - L Sanchez-Rodriguez
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - A Flores-Cuadrado
- Department of Medical Sciences, Ciudad Real Medical School, Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - D Saiz-Sanchez
- Department of Medical Sciences, Ciudad Real Medical School, Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - J Frontinan-Rubio
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - I Ubeda-Banon
- Department of Medical Sciences, Ciudad Real Medical School, Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - M Duran Prado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - A Martinez-Marcos
- Department of Medical Sciences, Ciudad Real Medical School, Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain.
| | - Juan R Peinado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain.
| |
Collapse
|
18
|
Song Z, Wang KW, Hagar HTC, Chen HR, Kuan CY, Zhang K, Kuo MH. Hyperphosphorylated Tau Inflicts Intracellular Stress Responses that Are Mitigated by Apomorphine. Mol Neurobiol 2024; 61:2653-2671. [PMID: 37919601 PMCID: PMC11043184 DOI: 10.1007/s12035-023-03689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/30/2023] [Indexed: 11/04/2023]
Abstract
Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlies neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs. Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack. Upon p-tau uptake, the intracellular calcium levels rose promptly. Gene expression analyses revealed that p-tau potently triggered endoplasmic reticulum (ER) stress, unfolded protein response (UPR), ER stress-associated apoptosis, and pro-inflammation in cells. Proteomics studies showed that p-tau diminished heme oxygenase-1 (HO-1), an ER stress-associated anti-inflammation and anti-oxidative stress regulator, while stimulated the accumulation of MIOS and other proteins. p-Tau-induced ER stress-associated apoptosis and pro-inflammation are ameliorated by apomorphine, a brain-permeable prescription drug widely used to treat Parkinson's disease symptoms, and by overexpression of HO-1. Our results reveal probable cellular functions targeted by hyperphosphorylated tau. Some of these dysfunctions and stress responses have been linked to neurodegeneration in Alzheimer's disease. The observations that the ill effects of p-tau can be mitigated by a small compound and by overexpressing HO-1 that is otherwise diminished in the treated cells inform new directions of Alzheimer's disease drug discovery.
Collapse
Affiliation(s)
- Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kuang-Wei Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Hsiao-Tien Chien Hagar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Hong-Ru Chen
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
- Present address: Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, 112304
| | - Chia-Yi Kuan
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
19
|
Santiago-Ruiz AN, Hugelier S, Bond CR, Lee EB, Lakadamyali M. Super-Resolution Imaging Uncovers Nanoscale Tau Aggregate Hyperphosphorylation Patterns in Human Alzheimer's Disease Brain Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590893. [PMID: 38712162 PMCID: PMC11071528 DOI: 10.1101/2024.04.24.590893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tau aggregation plays a critical role in Alzheimer's Disease (AD), where tau neurofibrillary tangles (NFTs) are a key pathological hallmark. While much attention has been given to NFTs, emerging evidence underscores nano-sized pre-NFT tau aggregates as potentially toxic entities in AD. By leveraging DNA-PAINT super-resolution microscopy, we visualized and quantified nanoscale tau aggregates (nano-aggregates) in human postmortem brain tissues from intermediate and advanced AD, and Primary Age-Related Tauopathy (PART). Nano-aggregates were predominant across cases, with AD exhibiting a higher burden compared to PART. Hyperphosphorylated tau residues (p-T231, p-T181, and p-S202/T205) were present within nano-aggregates across all AD Braak stages and PART. Moreover, nano-aggregates displayed morphological differences between PART and AD, and exhibited distinct hyperphosphorylation patterns in advanced AD. These findings suggest that changes in nano-aggregate morphology and hyperphosphorylation patterns may exacerbate tau aggregation and AD progression. The ability to detect and profile nanoscale tau aggregates in human brain tissue opens new avenues for studying the molecular underpinnings of tauopathies.
Collapse
|
20
|
Hulse J, Maphis N, Peabody J, Chackerian B, Bhaskar K. Virus-like particle (VLP)-based vaccine targeting tau phosphorylated at Ser396/Ser404 (PHF1) site outperforms phosphorylated S199/S202 (AT8) site in reducing tau pathology and restoring cognitive deficits in the rTg4510 mouse model of tauopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588338. [PMID: 38644999 PMCID: PMC11030413 DOI: 10.1101/2024.04.05.588338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Tauopathies, including Alzheimer's disease (AD) and Frontotemporal Dementia (FTD), are histopathologically defined by the aggregation of hyperphosphorylated pathological tau (pTau) as neurofibrillary tangles in the brain. Site-specific phosphorylation of tau occurs early in the disease process and correlates with progressive cognitive decline, thus serving as targetable pathological epitopes for immunotherapeutic development. Previously, we developed a vaccine (Qβ-pT181) displaying phosphorylated Thr181 tau peptides on the surface of a Qβ bacteriophage virus-like particle (VLP) that induced robust antibody responses, cleared pathological tau, and rescued memory deficits in a transgenic mouse model of tauopathy. Here we report the characterization and comparison of two additional Qβ VLP-based vaccines targeting the dual phosphorylation sites Ser199/Ser202 (Qβ-AT8) and Ser396/Ser404 (Qβ-PHF1). Both Qβ-AT8 and Qβ-PHF1 vaccines elicited high-titer antibody responses against their pTau epitopes. However, only Qβ-PHF1 rescued cognitive deficits, reduced soluble and insoluble pathological tau, and reactive microgliosis in a 4-month rTg4510 model of FTD. Both sera from Qβ-AT8 and Qβ-PHF1 vaccinated mice were specifically reactive to tau pathology in human AD post-mortem brain sections. These studies further support the use of VLP-based immunotherapies to target pTau in AD and related tauopathies and provide potential insight into the clinical efficacy of various pTau epitopes in the development of immunotherapeutics.
Collapse
|
21
|
Basheer N, Buee L, Brion JP, Smolek T, Muhammadi MK, Hritz J, Hromadka T, Dewachter I, Wegmann S, Landrieu I, Novak P, Mudher A, Zilka N. Shaping the future of preclinical development of successful disease-modifying drugs against Alzheimer's disease: a systematic review of tau propagation models. Acta Neuropathol Commun 2024; 12:52. [PMID: 38576010 PMCID: PMC10993623 DOI: 10.1186/s40478-024-01748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
The transcellular propagation of the aberrantly modified protein tau along the functional brain network is a key hallmark of Alzheimer's disease and related tauopathies. Inoculation-based tau propagation models can recapitulate the stereotypical spread of tau and reproduce various types of tau inclusions linked to specific tauopathy, albeit with varying degrees of fidelity. With this systematic review, we underscore the significance of judicious selection and meticulous functional, biochemical, and biophysical characterization of various tau inocula. Furthermore, we highlight the necessity of choosing suitable animal models and inoculation sites, along with the critical need for validation of fibrillary pathology using confirmatory staining, to accurately recapitulate disease-specific inclusions. As a practical guide, we put forth a framework for establishing a benchmark of inoculation-based tau propagation models that holds promise for use in preclinical testing of disease-modifying drugs.
Collapse
Affiliation(s)
- Neha Basheer
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Luc Buee
- Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, University of Lille, 59000, Lille, France.
| | - Jean-Pierre Brion
- Faculty of Medicine, Laboratory of Histology, Alzheimer and Other Tauopathies Research Group (CP 620), ULB Neuroscience Institute (UNI), Université Libre de Bruxelles, 808, Route de Lennik, 1070, Brussels, Belgium
| | - Tomas Smolek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Muhammad Khalid Muhammadi
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Jozef Hritz
- CEITEC Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Tomas Hromadka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Ilse Dewachter
- Biomedical Research Institute, BIOMED, Hasselt University, 3500, Hasselt, Belgium
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases, Charitéplatz 1, 10117, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Isabelle Landrieu
- CNRS EMR9002 - BSI - Integrative Structural Biology, 59000, Lille, France
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, 59000, Lille, France
| | - Petr Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Amritpal Mudher
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia.
- AXON Neuroscience R&D Services SE, Dubravska Cesta 9, 845 10, Bratislava, Slovakia.
| |
Collapse
|
22
|
Qiu C, Li Z, Leigh DA, Duan B, Stucky JE, Kim N, Xie G, Lu KP, Zhou XZ. The role of the Pin1- cis P-tau axis in the development and treatment of vascular contribution to cognitive impairment and dementia and preeclampsia. Front Cell Dev Biol 2024; 12:1343962. [PMID: 38628595 PMCID: PMC11019028 DOI: 10.3389/fcell.2024.1343962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by deposits of abnormal Tau protein in the brain. Conventional tauopathies are often defined by a limited number of Tau epitopes, notably neurofibrillary tangles, but emerging evidence suggests structural heterogeneity among tauopathies. The prolyl isomerase Pin1 isomerizes cis P-tau to inhibit the development of oligomers, tangles and neurodegeneration in multiple neurodegenerative diseases such as Alzheimer's disease, traumatic brain injury, vascular contribution to cognitive impairment and dementia (VCID) and preeclampsia (PE). Thus, cis P-tau has emerged as an early etiological driver, blood marker and therapeutic target for multiple neurodegenerative diseases, with clinical trials ongoing. The discovery of cis P-tau and other tau pathologies in VCID and PE calls attention for simplistic classification of tauopathy in neurodegenerative diseases. These recent advances have revealed the exciting novel role of the Pin1-cis P-tau axis in the development and treatment of vascular contribution to cognitive impairment and dementia and preeclampsia.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Zhixiong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - David A. Leigh
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph E. Stucky
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nami Kim
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - George Xie
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
- Departments of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, and Lawson Health Research Institute, Western University, London, ON, Canada
| |
Collapse
|
23
|
Clark CN, Poole N, Isaacs JD, MacKinnon AD, Rich P, Bridges LR, Jaunmuktane Z, Galizia EC. Argyrophilic grain disease and co-pathologies in an older patient with a rapidly progressive neuropsychiatric syndrome. Neuropathol Appl Neurobiol 2024; 50:e12973. [PMID: 38558379 DOI: 10.1111/nan.12973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Affiliation(s)
- Camilla N Clark
- Neurology Department, Atkinson Morley Regional Neuroscience Centre, St George's University Hospitals NHS Foundation Trust, London, UK
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Norman Poole
- Neuropsychiatry department, South West London and St George's Mental Health Trust, London, UK
| | - Jeremy D Isaacs
- Neurology Department, Atkinson Morley Regional Neuroscience Centre, St George's University Hospitals NHS Foundation Trust, London, UK
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Andrew D MacKinnon
- Department of Neuroradiology, Atkinson Morley Regional Neuroscience Centre, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Philip Rich
- Department of Neuroradiology, Atkinson Morley Regional Neuroscience Centre, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Leslie R Bridges
- St George's University Hospitals NHS Foundation Trust, Department of Cellular Pathology, St George's Hospital, London, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- Queen Square Brain Bank for Neurological Disorders and Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders, UCL, Queen Square Institute of Neurology, London, UK
| | - Elizabeth Caruana Galizia
- Neurology Department, Atkinson Morley Regional Neuroscience Centre, St George's University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
24
|
Orrú CD, Groveman BR, Hughson AG, Barrio T, Isiofia K, Race B, Ferreira NC, Gambetti P, Schneider DA, Masujin K, Miyazawa K, Ghetti B, Zanusso G, Caughey B. Sensitive detection of pathological seeds of α-synuclein, tau and prion protein on solid surfaces. PLoS Pathog 2024; 20:e1012175. [PMID: 38640117 PMCID: PMC11062561 DOI: 10.1371/journal.ppat.1012175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/01/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024] Open
Abstract
Prions or prion-like aggregates such as those composed of PrP, α-synuclein, and tau are key features of proteinopathies such as prion, Parkinson's and Alzheimer's diseases, respectively. Their presence on solid surfaces may be biohazardous under some circumstances. PrP prions bound to solids are detectable by ultrasensitive real-time quaking-induced conversion (RT-QuIC) assays if the solids can be immersed in assay wells or the prions transferred to pads. Here we show that prion-like seeds can remain detectable on steel wires for at least a year, or even after enzymatic cleaning and sterilization. We also show that contamination of larger objects with pathological seeds of α-synuclein, tau, and PrP can be detected by simply assaying a sampling medium that has been transiently applied to the surface. Human α-synuclein seeds in dementia with Lewy bodies brain tissue were detected by α-synuclein RT-QuIC after drying of tissue dilutions with concentrations as low as 10-6 onto stainless steel. Tau RT-QuIC detected tau seeding activity on steel exposed to Alzheimer's disease brain tissue diluted as much as a billion fold. Prion RT-QuIC assays detected seeding activity on plates exposed to brain dilutions as extreme as 10-5-10-8 from prion-affected humans, sheep, cattle and cervids. Sampling medium collected from surgical instruments used in necropsies of sporadic Creutzfeldt-Jakob disease-infected transgenic mice was positive down to 10-6 dilution. Sensitivity for prion detection was not sacrificed by omitting the recombinant PrP substrate from the sampling medium during its application to a surface and subsequent storage as long as the substrate was added prior to performing the assay reaction. Our findings demonstrate practical prototypic surface RT-QuIC protocols for the highly sensitive detection of pathologic seeds of α-synuclein, tau, and PrP on solid objects.
Collapse
Affiliation(s)
- Christina D. Orrú
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bradley R. Groveman
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Andrew G. Hughson
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Tomás Barrio
- UMR INRAE ENVT 1225, Interactions Hôtes-Agents Pathogènes, École Nationale Vétérinaire de Toulouse, France
| | - Kachi Isiofia
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brent Race
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Natalia C. Ferreira
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Pierluigi Gambetti
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - David A. Schneider
- Animal Disease Research Unit, USDA-ARS, Pullman, Washington, United States of America
| | - Kentaro Masujin
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Kohtaro Miyazawa
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Byron Caughey
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
25
|
Xu H, Qiu Q, Hu P, Hoxha K, Jang E, O'Reilly M, Kim C, He Z, Marotta N, Changolkar L, Zhang B, Wu H, Schellenberg GD, Kraemer B, Luk KC, Lee EB, Trojanowski JQ, Brunden KR, Lee VMY. MSUT2 regulates tau spreading via adenosinergic signaling mediated ASAP1 pathway in neurons. Acta Neuropathol 2024; 147:55. [PMID: 38472475 PMCID: PMC10933148 DOI: 10.1007/s00401-024-02703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
Inclusions comprised of microtubule-associated protein tau (tau) are implicated in a group of neurodegenerative diseases, collectively known as tauopathies, that include Alzheimer's disease (AD). The spreading of misfolded tau "seeds" along neuronal networks is thought to play a crucial role in the progression of tau pathology. Consequently, restricting the release or uptake of tau seeds may inhibit the spread of tau pathology and potentially halt the advancement of the disease. Previous studies have demonstrated that the Mammalian Suppressor of Tauopathy 2 (MSUT2), an RNA binding protein, modulates tau pathogenesis in a transgenic mouse model. In this study, we investigated the impact of MSUT2 on tau pathogenesis using tau seeding models. Our findings indicate that the loss of MSUT2 mitigates human tau seed-induced pathology in neuron cultures and mouse models. In addition, MSUT2 regulates many gene transcripts, including the Adenosine Receptor 1 (A1AR), and we show that down regulation or inhibition of A1AR modulates the activity of the "ArfGAP with SH3 Domain, Ankyrin Repeat, and PH Domain 1 protein" (ASAP1), thereby influencing the internalization of pathogenic tau seeds into neurons resulting in reduction of tau pathology.
Collapse
Affiliation(s)
- Hong Xu
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Qi Qiu
- Department of Genetics, Penn Epigenetics Institute, Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
| | - Kevt'her Hoxha
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elliot Jang
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mia O'Reilly
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Kim
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhuohao He
- Interdisciplinary Research Center On Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Nicholas Marotta
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lakshmi Changolkar
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hao Wu
- Department of Genetics, Penn Epigenetics Institute, Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Kraemer
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98104, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt R Brunden
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Darricau M, Dou C, Kinet R, Zhu T, Zhou L, Li X, Bedel A, Claverol S, Tokarski C, Katsinelos T, McEwan WA, Zhang L, Gao R, Bourdenx M, Dehay B, Qin C, Bezard E, Planche V. Tau seeds from Alzheimer's disease brains trigger tau spread in macaques while oligomeric-Aβ mediates pathology maturation. Alzheimers Dement 2024; 20:1894-1912. [PMID: 38148705 PMCID: PMC10984505 DOI: 10.1002/alz.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023]
Abstract
INTRODUCTION The "prion-like" features of Alzheimer's disease (AD) tauopathy and its relationship with amyloid-β (Aβ) have never been experimentally studied in primates phylogenetically close to humans. METHODS We injected 17 macaques in the entorhinal cortex with nanograms of seeding-competent tau aggregates purified from AD brains or control extracts from aged-matched healthy brains, with or without intracerebroventricular co-injections of oligomeric-Aβ. RESULTS Pathological tau injection increased cerebrospinal fluid (CSF) p-tau181 concentration after 18 months. Tau pathology spreads from the entorhinal cortex to the hippocampal trisynaptic loop and the cingulate cortex, resuming the experimental progression of Braak stage I to IV. Many AD-related molecular networks were impacted by tau seeds injections regardless of Aβ injections in proteomic analyses. However, we found mature neurofibrillary tangles, increased CSF total-tau concentration, and pre- and postsynaptic degeneration only in Aβ co-injected macaques. DISCUSSION Oligomeric-Aβ mediates the maturation of tau pathology and its neuronal toxicity in macaques but not its initial spreading. HIGHLIGHTS This study supports the "prion-like" properties of misfolded tau extracted from AD brains. This study empirically validates the Braak staging in an anthropomorphic brain. This study highlights the role of oligomeric Aβ in driving the maturation and toxicity of tau pathology. This work establishes a novel animal model of early sporadic AD that is closer to the human pathology.
Collapse
Affiliation(s)
- Morgane Darricau
- Univ. Bordeaux, CNRSInstitut des Maladies NeurodégénérativesBordeauxFrance
| | - Changsong Dou
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesNational Center for Technology and Innovation of Animal ModelInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)BeijingP.R. China
| | - Remi Kinet
- Univ. Bordeaux, CNRSInstitut des Maladies NeurodégénérativesBordeauxFrance
| | - Tao Zhu
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesNational Center for Technology and Innovation of Animal ModelInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)BeijingP.R. China
| | - Li Zhou
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesNational Center for Technology and Innovation of Animal ModelInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)BeijingP.R. China
| | - Xianglei Li
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesNational Center for Technology and Innovation of Animal ModelInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)BeijingP.R. China
| | - Aurélie Bedel
- CHU de BordeauxService de biochimie, BordeauxUniv. BordeauxBordeauxFrance
| | | | | | - Taxiarchis Katsinelos
- UK Dementia Research InstituteDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - William A. McEwan
- UK Dementia Research InstituteDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesNational Center for Technology and Innovation of Animal ModelInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)BeijingP.R. China
| | - Ran Gao
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesNational Center for Technology and Innovation of Animal ModelInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)BeijingP.R. China
| | - Mathieu Bourdenx
- UK Dementia Research InstituteUCL Queen Square Institute of NeurologyLondonUK
| | - Benjamin Dehay
- Univ. Bordeaux, CNRSInstitut des Maladies NeurodégénérativesBordeauxFrance
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesNational Center for Technology and Innovation of Animal ModelInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)BeijingP.R. China
- Changping National laboratory (CPNL)BeijingChina
| | - Erwan Bezard
- Univ. Bordeaux, CNRSInstitut des Maladies NeurodégénérativesBordeauxFrance
- Motac NeuroscienceFloiracFrance
| | - Vincent Planche
- Univ. Bordeaux, CNRSInstitut des Maladies NeurodégénérativesBordeauxFrance
- CHU de Bordeaux, Pôle de Neurosciences CliniquesCentre Mémoire de Ressources et de RechercheBordeauxFrance
| |
Collapse
|
27
|
Hu C, Yan Y, Jin Y, Yang J, Xi Y, Zhong Z. Decoding the Cellular Trafficking of Prion-like Proteins in Neurodegenerative Diseases. Neurosci Bull 2024; 40:241-254. [PMID: 37755677 PMCID: PMC10838874 DOI: 10.1007/s12264-023-01115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/02/2023] [Indexed: 09/28/2023] Open
Abstract
The accumulation and spread of prion-like proteins is a key feature of neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, or Amyotrophic Lateral Sclerosis. In a process known as 'seeding', prion-like proteins such as amyloid beta, microtubule-associated protein tau, α-synuclein, silence superoxide dismutase 1, or transactive response DNA-binding protein 43 kDa, propagate their misfolded conformations by transforming their respective soluble monomers into fibrils. Cellular and molecular evidence of prion-like propagation in NDs, the clinical relevance of their 'seeding' capacities, and their levels of contribution towards disease progression have been intensively studied over recent years. This review unpacks the cyclic prion-like propagation in cells including factors of aggregate internalization, endo-lysosomal leaking, aggregate degradation, and secretion. Debates on the importance of the role of prion-like protein aggregates in NDs, whether causal or consequent, are also discussed. Applications lead to a greater understanding of ND pathogenesis and increased potential for therapeutic strategies.
Collapse
Affiliation(s)
- Chenjun Hu
- Department of Neurology of the Second Affiliated Hospital and Department of Human Anatomy, Histology and Embryology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yiqun Yan
- Department of Neurology of the Second Affiliated Hospital and Department of Human Anatomy, Histology and Embryology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yanhong Jin
- Department of Neurology of the Second Affiliated Hospital and Department of Human Anatomy, Histology and Embryology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jun Yang
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, Women's Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Zhen Zhong
- Department of Neurology of the Second Affiliated Hospital and Department of Human Anatomy, Histology and Embryology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Creekmore BC, Watanabe R, Lee EB. Neurodegenerative Disease Tauopathies. ANNUAL REVIEW OF PATHOLOGY 2024; 19:345-370. [PMID: 37832941 PMCID: PMC11009985 DOI: 10.1146/annurev-pathmechdis-051222-120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Tauopathies are a diverse group of progressive and fatal neurodegenerative diseases characterized by aberrant tau inclusions in the central nervous system. Tau protein forms pathologic fibrillar aggregates that are typically closely associated with neuronal cell death, leading to varied clinical phenotypes including dementia, movement disorders, and motor neuron disease. In this review, we describe the clinicopathologic features of tauopathies and highlight recent advances in understanding the mechanisms that lead to spread of pathologic aggregates through interconnected neuronal pathways. The cell-to-cell propagation of tauopathy is then linked to posttranslational modifications, tau fibril structural variants, and the breakdown of cellular protein quality control.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Ryohei Watanabe
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
29
|
Neha, Wali Z, Pinky, Hattiwale SH, Jamal A, Parvez S. GLP-1/Sigma/RAGE receptors: An evolving picture of Alzheimer's disease pathology and treatment. Ageing Res Rev 2024; 93:102134. [PMID: 38008402 DOI: 10.1016/j.arr.2023.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
According to the facts and figures 2023stated that 6.7 million Americans over the age of 65 have Alzheimer's disease (AD). The scenario of AD has reached up to the maximum, of 4.1 million individuals, 2/3rd are female patients, and approximately 1 in 9 adults over the age of 65 have dementia with AD dementia. The fact that there are now no viable treatments for AD indicates that the underlying disease mechanisms are not fully understood. The progressive neurodegenerative disease, AD is characterized by amyloid plaques and neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau protein and senile plaques (SPs), which are brought on by the buildup of amyloid beta (Aβ). Numerous attempts have been made to produce compounds that interfere with these characteristics because of significant research efforts into the primary pathogenic hallmark of this disorder. Here, we summarize several research that highlights interesting therapy strategies and the neuroprotective effects of GLP-1, Sigma, and, AGE-RAGE receptors in pre-clinical and clinical AD models.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Zitin Wali
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pinky
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Shaheenkousar H Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
30
|
LaCroix MS, Artikis E, Hitt BD, Beaver JD, Estill-Terpack SJ, Gleason K, Tamminga CA, Evers BM, White CL, Caughey B, Diamond MI. Tau seeding without tauopathy. J Biol Chem 2024; 300:105545. [PMID: 38072056 PMCID: PMC10797195 DOI: 10.1016/j.jbc.2023.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/04/2024] Open
Abstract
Neurodegenerative tauopathies such as Alzheimer's disease (AD) are caused by brain accumulation of tau assemblies. Evidence suggests tau functions as a prion, and cells and animals can efficiently propagate unique, transmissible tau pathologies. This suggests a dedicated cellular replication machinery, potentially reflecting a normal physiologic function for tau seeds. Consequently, we hypothesized that healthy control brains would contain seeding activity. We have recently developed a novel monoclonal antibody (MD3.1) specific for tau seeds. We used this antibody to immunopurify tau from the parietal and cerebellar cortices of 19 healthy subjects without any neuropathology, ranging 19 to 65 years. We detected seeding in lysates from the parietal cortex, but not in the cerebellum. We also detected no seeding in brain homogenates from wildtype or human tau knockin mice, suggesting that cellular/genetic context dictates development of seed-competent tau. Seeding did not correlate with subject age or brain tau levels. We confirmed our essential findings using an orthogonal assay, real-time quaking-induced conversion, which amplifies tau seeds in vitro. Dot blot analyses revealed no AT8 immunoreactivity above background levels in parietal and cerebellar extracts and ∼1/100 of that present in AD. Based on binding to a panel of antibodies, the conformational characteristics of control seeds differed from AD, suggesting a unique underlying assembly, or structural ensemble. Tau's ability to adopt self-replicating conformations under nonpathogenic conditions may reflect a normal function that goes awry in disease states.
Collapse
Affiliation(s)
- Michael S LaCroix
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Brian D Hitt
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Neurology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Joshua D Beaver
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sandi-Jo Estill-Terpack
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kelly Gleason
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Bret M Evers
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Charles L White
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Byron Caughey
- NIH/NIAID, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Neurology, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
31
|
Paterno G, Bell BM, Riley-DiPaolo A, LaVoie MJ, Giasson BI. Polymerization of recombinant tau core fragments in vitro and seeding studies in cultured cells. Front Neurosci 2023; 17:1268360. [PMID: 38161790 PMCID: PMC10757379 DOI: 10.3389/fnins.2023.1268360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
The relative polymerization of specific tau protein cores that define Alzheimer's disease, Pick's disease and corticobasal degeneration were investigated using amyloid fluorometry and electron microscopy. In addition, the relative prion-like activities of polymers comprised of these respective tau protein segments were investigated in a cell-based assay. It is demonstrated that the seeding activities of specific tau core fibrils are affected by the presence of pathogenic tau missense mutations and the microtubule binding domain composition of tau. The unique impact of tau phosphorylation on seeding propensity was also investigated by altering stretches of phospho-mimetic and phospho-null residues in the presence of Alzheimer's disease tau core fibrils. These results have important mechanistic implications for mutation and isoform-specific driven pathogenesis.
Collapse
Affiliation(s)
- Giavanna Paterno
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Brach M. Bell
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Alexis Riley-DiPaolo
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Matthew J. LaVoie
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Benoit I. Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
32
|
Congdon EE, Ji C, Tetlow AM, Jiang Y, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease: current status and future directions. Nat Rev Neurol 2023; 19:715-736. [PMID: 37875627 PMCID: PMC10965012 DOI: 10.1038/s41582-023-00883-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia in older individuals. AD is characterized pathologically by amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain, with associated loss of synapses and neurons, which eventually results in dementia. Many of the early attempts to develop treatments for AD focused on Aβ, but a lack of efficacy of these treatments in terms of slowing disease progression led to a change of strategy towards targeting of tau pathology. Given that tau shows a stronger correlation with symptom severity than does Aβ, targeting of tau is more likely to be efficacious once cognitive decline begins. Anti-tau therapies initially focused on post-translational modifications, inhibition of tau aggregation and stabilization of microtubules. However, trials of many potential drugs were discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting agents in clinical trials are immunotherapies. In this Review, we provide an update on the results from the initial immunotherapy trials and an overview of new therapeutic candidates that are in clinical development, as well as considering future directions for tau-targeting therapies.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
33
|
Shi D, Hao Z, Qi W, Jiang F, Liu K, Shi X. Aerobic exercise combined with chlorogenic acid exerts neuroprotective effects and reverses cognitive decline in Alzheimer's disease model mice (APP/PS1) via the SIRT1/ /PGC-1α/PPARγ signaling pathway. Front Aging Neurosci 2023; 15:1269952. [PMID: 38046466 PMCID: PMC10693339 DOI: 10.3389/fnagi.2023.1269952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/20/2023] [Indexed: 12/05/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disease account for 60-80% of the total number of people with dementia, but its treatment and prevention strategies are still in a long process of exploration. It has been reported that a healthy lifestyle may be an effective non-pharmacological intervention for the prevention and treatment of AD, including increased physical activity and the consumption of polyphenol-rich foods. This study, therefore, investigated the effects of 8 weeks of moderate-intensity aerobic exercise (EX), administration of chlorogenic acid administration (GCA), and a combination of both (EX+GCA) on β-amyloid (Aβ) deposition, inflammatory factors, oxidative stress markers, neuronal damage, and cognitive performance in the brains of AD model mice (APP/PS1) and which signaling pathways may be responsible for these effects. The study used Western blot to detect the expression of signaling pathway-related proteins, enzyme-linked immunosorbent assay to detect the expression of inflammatory factors, hematoxylin-eosin staining to detect hippocampal neuronal morphology, immunohistochemistry to detect changes in Aβ deposition in the hippocampus, an oxidative stress marker kit to detect oxidative stress status and the Morris water maze to detect changes in cognitive performance. This study showed that an 8-week intervention (EX/GCA/EX+GCA) activating the SIRT1/PGC-1α signaling pathway improved oxidative stress, neuroinflammation, Aβ deposition, and cognitive performance in mice. However, there was no obvious difference between the EX and GCA groups. In contrast, the combined EX+GCA intervention was significantly better than phase EX or GCA. Our study suggests that although relief of Aβ deposition, neuroinflammation, oxidative stress, neuronal damage, and cognitive decline could also be achieved with EX or GCA, the combined EX+GCA intervention showed better results. These relief effects on AD-related conditions may be obtained by mediating the activation of the SIRT1/PGC-1α signaling pathway. This study is the first to explore the improvement of AD-related conditions with a combined lifestyle of EX+GCA. This healthy lifestyle could be a candidate option for the treatment of AD.
Collapse
Affiliation(s)
- Dan Shi
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zikang Hao
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Wenxiao Qi
- Sports Training College, Tianjin Institute of Physical Education, Tianjin, China
| | - Fengyi Jiang
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kerui Liu
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Xiao Shi
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
34
|
Björk L, Shirani H, Todarwal Y, Linares M, Vidal R, Ghetti B, Norman P, Klingstedt T, Nilsson KPR. Distinct Heterocyclic Moieties Govern the Selectivity of Thiophene-Vinylene-Based Ligands Towards Aβ or Tau Pathology in Alzheime's Disease. European J Org Chem 2023; 26:e202300583. [PMID: 38585413 PMCID: PMC10997339 DOI: 10.1002/ejoc.202300583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 04/09/2024]
Abstract
Distinct aggregated proteins are correlated with numerous neurodegenerative diseases and the development of ligands that selectively detect these pathological hallmarks is vital. Recently, the synthesis of thiophene-based optical ligands, denoted bi-thiophene-vinyl-benzothiazoles (bTVBTs), that could be utilized for selective assignment of tau pathology in brain tissue with Alzheime's disease (AD) pathology, was reported. Herein, we investigate the ability of these ligands to selectively distinguish tau deposits from aggregated amyloid-β (Aβ), the second AD associated pathological hallmark, when replacing the terminal thiophene moiety with other heterocyclic motifs. The selectivity for tau pathology was reduced when introducing specific heterocyclic motifs, verifying that specific molecular interactions between the ligands and the aggregates are necessary for selective detection of tau deposits. In addition, ligands having certain heterocyclic moieties attached to the central thiophene-vinylene building block displayed selectivity to aggregated Aβ pathology. Our findings provide chemical insights for the development of ligands that can distinguish between aggregated proteinaceous species consisting of different proteins and might also aid in creating novel agents for clinical imaging of tau pathology in AD.
Collapse
Affiliation(s)
- Linnea Björk
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Hamid Shirani
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Yogesh Todarwal
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Mathieu Linares
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, 46202 Indiana, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, 46202 Indiana, USA
| | - Patrick Norman
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
35
|
Davidson R, Krider RI, Borsellino P, Noorda K, Alhwayek G, Vida TA. Untangling Tau: Molecular Insights into Neuroinflammation, Pathophysiology, and Emerging Immunotherapies. Curr Issues Mol Biol 2023; 45:8816-8839. [PMID: 37998730 PMCID: PMC10670294 DOI: 10.3390/cimb45110553] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Neuroinflammation, a core pathological feature observed in several neurodegenerative diseases, including Alzheimer's disease (AD), is rapidly gaining attention as a target in understanding the molecular underpinnings of these disorders. Glial cells, endothelial cells, peripheral immune cells, and astrocytes produce a variety of pro-inflammatory mediators that exacerbate the disease progression. Additionally, microglial cells play a complex role in AD, facilitating the clearance of pathological amyloid-beta peptide (Aβ) plaques and aggregates of the tau protein. Tau proteins, traditionally associated with microtubule stabilization, have come under intense scrutiny for their perturbed roles in neurodegenerative conditions. In this narrative review, we focus on recent advances from molecular insights that have revealed aberrant tau post-translational modifications, such as phosphorylation and acetylation, serving as pathological hallmarks. These modifications also trigger the activation of CNS-resident immune cells, such as microglia and astrocytes substantially contributing to neuroinflammation. This intricate relationship between tau pathologies and neuroinflammation fosters a cascading impact on neural pathophysiology. Furthermore, understanding the molecular mechanisms underpinning tau's influence on neuroinflammation presents a frontier for the development of innovative immunotherapies. Neurodegenerative diseases have been relatively intractable to conventional pharmacology using small molecules. We further comprehensively document the many alternative approaches using immunotherapy targeting tau pathological epitopes and structures with a wide array of antibodies. Clinical trials are discussed using these therapeutic approaches, which have both promising and disappointing outcomes. Future directions for tau immunotherapies may include combining treatments with Aβ immunotherapy, which may result in more significant clinical outcomes for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (R.D.); (R.I.K.); (P.B.); (K.N.); (G.A.)
| |
Collapse
|
36
|
Hitt BD, Gupta A, Singh R, Yang T, Beaver JD, Shang P, White CL, Joachimiak LA, Diamond MI. Anti-tau antibodies targeting a conformation-dependent epitope selectively bind seeds. J Biol Chem 2023; 299:105252. [PMID: 37714465 PMCID: PMC10582770 DOI: 10.1016/j.jbc.2023.105252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/17/2023] Open
Abstract
Neurodegenerative tauopathies are caused by the transition of tau protein from a monomer to a toxic aggregate. They include Alzheimer disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick disease (PiD). We have previously proposed that tau monomer exists in two conformational ensembles: an inert form (Mi), which does not self-assemble, and seed-competent form (Ms), which self-assembles and templates ordered assembly growth. We proposed that cis/trans isomerization of tau at P301, the site of dominant disease-associated S/L missense mutations, might underlie the transition of wild-type tau to a seed-competent state. Consequently, we created monoclonal antibodies using non-natural antigens consisting of fluorinated proline (P∗) at the analogous P270 in repeat 1 (R1), biased toward the trans-configuration at either the R1/R2 (TENLKHQP∗GGGKVQIINKK) or the R1/R3 (TENLKHQP∗GGGKVQIVYK) interfaces. Two antibodies, MD2.2 and MD3.1, efficiently immunoprecipitated soluble seeds from AD and PSP but not CBD or PiD brain samples. The antibodies efficiently stained brain samples of AD, PSP, and PiD, but not CBD. They did not immunoprecipitate or immunostain tau from the control brain. Creation of potent anti-seed antibodies based on the trans-proline epitope implicates local unfolding around P301 in pathogenesis. MD2.2 and MD3.1 may also be useful for therapy and diagnosis.
Collapse
Affiliation(s)
- Brian D Hitt
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Neurology, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Neurology, University of California, Irvine, California, USA
| | - Ankit Gupta
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ruhar Singh
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ting Yang
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Joshua D Beaver
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ping Shang
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA; Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Charles L White
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA; Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, Texas, USA; Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Neurology, UT Southwestern Medical Center, Dallas, Texas, USA; Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
37
|
Wang KW, Zhang G, Kuo MH. Frontotemporal Dementia P301L Mutation Potentiates but Is Not Sufficient to Cause the Formation of Cytotoxic Fibrils of Tau. Int J Mol Sci 2023; 24:14996. [PMID: 37834443 PMCID: PMC10573866 DOI: 10.3390/ijms241914996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
The P301L mutation in tau protein is a prevalent pathogenic mutation associated with neurodegenerative frontotemporal dementia, FTD. The mechanism by which P301L triggers or facilitates neurodegeneration at the molecular level remains unclear. In this work, we examined the effect of the P301L mutation on the biochemical and biological characteristics of pathologically relevant hyperphosphorylated tau. Hyperphosphorylated P301L tau forms cytotoxic aggregates more efficiently than hyperphosphorylated wildtype tau or unphosphorylated P301L tau in vitro. Mechanistic studies establish that hyperphosphorylated P301L tau exacerbates endoplasmic reticulum (ER) stress-associated gene upregulation in a neuroblastoma cell line when compared to wildtype hyperphosphorylated tau treatment. Furthermore, the microtubule cytoskeleton is severely disrupted following hyperphosphorylated P301L tau treatment. A hyperphosphorylated tau aggregation inhibitor, apomorphine, also inhibits the harmful effects caused by P301L hyperphosphorylated tau. In short, the P301L single mutation within the core repeat domain of tau renders the underlying hyperphosphorylated tau more potent in eliciting ER stress and cytoskeleton damage. However, the P301L mutation alone, without hyperphosphorylation, is not sufficient to cause these phenotypes. Understanding the conditions and mechanisms whereby selective mutations aggravate the pathogenic activities of tau can provide pivotal clues on novel strategies for drug development for frontotemporal dementia and other related neurodegenerative tauopathies, including Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; (K.-W.W.); (G.Z.)
| |
Collapse
|
38
|
Ojeda A, Cofré V, Melo F, Caballero L, Fuentealba D, Cornejo A. α-Synuclein Drives Tau's Cytotoxic Aggregates Formation through Hydrophobic Interactions. Chempluschem 2023; 88:e202300257. [PMID: 37708459 DOI: 10.1002/cplu.202300257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Tau and α-synuclein are proteins involved in pathologies known as tauopathies and synucleinopathies, respectively. Moreover, evidence shows that there is a crosstalk between them as is seen in the brains of individuals with sporadic neurodegenerative disorders. Based on that, we present data showing that the hydrophobic α-peptide 71 VTGVTAVAQKTV82 induces the aggregation of the full-length tau fragment in the absence of heparin assessed by ThT. Moreover, AFM images reveal the presence of straight filaments and amorphous aggregates of full-length tau in the presence of the α-peptide. Additionally, ITC experiments showed the interaction of the α-peptide with tau full-length (441 amino acids),4R (amino acids from 244 to 369), and both hexapeptides 275 VQIINK280 and 306 VQIVYK311 through hydrophobic interactions. The Raman spectroscopy spectra showed conformational changes in the Amide region in the aggregates formed with full-length tau and α-syn peptide. Furthermore, the incubation of extracellular aggregates with N2a cells showed morphological differences in the cellular body and the nucleus suggesting cell death. Moreover,, the incubation of different types of aggregates in cell culture provokes the release of Lactate dehydrogenase (LDH). Altogether, we found that α-synuclein peptide can drive the aggregation of full-length tau-provoking morphological and structural changes evoking cytotoxic effects.
Collapse
Affiliation(s)
- Ana Ojeda
- Escuela de Tecnología Médica, Universidad Andrés Bello, Echaurren 183, 8370071 Laboratorio Catem V., Santiago, Chile
| | - Valentina Cofré
- Escuela de Tecnología Médica, Universidad Andrés Bello, Echaurren 183, 8370071 Laboratorio Catem V., Santiago, Chile
| | - Francisco Melo
- Departamento de Física, Universidad de Santiago, Avenida Ecuador 3493, 9170124, Santiago, Chile
- Center for Soft Matter Research, SMAT-C Usach, Avenida Bernardo O'Higgins, 3363 Estación Central, Santiago, Chile
| | - Leonardo Caballero
- Departamento de Física, Universidad de Santiago, Avenida Ecuador 3493, 9170124, Santiago, Chile
- Center for Soft Matter Research, SMAT-C Usach, Avenida Bernardo O'Higgins, 3363 Estación Central, Santiago, Chile
| | - Denis Fuentealba
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Pontificia Universidad Católica de Chile Macul, 7820436, Santiago, Chile
| | - Alberto Cornejo
- Escuela de Tecnología Médica, Universidad Andrés Bello, Echaurren 183, 8370071 Laboratorio Catem V., Santiago, Chile
| |
Collapse
|
39
|
Kulichikhin KY, Malikova OA, Zobnina AE, Zalutskaya NM, Rubel AA. Interaction of Proteins Involved in Neuronal Proteinopathies. Life (Basel) 2023; 13:1954. [PMID: 37895336 PMCID: PMC10608209 DOI: 10.3390/life13101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Proteinopathy is characterized by the accumulation of aggregates of a specific protein in a target organ, tissue, or cell. The aggregation of the same protein can cause different pathologies as single protein can adopt various amyloidogenic, disease-specific conformations. The conformation governs the interaction of amyloid aggregates with other proteins that are prone to misfolding and, thus, determines disease-specific spectrum of concomitant pathologies. In this regard, a detailed description of amyloid protein conformation as well as spectrum of its interaction with other proteins become a key point for drafting of precise description of the disease. The majority of clinical cases of neuronal proteinopathies is caused by the aggregation of rather limited range of amyloidogenic proteins. Here, we provided the characterization of pathologies, related to the aggregation of amyloid β peptide, tau protein, α-synuclein, TDP-43, and amylin, giving a short description of pathologies themselves, recent advances in elucidation of misfolded protein conformation, with emphasis on those protein aggregates extracted from biological samples, what is known about the interaction of this proteins, and the influence of this interaction on the progression of underlying disease and comorbidities.
Collapse
Affiliation(s)
- Konstantin Y. Kulichikhin
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| | - Oksana A. Malikova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| | - Anastasia E. Zobnina
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| | - Natalia M. Zalutskaya
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 192019 St. Petersburg, Russia;
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| |
Collapse
|
40
|
Wojewska MJ, Otero-Jimenez M, Guijarro-Nuez J, Alegre-Abarrategui J. Beyond Strains: Molecular Diversity in Alpha-Synuclein at the Center of Disease Heterogeneity. Int J Mol Sci 2023; 24:13199. [PMID: 37686005 PMCID: PMC10487421 DOI: 10.3390/ijms241713199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Alpha-synucleinopathies (α-synucleinopathies) such as Parkinson's disease (PD), Parkinson's disease dementia (PDD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA) are all characterized by aggregates of alpha-synuclein (α-syn), but display heterogeneous clinical and pathological phenotypes. The mechanism underlying this heterogeneity is thought to be due to diversity in the α-syn strains present across the diseases. α-syn obtained from the post-mortem brain of patients who lived with these conditions is heterogenous, and displays a different protease sensitivity, ultrastructure, cytotoxicity, and seeding potential. The primary aim of this review is to summarize previous studies investigating these concepts, which not only reflect the idea of different syn strains being present, but demonstrate that each property explains a small part of a much larger puzzle. Strains of α-syn appear at the center of the correlation between α-syn properties and the disease phenotype, likely influenced by external factors. There are considerable similarities in the properties of disease-specific α-syn strains, but MSA seems to consistently display more aggressive traits. Elucidating the molecular underpinnings of heterogeneity amongst α-synucleinopathies holds promise for future clinical translation, allowing for the development of personalized medicine approaches tackling the root cause of each α-synucleinopathy.
Collapse
|
41
|
Lathuiliere A, Jo Y, Perbet R, Donahue C, Commins C, Quittot N, Fan Z, Bennett RE, Hyman BT. Specific detection of tau seeding activity in Alzheimer's disease using rationally designed biosensor cells. Mol Neurodegener 2023; 18:53. [PMID: 37553663 PMCID: PMC10408046 DOI: 10.1186/s13024-023-00643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The prion-like propagation of tau in neurodegenerative disorders implies that misfolded pathological tau can recruit the normal protein and template its aggregation. Here, we report the methods for the development of sensitive biosensor cell lines for the detection of tau seeding activity. RESULTS We performed the rational design of novel tau probes based on the current structural knowledge of pathological tau aggregates in Alzheimer's disease. We generated Förster resonance energy transfer (FRET)-based biosensor stable cell lines and characterized their sensitivity, specificity, and overall ability to detect bioactive tau in human samples. As compared to the reference biosensor line, the optimized probe design resulted in an increased efficiency in the detection of tau seeding. The increased sensitivity allowed for the detection of lower amount of tau seeding competency in human brain samples, while preserving specificity for tau seeds found in Alzheimer's disease. CONCLUSIONS This next generation of FRET-based biosensor cells is a novel tool to study tau seeding activity in Alzheimer's disease human samples, especially in samples with low levels of seeding activity, which may help studying early tau-related pathological events.
Collapse
Affiliation(s)
- Aurelien Lathuiliere
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 114 16Th Street, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, USA
- Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Youhwa Jo
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 114 16Th Street, Charlestown, MA, 02129, USA
| | - Romain Perbet
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 114 16Th Street, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, USA
| | - Cameron Donahue
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 114 16Th Street, Charlestown, MA, 02129, USA
| | - Caitlin Commins
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 114 16Th Street, Charlestown, MA, 02129, USA
| | - Noé Quittot
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 114 16Th Street, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, USA
| | - Zhanyun Fan
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 114 16Th Street, Charlestown, MA, 02129, USA
| | - Rachel E Bennett
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 114 16Th Street, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 114 16Th Street, Charlestown, MA, 02129, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Gomez‐Gutierrez R, Ghosh U, Yau W, Gamez N, Do K, Kramm C, Shirani H, Vegas‐Gomez L, Schulz J, Moreno‐Gonzalez I, Gutierrez A, Nilsson KPR, Tycko R, Soto C, Morales R. Two structurally defined Aβ polymorphs promote different pathological changes in susceptible mice. EMBO Rep 2023; 24:e57003. [PMID: 37424505 PMCID: PMC10398671 DOI: 10.15252/embr.202357003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2023] Open
Abstract
Misfolded Aβ is involved in the progression of Alzheimer's disease (AD). However, the role of its polymorphic variants or conformational strains in AD pathogenesis is not fully understood. Here, we study the seeding properties of two structurally defined synthetic misfolded Aβ strains (termed 2F and 3F) using in vitro and in vivo assays. We show that 2F and 3F strains differ in their biochemical properties, including resistance to proteolysis, binding to strain-specific dyes, and in vitro seeding. Injection of these strains into a transgenic mouse model produces different pathological features, namely different rates of aggregation, formation of different plaque types, tropism to specific brain regions, differential recruitment of Aβ40 /Aβ42 peptides, and induction of microglial and astroglial responses. Importantly, the aggregates induced by 2F and 3F are structurally different as determined by ssNMR. Our study analyzes the biological properties of purified Aβ polymorphs that have been characterized at the atomic resolution level and provides relevant information on the pathological significance of misfolded Aβ strains.
Collapse
Affiliation(s)
- Ruben Gomez‐Gutierrez
- Department of NeurologyThe University of Texas Health Science Center at HoustonHoustonTXUSA
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga‐IBIMA, Facultad de CienciasUniversidad de MálagaMálagaSpain
| | - Ujjayini Ghosh
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Wai‐Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Nazaret Gamez
- Department of NeurologyThe University of Texas Health Science Center at HoustonHoustonTXUSA
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga‐IBIMA, Facultad de CienciasUniversidad de MálagaMálagaSpain
| | - Katherine Do
- Department of NeurologyThe University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Carlos Kramm
- Department of NeurologyThe University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Hamid Shirani
- Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
| | - Laura Vegas‐Gomez
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga‐IBIMA, Facultad de CienciasUniversidad de MálagaMálagaSpain
| | - Jonathan Schulz
- Department of NeurologyThe University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Ines Moreno‐Gonzalez
- Department of NeurologyThe University of Texas Health Science Center at HoustonHoustonTXUSA
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga‐IBIMA, Facultad de CienciasUniversidad de MálagaMálagaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA)Universidad Bernardo O'HigginsSantiagoChile
| | - Antonia Gutierrez
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga‐IBIMA, Facultad de CienciasUniversidad de MálagaMálagaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - K Peter R Nilsson
- Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Claudio Soto
- Department of NeurologyThe University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Rodrigo Morales
- Department of NeurologyThe University of Texas Health Science Center at HoustonHoustonTXUSA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA)Universidad Bernardo O'HigginsSantiagoChile
| |
Collapse
|
43
|
Mate De Gerando A, Welikovitch LA, Khasnavis A, Commins C, Glynn C, Chun JE, Perbet R, Hyman BT. Tau seeding and spreading in vivo is supported by both AD-derived fibrillar and oligomeric tau. Acta Neuropathol 2023; 146:191-210. [PMID: 37341831 PMCID: PMC10329061 DOI: 10.1007/s00401-023-02600-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
Insoluble fibrillar tau, the primary constituent of neurofibrillary tangles, has traditionally been thought to be the biologically active, toxic form of tau mediating neurodegeneration in Alzheimer's disease. More recent studies have implicated soluble oligomeric tau species, referred to as high molecular weight (HMW), due to their properties on size-exclusion chromatography, in tau propagation across neural systems. These two forms of tau have never been directly compared. We prepared sarkosyl-insoluble and HMW tau from the frontal cortex of Alzheimer patients and compared their properties using a variety of biophysical and bioactivity assays. Sarkosyl-insoluble fibrillar tau comprises abundant paired-helical filaments (PHF) as quantified by electron microscopy (EM) and is more resistant to proteinase K, compared to HMW tau, which is mostly in an oligomeric form. Sarkosyl-insoluble and HMW tau are nearly equivalent in potency in HEK cell bioactivity assay for seeding aggregates, and their injection reveals similar local uptake into hippocampal neurons in PS19 Tau transgenic mice. However, the HMW preparation appears to be far more potent in inducing a glial response including Clec7a-positive rod microglia in the absence of neurodegeneration or synapse loss and promotes more rapid propagation of misfolded tau to distal, anatomically connected regions, such as entorhinal and perirhinal cortices. These data suggest that soluble HMW tau has similar properties to fibrillar sarkosyl-insoluble tau with regard to tau seeding potential, but may be equal or even more bioactive with respect to propagation across neural systems and activation of glial responses, both relevant to tau-related Alzheimer phenotypes.
Collapse
Affiliation(s)
- Anastasie Mate De Gerando
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Lindsay A Welikovitch
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Anita Khasnavis
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Caitlin Commins
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Calina Glynn
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Joshua E Chun
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Romain Perbet
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Cambridge, MA, USA.
| |
Collapse
|
44
|
Zeng Z, Vijayan V, Tsay K, Frost MP, Quddus A, Albert A, Vigers M, Woerman AL, Han S. CBD and PSP cell-passaged Tau Seeds Generate Heterogeneous Fibrils with A sub-population Adopting Disease Folds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549721. [PMID: 37502998 PMCID: PMC10370138 DOI: 10.1101/2023.07.19.549721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The recent discovery by cryo-electron microscopy that the neuropatho-logical hallmarks of different tauopathies, including Alzheimer's disease, corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP), are caused by unique misfolded conformations of the protein tau is among the most profound developments in neurodegenerative disease research. To capitalize on these discoveries for therapeutic development, one must achieve in vitro replication of tau fibrils that adopt the rep-resentative tauopathy disease folds - a grand challenge. To understand whether the commonly used, but imperfect, fragment of the tau pro-tein, K18, is capable of inducing specific protein folds, fibril seeds derived from CBD- and PSP-infected biosensor cells expressing K18, were used to achieve cell-free assembly of naïve, recombinant 4R tau into fibrils without the addition of any cofactors. Using Double Electron Electron Resonance (DEER) spectroscopy, we discovered that cell-passaged patho-logical seeds generate heterogeneous fibrils that are distinct between the CBD and PSP lysate-seeded fibrils, and are also unique from heparin-induced tau fibril populations. Moreover, the lysate-seeded fibrils contain a characteristic sub-population that resembles either the CBD or PSP disease fold, corresponding with the respective starting patient sam-ple. These findings indicate that CBD and PSP patient-derived fibrils retain strain properties after passaging through K18 reporter cells.
Collapse
|
45
|
Björk L, Klingstedt T, Nilsson KPR. Thiophene-Based Ligands: Design, Synthesis and Their Utilization for Optical Assignment of Polymorphic-Disease-Associated Protein Aggregates. Chembiochem 2023; 24:e202300044. [PMID: 36891883 PMCID: PMC10404026 DOI: 10.1002/cbic.202300044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/10/2023]
Abstract
The development of ligands for detecting protein aggregates is of great interest, as these aggregated proteinaceous species are the pathological hallmarks of several devastating diseases, including Alzheimer's disease. In this regard, thiophene-based ligands have emerged as powerful tools for fluorescent assessment of these pathological entities. The intrinsic conformationally sensitive photophysical properties of poly- and oligothiophenes have allowed optical assignment of disease-associated protein aggregates in tissue sections, as well as real-time in vivo imaging of protein deposits. Herein, we recount the chemical evolution of different generations of thiophene-based ligands, and exemplify their use for the optical distinction of polymorphic protein aggregates. Furthermore, the chemical determinants for achieving a superior fluorescent thiophene-based ligand, as well as the next generation of thiophene-based ligands targeting distinct aggregated species are described. Finally, the directions for future research into the chemical design of thiophene-based ligands that can aid in resolving the scientific challenges around protein aggregation diseases are discussed.
Collapse
Affiliation(s)
- Linnea Björk
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
46
|
Darricau M, Katsinelos T, Raschella F, Milekovic T, Crochemore L, Li Q, Courtine G, McEwan WA, Dehay B, Bezard E, Planche V. Tau seeds from patients induce progressive supranuclear palsy pathology and symptoms in primates. Brain 2023; 146:2524-2534. [PMID: 36382344 PMCID: PMC10232263 DOI: 10.1093/brain/awac428] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022] Open
Abstract
Progressive supranuclear palsy is a primary tauopathy affecting both neurons and glia and is responsible for both motor and cognitive symptoms. Recently, it has been suggested that progressive supranuclear palsy tauopathy may spread in the brain from cell to cell in a 'prion-like' manner. However, direct experimental evidence of this phenomenon, and its consequences on brain functions, is still lacking in primates. In this study, we first derived sarkosyl-insoluble tau fractions from post-mortem brains of patients with progressive supranuclear palsy. We also isolated the same fraction from age-matched control brains. Compared to control extracts, the in vitro characterization of progressive supranuclear palsy-tau fractions demonstrated a high seeding activity in P301S-tau expressing cells, displaying after incubation abnormally phosphorylated (AT8- and AT100-positivity), misfolded, filamentous (pentameric formyl thiophene acetic acid positive) and sarkosyl-insoluble tau. We bilaterally injected two male rhesus macaques in the supranigral area with this fraction of progressive supranuclear palsy-tau proteopathic seeds, and two other macaques with the control fraction. The quantitative analysis of kinematic features revealed that progressive supranuclear palsy-tau injected macaques exhibited symptoms suggestive of parkinsonism as early as 6 months after injection, remaining present until euthanasia at 18 months. An object retrieval task showed the progressive appearance of a significant dysexecutive syndrome in progressive supranuclear palsy-tau injected macaques compared to controls. We found AT8-positive staining and 4R-tau inclusions only in progressive supranuclear palsy-tau injected macaques. Characteristic pathological hallmarks of progressive supranuclear palsy, including globose and neurofibrillary tangles, tufted astrocytes and coiled bodies, were found close to the injection sites but also in connected brain regions that are known to be affected in progressive supranuclear palsy (striatum, pallidum, thalamus). Interestingly, while glial AT8-positive lesions were the most frequent near the injection site, we found mainly neuronal inclusions in the remote brain area, consistent with a neuronal transsynaptic spreading of the disease. Our results demonstrate that progressive supranuclear palsy patient-derived tau aggregates can induce motor and behavioural impairments in non-human primates related to the prion-like seeding and spreading of typical pathological progressive supranuclear palsy lesions. This pilot study paves the way for supporting progressive supranuclear palsy-tau injected macaque as a relevant animal model to accelerate drug development targeting this rare and fatal neurodegenerative disease.
Collapse
Affiliation(s)
- Morgane Darricau
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Taxiarchis Katsinelos
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, CB2 0AH Cambridge, UK
| | - Flavio Raschella
- Swiss Federal Institute of Technology (EPFL), CH-1011 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CH-1011 Lausanne, Switzerland
- Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland
| | - Tomislav Milekovic
- Swiss Federal Institute of Technology (EPFL), CH-1011 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CH-1011 Lausanne, Switzerland
- Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland
| | - Louis Crochemore
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Qin Li
- Motac Neuroscience, F-33000 Bordeaux, France
| | - Grégoire Courtine
- Swiss Federal Institute of Technology (EPFL), CH-1011 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CH-1011 Lausanne, Switzerland
- Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland
| | - William A McEwan
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, CB2 0AH Cambridge, UK
| | - Benjamin Dehay
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Erwan Bezard
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- Motac Neuroscience, F-33000 Bordeaux, France
| | - Vincent Planche
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CHU de Bordeaux, Pôle de Neurosciences Cliniques, Centre Mémoire de Ressources et de Recherche, F-33000 Bordeaux, France
| |
Collapse
|
47
|
Mate de Gerando A, Welikovitch LA, Khasnavis A, Commins C, Glynn C, Chun JE, Perbet R, Hyman BT. Tau seeding and spreading in vivo is supported by both AD-derived fibrillar and oligomeric tau. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534418. [PMID: 37034629 PMCID: PMC10081282 DOI: 10.1101/2023.03.28.534418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Insoluble fibrillar tau, the primary constituent of neurofibrillary tangles, has traditionally been thought to be the biologically active, toxic form of tau mediating neurodegeneration in Alzheimer's disease. More recent studies have implicated soluble oligomeric tau species, referred to as high molecular weight (HMW) due to its properties on size exclusion chromatography, in tau propagation across neural systems. These two forms of tau have never been directly compared. We prepared sarkosyl insoluble and HMW tau from the frontal cortex of Alzheimer patients and compared their properties using a variety of biophysical and bioactivity assays. Sarkosyl insoluble fibrillar tau is comprised of abundant paired helical filaments (PHF) as quantified by electron microscopy (EM), and is more resistant to proteinase K, compared to HMW tau which is mostly in an oligomeric form. Sarkosyl insoluble and HMW tau are nearly equivalent in potency in a HEK cell bioactivity assay for seeding aggregates and their injection reveals similar local uptake into hippocampal neurons in PS19 Tau transgenic mice. However, the HMW preparation appears to be far more potent in inducing a glial response including Clec7a-positive rod-microglia in the absence of neurodegeneration or synapse loss and promotes more rapid propagation of misfolded tau to distal, anatomically connected regions, such as entorhinal and perirhinal cortices. These data suggest that soluble HMW tau has similar properties to fibrillar sarkosyl insoluble tau with regard to tau seeding potential but may be equal or even more bioactive with respect to propagation across neural systems and activation of glial responses, both relevant tau-related Alzheimer phenotypes.
Collapse
|
48
|
Song Z, Wang KW, Hagar HTC, Chen HR, Kuan CY, Zhang K, Kuo MH. Hyperphosphorylated tau Inflicts Intracellular Stress Responses That Are Mitigated by Apomorphine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.13.540661. [PMID: 37292976 PMCID: PMC10245566 DOI: 10.1101/2023.05.13.540661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlie neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs. Methods Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack. Results Upon p-tau uptake, the intracellular calcium levels rose promptly. Gene expression analyses revealed that p-tau potently triggered endoplasmic reticulum (ER) stress, Unfolded Protein Response (UPR), ER stress-associated apoptosis, and pro-inflammation in cells. Proteomics studies showed that p-tau diminished heme oxygenase-1 (HO-1), an ER stress associated anti-inflammation and anti-oxidative stress regulator, while stimulated the accumulation of MIOS and other proteins. P-tau-induced ER stress-associated apoptosis and pro-inflammation are ameliorated by apomorphine, a brain-permeable prescription drug widely used to treat Parkinson's disease symptoms, and by overexpression of HO-1. Conclusion Our results reveal probable cellular functions targeted by hyperphosphorylated tau. Some of these dysfunctions and stress responses have been linked to neurodegeneration in Alzheimer's disease. The observations that the ill effects of p-tau can be mitigated by a small compound and by overexpressing HO-1 that is otherwise diminished in the treated cells inform new directions of Alzheimer's disease drug discovery.
Collapse
|
49
|
Abbate C. The Adult Neurogenesis Theory of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221279. [PMID: 37182879 DOI: 10.3233/jad-221279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alzheimer's disease starts in neural stem cells (NSCs) in the niches of adult neurogenesis. All primary factors responsible for pathological tau hyperphosphorylation are inherent to adult neurogenesis and migration. However, when amyloid pathology is present, it strongly amplifies tau pathogenesis. Indeed, the progressive accumulation of extracellular amyloid-β deposits in the brain triggers a state of chronic inflammation by microglia. Microglial activation has a significant pro-neurogenic effect that fosters the process of adult neurogenesis and supports neuronal migration. Unfortunately, this "reactive" pro-neurogenic activity ultimately perturbs homeostatic equilibrium in the niches of adult neurogenesis by amplifying tau pathogenesis in AD. This scenario involves NSCs in the subgranular zone of the hippocampal dentate gyrus in late-onset AD (LOAD) and NSCs in the ventricular-subventricular zone along the lateral ventricles in early-onset AD (EOAD), including familial AD (FAD). Neuroblasts carrying the initial seed of tau pathology travel throughout the brain via neuronal migration driven by complex signals and convey the disease from the niches of adult neurogenesis to near (LOAD) or distant (EOAD) brain regions. In these locations, or in close proximity, a focus of degeneration begins to develop. Then, tau pathology spreads from the initial foci to large neuronal networks along neural connections through neuron-to-neuron transmission.
Collapse
Affiliation(s)
- Carlo Abbate
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
50
|
Padmanabhan P, Götz J. Clinical relevance of animal models in aging-related dementia research. NATURE AGING 2023; 3:481-493. [PMID: 37202516 DOI: 10.1038/s43587-023-00402-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/21/2023] [Indexed: 05/20/2023]
Abstract
Alzheimer's disease (AD) and other, less prevalent dementias are complex age-related disorders that exhibit multiple etiologies. Over the past decades, animal models have provided pathomechanistic insight and evaluated countless therapeutics; however, their value is increasingly being questioned due to the long history of drug failures. In this Perspective, we dispute this criticism. First, the utility of the models is limited by their design, as neither the etiology of AD nor whether interventions should occur at a cellular or network level is fully understood. Second, we highlight unmet challenges shared between animals and humans, including impeded drug transport across the blood-brain barrier, limiting effective treatment development. Third, alternative human-derived models also suffer from the limitations mentioned above and can only act as complementary resources. Finally, age being the strongest AD risk factor should be better incorporated into the experimental design, with computational modeling expected to enhance the value of animal models.
Collapse
Affiliation(s)
- Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|