1
|
Shearer V, Yu CH, Han X, Sczepanski JT. The clinical potential of l-oligonucleotides: challenges and opportunities. Chem Sci 2024:d4sc05157b. [PMID: 39479156 PMCID: PMC11514577 DOI: 10.1039/d4sc05157b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Chemically modified nucleotides are central to the development of biostable research tools and oligonucleotide therapeutics. In this context, l-oligonucleotides, the synthetic enantiomer of native d-nucleic acids, hold great promise. As enantiomers, l-oligonucleotides share the same physical and chemical properties as their native counterparts, yet their inverted l-(deoxy)ribose sugars afford them orthogonality towards the stereospecific environment of biology. Notably, l-oligonucleotides are highly resistant to degradation by cellular nucleases, providing them with superior biostability. As a result, l-oligonucleotides are being increasingly utilized for the development of diverse biomedical technologies, including molecular imaging tools, diagnostic biosensors, and aptamer-based therapeutics. Herein, we present recent such examples that highlight the clinical potential of l-oligonucleotides. Additionally, we provide our perspective on the remaining challenges and practical considerations currently associated with the use of l-oligonucleotides and explore potential solutions that will lead to the broader adoption of l-oligonucleotides in clinical applications.
Collapse
Affiliation(s)
- Victoria Shearer
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Chen-Hsu Yu
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Xuan Han
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | | |
Collapse
|
2
|
Didarian R, Ozbek HK, Ozalp VC, Erel O, Yildirim-Tirgil N. Enhanced SELEX Platforms for Aptamer Selection with Improved Characteristics: A Review. Mol Biotechnol 2024:10.1007/s12033-024-01256-w. [PMID: 39152308 DOI: 10.1007/s12033-024-01256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/26/2024] [Indexed: 08/19/2024]
Abstract
This review delves into the advancements in molecular recognition through enhanced SELEX (Systematic Evolution of Ligands by Exponential Enrichment) platforms and post-aptamer modifications. Aptamers, with their superior specificity and affinity compared to antibodies, are central to this discussion. Despite the advantages of the SELEX process-encompassing stages like ssDNA library preparation, incubation, separation, and PCR amplification-it faces challenges, such as nuclease susceptibility. To address these issues and propel aptamer technology forward, we examine next-generation SELEX platforms, including microfluidic-based SELEX, capillary electrophoresis SELEX, cell-based aptamer selection, counter-SELEX, in vivo SELEX, and high-throughput sequencing SELEX, highlighting their respective merits and innovations. Furthermore, this article underscores the significance of post-aptamer modifications, particularly chemical strategies that enhance aptamer stability, reduce renal filtration, and expand their target range, thereby broadening their utility in diagnostics, therapeutics, and nanotechnology. By synthesizing these advanced SELEX platforms and modifications, this review illuminates the dynamic progress in aptamer research and outlines the ongoing efforts to surmount existing challenges and enhance their clinical applicability, charting a path for future breakthroughs in this evolving field.
Collapse
Affiliation(s)
- Reza Didarian
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Ankara Yıldırım Beyazıt University, Ayvalı Mh. Takdir Cad.150 Sk. No:5, Etlik-Keçiören, Ankara, 06010, Türkiye
| | - Hatice K Ozbek
- Metallurgical and Materials Engineering Department, Faculty of Engineering and Natural Sciences, Ankara Yıldırım Beyazıt University, Ankara, 06010, Türkiye
| | - Veli C Ozalp
- Department of Medical Biology, School of Medicine, Atilim University, Ankara, 06830, Türkiye
| | - Ozcan Erel
- Department of Biochemistry, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, 06010, Türkiye
| | - Nimet Yildirim-Tirgil
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Ankara Yıldırım Beyazıt University, Ayvalı Mh. Takdir Cad.150 Sk. No:5, Etlik-Keçiören, Ankara, 06010, Türkiye.
| |
Collapse
|
3
|
Yudkina AV, Kim DV, Zharkov TD, Zharkov DO, Endutkin AV. Probing the Conformational Restraints of DNA Damage Recognition with β-L-Nucleotides. Int J Mol Sci 2024; 25:6006. [PMID: 38892193 PMCID: PMC11172447 DOI: 10.3390/ijms25116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The DNA building blocks 2'-deoxynucleotides are enantiomeric, with their natural β-D-configuration dictated by the sugar moiety. Their synthetic β-L-enantiomers (βLdNs) can be used to obtain L-DNA, which, when fully substituted, is resistant to nucleases and is finding use in many biosensing and nanotechnology applications. However, much less is known about the enzymatic recognition and processing of individual βLdNs embedded in D-DNA. Here, we address the template properties of βLdNs for several DNA polymerases and the ability of base excision repair enzymes to remove these modifications from DNA. The Klenow fragment was fully blocked by βLdNs, whereas DNA polymerase κ bypassed them in an error-free manner. Phage RB69 DNA polymerase and DNA polymerase β treated βLdNs as non-instructive but the latter enzyme shifted towards error-free incorporation on a gapped DNA substrate. DNA glycosylases and AP endonucleases did not process βLdNs. DNA glycosylases sensitive to the base opposite their cognate lesions also did not recognize βLdNs as a correct pairing partner. Nevertheless, when placed in a reporter plasmid, pyrimidine βLdNs were resistant to repair in human cells, whereas purine βLdNs appear to be partly repaired. Overall, βLdNs are unique modifications that are mostly non-instructive but have dual non-instructive/instructive properties in special cases.
Collapse
Affiliation(s)
- Anna V. Yudkina
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Daria V. Kim
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
| | - Timofey D. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
| |
Collapse
|
4
|
Giordano FA, Layer JP, Leonardelli S, Friker LL, Turiello R, Corvino D, Zeyen T, Schaub C, Müller W, Sperk E, Schmeel LC, Sahm K, Oster C, Kebir S, Hambsch P, Pietsch T, Bisdas S, Platten M, Glas M, Seidel C, Herrlinger U, Hölzel M. L-RNA aptamer-based CXCL12 inhibition combined with radiotherapy in newly-diagnosed glioblastoma: dose escalation of the phase I/II GLORIA trial. Nat Commun 2024; 15:4210. [PMID: 38806504 PMCID: PMC11133480 DOI: 10.1038/s41467-024-48416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
The chemokine CXCL12 promotes glioblastoma (GBM) recurrence after radiotherapy (RT) by facilitating vasculogenesis. Here we report outcomes of the dose-escalation part of GLORIA (NCT04121455), a phase I/II trial combining RT and the CXCL12-neutralizing aptamer olaptesed pegol (NOX-A12; 200/400/600 mg per week) in patients with incompletely resected, newly-diagnosed GBM lacking MGMT methylation. The primary endpoint was safety, secondary endpoints included maximum tolerable dose (MTD), recommended phase II dose (RP2D), NOX-A12 plasma levels, topography of recurrence, tumor vascularization, neurologic assessment in neuro-oncology (NANO), quality of life (QOL), median progression-free survival (PFS), 6-months PFS and overall survival (OS). Treatment was safe with no dose-limiting toxicities or treatment-related deaths. The MTD has not been reached and, thus, 600 mg per week of NOX-A12 was established as RP2D for the ongoing expansion part of the trial. With increasing NOX-A12 dose levels, a corresponding increase of NOX-A12 plasma levels was observed. Of ten patients enrolled, nine showed radiographic responses, four reached partial remission. All but one patient (90%) showed at best response reduced perfusion values in terms of relative cerebral blood volume (rCBV). The median PFS was 174 (range 58-260) days, 6-month PFS was 40.0% and the median OS 389 (144-562) days. In a post-hoc exploratory analysis of tumor tissue, higher frequency of CXCL12+ endothelial and glioma cells was significantly associated with longer PFS under NOX-A12. Our data imply safety of NOX-A12 and its efficacy signal warrants further investigation.
Collapse
Affiliation(s)
- Frank A Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| | - Julian P Layer
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sonia Leonardelli
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Lea L Friker
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Neuropathology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Roberta Turiello
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Dillon Corvino
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thomas Zeyen
- Department of Neurooncology, Center for Neurology, University Hospital Bonn, Bonn, Germany
| | - Christina Schaub
- Department of Neurooncology, Center for Neurology, University Hospital Bonn, Bonn, Germany
| | - Wolf Müller
- Institute of Neuropathology, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Elena Sperk
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Katharina Sahm
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Christoph Oster
- Division of Clinical Neurooncology, Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS) and West German Cancer Center, German Cancer Consortium, Partner Site Essen, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sied Kebir
- Division of Clinical Neurooncology, Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS) and West German Cancer Center, German Cancer Consortium, Partner Site Essen, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Peter Hambsch
- Department of Radiation Oncology, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sotirios Bisdas
- Lysholm Department of Neuroradiology, University College London, London, UK
| | - Michael Platten
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS) and West German Cancer Center, German Cancer Consortium, Partner Site Essen, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Clemens Seidel
- Department of Radiation Oncology, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Ulrich Herrlinger
- Department of Neurooncology, Center for Neurology, University Hospital Bonn, Bonn, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Wang B, Kobeissy F, Golpich M, Cai G, Li X, Abedi R, Haskins W, Tan W, Benner SA, Wang KKW. Aptamer Technologies in Neuroscience, Neuro-Diagnostics and Neuro-Medicine Development. Molecules 2024; 29:1124. [PMID: 38474636 DOI: 10.3390/molecules29051124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Aptamers developed using in vitro Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology are single-stranded nucleic acids 10-100 nucleotides in length. Their targets, often with specificity and high affinity, range from ions and small molecules to proteins and other biological molecules as well as larger systems, including cells, tissues, and animals. Aptamers often rival conventional antibodies with improved performance, due to aptamers' unique biophysical and biochemical properties, including small size, synthetic accessibility, facile modification, low production cost, and low immunogenicity. Therefore, there is sustained interest in engineering and adapting aptamers for many applications, including diagnostics and therapeutics. Recently, aptamers have shown promise as early diagnostic biomarkers and in precision medicine for neurodegenerative and neurological diseases. Here, we critically review neuro-targeting aptamers and their potential applications in neuroscience research, neuro-diagnostics, and neuro-medicine. We also discuss challenges that must be overcome, including delivery across the blood-brain barrier, increased affinity, and improved in vivo stability and in vivo pharmacokinetic properties.
Collapse
Affiliation(s)
- Bang Wang
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- The Foundation for Applied Molecular Evolution, 1501 NW 68th Terrace, Gainesville, FL 32605, USA
| | - Firas Kobeissy
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Gainesville, FL 32608, USA
- Center for Visual and Neurocognitive Rehabilitation (CVNR), Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA 30033, USA
| | - Mojtaba Golpich
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Guangzheng Cai
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xiaowei Li
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Reem Abedi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| | - William Haskins
- Gryphon Bio, Inc., 611 Gateway Blvd. Suite 120 #253, South San Francisco, CA 94080, USA
| | - Weihong Tan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou 310022, China
| | - Steven A Benner
- The Foundation for Applied Molecular Evolution, 1501 NW 68th Terrace, Gainesville, FL 32605, USA
| | - Kevin K W Wang
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Gainesville, FL 32608, USA
- Center for Visual and Neurocognitive Rehabilitation (CVNR), Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA 30033, USA
| |
Collapse
|
6
|
Doherty C, Wilbanks B, Khatua S, Maher LJ. Aptamers in neuro-oncology: An emerging therapeutic modality. Neuro Oncol 2024; 26:38-54. [PMID: 37619244 PMCID: PMC10768989 DOI: 10.1093/neuonc/noad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 08/26/2023] Open
Abstract
Despite recent advances in the understanding of brain tumor pathophysiology, challenges associated with tumor location and characteristics have prevented significant improvement in neuro-oncology therapies. Aptamers are short, single-stranded DNA or RNA oligonucleotides that fold into sequence-specific, 3-dimensional shapes that, like protein antibodies, interact with targeted ligands with high affinity and specificity. Aptamer technology has recently been applied to neuro-oncology as a potential approach to innovative therapy. Preclinical research has demonstrated the ability of aptamers to overcome some obstacles that have traditionally rendered neuro-oncology therapies ineffective. Potential aptamer advantages include their small size, ability in some cases to penetrate the blood-brain barrier, inherent lack of immunogenicity, and applicability for discovering novel biomarkers. Herein, we review recent reports of aptamer applications in neuro-oncology including aptamers found by cell- and in vivo- Systematic Evolution of Ligands by Exponential Enrichment approaches, aptamer-targeted therapeutic delivery modalities, and aptamers in diagnostics and imaging. We further identify crucial future directions for the field that will be important to advance aptamer-based drugs or tools to clinical application in neuro-oncology.
Collapse
Affiliation(s)
- Caroline Doherty
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Medical Scientist Training Program, Mayo Clinic Graduate School of Biomedical Sciences and Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Brandon Wilbanks
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Biochemistry and Molecular Biology Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Louis James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
8
|
Targeted Two-Step Delivery of Oncotheranostic Nano-PLGA for HER2-Positive Tumor Imaging and Therapy In Vivo: Improved Effectiveness Compared to One-Step Strategy. Pharmaceutics 2023; 15:pharmaceutics15030833. [PMID: 36986694 PMCID: PMC10053351 DOI: 10.3390/pharmaceutics15030833] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Therapy for aggressive metastatic breast cancer remains a great challenge for modern biomedicine. Biocompatible polymer nanoparticles have been successfully used in clinic and are seen as a potential solution. Specifically, researchers are exploring the development of chemotherapeutic nanoagents targeting the membrane-associated receptors of cancer cells, such as HER2. However, there are no targeting nanomedications that have been approved for human cancer therapy. Novel strategies are being developed to alter the architecture of agents and optimize their systemic administration. Here, we describe a combination of these approaches, namely, the design of a targeted polymer nanocarrier and a method for its systemic delivery to the tumor site. Namely, PLGA nanocapsules loaded with a diagnostic dye, Nile Blue, and a chemotherapeutic compound, doxorubicin, are used for two-step targeted delivery using the concept of tumor pre-targeting through the barnase/barstar protein “bacterial superglue”. The first pre-targeting component consists of an anti-HER2 scaffold protein, DARPin9_29 fused with barstar, Bs-DARPin9_29, and the second component comprises chemotherapeutic PLGA nanocapsules conjugated to barnase, PLGA-Bn. The efficacy of this system was evaluated in vivo. To this aim, we developed an immunocompetent BALB/c mouse tumor model with a stable expression of human HER2 oncomarkers to test the potential of two-step delivery of oncotheranostic nano-PLGA. In vitro and ex vivo studies confirmed HER2 receptor stable expression in the tumor, making it a feasible tool for HER2-targeted drug evaluation. We demonstrated that two-step delivery was more effective than one-step delivery for both imaging and tumor therapy: two-step delivery had higher imaging capabilities than one-step and a tumor growth inhibition of 94.9% in comparison to 68.4% for the one-step strategy. The barnase*barstar protein pair has been proven to possess excellent biocompatibility, as evidenced by the successful completion of biosafety tests assessing immunogenicity and hemotoxicity. This renders the protein pair a highly versatile tool for pre-targeting tumors with various molecular profiles, thereby enabling the development of personalized medicine.
Collapse
|
9
|
Yu CH, Sczepanski JT. The influence of chirality on the behavior of oligonucleotides inside cells: revealing the potent cytotoxicity of G-rich l-RNA. Chem Sci 2023; 14:1145-1154. [PMID: 36756313 PMCID: PMC9891384 DOI: 10.1039/d2sc05511b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022] Open
Abstract
Due to their intrinsic nuclease resistance, mirror image l-oligonucleotides are being increasingly employed in the development of biomedical research tools and therapeutics. Yet, the influence of chirality on the behavior of oligonucleotides in living systems, and specifically, the extent to which l-oligonucleotides interact with endogenous biomacromolecules and the resulting consequences remain unknown. In this study, we characterized the intracellular behavior of l-oligonucleotides for the first time, revealing important chirality-dependent effects on oligonucleotide cytotoxicity. We show that exogenously delivered l-oligonucleotides have the potential to be highly cytotoxic, which is dependent on backbone chemistry, sequence, and structure. Notably, for the sequences tested, we found that single-stranded G-rich l-RNAs are more cytotoxic than their d-DNA/RNA counterparts, exhibiting low nanomolar EC50 values. Importantly, RNA-seq analysis of differentially expressed genes suggests that G-rich l-RNAs stimulate an innate immune response and pro-inflammatory cytokine production. These data not only challenge the general perception that mirror image l-oligonucleotides are nontoxic and nonimmunogenic, but also reveal previously unrecognized therapeutic opportunities. Moreover, by establishing sequence/structure toxicity relationships, this work will guide how future l-oligonucleotide-based biotechnologies are designed and applied.
Collapse
Affiliation(s)
- Chen-Hsu Yu
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | | |
Collapse
|
10
|
Shraim AS, Abdel Majeed BA, Al-Binni M, Hunaiti A. Therapeutic Potential of Aptamer-Protein Interactions. ACS Pharmacol Transl Sci 2022; 5:1211-1227. [PMID: 36524009 PMCID: PMC9745894 DOI: 10.1021/acsptsci.2c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Indexed: 11/06/2022]
Abstract
Aptamers are single-stranded oligonucleotides (RNA or DNA) with a typical length between 25 and 100 nucleotides which fold into three-dimensional structures capable of binding to target molecules. Specific aptamers can be isolated against a large variety of targets through efficient and relatively cheap methods, and they demonstrate target-binding affinities that sometimes surpass those of antibodies. Consequently, interest in aptamers has surged over the past three decades, and their application has shown promise in advancing knowledge in target analysis, designing therapeutic interventions, and bioengineering. With emphasis on their therapeutic applications, aptamers are emerging as a new innovative class of therapeutic agents with promising biochemical and biological properties. Aptamers have the potential of providing a feasible alternative to antibody- and small-molecule-based therapeutics given their binding specificity, stability, low toxicity, and apparent non-immunogenicity. This Review examines the general properties of aptamers and aptamer-protein interactions that help to understand their binding characteristics and make them important therapeutic candidates.
Collapse
Affiliation(s)
- Ala’a S. Shraim
- Department
of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328 Amman, Jordan
- Pharmacological
and Diagnostic Research Center (PDRC), Al-Ahliyya
Amman University, 19328 Amman, Jordan
| | - Bayan A. Abdel Majeed
- Department
of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328 Amman, Jordan
- Pharmacological
and Diagnostic Research Center (PDRC), Al-Ahliyya
Amman University, 19328 Amman, Jordan
| | - Maysaa’
Adnan Al-Binni
- Department
of Clinical Laboratory Sciences, School of Science, The University of Jordan, 11942 Amman, Jordan
| | - Abdelrahim Hunaiti
- Department
of Clinical Laboratory Sciences, School of Science, The University of Jordan, 11942 Amman, Jordan
| |
Collapse
|
11
|
Bege M, Borbás A. The Medicinal Chemistry of Artificial Nucleic Acids and Therapeutic Oligonucleotides. Pharmaceuticals (Basel) 2022; 15:ph15080909. [PMID: 35893733 PMCID: PMC9330994 DOI: 10.3390/ph15080909] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Nucleic acids play a central role in human biology, making them suitable and attractive tools for therapeutic applications. While conventional drugs generally target proteins and induce transient therapeutic effects, nucleic acid medicines can achieve long-lasting or curative effects by targeting the genetic bases of diseases. However, native oligonucleotides are characterized by low in vivo stability due to nuclease sensitivity and unfavourable physicochemical properties due to their polyanionic nature, which are obstacles to their therapeutic use. A myriad of synthetic oligonucleotides have been prepared in the last few decades and it has been shown that proper chemical modifications to either the nucleobase, the ribofuranose unit or the phosphate backbone can protect the nucleic acids from degradation, enable efficient cellular uptake and target localization ensuring the efficiency of the oligonucleotide-based therapy. In this review, we present a summary of structure and properties of artificial nucleic acids containing nucleobase, sugar or backbone modifications, and provide an overview of the structure and mechanism of action of approved oligonucleotide drugs including gene silencing agents, aptamers and mRNA vaccines.
Collapse
Affiliation(s)
- Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
- National Laboratory of Virology, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
12
|
Aljohani MM, Cialla-May D, Popp J, Chinnappan R, Al-Kattan K, Zourob M. Aptamers: Potential Diagnostic and Therapeutic Agents for Blood Diseases. Molecules 2022; 27:383. [PMID: 35056696 PMCID: PMC8778139 DOI: 10.3390/molecules27020383] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023] Open
Abstract
Aptamers are RNA/DNA oligonucleotide molecules that specifically bind to a targeted complementary molecule. As potential recognition elements with promising diagnostic and therapeutic applications, aptamers, such as monoclonal antibodies, could provide many treatment and diagnostic options for blood diseases. Aptamers present several superior features over antibodies, including a simple in vitro selection and production, ease of modification and conjugation, high stability, and low immunogenicity. Emerging as promising alternatives to antibodies, aptamers could overcome the present limitations of monoclonal antibody therapy to provide novel diagnostic, therapeutic, and preventive treatments for blood diseases. Researchers in several biomedical areas, such as biomarker detection, diagnosis, imaging, and targeted therapy, have widely investigated aptamers, and several aptamers have been developed over the past two decades. One of these is the pegaptanib sodium injection, an aptamer-based therapeutic that functions as an anti-angiogenic medicine, and it is the first aptamer approved by the U.S. Food and Drug Administration (FDA) for therapeutic use. Several other aptamers are now in clinical trials. In this review, we highlight the current state of aptamers in the clinical trial program and introduce some promising aptamers currently in pre-clinical development for blood diseases.
Collapse
Affiliation(s)
- Maher M. Aljohani
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (D.C.-M.); (J.P.)
- Department of Pathology, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| | - Dana Cialla-May
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (D.C.-M.); (J.P.)
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (D.C.-M.); (J.P.)
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Center for Applied Research, InfectoGnostics Research Campus Jena, University of Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Raja Chinnappan
- Department of Chemistry, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia;
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
13
|
Dantsu Y, Zhang Y, Zhang W. Advances in Therapeutic L-Nucleosides and L-Nucleic Acids with Unusual Handedness. Genes (Basel) 2021; 13:46. [PMID: 35052385 PMCID: PMC8774879 DOI: 10.3390/genes13010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022] Open
Abstract
Nucleic-acid-based small molecule and oligonucleotide therapies are attractive topics due to their potential for effective target of disease-related modules and specific control of disease gene expression. As the non-naturally occurring biomolecules, modified DNA/RNA nucleoside and oligonucleotide analogues composed of L-(deoxy)riboses, have been designed and applied as innovative therapeutics with superior plasma stability, weakened cytotoxicity, and inexistent immunogenicity. Although all the chiral centers in the backbone are mirror converted from the natural D-nucleic acids, L-nucleic acids are equipped with the same nucleobases (A, G, C and U or T), which are critical to maintain the programmability and form adaptable tertiary structures for target binding. The types of L-nucleic acid drugs are increasingly varied, from chemically modified nucleoside analogues that interact with pathogenic polymerases to nanoparticles containing hundreds of repeating L-nucleotides that circulate durably in vivo. This article mainly reviews three different aspects of L-nucleic acid therapies, including pharmacological L-nucleosides, Spiegelmers as specific target-binding aptamers, and L-nanostructures as effective drug-delivery devices.
Collapse
Affiliation(s)
- Yuliya Dantsu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (Y.D.); (Y.Z.)
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (Y.D.); (Y.Z.)
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (Y.D.); (Y.Z.)
- Melvin and Bren Simon Cancer Center, 535 Barnhill Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Kabza AM, Kundu N, Zhong W, Sczepanski JT. Integration of chemically modified nucleotides with DNA strand displacement reactions for applications in living systems. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1743. [PMID: 34328690 DOI: 10.1002/wnan.1743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 01/21/2023]
Abstract
Watson-Crick base pairing rules provide a powerful approach for engineering DNA-based nanodevices with programmable and predictable behaviors. In particular, DNA strand displacement reactions have enabled the development of an impressive repertoire of molecular devices with complex functionalities. By relying on DNA to function, dynamic strand displacement devices represent powerful tools for the interrogation and manipulation of biological systems. Yet, implementation in living systems has been a slow process due to several persistent challenges, including nuclease degradation. To circumvent these issues, researchers are increasingly turning to chemically modified nucleotides as a means to increase device performance and reliability within harsh biological environments. In this review, we summarize recent progress toward the integration of chemically modified nucleotides with DNA strand displacement reactions, highlighting key successes in the development of robust systems and devices that operate in living cells and in vivo. We discuss the advantages and disadvantages of commonly employed modifications as they pertain to DNA strand displacement, as well as considerations that must be taken into account when applying modified oligonucleotide to living cells. Finally, we explore how chemically modified nucleotides fit into the broader goal of bringing dynamic DNA nanotechnology into the cell, and the challenges that remain. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Adam M Kabza
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Nandini Kundu
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Wenrui Zhong
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
15
|
Tran TTT, Delgado A, Jeong S. Organ-on-a-Chip: The Future of Therapeutic Aptamer Research? BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00016-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Using Aptamers as a Novel Method for Determining GnRH/LH Pulsatility. Int J Mol Sci 2020; 21:ijms21197394. [PMID: 33036411 PMCID: PMC7582658 DOI: 10.3390/ijms21197394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022] Open
Abstract
Aptamers are a novel technology enabling the continuous measurement of analytes in blood and other body compartments, without the need for repeated sampling and the associated reagent costs of traditional antibody-based methodologies. Aptamers are short single-stranded synthetic RNA or DNA that recognise and bind to specific targets. The conformational changes that can occur upon aptamer–ligand binding are transformed into chemical, fluorescent, colour changes and other readouts. Aptamers have been developed to detect and measure a variety of targets in vitro and in vivo. Gonadotropin-releasing hormone (GnRH) is a pulsatile hypothalamic hormone that is essential for normal fertility but difficult to measure in the peripheral circulation. However, pulsatile GnRH release results in pulsatile luteinizing hormone (LH) release from the pituitary gland. As such, LH pulsatility is the clinical gold standard method to determine GnRH pulsatility in humans. Aptamers have recently been shown to successfully bind to and measure GnRH and LH, and this review will focus on this specific area. However, due to the adaptability of aptamers, and their suitability for incorporation into portable devices, aptamer-based technology is likely to be used more widely in the future.
Collapse
|
17
|
Pegoraro S, Ros G, Sgubin M, Petrosino S, Zambelli A, Sgarra R, Manfioletti G. Targeting the intrinsically disordered architectural High Mobility Group A (HMGA) oncoproteins in breast cancer: learning from the past to design future strategies. Expert Opin Ther Targets 2020; 24:953-969. [PMID: 32970506 DOI: 10.1080/14728222.2020.1814738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is the most difficult breast cancer subtype to treat because of its heterogeneity and lack of specific therapeutic targets. High Mobility Group A (HMGA) proteins are chromatin architectural factors that have multiple oncogenic functions in breast cancer, and they represent promising molecular therapeutic targets for this disease. AREAS COVERED We offer an overview of the strategies that have been exploited to counteract HMGA oncoprotein activities at the transcriptional and post-transcriptional levels. We also present the possibility of targeting cancer-associated factors that lie downstream of HMGA proteins and discuss the contribution of HMGA proteins to chemoresistance. EXPERT OPINION Different strategies have been exploited to counteract HMGA protein activities; these involve interfering with their nucleic acid binding properties and the blocking of HMGA expression. Some approaches have provided promising results. However, some unique characteristics of the HMGA proteins have not been exploited; these include their extensive protein-protein interaction network and their intrinsically disordered status that present the possibility that HMGA proteins could be involved in the formation of proteinaceous membrane-less organelles (PMLO) by liquid-liquid phase separation. These unexplored characteristics could open new pharmacological avenues to counteract the oncogenic contributions of HMGA proteins.
Collapse
Affiliation(s)
- Silvia Pegoraro
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | - Gloria Ros
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | - Michela Sgubin
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | - Sara Petrosino
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | | | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste , Trieste, Italy
| | | |
Collapse
|
18
|
Tjhung KF, Sczepanski JT, Murtfeldt ER, Joyce GF. RNA-Catalyzed Cross-Chiral Polymerization of RNA. J Am Chem Soc 2020; 142:15331-15339. [PMID: 32805113 DOI: 10.1021/jacs.0c05635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Biology relies almost exclusively on homochiral building blocks to drive the processes of life. Yet cross-chiral interactions can occur between macromolecules of the opposite handedness, including a previously described polymerase ribozyme that catalyzes the template-directed synthesis of enantio-RNA. The present study sought to optimize and generalize this activity, employing in vitro evolution to select cross-chiral polymerases that use either mono- or trinucleotide substrates that are activated as the 5'-triphosphate. There was only modest improvement of the former activity, but dramatic improvement of the latter, which enables the trinucleotide polymerase to react 102-103-fold faster than its ancestor and to accept substrates with all possible sequence combinations. The evolved ribozyme can assemble long RNAs from a mixture of trinucleotide building blocks, including a two-fragment form of the ancestral polymerase ribozyme. Further improvement of this activity could enable the generalized cross-chiral replication of RNA, which would establish a new paradigm for the chemical basis of Darwinian evolution.
Collapse
Affiliation(s)
- Katrina F Tjhung
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jonathan T Sczepanski
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842, United States
| | - Eric R Murtfeldt
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gerald F Joyce
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
19
|
Addiction to protein kinase Cɩ due to PRKCI gene amplification can be exploited for an aptamer-based targeted therapy in ovarian cancer. Signal Transduct Target Ther 2020; 5:140. [PMID: 32820156 PMCID: PMC7441162 DOI: 10.1038/s41392-020-0197-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
PRKCI, the gene for protein kinase Cι (PKCι), is frequently amplified in ovarian cancer and recent studies have shown that PKCι participates in ovary tumorigenesis. However, it is unknown whether PKCι is differentially involved in the growth/survival between PRKCI-amplified and non-amplified ovarian cancer cells. In this study, we analyzed ovarian cancer patient dataset and revealed that PRKCI is the only PKC family member significantly amplified in ovarian cancer and PRKCI amplification is associated with higher PKCι expression. Using a panel of ovarian cancer cell lines, we found that abundance of PKCι is generally associated with PRKCI amplification. Interestingly, silencing PKCι led to apoptosis in PRKCI-amplified ovarian cancer cells but not in those without PRKCI amplification, thus indicating an oncogenic addiction to PKCɩ in PRKCI-amplified cells. Since small-molecule inhibitors characterized to selectively block atypical PKCs did not offer selectivity nor sensitivity in PRKCI-amplified ovarian cancer cells and were even cytotoxic to non-cancerous ovary surface or fallopian tube epithelial cells, we designed an EpCAM aptamer-PKCι siRNA chimera (EpCAM-siPKCι aptamer). EpCAM-siPKCι aptamer not only effectively induced apoptosis of PRKCI-amplified ovarian cancer cells but also greatly deterred intraperitoneal tumor development in xenograft mouse model. This study has demonstrated a precision medicine-based strategy to target a subset of ovarian cancer that contains PRKCI amplification and shown that the EpCAM aptamer-delivered PKCι siRNA may be used to suppress such tumors.
Collapse
|
20
|
Thevendran R, Sarah S, Tang TH, Citartan M. Strategies to bioengineer aptamer-driven nanovehicles as exceptional molecular tools for targeted therapeutics: A review. J Control Release 2020; 323:530-548. [PMID: 32380206 DOI: 10.1016/j.jconrel.2020.04.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Aptamers are a class of folded nucleic acid strands capable of binding to different target molecules with high affinity and selectivity. Over the years, they have gained a substantial amount of interest as promising molecular tools for numerous medical applications, particularly in targeted therapeutics. However, only the different treatment approaches and current developments of aptamer-drug therapies have been discussed so far, ignoring the crucial technical and functional aspects of constructing a therapeutically effective aptamer-driven drug delivery system that translates to improved in-vivo performance. Hence, this paper provides a comprehensive review of the strategies used to improve the therapeutic performance of aptamer-guided delivery systems. We focus on the different functional features such as drug deployment, payload capacity, in-vivo stability and targeting efficiency to further our knowledge in enhancing the cell-specific delivery of aptamer-drug conjugates. Each reported strategy is critically discussed to emphasize both the benefits provided in comparison with other similar techniques and to outline their potential drawbacks with respect to the molecular properties of the aptamers, the drug and the system to be designed. The molecular architecture and design considerations for an efficient aptamer-based delivery system are also briefly elaborated.
Collapse
Affiliation(s)
- Ramesh Thevendran
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Shigdar Sarah
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
21
|
Lou C, Boesen JT, Christensen NJ, Sørensen KK, Thulstrup PW, Pedersen MN, Giralt E, Jensen KJ, Wengel J. Self‐Assembly of DNA–Peptide Supermolecules: Coiled‐Coil Peptide Structures Templated by
d
‐DNA and
l
‐DNA Triplexes Exhibit Chirality‐Independent but Orientation‐Dependent Stabilizing Cooperativity. Chemistry 2020; 26:5676-5684. [DOI: 10.1002/chem.201905636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/31/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Chenguang Lou
- Biomolecular Nanoscale Engineering CenterDepartment of Physics, Chemistry and PharmacyUniversity of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Josephine Tuborg Boesen
- Biomolecular Nanoscale Engineering CenterDepartment of ChemistryUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg Denmark
| | - Niels Johan Christensen
- Biomolecular Nanoscale Engineering CenterDepartment of ChemistryUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg Denmark
| | - Kasper K. Sørensen
- Biomolecular Nanoscale Engineering CenterDepartment of ChemistryUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg Denmark
| | - Peter W. Thulstrup
- Department of ChemistryUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Martin Nors Pedersen
- X-ray and Neutron ScienceNiels Bohr InstituteUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 10 Barcelona 08028 Spain
- Department of Inorganic and Organic ChemistryUniversity of Barcelona Martí i Franquès 1–11 Barcelona 08028 Spain
| | - Knud J. Jensen
- Biomolecular Nanoscale Engineering CenterDepartment of ChemistryUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering CenterDepartment of Physics, Chemistry and PharmacyUniversity of Southern Denmark Campusvej 55 5230 Odense M Denmark
| |
Collapse
|
22
|
Feng XN, Cui YX, Zhang J, Tang AN, Mao HB, Kong DM. Chiral Interaction Is a Decisive Factor To Replace d-DNA with l-DNA Aptamers. Anal Chem 2020; 92:6470-6477. [PMID: 32249564 DOI: 10.1021/acs.analchem.9b05676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleic acid aptamers have been widely used in various fields such as biosensing, DNA chip, and medical diagnosis. However, the high susceptibility of nucleic acids to ubiquitous nucleases reduces the biostability of aptamers and limits their applications in biological contexts. Therefore, improving the biostability of aptamers becomes an urgent need. Herein, we present a simple strategy to resolve this problem by directly replacing the d-DNA-based aptamers with left-handed l-DNA. By testing several reported aptamers against respective targets, we found that our proposed strategy stood up well for nonchiral small molecule targets (e.g., Hemin and cationic porphyrin) and chiral targets whose interactions with aptamers are chirality-independent (e.g., ATP). We also found that the l-DNA aptamers were indeed endowed with greatly improved biostability due to the extraordinary resistance of l-DNA to nuclease digestion. With respect to other small-molecule targets whose interactions with aptamers are chirality-dependent (e.g., kanamycin) and biomacromolecules (e.g., tyrosine kinase-7), however, the proposed strategy was not entirely effective likely due to the participation of the DNA backbone chirality into the target recognition. In spite of this limitation, this strategy indeed paves an easy way to screen highly biostable aptamers important for the applications in many fields.
Collapse
Affiliation(s)
- Xue-Nan Feng
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yun-Xi Cui
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jing Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Han-Bin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
23
|
Predicting Future Prospects of Aptamers in Field-Effect Transistor Biosensors. Molecules 2020; 25:molecules25030680. [PMID: 32033448 PMCID: PMC7036789 DOI: 10.3390/molecules25030680] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Aptamers, in sensing technology, are famous for their role as receptors in versatile applications due to their high specificity and selectivity to a wide range of targets including proteins, small molecules, oligonucleotides, metal ions, viruses, and cells. The outburst of field-effect transistors provides a label-free detection and ultra-sensitive technique with significantly improved results in terms of detection of substances. However, their combination in this field is challenged by several factors. Recent advances in the discovery of aptamers and studies of Field-Effect Transistor (FET) aptasensors overcome these limitations and potentially expand the dominance of aptamers in the biosensor market.
Collapse
|
24
|
Odeh F, Nsairat H, Alshaer W, Ismail MA, Esawi E, Qaqish B, Bawab AA, Ismail SI. Aptamers Chemistry: Chemical Modifications and Conjugation Strategies. Molecules 2019; 25:E3. [PMID: 31861277 PMCID: PMC6982925 DOI: 10.3390/molecules25010003] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Soon after they were first described in 1990, aptamers were largely recognized as a new class of biological ligands that can rival antibodies in various analytical, diagnostic, and therapeutic applications. Aptamers are short single-stranded RNA or DNA oligonucleotides capable of folding into complex 3D structures, enabling them to bind to a large variety of targets ranging from small ions to an entire organism. Their high binding specificity and affinity make them comparable to antibodies, but they are superior regarding a longer shelf life, simple production and chemical modification, in addition to low toxicity and immunogenicity. In the past three decades, aptamers have been used in a plethora of therapeutics and drug delivery systems that involve innovative delivery mechanisms and carrying various types of drug cargos. However, the successful translation of aptamer research from bench to bedside has been challenged by several limitations that slow down the realization of promising aptamer applications as therapeutics at the clinical level. The main limitations include the susceptibility to degradation by nucleases, fast renal clearance, low thermal stability, and the limited functional group diversity. The solution to overcome such limitations lies in the chemistry of aptamers. The current review will focus on the recent arts of aptamer chemistry that have been evolved to refine the pharmacological properties of aptamers. Moreover, this review will analyze the advantages and disadvantages of such chemical modifications and how they impact the pharmacological properties of aptamers. Finally, this review will summarize the conjugation strategies of aptamers to nanocarriers for developing targeted drug delivery systems.
Collapse
Affiliation(s)
- Fadwa Odeh
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Hamdi Nsairat
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Mohammad A. Ismail
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Ezaldeen Esawi
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Baraa Qaqish
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
| | - Abeer Al Bawab
- Faculty of Science, The University of Jordan, Amman 11942, Jordan; (F.O.); (H.N.); (A.A.B.)
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Said I. Ismail
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; (M.A.I.); (E.E.); (B.Q.); (S.I.I.)
- Qatar Genome Project, Qatar Foundation, Doha 5825, Qatar
| |
Collapse
|
25
|
Citro A, Pellegrini S, Dugnani E, Eulberg D, Klussmann S, Piemonti L. CCL2/MCP-1 and CXCL12/SDF-1 blockade by L-aptamers improve pancreatic islet engraftment and survival in mouse. Am J Transplant 2019; 19:3131-3138. [PMID: 31267721 DOI: 10.1111/ajt.15518] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/06/2019] [Accepted: 06/24/2019] [Indexed: 01/25/2023]
Abstract
The blockade of pro-inflammatory mediators is a successful approach to improve the engraftment after islet transplantation. L-aptamers are chemically synthesized, nonimmunogenic bio-stable oligonucleotides that bind and inhibit target molecules conceptually similar to antibodies. We aimed to evaluate if blockade-aptamer-based inhibitors of C-C Motif Chemokine Ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1) and C-X-C Motif Chemokine Ligand 12/stromal cell-derived factor-1 (CXCL12/SDF-1) are able to favor islet survival in mouse models for islet transplantation and for type 1 diabetes. We evaluated the efficacy of the CCL2-specific mNOX-E36 and the CXCL12-specific NOX-A12 on islet survival in a syngeneic mouse model of intraportal islet transplantation and in a multiple low doses of streptozotocin (MLD-STZ) diabetes induction model. Moreover, we characterized intrahepatic infiltrated leukocytes by flow cytometry before and 3 days after islet infusion in presence or absence of these inhibitors. The administration for 14 days of mNOX-E36 and NOX-A12 significantly improved islet engraftment, either compound alone or in combination. Intrahepatic islet transplantation recruited CD45+ leucocytes and more specifically CD45+/CD11b+ mono/macrophages; mNOX-E36 and NOX-A12 treatments significantly decreased the recruitment of inflammatory monocytes, CD11b+ /Ly6Chigh /CCR2+ and CD11b+ /Ly6Chigh /CXCR4+ cells, respectively. Additionally, both L-aptamers significantly attenuated diabetes progression in the MLD-STZ model. In conclusion, CCL2/MCP-1 and CXCL12/SDF-1 blockade by L-aptamers is an efficient strategy to improve islet engraftment and survival.
Collapse
Affiliation(s)
- Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Silvia Pellegrini
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Erica Dugnani
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Sven Klussmann
- NOXXON Pharma AG, Berlin, Germany.,Aptarion Biotech AG, Berlin, Germany
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
26
|
Abstract
The programmability of DNA/RNA-based molecular circuits provides numerous opportunities in the field of synthetic biology. However, the stability of nucleic acids remains a major concern when performing complex computations in biological environments. Our solution to this problem is L-(deoxy)ribose nucleic acids (L-DNA/RNA), which are mirror images (i.e. enantiomers) of natural D-nucleotides. L-oligonucleotides have the same physical and chemical properties as their natural counterparts, yet they are completely invisible to the stereospecific environment of biology. We recently reported a novel strand-displacement methodology for transferring sequence information between oligonucleotide enantiomers (which are incapable of base pairing with each other), enabling bio-orthogonal L-DNA/RNA circuits to be easily interfaced with living systems. In this perspective, we summarize these so-called "heterochiral" circuits, provide a viewpoint on their potential applications in synthetic biology, and discuss key problems that must be solved before achieving the ultimate goal of engineering complex and reliable functionality.
Collapse
|
27
|
Increased Antiangiogenic Effect by Blocking CCL2-dependent Macrophages in a Rodent Glioblastoma Model: Correlation Study with Dynamic Susceptibility Contrast Perfusion MRI. Sci Rep 2019; 9:11085. [PMID: 31366997 PMCID: PMC6668454 DOI: 10.1038/s41598-019-47438-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
When glioblastoma multiforme (GBM) is treated with anti-vascular endothelial growth factor (VEGF) agents, it commonly exhibits tumor progression due to the development of resistance, which results in a dismal survival rate. GBM tumors contain a large number of monocytes/macrophages, which have been shown to be resistant to the effects of bevacizumab. It has been reported that tumor-associated macrophages (TAMs) promote resistance to bevacizumab treatment. Therefore, it is important to target TAMs in the GBM microenvironment. TAMs, which depend on chemokine ligand 2 (CCL2) for differentiation and survival, induce the expression of proangiogenic factors such as VEGF. Dynamic susceptibility contrast (DSC)-MR imaging is an advanced technique that provides information on tumor blood volume and can potentially predict the response to several treatments, including anti-angiogenic agents such as bevacizumab, in human GBM. In this study, we used a CCL2 inhibitor, mNOX-E36, to suppress the recruitment of TAMs in a CCL2-expressing rat GBM model and investigated the effect of combination therapy with bevacizumab using DSC-MR imaging. We demonstrated that the inhibition of CCL2 blocked macrophage recruitment and angiogenesis, which resulted in decreased tumor volume and blood volume in CCL2-expressing GBM in a rat model. Our results provide direct evidence that CCL2 expression can increase the resistance to bevacizumab, which can be assessed noninvasively with the DSC-MR imaging technique. This study shows that the suppression of CCL2 can play an important role in increasing the efficacy of anti-angiogenic treatment in GBM by inhibiting the recruitment of CCL2-dependent macrophages.
Collapse
|
28
|
Young BE, Kundu N, Sczepanski JT. Mirror-Image Oligonucleotides: History and Emerging Applications. Chemistry 2019; 25:7981-7990. [PMID: 30913332 PMCID: PMC6615976 DOI: 10.1002/chem.201900149] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Indexed: 01/13/2023]
Abstract
As chiral molecules, naturally occurring d-oligonucleotides have enantiomers, l-DNA and l-RNA, which are comprised of l-(deoxy)ribose sugars. These mirror-image oligonucleotides have the same physical and chemical properties as that of their native d-counterparts, yet are highly orthogonal to the stereospecific environment of biology. Consequently, l-oligonucleotides are resistant to nuclease degradation and many of the off-target interactions that plague traditional d-oligonucleotide-based technologies; thus making them ideal for biomedical applications. Despite a flurry of interest during the early 1990s, the inability of d- and l-oligonucleotides to form contiguous Watson-Crick base pairs with each other has ultimately led to the perception that l-oligonucleotides have only limited utility. Recently, however, scientists have begun to uncover novel strategies to harness the bio-orthogonality of l-oligonucleotides, while overcoming (and even exploiting) their inability to Watson-Crick base pair with the natural polymer. Herein, a brief history of l-oligonucleotide research is presented and emerging l-oligonucleotide-based technologies, as well as their applications in research and therapy, are presented.
Collapse
Affiliation(s)
- Brian E. Young
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Nandini Kundu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jonathan T. Sczepanski
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
29
|
Luo X, Chen Z, Li H, Li W, Cui L, Huang J. Exploiting the application of l-aptamer with excellent stability: an efficient sensing platform for malachite green in fish samples. Analyst 2019; 144:4204-4209. [PMID: 31187804 DOI: 10.1039/c9an00332k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Effective monitoring of the content of malachite green (MG) in aquaculture is of great importance for food safety. Traditional methods for MG assay, such as chromatography and spectroscopy, have been criticized for expensive instrumentation and complicated pretreatments. An MG RNA aptamer (MGA) is a powerful tool for immediate and rapid detection of MG. However, RNA is easily degraded by nucleases and is unstable in the environment, making accurate and reliable detection of MG difficult. In order to address the problems, an innovative levo (l)-MGA with excellent stability is designed to perform the specific recognition function. Interestingly, the gel electrophoresis and fluorescence measurement results indicate that this unnaturally occurring l-aptamer is resistant to nuclease degradation and it can be kept intact in the standard buffer solution under room temperature for quite a long time. A label-free, simple, and efficient method has been developed for sensitive detection of MG in fish tissue, which holds promising potential in food analysis and environmental monitoring.
Collapse
Affiliation(s)
- Xiaowei Luo
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China. and Department of Chemistry, University of Washington, Washington 98195, USA
| | - Zhifeng Chen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| | - Hongfeng Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| | - Wenqin Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| | - Liang Cui
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310008, China.
| | - Jiahao Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
30
|
Chong C, Low C. Synthetic antibody: Prospects in aquaculture biosecurity. FISH & SHELLFISH IMMUNOLOGY 2019; 86:361-367. [PMID: 30502461 DOI: 10.1016/j.fsi.2018.11.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/12/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
The emerging technology of aptamers that is also known as synthetic antibodies is rivalling antibodies research in the recent years. The unique yet important features of aptamers are advancing antibodies in diverse applications, which include disease diagnosis, prophylactic and therapeutic. The versatility of aptamer has further extended its application to function as gene expression modulator, known as synthetic riboswitches. This report reviewed and discussed the applications of aptamers technology in the biosecurity of aquaculture, the promising developments in biosensor detection for disease diagnosis as well as prophylactic and therapeutic measurements. The application of aptamers technology in immunophenotyping study of aquatic animal is highlighted. Lastly, the future perspective of aptamers in the management of aquatic animal health is discussed, special emphasis on the potential application of aptamers as synthetic riboswitches to enhance host immunity, as well as the growth performance.
Collapse
Affiliation(s)
- ChouMin Chong
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - ChenFei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
31
|
Soldevilla MM, Meraviglia-Crivelli de Caso D, Menon AP, Pastor F. Aptamer-iRNAs as Therapeutics for Cancer Treatment. Pharmaceuticals (Basel) 2018; 11:E108. [PMID: 30340426 PMCID: PMC6315413 DOI: 10.3390/ph11040108] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/04/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Aptamers are single-stranded oligonucleotides (ssDNA or ssRNA) that bind and recognize their targets with high affinity and specificity due to their complex tertiary structure. Aptamers are selected by a method called SELEX (Systematic Evolution of Ligands by EXponential enrichment). This method has allowed the selection of aptamers to different types of molecules. Since then, many aptamers have been described for the potential treatment of several diseases including cancer. It has been described over the last few years that aptamers represent a very useful tool as therapeutics, especially for cancer therapy. Aptamers, thanks to their intrinsic oligonucleotide nature, present inherent advantages over other molecules, such as cell-based products. Owing to their higher tissue penetrability, safer profile, and targeting capacity, aptamers are likely to become a novel platform for the delivery of many different types of therapeutic cargos. Here we focus the review on interfering RNAs (iRNAs) as aptamer-based targeting delivered agents. We have gathered the most reliable information on aptamers as targeting and carrier agents for the specific delivery of siRNAs, shRNA, microRNAs, and antisense oligonucleotides (ASOs) published in the last few years in the context of cancer therapy.
Collapse
Affiliation(s)
- Mario M Soldevilla
- Molecular Therapy Program, Aptamer Core, Center for the Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain.
- Navarre Health Research Institute (IdiSNA), 31008 Pamplona, Spain.
| | - Daniel Meraviglia-Crivelli de Caso
- Molecular Therapy Program, Aptamer Core, Center for the Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain.
- Navarre Health Research Institute (IdiSNA), 31008 Pamplona, Spain.
| | - Ashwathi P Menon
- Molecular Therapy Program, Aptamer Core, Center for the Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain.
- Navarre Health Research Institute (IdiSNA), 31008 Pamplona, Spain.
| | - Fernando Pastor
- Molecular Therapy Program, Aptamer Core, Center for the Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain.
- Navarre Health Research Institute (IdiSNA), 31008 Pamplona, Spain.
| |
Collapse
|
32
|
Bayat P, Nosrati R, Alibolandi M, Rafatpanah H, Abnous K, Khedri M, Ramezani M. SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie 2018; 154:132-155. [PMID: 30193856 DOI: 10.1016/j.biochi.2018.09.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/02/2018] [Indexed: 12/14/2022]
Abstract
Systematic evolution of ligand by exponential enrichment (SELEX) is an efficient method used to isolate high-affinity single stranded oligonucleotides from a large random sequence pool. These SELEX-derived oligonucleotides named aptamer, can be selected against a broad spectrum of target molecules including proteins, cells, microorganisms and chemical compounds. Like antibodies, aptamers have a great potential in interacting with and binding to their targets through structural recognition and are therefore called "chemical antibodies". However, aptamers offer advantages over antibodies including smaller size, better tissue penetration, higher thermal stability, lower immunogenicity, easier production, lower cost of synthesis and facilitated conjugation or modification with different functional moieties. Thus, aptamers represent an attractive substitution for protein antibodies in the fields of biomarker discovery, diagnosis, imaging and targeted therapy. Enormous interest in aptamer technology triggered the development of SELEX that has underwent numerous modifications since its introduction in 1990. This review will discuss the recent advances in SELEX methods and their advantages and limitations. Aptamer applications are also briefly outlined in this review.
Collapse
Affiliation(s)
- Payam Bayat
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Khedri
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
33
|
QIN SY, CHEN ND, WANG Q, HUANG J, HE XX, LIU JB, GUO QP, YANG XH, WANG KM. Application of Nucleic Acid Aptamers in Polypeptides Researches. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61055-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Mustonen EK, Palomäki T, Pasanen M. Oligonucleotide-based pharmaceuticals: Non-clinical and clinical safety signals and non-clinical testing strategies. Regul Toxicol Pharmacol 2017; 90:328-341. [PMID: 28966105 DOI: 10.1016/j.yrtph.2017.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022]
Abstract
Antisense oligonucleotides, short interfering RNAs (siRNAs) and aptamers are oligonucleotide-based pharmaceuticals with a promising role in targeted therapies. Currently, five oligonucleotide-based pharmaceuticals have achieved marketing authorization in Europe or USA and many more are undergoing clinical testing. However, several safety concerns have been raised in non-clinical and clinical studies. Oligonucleotides share properties with both chemical and biological pharmaceuticals and therefore they pose challenges also from the regulatory point of view. We have analyzed the safety data of oligonucleotides and evaluated the applicability of current non-clinical toxicological guidelines for assessing the safety of oligonucleotide-based pharmaceuticals. Oligonucleotide-based pharmaceuticals display a similar toxicological profile, exerting adverse effects on liver and kidney, evoking hematological alterations, as well as causing immunostimulation and prolonging the coagulation time. It is possible to extrapolate some of these effects from non-clinical studies to humans. However, evaluation strategies for genotoxicity testing of "non-natural" oligonucleotides should be revised. Additionally, the selective use of surrogates and prediction of clinical endpoints for non-clinically observed immunostimulation is complicated by its multiple potential manifestations, demanding improvements in the testing strategies. Utilizing more relevant and mechanistic-based approaches and taking better account of species differences, could possibly improve the prediction of relevant immunological/proinflammatory effects in humans.
Collapse
Affiliation(s)
- Enni-Kaisa Mustonen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy, P.O. Box 1627, 70211 Kuopio, Finland
| | | | - Markku Pasanen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy, P.O. Box 1627, 70211 Kuopio, Finland.
| |
Collapse
|
35
|
Chemical Modifications of Nucleic Acid Aptamers for Therapeutic Purposes. Int J Mol Sci 2017; 18:ijms18081683. [PMID: 28767098 PMCID: PMC5578073 DOI: 10.3390/ijms18081683] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 01/16/2023] Open
Abstract
Nucleic acid aptamers have minimal immunogenicity, high chemical synthesis production, low cost and high chemical stability when compared with antibodies. However, the susceptibility to nuclease degradation, rapid excretion through renal filtration and insufficient binding affinity hindered their development as drug candidates for therapeutic applications. In this review, we will discuss methods to conquer these challenges and highlight recent developments of chemical modifications and technological advances that may enable early aptamers to be translated into clinical therapeutics.
Collapse
|
36
|
Houlihan G, Arangundy-Franklin S, Holliger P. Engineering and application of polymerases for synthetic genetics. Curr Opin Biotechnol 2017; 48:168-179. [PMID: 28601700 DOI: 10.1016/j.copbio.2017.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 11/26/2022]
Abstract
Organic chemistry has systematically probed the chemical determinants of function in nucleic acids by variation to the nucleobase, sugar ring and backbone moieties to build synthetic genetic polymers. Concomitantly, protein engineering has advanced to allow the discovery of polymerases capable of utilizing modified nucleotide analogs. A conjunction of these two lines of investigation in nucleotide chemistry and molecular biology has given rise to a new field of synthetic genetics dedicated to the exploration of the capacity of these novel, synthetic nucleic acids for the storage and propagation of genetic information, for evolution and for crosstalk, that is, information exchange with the natural genetic system. Here we summarize recent progress in synthetic genetics, specifically in the design of novel unnatural basepairs to expand the genetic alphabet as well as progress in engineering polymerases capable of templated synthesis, reverse transcription and evolution of synthetic genetic polymers.
Collapse
Affiliation(s)
- Gillian Houlihan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | | | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
37
|
Schubert M, Bergmann R, Förster C, Sihver W, Vonhoff S, Klussmann S, Bethge L, Walther M, Schlesinger J, Pietzsch J, Steinbach J, Pietzsch HJ. Novel Tumor Pretargeting System Based on Complementary l-Configured Oligonucleotides. Bioconjug Chem 2017; 28:1176-1188. [PMID: 28222590 DOI: 10.1021/acs.bioconjchem.7b00045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unnatural mirror image l-configured oligonucleotides (L-ONs) are a convenient substance class for the application as complementary in vivo recognition system between a tumor specific antibody and a smaller radiolabeled effector molecule in pretargeting approaches. The high hybridization velocity and defined melting conditions are excellent preconditions of the L-ON based methodology. Their high metabolic stability and negligible unspecific binding to endogenous targets are superior characteristics in comparison to their d-configured analogs. In this study, a radiopharmacological evaluation of a new l-ONs based pretargeting system using the epidermal growth factor receptor (EGFR) specific antibody cetuximab (C225) as target-seeking component is presented. An optimized PEGylated 17mer-L-DNA was conjugated with p-SCN-Bn-NOTA (NOTA') to permit radiolabeling with the radionuclide 64Cu. C225 was modified with the complementary 17mer-L-DNA (c-L-DNA) strand as well as with NOTA' for radiolabeling and use for positron emission tomography (PET). Two C225 conjugates were coupled with 1.5 and 5.0 c-L-DNA molecules, respectively. In vitro characterization was done with respect to hybridization studies, competition and saturation binding assays in EGFR expressing squamous cell carcinoma cell lines A431 and FaDu. The modified C225 derivatives exhibited high binding affinities in the low nanomolar range to the EGFR. PET and biodistribution experiments on FaDu tumor bearing mice with directly 64Cu-labeled NOTA'3-C225-(c-L-DNA)1.5 conjugate revealed that a pretargeting interval of 24 h might be a good compromise between tumor accumulation, internalization, blood background, and liver uptake of the antibody. Despite internalization of the antibody in vivo pretargeting experiments showed an adequate hybridization of 64Cu-radiolabeled NOTA'-L-DNA to the tumor located antibody and a good tumor-to-muscle ratio of about 11 resulting in a clearly visible image of the tumor after 24 h up to 72 h. Furthermore, low accumulation of radioactivity in organs responsible for metabolism and excretion was determined. The presented results indicate a high potential of complementary L-ONs for the pretargeting approach which can also be applied to therapeutic radionuclides such as 177Lu, 90Y, 186Re, or 188Re.
Collapse
Affiliation(s)
- Maik Schubert
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research , Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research , Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Christian Förster
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research , Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Wiebke Sihver
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research , Bautzner Landstrasse 400, 01328 Dresden, Germany
| | | | | | | | - Martin Walther
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research , Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Jörn Schlesinger
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research , Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research , Bautzner Landstrasse 400, 01328 Dresden, Germany.,Technische Universität Dresden , School of Science, Department of Chemistry and Food Chemistry, 01062 Dresden, Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research , Bautzner Landstrasse 400, 01328 Dresden, Germany.,Technische Universität Dresden , School of Science, Department of Chemistry and Food Chemistry, 01062 Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research , Bautzner Landstrasse 400, 01328 Dresden, Germany
| |
Collapse
|
38
|
Oligonucleotide therapies for disorders of the nervous system. Nat Biotechnol 2017; 35:249-263. [PMID: 28244991 DOI: 10.1038/nbt.3784] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/09/2017] [Indexed: 12/14/2022]
Abstract
Oligonucleotide therapies are currently experiencing a resurgence driven by advances in backbone chemistry and discoveries of novel therapeutic pathways that can be uniquely and efficiently modulated by the oligonucleotide drugs. A quarter of a century has passed since oligonucleotides were first applied in living mammalian brain to modulate gene expression. Despite challenges in delivery to the brain, multiple oligonucleotide-based compounds are now being developed for treatment of human brain disorders by direct delivery inside the blood brain barrier (BBB). Notably, the first new central nervous system (CNS)-targeted oligonucleotide-based drug (nusinersen/Spinraza) was approved by US Food and Drug Administration (FDA) in late 2016 and several other compounds are in advanced clinical trials. Human testing of brain-targeted oligonucleotides has highlighted unusual pharmacokinetic and pharmacodynamic properties of these compounds, including complex active uptake mechanisms, low systemic exposure, extremely long half-lives, accumulation and gradual release from subcellular depots. Further work on oligonucleotide uptake, development of formulations for delivery across the BBB and relevant disease biology studies are required for further optimization of the oligonucleotide drug development process for brain applications.
Collapse
|
39
|
Dudek M, Trylska J. Molecular Dynamics Simulations of l-RNA Involving Homo- and Heterochiral Complexes. J Chem Theory Comput 2017; 13:1244-1253. [DOI: 10.1021/acs.jctc.6b01075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Marta Dudek
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
- Institute
of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego
5a, 02-106 Warsaw, Poland
- Department
of Hematology, Oncology and Internal Diseases, Medical University of Warsaw, Al. Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Joanna Trylska
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
40
|
Han GM, Jia ZZ, Zhu YJ, Jiao JJ, Kong DM, Feng XZ. Biostable L-DNA-Templated Aptamer-Silver Nanoclusters for Cell-Type-Specific Imaging at Physiological Temperature. Anal Chem 2016; 88:10800-10804. [PMID: 27797508 DOI: 10.1021/acs.analchem.6b02871] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The high susceptibility of the natural D-conformation of DNA (D-DNA) to nucleases greatly limits the application of DNA-templated silver nanoclusters (Ag NCs) in biological matrixes. Here we demonstrate that the L-conformation of DNA (L-DNA), the enantiomer of D-DNA, can also be used for the preparation of aptamer-Ag NCs. The extraordinary resistance of L-DNA to nuclease digestion confers much higher biostability to these NCs than those templated by D-DNA, thus making cell-type-specific imaging possible at physiological temperatures, using at least 100-times lower Ag NC concentration than reported D-DNA-templated ones. The L-DNA-templated metal NC probes with enhanced biostability might promote the applications of metal nanocluster probes in complex biological systems.
Collapse
Affiliation(s)
- Gui-Mei Han
- State Key Laboratory of Medicinal Chemical Biology, Nankai University , Tianjin, 300071, P R China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Nankai University , Tianjin, 300071, P R China
| | - Zhen-Zhen Jia
- State Key Laboratory of Medicinal Chemical Biology, Nankai University , Tianjin, 300071, P R China.,The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin, 300071, P R China
| | - Yan-Jun Zhu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University , Tianjin, 300071, P R China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Nankai University , Tianjin, 300071, P R China
| | - Jia-Jia Jiao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University , Tianjin, 300071, P R China.,The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin, 300071, P R China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University , Tianjin, 300071, P R China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Nankai University , Tianjin, 300071, P R China
| | - Xi-Zeng Feng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University , Tianjin, 300071, P R China.,The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin, 300071, P R China
| |
Collapse
|
41
|
Wu YX, Kwon YJ. Aptamers: The "evolution" of SELEX. Methods 2016; 106:21-8. [PMID: 27109056 DOI: 10.1016/j.ymeth.2016.04.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/09/2023] Open
Abstract
It has been more than two decades since the first aptamer molecule was discovered. Since then, aptamer molecules have gain much attention in the scientific field. This increasing traction can be attributed to their many desirable traits, such as 1) their potentials to bind a wide range of molecules, 2) their malleability, and 3) their low cost of production. These traits have made aptamer molecules an ideal platform to pursue in the realm of pharmaceuticals and bio-sensors. Despite the broad applications of aptamers, tedious procedure, high resource consumption, and limited nucleobase repertoire have hindered aptamer in application usage. To address these issues, new innovative methodologies, such as automation and single round SELEX, are being developed to improve the outcomes and rates in which aptamers are discovered.
Collapse
Affiliation(s)
- Yi Xi Wu
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States; Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States.
| |
Collapse
|
42
|
Molecular Selection, Modification and Development of Therapeutic Oligonucleotide Aptamers. Int J Mol Sci 2016; 17:358. [PMID: 26978355 PMCID: PMC4813219 DOI: 10.3390/ijms17030358] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/01/2016] [Accepted: 02/29/2016] [Indexed: 12/16/2022] Open
Abstract
Monoclonal antibodies are the dominant agents used in inhibition of biological target molecules for disease therapeutics, but there are concerns of immunogenicity, production, cost and stability. Oligonucleotide aptamers have comparable affinity and specificity to targets with monoclonal antibodies whilst they have minimal immunogenicity, high production, low cost and high stability, thus are promising inhibitors to rival antibodies for disease therapy. In this review, we will compare the detailed advantages and disadvantages of antibodies and aptamers in therapeutic applications and summarize recent progress in aptamer selection and modification approaches. We will present therapeutic oligonucleotide aptamers in preclinical studies for skeletal diseases and further discuss oligonucleotide aptamers in different stages of clinical evaluation for various disease therapies including macular degeneration, cancer, inflammation and coagulation to highlight the bright commercial future and potential challenges of therapeutic oligonucleotide aptamers.
Collapse
|
43
|
Chumakov AM, Yuhina ES, Frolova EI, Kravchenko JE, Chumakov SP. Expanding the application potential of DNA aptamers by their functionalization. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Richards SL, Cawley AT, Cavicchioli R, Suann CJ, Pickford R, Raftery MJ. Aptamer based peptide enrichment for quantitative analysis of gonadotropin-releasing hormone by LC-MS/MS. Talanta 2016; 150:671-80. [PMID: 26838458 DOI: 10.1016/j.talanta.2016.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 12/13/2022]
Abstract
Over recent years threats to racing have expanded to include naturally occurring biological molecules, such as peptides and proteins, and their synthetic analogues. Traditionally, antibodies have been used to enable detection of these compounds as they allow purification and concentration of the analyte of interest. The rapid expansion of peptide-based therapeutics necessitates a similarly rapid development of suitable antibodies or other means of enrichment. Potential alternative enrichment strategies include the use of aptamers, which offer the significant advantage of chemical synthesis once the nucleic acid sequence is known. A method was developed for the enrichment, detection and quantitation of gonadotropin-releasing hormone (GnRH) in equine urine using aptamer-based enrichment and LC-MS/MS. The method achieved comparable limits of detection (1 pg/mL) and quantification (2.5 pg/mL) to previously published antibody-based enrichment methods. The intra- and inter-assay precision achieved was less than 10% at both 5 and 20 pg/mL, and displayed a working dynamic range of 2.5-100 pg/mL. Significant matrix enhancement (170 ± 8%) and low analytical recovery (29 ± 15%) was observed, although the use of an isotopically heavy labelled GnRH peptide, GnRH (Pro(13)C5,(15)N), as the internal standard provides compensation for these parameters. Within the current limits of detection GnRH was detectable up to 1h post administration in urine and identification of a urinary catabolite extended this detection window to 4h. Based on the results of this preliminary investigation we propose the use of aptamers as a viable alternative to antibodies in the enrichment of peptide targets from equine urine.
Collapse
Affiliation(s)
- S L Richards
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW 2000, Australia; Bioanalytical Mass Spectrometry Facility, UNSW Australia, Sydney, NSW 2052, Australia
| | - A T Cawley
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW 2000, Australia; School of Chemistry, UNSW Australia, Sydney, NSW 2052, Australia
| | - R Cavicchioli
- School of Biotechnology and Biomedical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - C J Suann
- Racing NSW, Sydney, NSW 2000, Australia
| | - R Pickford
- Bioanalytical Mass Spectrometry Facility, UNSW Australia, Sydney, NSW 2052, Australia
| | - M J Raftery
- Bioanalytical Mass Spectrometry Facility, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
45
|
Lv Z, Li X, Chen Z, Chen J, Chen C, Xiong P, Sun T, Qing G. Surface Stiffness--a Parameter for Sensing the Chirality of Saccharides. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27223-27233. [PMID: 26595648 DOI: 10.1021/acsami.5b08405] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Surface stiffness is considered a key parameter for designing high-performance implantable materials and artificial extracellular matrices because of its substantial effects on cell behavior. How to transform biomolecule recognition events, particularly chiral recognition, into stiffness change on material surfaces is biologically essential but very challenging for chemists. Here, we report a chirality-triggered stiffness transition on a smart polymer film, which consists of flexible polyethylenimine (PEI) main chains grafted with dipeptide units capable of discriminating chiral monosaccharides. The polymer film became substantially softer after interacting with L-ribose and became more rigid after interacting with D-ribose (the basic building block of DNA and RNA). This chiral effect provides a new method for determining the enantiomeric purity of an L/D-ribose mixture and facilitates the chiral separation of deoxyribose racemates as well as the separation of diverse mono-, di-, and oligosaccharides. These are three puzzle problems in carbohydrate chemistry. Furthermore, taking advantage of the significant differences in the surface stiffness, the proliferation of fibroblast cells on the polymeric surfaces can also be regulated by chiral biomolecules.
Collapse
Affiliation(s)
- Ziyu Lv
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Zhonghui Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan, 430072, P. R. China
| | - Cheng Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Peng Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , 122 Luoshi Road, Wuhan, 430070, P. R. China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology , 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Guangyan Qing
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , 122 Luoshi Road, Wuhan, 430070, P. R. China
| |
Collapse
|
46
|
Mondragón E, Maher LJ. Anti-Transcription Factor RNA Aptamers as Potential Therapeutics. Nucleic Acid Ther 2015; 26:29-43. [PMID: 26509637 PMCID: PMC4753637 DOI: 10.1089/nat.2015.0566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription factors (TFs) are DNA-binding proteins that play critical roles in regulating gene expression. These proteins control all major cellular processes, including growth, development, and homeostasis. Because of their pivotal role, cells depend on proper TF function. It is, therefore, not surprising that TF deregulation is linked to disease. The therapeutic drug targeting of TFs has been proposed as a frontier in medicine. RNA aptamers make interesting candidates for TF modulation because of their unique characteristics. The products of in vitro selection, aptamers are short nucleic acids (DNA or RNA) that bind their targets with high affinity and specificity. Aptamers can be expressed on demand from transgenes and are intrinsically amenable to recognition by nucleic acid-binding proteins such as TFs. In this study, we review several natural prokaryotic and eukaryotic examples of RNAs that modulate the activity of TFs. These examples include 5S RNA, 6S RNA, 7SK, hepatitis delta virus-RNA (HDV-RNA), neuron restrictive silencer element (NRSE)-RNA, growth arrest-specific 5 (Gas5), steroid receptor RNA activator (SRA), trophoblast STAT utron (TSU), the 3' untranslated region of caudal mRNA, and heat shock RNA-1 (HSR1). We then review examples of unnatural RNA aptamers selected to inhibit TFs nuclear factor-kappaB (NF-κB), TATA-binding protein (TBP), heat shock factor 1 (HSF1), and runt-related transcription factor 1 (RUNX1). The field of RNA aptamers for DNA-binding proteins continues to show promise.
Collapse
Affiliation(s)
- Estefanía Mondragón
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Louis James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine , Rochester, Minnesota
| |
Collapse
|
47
|
Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metab 2015; 22:658-68. [PMID: 26321659 PMCID: PMC4598654 DOI: 10.1016/j.cmet.2015.07.026] [Citation(s) in RCA: 681] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/25/2015] [Accepted: 07/27/2015] [Indexed: 12/13/2022]
Abstract
Dietary lipids may influence the abundance of circulating inflammatory microbial factors. Hence, inflammation in white adipose tissue (WAT) induced by dietary lipids may be partly dependent on their interaction with the gut microbiota. Here, we show that mice fed lard for 11 weeks have increased Toll-like receptor (TLR) activation and WAT inflammation and reduced insulin sensitivity compared with mice fed fish oil and that phenotypic differences between the dietary groups can be partly attributed to differences in microbiota composition. Trif(-/-) and Myd88(-/-) mice are protected against lard-induced WAT inflammation and impaired insulin sensitivity. Experiments in germ-free mice show that an interaction between gut microbiota and saturated lipids promotes WAT inflammation independent of adiposity. Finally, we demonstrate that the chemokine CCL2 contributes to microbiota-induced WAT inflammation in lard-fed mice. These results indicate that gut microbiota exacerbates metabolic inflammation through TLR signaling upon challenge with a diet rich in saturated lipids.
Collapse
Affiliation(s)
- Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden.
| | - Valentina Tremaroli
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Petia Kovatcheva-Datchary
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Patrice D Cani
- Université Catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, WELBIO (Walloon Excellence in Life Sciences and BIOtechnology), 1200 Brussels, Belgium
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
48
|
Gijs M, Aerts A, Impens N, Baatout S, Luxen A. Aptamers as radiopharmaceuticals for nuclear imaging and therapy. Nucl Med Biol 2015; 43:253-71. [PMID: 26746572 DOI: 10.1016/j.nucmedbio.2015.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/24/2015] [Accepted: 09/10/2015] [Indexed: 12/27/2022]
Abstract
Today, radiopharmaceuticals belong to the standard instrumentation of nuclear medicine, both in the context of diagnosis and therapy. The majority of radiopharmaceuticals consist of targeting biomolecules which are designed to interact with a disease-related molecular target. A plethora of targeting biomolecules of radiopharmaceuticals exists, including antibodies, antibody fragments, proteins, peptides and nucleic acids. Nucleic acids have some significant advantages relative to proteinaceous biomolecules in terms of size, production, modifications, possible targets and immunogenicity. In particular, aptamers (non-coding, synthetic, single-stranded DNA or RNA oligonucleotides) are of interest because they can bind a molecular target with high affinity and specificity. At present, few aptamers have been investigated preclinically for imaging and therapeutic applications. In this review, we describe the use of aptamers as targeting biomolecules of radiopharmaceuticals. We also discuss the chemical modifications which are needed to turn aptamers into valuable (radio-)pharmaceuticals, as well as the different radiolabeling strategies that can be used to radiolabel oligonucleotides and, in particular, aptamers.
Collapse
Affiliation(s)
- Marlies Gijs
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium; Cyclotron Research Centre, University of Liège, Liège, Belgium
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium
| | - Nathalie Impens
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium
| | - André Luxen
- Cyclotron Research Centre, University of Liège, Liège, Belgium.
| |
Collapse
|
49
|
Cywiński PJ, Olejko L, Löhmannsröben HG. A time-resolved luminescent competitive assay to detect L-selectin using aptamers as recognition elements. Anal Chim Acta 2015; 887:209-215. [PMID: 26320804 DOI: 10.1016/j.aca.2015.06.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 12/01/2022]
Abstract
L-selectin is a protein with potential importance for numerous diseases and clinical disorders. In this paper, we present a new aptamer-based luminescent assay developed to detect L-selectin. The sensing system working principle is based on Förster Resonance Energy Transfer (FRET) from a donor terbium complex (TbC) to an acceptor cyanine dye (Cy5). In the present approach, the biotinylated aptamer is combined with Cy5-labelled streptavidin (Cy5-Strep) to yield an aptamer-based acceptor construct (Apta-Cy5-Strep), while L-selectin is conjugated using luminescent TbC. Upon aptamer binding to the TbC-labelled L-selectin (L-selectin-TbC), permanent donor-acceptor proximity is established which allows for radiationless energy transfer to occur. However, when unlabelled L-selectin is added, it competes with the L-selectin-TbC and the FRET signal decreases as the L-selectin concentration increases. FRET from the TbC to Cy5 was observed with time-gated time-resolved luminescence spectroscopy. A significant change in the corrected luminescence signal was observed in the dynamic range of 10-500 ng/mL L-selectin, the concentration range relevant for accelerated cognitive decline of Alzheimer's disease, with a limit of detection (LOD) equal to 10 ng/mL. The aptasensor-based assay is homogeneous and can be realized within one hour. Therefore, this method has the potential to become an alternative to tedious heterogeneous analytical methods, e.g. based on enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- Piotr J Cywiński
- Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research, Geiselberstr.69, 14476 Potsdam-Golm, Germany; Department of Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
| | - Lydia Olejko
- Department of Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Hans-Gerd Löhmannsröben
- Department of Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| |
Collapse
|
50
|
Tohala L, Oukacine F, Ravelet C, Peyrin E. Chiral resolution capabilities of DNA oligonucleotides. Anal Chem 2015; 87:5491-5. [PMID: 25978071 DOI: 10.1021/acs.analchem.5b01252] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Herein, we studied the chiral resolution properties of a repertoire of arbitrarily chosen DNA oligonucleotides (ON). Ten oligonucleotidic sequences characterized by diverse base compositions, sizes, and structural features, ranging from secondary structure-free homo-oligonucleotides to duplex, hairpin, and three-way junction architectures, were investigated as potential chiral selectors. Their enantioselective features were assessed by using ONs as running buffer additives in partial-filling capillary electrophoresis. It was shown that all the screened sequences displayed enantiodiscrimination capabilities toward small aromatic compounds. Under (sub)millimolar DNA concentration conditions, the combination of only three oligonucleotidic sequences provided the chiral resolution of around 20 racemates, including drugs, illegal drugs, amino-acids, and nucleosides. This work represents the first demonstration of such analyte selectivity spectrum for nucleic acid-based chiral separation tools.
Collapse
Affiliation(s)
- Luma Tohala
- Université Grenoble Alpes, DPM UMR 5063, F-38041 Grenoble, CNRS, DPM UMR 5063, F-38041 Grenoble, France
| | - Farid Oukacine
- Université Grenoble Alpes, DPM UMR 5063, F-38041 Grenoble, CNRS, DPM UMR 5063, F-38041 Grenoble, France
| | - Corinne Ravelet
- Université Grenoble Alpes, DPM UMR 5063, F-38041 Grenoble, CNRS, DPM UMR 5063, F-38041 Grenoble, France
| | - Eric Peyrin
- Université Grenoble Alpes, DPM UMR 5063, F-38041 Grenoble, CNRS, DPM UMR 5063, F-38041 Grenoble, France
| |
Collapse
|