1
|
Capitanchik C, Wilkins OG, Wagner N, Gagneur J, Ule J. From computational models of the splicing code to regulatory mechanisms and therapeutic implications. Nat Rev Genet 2024:10.1038/s41576-024-00774-2. [PMID: 39358547 DOI: 10.1038/s41576-024-00774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Since the discovery of RNA splicing and its role in gene expression, researchers have sought a set of rules, an algorithm or a computational model that could predict the splice isoforms, and their frequencies, produced from any transcribed gene in a specific cellular context. Over the past 30 years, these models have evolved from simple position weight matrices to deep-learning models capable of integrating sequence data across vast genomic distances. Most recently, new model architectures are moving the field closer to context-specific alternative splicing predictions, and advances in sequencing technologies are expanding the type of data that can be used to inform and interpret such models. Together, these developments are driving improved understanding of splicing regulatory mechanisms and emerging applications of the splicing code to the rational design of RNA- and splicing-based therapeutics.
Collapse
Affiliation(s)
- Charlotte Capitanchik
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK
| | - Oscar G Wilkins
- The Francis Crick Institute, London, UK
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Nils Wagner
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Helmholtz Association - Munich School for Data Science (MUDS), Munich, Germany
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
| | - Jernej Ule
- The Francis Crick Institute, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK.
- National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Nosková A, Li C, Wang X, Leonard AS, Pausch H, Kadri N. Exploiting public databases of genomic variation to quantify evolutionary constraint on the branch point sequence in 30 plant and animal species. Nucleic Acids Res 2023; 51:12069-12075. [PMID: 37953306 PMCID: PMC10711541 DOI: 10.1093/nar/gkad970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/06/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
The branch point sequence is a degenerate intronic heptamer required for the assembly of the spliceosome during pre-mRNA splicing. Disruption of this motif may promote alternative splicing and eventually cause phenotype variation. Despite its functional relevance, the branch point sequence is not included in most genome annotations. Here, we predict branch point sequences in 30 plant and animal species and attempt to quantify their evolutionary constraints using public variant databases. We find an implausible variant distribution in the databases from 16 of 30 examined species. Comparative analysis of variants from whole-genome sequencing shows that variants submitted from exome sequencing or false positive variants are widespread in public databases and cause these irregularities. We then investigate evolutionary constraint with largely unbiased public variant databases in 14 species and find that the fourth and sixth position of the branch point sequence are more constrained than coding nucleotides. Our findings show that public variant databases should be scrutinized for possible biases before they qualify to analyze evolutionary constraint.
Collapse
Affiliation(s)
- Adéla Nosková
- Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Chao Li
- Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | | | - Hubert Pausch
- Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Naveen Kumar Kadri
- Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| |
Collapse
|
3
|
Shirokikh NE, Jensen KB, Thakor N. Editorial: RNA machines. Front Genet 2023; 14:1290420. [PMID: 37829284 PMCID: PMC10565666 DOI: 10.3389/fgene.2023.1290420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Affiliation(s)
- Nikolay E. Shirokikh
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Kirk Blomquist Jensen
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
4
|
Zheng M, Guo T, Yang B, Zhang Z, Huang L. Origin, evolution, and tissue-specific functions of the porcine repetitive element 1. Genet Sel Evol 2022; 54:54. [PMID: 35896967 PMCID: PMC9327148 DOI: 10.1186/s12711-022-00745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background The porcine repetitive element 1 (PRE1) is the most abundant short interspersed nuclear element (SINE) in the Sus scrofa genome and it has been suggested that some PRE1 can have regulatory functions. The million copies of PRE1 in the porcine genome have accumulated abundant CpG dinucleotides and unique structural variations, such as direct repeats and patterns of sequence degeneration. The aims of this study were to analyse these structural variations to trace the origin and evolutionary pattern of PRE1 and to investigate potential methylation-related functions of PRE1 based on methylation patterns of PRE1 CpG dinucleotides in different tissues. Results We investigated the evolutionary trajectory of PRE1 and found that PRE1 originated from the ancestral CHRS-S1 family through three main successive partial duplications. We found that the partial duplications and deletions of PRE1 were likely due to RNA splicing events during retrotransposition. Functionally, correlation analysis showed that the methylation levels of 103 and 261 proximal PRE1 were, respectively, negatively and positively correlated with the expression levels of neighboring genes (Spearman correlation, P < 0.01). Further epigenomic analysis revealed that, in the testis, demethylation of proximal PRE1 in the HORMAD1 and HACD3 genes had tissue-specific enhancer and promoter functions, while in the muscle, methylation of proximal PRE1 repeats in the TCEA3 gene had an enhancer function. Conclusions The characteristic sequences of PRE1 reflect unique patterns of origin and evolution and provide a structural basis for diverse regulatory functions. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-022-00745-3.
Collapse
Affiliation(s)
- Min Zheng
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China.
| | - Tianfu Guo
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Bin Yang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhiyan Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China.
| | - Lusheng Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
5
|
Liu Y, Tian Y, Wang LX, Fan T, Zhang J, Chen MX, Liu YG. Phylogeny and conservation of plant U2A/U2A', a core splicing component in U2 spliceosomal complex. PLANTA 2021; 255:25. [PMID: 34940917 DOI: 10.1007/s00425-021-03752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
This study systematically identifies 112 U2A genes from 80 plant species by combinatory bioinformatics analysis, which is important for understanding their phylogenetic history, expression profiles and for predicting specific functions. In eukaryotes, a pre-mRNA can generate multiple transcripts by removing certain introns and joining corresponding exons, thus greatly expanding the transcriptome and proteome diversity. The spliceosome is a mega-Dalton ribonucleoprotein (RNP) complex that is essential for the process of splicing. In spliceosome components, the U2 small nuclear ribonucleoprotein (U2 snRNP) forms the pre-spliceosome by association with the branch site. An essential component that promotes U2 snRNP assembly, named U2A, has been extensively identified in humans, yeast and nematodes. However, studies examining U2A genes in plants are scarce. In this study, we performed a comprehensive analysis and identified a total of 112 U2A genes from 80 plant species representing dicots, monocots, mosses and algae. Comparisons of the gene structures, protein domains, and expression patterns of 112 U2A genes indicated that the conserved functions were likely retained by plant U2A genes and important for responses to internal and external stimuli. In addition, analysis of alternative transcripts and splice sites of U2A genes indicated that the fifth intron contained a conserved alternative splicing event that might be important for its molecular function. Our work provides a general understanding of this splicing factor family in terms of genes and proteins, and it will serve as a fundamental resource that will contribute to further mechanistic characterization in plants.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Shenzhen Institutes of Advanced Technology, Shenzhen Institute of Synthetic Biology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yuan Tian
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Lan-Xiang Wang
- Guangdong Provincial Key Laboratory of Seed and Seedling Health Management Technology, Guangdong Province, Shenzhen Noposion Agrochemical Co. Ltd, Shenzhen, 518102, China
- Shenzhen Institutes of Advanced Technology, Shenzhen Institute of Synthetic Biology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Tao Fan
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.
- Guangdong Provincial Key Laboratory of Seed and Seedling Health Management Technology, Guangdong Province, Shenzhen Noposion Agrochemical Co. Ltd, Shenzhen, 518102, China.
- Shenzhen Institutes of Advanced Technology, Shenzhen Institute of Synthetic Biology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
| | - Ying-Gao Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
6
|
Zhang KL, Feng Z, Yang JF, Yang F, Yuan T, Zhang D, Hao GF, Fang YM, Zhang J, Wu C, Chen MX, Zhu FY. Systematic characterization of the branch point binding protein, splicing factor 1, gene family in plant development and stress responses. BMC PLANT BIOLOGY 2020; 20:379. [PMID: 32811430 PMCID: PMC7433366 DOI: 10.1186/s12870-020-02570-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/22/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Among eukaryotic organisms, alternative splicing is an important process that can generate multiple transcripts from one same precursor messenger RNA, which greatly increase transcriptome and proteome diversity. This process is carried out by a super-protein complex defined as the spliceosome. Specifically, splicing factor 1/branchpoint binding protein (SF1/BBP) is a single protein that can bind to the intronic branchpoint sequence (BPS), connecting the 5' and 3' splice site binding complexes during early spliceosome assembly. The molecular function of this protein has been extensively investigated in yeast, metazoa and mammals. However, its counterpart in plants has been seldomly reported. RESULTS To this end, we conducted a systematic characterization of the SF1 gene family across plant lineages. In this work, a total of 92 sequences from 59 plant species were identified. Phylogenetic relationships of these sequences were constructed, and subsequent bioinformatic analysis suggested that this family likely originated from an ancient gene transposition duplication event. Most plant species were shown to maintain a single copy of this gene. Furthermore, an additional RNA binding motif (RRM) existed in most members of this gene family in comparison to their animal and yeast counterparts, indicating that their potential role was preserved in the plant lineage. CONCLUSION Our analysis presents general features of the gene and protein structure of this splicing factor family and will provide fundamental information for further functional studies in plants.
Collapse
Affiliation(s)
- Kai-Lu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Zhen Feng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079 China
| | - Feng Yang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Tian Yuan
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Di Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079 China
| | - Yan-Ming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Jianhua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Mo-Xian Chen
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 PR China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| |
Collapse
|
7
|
Abstract
Splicing of the precursor messenger RNA, involving intron removal and exon ligation, is mediated by the spliceosome. Together with biochemical and genetic investigations of the past four decades, structural studies of the intact spliceosome at atomic resolution since 2015 have led to mechanistic delineation of RNA splicing with remarkable insights. The spliceosome is proven to be a protein-orchestrated metalloribozyme. Conserved elements of small nuclear RNA (snRNA) constitute the splicing active site with two catalytic metal ions and recognize three conserved intron elements through duplex formation, which are delivered into the splicing active site for branching and exon ligation. The protein components of the spliceosome stabilize the conformation of the snRNA, drive spliceosome remodeling, orchestrate the movement of the RNA elements, and facilitate the splicing reaction. The overall organization of the spliceosome and the configuration of the splicing active site are strictly conserved between human and yeast.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
| | - Rui Bai
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| | - Xiechao Zhan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| |
Collapse
|
8
|
van der Feltz C, Hoskins AA. Structural and functional modularity of the U2 snRNP in pre-mRNA splicing. Crit Rev Biochem Mol Biol 2019; 54:443-465. [PMID: 31744343 DOI: 10.1080/10409238.2019.1691497] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The U2 small nuclear ribonucleoprotein (snRNP) is an essential component of the spliceosome, the cellular machine responsible for removing introns from precursor mRNAs (pre-mRNAs) in all eukaryotes. U2 is an extraordinarily dynamic splicing factor and the most frequently mutated in cancers. Cryo-electron microscopy (cryo-EM) has transformed our structural and functional understanding of the role of U2 in splicing. In this review, we synthesize these and other data with respect to a view of U2 as an assembly of interconnected functional modules. These modules are organized by the U2 small nuclear RNA (snRNA) for roles in spliceosome assembly, intron substrate recognition, and protein scaffolding. We describe new discoveries regarding the structure of U2 components and how the snRNP undergoes numerous conformational and compositional changes during splicing. We specifically highlight large scale movements of U2 modules as the spliceosome creates and rearranges its active site. U2 serves as a compelling example for how cellular machines can exploit the modular organization and structural plasticity of an RNP.
Collapse
Affiliation(s)
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
9
|
Wang X, Piersma SJ, Nelson CA, Dai YN, Christensen T, Lazear E, Yang L, Sluijter M, van Hall T, Hansen TH, Yokoyama WM, Fremont DH. A herpesvirus encoded Qa-1 mimic inhibits natural killer cell cytotoxicity through CD94/NKG2A receptor engagement. eLife 2018; 7:38667. [PMID: 30575523 PMCID: PMC6320069 DOI: 10.7554/elife.38667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
A recurrent theme in viral immune evasion is the sabotage of MHC-I antigen presentation, which brings virus the concomitant issue of ‘missing-self’ recognition by NK cells that use inhibitory receptors to detect surface MHC-I proteins. Here, we report that rodent herpesvirus Peru (RHVP) encodes a Qa-1 like protein (pQa-1) via RNA splicing to counteract NK activation. While pQa-1 surface expression is stabilized by the same canonical peptides presented by murine Qa-1, pQa-1 is GPI-anchored and resistant to the activity of RHVP pK3, a ubiquitin ligase that targets MHC-I for degradation. pQa-1 tetramer staining indicates that it recognizes CD94/NKG2A receptors. Consistently, pQa-1 selectively inhibits NKG2A+ NK cells and expression of pQa-1 can protect tumor cells from NK control in vivo. Collectively, these findings reveal an innovative NK evasion strategy wherein RHVP encodes a modified Qa-1 mimic refractory to MHC-I sabotage and capable of specifically engaging inhibitory receptors to circumvent NK activation.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Christopher A Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Ya-Nan Dai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Ted Christensen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Eric Lazear
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Marjolein Sluijter
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ted H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Wayne M Yokoyama
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.,Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
10
|
Identification and Functional Characterization of Two Intronic NIPBL Mutations in Two Patients with Cornelia de Lange Syndrome. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8742939. [PMID: 26925417 PMCID: PMC4746300 DOI: 10.1155/2016/8742939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/16/2015] [Indexed: 12/03/2022]
Abstract
Cornelia de Lange syndrome (CdLS) is a rare genetically heterogeneous disorder with a high phenotypic variability including mental retardation, developmental delay, and limb malformations. The genetic causes in about 30% of patients with CdLS are still unknown. We report on the functional characterization of two intronic NIPBL mutations in two patients with CdLS that do not affect a conserved splice-donor or acceptor site. Interestingly, mRNA analyses showed aberrantly spliced transcripts missing exon 28 or 37, suggesting the loss of the branch site by the c.5329-15A>G transition and a disruption of the polypyrimidine by the c.6344del(-13)_(-8) deletion. While the loss of exon 28 retains the reading frame of the NIBPL transcript resulting in a shortened protein, the loss of exon 37 shifts the reading frame with the consequence of a premature stop of translation. Subsequent quantitative PCR analysis demonstrated a 30% decrease of the total NIPBL mRNA levels associated with the frameshift transcript. Consistent with our results, this patient shows a more severe phenotype compared to the patient with the aberrant transcript that retains its reading frame. Thus, intronic variants identified by sequencing analysis in CdLS diagnostics should carefully be examined before excluding them as nonrelevant to disease.
Collapse
|
11
|
Ma SL, Vega-Warner V, Gillies C, Sampson MG, Kher V, Sethi SK, Otto EA. Whole Exome Sequencing Reveals Novel PHEX Splice Site Mutations in Patients with Hypophosphatemic Rickets. PLoS One 2015; 10:e0130729. [PMID: 26107949 PMCID: PMC4479593 DOI: 10.1371/journal.pone.0130729] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/24/2015] [Indexed: 01/25/2023] Open
Abstract
Objective Hypophosphatemic rickets (HR) is a heterogeneous genetic phosphate wasting disorder. The disease is most commonly caused by mutations in the PHEX gene located on the X-chromosome or by mutations in CLCN5, DMP1, ENPP1, FGF23, and SLC34A3. The aims of this study were to perform molecular diagnostics for four patients with HR of Indian origin (two independent families) and to describe their clinical features. Methods We performed whole exome sequencing (WES) for the affected mother of two boys who also displayed the typical features of HR, including bone malformations and phosphate wasting. B-lymphoblast cell lines were established by EBV transformation and subsequent RT-PCR to investigate an uncommon splice site variant found by WES. An in silico analysis was done to obtain accurate nucleotide frequency occurrences of consensus splice positions other than the canonical sites of all human exons. Additionally, we applied direct Sanger sequencing for all exons and exon/intron boundaries of the PHEX gene for an affected girl from an independent second Indian family. Results WES revealed a novel PHEX splice acceptor mutation in intron 9 (c.1080-3C>A) in a family with 3 affected individuals with HR. The effect on splicing of this mutation was further investigated by RT-PCR using RNA obtained from a patient’s EBV-transformed lymphoblast cell line. RT-PCR revealed an aberrant splice transcript skipping exons 10-14 which was not observed in control samples, confirming the diagnosis of X-linked dominant hypophosphatemia (XLH). The in silico analysis of all human splice sites adjacent to all 327,293 exons across 81,814 transcripts among 20,345 human genes revealed that cytosine is, with 64.3%, the most frequent nucleobase at the minus 3 splice acceptor position, followed by thymidine with 28.7%, adenine with 6.3%, and guanine with 0.8%. We generated frequency tables and pictograms for the extended donor and acceptor splice consensus regions by analyzing all human exons. Direct Sanger sequencing of all PHEX exons in a sporadic case with HR from the Indian subcontinent revealed an additional novel PHEX mutation (c.1211_1215delACAAAinsTTTACAT, p.Asp404Valfs*5, de novo) located in exon 11. Conclusions Mutation analyses revealed two novel mutations and helped to confirm the clinical diagnoses of XLH in two families from India. WES helped to analyze all genes implicated in the underlying disease complex. Mutations at splice positions other than the canonical key sites need further functional investigation to support the assertion of pathogenicity.
Collapse
Affiliation(s)
- Sara L. Ma
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States of America
| | - Virginia Vega-Warner
- Division of Nephrology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States of America
| | - Christopher Gillies
- Division of Nephrology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States of America
| | - Matthew G. Sampson
- Division of Nephrology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States of America
| | - Vijay Kher
- Kidney and Urology Institute, Medanta, The Medicity Hospital, Gurgaon, India
| | - Sidharth K. Sethi
- Kidney and Urology Institute, Medanta, The Medicity Hospital, Gurgaon, India
| | - Edgar A. Otto
- Division of Nephrology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
12
|
Zhang J, Ahn J, Suh Y, Hwang S, Davis ME, Lee K. Identification of CTLA2A, DEFB29, WFDC15B, SERPINA1F and MUP19 as Novel Tissue-Specific Secretory Factors in Mouse. PLoS One 2015; 10:e0124962. [PMID: 25946105 PMCID: PMC4422522 DOI: 10.1371/journal.pone.0124962] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/19/2015] [Indexed: 01/07/2023] Open
Abstract
Secretory factors in animals play an important role in communication between different cells, tissues and organs. Especially, the secretory factors with specific expression in one tissue may reflect important functions and unique status of that tissue in an organism. In this study, we identified potential tissue-specific secretory factors in the fat, muscle, heart, lung, kidney and liver in the mouse by analyzing microarray data from NCBI’s Gene Expression Omnibus (GEO) public repository and searching and predicting their subcellular location in GeneCards and WoLF PSORT, and then confirmed tissue-specific expression of the genes using semi-quantitative PCR reactions. With this approach, we confirmed 11 lung, 7 liver, 2 heart, 1 heart and muscle, 7 kidney and 2 adipose and liver-specific secretory factors. Among these genes, 1 lung-specific gene - CTLA2A (cytotoxic T lymphocyte-associated protein 2 alpha), 3 kidney-specific genes - SERPINA1F (serpin peptidase inhibitor, Clade A, member 1F), WFDC15B (WAP four-disulfide core domain 15B) and DEFB29 (defensin beta 29) and 1 liver-specific gene - MUP19 (major urinary protein 19) have not been reported as secretory factors. These genes were tagged with hemagglutinin at the 3’end and then transiently transfected to HEK293 cells. Through protein detection in cell lysate and media using Western blotting, we verified secretion of the 5 genes and predicted the potential pathways in which they may participate in the specific tissue through data analysis of GEO profiles. In addition, alternative splicing was detected in transcripts of CTLA2A and SERPINA1F and the corresponding proteins were found not to be secreted in cell culture media. Identification of novel secretory factors through the current study provides a new platform to explore novel secretory factors and a general direction for further study of these genes in the future.
Collapse
Affiliation(s)
- Jibin Zhang
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
- The Ohio State University Interdisciplinary Ph.D. Program in Nutrition, The Ohio State University, Columbus, Ohio, United States of America
| | - Yeunsu Suh
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Gyeonggi, Republic of Korea
| | - Michael E. Davis
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
13
|
Popović M, Nelson JD, Schroeder KT, Greenbaum NL. Impact of base pair identity 5' to the spliceosomal branch site adenosine on branch site conformation. RNA (NEW YORK, N.Y.) 2012; 18:2093-2103. [PMID: 23002123 PMCID: PMC3479398 DOI: 10.1261/rna.035782.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 06/01/2023]
Abstract
The branch site helix from Saccharomyces cerevisiae with pseudouridine (ψ) incorporated in a phylogenetically conserved position of U2 snRNA features an extrahelical branch site adenosine (A) that forms a base triple interaction with the minor groove edge of a widely conserved purine(U2 strand)-pyrimidine(intron strand) (R(U2)-Y(intron)) base pair two positions upstream. In these studies, NMR spectra of a duplex in which 2-aminopurine (2ap), a fluorescent analog of adenine lacking the proposed hydrogen bond donor, was substituted for the branch site A, indicated that the substitution does not alter the extrahelical position of the branch site residue; thus, it appears that a hydrogen bond between the adenine amino group and the R-Y pair is not obligatory for stabilization of the extrahelical conformation. In contrast, reversal of the orientation of A(U2)-U(intron) to U(U2)-A(intron) resulted in an intrahelical position for the branch site A or 2ap. Fluorescence intensity of 2ap substituted for the branch site A with the original R(U2)-Y(intron) orientation (AU or GC) was high, consistent with an extrahelical position, whereas fluorescence in helices with the reversed R-Y orientation, or with a mismatched pair (A-U → G•A or U•C), was markedly quenched, implying that the residue was stacked in the helix. The A 5' to the branch site residue was not extrahelical in any of the duplexes. These findings suggest that the R(U2)-Y(intron) base pair orientation in the ψ-dependent branch site helix plays an important role in positioning the branch site A for recognition and/or function.
Collapse
Affiliation(s)
- Milena Popović
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, USA
| | - Joycelynn D. Nelson
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, USA
| | - Kersten T. Schroeder
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, USA
| | - Nancy L. Greenbaum
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- The Graduate Center, City University of New York, New York, New York 10016, USA
| |
Collapse
|
14
|
Zhu H, Li H, Han Z, Shao Y, Wang Y, Kong X. Identification of a spliced gene from duck enteritis virus encoding a protein homologous to UL15 of herpes simplex virus 1. Virol J 2011; 8:156. [PMID: 21466705 PMCID: PMC3079670 DOI: 10.1186/1743-422x-8-156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/06/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In herpesviruses, UL15 homologue is a subunit of terminase complex responsible for cleavage and packaging of the viral genome into pre-assembled capsids. However, for duck enteritis virus (DEV), the causative agent of duck viral enteritis (DVE), the genomic sequence was not completely determined until most recently. There is limited information of this putative spliced gene and its encoding protein. RESULTS DEV UL15 consists of two exons with a 3.5 kilobases (kb) inron and transcribes into two transcripts: the full-length UL15 and an N-terminally truncated UL15.5. The 2.9 kb UL15 transcript encodes a protein of 739 amino acids with an approximate molecular mass of 82 kiloDaltons (kDa), whereas the UL15.5 transcript is 1.3 kb in length, containing a putative 888 base pairs (bp) ORF that encodes a 32 kDa product. We also demonstrated that UL15 gene belonged to the late kinetic class as its expression was sensitive to cycloheximide and phosphonoacetic acid. UL15 is highly conserved within the Herpesviridae, and contains Walker A and B motifs homologous to the catalytic subunit of the bacteriophage terminase as revealed by sequence analysis. Phylogenetic tree constructed with the amino acid sequences of 23 herpesvirus UL15 homologues suggests a close relationship of DEV to the Mardivirus genus within the Alphaherpesvirinae. Further, the UL15 and UL15.5 proteins can be detected in the infected cell lysate but not in the sucrose density gradient-purified virion when reacting with the antiserum against UL15. Within the CEF cells, the UL15 and/or UL15.5 localize(s) in the cytoplasm at 6 h post infection (h p. i.) and mainly in the nucleus at 12 h p. i. and at 24 h p. i., while accumulate(s) in the cytoplasm in the absence of any other viral protein. CONCLUSIONS DEV UL15 is a spliced gene that encodes two products encoded by 2.9 and 1.3 kb transcripts respectively. The UL15 is expressed late during infection. The coding sequences of DEV UL15 are very similar to those of alphaherpesviruses and most similar to the genus Mardivirus. The UL15 and/or UL15.5 accumulate(s) in the cytoplasm during early times post-infection and then are translocated to the nucleus at late times.
Collapse
Affiliation(s)
- Hongwei Zhu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | | | | | | | | | | |
Collapse
|
15
|
Gao Y, Wang X, Han J, Xiao Z, Chen B, Su G, Dai J. The novel OCT4 spliced variant OCT4B1 can generate three protein isoforms by alternative splicing into OCT4B. J Genet Genomics 2011; 37:461-5. [PMID: 20659710 DOI: 10.1016/s1673-8527(09)60065-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/06/2010] [Accepted: 05/12/2010] [Indexed: 11/16/2022]
Abstract
OCT4 is one of the key transcription factors in maintaining the pluripotency and self-renewal of embryonic stem (ES) cells. Human OCT4 can generate two isoforms OCT4A and OCT4B by alternative splicing. OCT4B1 is a recently discovered novel OCT4 spliced variant, which has been considered as a putative marker of stemness. Compared with the OCT4B mRNA, OCT4B1 mRNA is generated by retaining intron 2 as a cryptic exon which contains a TGA stop codon in it. As a result, the protein product of OCT4B1 mRNA could be truncated. Interestingly, we present here that OCT4B1 can indirectly produce the same protein products as OCT4B. We have demonstrated that OCT4B1 mRNA can be spliced into OCT4B mRNA, and encode three protein isoforms. The splicing of OCT4B1 mRNA into OCT4B mRNA can be remarkably inhibited by the mutation of the classical splicing site. Our result suggests that OCT4B mRNA may originate from OCT4B1 mRNA by alternative splicing.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Colin C, Tobaruella FS, Correa RG, Sogayar MC, Demasi MA. Cloning and characterization of a novel alternatively spliced transcript of the human CHD7 putative helicase. BMC Res Notes 2010; 3:252. [PMID: 20925924 PMCID: PMC2966464 DOI: 10.1186/1756-0500-3-252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 10/06/2010] [Indexed: 11/23/2022] Open
Abstract
Background The CHD7 (Chromodomain Helicase DNA binding protein 7) gene encodes a member of the chromodomain family of ATP-dependent chromatin remodeling enzymes. Mutations in the CHD7 gene are found in individuals with CHARGE, a syndrome characterized by multiple birth malformations in several tissues. CHD7 was identified as a binding partner of PBAF complex (Polybromo and BRG Associated Factor containing complex) playing a central role in the transcriptional reprogramming process associated to the formation of multipotent migratory neural crest, a transient cell population associated with the genesis of various tissues. CHD7 is a large gene containing 38 annotated exons and spanning 200 kb of genomic sequence. Although genes containing such number of exons are expected to have several alternative transcripts, there are very few evidences of alternative transcripts associated to CHD7 to date indicating that alternative splicing associated to this gene is poorly characterized. Findings Here, we report the cloning and characterization by experimental and computational studies of a novel alternative transcript of the human CHD7 (named CHD7 CRA_e), which lacks most of its coding exons. We confirmed by overexpression of CHD7 CRA_e alternative transcript that it is translated into a protein isoform lacking most of the domains displayed by the canonical isoform. Expression of the CHD7 CRA_e transcript was detected in normal liver, in addition to the DU145 human prostate carcinoma cell line from which it was originally isolated. Conclusions Our findings indicate that the splicing event associated to the CHD7 CRA_e alternative transcript is functional. The characterization of the CHD7 CRA_e novel isoform presented here not only sets the basis for more detailed functional studies of this isoform, but, also, contributes to the alternative splicing annotation of the CHD7 gene and the design of future functional studies aimed at the elucidation of the molecular functions of its gene products.
Collapse
Affiliation(s)
- Christian Colin
- Chemistry Institute, University of São Paulo, Biochemistry Department, São Paulo, 05508-000 SP, Brazil.
| | | | | | | | | |
Collapse
|
17
|
Identification of hookworm DAF-16/FOXO response elements and direct gene targets. PLoS One 2010; 5:e12289. [PMID: 20808816 PMCID: PMC2924398 DOI: 10.1371/journal.pone.0012289] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/29/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The infective stage of the parasitic nematode hookworm is developmentally arrested in the environment and needs to infect a specific host to complete its life cycle. The canine hookworm (Ancylostoma caninum) is an excellent model for investigating human hookworm infections. The transcription factor of A. caninum, Ac-DAF-16, which has a characteristic fork head or "winged helix" DNA binding domain (DBD), has been implicated in the resumption of hookworm development in the host. However, the precise roles of Ac-DAF-16 in hookworm parasitism and its downstream targets are unknown. In the present study, we combined molecular techniques and bioinformatics to identify a group of Ac-DAF-16 binding sites and target genes. METHODOLOGY/PRINCIPAL FINDINGS The DNA binding domain of Ac-DAF-16 was used to select genomic fragments by in vitro genomic selection. Twenty four bound genomic fragments were analyzed for the presence of the DAF-16 family binding element (DBE) and possible alternative Ac-DAF-16 bind motifs. The 22 genes linked to these genomic fragments were identified using bioinformatics tools and defined as candidate direct gene targets of Ac-DAF-16. Their developmental stage-specific expression patterns were examined. Also, a new putative DAF-16 binding element was identified. CONCLUSIONS/SIGNIFICANCE Our results show that Ac-DAF-16 is involved in diverse biological processes throughout hookworm development. Further investigation of these target genes will provide insights into the molecular basis by which Ac-DAF-16 regulates its downstream gene network in hookworm infection.
Collapse
|
18
|
|
19
|
Lin Y, Kielkopf CL. X-ray structures of U2 snRNA-branchpoint duplexes containing conserved pseudouridines. Biochemistry 2008; 47:5503-14. [PMID: 18435545 DOI: 10.1021/bi7022392] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A pseudouridine-modified region of the U2 small nuclear (sn)RNA anneals with the intronic branchpoint sequence and positions a bulged adenosine to serve as the nucleophile in the first chemical step of pre-mRNA splicing. We have determined three X-ray structures of RNA oligonucleotides containing the pseudouridylated U2 snRNA and the branchpoint consensus sequences. The expected adenosine branchpoint is extrahelical in a 1.65 A resolution structure containing the mammalian consensus sequence variant and in a 2.10 A resolution structure containing a shortened Saccharomyces cerevisiae consensus sequence. The adenosine adjacent to the expected branchpoint is extrahelical in a third structure, which contains the intact yeast consensus sequence at 1.57 A resolution. The hydration and base stacking interactions mediated by the U2 snRNA pseudouridines correlate with the identity of the unpaired adenosine. The expected adenosine bulge is associated with a well-stacked pseudouridine, which is linked via an ordered water molecule to a neighboring nucleotide. In contrast, the bulge of the adjacent adenosine shifts the base stacking and disrupts the water-mediated interactions of the pseudouridine. These structural differences may contribute to the ability of the pseudouridine modification to promote the bulged conformation of the branch site adenosine and to enhance catalysis by snRNAs. Furthermore, iodide binding sites are identified adjacent to the unconventional bulged adenosine, and the structure of the mammalian consensus sequence variant provides a high-resolution view of a hydrated magnesium ion bound in a similar manner to a divalent cation binding site of the group II intron.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
20
|
Garrey SM, Cass DM, Wandler AM, Scanlan MS, Berglund JA. Transposition of two amino acids changes a promiscuous RNA binding protein into a sequence-specific RNA binding protein. RNA (NEW YORK, N.Y.) 2008; 14:78-88. [PMID: 18000034 PMCID: PMC2151040 DOI: 10.1261/rna.633808] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In yeast (Saccharomyces cerevisiae), the branchpoint binding protein (BBP) recognizes the conserved yeast branchpoint sequence (UACUAAC) with a high level of specificity and affinity, while the human branchpoint binding protein (SF1) binds the less-conserved consensus branchpoint sequence (CURAY) in human introns with a lower level of specificity and affinity. To determine which amino acids in BBP provide the additional specificity and affinity absent in SF1, a panel of chimeric SF1 proteins was tested in RNA binding assays with wild-type and mutant RNA substrates. This approach revealed that the QUA2 domain of BBP is responsible for the enhanced RNA binding affinity and specificity displayed by BBP compared with SF1. Within the QUA2 domain, a transposition of adjacent arginine and lysine residues is primarily responsible for the switch in RNA binding between BBP and SF1. Alignment of multiple branchpoint binding proteins and the related STAR/GSG proteins suggests that the identity of these two amino acids and the RNA target sequences of all of these proteins are correlated.
Collapse
Affiliation(s)
- Stephen M Garrey
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | | | |
Collapse
|
21
|
Organisation of the Hb 1 genes of the Antarctic skate Bathyraja eatonii: new insights into the evolution of globin genes. Gene 2007; 406:199-208. [PMID: 17997234 DOI: 10.1016/j.gene.2007.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 09/14/2007] [Accepted: 10/02/2007] [Indexed: 01/19/2023]
Abstract
An extensive investigation of the organisation of globin genes has greatly contributed to the understanding of universal mechanisms of gene evolution and expression. Cartilaginous fish are the first organisms that have evolved the tetrameric form of hemoglobin (Hb). So far, there has been absolute lack of data about globin genes in chondrichthyans. Bathyraja is the dominant rajid south of 60 degrees S. In the framework of the investigations on globin genes of Antarctic red-blooded and Hb-less fish we obtained the cloning of the alpha- and beta-globin cDNAs of the main Hb (Hb 1) of the skate Bathyraja eatonii. Then, a genomic fragment of 6.2 kb was isolated where the Hb 1 alpha and beta genes are linked in a tail-to-head (3' to 5') orientation. The beta-globin gene promoter region and the chromosomal organisation of the Hb 1 genes of B. eatonii have been compared to their homologues in other vertebrates. The finding of a tail-to-head linkage of the Hb 1 alpha- and beta-globin genes in B. eatonii is the first characterisation of the organisation of globin genes in chondrichthyes; such finding offers a novel contribution to the understanding of the evolution of this class of genes. Moreover, the characterisation of chondrichthyan genes is very important for gaining insight into the ancestral state of vertebrate genomes.
Collapse
|
22
|
Bailly X, Chabasse C, Hourdez S, Dewilde S, Martial S, Moens L, Zal F. Globin gene family evolution and functional diversification in annelids. FEBS J 2007; 274:2641-52. [PMID: 17451435 DOI: 10.1111/j.1742-4658.2007.05799.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Globins are the most common type of oxygen-binding protein in annelids. In this paper, we show that circulating intracellular globin (Alvinella pompejana and Glycera dibranchiata), noncirculating intracellular globin (Arenicola marina myoglobin) and extracellular globin from various annelids share a similar gene structure, with two conserved introns at canonical positions B12.2 and G7.0. Despite sequence divergence between intracellular and extracellular globins, these data strongly suggest that these three globin types are derived from a common ancestral globin-like gene and evolved by duplication events leading to diversification of globin types and derived functions. A phylogenetic analysis shows a distinct evolutionary history of annelid extracellular hemoglobins with respect to intracellular annelid hemoglobins and mollusc and arthropod extracellular hemoglobins. In addition, dehaloperoxidase (DHP) from the annelid, Amphitrite ornata, surprisingly exhibits close phylogenetic relationships to some annelid intracellular globins. We have characterized the gene structure of A. ornata DHP to confirm assumptions about its homology with globins. It appears that it has the same intron position as in globin genes, suggesting a common ancestry with globins. In A. ornata, DHP may be a derived globin with an unusual enzymatic function.
Collapse
Affiliation(s)
- Xavier Bailly
- Equipe Ecophysiologie: Adaptation et Evolution Moléculaires, UPMC, CNRS UMR 7144, Station Biologique, BP 74, Roscoff, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Deiuliis JA, Li B, Lyvers-Peffer PA, Moeller SJ, Lee K. Alternative splicing of delta-like 1 homolog (DLK1) in the pig and human. Comp Biochem Physiol B Biochem Mol Biol 2006; 145:50-9. [PMID: 16901742 DOI: 10.1016/j.cbpb.2006.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Revised: 06/14/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
Delta-like homolog 1 (DLK1), a paternally imprinted gene with several alternative splicing isoforms, is an important regulator of fetal and postnatal development. We report the sequence of porcine DLK1 (pDLK1) and examine the expression and alternative splicing isoforms in the pig (Sus scrofa) and human. DLK1-A was the sole isoform identified in human tissues and has been shown to be present in mouse and cattle. Surprisingly, DLK1-A was undetected in various tissues from fetal and postnatal pigs. Instead, DLK1-C2 was the most abundant isoform while DLK1-B was expressed to a lesser extent. In fractionated adipose tissue, pDLK1 was most highly expressed in the stromal-vascular cell fraction. In addition, total pDLK1 was highly expressed in fetal adipose tissue but dramatically decreased postnatally. Our data suggests that expression of DLK1-B and -C2 isoforms is sufficient for normal pig development. Furthermore, human and pig samples showed no alterations in species-specific splicing, but expression levels decreased with age, suggesting that regulation of expression, not splicing, is the most likely mechanism controlling the biological function of DLK1.
Collapse
Affiliation(s)
- Jeffrey A Deiuliis
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Rd, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
24
|
Chabasse C, Bailly X, Sanchez S, Rousselot M, Zal F. Gene structure and molecular phylogeny of the linker chains from the giant annelid hexagonal bilayer hemoglobins. J Mol Evol 2006; 63:365-74. [PMID: 16838215 DOI: 10.1007/s00239-005-0198-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
Giant extracellular hexagonal bilayer hemoglobin (HBL-Hb), found only in annelids, is an approximately 3500-kDa heteropolymeric structure involved in oxygen transport. The HBL-Hbs are comprised of globin and linker chains, the latter being required for the assembly of the quaternary structure. The linker chains, varying in size from 225 to 283 amino acids, have a conserved cysteine-rich domain within their N-terminal moiety that is homologous to the cysteine-rich modules constituting the ligand binding domain of the low-density lipoprotein receptor (LDLR) protein family found in many metazoans. We have investigated the gene structure of linkers from Arenicola marina, Alvinella pompejana, Nereis diversicolor, Lumbricus terrestris, and Riftia pachyptila. We found, contrary to the results obtained earlier with linker genes from N. diversicolor and L. terrestris, that in all of the foregoing cases, the linker LDL-A module is flanked by two phase 1 introns, as in the human LDLR gene, with two more introns in the 3' side whose positions varied with the species. In addition, we obtained 13 linker cDNAs that have been determined experimentally or found in the EST database LumbriBASE. A molecular phylogenetic analysis of the linker primary sequences demonstrated that they cluster into two distinct families of linker proteins. We propose that the common gene ancestor to annelid linker genes exhibited a four-intron and five-exon structure and gave rise to the two families subsequent to a duplication event.
Collapse
Affiliation(s)
- Christine Chabasse
- Equipe Ecophysiologie, Adaptation et Evolution Moléculaires, UPMC-CNRS UMR 7144, Station Biologique, BP 74, 29682, Roscoff cedex, France.
| | | | | | | | | |
Collapse
|
25
|
Xu G, Fang QQ, Sun Y, Keirans JE, Durden LA. Hard tick calreticulin (CRT) gene coding regions have only one intron with conserved positions and variable sizes. J Parasitol 2006; 91:1326-31. [PMID: 16539012 DOI: 10.1645/ge-344r1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Calreticulin (CRT) is a unique eukaryotic gene. The CRT gene product, calreticulin, was first identified as a calcium binding protein in 1974, but further investigations have indicated that CRT protein performs many functions in cells, including involvement in evading the host's immune system by parasites. Many studies of CRT have been published since the molecule was first discovered; however, the CRT gene exon-intron structure is only known for a limited number of ectoparasite species. In this study, we compared tick CRT genomic sequences to the corresponding cDNA from 28 species and found that 2 exons and 1 intron are present in the tick CRT gene. The intron position is conserved in 28 hard ticks, but intron size and nucleotide sequences vary. Three tick introns possess duplicated fragments and are twice as long as other introns. All tick CRT introns obey the GT-AG rule in the splice-site junctions and are phase 1 introns. By comparing tick CRT introns to those of fruit fly, mouse, and human, we conclude that tick CRT introns belong to the intron-late type. The number and size of CRT introns have increased through the evolution of eukaryotes.
Collapse
Affiliation(s)
- Guang Xu
- Department of Biology and Institute of Arthropodology and Parasitology, Georgia Southern University, Statesboro 30460-8042, USA
| | | | | | | | | |
Collapse
|
26
|
Hovhannisyan RH, Carstens RP. A novel intronic cis element, ISE/ISS-3, regulates rat fibroblast growth factor receptor 2 splicing through activation of an upstream exon and repression of a downstream exon containing a noncanonical branch point sequence. Mol Cell Biol 2005; 25:250-63. [PMID: 15601847 PMCID: PMC538792 DOI: 10.1128/mcb.25.1.250-263.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutually exclusive splicing of fibroblast growth factor receptor 2 (FGFR2) exons IIIb and IIIc yields two receptor isoforms, FGFR2-IIIb and -IIIc, with distinctly different ligand binding properties. Several RNA cis elements in the intron (intron 8) separating these exons have been described that are required for splicing regulation. Using a heterologous splicing reporter, we have identified a new regulatory element in this intron that confers cell-type-specific inclusion of an unrelated exon that mirrors its ability to promote cell-type-specific inclusion of exon IIIb. This element promoted inclusion of exon IIIb while at the same time silencing exon IIIc inclusion in cells expressing FGFR2-IIIb; hence, we have termed this element ISE/ISS-3 (for "intronic splicing enhancer-intronic splicing silencer 3"). Silencing of exon IIIc splicing by ISE/ISS-3 was shown to require a branch point sequence (BPS) using G as the primary branch nucleotide. Replacing a consensus BPS with A as the primary branch nucleotide resulted in constitutive splicing of exon IIIc. Our results suggest that the branch point sequence constitutes an important component that can contribute to the efficiency of exon definition of alternatively spliced cassette exons. Noncanonical branch points may thus facilitate cell-type-specific silencing of regulated exons by flanking cis elements.
Collapse
Affiliation(s)
- Ruben H Hovhannisyan
- University of Pennsylvania School of Medicine, 700 Clinical Research Building, 415 Curie Blvd., Philadelphia, PA 19104-6144, USA
| | | |
Collapse
|
27
|
Lee JT, Yu SS, Han E, Kim S, Kim S. Engineering the splice acceptor for improved gene expression and viral titer in an MLV-based retroviral vector. Gene Ther 2003; 11:94-9. [PMID: 14681702 DOI: 10.1038/sj.gt.3302138] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have recently developed a retroviral vector that contains a splice acceptor from the human EF1-alpha gene and drives a significantly higher level of gene expression than other well known murine leukemia virus-based vectors. However, one downside of this vector is that viral titer significantly varies depending on the packaging lines used. Results from Northern blot analysis indicated that in certain cell lines the genomic transcript containing the packaging signal sequence was too efficiently spliced to the subgenomic RNA, resulting in low levels of genomic RNA and thus leading to a low viral titer. We tested the possibility of overcoming this problem by introducing mutations around the splice acceptor sequence in such a way that a delicate balance was maintained between the splicing efficiency (which determines the level of gene expression) and the amount of genomic transcript (which influences viral titer). After mutational analysis, one such mutant was found to meet this requirement. The newly constructed vector containing the engineered splice acceptor could indeed drive higher levels of expression in many therapeutic genes than other control vectors, without significantly compromising viral titer.
Collapse
Affiliation(s)
- J-T Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
28
|
Eisenhaure TM, Francis SA, Willison LD, Coughlin SR, Lerner DJ. The Rho guanine nucleotide exchange factor Lsc homo-oligomerizes and is negatively regulated through domains in its carboxyl terminus that are absent in novel splenic isoforms. J Biol Chem 2003; 278:30975-84. [PMID: 12773540 DOI: 10.1074/jbc.m303277200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho GTPases control fundamental cellular processes, including cytoskeletal reorganization and transcription. Rho guanine nucleotide exchange factors (GEFs) compose a large (>65) and diverse family of related proteins that activate Rho GTPases. Lsc/p115-RhoGEF is a Rho-specific GEF required for normal B and T lymphocyte function. Despite its essential role in lymphocytes, Lsc/p115-RhoGEF signaling in vivo is not well understood. To define Lsc/p115-RhoGEF signaling pathways in vivo, we set out to identify proteins that interact with regulatory regions of Lsc. The 146-amino acid C terminus of Lsc contains a predicted coiled-coil domain, and we demonstrated that deletion of this C terminus confers a gain of function in vivo. Surprisingly, a yeast two-hybrid screen for proteins that interact with this regulatory C terminus isolated a larger C-terminal fragment of Lsc itself. Co-immunoprecipitation experiments in mammalian cells demonstrated that Lsc specifically homo-oligomerizes and that the coiled-coil domain in the C terminus is required for homo-oligomerization. Mutagenesis experiments revealed that homo-oligomerization and negative regulation are distinct functions of the C terminus. Two novel isoforms of Lsc found in the spleen lack portions of this C terminus, including the coiled-coil domain. Importantly, the C termini of both isoforms confer a gain of function and eliminate homo-oligomerization. These results define two important features of Lsc signaling. First, Lsc homo-oligomerizes and is negatively regulated through domains in its C terminus; and second, functionally distinct isoforms of Lsc lacking these domains are present in the spleen.
Collapse
Affiliation(s)
- Thomas M Eisenhaure
- Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
29
|
O'Brien LA, James PD, Othman M, Berber E, Cameron C, Notley CRP, Hegadorn CA, Sutherland JJ, Hough C, Rivard GE, O'Shaunessey D, Lillicrap D. Founder von Willebrand factor haplotype associated with type 1 von Willebrand disease. Blood 2003; 102:549-57. [PMID: 12649144 DOI: 10.1182/blood-2002-12-3693] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, no dominant mutation has been identified in a significant proportion of patients with type 1 von Willebrand disease (VWD). In this study, we examined 70 families as part of the Canadian Type 1 VWD Study. The entire VWF gene was sequenced for 1 index case, revealing 2 sequence variations: intron 30 (5312-19A>C) and exon 28 at Tyr1584Cys (4751A>G). The Tyr1584Cys variation was identified in 14.3% (10 of 70) of the families and was in phase with the 5312-19A>C variation in 7 (10.0%) families. Both variants were observed in 2 of 10 UK families with type 1 VWD, but neither variant was found in 200 and 100 healthy, unrelated persons, respectively. Mean von Willebrand factor antigen (VWF:Ag), VWF ristocetin cofactor (VWF:RCo), and factor VIII coagulant activity (FVIII:C) for the index cases in these families are 0.4 U/mL, 0.36 U/mL, and 0.54 U/mL, respectively, and VWF multimer patterns show no qualitative abnormalities. Aberrant VWF splicing was not observed in these patients, and both alleles of the VWF gene are expressed as RNA. Molecular dynamic simulation was performed on a homology model of the VWF-A2 domain containing the Tyr1584Cys mutation. This showed that no significant structural changes occur as a result of the substitution but that a new solvent-exposed reactive thiol group is apparent. Expression studies revealed that the Tyr1584Cys mutation results in increased intracellular retention of the VWF protein. We demonstrate that all the families with the Tyr1584Cys mutation share a common, evolved VWF haplotype, suggesting that this mutation is ancient. This is the first report of a mutation that segregates in a significant proportion of patients with type 1 VWD.
Collapse
Affiliation(s)
- Lee A O'Brien
- Department of Pathology, Queen's University, Kingston, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Macpherson AJ, Uhr T. The donor splice site mutation in NFkappaB-inducing kinase of alymphoplasia (aly/aly) mice. Immunogenetics 2003; 54:693-8. [PMID: 12557055 DOI: 10.1007/s00251-002-0517-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2002] [Revised: 10/29/2002] [Indexed: 11/29/2022]
Abstract
The alymphoplasia (aly/aly) mouse has a spontaneous mutation maintained on a C57BL/6xAEJ ( H-2(b)) background that results in an absence of extrasplenic secondary lymphoid tissues. The cDNA defect has previously been shown to reside in a point mutation causing a G855R substitution in NFkappaB-inducing kinase (NIK). Since the aly/aly female cannot lactate, the strain must be bred by intercrossing heterozygous females with homozygous males and the offspring typed by serum IgA levels at the age of 4-6 weeks. We originally determined the genomic location of the alymphoplasia mutation by sequencing boundaries of regions homologous to human NIK exons, although recently the entire genomic sequence of murine C57BL/6 NIK has become available through the mouse genome project. The aly mutation is at position -1 of an intron donor consensus splice site. Exon-connexion PCR confirmed that splicing does occur across this site. Using the genomic information, we also developed a method of PCR typing of aly/aly mice from tail clips, and used this to derive an aly/aly muMT double-mutant strain in which antibody independent typing is essential. Genetic typing should considerably simplify husbandry and manipulation of the aly/aly genetic background, which is widely used as a recipient in lymphocyte transfer experiments to permit examination of the relative role of secondary lymphoid structures in immune responses.
Collapse
Affiliation(s)
- Andrew J Macpherson
- Institute of Experimental ImmunologyUniversitätsspital, Schmelzbergstrasse 12, 8091 Zürich Switzerland.
| | | |
Collapse
|
31
|
Western AH, Eckery DC, Demmer J, Juengel JL, McNatty KP, Fidler AE. Expression of the FcRn receptor (alpha and beta) gene homologues in the intestine of suckling brushtail possum (Trichosurus vulpecula) pouch young. Mol Immunol 2003; 39:707-17. [PMID: 12531282 DOI: 10.1016/s0161-5890(02)00260-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The neonatal IgG transporter FcRn consists of two chains, FcRn alpha and beta (also known as beta(2) microglobulin), and is involved in transferring IgG molecules across both mammary and intestinal epithelial cells. Developmental changes in FcRn IgG alpha and beta chain mRNA levels were investigated in the gut of brushtail possum (Trichosurus vulpecula) pouch young (PY) using Northern hybridisation. FcRn alpha transcripts were detected in the PY proximal intestine at all times examined, between days 1 and 195 of post-natal life, with increased levels detected from around day 110. The beta(2) microglobulin transcript levels in the PY proximal intestine were low to undetectable until day 110 of post-natal life and then increased dramatically after day 159. Both the FcRn alpha and beta gene transcripts were detected in a wide range of tissues in the adult possum (>365 days). Genomic sequences located 5' to the start of transcription of the FcRn alpha and beta(2) microglobulin genes were cloned and analysed for predicted cis-acting transcription control elements. Both the FcRn alpha and beta(2) microglobulin genomic sequences contained STAT5 binding motifs consistent with the transcription of both genes being modulated by prolactin. Using in situ hybridisation, the FcRn alpha and beta(2) microglobulin transcripts were localised to the epithelial cells of the PY intestine. However, no prolactin receptor transcripts were detected in the same epithelial cells suggesting that the observed changes in FcRn alpha and beta(2) microglobulin gene expression in the proximal intestine are not modulated directly by prolactin. The results are consistent with the hypothesis that changes in FcRn alpha and beta(2) microglobulin gene expression take place in the possum PY intestine to accommodate changes in maternal milk composition to meet the changing immunological demands of the PY.
Collapse
Affiliation(s)
- A H Western
- AgResearch Wallaceville, Ward Street, Upper Hutt, New Zealand
| | | | | | | | | | | |
Collapse
|
32
|
Klippel S, Strunck E, Busse CE, Behringer D, Pahl HL. Biochemical characterization of PRV-1, a novel hematopoietic cell surface receptor, which is overexpressed in polycythemia rubra vera. Blood 2002; 100:2441-8. [PMID: 12239154 DOI: 10.1182/blood-2002-03-0949] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cDNA for polycythemia rubra vera 1 (PRV-1), a novel hematopoietic receptor, was recently cloned by virtue of its overexpression in patients with polycythemia vera. PRV-1 is a member of the uPAR/CD59/Ly6 family of cell surface receptors, which share a common cysteine-rich domain and are tethered to the cell surface via a glycosylphosphatidylinositol (GPI) link. We have determined the intron-exon structure of the PRV1 gene and show that the locus is structurally intact in patients with polycythemia vera. Thus, PRV-1 overexpression in these patients is not due to rearrangement or structural alteration of the gene. Northern blot analysis detects multiple PRV-1 transcripts. Here we show that these transcripts arise from alternative polyadenylation and encode the same protein. Biochemical analysis reveals that PRV-1 is N-glycosylated and embedded in the cell membrane by a lipid anchor, like other members of this family. Moreover, PRV-1 is shed from the cell surface because soluble protein can be detected in cell supernatants. Fluorescence-activated cell sorting analysis of stably transfected cells revealed that PRV-1 is recognized by antibodies directed against the neutrophil antigen NB1/CD177. Flow cytometry of bone marrow and peripheral blood of both healthy donors and patients with polycythemia vera showed that PRV-1 protein is expressed on myeloid cells of the granulocytic lineage. However, unlike the significant difference in PRV-1 expression observed on the mRNA level, the amount of PRV-1 protein on the cell surface is not consistently elevated in patients with polycythemia vera compared with healthy controls. Therefore, quantification of PRV-1 surface expression cannot be used for the diagnosis of polycythemia vera.
Collapse
Affiliation(s)
- Steffen Klippel
- Department of Experimental Anaesthesiology, University Hospital Freiburg, Center for Clinical Research, and the Department of Hematology and Oncology, University Hospital Freiburg, Germany
| | | | | | | | | |
Collapse
|
33
|
Jacquenet S, Méreau A, Bilodeau PS, Damier L, Stoltzfus CM, Branlant C. A second exon splicing silencer within human immunodeficiency virus type 1 tat exon 2 represses splicing of Tat mRNA and binds protein hnRNP H. J Biol Chem 2001; 276:40464-75. [PMID: 11526107 DOI: 10.1074/jbc.m104070200] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An equilibrium between spliced and unspliced primary transcripts is essential for retrovirus multiplication. This equilibrium is maintained by the presence of inefficient splice sites. The A3 3'-splice site of human immunodeficiency virus type I (HIV-1) is required for Tat mRNA production. The infrequent utilization of this splice site has been attributed to the presence of a suboptimal polypyrimidine tract and an exonic splicing silencer (ESS2) in tat exon 2 approximately 60 nucleotides downstream of 3'-splice site A3. Here, using site-directed mutagenesis followed by analysis of splicing in vitro and in HeLa cells, we show that the 5' extremity of tat exon 2 contains a second exonic splicing silencer (ESS2p), which acts to repress splice site A3. The inhibitory property of this exonic silencer was active when inserted downstream of another HIV-1 3'-splice site (A2). Protein hnRNP H binds to this inhibitory element, and two U-to-C substitutions within the ESS2p element cause a decreased hnRNP H affinity with a concomitant increase in splicing efficiency at 3'-splice site A3. This suggests that hnRNP H is directly involved in splicing inhibition. We propose that hnRNP H binds to the HIV-1 ESS2p element and competes with U2AF(35) for binding to the exon sequence flanking 3'-splice site A3. This binding results in the inhibition of splicing at 3'-splice site A3.
Collapse
Affiliation(s)
- S Jacquenet
- Laboratoire de Maturation des Acide Ribo-Nucléotidique et Enzymologie Moléculaire, Unité Mixte de Recherche 7567 Université Henri Poincarré-CNRS, Boulevard des Aiguillettes, BP239, 54506 Vandoeuvre-lès-Nancy cedex, France
| | | | | | | | | | | |
Collapse
|
34
|
Grenard P, Bates MK, Aeschlimann D. Evolution of transglutaminase genes: identification of a transglutaminase gene cluster on human chromosome 15q15. Structure of the gene encoding transglutaminase X and a novel gene family member, transglutaminase Z. J Biol Chem 2001; 276:33066-78. [PMID: 11390390 DOI: 10.1074/jbc.m102553200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We isolated and characterized the gene encoding human transglutaminase (TG)(X) (TGM5) and mapped it to the 15q15.2 region of chromosome 15 by fluorescence in situ hybridization. The gene consists of 13 exons separated by 12 introns and spans about 35 kilobases. Further sequence analysis and mapping showed that this locus contained three transglutaminase genes arranged in tandem: EPB42 (band 4.2 protein), TGM5, and a novel gene (TGM7). A full-length cDNA for the novel transglutaminase (TG(Z)) was obtained by anchored polymerase chain reaction. The deduced amino acid sequence encoded a protein with 710 amino acids and a molecular mass of 80 kDa. Northern blotting showed that the three genes are differentially expressed in human tissues. Band 4.2 protein expression was associated with hematopoiesis, whereas TG(X) and TG(Z) showed widespread expression in different tissues. Interestingly, the chromosomal segment containing the human TGM5, TGM7, and EPB42 genes and the segment containing the genes encoding TG(C),TG(E), and another novel gene (TGM6) on chromosome 20q11 are in mouse all found on distal chromosome 2 as determined by radiation hybrid mapping. This finding suggests that in evolution these six genes arose from local duplication of a single gene and subsequent redistribution to two distinct chromosomes in the human genome.
Collapse
Affiliation(s)
- P Grenard
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom
| | | | | |
Collapse
|
35
|
Lau DT, Saeed-Kothe A, Parker SK, William Detrich H. Adaptive Evolution of Gene Expression in Antarctic Fishes: Divergent Transcription of the 5′-to-5′ Linked Adult α1- and β-Globin Genes of the Antarctic TeleostNotothenia coriicepsis Controlled by Dual Promoters and Intergenic Enhancers1. ACTA ACUST UNITED AC 2001. [DOI: 10.1668/0003-1569(2001)041[0113:aeogei]2.0.co;2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Adaptive Evolution of Gene Expression in Antarctic Fishes: Divergent Transcription of the 5′-to-5′ Linked Adult α1- and β-Globin Genes of the Antarctic TeleostNotothenia coriicepsis Controlled by Dual Promoters and Intergenic Enhancers. ACTA ACUST UNITED AC 2001. [DOI: 10.1093/icb/41.1.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Lund M, Tange TO, Dyhr-Mikkelsen H, Hansen J, Kjems J. Characterization of human RNA splice signals by iterative functional selection of splice sites. RNA (NEW YORK, N.Y.) 2000; 6:528-44. [PMID: 10786844 PMCID: PMC1369934 DOI: 10.1017/s1355838200992033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
An iterative in vitro splicing strategy was employed to select for optimal 3' splicing signals from a pool of pre-mRNAs containing randomized regions. Selection of functional branchpoint sequences in HeLa cell nuclear extract yielded a sequence motif that evolved from UAA after one round of splicing toward a UACUAAC consensus after seven rounds. A significant part of the selected sequences contained a conserved AAUAAAG motif that proved to be functional both as a polyadenylation signal and a branch site in a competitive manner. Characterization of the branchpoint in these clones to either the upstream or downstream adenosines of the AAUAAAG sequence revealed that the branching process proceeded efficiently but quite promiscuously. Surprisingly, the conserved guanosine, adjacent to the common AAUAAA polyadenylation motif, was found to be required only for polyadenylation. In an independent experiment, sequences surrounding an optimal branchpoint sequence were selected from two randomized 20-nt regions. The clones selected after six rounds of splicing revealed an extended polypyrimidine tract with a high frequency of UCCU motifs and a highly conserved YAG sequence in the extreme 3' end of the randomized insert. Mutating the 3' terminal guanosine of the intron strongly affects complex A formation, implying that the invariant AG is recognized early in spliceosome assembly.
Collapse
Affiliation(s)
- M Lund
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | | | | | | | |
Collapse
|
38
|
Gerecke EE, Zolan ME. An mre11 mutant of Coprinus cinereus has defects in meiotic chromosome pairing, condensation and synapsis. Genetics 2000; 154:1125-39. [PMID: 10757758 PMCID: PMC1460984 DOI: 10.1093/genetics/154.3.1125] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The rad11 gene of the basidiomycete Coprinus cinereus is required for the completion of meiosis and for survival after gamma irradiation. We have cloned the rad11 gene and shown that it is a homolog of MRE11, a gene required for meiosis and DNA repair in numerous organisms. The expression of C. cinereus mre11 is induced during prophase I of meiosis and following gamma irradiation. The gene encodes a predicted polypeptide of 731 amino acids, and the mre11-1 (rad11-1) mutation is a single base pair change that results in a stop codon after amino acid 315. The mre11-1 mutant shows enhanced sensitivity to ionizing radiation, but no enhanced sensitivity to UV radiation. It shows a delay in fruitbody formation and a reduction in the number of mushrooms formed per dikaryon. The mre11-1 mutant also has several meiotic defects. Pachytene chromatin condensation is disrupted, and although some meiotic cells appear to achieve metaphase I condensation, no further meiotic progression is observed. The mre11-1 mutant also fails to undergo proper chromosome synapsis; neither axial elements nor mature synaptonemal complexes are complete. Finally, meiotic homolog pairing is reduced in the mre11-1 mutant. Thus, in C. cinereus, Mre11 is required for meiotic DNA metabolism.
Collapse
Affiliation(s)
- E E Gerecke
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
39
|
Rössler OG, Hloch P, Schütz N, Weitzenegger T, Stahl H. Structure and expression of the human p68 RNA helicase gene. Nucleic Acids Res 2000; 28:932-9. [PMID: 10648785 PMCID: PMC102575 DOI: 10.1093/nar/28.4.932] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/1999] [Revised: 12/16/1999] [Accepted: 12/16/1999] [Indexed: 11/13/2022] Open
Abstract
Nuclear DEAD box protein p68 is immunologically related to SV40 large tumour antigen and both proteins possess RNA helicase activity. In this report, we describe the structural organisation of the human p68 gene and aspects of the regulation of its expression. Northern blot and primer extension analyses indicate that, although its level is variable, the p68 RNA helicase appears to be expressed from a single transcription start site in all tissues tested. Sequence analysis revealed that the p68 promoter harbours a 'TATA', a 'CAAT' and an initiator element and contains high affinity binding sites for Sp1, AP-2, CRE and Myc. This and functional promoter analyses in transient expression assays suggest that transcriptional regulation of the p68 gene is complex. Furthermore, there are indications that p68 expression is also regulated post-transcriptionally. Steady-state pools of poly(A)(+)RNA from human cells contain completely spliced p68 mRNA and alternatively spliced forms that contain introns 8-11 or 8-12 (from a total of 12 introns) and are not translated. Analysis of a conditionally p68-overproducing HeLa cell line points to negative autoregulation at the level of splicing, which is confirmed by a recently reported association of p68 with spliceosomes in human cells.
Collapse
Affiliation(s)
- O G Rössler
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, 66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
40
|
Kriventseva EV, Gelfand MS. Statistical analysis of the exon-intron structure of higher and lower eukaryote genes. J Biomol Struct Dyn 1999; 17:281-8. [PMID: 10563578 DOI: 10.1080/07391102.1999.10508361] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Statistics of the exon-intron structure and splicing sites of several diverse eukaryotes was studied. The yeast exon-intron structures have a number of unique features. A yeast gene usually have at most one intron. The branch site is strongly conserved, whereas the polypirimidine tract is short. Long yeast introns tend to have stronger acceptor sites. In other species the branch site is less conserved and often cannot be determined. In non-yeast samples there is an almost universal correlation between lengths of neighboring exons (all samples excluding protists) and correlation between lengths of neighboring introns (human, drosophila, protists). On the average first introns are longer, and anomalously long introns are usually first introns in a gene. There is a universal preference for exons and exon pairs with the (total) length divisible by 3. Introns positioned between codons are preferred, whereas those positioned between the first and second positions in codon are avoided. The choice of A or G at the third position of intron (the donor splice sites generally prefer purines at this position) is correlated with the overall GC-composition of the gene. In all samples dinucleotide AG is avoided in the region preceding the acceptor site.
Collapse
Affiliation(s)
- E V Kriventseva
- VA Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | |
Collapse
|
41
|
Luo ZD, Camp S, Mutero A, Taylor P. Splicing of 5' introns dictates alternative splice selection of acetylcholinesterase pre-mRNA and specific expression during myogenesis. J Biol Chem 1998; 273:28486-95. [PMID: 9774478 DOI: 10.1074/jbc.273.43.28486] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Splicing of alternative exon 6 to invariant exons 2, 3, and 4 in acetylcholinesterase (AChE) pre-mRNA results in expression of the prevailing enzyme species in the nervous system and at the neuromuscular junction of skeletal muscle. The structural determinants controlling splice selection are examined in differentiating C2-C12 muscle cells by selective intron deletion from and site-directed mutagenesis in the Ache gene. Transfection of a plasmid lacking two invariant introns (introns II and III) within the open reading frame of the Ache gene, located 5' of the alternative splice region, resulted in alternatively spliced mRNAs encoding enzyme forms not found endogenously in myotubes. Retention of either intron II or III is sufficient to control the tissue-specific pre-mRNA splicing pattern prevalent in situ. Further deletions and branch point mutations revealed that upstream splicing, but not the secondary structure of AChE pre-mRNA, is the determining factor in the splice selection. In addition, deletion of the alternative intron between the splice donor site and alternative acceptor sites resulted in aberrant upstream splicing. Thus, selective splicing of AChE pre-mRNA during myogenesis occurs in an ordered recognition sequence in which the alternative intron influences the fidelity of correct upstream splicing, which, in turn, determines the downstream splice selection of alternative exons.
Collapse
Affiliation(s)
- Z D Luo
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0636, USA
| | | | | | | |
Collapse
|
42
|
Tsai TF, Wu MJ, Su TS. Usage of cryptic splice sites in citrullinemia fibroblasts suggests role of polyadenylation in splice-site selection during terminal exon definition. DNA Cell Biol 1998; 17:717-25. [PMID: 9726254 DOI: 10.1089/dna.1998.17.717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Citrullinemia is a human genetic disease caused by a deficient argininosuccinate synthetase. In fibroblasts established from a citrullinemia patient with a mutation at the 3' splice site of the terminal intron of the gene, three cryptic 3' splice sites; i.e., SA1275, SA1636, and SA1663, residing on the terminal exon were activated. The usage of the cryptic sites showed a gradient, with the most downstream site having the highest usage; i.e., SA1663 > SA1636 > SA1275. However, when these cryptic sites were relocated to the internal exon, SA1636 was used the most. The splice-site strength of SA1636 was at least 10-fold higher than that of SA1663 in this situation. The results suggest that the preferential usage of SA1663 residing on the terminal exon may depend on its proximity to the poly(A) signal rather than on the strength of the splice site. Furthermore, when the strength of the downstream-most splice site increased, almost all the RNAs spliced to this site. However, in the presence of the wild-type splice site, all the RNAs were processed to the authentic site. Apparently, the selection of splice site can be revealed only when the sites being selected do not differ too much in their strength. By using a naturally occurring human mutant gene as a model, this study reveals that polyadenylation may play an important role in the selection of splice site during terminal exon definition.
Collapse
Affiliation(s)
- T F Tsai
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
43
|
Berglund JA, Fleming ML, Rosbash M. The KH domain of the branchpoint sequence binding protein determines specificity for the pre-mRNA branchpoint sequence. RNA (NEW YORK, N.Y.) 1998; 4:998-1006. [PMID: 9701290 PMCID: PMC1369676 DOI: 10.1017/s1355838298980499] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The yeast and mammalian branchpoint sequence binding proteins (BBP and mBBP/SF1) contain both KH domain and Zn knuckle RNA-binding motifs. The single KH domain of these proteins is sufficient for specific recognition of the pre-mRNA branchpoint sequence (BPS). However, an interaction is only apparent if one or more accessory modules are present to increase binding affinity. The Zn knuckles of BBP/mBBP can be replaced by an RNA-binding peptide derived from the HIV-1 nucleocapsid protein or by an arginine-serine (RS)7 peptide, without loss of specificity. Only the seven-nucleotide branchpoint sequence and two nucleotides to either side are necessary for RNA binding to the chimeric proteins. Therefore, we propose that all three of these accessory RNA-binding modules bind the phosphate backbone, whereas the KH domain interacts specifically with the bases of the BPS. Proteins and protein complexes with multiple RNA-binding motifs are frequent, suggesting that an intimate collaboration between two or more motifs will be a general theme in RNA-protein interactions.
Collapse
Affiliation(s)
- J A Berglund
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02254, USA
| | | | | |
Collapse
|
44
|
Zhao Y, Ratnayake-Lecamwasam M, Parker SK, Cocca E, Camardella L, di Prisco G, Detrich HW. The major adult alpha-globin gene of antarctic teleosts and its remnants in the hemoglobinless icefishes. Calibration of the mutational clock for nuclear genes. J Biol Chem 1998; 273:14745-52. [PMID: 9614073 DOI: 10.1074/jbc.273.24.14745] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The icefishes of the Southern Ocean (family Channichthyidae, suborder Notothenioidei) are unique among vertebrates in their inability to synthesize hemoglobin. We have shown previously (Cocca, E., Ratnayake-Lecamwasam, M., Parker, S. K., Camardella, L., Ciaramella, M., di Prisco, G., and Detrich, H. W., III (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 1817-1821) that icefishes retain inactive genomic remnants of adult notothenioid alpha-globin genes but have lost the gene that encodes adult beta-globin. Here we demonstrate that loss of expression of the major adult alpha-globin, alpha1, in two species of icefish (Chaenocephalus aceratus and Chionodraco rastrospinosus) results from truncation of the 5' end of the notothenioid alpha1-globin gene. The wild-type, functional alpha1-globin gene of the Antarctic yellowbelly rockcod, Notothenia coriiceps, contains three exons and two A + T-rich introns, and its expression may be controlled by two or three distinct promoters. Retained in both icefish genomes are a portion of intron 2, exon 3, and the 3'-untranslated region of the notothenioid alpha1-globin gene. The residual, nonfunctional alpha-globin gene, no longer under positive selection pressure for expression, has apparently undergone random mutational drift at an estimated rate of 0.12-0.33%/million years. We propose that abrogation of hemoglobin synthesis in icefishes most likely resulted from a single mutational event in the ancestral channichthyid that deleted the entire beta-globin gene and the 5' end of the linked alpha1-globin gene.
Collapse
Affiliation(s)
- Y Zhao
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Dewilde S, Winnepenninckx B, Arndt MH, Nascimento DG, Santoro MM, Knight M, Miller AN, Kerlavage AR, Geoghagen N, Van Marck E, Liu LX, Weber RE, Moens L. Characterization of the myoglobin and its coding gene of the mollusc Biomphalaria glabrata. J Biol Chem 1998; 273:13583-92. [PMID: 9593695 DOI: 10.1074/jbc.273.22.13583] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cDNA clone isolated from a Biomphalaria glabrata (Mollusca, Gastropoda) neural cDNA library was identified as encoding a myoglobin-like protein of 148 amino acids with a single domain and a calculated mass of 16,049.29. Alignment with globin sequences with known tertiary structure confirms its overall globin nature. The expressed myoglobin was identified in the radular muscle and isolated. Oxygen equilibrium measurements on the protein reveal a high oxygen affinity. Val-B10 and Gln-E7, important residues for the determination of the oxygen affinity, are strikingly different from the standard molluscan pattern (Conti, E., Moser, C., Rizzi, M., Mattevi, A., Lionetti, C., Coda, A., Ascenzi, P., Brunori, M., Bolognesi, M. (1993) J. Mol. Biol. 233, 498-508). The single gene encoding the globin chain is interrupted by three introns at positions A3.2, B12.2, and G7.0. Comparison with other nonvertebrate globin genes reveals on the one hand conservation (B12.2 and G7.0) and on the other hand variability of the insertion positions (A3.2). The Biomphalaria myoglobin sequence was used together with all other molluscan globin sequences available to assess the origin and phylogeny of the phylum. Our results confirm the doubts raised about monophyletic origin of the Mollusca, which was first observed using SSU rRNA as a molecular marker.
Collapse
Affiliation(s)
- S Dewilde
- Department of Biochemistry, University of Antwerp, B-2610 Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rain JC, Rafi Z, Rhani Z, Legrain P, Krämer A. Conservation of functional domains involved in RNA binding and protein-protein interactions in human and Saccharomyces cerevisiae pre-mRNA splicing factor SF1. RNA (NEW YORK, N.Y.) 1998; 4:551-65. [PMID: 9582097 PMCID: PMC1369639 DOI: 10.1017/s1355838298980335] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The modular structure of splicing factor SF1 is conserved from yeast to man and SF1 acts at early stages of spliceosome assembly in both organisms. The hnRNP K homology (KH) domain of human (h) SF1 is the major determinant for RNA binding and is essential for the activity of hSF1 in spliceosome assembly, supporting the view that binding of SF1 to RNA is essential for its function. Sequences N-terminal to the KH domain mediate the interaction between hSF1 and U2AF65, which binds to the polypyrimidine tract upstream of the 3' splice site. Moreover, yeast (y) SF1 interacts with Mud2p, the presumptive U2AF65 homologue in yeast, and the interaction domain is conserved in ySF1. The C-terminal degenerate RRMs in U2AF65 and Mud2p mediate the association with hSF1 and ySF1, respectively. Analysis of chimeric constructs of hSF1 and ySF indicates that the KH domain may serve a similar function in both systems, whereas sequences C-terminal to the KH domain are not exchangeable. Thus, these results argue for hSF1 and ySF1, as well as U2AF65 and Mud2p, being functional homologues.
Collapse
Affiliation(s)
- J C Rain
- Laboratoire du Métabolisme des ARN, URA CNRS 1300, Département des Biotechnologies, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
47
|
Berglund JA, Abovich N, Rosbash M. A cooperative interaction between U2AF65 and mBBP/SF1 facilitates branchpoint region recognition. Genes Dev 1998; 12:858-67. [PMID: 9512519 PMCID: PMC316625 DOI: 10.1101/gad.12.6.858] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/1997] [Accepted: 01/26/1998] [Indexed: 02/06/2023]
Abstract
During the early events of pre-mRNA splicing, intronic cis-acting sequences are recognized and interact through a network of RNA-RNA, RNA-protein, and protein-protein contacts. Recently, we identified a branchpoint sequence binding protein in yeast (BBP). The mammalian ortholog (mBBP/SF1) also binds specifically to branchpoint sequences and interacts with the well studied mammalian splicing factor U2AF65, which binds to the adjacent polypyrimidine (PY) tract. In this paper we demonstrate that the mBBP/SF1-U2AF65 interaction promotes cooperative binding to a branchpoint sequence-polypyrimidine tract-containing RNA, and we suggest that this cooperative RNA binding contributes to initial recognition of the branchpoint sequence (BPS) during pre-mRNA splicing. We also demonstrate the essential nature of the third RBD of U2AF65 for the interaction between the two proteins, both in the presence and absence of RNA.
Collapse
Affiliation(s)
- J A Berglund
- Howard Hughes Medical Institute and Departments of Biology and Biochemistry, Brandeis University, Waltham, Massachusetts 02254, USA
| | | | | |
Collapse
|
48
|
Garbern JY, Cambi F, Tang XM, Sima AA, Vallat JM, Bosch EP, Lewis R, Shy M, Sohi J, Kraft G, Chen KL, Joshi I, Leonard DG, Johnson W, Raskind W, Dlouhy SR, Pratt V, Hodes ME, Bird T, Kamholz J. Proteolipid protein is necessary in peripheral as well as central myelin. Neuron 1997; 19:205-18. [PMID: 9247276 DOI: 10.1016/s0896-6273(00)80360-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alternative products of the proteolipid protein gene (PLP), proteolipid protein (PLP) and DM20, are major components of compact myelin in the central nervous system, but quantitatively minor constituents of Schwann cells. A family with a null allele of PLP has a less severe CNS phenotype than those with other types of PLP mutations. Moreover, individuals with PLP null mutations have a demyelinating peripheral neuropathy, not seen with other PLP mutations of humans or animals. Direct analysis of normal peripheral nerve demonstrates that PLP is localized to compact myelin. This and the clinical and pathologic observations of the PLP null phenotype indicate that PLP/DM20 is necessary for proper myelin function both in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- J Y Garbern
- Department of Neurology, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Schwidetzky U, Schleuning WD, Haendler B. Isolation and characterization of the androgen-dependent mouse cysteine-rich secretory protein-1 (CRISP-1) gene. Biochem J 1997; 321 ( Pt 2):325-32. [PMID: 9020862 PMCID: PMC1218072 DOI: 10.1042/bj3210325] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In mice, cysteine-rich secretory protein-1 (CRISP-1) is mainly found in the epididymis and also, to a lesser extent, in the salivary gland of males, where androgens control its expression. We have now isolated and characterized overlapping phage clones covering the entire length of the CRISP-1 gene. DNA sequencing revealed that the gene is organized into eight exons, ranging between 55 and 748 bp in size, and seven introns. All exon-intron junctions conformed to the GT/AG rule established for eukaryotic genes. The intron length, as determined by PCR, varied between 1.05 and 4.0 kb so that the CRISP-1 gene spans over 20 kb of the mouse genome. The transcription-initiation site was determined by primer extension and localized at the expected distance downstream of a consensus TATA box. Approximately 3.7 kb of the CRISP-1 promoter region were isolated and sequenced, and several stretches fitting the androgen-responsive element consensus were found. Those that most resembled the consensus were analysed by electrophoretic mobility-shift assay and found to form specific complexes with the liganded androgen receptor in vitro, but with different affinities. Putative binding elements for the transcription factors Oct, GATA, PEA3, CF1. AP-1 and AP-3 were also found in the promoter region.
Collapse
Affiliation(s)
- U Schwidetzky
- Research Laboratories of Schering AG, Berlin, Germany
| | | | | |
Collapse
|
50
|
Wicking C, Shanley S, Smyth I, Gillies S, Negus K, Graham S, Suthers G, Haites N, Edwards M, Wainwright B, Chenevix-Trench G. Most germ-line mutations in the nevoid basal cell carcinoma syndrome lead to a premature termination of the PATCHED protein, and no genotype-phenotype correlations are evident. Am J Hum Genet 1997; 60:21-6. [PMID: 8981943 PMCID: PMC1712561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human homologue of the Drosophila segment polarity gene patched is implicated in the development of nevoid basal cell carcinoma syndrome (NBCCS) and in the genesis of sporadic basal cell carcinomas. In order to examine the phenotypic variability in NBCCS and to highlight functionally important domains of the PTCH protein, we have now screened 71 unrelated NBCCS individuals for mutations in the PTCH exons. We identified 28 mutations that are distributed throughout the entire gene, and most (86%) cause protein truncation. As part of this analysis, we demonstrate that failure of one NBCCS family to show clear linkage to chromosome 9q22.3-31 is most likely due to germinal mosaicism. We have identified three families bearing identical mutations with variable phenotypes, suggesting phenotypic variability in NBCCS is a complex genetic event. No phenotype genotype correlation between the position of truncation mutations and major clinical features was evident. Two missense mutations have been identified, and their location within transmembrane domains supports the notion that PTCH may have a transport function. The preponderance of truncation mutants in the germ line of NBCCS patients suggests that the developmental defects associated with the disorder are most likely due to haploinsufficiency.
Collapse
Affiliation(s)
- C Wicking
- Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|