1
|
Archuleta SR, Goodrich JA, Kugel JF. Mechanisms and Functions of the RNA Polymerase II General Transcription Machinery during the Transcription Cycle. Biomolecules 2024; 14:176. [PMID: 38397413 PMCID: PMC10886972 DOI: 10.3390/biom14020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Central to the development and survival of all organisms is the regulation of gene expression, which begins with the process of transcription catalyzed by RNA polymerases. During transcription of protein-coding genes, the general transcription factors (GTFs) work alongside RNA polymerase II (Pol II) to assemble the preinitiation complex at the transcription start site, open the promoter DNA, initiate synthesis of the nascent messenger RNA, transition to productive elongation, and ultimately terminate transcription. Through these different stages of transcription, Pol II is dynamically phosphorylated at the C-terminal tail of its largest subunit, serving as a control mechanism for Pol II elongation and a signaling/binding platform for co-transcriptional factors. The large number of core protein factors participating in the fundamental steps of transcription add dense layers of regulation that contribute to the complexity of temporal and spatial control of gene expression within any given cell type. The Pol II transcription system is highly conserved across different levels of eukaryotes; however, most of the information here will focus on the human Pol II system. This review walks through various stages of transcription, from preinitiation complex assembly to termination, highlighting the functions and mechanisms of the core machinery that participates in each stage.
Collapse
Affiliation(s)
| | - James A. Goodrich
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| | - Jennifer F. Kugel
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| |
Collapse
|
2
|
Comparative Analysis of Saliva and Plasma Proteins Patterns in Pregnant Cows—Preliminary Studies. Animals (Basel) 2022; 12:ani12202850. [PMID: 36290238 PMCID: PMC9597767 DOI: 10.3390/ani12202850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary One of the most crucial topics about cattle breeding is pregnancy. During this state, there are many changes in protein expression and abundance. These changes find reflection not only in plasma protein patterns but also in saliva, which is easier to obtain than blood. The aim of this study was the analysis of plasma and salivary protein profiles in pregnant cows in order to search for valuable markers of pregnancy status. In this study, the presence of apolipoproteins possibly related to bovine pregnancy was confirmed both in plasma and saliva. This means that saliva can be considered a good source of information about the condition of the organism, including during pregnancy. It is possible that the comparison of salivary and plasma proteomes can be a helpful tool to assess the pregnancy status of cattle, and can be useful for developing rapid tests from saliva. Abstract Pregnancy is a physiological state that can be described, from a biochemical point of view, using protein patterns. The present study focused on the comparison of protein patterns between the saliva and plasma of pregnant cows to search for possible markers which are present both in plasma and saliva. Saliva and plasma were collected from healthy, pregnant (3–4 months) and non-pregnant (C; n = 4) cows aged between 4 and 8 years (P; n = 8) from the same farm. Biological material was analyzed using 2D electrophoresis and MS identification. Among identified spots, there were those which could be related to pregnancy (e.g., apolipoproteins I and II in all examined matrices or transforming growth factor-beta-induced protein ig-h3 in albumin-free plasma) as well as those which are responsible for regulating of cellular processes (e.g., pyruvate kinase and aspartate aminotransferase in all examined matrices, or lactate dehydrogenase, phosphoglycerate kinase, and NADH dehydrogenase in plasma). Further identification of common spots and those only specific to saliva as well as the comparison between other periods of pregnancy are necessary; it is already clear that saliva can be considered a valuable diagnostic matrix containing potential markers of physiological and pathological status.
Collapse
|
3
|
RPAP2 regulates a transcription initiation checkpoint by inhibiting assembly of pre-initiation complex. Cell Rep 2022; 39:110732. [PMID: 35476980 DOI: 10.1016/j.celrep.2022.110732] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/31/2021] [Accepted: 04/02/2022] [Indexed: 11/21/2022] Open
Abstract
RNA polymerase II (Pol II)-mediated transcription in metazoans requires precise regulation. RNA Pol II-associated protein 2 (RPAP2) was previously identified to transport Pol II from cytoplasm to nucleus and dephosphorylates Pol II C-terminal domain (CTD). Here, we show that RPAP2 binds hypo-/hyper-phosphorylated Pol II with undetectable phosphatase activity. The structure of RPAP2-Pol II shows mutually exclusive assembly of RPAP2-Pol II and pre-initiation complex (PIC) due to three steric clashes. RPAP2 prevents and disrupts Pol II-TFIIF interaction and impairs in vitro transcription initiation, suggesting a function in inhibiting PIC assembly. Loss of RPAP2 in cells leads to global accumulation of TFIIF and Pol II at promoters, indicating a critical role of RPAP2 in inhibiting PIC assembly independent of its putative phosphatase activity. Our study indicates that RPAP2 functions as a gatekeeper to inhibit PIC assembly and transcription initiation and suggests a transcription checkpoint.
Collapse
|
4
|
Chen X, Qi Y, Wu Z, Wang X, Li J, Zhao D, Hou H, Li Y, Yu Z, Liu W, Wang M, Ren Y, Li Z, Yang H, Xu Y. Structural insights into preinitiation complex assembly on core promoters. Science 2021; 372:science.aba8490. [PMID: 33795473 DOI: 10.1126/science.aba8490] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/01/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
Transcription factor IID (TFIID) recognizes core promoters and supports preinitiation complex (PIC) assembly for RNA polymerase II (Pol II)-mediated eukaryotic transcription. We determined the structures of human TFIID-based PIC in three stepwise assembly states and revealed two-track PIC assembly: stepwise promoter deposition to Pol II and extensive modular reorganization on track I (on TATA-TFIID-binding element promoters) versus direct promoter deposition on track II (on TATA-only and TATA-less promoters). The two tracks converge at an ~50-subunit holo PIC in identical conformation, whereby TFIID stabilizes PIC organization and supports loading of cyclin-dependent kinase (CDK)-activating kinase (CAK) onto Pol II and CAK-mediated phosphorylation of the Pol II carboxyl-terminal domain. Unexpectedly, TBP of TFIID similarly bends TATA box and TATA-less promoters in PIC. Our study provides structural visualization of stepwise PIC assembly on highly diversified promoters.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yilun Qi
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zihan Wu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xinxin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jiabei Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Dan Zhao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Haifeng Hou
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yan Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Mo Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Ze Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Huirong Yang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China. .,The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China.,Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Patel AB, Louder RK, Greber BJ, Grünberg S, Luo J, Fang J, Liu Y, Ranish J, Hahn S, Nogales E. Structure of human TFIID and mechanism of TBP loading onto promoter DNA. Science 2018; 362:eaau8872. [PMID: 30442764 PMCID: PMC6446905 DOI: 10.1126/science.aau8872] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022]
Abstract
The general transcription factor IID (TFIID) is a critical component of the eukaryotic transcription preinitiation complex (PIC) and is responsible for recognizing the core promoter DNA and initiating PIC assembly. We used cryo-electron microscopy, chemical cross-linking mass spectrometry, and biochemical reconstitution to determine the complete molecular architecture of TFIID and define the conformational landscape of TFIID in the process of TATA box-binding protein (TBP) loading onto promoter DNA. Our structural analysis revealed five structural states of TFIID in the presence of TFIIA and promoter DNA, showing that the initial binding of TFIID to the downstream promoter positions the upstream DNA and facilitates scanning of TBP for a TATA box and the subsequent engagement of the promoter. Our findings provide a mechanistic model for the specific loading of TBP by TFIID onto the promoter.
Collapse
Affiliation(s)
- Avinash B Patel
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert K Louder
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Basil J Greber
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA
| | - Sebastian Grünberg
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Jie Fang
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Yutong Liu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Jeff Ranish
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Steve Hahn
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Eva Nogales
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA.
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Coulombe B, Killeen M, Liljelund P, Honda B, Xiao H, Ingles CJ, Greenblatt J. Identification of three mammalian proteins that bind to the yeast TATA box protein TFIID. Gene Expr 2018; 2:99-110. [PMID: 1633441 PMCID: PMC6057387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The TATA box binding transcription factor TFIID of S. cerevisiae was used as a ligand for affinity chromatography. Polypeptides that bind specifically to yeast TFIID (TFIID-associated proteins, DAPs) were purified from human HeLa (heDAPs) and calf thymus (ctDAPs) whole cell extracts. Both heDAP and ctDAP fractions altered the binding of TFIID to the TATA element, and substituted for the TFIIA transcription activity in a reconstituted in vitro system. The heDAP fraction also behaved like TFIIA in its ability to form a promoter-TFIID-TFIIA complex and to recruit TFIIB to such a complex. The interaction of DAPs with TFIID can confer heat-resistance (47 degrees C) on recombinant yeast or human TFIID. SDS-PAGE analysis revealed that three polypeptides from HeLa extracts specifically bound to yTFIID columns (heDAP35, heDAP21, and heDAP12). These data suggest that a multi-subunit transcription factor with the properties of TFIIA can bind to TFIID in the absence of DNA.
Collapse
Affiliation(s)
- B Coulombe
- Banting and Best Department of Medical Research, University of Toronto, Ontario
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNA that are present in wide variety of cells in various tissue types across species. They are non-polyadenylated, single-stranded, covalently closed RNAs. CircRNAs are more stable than other RNAs due to lack of 5' or 3' end leading to resistance to exonuclease digestion. The length of circRNAs varies from 1 to 5 exons with retention of introns in mature circRNAs with ~25% frequency. They are primarily found in the cytosol within the cell although the mechanism of their nuclear export remains elusive. However, there is a subpopulation of circRNAs that remain in the nucleus and regulate RNA-Pol-II-mediated transcription. Bioinformatic approaches mining RNA sequencing data enabled genome-wide identification of circRNAs. In mammalian genome over 20% of the expressed genes in cells and tissues can produce these transcripts. Owing to their abundance, stability, and diverse expression profile, circRNAs likely play a pivotal role in regulatory pathways controlling lineage determination, cell differentiation, and function of various cell types. Yet, the impact of circRNA-mediated regulation on various cell transcriptome remains largely unknown. In this chapter, we will review the regulatory effects of circRNAs in the transcription of their own or other genes. Also, we will discuss the association of circRNAs with miRNAs and RNA-binding proteins (RBPs), with special reference to Drosophila circMbl and their role as an "mRNA trap," which might play a role in its regulatory potential transcriptionally or posttranscriptionally.
Collapse
|
8
|
Nogales E, Patel AB, Louder RK. Towards a mechanistic understanding of core promoter recognition from cryo-EM studies of human TFIID. Curr Opin Struct Biol 2017. [PMID: 28624568 DOI: 10.1016/j.sbi.2017.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
TFIID is a critical component of the eukaryotic transcription pre-initiation complex (PIC) required for the recruitment of RNA Pol II to the start site of protein-coding genes. Within the PIC, TFIID's role is to recognize and bind core promoter sequences and recruit the rest of the PIC components. Due to its size and its conformational complexity, TFIID poses a serious challenge for structural characterization. The small amounts of purified TFIID that can be obtained by present methods of purification from endogenous sources has limited structural studies to cryo-EM visualization, which requires very small amounts of sample. Previous cryo-EM studies have shed light on how the extreme conformational flexibility of TFIID is involved in core promoter DNA binding. Recent progress in cryo-EM methodology has facilitated a parallel progress in the study of human TFIID, leading to an improvement in resolution and the identification of the structural elements in the complex directly involved in DNA interaction. While many questions remain unanswered, the present structural knowledge of human TFIID suggests a mechanism for the sequential engagement with different core promoter sequences and how it could be influenced by regulatory factors.
Collapse
Affiliation(s)
- Eva Nogales
- Molecular and Cell Biology Department and QB3 Institute, UC Berkeley, CA, USA; Howard Hughes Medical Institute, UC Berkeley, CA, USA; Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Lab, CA, USA.
| | | | | |
Collapse
|
9
|
Horn AE, Kugel JF, Goodrich JA. Single molecule microscopy reveals mechanistic insight into RNA polymerase II preinitiation complex assembly and transcriptional activity. Nucleic Acids Res 2016; 44:7132-43. [PMID: 27112574 PMCID: PMC5009721 DOI: 10.1093/nar/gkw321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/13/2016] [Indexed: 01/18/2023] Open
Abstract
Transcription by RNA polymerase II (Pol II) is a complex process that requires general transcription factors and Pol II to assemble on DNA into preinitiation complexes that can begin RNA synthesis upon binding of NTPs (nucleoside triphosphate). The pathways by which preinitiation complexes form, and how this impacts transcriptional activity are not completely clear. To address these issues, we developed a single molecule system using TIRF (total internal reflection fluorescence) microscopy and purified human transcription factors, which allows us to visualize transcriptional activity at individual template molecules. We see that stable interactions between polymerase II (Pol II) and a heteroduplex DNA template do not depend on general transcription factors; however, transcriptional activity is highly dependent upon TATA-binding protein, TFIIB and TFIIF. We also found that subsets of general transcription factors and Pol II can form stable complexes that are precursors for functional transcription complexes upon addition of the remaining factors and DNA. Ultimately we found that Pol II, TATA-binding protein, TFIIB and TFIIF can form a quaternary complex in the absence of promoter DNA, indicating that a stable network of interactions exists between these proteins independent of promoter DNA. Single molecule studies can be used to learn how different modes of preinitiation complex assembly impact transcriptional activity.
Collapse
Affiliation(s)
- Abigail E Horn
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jennifer F Kugel
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - James A Goodrich
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
10
|
Abstract
Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtained. Although mechanistic details await elucidation, available data outline how Pol II cooperates with the general transcription factors to bind to and open promoter DNA, and how Pol II directs RNA synthesis and escapes from the promoter.
Collapse
|
11
|
Perrault syndrome is caused by recessive mutations in CLPP, encoding a mitochondrial ATP-dependent chambered protease. Am J Hum Genet 2013; 92:605-13. [PMID: 23541340 DOI: 10.1016/j.ajhg.2013.02.013] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/04/2013] [Accepted: 02/19/2013] [Indexed: 01/11/2023] Open
Abstract
Perrault syndrome is a genetically and clinically heterogeneous autosomal-recessive condition characterized by sensorineural hearing loss and ovarian failure. By a combination of linkage analysis, homozygosity mapping, and exome sequencing in three families, we identified mutations in CLPP as the likely cause of this phenotype. In each family, affected individuals were homozygous for a different pathogenic CLPP allele: c.433A>C (p.Thr145Pro), c.440G>C (p.Cys147Ser), or an experimentally demonstrated splice-donor-site mutation, c.270+4A>G. CLPP, a component of a mitochondrial ATP-dependent proteolytic complex, is a highly conserved endopeptidase encoded by CLPP and forms an element of the evolutionarily ancient mitochondrial unfolded-protein response (UPR(mt)) stress signaling pathway. Crystal-structure modeling suggests that both substitutions would alter the structure of the CLPP barrel chamber that captures unfolded proteins and exposes them to proteolysis. Together with the previous identification of mutations in HARS2, encoding mitochondrial histidyl-tRNA synthetase, mutations in CLPP expose dysfunction of mitochondrial protein homeostasis as a cause of Perrault syndrome.
Collapse
|
12
|
Transcription initiation by human RNA polymerase II visualized at single-molecule resolution. Genes Dev 2012; 26:1691-702. [PMID: 22810624 DOI: 10.1101/gad.194936.112] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Forty years of classical biochemical analysis have identified the molecular players involved in initiation of transcription by eukaryotic RNA polymerase II (Pol II) and largely assigned their functions. However, a dynamic picture of Pol II transcription initiation and an understanding of the mechanisms of its regulation have remained elusive due in part to inherent limitations of conventional ensemble biochemistry. Here we have begun to dissect promoter-specific transcription initiation directed by a reconstituted human Pol II system at single-molecule resolution using fluorescence video-microscopy. We detected several stochastic rounds of human Pol II transcription from individual DNA templates, observed attenuation of transcription by promoter mutations, observed enhancement of transcription by activator Sp1, and correlated the transcription signals with real-time interactions of holo-TFIID molecules at individual DNA templates. This integrated single-molecule methodology should be applicable to studying other complex biological processes.
Collapse
|
13
|
Werner F, Grohmann D. Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol 2011; 9:85-98. [PMID: 21233849 DOI: 10.1038/nrmicro2507] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Heisel S, Habel NC, Schuetz N, Ruggieri A, Meese E. The YEATS family member GAS41 interacts with the general transcription factor TFIIF. BMC Mol Biol 2010; 11:53. [PMID: 20618999 PMCID: PMC2908078 DOI: 10.1186/1471-2199-11-53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 07/12/2010] [Indexed: 11/10/2022] Open
Abstract
Background In eukaryotes the transcription initiation by RNA polymerase II requires numerous general and regulatory factors including general transcription factors. The general transcription factor TFIIF controls the activity of the RNA polymerase II both at the initiation and elongation stages. The glioma amplified sequence 41 (GAS41) has been associated with TFIIF via its YEATS domain. Results Using GST pull-down assays, we demonstrated that GAS41 binds to both, the small subunit (RAP30) and the large subunit (RAP74) of TFIIF in vitro. The in vivo interaction of GAS41 and endogenous RAP30 and RAP74 was confirmed by co-immunoprecipitation. GAS41 binds to two non-overlapping regions of the C-terminus of RAP30. There is also an ionic component to the binding between GAS41 and RAP30. There was no evidence for a direct interaction between GAS41 and TBP or between GAS41 and RNA polymerase II. Conclusions Our results demonstrate binding between endogenous GAS41 and the endogenous TFIIF subunits (RAP30 and RAP74). Since we did not find evidence for a binding of GAS41 to TBP or RNA polymerase II, GAS41 seems to preferentially bind to TFIIF. GAS41 that does not contain a DNA-binding domain appears to be a co-factor of TFIIF.
Collapse
Affiliation(s)
- Sabrina Heisel
- Department of Human Genetics, Saarland University, 66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
15
|
Schulze JM, Kane CM, Ruiz-Manzano A. The YEATS domain of Taf14 in Saccharomyces cerevisiae has a negative impact on cell growth. Mol Genet Genomics 2010; 283:365-80. [PMID: 20179968 PMCID: PMC2839515 DOI: 10.1007/s00438-010-0523-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 01/28/2010] [Indexed: 12/15/2022]
Abstract
The role of a highly conserved YEATS protein motif is explored in the context of the Taf14 protein of Saccharomyces cerevisiae. In S. cerevisiae, Taf14 is a protein physically associated with many critical multisubunit complexes including the general transcription factors TFIID and TFIIF, the chromatin remodeling complexes SWI/SNF, Ino80 and RSC, Mediator and the histone modification enzyme NuA3. Taf14 is a member of the YEATS superfamily, conserved from bacteria to eukaryotes and thought to have a transcription stimulatory activity. However, besides its ubiquitous presence and its links with transcription, little is known about Taf14’s role in the nucleus. We use structure–function and mutational analysis to study the function of Taf14 and its well conserved N-terminal YEATS domain. We show here that the YEATS domain is not necessary for Taf14’s association with these transcription and chromatin remodeling complexes, and that its presence in these complexes is dependent only on its C-terminal domain. Our results also indicate that Taf14’s YEATS domain is not necessary for complementing the synthetic lethality between TAF14 and the general transcription factor TFIIS (encoded by DST1). Furthermore, we present evidence that the YEATS domain of Taf14 has a negative impact on cell growth: its absence enables cells to grow better than wild-type cells under stress conditions, like the microtubule destabilizing drug benomyl. Moreover, cells expressing solely the YEATS domain grow worser than cells expressing any other Taf14 construct tested, including the deletion mutant. Thus, this highly conserved domain should be considered part of a negative regulatory loop in cell growth.
Collapse
Affiliation(s)
- Julia M Schulze
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | | | |
Collapse
|
16
|
Chen ZA, Jawhari A, Fischer L, Buchen C, Tahir S, Kamenski T, Rasmussen M, Lariviere L, Bukowski-Wills JC, Nilges M, Cramer P, Rappsilber J. Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry. EMBO J 2010; 29:717-26. [PMID: 20094031 PMCID: PMC2810376 DOI: 10.1038/emboj.2009.401] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/10/2009] [Indexed: 11/09/2022] Open
Abstract
Higher-order multi-protein complexes such as RNA polymerase II (Pol II) complexes with transcription initiation factors are often not amenable to X-ray structure determination. Here, we show that protein cross-linking coupled to mass spectrometry (MS) has now sufficiently advanced as a tool to extend the Pol II structure to a 15-subunit, 670 kDa complex of Pol II with the initiation factor TFIIF at peptide resolution. The N-terminal regions of TFIIF subunits Tfg1 and Tfg2 form a dimerization domain that binds the Pol II lobe on the Rpb2 side of the active centre cleft near downstream DNA. The C-terminal winged helix (WH) domains of Tfg1 and Tfg2 are mobile, but the Tfg2 WH domain can reside at the Pol II protrusion near the predicted path of upstream DNA in the initiation complex. The linkers between the dimerization domain and the WH domains in Tfg1 and Tfg2 are located to the jaws and protrusion, respectively. The results suggest how TFIIF suppresses non-specific DNA binding and how it helps to recruit promoter DNA and to set the transcription start site. This work establishes cross-linking/MS as an integrated structure analysis tool for large multi-protein complexes.
Collapse
Affiliation(s)
- Zhuo Angel Chen
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, The University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Eichner J, Chen HT, Warfield L, Hahn S. Position of the general transcription factor TFIIF within the RNA polymerase II transcription preinitiation complex. EMBO J 2009; 29:706-16. [PMID: 20033062 DOI: 10.1038/emboj.2009.386] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/01/2009] [Indexed: 11/09/2022] Open
Abstract
The RNA polymerase (pol) II general transcription factor TFIIF functions at several steps in transcription initiation including preinitiation complex (PIC) formation and start site selection. We find that two structured TFIIF domains bind Pol II at separate locations far from the active site with the TFIIF dimerization domain on the Pol II lobe and the winged helix domain of the TFIIF small subunit Tfg2 above the Pol II protrusion where it may interact with upstream promoter DNA. Binding of the winged helix to the protrusion is PIC specific. Anchoring of these two structured TFIIF domains at separate sites locates an essential and unstructured region of Tfg2 near the Pol II active site cleft where it may interact with flexible regions of Pol II and the general factor TFIIB to promote initiation and start site selection. Consistent with this mechanism, mutations far from the enzyme active site, which alter the binding of either structured TFIIF domains to Pol II, have similar defects in transcription start site usage.
Collapse
Affiliation(s)
- Jesse Eichner
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
18
|
Yang C, Khaperskyy DA, Hou M, Ponticelli AS. Improved methods for expression and purification of Saccharomyces cerevisiae TFIIF and TFIIH; identification of a functional Escherichia coli promoter and internal translation initiation within the N-terminal coding region of the TFIIF TFG1 subunit. Protein Expr Purif 2009; 70:172-8. [PMID: 19818408 DOI: 10.1016/j.pep.2009.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 11/26/2022]
Abstract
The basal RNA polymerase II (RNAPII) transcription machinery is composed of RNAPII and the general transcription factors (TF) TATA binding protein (TBP), TFIIB, TFIIE, TFIIF and TFIIH. Due to the powerful genetic and molecular approaches that can be utilized, the budding yeast Saccharomyces cerevisiae has proven to be an invaluable model system for studies of the mechanisms of RNAPII transcription. Complementary biochemical studies of the S. cerevisiae basal transcription machinery, however, have been hampered by difficulties in the purification of TFIIF and TFIIH, most notably due to the severe toxicity of the TFIIF Tfg1 subunit in Escherichia coli and the complexity of the purification scheme for native TFIIH. Here, we report the elimination of TFG1-associated toxicity in E. coli, the identification and removal of a functional E. coli promoter and internal translation initiation within the N-terminal coding region of TFG1, and the efficient production and two-step purification of recombinant TFIIF complexes. We also report conditions for the efficient two-step tandem affinity purification (TAP) of holo-TFIIH, core TFIIH and TFIIK complexes from yeast whole cell extracts.
Collapse
Affiliation(s)
- Chen Yang
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14214-3000, USA
| | | | | | | |
Collapse
|
19
|
Cheng B, Price DH. Analysis of factor interactions with RNA polymerase II elongation complexes using a new electrophoretic mobility shift assay. Nucleic Acids Res 2008; 36:e135. [PMID: 18832375 PMCID: PMC2582608 DOI: 10.1093/nar/gkn630] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/09/2008] [Accepted: 09/12/2008] [Indexed: 11/19/2022] Open
Abstract
The elongation phase of transcription by RNA polymerase II (RNAP II) is controlled by a carefully orchestrated series of interactions with both negative and positive factors. However, due to the limitations of current methods and techniques, not much is known about whether and how these proteins physically associate with the engaged polymerases. To gain insight into the detailed mechanisms involved, we established an experimental system for analyzing direct factor interactions to RNAP II elongation complexes on native gels, namely elongation complex electrophoretic mobility shift assay (EC-EMSA). This new assay effectively allowed detection of interactions of TFIIF, TTF2, TFIIS, DSIF and P-TEFb with elongation complexes generated from a natural promoter using an immobilized template. As an application of this assay system, we characterized the association of transcription elongation factor DSIF with RNAP II elongation complexes and discovered that the nascent transcript facilitated recruitment of DSIF. Examples of how the system can be manipulated to address different questions are provided. EC-EMSA should be useful for further investigation of factor interactions with RNAP II elongation complexes.
Collapse
Affiliation(s)
- Bo Cheng
- Molecular and Cellular Biology Program and Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - David H. Price
- Molecular and Cellular Biology Program and Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
20
|
Functions of Saccharomyces cerevisiae TFIIF during transcription start site utilization. Mol Cell Biol 2008; 28:3757-66. [PMID: 18362165 DOI: 10.1128/mcb.02272-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that substitutions in the Tfg1 or Tfg2 subunits of Saccharomyces cerevisiae transcription factor IIF (TFIIF) can cause upstream shifts in start site utilization, resulting in initiation patterns that more closely resemble those of higher eukaryotes. In this study, we report the results from multiple biochemical assays analyzing the activities of wild-type yeast TFIIF and the TFIIF Tfg1 mutant containing the E346A substitution (Tfg1-E346A). We demonstrate that TFIIF stimulates formation of the first two phosphodiester bonds and dramatically stabilizes a short RNA-DNA hybrid in the RNA polymerase II (RNAPII) active center and, importantly, that the Tfg1-E346A substitution coordinately enhances early bond formation and the processivity of early elongation in vitro. These results are discussed within a proposed model for the role of yeast TFIIF in modulating conformational changes in the RNAPII active center during initiation and early elongation.
Collapse
|
21
|
Akashi S, Nagakura S, Yamamoto S, Okuda M, Ohkuma Y, Nishimura Y. Structural characterization of human general transcription factor TFIIF in solution. Protein Sci 2008; 17:389-400. [PMID: 18218714 DOI: 10.1110/ps.073258108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Human general transcription factor IIF (TFIIF), a component of the transcription pre-initiation complex (PIC) associated with RNA polymerase II (Pol II), was characterized by size-exclusion chromatography (SEC), electrospray ionization mass spectrometry (ESI-MS), and chemical cross-linking. Recombinant TFIIF, composed of an equimolar ratio of alpha and beta subunits, was bacterially expressed, purified to homogeneity, and found to have a transcription activity similar to a natural one in the human in vitro transcription system. SEC of purified TFIIF, as previously reported, suggested that this protein has a size >200 kDa. In contrast, ESI-MS of the purified sample gave a molecular size of 87 kDa, indicating that TFIIF is an alphabeta heterodimer, which was confirmed by matrix-assisted laser desorption/ionization (MALDI) MS of the cross-linked TFIIF components. Recent electron microscopy (EM) and photo-cross-linking studies showed that the yeast TFIIF homolog containing Tfg1 and Tfg2, corresponding to the human alpha and beta subunits, exists as a heterodimer in the PIC, so the human TFIIF is also likely to exist as a heterodimer even in the PIC. In the yeast PIC, EM and photo-cross-linking studies showed different results for the mutual location of TFIIE and TFIIF along DNA. We have examined the direct interaction between human TFIIF and TFIIE by ESI-MS, SEC, and chemical cross-linking; however, no direct interaction was observed, at least in solution. This is consistent with the previous photo-cross-linking observation that TFIIF and TFIIE flank DNA separately on both sides of the Pol II central cleft in the yeast PIC.
Collapse
Affiliation(s)
- Satoko Akashi
- International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Zanton SJ, Pugh BF. Full and partial genome-wide assembly and disassembly of the yeast transcription machinery in response to heat shock. Genes Dev 2006; 20:2250-65. [PMID: 16912275 PMCID: PMC1553208 DOI: 10.1101/gad.1437506] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eukaryotic genes are controlled by sequence-specific DNA-binding proteins, chromatin regulators, general transcription factors, and elongation factors. Here we examine the genome-wide location of representative members of these groups and their redistribution when the Saccharomyces cerevisiae genome is reprogrammed by heat shock. As expected, assembly of active transcription complexes is coupled to eviction of H2A.Z nucleosomes, and disassembly is coupled to the return of nucleosomes. Remarkably, a large number of promoters assemble into partial preinitiation complexes (partial PICs), containing TFIIA, TFIID (and/or SAGA), TFIIB, TFIIE, and TFIIF. However, RNA polymerase II and TFIIH are generally not recruited, and nucleosomes are not displaced. These promoters may be preparing for additional stress that naturally accompany heat stress. For example, we find that oxidative stress, which often occurs with prolonged exposure of cells to high temperature, converts partial PICs into full PICs. Partial PICs therefore represent novel regulated intermediates that assemble at promoters in the midst of chromatin.
Collapse
Affiliation(s)
- Sara J Zanton
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
23
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
24
|
Itoh Y, Unzai S, Sato M, Nagadoi A, Okuda M, Nishimura Y, Akashi S. Investigation of molecular size of transcription factor TFIIE in solution. Proteins 2006; 61:633-41. [PMID: 16184598 DOI: 10.1002/prot.20647] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human general transcription factor IIE (TFIIE), a component of a transcription preinitiation complex associated with RNA polymerase II, was characterized by size-exclusion chromatography, mass spectrometry, analytical ultracentrifugation, and small-angle X-ray scattering (SAXS). Recombinant human TFIIE was purified to homogeneity and shown to contain equimolar amounts of TFIIEalpha (50 kDa) and TFIIEbeta (35 kDa) by SDS-PAGE. In the analysis of size-exclusion chromatography of the purified sample, as already reported, TFIIE was shown to be a 170-kDa alpha(2)beta(2) heterotetramer. However, by using electrospray ionization mass spectrometry the purified sample gave the molecular mass of 84,152 +/- 5, indicating that TFIIE is an alphabeta heterodimer but not a heterotetramer. Analytical ultracentrifugation experiment of TFIIE provided that only a single component with the molecular mass of ca. 80,000 existed in solution, also suggesting an alphabeta heterodimer. In addition, its extraordinarily rod-like molecular shape was confirmed by SAXS. It is likely that the rod-like molecular shape of TFIIE has misled larger molecular size in size-exclusion chromatography, which was calibrated by globular proteins. It is demonstrated that TFIIE exists as a heterodimer under our present conditions in solution, although two molecules of heterodimer might be required for the formation of the preinitiation complex with RNA polymerase II for starting the transcription process.
Collapse
Affiliation(s)
- Yoshiyuki Itoh
- Graduate School of Integrated Science, Yokohama City University, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhang C, Zobeck KL, Burton ZF. Human RNA polymerase II elongation in slow motion: role of the TFIIF RAP74 alpha1 helix in nucleoside triphosphate-driven translocation. Mol Cell Biol 2005; 25:3583-95. [PMID: 15831464 PMCID: PMC1084311 DOI: 10.1128/mcb.25.9.3583-3595.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 12/27/2004] [Accepted: 12/31/2004] [Indexed: 11/20/2022] Open
Abstract
The role of the RAP74 alpha1 helix of transcription factor IIF (TFIIF) in stimulating elongation by human RNA polymerase II (RNAP II) was examined using millisecond-phase transient-state kinetics. RAP74 deletion mutants RAP74(1-227), which includes an intact alpha1 helix, and RAP74(1-158), in which the alpha1 helix is deleted, were compared. Analysis of TFIIF RAP74-RAP30 complexes carrying the RAP74(1-158) deletion reveals the role of the alpha1 helix because this mutant has indistinguishable activity compared to TFIIF 74(W164A), which carries a critical point mutation in alpha1. We report adequate two-bond kinetic simulations for the reaction in the presence of TFIIF 74(1-227) + TFIIS and TFIIF 74(1-158) + TFIIS. TFIIF 74(1-158) is defective because it fails to promote forward translocation. Deletion of the RAP74 alpha1 helix results in increased occupancy of the backtracking, cleavage, and restart pathways at a stall position, indicating reverse translocation of the elongation complex. During elongation, TFIIF 74(1-158) fails to support detectable nucleoside triphosphate (NTP)-driven translocation from a stall position and is notably defective in supporting bond completion (NTP-driven translocation coupled to pyrophosphate release) during the processive transition between bonds.
Collapse
Affiliation(s)
- Chunfen Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, 224 Biochemistry Building, East Lansing, MI 48824-1319, USA
| | | | | |
Collapse
|
26
|
Ghazy MA, Brodie SA, Ammerman ML, Ziegler LM, Ponticelli AS. Amino acid substitutions in yeast TFIIF confer upstream shifts in transcription initiation and altered interaction with RNA polymerase II. Mol Cell Biol 2004; 24:10975-85. [PMID: 15572698 PMCID: PMC533996 DOI: 10.1128/mcb.24.24.10975-10985.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription factor IIF (TFIIF) is required for transcription of protein-encoding genes by eukaryotic RNA polymerase II. In contrast to numerous studies establishing a role for higher eukaryotic TFIIF in multiple steps of the transcription cycle, relatively little has been reported regarding the functions of TFIIF in the yeast Saccharomyces cerevisiae. In this study, site-directed mutagenesis, plasmid shuffle complementation assays, and primer extension analyses were employed to probe the functional domains of the S. cerevisiae TFIIF subunits Tfg1 and Tfg2. Analyses of 35 Tfg1 alanine substitution mutants and 19 Tfg2 substitution mutants identified 5 mutants exhibiting altered properties in vivo. Primer extension analyses revealed that the conditional growth properties exhibited by the tfg1-E346A, tfg1-W350A, and tfg2-L59K mutants were associated with pronounced upstream shifts in transcription initiation in vivo. Analyses of double mutant strains demonstrated functional interactions between the Tfg1 mutations and mutations in Tfg2, TFIIB, and RNA polymerase II. Importantly, biochemical results demonstrated an altered interaction between mutant TFIIF protein and RNA polymerase II. These results provide direct evidence for the involvement of S. cerevisiae TFIIF in the mechanism of transcription start site utilization and support the view that a TFIIF-RNA polymerase II interaction is a determinant in this process.
Collapse
Affiliation(s)
- Mohamed A Ghazy
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14214-3000, USA
| | | | | | | | | |
Collapse
|
27
|
Sims RJ, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II: the short and long of it. Genes Dev 2004; 18:2437-68. [PMID: 15489290 DOI: 10.1101/gad.1235904] [Citation(s) in RCA: 533] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Appreciable advances into the process of transcript elongation by RNA polymerase II (RNAP II) have identified this stage as a dynamic and highly regulated step of the transcription cycle. Here, we discuss the many factors that regulate the elongation stage of transcription. Our discussion includes the classical elongation factors that modulate the activity of RNAP II, and the more recently identified factors that facilitate elongation on chromatin templates. Additionally, we discuss the factors that associate with RNAP II, but do not modulate its catalytic activity. Elongation is highlighted as a central process that coordinates multiple stages in mRNA biogenesis and maturation.
Collapse
Affiliation(s)
- Robert J Sims
- Howard Hughes Medical Institute, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
28
|
Kimura M, Ishihama A. Tfg3, a subunit of the general transcription factor TFIIF in Schizosaccharomyces pombe, functions under stress conditions. Nucleic Acids Res 2004; 32:6706-15. [PMID: 15616156 PMCID: PMC545442 DOI: 10.1093/nar/gkh1000] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TFIIF is a general transcription factor (GTF) that binds to RNA polymerase II (pol II) for subsequent recruitment of pol II to a promoter. TFIIF of Saccharomyces cerevisiae contains a small subunit, designated Tfg3, in addition to two conserved subunits, TFIIFalpha (Tfg1) and TFIIFbeta (Tfg2). In this study, we characterized Tfg3 of Schizosaccharomyces pombe. Using Tfg3 fused to green fluorescent protein (GFP), we found that Tfg3 is located in nuclei, and it is assembled into the C-terminal domain phosphatase (Fcp1)/TFIIF/pol II complex via interactions with TFIIFalpha and TFIIFbeta. As in the case of S.cerevisiae, Tfg3 in S.pombe forms part of another GTF, namely TFIID. The TFIID complex isolated from S.pombe that had been cultured at elevated temperatures included increased levels of Tfg3. The interaction of recombinant Tfg3 with TATA-binding protein (TBP), the central subunit of TFIID, was temperature-dependent. Moreover, a mutant of S.pombe that lacked the gene for Tfg3 was sensitive to a battery of stresses including temperature up-shift. Starting from a mutant with tfg3- mutation, we isolated five species of multicopy suppressors. Expression levels of the suppressor genes were lower in the mutant cell than in wild-type cell at an elevated temperature. Taken together, we propose that Tfg3 is involved in transcriptional regulation under stress conditions, in particular, at high temperatures.
Collapse
Affiliation(s)
- Makoto Kimura
- Gene Engineering Division, BioResource Center, RIKEN (Institute of Physical and Chemical Research), Tsukuba, Ibaraki 305-0074, Japan and Nippon Institute for Biological Science, Ome, Tokyo 198-0024, Japan.
| | | |
Collapse
|
29
|
Okuda M, Tanaka A, Arai Y, Satoh M, Okamura H, Nagadoi A, Hanaoka F, Ohkuma Y, Nishimura Y. A novel zinc finger structure in the large subunit of human general transcription factor TFIIE. J Biol Chem 2004; 279:51395-403. [PMID: 15385556 DOI: 10.1074/jbc.m404722200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zinc finger domain in the large subunit of TFIIE (TFIIEalpha) is phylogenetically conserved and is essential for transcription. Here, we determined the solution structure of this domain by using NMR. It consisted of one alpha-helix and five beta-strands, showing novel features distinct from previously determined zinc-binding structures. We created point mutants of TFIIEalpha in this domain and examined their binding abilities to other general transcription factors as well as their transcription activities. Four Zn(2+)-ligand mutants, in which each of cysteine residues at positions 129, 132, 154, and 157 was replaced by alanine, possessed no transcription activities on a linearized template, whereas, on a supercoiled template, interesting functional asymmetry was observed: although the C-terminal two mutants abolished transcription activity (<5%), the N-terminal two mutants retained about 20% activities. The N-terminal two mutants bound stronger to the small subunit of TFIIF than the wild type and the C-terminal two mutants were impaired in their binding abilities to the XPB subunits of TFIIH. These suggest that the structural integrity of the zinc finger domain is essential for the TFIIE function, particularly in the transition from the transcription initiation to elongation and the conformational tuning of this domain for appropriate positioning of TFIIF, TFIIH, and polymerase II would be needed depending on the situation and timing.
Collapse
Affiliation(s)
- Masahiko Okuda
- Graduate School of Integrated Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wei W, Gu JX, Zhu CQ, Sun FY, Dorjsuren D, Lin Y, Murakami S. Interaction with general transcription factor IIF (TFIIF) is required for the suppression of activated transcription by RPB5-mediating protein (RMP). Cell Res 2003; 13:111-20. [PMID: 12737519 DOI: 10.1038/sj.cr.7290155] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
RMP was reported to regulate transcription via competing with HBx to bind the general transcription factor IIB (TFIIB) and interacting with RPB5 subunit of RNA polymerase II as a corepressor of transcription regulator. However, our present research uncovered that RMP also regulates the transcription through interaction with the general transcription factors IIF (TFIIF), which assemble in the preinitiation complex and function in both transcription initiation and elongation. With in vitro pull-down assay and Far-Western analysis, we demonstrated that RMP could bind with bacterially expressed recombinant RAP30 and RAP74 of TFIIF subunits. In the immunoprecipitation assay in COS1 cells cotransfected with FLAG-tagged RMP or its mutants, GST-fused RAP30 and RAP74 were co-immunoprecipitated with RMP in approximately equal molar ratio, which suggests that RAP30 and RAP74 interact with RMP as a TFIIF complex. Interestingly both RAP30 and RAP74 interact with the same domain (D5) of the C-terminal RMP of 118-amino-acid residuals which overlaps with its TFIIB-binding domain. Internal deletion of D5 region of RMP abolished its binding ability with both subunits of TFIIF, while D5 domain alone was sufficient to interact with TFIIF subunits. The result of luciferase assay showed that overexpression of RMP, but not the mutant RMP lacking D5 region, suppressed the transcription activated by Gal-VP16, suggesting that interaction with TFIIF is required for RMP to suppress the activated transcription. The interaction between RMP and TFIIF may be an additional passway for RMP to regulate the transcription, or alternatively TFIIF may cooperate with RPB5 and TFIIB for the corepressor function of RMP.
Collapse
Affiliation(s)
- Wenxiang Wei
- National Key Laboratory of Medical Neurobiology, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Dion V, Coulombe B. Interactions of a DNA-bound transcriptional activator with the TBP-TFIIA-TFIIB-promoter quaternary complex. J Biol Chem 2003; 278:11495-501. [PMID: 12538582 PMCID: PMC4492720 DOI: 10.1074/jbc.m211938200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Site-specific protein-DNA photo-cross-linking was used to show that, when bound to its cognate site at various distances upstream of the TATA element, the chimeric transcriptional activator GAL4-VP16 can physically interact with a TATA box-binding protein (TBP)- transcription factor IIA (TFIIA)-TFIIB complex assembled on the TATA element. This result implies DNA bending and looping of promoter DNA as a result of the physical interaction between GAL4-VP16 and an interface of the TBP-TFIIA-TFIIB complex. This protein-protein interaction on promoter DNA minimally requires the presence of one GAL4 binding site and the formation of a quaternary complex containing TBP, TFIIB, and TFIIA on the TATA element. Notably, the topology of the TBP-TFIIA-TFIIB-promoter complex is not altered significantly by the interaction with DNA-bound activators. We also show that the ability of GAL4-VP16 to activate transcription through a single GAL4 binding site varies according to its precise location and orientation relative to the TATA element and that it can approach the efficiency obtained with multiple binding sites. Taken together, our results indicate that the spatial positioning of the DNA-bound activation domain is important for efficient activation, possibly by maximizing its interactions with the transcriptional machinery including the TBP-TFIIA-TFIIB-promoter quaternary complex.
Collapse
Affiliation(s)
- Valérie Dion
- Laboratory of Gene Transcription, Institut de Recherches Cliniques de Montréal, Montréal, Quebec H2W 1R7, Canada
| | | |
Collapse
|
32
|
Koiwa H, Barb AW, Xiong L, Li F, McCully MG, Lee BH, Sokolchik I, Zhu J, Gong Z, Reddy M, Sharkhuu A, Manabe Y, Yokoi S, Zhu JK, Bressan RA, Hasegawa PM. C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development. Proc Natl Acad Sci U S A 2002; 99:10893-8. [PMID: 12149434 PMCID: PMC125069 DOI: 10.1073/pnas.112276199] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cold, hyperosmolarity, and abscisic acid (ABA) signaling induce RD29A expression, which is an indicator of the plant stress adaptation response. Two nonallelic Arabidopsis thaliana (ecotype C24) T-DNA insertional mutations, cpl1 and cpl3, were identified based on hyperinduction of RD29A expression that was monitored by using the luciferase (LUC) reporter gene (RD29ALUC) imaging system. Genetic linkage analysis and complementation data established that the recessive cpl1 and cpl3 mutations are caused by T-DNA insertions in AtCPL1 (Arabidopsis C-terminal domain phosphatase-like) and AtCPL3, respectively. Gel assays using recombinant AtCPL1 and AtCPL3 detected innate phosphatase activity like other members of the phylogenetically conserved family that dephosphorylate the C-terminal domain of RNA polymerase II (RNAP II). cpl1 mutation causes RD29ALUC hyperexpression and transcript accumulation in response to cold, ABA, and NaCl treatments, whereas the cpl3 mutation mediates hyperresponsiveness only to ABA. Northern analysis confirmed that LUC transcript accumulation also occurs in response to these stimuli. cpl1 plants accumulate biomass more rapidly and exhibit delayed flowering relative to wild type whereas cpl3 plants grow more slowly and flower earlier than wild-type plants. Hence AtCPL1 and AtCPL3 are negative regulators of stress responsive gene transcription and modulators of growth and development. These results suggest that C-terminal domain phosphatase regulation of RNAP II phosphorylation status is a focal control point of complex processes like plant stress responses and development. AtCPL family members apparently have both unique and overlapping transcriptional regulatory functions that differentiate the signal output that determines the plant response.
Collapse
Affiliation(s)
- Hisashi Koiwa
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, IN 47907-1165, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kimura M, Suzuki H, Ishihama A. Formation of a carboxy-terminal domain phosphatase (Fcp1)/TFIIF/RNA polymerase II (pol II) complex in Schizosaccharomyces pombe involves direct interaction between Fcp1 and the Rpb4 subunit of pol II. Mol Cell Biol 2002; 22:1577-88. [PMID: 11839823 PMCID: PMC134712 DOI: 10.1128/mcb.22.5.1577-1588.2002] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Revised: 11/13/2001] [Accepted: 11/30/2001] [Indexed: 11/20/2022] Open
Abstract
In transcriptional regulation, RNA polymerase II (pol II) interacts and forms complexes with a number of protein factors. To isolate and identify the pol II-associated proteins, we constructed a Schizosaccharomyces pombe strain carrying a FLAG tag sequence fused to the rpb3 gene encoding the pol II subunit Rpb3. By immunoaffinity purification with anti-FLAG antibody-resin, a pol II complex containing the Rpb1 subunit with a nonphosphorylated carboxyl-terminal domain (CTD) was isolated. In addition to the pol II subunits, the complex was found to contain three subunits of a transcription factor TFIIF (TFIIF alpha, TFIIF beta, and Tfg3) and TFIIF-interacting CTD-phosphatase Fcp1. The same type of pol II complex could also be purified from an Fcp1-tagged strain. The isolated Fcp1 showed CTD-phosphatase activity in vitro. The fcp1 gene is essential for cell viability. Fcp1 and pol II interacted directly in vitro. Furthermore, by chemical cross-linking, glutathione S-transferase pulldown, and affinity chromatography, the Fcp1-interacting subunit of pol II was identified as Rpb4, which plays regulatory roles in transcription. We also constructed an S. pombe thiamine-dependent rpb4 shut-off system. On repression of rpb4 expression, the cell produced more of the nonphosphorylated form of Rpb1, but the pol II complex isolated with the anti-FLAG antibody contained less Fcp1 and more of the phosphorylated form of Rpb1 with a concomitant reduction in Rpb4. This result indicates the importance of Fcp1-Rpb4 interaction for formation of the Fcp1/TFIIF/pol II complex in vivo.
Collapse
Affiliation(s)
- Makoto Kimura
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| | | | | |
Collapse
|
34
|
Pei L. Transcriptional repressor of vasoactive intestinal peptide receptor mediates repression through interactions with TFIIB and TFIIEbeta. Biochem J 2001; 360:633-8. [PMID: 11736653 PMCID: PMC1222266 DOI: 10.1042/0264-6021:3600633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transcriptional repressor for rat vasoactive-intestinal-polypeptide receptor 1 (VIPR-RP) is a recently characterized transcription factor that belongs to a family of proteins, which include components of the DNA replication factor C complex. In this study, I investigated the mechanisms by which VIPR-RP represses transcription. I show here that transcriptional repression by VIPR-RP is mediated by a histone deacetylase-independent mechanism. I provide evidence that VIPR-RP makes direct physical contacts with two proteins of the basal transcription apparatus, the transcription factors TFIIB and TFIIEbeta. The interaction with TFIIB is mediated by the N-terminal 180 amino acids, whereas the interactive domain with TFIIEbeta is located between residues 367 and 527 of VIPR-RP. Using gel mobility-shift assays I demonstrated that interaction between VIPR-RP and TFIIB prevents the recruitment of TFIIB into a DNA-TATA-box-binding protein complex. My results indicate that VIPR-RP mediates transcriptional repression through direct interactions with the general transcription machinery.
Collapse
Affiliation(s)
- L Pei
- Division of Endocrinology & Metabolism, Cedars-Sinai Research Institute-UCLA School of Medicine, 8700 Beverly Boulevard, Los Angeles, CA 90048, U.S.A.
| |
Collapse
|
35
|
Wu SY, Chiang CM. TATA-binding protein-associated factors enhance the recruitment of RNA polymerase II by transcriptional activators. J Biol Chem 2001; 276:34235-43. [PMID: 11457828 DOI: 10.1074/jbc.m102463200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor (TF) IID, comprised of the TATA-binding protein (TBP) and TBP-associated factors (TAFs), is a general transcription factor required for RNA polymerase II (pol II) transcription on most eukaryotic genes. Recent findings that TAFs may not be globally required for activator-dependent transcription in vivo and in vitro and that both TAF-dependent and TAF-independent promoters are found in yeast suggest that transcriptional activation can occur through at least two different pathways, depending on the presence or absence of TAFs. Using order-of-addition and template challenge assays performed in a human cell-free transcription system reconstituted with recombinant general transcription factors (TFIIB, TBP, TFIIE, TFIIF), a recombinant general cofactor (PC4), and highly purified epitope-tagged multiprotein complexes (TFIID, TFIIH, pol II), we demonstrate that when TBP is used as the TATA-binding factor transcriptional activators such as Gal4-VP16 and human papillomavirus E2 mainly function by facilitating pol II entry to the promoter region. In contrast, when TFIID is used as the TATA-binding factor, promoter recognition by TFIID appears to be the rate-limiting step facilitated by transcriptional activators during preinitiation complex assembly. Using protein-protein pull-down and far-Western analyses, we further show that the presence of TAFs in TFIID facilitates the recruitment of pol II by transcriptional activators, thereby switching the rate-limiting step from pol II entry to promoter recognition. Our findings thus provide distinct molecular mechanisms for TAF-independent and TAF-dependent activation.
Collapse
Affiliation(s)
- S Y Wu
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4935, USA
| | | |
Collapse
|
36
|
Wei W, Dorjsuren D, Lin Y, Qin W, Nomura T, Hayashi N, Murakami S. Direct interaction between the subunit RAP30 of transcription factor IIF (TFIIF) and RNA polymerase subunit 5, which contributes to the association between TFIIF and RNA polymerase II. J Biol Chem 2001; 276:12266-73. [PMID: 11278533 DOI: 10.1074/jbc.m009634200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The general transcription factor IIF (TFIIF) assembled in the initiation complex, and RAP30 of TFIIF, have been shown to associate with RNA polymerase II (pol II), although it remains unclear which pol II subunit is responsible for the interaction. We examined whether TFIIF interacts with RNA polymerase II subunit 5 (RPB5), the exposed domain of which binds transcriptional regulatory factors such as hepatitis B virus X protein and a novel regulatory protein, RPB5-mediating protein. The results demonstrated that RPB5 directly binds RAP30 in vitro using purified recombinant proteins and in vivo in COS1 cells transiently expressing recombinant RAP30 and RPB5. The RAP30-binding region was mapped to the central region (amino acids (aa) 47-120) of RPB5, which partly overlaps the hepatitis B virus X protein-binding region. Although the middle part (aa 101-170) and the N-terminus (aa 1-100) of RAP30 independently bound RPB5, the latter was not involved in the RPB5 binding when RAP30 was present in TFIIF complex. Scanning of the middle part of RAP30 by clustered alanine substitutions and then point alanine substitutions pinpointed two residues critical for the RPB5 binding in in vitro and in vivo assays. Wild type but not mutants Y124A and Q131A of RAP30 coexpressed with FLAG-RAP74 efficiently recovered endogenous RPB5 to the FLAG-RAP74-bound anti-FLAG M2 resin. The recovered endogenous RPB5 is assembled in pol II as demonstrated immunologically. Interestingly, coexpression of the central region of RPB5 and wild type RAP30 inhibited recovery of endogenous pol II to the FLAG-RAP74-bound M2 resin, strongly suggesting that the RAP30-binding region of RPB5 inhibited the association of TFIIF and pol II. The exposed domain of RPB5 interacts with RAP30 of TFIIF and is important for the association between pol II and TFIIF.
Collapse
Affiliation(s)
- W Wei
- Department of Molecular Oncology, Cancer Research Institute, Kanazawa University, Takara-machi 13-1, Kanazawa 920-0934, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Douziech M, Coin F, Chipoulet JM, Arai Y, Ohkuma Y, Egly JM, Coulombe B. Mechanism of promoter melting by the xeroderma pigmentosum complementation group B helicase of transcription factor IIH revealed by protein-DNA photo-cross-linking. Mol Cell Biol 2000; 20:8168-77. [PMID: 11027286 PMCID: PMC86426 DOI: 10.1128/mcb.20.21.8168-8177.2000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p89/xeroderma pigmentosum complementation group B (XPB) ATPase-helicase of transcription factor IIH (TFIIH) is essential for promoter melting prior to transcription initiation by RNA polymerase II (RNAPII). By studying the topological organization of the initiation complex using site-specific protein-DNA photo-cross-linking, we have shown that p89/XPB makes promoter contacts both upstream and downstream of the initiation site. The upstream contact, which is in the region where promoter melting occurs (positions -9 to +2), requires tight DNA wrapping around RNAPII. The addition of hydrolyzable ATP tethers the template strand at positions -5 and +1 to RNAPII subunits. A mutation in p89/XPB found in a xeroderma pigmentosum patient impairs the ability of TFIIH to associate correctly with the complex and thereby melt promoter DNA. A model for open complex formation is proposed.
Collapse
Affiliation(s)
- M Douziech
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Lei L, Ren D, Burton ZF. The RAP74 subunit of human transcription factor IIF has similar roles in initiation and elongation. Mol Cell Biol 1999; 19:8372-82. [PMID: 10567562 PMCID: PMC84928 DOI: 10.1128/mcb.19.12.8372] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription factor IIF (TFIIF) is a protein allosteric effector for RNA polymerase II during the initiation and elongation phases of the transcription cycle. In initiation, TFIIF induces promoter DNA to wrap almost a full turn around RNA polymerase II in a complex that includes the general transcription factors TATA-binding protein, TFIIB, and TFIIE. During elongation, TFIIF also supports a more active conformation of RNA polymerase II. This conformational model for elongation is supported by three lines of experimental evidence. First, a region within the RNA polymerase II-associating protein 74 (RAP74) subunit of TFIIF (amino acids T154 to M177), a region that is critical for isomerization of the preinitiation complex, is also critical for elongation stimulation. Amino acid substitutions within this region are shown to have very similar effects on initiation and elongation, and mutagenic analysis indicates that L155, W164, N172, I176, and M177 are the most important residues in this region for transcription. Second, TFIIF is shown to have a higher affinity for rapidly elongating RNA polymerase II than for the stalled elongation complex, indicating that RNA polymerase II alternates between active and inactive states during elongation and that TFIIF stimulates elongation by supporting the active conformational state of RNA polymerase II. The deleterious I176A substitution in the critical region of RAP74 decreases the affinity of TFIIF for the active form of the elongation complex. Third, TFIIF is shown by Arrhenius analysis to stimulate elongation by populating an activated state of RNA polymerase II.
Collapse
Affiliation(s)
- L Lei
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | |
Collapse
|
39
|
Thompson NE, Burgess RR. Immunoaffinity purification of the RAP30 subunit of human transcription factor IIF. Protein Expr Purif 1999; 17:260-6. [PMID: 10545274 DOI: 10.1006/prep.1999.1128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RAP30, an RNA polymerase-associated protein (RAP) of approximately 30 kDa, is a component of the eukaryotic general transcription factor IIF (TFIIF). We have isolated a monoclonal antibody (MAb) that can be used to purify RAP30 under nondenaturing conditions. This MAb (designated 1RAP1) is a unique type of MAb that we have designated "polyol-responsive MAb." Polyol-responsive MAbs are high-affinity antibodies that release antigen in a buffer containing a low-molecular-weight polyhydroxylated compound (polyol) and a nonchaotropic salt. RAP30, contained on pET11d, was expressed in Escherichia coli by culturing and inducing protein expression at 26 degrees C. Under these conditions, approximately 50% of the RAP30 remains soluble. Inclusion bodies were removed from the cell lysate by centrifugation, the supernatant was treated with polyethyleneimine at 0.5 M NaCl to remove nucleic acids, and the soluble protein was applied directly to MAb-conjugated Sepharose. After extensive washing, RAP30 was eluted with buffer containing 0. 75 M ammonium sulfate and 40% propylene glycol. RAP30 produced by this procedure stimulates transcription from a minimal promoter. This is a rapid method for purifying unmodified RAP30 without renaturing the protein from inclusion bodies.
Collapse
Affiliation(s)
- N E Thompson
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | | |
Collapse
|
40
|
Ren D, Lei L, Burton ZF. A region within the RAP74 subunit of human transcription factor IIF is critical for initiation but dispensable for complex assembly. Mol Cell Biol 1999; 19:7377-87. [PMID: 10523626 PMCID: PMC84731 DOI: 10.1128/mcb.19.11.7377] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human transcription factor IIF (TFIIF) is an alpha(2)beta(2) heterotetramer of RNA polymerase II-associating 74 (RAP74) and RAP30 subunits. Mutagenic analysis shows that the N-terminal region of RAP74 between L155 (leucine at codon 155) and M177 is important for initiation. Mutants in this region have reduced activity in transcription, but none are inactive. Single amino acid substitutions at hydrophobic residues L155, W164, I176, and M177 have similar activity to RAP74(1-158), from which all but three amino acids of this region are deleted. Residual activity can be explained because each of these mutants forms a complex with RAP30 and recruits RNA polymerase II into the preinitiation complex. Mutants are defective for formation of the first phosphodiester bond from the adenovirus major late promoter but do not appear to have an additional significant defect in promoter escape. Negative DNA supercoiling partially compensates for the defects of TFIIF mutants in initiation, indicating that TFIIF may help to untwist the DNA helix for initiation.
Collapse
Affiliation(s)
- D Ren
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | |
Collapse
|
41
|
Rossignol M, Keriel A, Staub A, Egly JM. Kinase activity and phosphorylation of the largest subunit of TFIIF transcription factor. J Biol Chem 1999; 274:22387-92. [PMID: 10428810 DOI: 10.1074/jbc.274.32.22387] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The largest subunit of the human basal transcription factor TFIIFalpha (also called RAP74) was reported previously to be the target of some phospho/dephosphorylation process. We show that TFIIFalpha possesses a serine/threonine kinase activity, allowing an autophosphorylation of the two residues at position serine 385 and threonine 389. Mutation analysis strongly suggests that autophosphorylation of both sites regulates the transcription elongation process. Moreover we also evidence three additional phosphorylation sites located at positions 207-230, 271-283, and 335-344. These sites are phosphorylated by casein kinase II-like kinases and TAF(II)250, a component of TFIID.
Collapse
Affiliation(s)
- M Rossignol
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, B. P.163, 67404 Illkirch Cedex, Communaute Urbaine de Strasbourg, France
| | | | | | | |
Collapse
|
42
|
Reinberg D, Orphanides G, Ebright R, Akoulitchev S, Carcamo J, Cho H, Cortes P, Drapkin R, Flores O, Ha I, Inostroza JA, Kim S, Kim TK, Kumar P, Lagrange T, LeRoy G, Lu H, Ma DM, Maldonado E, Merino A, Mermelstein F, Olave I, Sheldon M, Shiekhattar R, Zawel L. The RNA polymerase II general transcription factors: past, present, and future. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:83-103. [PMID: 10384273 DOI: 10.1101/sqb.1998.63.83] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- D Reinberg
- Howard Hughes Medical Institute, Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 0885, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kuhlman TC, Cho H, Reinberg D, Hernandez N. The general transcription factors IIA, IIB, IIF, and IIE are required for RNA polymerase II transcription from the human U1 small nuclear RNA promoter. Mol Cell Biol 1999; 19:2130-41. [PMID: 10022900 PMCID: PMC84006 DOI: 10.1128/mcb.19.3.2130] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II transcribes the mRNA-encoding genes and the majority of the small nuclear RNA (snRNA) genes. The formation of a minimal functional transcription initiation complex on a TATA-box-containing mRNA promoter has been well characterized and involves the ordered assembly of a number of general transcription factors (GTFs), all of which have been either cloned or purified to near homogeneity. In the human RNA polymerase II snRNA promoters, a single element, the proximal sequence element (PSE), is sufficient to direct basal levels of transcription in vitro. The PSE is recognized by the basal transcription complex SNAPc. SNAPc, which is not required for transcription from mRNA-type RNA polymerase II promoters such as the adenovirus type 2 major late (Ad2ML) promoter, is thought to recruit TATA binding protein (TBP) and nucleate the assembly of the snRNA transcription initiation complex, but little is known about which GTFs other than TBP are required. Here we show that the GTFs IIA, IIB, IIF, and IIE are required for efficient RNA polymerase II transcription from snRNA promoters. Thus, although the factors that recognize the core elements of RNA polymerase II mRNA and snRNA-type promoters differ, they mediate the recruitment of many common GTFs.
Collapse
Affiliation(s)
- T C Kuhlman
- Graduate Program in Molecular and Cellular Pharmacology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
44
|
Grummt I. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:109-54. [PMID: 9932453 DOI: 10.1016/s0079-6603(08)60506-1] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
All cells, from prokaryotes to vertebrates, synthesize vast amounts of ribosomal RNA to produce the several million new ribosomes per generation that are required to maintain the protein synthetic capacity of the daughter cells. Ribosomal gene (rDNA) transcription is governed by RNA polymerase I (Pol I) assisted by a dedicated set of transcription factors that mediate the specificity of transcription and are the targets of the pleiotrophic pathways the cell uses to adapt rRNA synthesis to cell growth. In the past few years we have begun to understand the specific functions of individual factors involved in rDNA transcription and to elucidate on a molecular level how transcriptional regulation is achieved. This article reviews our present knowledge of the molecular mechanism of rDNA transcriptional regulation.
Collapse
Affiliation(s)
- I Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
45
|
Ge H, Si Y, Wolffe AP. A novel transcriptional coactivator, p52, functionally interacts with the essential splicing factor ASF/SF2. Mol Cell 1999; 2:751-9. [PMID: 9885563 DOI: 10.1016/s1097-2765(00)80290-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing evidence suggests that pre-mRNA splicing can take place cotranscriptionally in vivo. However, insight into how these two processes are linked has been lacking. Here, we describe that a novel transcriptional coactivator, p52, interacts not only with transcriptional activators and general transcription factors to enhance activated transcription but also with the essential splicing factor ASF/SF2 both in vitro and in vivo to modulate ASF/SF2-mediated pre-mRNA splicing. Furthermore, immunofluorescence studies indicate that the majority of endogenous p52 is colocalized with ASF/SF2 in the nucleoplasm of HeLa cells. Together, these observations suggest that, in addition to functioning as a transcriptional coactivator, p52 may also act as an adaptor to coordinate pre-mRNA splicing and transcriptional activation of class II genes.
Collapse
Affiliation(s)
- H Ge
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
46
|
Ge H, Si Y, Roeder RG. Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J 1998; 17:6723-9. [PMID: 9822615 PMCID: PMC1171017 DOI: 10.1093/emboj/17.22.6723] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transcriptional activation in human cell-free systems containing RNA polymerase II and general initiation factors requires the action of one or more additional coactivators. Here, we report the isolation of cDNAs encoding two novel human transcriptional coactivators (p52 and p75) that are derived from alternatively spliced products of a single gene and share a region of 325 residues, but show distinct coactivator properties. p52 and p75 both show strong interactions with the VP16 activation domain and several components of the general transcriptional machinery. p52, like the previously described PC4, is a potent broad-specificity coactivator, whereas p75 is less active for most activation domains. These results suggest that p52 is a general transcriptional coactivator that mediates functional interactions between upstream sequence-specific activators and the general transcription apparatus, possibly through a novel mechanism.
Collapse
Affiliation(s)
- H Ge
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
47
|
Ansari AZ, Reece RJ, Ptashne M. A transcriptional activating region with two contrasting modes of protein interaction. Proc Natl Acad Sci U S A 1998; 95:13543-8. [PMID: 9811836 PMCID: PMC24855 DOI: 10.1073/pnas.95.23.13543] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A C-terminal segment of the yeast activator Gal4 manifests two functions: When tethered to DNA, it elicits gene activation, and it binds the inhibitor Gal80. Here we examine the effects on these two functions of cysteine and proline substitutions. We find that, although certain cysteine substitutions diminish interaction with Gal80, those substitutions have little effect on the activating function in vivo and interaction with TATA box-binding protein (TBP) in vitro. Proline substitutions introduced near residues critical for Gal80 binding abolish that interaction but once again have no effect on the activating function. Crosslinking experiments show that a defined position in the activating peptide is in close proximity to TBP and Gal80 in the two separate reactions and show that binding of the inhibitor blocks binding to TBP. Thus, the same stretch of amino acids are involved in two quite different protein-protein interactions: binding to Gal80, which depends on a precise sequence and the formation of a defined secondary structure, or interactions with the transcriptional machinery in vivo, which are not impaired by perturbations of either sequence or structure.
Collapse
Affiliation(s)
- A Z Ansari
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center, Box 595, 1275 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
48
|
Yong C, Mitsuyasu H, Chun Z, Oshiro S, Hamasaki N, Kitajima S. Structure of the human transcription factor TFIIF revealed by limited proteolysis with trypsin. FEBS Lett 1998; 435:191-4. [PMID: 9762906 DOI: 10.1016/s0014-5793(98)01068-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, the human general transcription factor IIF (TFIIF), a heteromeric complex of RAP74 and RAP30 subunits, was subjected to limited proteolysis with trypsin. The central region of RAP74 was demonstrated to be highly sensitive to trypsin while both the N- and C-terminal regions contained trypsin-resistant structures. In contrast, RAP30 digestion occurred after proteolysis of RAP74. The digestion pattern of RAP74 recruited into the preinitiation complex showed no marked difference from that of IIF, while RAP30 in the complex was protected from trypsin. These results indicate that RAP74 apparently contains three structural domains, the central one of which is externally surfaced and unstructured, but RAP30 is internally wrapped by RAP74. Furthermore, the accessibility of the central region of RAP74 is unaltered in the minimal preinitiation complex, while RAP30 is involved in promoter recognition through its DNA binding activity.
Collapse
Affiliation(s)
- C Yong
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Yao F, Svensjö T, Winkler T, Lu M, Eriksson C, Eriksson E. Tetracycline repressor, tetR, rather than the tetR-mammalian cell transcription factor fusion derivatives, regulates inducible gene expression in mammalian cells. Hum Gene Ther 1998; 9:1939-50. [PMID: 9741432 DOI: 10.1089/hum.1998.9.13-1939] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This article describes the first (to our knowledge) tetracycline-inducible regulatory system that demonstrates that the tetracycline repressor (tetR) alone, rather than tetR-mammalian cell transcription factor fusion derivatives, can function as a potent trans-modulator to regulate gene expression in mammalian cells. With proper positioning of tetracycline operators downstream of the TATA element and of human epidermal growth factor (hEGF) as a reporter, we show that gene expression from the tetracycline operator-bearing hCMV major immediate-early enhancer-promoter (pcmvtetO) can be regulated by tetR over three orders of magnitude in response to tetracycline when (1) the reporter was cotransfected with tetR-expressing plasmid in transient expression assays, and (2) the reporter unit was stably integrated into the chromosome of a tetR-expressing cell line. This level of tetR-mediated inducible gene regulation is significantly higher than that of other repression-based mammalian cell transcription switch systems. In an in vivo porcine wound model, close to 60-fold tetR-mediated regulatory effects were detected and it was reversed when tetracycline was administered. Collectively, this study provides a direct implementation of this tetracycline-inducible regulatory switch for controlling gene expression in vitro, in vivo, and in gene therapy.
Collapse
Affiliation(s)
- F Yao
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
50
|
Robert F, Douziech M, Forget D, Egly JM, Greenblatt J, Burton ZF, Coulombe B. Wrapping of promoter DNA around the RNA polymerase II initiation complex induced by TFIIF. Mol Cell 1998; 2:341-51. [PMID: 9774972 PMCID: PMC4492723 DOI: 10.1016/s1097-2765(00)80278-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The formation of the RNA polymerase II (Pol II) initiation complex was analyzed using site-specific protein-DNA photo-cross-linking. We show that the RAP74 subunit of transcription factor (TF) IIF, through its RAP30-binding domain and an adjacent region necessary for the formation of homomeric interactions in vitro, dramatically alters the distribution of RAP30, TFIIE, and Pol II along promoter DNA between positions -40 and +26. This isomerization of the complex, which requires both TFIIF and TFIIE, is accompanied by tight wrapping of the promoter DNA for almost a full turn around Pol II. Addition of TFIIH enhances photo-cross-linking of Pol II to a number of promoter positions, suggesting that TFIIH tightens the DNA wrap around the enzyme. We present a general model to describe transcription initiation.
Collapse
Affiliation(s)
- François Robert
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, JlK 2R1, Canada
| | - Maxime Douziech
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, JlK 2R1, Canada
| | - Diane Forget
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, JlK 2R1, Canada
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UPR 6520 (CNRS), Unité 184 (INSERM), 1 rue Laurent Fries, BP 163, Illkirch Cédex, CU de Strasbourg, France
| | - Jack Greenblatt
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Zachary F. Burton
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824
| | - Benoit Coulombe
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, JlK 2R1, Canada
- To whom correspondence should be addressed:
| |
Collapse
|