1
|
Nugent PJ, Park H, Wladyka CL, Chen KY, Bynum C, Quarterman G, Hsieh AC, Subramaniam AR. Decoding RNA Metabolism by RNA-linked CRISPR Screening in Human Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605204. [PMID: 39091804 PMCID: PMC11291135 DOI: 10.1101/2024.07.25.605204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
RNAs undergo a complex choreography of metabolic processes in human cells that are regulated by thousands of RNA-associated proteins. While the effects of individual RNA-associated proteins on RNA metabolism have been extensively characterized, the full complement of regulators for most RNA metabolic events remain unknown. Here we present a massively parallel RNA-linked CRISPR (ReLiC) screening approach to measure the responses of diverse RNA metabolic events to knockout of 2,092 human genes encoding all known RNA-associated proteins. ReLiC screens highlight modular interactions between gene networks regulating splicing, translation, and decay of mRNAs. When combined with biochemical fractionation of polysomes, ReLiC reveals striking pathway-specific coupling between growth fitness and mRNA translation. Perturbing different components of the translation and proteostasis machineries have distinct effects on ribosome occupancy, while perturbing mRNA transcription leaves ribosome occupancy largely intact. Isoform-selective ReLiC screens capture differential regulation of intron retention and exon skipping by SF3b complex subunits. Chemogenomic screens using ReLiC decipher translational regulators upstream of mRNA decay and uncover a role for the ribosome collision sensor GCN1 during treatment with the anti-leukemic drug homoharringtonine. Our work demonstrates ReLiC as a versatile platform for discovering and dissecting regulatory principles of human RNA metabolism.
Collapse
Affiliation(s)
- Patrick J Nugent
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle WA, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
| | - Cynthia L Wladyka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle WA, USA
| | - Katharine Y Chen
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle WA, USA
| | - Christine Bynum
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Department of Biology, Spelman College, Atlanta GA, USA
| | - Grace Quarterman
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Department of Biology, Spelman College, Atlanta GA, USA
| | - Andrew C Hsieh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle WA, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Department of Biochemistry and Department of Genome Sciences, University of Washington, Seattle WA, USA
| |
Collapse
|
2
|
Dozier C, Montigny A, Viladrich M, Culerrier R, Combier JP, Besson A, Plaza S. Small ORFs as New Regulators of Pri-miRNAs and miRNAs Expression in Human and Drosophila. Int J Mol Sci 2022; 23:5764. [PMID: 35628573 PMCID: PMC9144653 DOI: 10.3390/ijms23105764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs (miRNAs) are small regulatory non-coding RNAs, resulting from the cleavage of long primary transcripts (pri-miRNAs) in the nucleus by the Microprocessor complex generating precursors (pre-miRNAs) that are then exported to the cytoplasm and processed into mature miRNAs. Some miRNAs are hosted in pri-miRNAs annotated as long non-coding RNAs (lncRNAs) and defined as MIRHGs (for miRNA Host Genes). However, several lnc pri-miRNAs contain translatable small open reading frames (smORFs). If smORFs present within lncRNAs can encode functional small peptides, they can also constitute cis-regulatory elements involved in lncRNA decay. Here, we investigated the possible involvement of smORFs in the regulation of lnc pri-miRNAs in Human and Drosophila, focusing on pri-miRNAs previously shown to contain translatable smORFs. We show that smORFs regulate the expression levels of human pri-miR-155 and pri-miR-497, and Drosophila pri-miR-8 and pri-miR-14, and also affect the expression and activity of their associated miRNAs. This smORF-dependent regulation is independent of the nucleotidic and amino acidic sequences of the smORFs and is sensitive to the ribosome-stalling drug cycloheximide, suggesting the involvement of translational events. This study identifies smORFs as new cis-acting elements involved in the regulation of pri-miRNAs and miRNAs expression, in both Human and Drosophila melanogaster.
Collapse
Affiliation(s)
- Christine Dozier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France; (R.C.); (A.B.)
| | - Audrey Montigny
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| | - Mireia Viladrich
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| | - Raphael Culerrier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France; (R.C.); (A.B.)
| | - Jean-Philippe Combier
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| | - Arnaud Besson
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France; (R.C.); (A.B.)
| | - Serge Plaza
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| |
Collapse
|
3
|
Chu V, Feng Q, Lim Y, Shao S. Selective destabilization of polypeptides synthesized from NMD-targeted transcripts. Mol Biol Cell 2021; 32:ar38. [PMID: 34586879 PMCID: PMC8694075 DOI: 10.1091/mbc.e21-08-0382] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The translation of mRNAs that contain a premature termination codon (PTC) generates truncated proteins that may have toxic dominant negative effects. Nonsense-mediated decay (NMD) is an mRNA surveillance pathway that degrades PTC-containing mRNAs to limit the production of truncated proteins. NMD activation requires a ribosome terminating translation at a PTC, but what happens to the polypeptides synthesized during the translation cycle needed to activate NMD is incompletely understood. Here, by establishing reporter systems that encode the same polypeptide sequence before a normal termination codon or PTC, we show that termination of protein synthesis at a PTC is sufficient to selectively destabilize polypeptides in mammalian cells. Proteasome inhibition specifically rescues the levels of nascent polypeptides produced from PTC-containing mRNAs within an hour, but also disrupts mRNA homeostasis within a few hours. PTC-terminated polypeptide destabilization is also alleviated by depleting the central NMD factor UPF1 or SMG1, the kinase that phosphorylates UPF1 to activate NMD, but not by inhibiting SMG1 kinase activity. Our results suggest that polypeptide degradation is linked to PTC recognition in mammalian cells and clarify a framework to investigate these mechanisms.
Collapse
Affiliation(s)
- Vincent Chu
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Qing Feng
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115
| | - Yang Lim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115
| |
Collapse
|
4
|
Zinshteyn B, Sinha NK, Enam SU, Koleske B, Green R. Translational repression of NMD targets by GIGYF2 and EIF4E2. PLoS Genet 2021; 17:e1009813. [PMID: 34665823 PMCID: PMC8555832 DOI: 10.1371/journal.pgen.1009813] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/29/2021] [Accepted: 09/08/2021] [Indexed: 12/26/2022] Open
Abstract
Translation of messenger RNAs (mRNAs) with premature termination codons produces truncated proteins with potentially deleterious effects. This is prevented by nonsense-mediated mRNA decay (NMD) of these mRNAs. NMD is triggered by ribosomes terminating upstream of a splice site marked by an exon-junction complex (EJC), but also acts on many mRNAs lacking a splice junction after their termination codon. We developed a genome-wide CRISPR flow cytometry screen to identify regulators of mRNAs with premature termination codons in K562 cells. This screen recovered essentially all core NMD factors and suggested a role for EJC factors in degradation of PTCs without downstream splicing. Among the strongest hits were the translational repressors GIGYF2 and EIF4E2. GIGYF2 and EIF4E2 mediate translational repression but not mRNA decay of a subset of NMD targets and interact with NMD factors genetically and physically. Our results suggest a model wherein recognition of a stop codon as premature can lead to its translational repression through GIGYF2 and EIF4E2.
Collapse
Affiliation(s)
- Boris Zinshteyn
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Niladri K. Sinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Syed Usman Enam
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Benjamin Koleske
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
5
|
Rahimi K, Færch Nielsen A, Venø MT, Kjems J. Nanopore long-read sequencing of circRNAs. Methods 2021; 196:23-29. [PMID: 34571139 DOI: 10.1016/j.ymeth.2021.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
Circular RNA (circRNA) is a group of highly stable RNA molecules with suggested roles in development and disease. They derive from linear pre-mRNAs when a 5'-splice site splices back to an upstream 3'-splice site in a process termed back-splicing. Most circRNAs are multi-exonic and may contain several thousand nucleotides. The extensive sequence overlap between the linear and circular forms of an RNA means that circRNA identification depends on the detection of back-splice-junction sequence reads that are unique to the circRNA. However, the short-read length obtained using standard next-generation sequencing techniques means that the internal sequence, exon composition and alternative splicing of circRNAs are unknown in many cases. Recently, several labs, including ours, have reported protocols for sequencing of circRNAs using long-read nanopore sequencing and thereby expanded our understanding of circRNA size distribution and internal splicing patterns. Here, we review these protocols and discuss the different approaches taken to study the full length composition of circRNAs.
Collapse
Affiliation(s)
- Karim Rahimi
- Department of Molecular Biology and Genetics (MBG), Aarhus University, DK-8000 Aarhus, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark.
| | - Anne Færch Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark; Center for Cellular signal Patterns (CellPAT), Aarhus University, DK-8000 Aarhus, Denmark
| | | | - Jørgen Kjems
- Department of Molecular Biology and Genetics (MBG), Aarhus University, DK-8000 Aarhus, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark; Center for Cellular signal Patterns (CellPAT), Aarhus University, DK-8000 Aarhus, Denmark.
| |
Collapse
|
6
|
Rahimi K, Venø MT, Dupont DM, Kjems J. Nanopore sequencing of brain-derived full-length circRNAs reveals circRNA-specific exon usage, intron retention and microexons. Nat Commun 2021; 12:4825. [PMID: 34376658 PMCID: PMC8355340 DOI: 10.1038/s41467-021-24975-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Circular RNA (circRNA) is a class of covalently joined non-coding RNAs with functional roles in a wide variety of cellular processes. Their composition shows extensive overlap with exons found in linear mRNAs making it difficult to delineate their composition using short-read RNA sequencing, particularly for long and multi-exonic circRNAs. Here, we use long-read nanopore sequencing of nicked circRNAs (circNick-LRS) and characterize a total of 18,266 and 39,623 circRNAs in human and mouse brain, respectively. We further develop an approach for targeted long-read sequencing of a panel of circRNAs (circPanel-LRS), eliminating the need for prior circRNA enrichment and find >30 circRNA isoforms on average per targeted locus. Our data show that circRNAs exhibit a large number of splicing events such as novel exons, intron retention and microexons that preferentially occur in circRNAs. We propose that altered exon usage in circRNAs may reflect resistance to nonsense-mediated decay in the absence of translation.
Collapse
Affiliation(s)
- Karim Rahimi
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark.
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
| | - Morten T Venø
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Omiics ApS, Aarhus, Denmark
| | - Daniel M Dupont
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark.
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
| |
Collapse
|
7
|
Powers KT, Stevenson-Jones F, Yadav SKN, Amthor B, Bufton JC, Borucu U, Shen D, Becker JP, Lavysh D, Hentze MW, Kulozik AE, Neu-Yilik G, Schaffitzel C. Blasticidin S inhibits mammalian translation and enhances production of protein encoded by nonsense mRNA. Nucleic Acids Res 2021; 49:7665-7679. [PMID: 34157102 PMCID: PMC8287960 DOI: 10.1093/nar/gkab532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/16/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Deciphering translation is of paramount importance for the understanding of many diseases, and antibiotics played a pivotal role in this endeavour. Blasticidin S (BlaS) targets translation by binding to the peptidyl transferase center of the large ribosomal subunit. Using biochemical, structural and cellular approaches, we show here that BlaS inhibits both translation elongation and termination in Mammalia. Bound to mammalian terminating ribosomes, BlaS distorts the 3′CCA tail of the P-site tRNA to a larger extent than previously reported for bacterial ribosomes, thus delaying both, peptide bond formation and peptidyl-tRNA hydrolysis. While BlaS does not inhibit stop codon recognition by the eukaryotic release factor 1 (eRF1), it interferes with eRF1’s accommodation into the peptidyl transferase center and subsequent peptide release. In human cells, BlaS inhibits nonsense-mediated mRNA decay and, at subinhibitory concentrations, modulates translation dynamics at premature termination codons leading to enhanced protein production.
Collapse
Affiliation(s)
- Kyle T Powers
- University of Bristol, School of Biochemistry, University Walk, Bristol BS8 1TD, UK
| | | | - Sathish K N Yadav
- University of Bristol, School of Biochemistry, University Walk, Bristol BS8 1TD, UK
| | - Beate Amthor
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ), University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of Heidelberg, Heidelberg, Germany
| | - Joshua C Bufton
- University of Bristol, School of Biochemistry, University Walk, Bristol BS8 1TD, UK
| | - Ufuk Borucu
- University of Bristol, School of Biochemistry, University Walk, Bristol BS8 1TD, UK
| | - Dakang Shen
- University of Bristol, School of Biochemistry, University Walk, Bristol BS8 1TD, UK
| | - Jonas P Becker
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ), University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of Heidelberg, Heidelberg, Germany
| | - Daria Lavysh
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ), University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of Heidelberg, Heidelberg, Germany
| | - Matthias W Hentze
- Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of Heidelberg, Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ), University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of Heidelberg, Heidelberg, Germany
| | - Gabriele Neu-Yilik
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ), University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
8
|
Live-cell imaging reveals kinetic determinants of quality control triggered by ribosome stalling. Mol Cell 2021; 81:1830-1840.e8. [PMID: 33581075 DOI: 10.1016/j.molcel.2021.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/21/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Translation of problematic mRNA sequences induces ribosome stalling, triggering quality-control events, including ribosome rescue and nascent polypeptide degradation. To define the timing and regulation of these processes, we developed a SunTag-based reporter to monitor translation of a problematic sequence (poly[A]) in real time on single mRNAs. Although poly(A)-containing mRNAs undergo continuous translation over the timescale of minutes to hours, ribosome load is increased by ∼3-fold compared to a control, reflecting long queues of ribosomes extending far upstream of the stall. We monitor the resolution of these queues in real time and find that ribosome rescue is very slow compared to both elongation and termination. Modulation of pause strength, collision frequency, and the collision sensor ZNF598 reveals how the dynamics of ribosome collisions and their recognition facilitate selective targeting for quality control. Our results establish that slow clearance of stalled ribosomes allows cells to distinguish between transient and deleterious stalls.
Collapse
|
9
|
Tan K, Jones SH, Lake BB, Chousal JN, Shum EY, Zhang L, Chen S, Sohni A, Pandya S, Gallo RL, Zhang K, Cook-Andersen H, Wilkinson MF. The role of the NMD factor UPF3B in olfactory sensory neurons. eLife 2020; 9:e57525. [PMID: 32773035 PMCID: PMC7452722 DOI: 10.7554/elife.57525] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/09/2020] [Indexed: 12/13/2022] Open
Abstract
The UPF3B-dependent branch of the nonsense-mediated RNA decay (NMD) pathway is critical for human cognition. Here, we examined the role of UPF3B in the olfactory system. Single-cell RNA-sequencing (scRNA-seq) analysis demonstrated considerable heterogeneity of olfactory sensory neuron (OSN) cell populations in wild-type (WT) mice, and revealed that UPF3B loss influences specific subsets of these cell populations. UPF3B also regulates the expression of a large cadre of antimicrobial genes in OSNs, and promotes the selection of specific olfactory receptor (Olfr) genes for expression in mature OSNs (mOSNs). RNA-seq and Ribotag analyses identified classes of mRNAs expressed and translated at different levels in WT and Upf3b-null mOSNs. Integrating multiple computational approaches, UPF3B-dependent NMD target transcripts that are candidates to mediate the functions of NMD in mOSNs were identified in vivo. Together, our data provides a valuable resource for the olfactory field and insights into the roles of NMD in vivo.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Samantha H Jones
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Blue B Lake
- Department of Bioengineering, University of California, San DiegoSan DiegoUnited States
| | - Jennifer N Chousal
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Eleen Y Shum
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Lingjuan Zhang
- Department of Dermatology, University of California, San DiegoSan DiegoUnited States
| | - Song Chen
- Department of Bioengineering, University of California, San DiegoSan DiegoUnited States
| | - Abhishek Sohni
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Shivam Pandya
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Richard L Gallo
- Department of Dermatology, University of California, San DiegoSan DiegoUnited States
| | - Kun Zhang
- Department of Bioengineering, University of California, San DiegoSan DiegoUnited States
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
- Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
- Institute of Genomic Medicine, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
10
|
Powers KT, Szeto JYA, Schaffitzel C. New insights into no-go, non-stop and nonsense-mediated mRNA decay complexes. Curr Opin Struct Biol 2020; 65:110-118. [PMID: 32688260 DOI: 10.1016/j.sbi.2020.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 11/26/2022]
Abstract
Eukaryotes possess a variety of translational control mechanisms which function in the surveillance of mRNAs, discriminating between normal and aberrant translation elongation and termination, triggering mRNA decay. The three major evolutionarily conserved eukaryotic pathways are No-Go, Non-Stop and Nonsense-Mediated mRNA Decay. Recent findings suggest that stalling of the ribosome, due to mRNA secondary structure or translation into poly(A)-stretches, leads to ribosome collisions which are detected by No-Go/Non-Stop mRNA decay factors. Subsequent ribosome ubiquitination at the interface of two collided ribosomes is considered the signal for mRNA decay. Similarly, translation termination at a premature stop codon is slower than normal, leading to recruitment and activation of nonsense-mediated mRNA decay factors, including SMG1-8-9. Here, we detail new insights into the molecular mechanisms of these pathways.
Collapse
Affiliation(s)
- Kyle T Powers
- University of Bristol, School of Biochemistry, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Jenn-Yeu Alvin Szeto
- University of Bristol, School of Biochemistry, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Christiane Schaffitzel
- University of Bristol, School of Biochemistry, University Walk, Bristol, BS8 1TD, United Kingdom.
| |
Collapse
|
11
|
The RNA quality control pathway nonsense-mediated mRNA decay targets cellular and viral RNAs to restrict KSHV. Nat Commun 2020; 11:3345. [PMID: 32620802 PMCID: PMC7334219 DOI: 10.1038/s41467-020-17151-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/11/2020] [Indexed: 12/26/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved RNA decay mechanism that has emerged as a potent cell-intrinsic restriction mechanism of retroviruses and positive-strand RNA viruses. However, whether NMD is capable of restricting DNA viruses is not known. The DNA virus Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi’s sarcoma and primary effusion lymphoma (PEL). Here, we demonstrate that NMD restricts KSHV lytic reactivation. Leveraging high-throughput transcriptomics we identify NMD targets transcriptome-wide in PEL cells and identify host and viral RNAs as substrates. Moreover, we identified an NMD-regulated link between activation of the unfolded protein response and transcriptional activation of the main KSHV transcription factor RTA, itself an NMD target. Collectively, our study describes an intricate relationship between cellular targets of an RNA quality control pathway and KSHV lytic gene expression, and demonstrates that NMD can function as a cell intrinsic restriction mechanism acting upon DNA viruses. Cellular nonsense-mediated mRNA decay (NMD) has been shown to play a role in defense against RNA viruses. Here, Zhao et al. show that NMD restricts the DNA virus Kaposi sarcoma-associated herpesvirus (KSHV) via targeting both cellular and viral transcripts leading to inhibition of KSHV lytic reactivation.
Collapse
|
12
|
Jansova D, Tetkova A, Koncicka M, Kubelka M, Susor A. Localization of RNA and translation in the mammalian oocyte and embryo. PLoS One 2018. [PMID: 29529035 PMCID: PMC5846722 DOI: 10.1371/journal.pone.0192544] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The tight correlation between mRNA distribution and subsequent protein localization and function indicate a major role for mRNA localization within the cell. RNA localization, followed by local translation, presents a mechanism for spatial and temporal gene expression regulation utilized by various cell types. However, little is known about mRNA localization and translation in the mammalian oocyte and early embryo. Importantly, fully-grown oocyte becomes transcriptionally inactive and only utilizes transcripts previously synthesized and stored during earlier development. We discovered an abundant RNA population in the oocyte and early embryo nucleus together with RNA binding proteins. We also characterized specific ribosomal proteins, which contribute to translation in the oocyte and embryo. By applying selected markers to mouse and human oocytes, we found that there might be a similar mechanism of RNA metabolism in both species. In conclusion, we visualized the localization of RNAs and translation machinery in the oocyte, that could shed light on this terra incognita of these unique cell types in mouse and human.
Collapse
Affiliation(s)
- Denisa Jansova
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
- * E-mail: (DJ); (AS)
| | - Anna Tetkova
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Marketa Koncicka
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Michal Kubelka
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
| | - Andrej Susor
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
- * E-mail: (DJ); (AS)
| |
Collapse
|
13
|
Lejeune F. Nonsense-mediated mRNA decay at the crossroads of many cellular pathways. BMB Rep 2018; 50:175-185. [PMID: 28115040 PMCID: PMC5437961 DOI: 10.5483/bmbrep.2017.50.4.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Indexed: 12/22/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism ensuring the fast decay of mRNAs harboring a premature termination codon (PTC). As a quality control mechanism, NMD distinguishes PTCs from normal termination codons in order to degrade PTC-carrying mRNAs only. For this, NMD is connected to various other cell processes which regulate or activate it under specific cell conditions or in response to mutations, mis-regulations, stresses, or particular cell programs. These cell processes and their connections with NMD are the focus of this review, which aims both to illustrate the complexity of the NMD mechanism and its regulation and to highlight the cellular consequences of NMD inhibition.
Collapse
Affiliation(s)
- Fabrice Lejeune
- University Lille, UMR8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies; CNRS, UMR 8161, 3Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
14
|
mRNAs containing NMD-competent premature termination codons are stabilized and translated under UPF1 depletion. Sci Rep 2017; 7:15833. [PMID: 29158530 PMCID: PMC5696521 DOI: 10.1038/s41598-017-16177-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022] Open
Abstract
mRNAs containing premature termination codons (PTCs) are rapidly degraded through nonsense-mediated mRNA decay (NMD). However, some PTC-containing mRNAs evade NMD, and might generate mutant proteins responsible for various diseases, including cancers. Using PTC-containing human genomic β-globin constructs, we show that a fraction (~30%) of PTC-containing mRNAs expressed from NMD-competent PTC-containing constructs were as stable as their PTC-free counterparts in a steady state. These PTC-containing mRNAs were monosome-enriched and rarely contributed to expression of mutant proteins. Expression of trace amounts of mutant proteins from NMD-competent PTC-containing constructs was not affected by inhibition of eIF4E-dependent translation and such expression was dependent on a continuous influx of newly synthesized PTC-containing mRNAs, indicating that truncated mutant proteins originated primarily in the pioneer round of translation. The generation of mutant proteins was promoted by UPF1 depletion, which induced polysome association of PTC-containing mRNAs, increased eIF4E-bound PTC-containing mRNA levels, and subsequent eIF4E-dependent translation. Our findings suggest that PTC-containing mRNAs are potent and regulatable sources of mutant protein generation.
Collapse
|
15
|
Martinez-Nunez RT, Wallace A, Coyne D, Jansson L, Rush M, Ennajdaoui H, Katzman S, Bailey J, Deinhardt K, Sanchez-Elsner T, Sanford JR. Modulation of nonsense mediated decay by rapamycin. Nucleic Acids Res 2017; 45:3448-3459. [PMID: 27899591 PMCID: PMC5389481 DOI: 10.1093/nar/gkw1109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 10/28/2016] [Indexed: 01/24/2023] Open
Abstract
Rapamycin is a naturally occurring macrolide whose target is at the core of nutrient and stress regulation in a wide range of species. Despite well-established roles as an inhibitor of cap-dependent mRNA translation, relatively little is known about its effects on other modes of RNA processing. Here, we characterize the landscape of rapamycin-induced post-transcriptional gene regulation. Transcriptome analysis of rapamycin-treated cells reveals genome-wide changes in alternative mRNA splicing and pronounced changes in NMD-sensitive isoforms. We demonstrate that despite well-documented attenuation of cap-dependent mRNA translation, rapamycin can augment NMD of certain transcripts. Rapamycin-treatment significantly reduces the levels of both endogenous and exogenous Premature Termination Codon (PTC)-containing mRNA isoforms and its effects are dose-, UPF1- and 4EBP-dependent. The PTC-containing SRSF6 transcript exhibits a shorter half-life upon rapamycin-treatment as compared to the non-PTC isoform. Rapamycin-treatment also causes depletion of PTC-containing mRNA isoforms from polyribosomes, underscoring the functional relationship between translation and NMD. Enhanced NMD activity also correlates with an enrichment of the nuclear Cap Binding Complex (CBC) in rapamycin-treated cells. Our data demonstrate that rapamycin modulates global RNA homeostasis by NMD.
Collapse
Affiliation(s)
- Rocio T Martinez-Nunez
- University of California Santa Cruz, Department of Molecular, Cellular and Developmental Biology, Santa Cruz, CA 95064, USA.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Andrew Wallace
- University of California Santa Cruz, Department of Molecular, Cellular and Developmental Biology, Santa Cruz, CA 95064, USA
| | - Doyle Coyne
- University of California Santa Cruz, Department of Molecular, Cellular and Developmental Biology, Santa Cruz, CA 95064, USA
| | - Linnea Jansson
- University of California Santa Cruz, Department of Molecular, Cellular and Developmental Biology, Santa Cruz, CA 95064, USA
| | - Miles Rush
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Hanane Ennajdaoui
- University of California Santa Cruz, Department of Molecular, Cellular and Developmental Biology, Santa Cruz, CA 95064, USA
| | - Sol Katzman
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95060, USA
| | - Joanne Bailey
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Katrin Deinhardt
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Tilman Sanchez-Elsner
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Jeremy R Sanford
- University of California Santa Cruz, Department of Molecular, Cellular and Developmental Biology, Santa Cruz, CA 95064, USA
| |
Collapse
|
16
|
Alexandrov A, Shu MD, Steitz JA. Fluorescence Amplification Method for Forward Genetic Discovery of Factors in Human mRNA Degradation. Mol Cell 2017; 65:191-201. [PMID: 28017590 PMCID: PMC5301997 DOI: 10.1016/j.molcel.2016.11.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/05/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022]
Abstract
Nonsense-mediated decay (NMD) degrades mRNAs containing a premature termination codon (PTC). PTCs are a frequent cause of human genetic diseases, and the NMD pathway is known to modulate disease severity. Since partial NMD attenuation can potentially enhance nonsense suppression therapies, better definition of human-specific NMD is required. However, the majority of NMD factors were first discovered in model organisms and then subsequently identified by homology in human. Sensitivity and throughput limitations of existing approaches have hindered systematic forward genetic screening for NMD factors in human cells. We developed a method of in vivo amplification of NMD reporter fluorescence (Fireworks) that enables CRISPR-based forward genetic screening for NMD pathway defects in human cells. The Fireworks genetic screen identifies multiple known NMD factors and numerous human candidate genes, providing a platform for discovery of additional key factors in human mRNA degradation.
Collapse
Affiliation(s)
- Andrei Alexandrov
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| | - Mei-Di Shu
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| |
Collapse
|
17
|
Brogna S, McLeod T, Petric M. The Meaning of NMD: Translate or Perish. Trends Genet 2016; 32:395-407. [PMID: 27185236 DOI: 10.1016/j.tig.2016.04.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/02/2016] [Accepted: 04/25/2016] [Indexed: 02/08/2023]
Abstract
Premature translation termination leads to a reduced mRNA level in all types of organisms. In eukaryotes, the phenomenon is known as nonsense-mediated mRNA decay (NMD). This is commonly regarded as the output of a specific surveillance and destruction mechanism that is activated by the presence of a premature translation termination codon (PTC) in an atypical sequence context. Despite two decades of research, it is still unclear how NMD discriminates between PTCs and normal stop codons. We suggest that cells do not possess any such mechanism and instead propose a new model in which this mRNA depletion is a consequence of the appearance of long tracts of mRNA that are unprotected by scanning ribosomes.
Collapse
Affiliation(s)
- Saverio Brogna
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT, UK.
| | - Tina McLeod
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT, UK
| | - Marija Petric
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
18
|
Fatscher T, Boehm V, Gehring NH. Mechanism, factors, and physiological role of nonsense-mediated mRNA decay. Cell Mol Life Sci 2015; 72:4523-44. [PMID: 26283621 PMCID: PMC11113733 DOI: 10.1007/s00018-015-2017-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/10/2015] [Accepted: 08/06/2015] [Indexed: 02/04/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a translation-dependent, multistep process that degrades irregular or faulty messenger RNAs (mRNAs). NMD mainly targets mRNAs with a truncated open reading frame (ORF) due to premature termination codons (PTCs). In addition, NMD also regulates the expression of different types of endogenous mRNA substrates. A multitude of factors are involved in the tight regulation of the NMD mechanism. In this review, we focus on the molecular mechanism of mammalian NMD. Based on the published data, we discuss the involvement of translation termination in NMD initiation. Furthermore, we provide a detailed overview of the core NMD machinery, as well as several peripheral NMD factors, and discuss their function. Finally, we present an overview of diseases associated with NMD factor mutations and summarize the current state of treatment for genetic disorders caused by nonsense mutations.
Collapse
Affiliation(s)
- Tobias Fatscher
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|
19
|
Target Discrimination in Nonsense-Mediated mRNA Decay Requires Upf1 ATPase Activity. Mol Cell 2015; 59:413-25. [PMID: 26253027 DOI: 10.1016/j.molcel.2015.06.036] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/27/2015] [Accepted: 06/29/2015] [Indexed: 12/17/2022]
Abstract
RNA quality-control pathways get rid of faulty RNAs and therefore must be able to discriminate these RNAs from those that are normal. Here we present evidence that the adenosine triphosphatase (ATPase) cycle of the SF1 helicase Upf1 is required for mRNA discrimination during nonsense-mediated decay (NMD). Mutations affecting the Upf1 ATPase cycle disrupt the mRNA selectivity of Upf1, leading to indiscriminate accumulation of NMD complexes on both NMD target and non-target mRNAs. In addition, two modulators of NMD-translation and termination codon-proximal poly(A) binding protein-depend on the ATPase activity of Upf1 to limit Upf1-non-target association. Preferential ATPase-dependent dissociation of Upf1 from non-target mRNAs in vitro suggests that selective release of Upf1 contributes to the ATPase dependence of Upf1 target discrimination. Given the prevalence of helicases in RNA regulation, ATP hydrolysis may be a widely used activity in target RNA discrimination.
Collapse
|
20
|
Liu Q, Hesson LB, Nunez AC, Packham D, Williams R, Ward RL, Sloane MA. A cryptic paracentric inversion of MSH2 exons 2-6 causes Lynch syndrome. Carcinogenesis 2015; 37:10-17. [PMID: 26498247 DOI: 10.1093/carcin/bgv154] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/19/2015] [Indexed: 12/28/2022] Open
Abstract
Lynch syndrome is an autosomal dominant disorder that predisposes carriers of DNA mismatch repair (MMR) gene mutations to early-onset cancer. Germline testing screens exons and splice sites for mutations, but does not examine introns or RNA transcripts for alterations. Pathogenic mutations have not been detected in ~30% of suspected Lynch syndrome cases with standard screening practices. We present a 38-year-old male with a clinicopathological and family history consistent with Lynch syndrome, including loss of MSH2 expression in his tumor. Germline testing revealed normal MSH2 coding sequence, splice sites and exon copy number, however, cDNA sequencing identified an aberrant MSH2 transcript lacking exons 2-6. An inversion PCR on germline DNA identified an ~18kb unbalanced, paracentric inversion within MSH2, with breakpoints in a long terminal repeat in intron 1 and an Alu repeat in intron 6. The 3' end of the inversion had a 1.2 kb deletion and an 8 bp insertion at the junction with intron 6. Screening of 55 additional Australian patients presenting with MSH2-deficient tumors who were negative in germline genetic tests for MSH2 mutations identified another inversion-positive patient. We propose an Alu-mediated recombination model to explain the origin of the inversion. Our study illustrates the potential value of cDNA screening to identify patients with cryptic MMR gene rearrangements, clarifies why standard testing may not detect some pathogenic alterations, and provides a genetic test for screening individuals with suspected Lynch syndrome that present with unexplained MSH2-deficient tumors.
Collapse
Affiliation(s)
- Qing Liu
- Adult Cancer Program , Lowy Cancer Research Centre and Prince of Wales Clinical School, UNSW Australia , Sydney New South Wales 2052 , Australia
| | - Luke B Hesson
- Adult Cancer Program , Lowy Cancer Research Centre and Prince of Wales Clinical School, UNSW Australia , Sydney New South Wales 2052 , Australia
| | - Andrea C Nunez
- Adult Cancer Program , Lowy Cancer Research Centre and Prince of Wales Clinical School, UNSW Australia , Sydney New South Wales 2052 , Australia
| | - Deborah Packham
- Adult Cancer Program , Lowy Cancer Research Centre and Prince of Wales Clinical School, UNSW Australia , Sydney New South Wales 2052 , Australia
| | - Rachel Williams
- Hereditary Cancer Clinic , Prince of Wales Hospital , Randwick, New South Wales 2031 , Australia and
| | - Robyn L Ward
- Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, UNSW Australia, Sydney New South Wales 2052, Australia.,Level 3 Brian Wilson Chancellery, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mathew A Sloane
- Adult Cancer Program , Lowy Cancer Research Centre and Prince of Wales Clinical School, UNSW Australia , Sydney New South Wales 2052 , Australia
| |
Collapse
|
21
|
He F, Jacobson A. Nonsense-Mediated mRNA Decay: Degradation of Defective Transcripts Is Only Part of the Story. Annu Rev Genet 2015; 49:339-66. [PMID: 26436458 DOI: 10.1146/annurev-genet-112414-054639] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance mechanism that monitors cytoplasmic mRNA translation and targets mRNAs undergoing premature translation termination for rapid degradation. From yeasts to humans, activation of NMD requires the function of the three conserved Upf factors: Upf1, Upf2, and Upf3. Here, we summarize the progress in our understanding of the molecular mechanisms of NMD in several model systems and discuss recent experiments that address the roles of Upf1, the principal regulator of NMD, in the initial targeting and final degradation of NMD-susceptible mRNAs. We propose a unified model for NMD in which the Upf factors provide several functions during premature termination, including the stimulation of release factor activity and the dissociation and recycling of ribosomal subunits. In this model, the ultimate degradation of the mRNA is the last step in a complex premature termination process.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655; ,
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655; ,
| |
Collapse
|
22
|
Bhuvanagiri M, Lewis J, Putzker K, Becker JP, Leicht S, Krijgsveld J, Batra R, Turnwald B, Jovanovic B, Hauer C, Sieber J, Hentze MW, Kulozik AE. 5-azacytidine inhibits nonsense-mediated decay in a MYC-dependent fashion. EMBO Mol Med 2015; 6:1593-609. [PMID: 25319547 PMCID: PMC4287977 DOI: 10.15252/emmm.201404461] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nonsense-mediated RNA decay (NMD) is an RNA-based quality control mechanism that eliminates
transcripts bearing premature translation termination codons (PTC). Approximately, one-third of all
inherited disorders and some forms of cancer are caused by nonsense or frame shift mutations that
introduce PTCs, and NMD can modulate the clinical phenotype of these diseases. 5-azacytidine is an
analogue of the naturally occurring pyrimidine nucleoside cytidine, which is approved for the
treatment of myelodysplastic syndrome and myeloid leukemia. Here, we reveal that 5-azacytidine
inhibits NMD in a dose-dependent fashion specifically upregulating the expression of both
PTC-containing mutant and cellular NMD targets. Moreover, this activity of 5-azacytidine depends on
the induction of MYC expression, thus providing a link between the effect of this drug and one of
the key cellular pathways that are known to affect NMD activity. Furthermore, the effective
concentration of 5-azacytidine in cells corresponds to drug levels used in patients, qualifying
5-azacytidine as a candidate drug that could potentially be repurposed for the treatment of
Mendelian and acquired genetic diseases that are caused by PTC mutations.
Collapse
Affiliation(s)
- Madhuri Bhuvanagiri
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany European Molecular Biology Laboratory, Heidelberg, Germany
| | - Joe Lewis
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Jonas P Becker
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Stefan Leicht
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Richa Batra
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Brad Turnwald
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Bogdan Jovanovic
- Centre for Molecular Biology of the University of HeidelbergUniversity of Heidelberg, Heidelberg, Germany
| | - Christian Hauer
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jana Sieber
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Matthias W Hentze
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany European Molecular Biology Laboratory, Heidelberg, Germany
| | - Andreas E Kulozik
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
23
|
Shi M, Zhang H, Wang L, Zhu C, Sheng K, Du Y, Wang K, Dias A, Chen S, Whitman M, Wang E, Reed R, Cheng H. Premature Termination Codons Are Recognized in the Nucleus in A Reading-Frame Dependent Manner. Cell Discov 2015; 1. [PMID: 26491543 PMCID: PMC4610414 DOI: 10.1038/celldisc.2015.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
mRNAs containing premature termination codons (PTCs) are known to be degraded via nonsense-mediated mRNA decay (NMD). Unexpectedly, we found that mRNAs containing any type of PTC (UAA, UAG, UGA) are detained in the nucleus whereas their wild-type counterparts are rapidly exported. This retention is strictly reading-frame dependent. Strikingly, our data indicate that translating ribosomes in the nucleus proofread the frame and detect the PTCs in the nucleus. Moreover, the shuttling NMD protein Upf1 specifically associates with PTC+ mRNA in the nucleus and is required for nuclear retention of PTC+ mRNA. Together, our data lead to a working model that PTCs are recognized in the nucleus by translating ribosomes, resulting in recruitment of Upf1, which in turn functions in nuclear retention of PTC+ mRNA. Nuclear PTC recognition adds a new layer of proofreading for mRNA and may be vital for ensuring the extraordinary fidelity required for protein production.
Collapse
Affiliation(s)
- Min Shi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Heng Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Changlan Zhu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Sheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanhua Du
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Anusha Dias
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206
| | - Malcolm Whitman
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Enduo Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Robin Reed
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
24
|
Veremieva M, Kapustian L, Khoruzhenko A, Zakharychev V, Negrutskii B, El'skaya A. Independent overexpression of the subunits of translation elongation factor complex eEF1H in human lung cancer. BMC Cancer 2014; 14:913. [PMID: 25472873 PMCID: PMC4265501 DOI: 10.1186/1471-2407-14-913] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The constituents of stable multiprotein complexes are known to dissociate from the complex to play independent regulatory roles. The components of translation elongation complex eEF1H (eEF1A, eEF1Bα, eEF1Bβ, eEF1Bγ) were found overexpressed in different cancers. To gain the knowledge about novel cancer-related translational mechanisms we intended to reveal whether eEF1H exists as a single unit or independent subunits in different human cancers. METHODS The changes in the expression level of every subunit of eEF1H in the human non-small-cell lung cancer tissues were examined. The localization of eEF1H subunits was assessed by immunohistochemistry methods, subcellular fractionation and confocal microscopy. The possibility of the interaction between the subunits was estimated by co-immunoprecipitation. RESULTS The level of eEF1Bβ expression was increased more than two-fold in 36%, eEF1Bγ in 28%, eEF1A in 20% and eEF1Bα in 8% of tumor specimens. The cancer-induced alterations in the subunits level were found to be uncoordinated, therefore the increase in the level of at least one subunit of eEF1H was observed in 52% of samples. Nuclear localization of eEF1Bβ in the cancer rather than distal normal looking tissues was found. In cancer tissue, eEF1A and eEF1Bα were not found in nuclei while all four subunits of eEF1H demonstrated both cytoplasmic and nuclear appearance in the lung carcinoma cell line A549. Unexpectedly, in the A549 nuclear fraction eEF1A lost the ability to interact with the eEF1B complex. CONCLUSIONS The results suggest independent functioning of some fraction of the eEF1H subunits in human tumors. The absence of eEF1A and eEF1B interplay in nuclei of A549 cells is a first evidence for non-translational role of nuclear-localized subunits of eEF1B. We conclude the appearance of the individual eEF1B subunits in tumors is a more general phenomenon than appreciated before and thus is a novel signal of cancer-related changes in translation apparatus.
Collapse
Affiliation(s)
| | | | | | | | - Boris Negrutskii
- State Key Laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics NASU, 150 Acad,Zabolotnogo Str,, Kiev 03680, Ukraine.
| | | |
Collapse
|
25
|
Celik A, Kervestin S, Jacobson A. NMD: At the crossroads between translation termination and ribosome recycling. Biochimie 2014; 114:2-9. [PMID: 25446649 DOI: 10.1016/j.biochi.2014.10.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is one of three regulatory mechanisms that monitor the cytoplasm for aberrant mRNAs. NMD is usually triggered by premature translation termination codons that arise from mutations, transcription errors, or inefficient splicing, but which also occur in transcripts with alternately spliced isoforms or upstream open reading frames, or in the context of long 3'-UTRs. This surveillance pathway requires detection of the nonsense codon by the eukaryotic release factors (eRF1 and eRF3) and the activities of the Upf proteins, but the exact mechanism by which a nonsense codon is recognized as premature, and the individual roles of the Upf proteins, are poorly understood. In this review, we highlight important differences between premature and normal termination. Based on our current understanding of normal termination and ribosome recycling, we propose a similar mechanism for premature termination events that includes a role for the Upf proteins. In this model, the Upf proteins not only target the mRNA and nascent peptide for degradation, but also assume the role of recycling factors and rescue a ribosome stalled at a premature nonsense codon. The ATPase and helicase activities of Upf1, with the help of Upf2 and Upf3, are thus thought to be the catalytic force in ribosome subunit dissociation and ribosome recycling at an otherwise poorly dissociable termination event. While this model is somewhat speculative, it provides a unified vision for current data and a direction for future research.
Collapse
Affiliation(s)
- Alper Celik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655-0122, USA
| | - Stephanie Kervestin
- CNRS FRE3630 Associated with Université Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655-0122, USA.
| |
Collapse
|
26
|
Hatano M, Umemura M, Kimura N, Yamazaki T, Takeda H, Nakano H, Takahashi S, Takahashi Y. The 5'-untranslated region regulates ATF5 mRNA stability via nonsense-mediated mRNA decay in response to environmental stress. FEBS J 2013; 280:4693-707. [PMID: 23876217 DOI: 10.1111/febs.12440] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/08/2013] [Accepted: 07/15/2013] [Indexed: 11/28/2022]
Abstract
We previously reported that activating transcription factor 5 (ATF5) mRNA increases in response to amino acid limitation, and that this increase is dependent on mRNA stabilization. The ATF5 gene allows transcription of mRNAs with two alternative 5'-UTRs, 5'-UTRα and 5'-UTRβ, derived from exon 1α and exon 1β. 5'-UTRα contains the upstream open reading frames uORF1 and uORF2. Phosphorylation of eukaryotic initiation factor 2α during the integrated stress response had been previously shown to lead to bypassing of uORF2 translation and production of ATF5 protein. Translation of uORF2 is expected to result in translational termination at a position 125 nucleotides upstream of the exon junction, and this fits the criterion of a nonsense-mediated decay target mRNA. We investigated the potential role of 5'-UTRα in the control of mRNA stabilization, and found that 5'-UTRα reduced the stability of ATF5 mRNA. 5'-UTRα-regulated destabilization of mRNA was suppressed by knockdown of the nonsense-mediated decay factors Upf1 and Upf2. Mutation of the downstream AUG (uAUG2) rendered mRNA refractory to Upf1 and Upf2 knockdown. Moreover, 5'-UTRα-regulated down-regulation was hindered by amino acid limitation and tunicamycin treatment, and stress-induced phosphorylation of eukaryotic initiation factor 2α was involved in stabilization of ATF5 mRNA. These studies show that ATF5 mRNA is a naturally occurring normal mRNA target of nonsense-mediated decay, and provide evidence for linkage between stress-regulated translational regulation and the mRNA decay pathway. This linkage constitutes a mechanism that regulates expression of stress response genes.
Collapse
Affiliation(s)
- Masaya Hatano
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Min EE, Roy B, Amrani N, He F, Jacobson A. Yeast Upf1 CH domain interacts with Rps26 of the 40S ribosomal subunit. RNA (NEW YORK, N.Y.) 2013; 19:1105-15. [PMID: 23801788 PMCID: PMC3708530 DOI: 10.1261/rna.039396.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/17/2013] [Indexed: 05/18/2023]
Abstract
The central nonsense-mediated mRNA decay (NMD) regulator, Upf1, selectively targets nonsense-containing mRNAs for rapid degradation. In yeast, Upf1 preferentially associates with mRNAs that are NMD substrates, but the mechanism of its selective retention on these mRNAs has yet to be elucidated. Previously, we demonstrated that Upf1 associates with 40S ribosomal subunits. Here, we define more precisely the nature of this association using conventional and affinity-based purification of ribosomal subunits, and a two-hybrid screen to identify Upf1-interacting ribosomal proteins. Upf1 coimmunoprecipitates specifically with epitope-tagged 40S ribosomal subunits, and Upf1 association with high-salt washed or puromycin-released 40S subunits was found to occur without simultaneous eRF1, eRF3, Upf2, or Upf3 association. Two-hybrid analyses and in vitro binding assays identified a specific interaction between Upf1 and Rps26. Using mutations in domains of UPF1 known to be crucial for its function, we found that Upf1:40S association is modulated by ATP, and Upf1:Rps26 interaction is dependent on the N-terminal Upf1 CH domain. The specific association of Upf1 with the 40S subunit is consistent with the notion that this RNA helicase not only triggers rapid decay of nonsense-containing mRNAs, but may also have an important role in dissociation of the premature termination complex.
Collapse
|
28
|
Karam R, Wengrod J, Gardner LB, Wilkinson MF. Regulation of nonsense-mediated mRNA decay: implications for physiology and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:624-33. [PMID: 23500037 DOI: 10.1016/j.bbagrm.2013.03.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/02/2013] [Accepted: 03/04/2013] [Indexed: 01/24/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is an mRNA quality control mechanism that destabilizes aberrant mRNAs harboring premature termination (nonsense) codons (PTCs). Recent studies have shown that NMD also targets mRNAs transcribed from a large subset of wild-type genes. This raises the possibility that NMD itself is under regulatory control. Indeed, several recent studies have shown that NMD activity is modulated in specific cell types and that key components of the NMD pathway are regulated by several pathways, including microRNA circuits and NMD itself. Cellular stress also modulates the magnitude of NMD by mechanisms that are beginning to be understood. Here, we review the evidence that NMD is regulated and discuss the physiological role for this regulation. We propose that the efficiency of NMD is altered in some cellular contexts to regulate normal biological events. In disease states-such as in cancer-NMD is disturbed by intrinsic and extrinsic factors, resulting in altered levels of crucial NMD-targeted mRNAs that lead to downstream pathological consequences. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Rachid Karam
- Department of Reproductive Medicine, University of California, San Diego, CA 92093-0864, USA
| | | | | | | |
Collapse
|
29
|
Trcek T, Sato H, Singer RH, Maquat LE. Temporal and spatial characterization of nonsense-mediated mRNA decay. Genes Dev 2013; 27:541-51. [PMID: 23431032 PMCID: PMC3605467 DOI: 10.1101/gad.209635.112] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/29/2013] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism responsible for "surveying" mRNAs during translation and degrading those that harbor a premature termination codon (PTC). Currently the intracellular spatial location of NMD and the kinetics of its decay step in mammalian cells are under debate. To address these issues, we used single-RNA fluorescent in situ hybridization (FISH) and measured the NMD of PTC-containing β-globin mRNA in intact single cells after the induction of β-globin gene transcription. This approach preserves temporal and spatial information of the NMD process, both of which would be lost in an ensemble study. We determined that decay of the majority of PTC-containing β-globin mRNA occurs soon after its export into the cytoplasm, with a half-life of <1 min; the remainder is degraded with a half-life of >12 h, similar to the half-life of normal PTC-free β-globin mRNA, indicating that it had evaded NMD. Importantly, NMD does not occur within the nucleoplasm, thus countering the long-debated idea of nuclear degradation of PTC-containing transcripts. We provide a spatial and temporal model for the biphasic decay of NMD targets.
Collapse
Affiliation(s)
- Tatjana Trcek
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Hanae Sato
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Robert H. Singer
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Lynne E. Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
30
|
Yamashita A. Role of SMG-1-mediated Upf1 phosphorylation in mammalian nonsense-mediated mRNA decay. Genes Cells 2013; 18:161-75. [DOI: 10.1111/gtc.12033] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/06/2012] [Indexed: 12/14/2022]
|
31
|
Abstract
The interplay of translation and mRNA turnover has helped unveil how the regulation of gene expression is a continuum in which events that occur during the birth of a transcript in the nucleus can have profound effects on subsequent steps in the cytoplasm. Exemplifying this continuum is nonsense-mediated mRNA decay (NMD), the process wherein a premature stop codon affects both translation and mRNA decay. Studies of NMD helped lead us to the therapeutic concept of treating a subset of patients suffering from multiple genetic disorders due to nonsense mutations with a single small-molecule drug that modulates the translation termination process at a premature nonsense codon. Here we review both translation termination and NMD, and our subsequent efforts over the past 15 years that led to the identification, characterization, and clinical testing of ataluren, a new therapeutic with the potential to treat a broad range of genetic disorders due to nonsense mutations.
Collapse
Affiliation(s)
- Stuart W Peltz
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
Although most mRNA molecules derived from protein-coding genes are destined to be translated into functional polypeptides, some are eliminated by cellular quality control pathways that collectively perform the task of mRNA surveillance. In the nonsense-mediated decay (NMD) pathway premature translation termination promotes the recruitment of a set of factors that destabilize a targeted mRNA. The same factors also seem to have key roles in repressing the translation of the mRNA, dissociating its terminating ribosome and messenger ribonucleoproteins (mRNPs), promoting the degradation of its truncated polypeptide product and possibly even feeding back to the site of transcription to interfere with splicing of the primary transcript.
Collapse
|
33
|
Shigeoka T, Kato S, Kawaichi M, Ishida Y. Evidence that the Upf1-related molecular motor scans the 3'-UTR to ensure mRNA integrity. Nucleic Acids Res 2012; 40:6887-97. [PMID: 22554850 PMCID: PMC3413143 DOI: 10.1093/nar/gks344] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Upf1 is a highly conserved RNA helicase essential for nonsense-mediated mRNA decay (NMD), an mRNA quality-control mechanism that degrades aberrant mRNAs harboring premature termination codons (PTCs). For the activation of NMD, UPF1 interacts first with a translation–terminating ribosome and then with a downstream exon–junction complex (EJC), which is deposited at exon–exon junctions during splicing. Although the helicase activity of Upf1 is indispensable for NMD, its roles and substrates have yet to be fully elucidated. Here we show that stable RNA secondary structures between a PTC and a downstream exon–exon junction increase the levels of potential NMD substrates. We also demonstrate that a stable secondary structure within the 3′-untranslated region (UTR) induces the binding of Upf1 to mRNA in a translation-dependent manner and that the Upf1-related molecules are accumulated at the 5′-side of such a structure. Furthermore, we present evidence that the helicase activity of Upf1 is used to bridge the spatial gap between a translation–termination codon and a downstream exon–exon junction for the activation of NMD. Based on these findings, we propose a model that the Upf1-related molecular motor scans the 3′-UTR in the 5′-to-3′ direction for the mRNA-binding factors including EJCs to ensure mRNA integrity.
Collapse
Affiliation(s)
- Toshiaki Shigeoka
- Division of Gene Function in Animals, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan
| | | | | | | |
Collapse
|
34
|
Reid DW, Nicchitta CV. The enduring enigma of nuclear translation. J Cell Biol 2012; 197:7-9. [PMID: 22472436 PMCID: PMC3317809 DOI: 10.1083/jcb.201202140] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/05/2012] [Indexed: 11/22/2022] Open
Abstract
Although the physical separation of transcription in the nucleus and translation in the cytoplasm has presided as a fundamental tenet of cell biology for decades, it has not done so without recurring challenges and contentious debate. In this issue, David et al. (2012. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201112145) rekindle the controversy by providing convincing experimental evidence for nuclear translation.
Collapse
Affiliation(s)
- David W. Reid
- Department of Biochemistry and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Christopher V. Nicchitta
- Department of Biochemistry and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
35
|
Jakobson M, Lintulahti A, Arumäe U. mRNA for N-Bak, a neuron-specific BH3-only splice isoform of Bak, escapes nonsense-mediated decay and is translationally repressed in the neurons. Cell Death Dis 2012; 3:e269. [PMID: 22297299 PMCID: PMC3288346 DOI: 10.1038/cddis.2012.4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
mRNA for neuronal Bak (N-Bak), a splice variant of pro-apoptotic Bcl-2 family member Bak is expressed in the neurons. Surprisingly the endogeneous N-Bak protein cannot be demonstrated in the neurons, although the antibodies recognize N-Bak protein from in vitro translation or transiently transfected cells. As N-Bak mRNA contains premature termination codon (PTC) at 89 nucleotides upstream from the last exon–exon junction, it could be degraded by nonsense-mediated decay (NMD) during the pioneer round of translation thus explaining the absence of the protein. We show here that the endogeneous neuronal N-Bak mRNA is not the NMD substrate, as it is not accumulating by cycloheximide treatment, it has a long lifetime, and even prevention of PTC by interfering with the alternative splicing did not lead to translation of the Bak mRNA. N-Bak protein is also not revealed by proteasome inhibitors. Our data suggest strong translational arrest of N-Bak mRNA in the neurons. We show that this arrest is partially mediated by 5′-untranslated region of Bak mRNA and it is not released during mitochondrial apoptosis.
Collapse
Affiliation(s)
- M Jakobson
- Institute of Biotechnology, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | |
Collapse
|
36
|
Mühlemann O, Jensen TH. mRNP quality control goes regulatory. Trends Genet 2012; 28:70-7. [DOI: 10.1016/j.tig.2011.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/04/2011] [Accepted: 11/08/2011] [Indexed: 01/19/2023]
|
37
|
Kervestin S, Li C, Buckingham R, Jacobson A. Testing the faux-UTR model for NMD: analysis of Upf1p and Pab1p competition for binding to eRF3/Sup35p. Biochimie 2012; 94:1560-71. [PMID: 22227378 DOI: 10.1016/j.biochi.2011.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that accelerates the degradation of mRNAs containing premature translation termination codons. This quality control pathway depends on the NMD-specific factors, Upf1p, Upf2p/Nmd2p, and Upf3p, as well as the two release factors, eRF1 and eRF3 (respectively designated Sup45p and Sup35p in yeast). NMD activation is also enabled by the absence of the poly(A)-binding protein, Pab1p, downstream of a termination event. Since Sup35p interacts with both Upf1p and Pab1p we considered the possibility that differential binding of the latter factors to Sup35p may be a critical determinant of NMD sensitivity for an mRNA. Here we describe three approaches to assess this hypothesis. First, we tethered fragments or mutant forms of Sup35p downstream of a premature termination codon in a mini-pgk1 nonsense-containing mRNA and showed that the inhibition of NMD by tethered Sup35p does not depend on the domain necessary for the recruitment of Pab1p. Second, we examined the Sup35p interaction properties of Upf1p and Pab1p in vitro and showed that these two proteins bind differentially to Sup35p. Finally, we examined competitive binding between the three proteins and observed that Upf1p inhibits Pab1p binding to Sup35p whereas the interaction between Upf1p and Sup35p is relatively unaffected by Pab1p. These data indicate that the binding of Upf1p and Pab1p to Sup35p may be more complex than anticipated and that NMD activation could involve more than just simple competition between these factors. We conclude that activation of NMD at a premature termination codon is not solely based on the absence of Pab1p and suggest that a specific recruitment step must commit Upf1p to the process and Upf1p-associated mRNAs to NMD.
Collapse
Affiliation(s)
- Stephanie Kervestin
- CNRS UPR9073 Associated with Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-chimique (IBPC) 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
38
|
Neu-Yilik G, Amthor B, Gehring NH, Bahri S, Paidassi H, Hentze MW, Kulozik AE. Mechanism of escape from nonsense-mediated mRNA decay of human beta-globin transcripts with nonsense mutations in the first exon. RNA (NEW YORK, N.Y.) 2011; 17:843-854. [PMID: 21389146 PMCID: PMC3078734 DOI: 10.1261/rna.2401811] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/31/2011] [Indexed: 05/30/2023]
Abstract
The degradation of nonsense-mutated β-globin mRNA by nonsense-mediated mRNA decay (NMD) limits the synthesis of C-terminally truncated dominant negative β-globin chains and thus protects the majority of heterozygotes from symptomatic β-thalassemia. β-globin mRNAs with nonsense mutations in the first exon are known to bypass NMD, although current mechanistic models predict that such mutations should activate NMD. A systematic analysis of this enigma reveals that (1) β-globin exon 1 is bisected by a sharp border that separates NMD-activating from NMD-bypassing nonsense mutations and (2) the ability to bypass NMD depends on the ability to reinitiate translation at a downstream start codon. The data presented here thus reconcile the current mechanistic understanding of NMD with the observed failure of a class of nonsense mutations to activate this important mRNA quality-control pathway. Furthermore, our data uncover a reason why the position of a nonsense mutation alone does not suffice to predict the fate of the affected mRNA and its effect on protein expression.
Collapse
Affiliation(s)
- Gabriele Neu-Yilik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Yamashita A, Izumi N, Kashima I, Ohnishi T, Saari B, Katsuhata Y, Muramatsu R, Morita T, Iwamatsu A, Hachiya T, Kurata R, Hirano H, Anderson P, Ohno S. SMG-8 and SMG-9, two novel subunits of the SMG-1 complex, regulate remodeling of the mRNA surveillance complex during nonsense-mediated mRNA decay. Genes Dev 2009; 23:1091-105. [PMID: 19417104 DOI: 10.1101/gad.1767209] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that detects and degrades mRNAs containing premature translation termination codons (PTCs). SMG-1 and Upf1 transiently form a surveillance complex termed "SURF" that includes eRF1 and eRF3 on post-spliced mRNAs during recognition of PTC. If an exon junction complex (EJC) exists downstream from the SURF complex, SMG-1 phosphorylates Upf1, the step that is a rate-limiting for NMD. We provide evidence of an association between the SURF complex and the ribosome in association with mRNPs, and we suggest that the SURF complex functions as a translation termination complex during NMD. We identified SMG-8 and SMG-9 as novel subunits of the SMG-1 complex. SMG-8 and SMG-9 suppress SMG-1 kinase activity in the isolated SMG-1 complex and are involved in NMD in both mammals and nematodes. SMG-8 recruits SMG-1 to the mRNA surveillance complex, and inactivation of SMG-8 induces accumulation of a ribosome:Upf1:eRF1:eRF3:EJC complex on mRNP, which physically bridges the ribosome and EJC through eRF1, eRF3, and Upf1. These results not only reveal the regulatory mechanism of SMG-1 kinase but also reveal the sequential remodeling of the ribosome:SURF complex to the predicted DECID (DECay InDucing) complex, a ribosome:SURF:EJC complex, as a mechanism of in vivo PTC discrimination.
Collapse
Affiliation(s)
- Akio Yamashita
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bhalla AD, Gudikote JP, Wang J, Chan WK, Chang YF, Olivas OR, Wilkinson MF. Nonsense codons trigger an RNA partitioning shift. J Biol Chem 2009; 284:4062-72. [PMID: 19091751 PMCID: PMC2640978 DOI: 10.1074/jbc.m805193200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/24/2008] [Indexed: 11/06/2022] Open
Abstract
T-cell receptor-beta (TCRbeta) genes naturally acquire premature termination codons (PTCs) as a result of programmed gene rearrangements. PTC-bearing TCRbeta transcripts are dramatically down-regulated to protect T-cells from the deleterious effects of the truncated proteins that would otherwise be produced. Here we provide evidence that two responses collaborate to elicit this dramatic down-regulation. One is rapid mRNA decay triggered by the nonsense-mediated decay (NMD) RNA surveillance pathway. We demonstrate that this occurs in highly purified nuclei lacking detectable levels of three different cytoplasmic markers, but containing an outer nuclear membrane marker, suggesting that decay occurs either in the nucleoplasm or at the outer nuclear membrane. The second response is a dramatic partitioning shift in the nuclear fraction-to-cytoplasmic fraction mRNA ratio that results in few TCRbeta transcripts escaping to the cytoplasmic fraction of cells. Analysis of TCRbeta mRNA kinetics after either transcriptional repression or induction suggested that this nonsense codon-induced partitioning shift (NIPS) response is not the result of cytoplasmic NMD but instead reflects retention of PTC(+) TCRbeta mRNA in the nuclear fraction of cells. We identified TCRbeta sequences crucial for NIPS but found that NIPS is not exclusively a property of TCRbeta transcripts, and we identified non-TCRbeta sequences that elicit NIPS. RNA interference experiments indicated that NIPS depends on the NMD factors UPF1 and eIF4AIII but not the NMD factor UPF3B. We propose that NIPS collaborates with NMD to retain and degrade a subset of PTC(+) transcripts at the outer nuclear membrane and/or within the nucleoplasm.
Collapse
MESH Headings
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Codon, Nonsense/genetics
- Codon, Nonsense/metabolism
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Down-Regulation/physiology
- Eukaryotic Initiation Factor-4A
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/physiology
- HeLa Cells
- Humans
- Kinetics
- Pol1 Transcription Initiation Complex Proteins/genetics
- Pol1 Transcription Initiation Complex Proteins/metabolism
- RNA Interference
- RNA Stability/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
Collapse
Affiliation(s)
- Angela D Bhalla
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Bloethner S, Mould A, Stark M, Hayward NK. Identification of ARHGEF17, DENND2D, FGFR3, and RB1 mutations in melanoma by inhibition of nonsense-mediated mRNA decay. Genes Chromosomes Cancer 2008; 47:1076-85. [PMID: 18677770 DOI: 10.1002/gcc.20598] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gene identification by nonsense-mediated mRNA decay inhibition (GINI) has proven to be a strategy for genome-wide discovery of genes containing inactivating mutations in colon and prostate cancers. Here, we present the first study of inhibition of the nonsense-mediated mRNA decay (NMD) pathway in melanoma. We used a combination of emetine and actinomycin D treatment to stabilize mRNAs containing premature termination codons (PTCs), followed by microarray analysis and sequencing to identify novel tumor suppressor genes (TSGs) in a panel of 12 melanoma cell lines. Stringent analysis of the array data was used to select 35 candidate genes for sequencing. Of these, 4 (11%) were found to carry PTCs, including ARHGEF17, DENND2D, FGFR3, and RB1. While RB1 mutations have previously been described in melanoma, the other three genes represent potentially novel melanoma; TSGs. ARHGEF17 showed a G1865A mutation leading to W622X in a cell line derived from a mucosal melanoma; in RB1 a C1411T base change resulting in Q471X was discovered in a cell line derived from an acral melanoma; and the FGFR3 and DENND2D genes had intronic insertions leading to PTCs in cell lines derived from superficially spreading melanomas. We conclude that although the false positive rate is high, most likely due to the lack of DNA mismatch repair gene defects, the GINI protocol is one approach to discover novel TSGs in melanoma.
Collapse
Affiliation(s)
- Sandra Bloethner
- Queensland Institute of Medical Research, 300 Herston Rd, Herston, QLD 4029, Australia
| | | | | | | |
Collapse
|
42
|
The regulation of PTC containing transcripts of the human NDUFS4 gene of complex I of respiratory chain and the impact of pathological mutations. Biochimie 2008; 90:1452-60. [DOI: 10.1016/j.biochi.2008.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 04/25/2008] [Indexed: 11/18/2022]
|
43
|
Matsuda D, Sato H, Maquat LE. Chapter 9. Studying nonsense-mediated mRNA decay in mammalian cells. Methods Enzymol 2008; 449:177-201. [PMID: 19215759 DOI: 10.1016/s0076-6879(08)02409-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nonsense-mediated decay (NMD) in eukaryotic cells largely functions as a quality control mechanism by degrading faulty mRNAs that terminate translation prematurely. In recent years it has become evident that NMD also eliminates a subset of naturally occurring mRNA during proper gene expression. The mechanism of NMD in mammalian cells can be distinguished from the mechanism in, for example, Saccharomyces cerevisiae or Caenorhabditis elegans, by its apparent restriction to newly synthesized mRNA during a pioneer round of translation. This dependence can be explained by the need for at least one exon-exon junction complex (EJC) that is deposited on newly synthesized mRNA during the process of pre-mRNA splicing. Additionally, mammalian-cell NMD is promoted by the cap-binding protein heterodimer CBP80/20 that also typifies newly synthesized mRNA. When translation terminates sufficiently upstream of an EJC, the NMD factor Up-frameshift (Upf)1 is thought to join the stable EJC constituent NMD factors Upf2 and Upf3 or Upf3X (also called Upf3a or Upf3b, respectively), and undergo phosphorylation. Phosphorylation appears to trigger translational repression and mRNA decay. Although there are established rules for what generally defines an NMD target in mammalian cells, as with any rule there are exceptions and, thus, the need to experimentally verify individual mRNAs as bona fide targets of NMD. This chapter provides guidelines and protocols for how to define NMD targets using cultured mammalian cells.
Collapse
Affiliation(s)
- Daiki Matsuda
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | | | | |
Collapse
|
44
|
Boutz PL, Stoilov P, Li Q, Lin CH, Chawla G, Ostrow K, Shiue L, Ares M, Black DL. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev 2007; 21:1636-52. [PMID: 17606642 PMCID: PMC1899473 DOI: 10.1101/gad.1558107] [Citation(s) in RCA: 414] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 05/16/2007] [Indexed: 02/06/2023]
Abstract
Many metazoan gene transcripts exhibit neuron-specific splicing patterns, but the developmental control of these splicing events is poorly understood. We show that the splicing of a large group of exons is reprogrammed during neuronal development by a switch in expression between two highly similar polypyrimidine tract-binding proteins, PTB and nPTB (neural PTB). PTB is a well-studied regulator of alternative splicing, but nPTB is a closely related paralog whose functional relationship to PTB is unknown. In the brain, nPTB protein is specifically expressed in post-mitotic neurons, whereas PTB is restricted to neuronal precursor cells (NPC), glia, and other nonneuronal cells. Interestingly, nPTB mRNA transcripts are found in NPCs and other nonneuronal cells, but in these cells nPTB protein expression is repressed. This repression is due in part to PTB-induced alternative splicing of nPTB mRNA, leading to nonsense-mediated decay (NMD). However, we find that even properly spliced mRNA fails to express nPTB protein when PTB is present, indicating contributions from additional post-transcriptional mechanisms. The PTB-controlled repression of nPTB results in a mutually exclusive pattern of expression in the brain, where the loss of PTB in maturing neurons allows the synthesis of nPTB in these cells. To examine the consequences of this switch, we used splicing-sensitive microarrays to identify different sets of exons regulated by PTB, nPTB, or both proteins. During neuronal differentiation, the splicing of these exon sets is altered as predicted from the observed changes in PTB and nPTB expression. These data show that the post-transcriptional switch from PTB to nPTB controls a widespread alternative splicing program during neuronal development.
Collapse
Affiliation(s)
- Paul L. Boutz
- Department of Microbiology, Immunology, and Molecular Genetics, 6-762 MacDonald Research Laboratories, Los Angeles, California 90095, USA
| | - Peter Stoilov
- Department of Microbiology, Immunology, and Molecular Genetics, 6-762 MacDonald Research Laboratories, Los Angeles, California 90095, USA
| | - Qin Li
- Howard Hughes Medical Institute, 6-762 MacDonald Research Laboratories, Los Angeles, California 90095, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, 6-762 MacDonald Research Laboratories, Los Angeles, California 90095, USA
| | - Geetanjali Chawla
- Howard Hughes Medical Institute, 6-762 MacDonald Research Laboratories, Los Angeles, California 90095, USA
| | - Kristin Ostrow
- Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Lily Shiue
- Sinsheimer Laboratories, Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Manuel Ares
- Sinsheimer Laboratories, Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Douglas L. Black
- Department of Microbiology, Immunology, and Molecular Genetics, 6-762 MacDonald Research Laboratories, Los Angeles, California 90095, USA
- Howard Hughes Medical Institute, 6-762 MacDonald Research Laboratories, Los Angeles, California 90095, USA
| |
Collapse
|
45
|
Morris C, Wittmann J, Jäck HM, Jalinot P. Human INT6/eIF3e is required for nonsense-mediated mRNA decay. EMBO Rep 2007; 8:596-602. [PMID: 17468741 PMCID: PMC2002529 DOI: 10.1038/sj.embor.7400955] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 02/20/2007] [Accepted: 03/01/2007] [Indexed: 11/08/2022] Open
Abstract
The mammalian integration site 6 (INT6) protein has been implicated in breast carcinogenesis and characterized as the eIF3e non-core subunit of the translation initiation factor eIF3, but its role in this complex is not known. Here, we show that INT6 knockdown by RNA interference strongly inhibits nonsense-mediated messenger RNA decay (NMD), which triggers degradation of mRNAs with premature stop codons. In contrast to the eIF3b core subunit, which is required for both NMD and general translation, INT6 is only necessary for the former process. Consistent with such a role, immunoprecipitation experiments showed that INT6 co-purifies with CBP80 and the NMD factor UPF2. In addition, several transcripts known to be upregulated by UPF1 or UPF2 depletion were also found to be sensitive to INT6 suppression. From these observations, we propose that INT6, in association with eIF3, is involved in routing specific mRNAs for degradation.
Collapse
Affiliation(s)
- Christelle Morris
- LBMC, UMR5239 CNRS-ENS de Lyon, IFR 128 Biosciences Lyon Gerland, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | - Jürgen Wittmann
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Gluckstrasse 6, D-91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Gluckstrasse 6, D-91054 Erlangen, Germany
| | - Pierre Jalinot
- LBMC, UMR5239 CNRS-ENS de Lyon, IFR 128 Biosciences Lyon Gerland, 46 Allée d'Italie, 69364 Lyon cedex 07, France
- Tel: +33 4 7272 8563; Fax: +33 4 7272 8080; E-mail:
| |
Collapse
|
46
|
Chan WK, Huang L, Gudikote JP, Chang YF, Imam JS, MacLean JA, Wilkinson MF. An alternative branch of the nonsense-mediated decay pathway. EMBO J 2007; 26:1820-30. [PMID: 17363904 PMCID: PMC1847659 DOI: 10.1038/sj.emboj.7601628] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 02/05/2007] [Indexed: 11/08/2022] Open
Abstract
The T-cell receptor (TCR) locus undergoes programmed rearrangements that frequently generate premature termination codons (PTCs). The PTC-bearing transcripts derived from such nonproductively rearranged genes are dramatically downregulated by the nonsense-mediated decay (NMD) pathway. Here, we show that depletion of the NMD factor UPF3b does not impair TCRbeta NMD, thereby distinguishing it from classical NMD. Depletion of the related factor UPF3a, by itself or in combination with UPF3b, also has no effect on TCRbeta NMD. Mapping experiments revealed the identity of TCRbeta sequences that elicit a switch to UPF3b dependence. This regulation is not a peculiarity of TCRbeta, as we identified many wild-type genes, including one essential for NMD, that transcribe NMD-targeted mRNAs whose downregulation is little or not affected by UPF3a and UPF3b depletion. We propose that we have uncovered an alternative branch of the NMD pathway that not only degrades aberrant mRNAs but also regulates normal mRNAs, including one that participates in a negative feedback loop controlling the magnitude of NMD.
Collapse
MESH Headings
- Animals
- Clone Cells
- Codon, Nonsense/genetics
- Codon, Nonsense/metabolism
- Gene Expression Regulation
- HeLa Cells
- Humans
- Introns/genetics
- Mice
- RNA Helicases
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- RNA-Binding Proteins/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Sequence Deletion
- Trans-Activators/metabolism
- VDJ Exons/genetics
Collapse
Affiliation(s)
- Wai-Kin Chan
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lulu Huang
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jayanthi P Gudikote
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yao-Fu Chang
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Saadi Imam
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James A MacLean
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miles F Wilkinson
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Unit 1000, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA. Tel.: +1 713 563 3215; Fax: +1 713 563 3375; E-mail:
| |
Collapse
|
47
|
Sharma A, Masri J, Jo OD, Bernath A, Martin J, Funk A, Gera J. Protein kinase C regulates internal initiation of translation of the GATA-4 mRNA following vasopressin-induced hypertrophy of cardiac myocytes. J Biol Chem 2007; 282:9505-9516. [PMID: 17284439 DOI: 10.1074/jbc.m608874200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
GATA-4 is a key member of the GATA family of transcription factors involved in cardiac development and growth as well as in cardiac hypertrophy and heart failure. Our previous studies suggest that GATA-4 protein synthesis may be translationally regulated. We report here that the 518-nt long 5'-untranslated region (5'-UTR) of the GATA-4 mRNA, which is predicted to form stable secondary structures (-65 kcal/mol) such as to be inhibitory to cap-dependent initiation, confers efficient translation to monocistronic reporter mRNAs in cell-free extracts. Moreover, uncapped GATA-4 5'-UTR containing monocistronic reporter mRNAs continue to be well translated while capped reporters are insensitive to the inhibition of initiation by cap-analog, suggesting a cap-independent mechanism of initiation. Utilizing a dicistronic luciferase mRNA reporter containing the GATA-4 5'-UTR within the intercistronic region, we demonstrate that this leader sequence confers functional internal ribosome entry site (IRES) activity. The activity of the GATA-4 IRES is unaffected in trans-differentiating P19CL6 cells, however, is strongly stimulated immediately following arginine-vasopressin exposure of H9c2 ventricular myocytes. IRES activity is then maintained at submaximal levels during hypertrophic growth of these cells. Supraphysiological Ca(2+) levels diminished stimulation of IRES activity immediately following exposure to vasopressin and inhibition of protein kinase C activity utilizing a pseudosubstrate peptide sequence blocked IRES activity during hypertrophy. Thus, our data suggest a mechanism for GATA-4 protein synthesis under conditions of reduced global cap-dependent translation, which is maintained at a submaximal level during hypertrophic growth and point to the regulation of GATA-4 IRES activity by sarco(ER)-reticular Ca(2+) stores and PKC.
Collapse
Affiliation(s)
- Anushree Sharma
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Janine Masri
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Oak D Jo
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Andrew Bernath
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Jheralyn Martin
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Alexander Funk
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Joseph Gera
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90048.
| |
Collapse
|
48
|
Baker KE, Parker R. Conventional 3' end formation is not required for NMD substrate recognition in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2006; 12:1441-5. [PMID: 16809819 PMCID: PMC1524890 DOI: 10.1261/rna.92706] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The recognition and rapid degradation of mRNAs with premature translation termination codons by the nonsense-mediated pathway of mRNA decay is an important RNA quality control system in eukaryotes. In mammals, the efficient recognition of these mRNAs is dependent upon exon junction complex proteins deposited on the RNA during pre-mRNA splicing. In yeast, splicing does not play a role in recognition of mRNAs that terminate translation prematurely, raising the possibility that proteins deposited during alternative pre-mRNA processing events such as 3' end formation might contribute to the distinction between normal and premature translation termination. We have utilized mRNAs with a 3' poly(A) tail generated by ribozyme cleavage to demonstrate that the normal process of 3' end cleavage and polyadenylation is not required for mRNA stability or the detection of a premature stop codon. Thus, in yeast, the distinction between normal and premature translation termination events is independent of both splicing and conventional 3' end formation.
Collapse
|
49
|
Amrani N, Sachs MS, Jacobson A. Early nonsense: mRNA decay solves a translational problem. Nat Rev Mol Cell Biol 2006; 7:415-25. [PMID: 16723977 DOI: 10.1038/nrm1942] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene expression is highly accurate and rarely generates defective proteins. Several mechanisms ensure this fidelity, including specialized surveillance pathways that rid the cell of mRNAs that are incompletely processed or that lack complete open reading frames. One such mechanism, nonsense-mediated mRNA decay, is triggered when ribosomes encounter a premature translation-termination--or nonsense--codon. New evidence indicates that the specialized factors that are recruited for this process not only promote rapid mRNA degradation, but are also required to resolve a poorly dissociable termination complex.
Collapse
Affiliation(s)
- Nadia Amrani
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0122, USA
| | | | | |
Collapse
|
50
|
Holbrook JA, Neu-Yilik G, Gehring NH, Kulozik AE, Hentze MW. Internal ribosome entry sequence-mediated translation initiation triggers nonsense-mediated decay. EMBO Rep 2006; 7:722-6. [PMID: 16799467 PMCID: PMC1500827 DOI: 10.1038/sj.embor.7400721] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 05/08/2006] [Accepted: 05/10/2006] [Indexed: 11/09/2022] Open
Abstract
In eukaryotes, a surveillance pathway known as nonsense-mediated decay (NMD) regulates the abundance of messenger RNAs containing premature termination codons (PTCs). In mammalian cells, it has been asserted that the NMD-relevant first round of translation is special and involves initiation by a specific protein heterodimer, the nuclear cap-binding complex (CBC). Arguing against a requirement for CBC-mediated translation initiation, we show that ribosomal recruitment by the internal ribosomal entry sequence of the encephalomyocarditis virus triggers NMD of a PTC-containing transcript under conditions in which ribosome entry from the cap is prohibited. These data generalize the previous model and suggest that translation per se, irrespective of how it is initiated, can mediate NMD.
Collapse
Affiliation(s)
- Jill A Holbrook
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
| | - Gabriele Neu-Yilik
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
| | - Niels H Gehring
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
| | - Andreas E Kulozik
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Tel: +49 6221 56 2303; Fax: +49 6221 56 4559; E-mail:
| | - Matthias W Hentze
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Gene Expression Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
- Tel: +49 6221 387 501; Fax: +49 6221 387 518; E-mail:
| |
Collapse
|