1
|
Lindenboim L, Zohar H, Gundersen GG, Worman HJ, Stein R. LINC complex protein nesprin-2 has pro-apoptotic activity via Bcl-2 family proteins. Cell Death Discov 2024; 10:29. [PMID: 38225256 PMCID: PMC10789774 DOI: 10.1038/s41420-023-01763-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024] Open
Abstract
The apoptotic intrinsic pathway is initiated by perforation of the mitochondrial outer membrane by the effector pro-apoptotic proteins of the Bcl-2 family, Bax and Bak. Bax and Bak need to be activated, a process facilitated by the action of BH3-only pro-apoptotic members of the Bcl-2 family. The latter either directly activates the effector proteins or antagonizes the action of pro-survival Bcl-2 family members such as Bcl-xL. The nuclear envelope is a known target of the apoptotic machinery; however, it may also act as mediator of apoptosis. We showed previously that the nuclear envelope protein nesprin-2, a component of the linker of nucleoskeleton and cytoskeleton (LINC) complex, can bind to Bax in close proximity to the mitochondria and that the binding increases in apoptotic cells. We now show that depleting nesprin-2 inhibits the apoptotic mitochondrial pathway as measured by Bax and Bak activation and cytochrome c release. This survival effect was Bcl-xL-dependent. Nesprin-2 depletion also inhibited spontaneous exposure of the N-terminus of Bak in cells lacking Bcl-xL and increased the presence of Bcl-xL and Bax in the mitochondria. These results indicate that nesprin-2 promotes Bak activation and regulates mitochondrial translocation/retrotranslocation of Bcl-2 family proteins. Our findings demonstrate a new apoptotic pathway whereby the nuclear envelope, via nesprin-2, regulates apoptosis.
Collapse
Affiliation(s)
- Liora Lindenboim
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Hila Zohar
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Howard J Worman
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Reuven Stein
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
2
|
Gitego N, Agianian B, Mak OW, Kumar Mv V, Cheng EH, Gavathiotis E. Chemical modulation of cytosolic BAX homodimer potentiates BAX activation and apoptosis. Nat Commun 2023; 14:8381. [PMID: 38104127 PMCID: PMC10725471 DOI: 10.1038/s41467-023-44084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
The BCL-2 family protein BAX is a major regulator of physiological and pathological cell death. BAX predominantly resides in the cytosol in a quiescent state and upon stress, it undergoes conformational activation and mitochondrial translocation leading to mitochondrial outer membrane permeabilization, a critical event in apoptosis execution. Previous studies reported two inactive conformations of cytosolic BAX, a monomer and a dimer, however, it remains unclear how they regulate BAX. Here we show that, surprisingly, cancer cell lines express cytosolic inactive BAX dimers and/or monomers. Expression of inactive dimers, results in reduced BAX activation, translocation and apoptosis upon pro-apoptotic drug treatments. Using the inactive BAX dimer structure and a pharmacophore-based drug screen, we identify a small-molecule modulator, BDM19 that binds and activates cytosolic BAX dimers and prompts cells to apoptosis either alone or in combination with BCL-2/BCL-XL inhibitor Navitoclax. Our findings underscore the role of the cytosolic inactive BAX dimer in resistance to apoptosis and demonstrate a strategy to potentiate BAX-mediated apoptosis.
Collapse
Affiliation(s)
- Nadege Gitego
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bogos Agianian
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Oi Wei Mak
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vasantha Kumar Mv
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Chen Y, Gelles JD, Mohammed JN, Chipuk JE. An optimized protocol for expression and purification of monomeric full-length BAX protein for functional interrogations. Front Cell Dev Biol 2023; 11:1322816. [PMID: 38143925 PMCID: PMC10748421 DOI: 10.3389/fcell.2023.1322816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Diverse developmental signals and pro-death stresses converge on the regulation of the mitochondrial pathway of apoptosis. BAX, a proapoptotic BCL-2 effector, directly forms proteolipid pores in the outer mitochondrial membrane to activate the mitochondrial pathway of apoptosis. BAX is a viable pharmacological target for various human diseases, and increasing efforts have been made to study the molecular regulation of BAX while identifying small molecules selectively targeting BAX. However, generating large quantities of monomeric and functionally competent BAX has been challenging due to its aggregation-prone nature. Additionally, there is a lack of detailed and instructional protocols available for investigators who are not already familiar with recombinant BAX production. Here, we present a comprehensive protocol for expressing, purifying, and storing functional monomeric recombinant BAX protein. We use an intein-chitin binding domain-tagged BAX-expressing construct and employ a two-step chromatography strategy to capture and purify BAX. We also provide examples of standard assays to observe BAX activation, and highlight the best practices for handling and storing BAX to effectively preserve its quality, shelf life, and function.
Collapse
Affiliation(s)
- Yiyang Chen
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, New York,NY, United States
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jesse D. Gelles
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, New York,NY, United States
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jarvier N. Mohammed
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, New York,NY, United States
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jerry Edward Chipuk
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, New York,NY, United States
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Matsuyama M, Ortega JT, Fedorov Y, Scott-McKean J, Muller-Greven J, Buck M, Adams D, Jastrzebska B, Greenlee W, Matsuyama S. Development of novel cytoprotective small compounds inhibiting mitochondria-dependent cell death. iScience 2023; 26:107916. [PMID: 37841588 PMCID: PMC10568349 DOI: 10.1016/j.isci.2023.107916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
We identified cytoprotective small molecules (CSMs) by a cell-based high-throughput screening of Bax inhibitors. Through a medicinal chemistry program, M109S was developed, which is orally bioactive and penetrates the blood-brain/retina barriers. M109S protected retinal cells in ocular disease mouse models. M109S directly interacted with Bax and inhibited the conformational change and mitochondrial translocation of Bax. M109S inhibited ABT-737-induced apoptosis both in Bax-only and Bak-only mouse embryonic fibroblasts. M109S also inhibited apoptosis induced by staurosporine, etoposide, and obatoclax. M109S decreased maximal mitochondrial oxygen consumption rate and reactive oxygen species production, whereas it increased glycolysis. These effects on cellular metabolism may contribute to the cytoprotective activity of M109S. M109S is a novel small molecule protecting cells from mitochondria-dependent apoptosis both in vitro and in vivo. M109S has the potential to become a research tool for studying cell death mechanisms and to develop therapeutics targeting mitochondria-dependent cell death pathway.
Collapse
Affiliation(s)
- Mieko Matsuyama
- Department of Ophthalmology and Visual Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joseph T. Ortega
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yuri Fedorov
- Department of Genetics and Genome Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jonah Scott-McKean
- Department of Ophthalmology and Visual Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Macromolecular Science and Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeannie Muller-Greven
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Drew Adams
- Department of Genetics and Genome Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Shigemi Matsuyama
- Department of Ophthalmology and Visual Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Chen Y, Gelles JD, Mohammed JN, Chipuk JE. An optimized high-yield protocol for expression and purification of monomeric full-length BAX protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562589. [PMID: 37905126 PMCID: PMC10614868 DOI: 10.1101/2023.10.16.562589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Diverse developmental signals and pro-death stresses converge on regulation of the mitochondrial pathway of apoptosis. BAX, a pro-apoptotic BCL-2 effector, directly forms proteolipid pores in the outer mitochondrial member to activate the mitochondrial pathway of apoptosis. BAX is a viable pharmacological target for various human diseases, and increasing efforts have been made to study the molecular regulation of BAX and identify small molecules selectively targeting BAX. However, generating large quantities of monomeric and functionally-competent BAX has been challenging due to its aggregation-prone nature. Additionally, there is a lack of detailed and instructional protocols available for investigators who are not already familiar with recombinant BAX production. Here, we present a comprehensive high-yield protocol for expressing, purifying, and storing functional recombinant BAX protein. We utilize an intein-tagged BAX construct and employ a two-step chromatography strategy to capture and purify BAX, and provide example standard assays to observe BAX activation. We also highlight best practices for handling and storing BAX to effectively preserve its quality, shelf-life, and function.
Collapse
Affiliation(s)
- Yiyang Chen
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jesse D. Gelles
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jarvier N. Mohammed
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jerry Edward Chipuk
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
6
|
Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol 2023; 24:732-748. [PMID: 37438560 DOI: 10.1038/s41580-023-00629-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
The proteins of the BCL-2 family are key regulators of mitochondrial apoptosis, acting as either promoters or inhibitors of cell death. The functional interplay and balance between the opposing BCL-2 family members control permeabilization of the outer mitochondrial membrane, leading to the release of activators of the caspase cascade into the cytosol and ultimately resulting in cell death. Despite considerable research, our knowledge about the mechanisms of the BCL-2 family of proteins remains insufficient, which complicates cell fate predictions and does not allow us to fully exploit these proteins as targets for drug discovery. Detailed understanding of the formation and molecular architecture of the apoptotic pore in the outer mitochondrial membrane remains a holy grail in the field, but new studies allow us to begin constructing a structural model of its arrangement. Recent literature has also revealed unexpected activities for several BCL-2 family members that challenge established concepts of how they regulate mitochondrial permeabilization. In this Review, we revisit the most important advances in the field and integrate them into a new structure-function-based classification of the BCL-2 family members that intends to provide a comprehensive model for BCL-2 action in apoptosis. We close this Review by discussing the potential of drugging the BCL-2 family in diseases characterized by aberrant apoptosis.
Collapse
Affiliation(s)
- Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Ana J Garcia-Saez
- Membrane Biophysics, Institute of Genetics, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
7
|
Wolf P, Schoeniger A, Edlich F. Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119317. [PMID: 35752202 DOI: 10.1016/j.bbamcr.2022.119317] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/02/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
In multicellular organisms the regulated cell death apoptosis is critically important for both ontogeny and homeostasis. Mitochondria are indispensable for stress-induced apoptosis. The BCL-2 protein family controls mitochondrial apoptosis and initiates cell death through the pro-apoptotic activities of BAX and BAK at the outer mitochondrial membrane (OMM). Cellular survival is ensured by the retrotranslocation of mitochondrial BAX and BAK into the cytosol by anti-apoptotic BCL-2 proteins. BAX/BAK-dependent OMM permeabilization releases the mitochondrial cytochrome c (cyt c), which initiates activation of caspase-9. The caspase cascade leads to cell shrinkage, plasma membrane blebbing, chromatin condensation, and apoptotic body formation. Although it is clear that ultimately complexes of active BAX and BAK commit the cell to apoptosis, the nature of these complexes is still enigmatic. Excessive research has described a range of complexes, varying from a few molecules to several 10,000, in different systems. BAX/BAK complexes potentially form ring-like structures that could expose the inner mitochondrial membrane. It has been suggested that these pores allow the efflux of small proteins and even mitochondrial DNA. Here we summarize the current state of knowledge for mitochondrial BAX/BAK complexes and the interactions between these proteins and the membrane.
Collapse
Affiliation(s)
- Philipp Wolf
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Axel Schoeniger
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Frank Edlich
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
8
|
Robin AY, Miller MS, Iyer S, Shi MX, Wardak AZ, Lio D, Smith NA, Smith BJ, Birkinshaw RW, Czabotar PE, Kluck RM, Colman PM. Structure of the BAK-activating antibody 7D10 bound to BAK reveals an unexpected role for the α1-α2 loop in BAK activation. Cell Death Differ 2022; 29:1757-1768. [PMID: 35279694 PMCID: PMC9433411 DOI: 10.1038/s41418-022-00961-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/08/2022] Open
Abstract
Pro-apoptotic BAK and BAX are activated by BH3-only proteins to permeabilise the outer mitochondrial membrane. The antibody 7D10 also activates BAK on mitochondria and its epitope has previously been mapped to BAK residues in the loop connecting helices α1 and α2 of BAK. A crystal structure of the complex between the Fv fragment of 7D10 and the BAK mutant L100A suggests a possible mechanism of activation involving the α1-α2 loop residue M60. M60 mutants of BAK have reduced stability and elevated sensitivity to activation by BID, illustrating that M60, through its contacts with residues in helices α1, α5 and α6, is a linchpin stabilising the inert, monomeric structure of BAK. Our data demonstrate that BAK's α1-α2 loop is not a passive covalent connector between secondary structure elements, but a direct restraint on BAK's activation.
Collapse
Affiliation(s)
- Adeline Y Robin
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Michelle S Miller
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Sweta Iyer
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Melissa X Shi
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Ahmad Z Wardak
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Daisy Lio
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Nicholas A Smith
- Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Brian J Smith
- Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Richard W Birkinshaw
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Peter E Czabotar
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Ruth M Kluck
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
| | - Peter M Colman
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
9
|
Guedes JP, Baptista V, Santos-Pereira C, Sousa MJ, Manon S, Chaves SR, Côrte-Real M. Acetic acid triggers cytochrome c release in yeast heterologously expressing human Bax. Apoptosis 2022; 27:368-381. [PMID: 35362903 DOI: 10.1007/s10495-022-01717-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2022] [Indexed: 11/29/2022]
Abstract
Proteins of the Bcl-2 protein family, including pro-apoptotic Bax and anti-apoptotic Bcl-xL, are critical for mitochondrial-mediated apoptosis regulation. Since yeast lacks obvious orthologs of Bcl-2 family members, heterologous expression of these proteins has been used to investigate their molecular and functional aspects. Active Bax is involved in the formation of mitochondrial outer membrane pores, through which cytochrome c (cyt c) is released, triggering a cascade of downstream apoptotic events. However, when in its inactive form, Bax is largely cytosolic or weakly bound to mitochondria. Given the central role of Bax in apoptosis, studies aiming to understand its regulation are of paramount importance towards its exploitation as a therapeutic target. So far, studies taking advantage of heterologous expression of human Bax in yeast to unveil regulation of Bax activation have relied on the use of artificial mutated or mitochondrial tagged Bax for its activation, rather than the wild type Bax (Bax α). Here, we found that cell death could be triggered in yeast cells heterologoulsy expressing Bax α with concentrations of acetic acid that are not lethal to wild type cells. This was associated with Bax mitochondrial translocation and cyt c release, closely resembling the natural Bax function in the cellular context. This regulated cell death process was reverted by co-expression with Bcl-xL, but not with Bcl-xLΔC, and in the absence of Rim11p, the yeast ortholog of mammalian GSK3β. This novel system mimics human Bax α regulation by GSK3β and can therefore be used as a platform to uncover novel Bax regulators and explore its therapeutic modulation.
Collapse
Affiliation(s)
- Joana P Guedes
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Centro de Investigacíon Médica Aplicada (CIMA), Universidad de Navarra, 31008, Pamplona, Spain
| | - Vitória Baptista
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cátia Santos-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.,LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Stéphen Manon
- UMR 5095, CNRS, Université de Bordeaux, Campus Carreire, 1 Rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Susana R Chaves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
10
|
Gelles JD, Mohammed JN, Chen Y, Sebastian TM, Chipuk JE. A kinetic fluorescence polarization ligand assay for monitoring BAX early activation. CELL REPORTS METHODS 2022; 2:100174. [PMID: 35419554 PMCID: PMC9004659 DOI: 10.1016/j.crmeth.2022.100174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 12/23/2022]
Abstract
Developmental, homeostatic, and pharmacological pro-apoptotic signals converge by activating the BCL-2 family member BAX. Studies investigating molecular regulation of BAX are commonly limited to methodologies measuring endpoint phenotypes and do not assess activation of monomeric BAX. Here, we present FLAMBE, a fluorescence polarization ligand assay for monitoring BAX early activation, that measures activation-induced release of a peptide probe in real time. Using complementary parallel and tandem biochemical techniques, we validate, corroborate, and apply FLAMBE to a contemporary repertoire of BAX modulators, characterizing their contributions within the early steps of BAX activation. Additionally, we use FLAMBE to reveal that historically "dead" BAX mutants remain responsive to activation as quasi-functional monomers. We also identify data metrics for comparative analyses and demonstrate that FLAMBE data align with downstream functional observations. Collectively, FLAMBE advances our understanding of BAX activation and fills a methodological void for studying BAX with broad applications in cell biology and therapeutic development. MOTIVATION In vitro BAX activation studies are invaluable platforms for studying cellular and pharmacological modulators of apoptosis. The gold standard for studying BAX function relies on membrane permeabilization assays, which assess the pore-forming activity of oligomeric BAX. However, there are currently no rapid or kinetic assays to interrogate real-time activation of monomeric BAX in solution, thereby limiting any molecular insights that occur upstream of mitochondrial permeabilization. Furthermore, available methods to observe the activation of monomeric BAX suffer from low throughput and static observations. To address this methodological gap, we developed FLAMBE, a kinetic fluorescence polarization-based assay to measure monomeric BAX activation in solution via concomitant displacement of a labeled peptide. This approach maintains the benefits of rapid kinetic data generation in a low-cost microplate format without requiring specialized equipment or large quantities of protein. FLAMBE compliments available experimental strategies and expands the accessibility of investigators to monitor early steps within the BAX activation continuum.
Collapse
Affiliation(s)
- Jesse D. Gelles
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jarvier N. Mohammed
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Yiyang Chen
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Tara M. Sebastian
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jerry Edward Chipuk
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
11
|
Treatment of Glaucoma with Natural Products and Their Mechanism of Action: An Update. Nutrients 2022; 14:nu14030534. [PMID: 35276895 PMCID: PMC8840399 DOI: 10.3390/nu14030534] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is one of the leading causes of irreversible blindness. It is generally caused by increased intraocular pressure, which results in damage of the optic nerve and retinal ganglion cells, ultimately leading to visual field dysfunction. However, even with the use of intraocular pressure-lowering eye drops, the disease still progresses in some patients. In addition to mechanical and vascular dysfunctions of the eye, oxidative stress, neuroinflammation and excitotoxicity have also been implicated in the pathogenesis of glaucoma. Hence, the use of natural products with antioxidant and anti-inflammatory properties may represent an alternative approach for glaucoma treatment. The present review highlights recent preclinical and clinical studies on various natural products shown to possess neuroprotective properties for retinal ganglion cells, which thereby may be effective in the treatment of glaucoma. Intraocular pressure can be reduced by baicalein, forskolin, marijuana, ginsenoside, resveratrol and hesperidin. Alternatively, Ginkgo biloba, Lycium barbarum, Diospyros kaki, Tripterygium wilfordii, saffron, curcumin, caffeine, anthocyanin, coenzyme Q10 and vitamins B3 and D have shown neuroprotective effects on retinal ganglion cells via various mechanisms, especially antioxidant, anti-inflammatory and anti-apoptosis mechanisms. Extensive studies are still required in the future to ensure natural products' efficacy and safety to serve as an alternative therapy for glaucoma.
Collapse
|
12
|
Sandow JJ, Tan IK, Huang AS, Masaldan S, Bernardini JP, Wardak AZ, Birkinshaw RW, Ninnis RL, Liu Z, Dalseno D, Lio D, Infusini G, Czabotar PE, Webb AI, Dewson G. Dynamic reconfiguration of pro-apoptotic BAK on membranes. EMBO J 2021; 40:e107237. [PMID: 34523147 DOI: 10.15252/embj.2020107237] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
BAK and BAX, the effectors of intrinsic apoptosis, each undergo major reconfiguration to an activated conformer that self-associates to damage mitochondria and cause cell death. However, the dynamic structural mechanisms of this reconfiguration in the presence of a membrane have yet to be fully elucidated. To explore the metamorphosis of membrane-bound BAK, we employed hydrogen-deuterium exchange mass spectrometry (HDX-MS). The HDX-MS profile of BAK on liposomes comprising mitochondrial lipids was consistent with known solution structures of inactive BAK. Following activation, HDX-MS resolved major reconfigurations in BAK. Mutagenesis guided by our HDX-MS profiling revealed that the BCL-2 homology (BH) 4 domain maintains the inactive conformation of BAK, and disrupting this domain is sufficient for constitutive BAK activation. Moreover, the entire N-terminal region preceding the BAK oligomerisation domains became disordered post-activation and remained disordered in the activated oligomer. Removal of the disordered N-terminus did not impair, but rather slightly potentiated, BAK-mediated membrane permeabilisation of liposomes and mitochondria. Together, our HDX-MS analyses reveal new insights into the dynamic nature of BAK activation on a membrane, which may provide new opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Jarrod J Sandow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Iris Kl Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Alan S Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Shashank Masaldan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Jonathan P Bernardini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Ahmad Z Wardak
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Richard W Birkinshaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Robert L Ninnis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Ziyan Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Destiny Dalseno
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Daisy Lio
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Giuseppi Infusini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Grant Dewson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
13
|
BAX mitochondrial integration is regulated allosterically by its α1-α2 loop. Cell Death Differ 2021; 28:3270-3281. [PMID: 34135480 DOI: 10.1038/s41418-021-00815-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/08/2022] Open
Abstract
The conformational changes converting BAX from an inert cytosolic monomer into the homo-oligomers that permeabilize the mitochondrial outer membrane (MOM) are crucial steps toward apoptosis. Here, we have explored the potential role of the BAX α1-α2 loop in this process by three mutagenic approaches: replacing loop segments with cognate loop regions from closely related proteins, alanine scanning and analysis of BAX α1-α2 loop missense mutations observed in tumours. Responsiveness to a death signal, such as tBID, was reduced by mutations in the N-terminal but not C-terminal half of the loop. N-terminal loop variants, which were enriched in tumours, impaired MOM integration by allosterically reducing exposure of the BAX α9 transmembrane anchor. Most C-terminal loop variants reduced BAX stability, leading to increased BAX apoptotic function in some variants. Thus, our systematic mutagenesis suggests that the two halves of the α1-α2 loop have distinct functions. We show that the N-terminal half of the loop (its first nine residues) comprises an important allosteric regulator of BAX activation by setting the proportion of MOM-integrated BAX following a death signal. The enrichment of N-terminal loop mutations in tumours indicates that they may promote tumour cell survival and underscore the loop as a target for therapeutic manipulation of BAX function.
Collapse
|
14
|
Al Rahim M, Thatipamula S, Pasinetti GM, Hossain MA. Neuronal Pentraxin 1 Promotes Hypoxic-Ischemic Neuronal Injury by Impairing Mitochondrial Biogenesis via Interactions With Active Bax[6A7] and Mitochondrial Hexokinase II. ASN Neuro 2021; 13:17590914211012888. [PMID: 34098747 PMCID: PMC8191073 DOI: 10.1177/17590914211012888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial dysfunction is a key mechanism of cell death in hypoxic-ischemic brain injury. Neuronal pentraxin 1 (NP1) has been shown to play crucial roles in mitochondria-mediated neuronal death. However, the underlying mechanism(s) of NP1-induced mitochondrial dysfunction in hypoxia-ischemia (HI) remains obscure. Here, we report that NP1 induction following HI and its subsequent localization to mitochondria, leads to disruption of key regulatory proteins for mitochondrial biogenesis. Brain mitochondrial DNA (mtDNA) content and mtDNA-encoded subunit I of complex IV (mtCOX-1) expression was increased post-HI, but not the nuclear DNA-encoded subunit of complex II (nSDH-A). Up-regulation of mitochondrial proteins COXIV and HSP60 further supported enhanced mtDNA function. NP1 interaction with active Bax (Bax6A7) was increased in the brain after HI and in oxygen-glucose deprivation (OGD)-induced neuronal cultures. Importantly, NP1 colocalized with mitochondrial hexokinase II (mtHKII) following OGD leading to HKII dissociation from mitochondria. Knockdown of NP1 or SB216763, a GSK-3 inhibitor, prevented OGD-induced mtHKII dissociation and cellular ATP decrease. NP1 also modulated the expression of mitochondrial transcription factor A (Tfam) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), regulators of mitochondrial biogenesis, following HI. Together, we reveal crucial roles of NP1 in mitochondrial biogenesis involving interactions with Bax[6A7] and mtHKII in HI brain injury.
Collapse
Affiliation(s)
- Md Al Rahim
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Shabarish Thatipamula
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Giulio M Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States.,James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
| | - Mir Ahamed Hossain
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
15
|
Darweesh O, Al-Shehri E, Falquez H, Lauterwasser J, Edlich F, Patel R. Identification of a novel Bax-Cdk1 signalling complex that links activation of the mitotic checkpoint to apoptosis. J Cell Sci 2021; 134:237811. [PMID: 33722980 DOI: 10.1242/jcs.244152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/16/2021] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, entry into and exit from mitosis is regulated, respectively, by the transient activation and inactivation of Cdk1. Taxol, an anti-microtubule anti-cancer drug, prevents microtubule-kinetochore attachments to induce spindle assembly checkpoint (SAC; also known as the mitotic checkpoint)-activated mitotic arrest. SAC activation causes mitotic arrest by chronically activating Cdk1. One consequence of prolonged Cdk1 activation is cell death. However, the cytoplasmic signal(s) that link SAC activation to the initiation of cell death remain unknown. We show here that activated Cdk1 forms a complex with the pro-apoptotic proteins Bax and Bak (also known as BAK1) during SAC-induced apoptosis. Bax- and Bak-mediated delivery of activated Cdk1 to the mitochondrion is essential for the phosphorylation of the anti-apoptotic proteins Bcl-2 and Bcl-xL (encoded by BCL2L1) and the induction of cell death. The interactions between a key cell cycle control protein and key pro-apoptotic proteins identify the Cdk1-Bax and Cdk1-Bak complexes as the long-sought-after cytoplasmic signal that couples SAC activation to the induction of apoptotic cell death.
Collapse
Affiliation(s)
- Omeed Darweesh
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH,UK
| | - Eman Al-Shehri
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH,UK
| | - Hugo Falquez
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Joachim Lauterwasser
- Veterinary Physiology-Chemistry Institute, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Frank Edlich
- Veterinary Physiology-Chemistry Institute, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Rajnikant Patel
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH,UK
| |
Collapse
|
16
|
Naumova N, Šachl R. Regulation of Cell Death by Mitochondrial Transport Systems of Calcium and Bcl-2 Proteins. MEMBRANES 2020; 10:E299. [PMID: 33096926 PMCID: PMC7590060 DOI: 10.3390/membranes10100299] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria represent the fundamental system for cellular energy metabolism, by not only supplying energy in the form of ATP, but also by affecting physiology and cell death via the regulation of calcium homeostasis and the activity of Bcl-2 proteins. A lot of research has recently been devoted to understanding the interplay between Bcl-2 proteins, the regulation of these interactions within the cell, and how these interactions lead to the changes in calcium homeostasis. However, the role of Bcl-2 proteins in the mediation of mitochondrial calcium homeostasis, and therefore the induction of cell death pathways, remain underestimated and are still not well understood. In this review, we first summarize our knowledge about calcium transport systems in mitochondria, which, when miss-regulated, can induce necrosis. We continue by reviewing and analyzing the functions of Bcl-2 proteins in apoptosis. Finally, we link these two regulatory mechanisms together, exploring the interactions between the mitochondrial Ca2+ transport systems and Bcl-2 proteins, both capable of inducing cell death, with the potential to determine the cell death pathway-either the apoptotic or the necrotic one.
Collapse
Affiliation(s)
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic;
| |
Collapse
|
17
|
Pedley R, King LE, Mallikarjun V, Wang P, Swift J, Brennan K, Gilmore AP. BioID-based proteomic analysis of the Bid interactome identifies novel proteins involved in cell-cycle-dependent apoptotic priming. Cell Death Dis 2020; 11:872. [PMID: 33067418 PMCID: PMC7567853 DOI: 10.1038/s41419-020-03091-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Apoptotic priming controls the commitment of cells to apoptosis by determining how close they lie to mitochondrial permeabilisation. Variations in priming are important for how both healthy and cancer cells respond to chemotherapeutic agents, but how it is dynamically coordinated by Bcl-2 proteins remains unclear. The Bcl-2 family protein Bid is phosphorylated when cells enter mitosis, increasing apoptotic priming and sensitivity to antimitotic drugs. Here, we report an unbiased proximity biotinylation (BioID) screen to identify regulators of apoptotic priming in mitosis, using Bid as bait. The screen primarily identified proteins outside of the canonical Bid interactome. Specifically, we found that voltage-dependent anion-selective channel protein 2 (VDAC2) was required for Bid phosphorylation-dependent changes in apoptotic priming during mitosis. These results highlight the importance of the wider Bcl-2 family interactome in regulating the temporal control of apoptotic priming.
Collapse
Affiliation(s)
- Robert Pedley
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Louise E King
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Venkatesh Mallikarjun
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Pengbo Wang
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Cancer Research UK Manchester Institute, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Joe Swift
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Keith Brennan
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Andrew P Gilmore
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
18
|
Wanderoy S, Hees JT, Klesse R, Edlich F, Harbauer AB. Kill one or kill the many: interplay between mitophagy and apoptosis. Biol Chem 2020; 402:73-88. [PMID: 33544491 DOI: 10.1515/hsz-2020-0231] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria are key players of cellular metabolism, Ca2+ homeostasis, and apoptosis. The functionality of mitochondria is tightly regulated, and dysfunctional mitochondria are removed via mitophagy, a specialized form of autophagy that is compromised in hereditary forms of Parkinson's disease. Through mitophagy, cells are able to cope with mitochondrial stress until the damage becomes too great, which leads to the activation of pro-apoptotic BCL-2 family proteins located on the outer mitochondrial membrane. Active pro-apoptotic BCL-2 proteins facilitate the release of cytochrome c from the mitochondrial intermembrane space (IMS) into the cytosol, committing the cell to apoptosis by activating a cascade of cysteinyl-aspartate specific proteases (caspases). We are only beginning to understand how the choice between mitophagy and the activation of caspases is determined on the mitochondrial surface. Intriguingly in neurons, caspase activation also plays a non-apoptotic role in synaptic plasticity. Here we review the current knowledge on the interplay between mitophagy and caspase activation with a special focus on the central nervous system.
Collapse
Affiliation(s)
- Simone Wanderoy
- Max Planck Institute for Neurobiology, Am Klopferspitz 18, D-82152Martinsried, Germany
| | - J Tabitha Hees
- Max Planck Institute for Neurobiology, Am Klopferspitz 18, D-82152Martinsried, Germany
| | - Ramona Klesse
- Institute for Biochemistry and Molecular Biology, University of Freiburg, D-79104Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104Freiburg, Germany
| | - Frank Edlich
- Institute for Biochemistry and Molecular Biology, University of Freiburg, D-79104Freiburg, Germany
| | - Angelika B Harbauer
- Max Planck Institute for Neurobiology, Am Klopferspitz 18, D-82152Martinsried, Germany.,Technical University of Munich, Institute of Neuronal Cell Biology, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
19
|
Schnetler R, Fanucchi S, Moldoveanu T, Koorsen G. Linker Histone H1.2 Directly Activates BAK through the K/RVVKP Motif on the C-Terminal Domain. Biochemistry 2020; 59:3332-3346. [PMID: 32786407 DOI: 10.1021/acs.biochem.0c00373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
H1.2 is a key mediator of apoptosis following DNA double-strand breaks. The link between H1.2 and canonical apoptotic pathways is unclear. One study found that H1.2 stimulates cytochrome c (Cyt c) release; in contrast, apoptosis-inducing factor was found to be released in another study. The C-terminal domain (CTD) of H1.2 has been implicated in the latter pathway, but activation of the proapoptotic protein BCL-2 homologous antagonist/killer (BAK) is a common denominator in both pathways. This study aimed to determine whether the CTD of H1.2 is also responsible for mitochondrial Cyt c release and whether a previously identified K/RVVKP motif in the CTD mediates the response. This study investigated if H1.2 mediates apoptosis induction through direct interaction with BAK. We established that the CTD of H1.2 stimulates mitochondrial Cyt c release in vitro in a mitochondrial permeability transition-independent manner and that the substitution of a single valine with threonine in the K/RVVKP motif abolishes Cyt c release. Additionally, we showed that H1.2 directly interacts with BAK with weak affinity and that the CTD of H1.2 mediates this binding. Using two 20-amino acid peptides derived from the CTD of H1.2 and H1.1 (K/RVVKP motif inclusive), we determined the main residues involved in the direct interaction with BAK. We propose that H1.2 operates through the K/RVVKP motif by directly activating BAK through inter- and intramolecular interactions. These findings expand the view of H1.2 as a signal-transducing molecule that can activate apoptosis in a BAK-dependent manner.
Collapse
Affiliation(s)
- Rozanné Schnetler
- Department of Biochemistry, University of Johannesburg, Corner Kingsway and University Roads, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Sylvia Fanucchi
- Department of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa
| | - Tudor Moldoveanu
- Department of Structural Biology and Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Gerrit Koorsen
- Department of Biochemistry, University of Johannesburg, Corner Kingsway and University Roads, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
20
|
Yang F, Qu W, Du M, Mai Z, Wang B, Ma Y, Wang X, Chen T. Stoichiometry and regulation network of Bcl-2 family complexes quantified by live-cell FRET assay. Cell Mol Life Sci 2020; 77:2387-2406. [PMID: 31492967 PMCID: PMC11104934 DOI: 10.1007/s00018-019-03286-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 01/07/2023]
Abstract
The stoichiometry and affinity of Bcl-2 family complexes are essential information for understanding how their interactome network is orchestrated to regulate mitochondrial permeabilization and apoptosis. Based on over-expression model system, FRET analysis was used to quantify the protein-protein interactions among Bax, Bcl-xL, Bad and tBid in healthy and apoptotic cells. Our data indicate that the stoichiometry and affinity of Bcl-2 complexes are dependent on their membrane environment. Bcl-xL, Bad and tBid can form hetero-trimers in mitochondria. Bcl-xL binds preferentially to Bad, then to tBid and Bax in mitochondria, whilst Bcl-xL displays higher affinity to Bad or tBid than to itself. Strikingly, Bax can bind to Bcl-xL in cytosol. In cytosol of apoptotic cells, Bcl-xL associates with Bax to form hetero-trimer with 1:2 stoichiometry, while Bcl-xL associates with Bad to form hetero-trimer with 2:1 stoichiometry and Bcl-xL associates with tBid to form hetero-dimer. In mitochondria, Bcl-xL associates with Bax/Bad to form hetero-dimer in healthy cells, while Bcl-xL associates with Bad to form hetero-tetramer with 3:1 stoichiometry in apoptotic cells.
Collapse
Affiliation(s)
- Fangfang Yang
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wenfeng Qu
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Mengyan Du
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zihao Mai
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Bin Wang
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yunyun Ma
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xiaoping Wang
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China.
| |
Collapse
|
21
|
Funk K, Czauderna C, Klesse R, Becker D, Hajduk J, Oelgeklaus A, Reichenbach F, Fimm-Todt F, Lauterwasser J, Galle PR, Marquardt JU, Edlich F. BAX Redistribution Induces Apoptosis Resistance and Selective Stress Sensitivity in Human HCC. Cancers (Basel) 2020; 12:cancers12061437. [PMID: 32486514 PMCID: PMC7352885 DOI: 10.3390/cancers12061437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer therapies induce differential cell responses, ranging from efficient cell death to complete stress resistance. The BCL-2 proteins BAX and BAK govern the cellular decision between survival and mitochondrial apoptosis. Therefore, the status of BAX/BAK regulation can predict the cellular apoptosis predisposition. Relative BAX/BAK localization was analyzed in tumor and corresponding non-tumor samples from 34 hepatocellular carcinoma (HCC) patients. Key transcriptome changes and gene expression profiles related to the status of BAX regulation were applied to two independent cohorts including over 500 HCC patients. The prediction of apoptotic response was tested using cell lines and polyclonal tumor isolates. Cellular protection from BAX was confirmed by challenging cells with mitochondrial BAX. We discovered a subgroup of HCC with selective protection from BAX-dependent apoptosis. BAX-protected tumors showed enrichment of signaling pathways associated with oxidative stress response and DNA repair as well as increased genetic heterogeneity. Gene expression profiles characteristic to BAX-specific protection are enriched in poorly differentiated HCCs and show significant association to the overall survival of HCC patients. Consistently, addiction to DNA repair of BAX-protected cancer cells caused selective sensitivity to PARP inhibition. Molecular characteristics of BAX-protected HCC were enriched in cells challenged with mitochondrial BAX. Our results demonstrate that predisposition to BAX activation impairs tumor biology in HCC. Selective BAX inhibition or lack thereof delineates distinct subgroups of HCC patients with molecular features and differential response pattern to apoptotic stimuli and inhibition of DNA repair mechanisms.
Collapse
Affiliation(s)
- Kathrin Funk
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Carolin Czauderna
- Department of Medicine, Lichtenberg Research Group, University Mainz, 55116 Mainz, Germany; (C.C.); (D.B.); (J.H.); (P.R.G.)
| | - Ramona Klesse
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Diana Becker
- Department of Medicine, Lichtenberg Research Group, University Mainz, 55116 Mainz, Germany; (C.C.); (D.B.); (J.H.); (P.R.G.)
| | - Jovana Hajduk
- Department of Medicine, Lichtenberg Research Group, University Mainz, 55116 Mainz, Germany; (C.C.); (D.B.); (J.H.); (P.R.G.)
| | - Aline Oelgeklaus
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Frank Reichenbach
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Franziska Fimm-Todt
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
| | - Joachim Lauterwasser
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
| | - Peter R. Galle
- Department of Medicine, Lichtenberg Research Group, University Mainz, 55116 Mainz, Germany; (C.C.); (D.B.); (J.H.); (P.R.G.)
| | - Jens U. Marquardt
- Department of Medicine I, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Correspondence: (J.U.M.); (F.E.)
| | - Frank Edlich
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Correspondence: (J.U.M.); (F.E.)
| |
Collapse
|
22
|
Fitzsimmons L, Cartlidge R, Chang C, Sejic N, Galbraith LCA, Suraweera CD, Croom-Carter D, Dewson G, Tierney RJ, Bell AI, Shannon-Lowe C, Herold MJ, Rickinson AB, Colman PM, Huang DCS, Strasser A, Kvansakul M, Rowe M, Kelly GL. EBV BCL-2 homologue BHRF1 drives chemoresistance and lymphomagenesis by inhibiting multiple cellular pro-apoptotic proteins. Cell Death Differ 2020; 27:1554-1568. [PMID: 31645677 PMCID: PMC7206097 DOI: 10.1038/s41418-019-0435-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/30/2022] Open
Abstract
Epstein-Barr virus (EBV), which is ubiquitous in the adult population, is causally associated with human malignancies. Like many infectious agents, EBV has evolved strategies to block host cell death, including through expression of viral homologues of cellular BCL-2 pro-survival proteins (vBCL-2s), such as BHRF1. Small molecule inhibitors of the cellular pro-survival BCL-2 family proteins, termed 'BH3-mimetics', have entered clinical trials for blood cancers with the BCL-2 inhibitor venetoclax already approved for treatment of therapy refractory chronic lymphocytic leukaemia and acute myeloid leukaemia in the elderly. The generation of BH3-mimetics that could specifically target vBCL-2 proteins may be an attractive therapeutic option for virus-associated cancers, since these drugs would be expected to only kill virally infected cells with only minimal side effects on normal healthy tissues. To achieve this, a better understanding of the contribution of vBCL-2 proteins to tumorigenesis and insights into their biochemical functions is needed. In the context of Burkitt lymphoma (BL), BHRF1 expression conferred strong resistance to diverse apoptotic stimuli. Furthermore, BHRF1 expression in mouse haematopoietic stem and progenitor cells accelerated MYC-induced lymphoma development in a model of BL. BHRF1 interacts with the cellular pro-apoptotic BCL-2 proteins, BIM, BID, PUMA and BAK, but its capability to inhibit apoptosis could not be mapped solely to one of these interactions, suggesting plasticity is a key feature of BHRF1. Site-directed mutagenesis revealed a site in BHRF1 that was critical for its interaction with PUMA and blocking DNA-damage-induced apoptosis, identifying a potentially therapeutically targetable vulnerability in BHRF1.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Rachel Cartlidge
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Catherine Chang
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
| | - Nenad Sejic
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura C A Galbraith
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Chathura D Suraweera
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Deborah Croom-Carter
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Grant Dewson
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Rosemary J Tierney
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew I Bell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Clare Shannon-Lowe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Marco J Herold
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Alan B Rickinson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Peter M Colman
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Marc Kvansakul
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Martin Rowe
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
23
|
Moldoveanu T, Czabotar PE. BAX, BAK, and BOK: A Coming of Age for the BCL-2 Family Effector Proteins. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036319. [PMID: 31570337 DOI: 10.1101/cshperspect.a036319] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The BCL-2 family of proteins control a key checkpoint in apoptosis, that of mitochondrial outer membrane permeabilization or, simply, mitochondrial poration. The family consists of three subgroups: BH3-only initiators that respond to apoptotic stimuli; antiapoptotic guardians that protect against cell death; and the membrane permeabilizing effectors BAX, BAK, and BOK. On activation, effector proteins are converted from inert monomers into membrane permeabilizing oligomers. For many years, this process has been poorly understood at the molecular level, but a number of recent advances have provided important insights. We review the regulation of these effectors, their activation, subsequent conformational changes, and the ensuing oligomerization events that enable mitochondrial poration, which initiates apoptosis through release of key signaling factors such as cytochrome c We highlight the mysteries that remain in understanding these important proteins in an endeavor to provide a comprehensive picture of where the field currently sits and where it is moving toward.
Collapse
Affiliation(s)
- Tudor Moldoveanu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis Tennessee 38105, USA
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
24
|
The Bcl-2 Family: Ancient Origins, Conserved Structures, and Divergent Mechanisms. Biomolecules 2020; 10:biom10010128. [PMID: 31940915 PMCID: PMC7022251 DOI: 10.3390/biom10010128] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Intrinsic apoptosis, the response to intracellular cell death stimuli, is regulated by the interplay of the B-cell lymphoma 2 (Bcl-2) family and their membrane interactions. Bcl-2 proteins mediate a number of processes including development, homeostasis, autophagy, and innate and adaptive immune responses and their dysregulation underpins a host of diseases including cancer. The Bcl-2 family is characterized by the presence of conserved sequence motifs called Bcl-2 homology motifs, as well as a transmembrane region, which form the interaction sites and intracellular location mechanism, respectively. Bcl-2 proteins have been recognized in the earliest metazoans including Porifera (sponges), Placozoans, and Cnidarians (e.g., Hydra). A number of viruses have gained Bcl-2 homologs and subvert innate immunity and cellular apoptosis for their replication, but they frequently have very different sequences to their host Bcl-2 analogs. Though most mechanisms of apoptosis initiation converge on activation of caspases that destroy the cell from within, the numerous gene insertions, deletions, and duplications during evolution have led to a divergence in mechanisms of intrinsic apoptosis. Currently, the action of the Bcl-2 family is best understood in vertebrates and nematodes but new insights are emerging from evolutionarily earlier organisms. This review focuses on the mechanisms underpinning the activity of Bcl-2 proteins including their structures and interactions, and how they have changed over the course of evolution.
Collapse
|
25
|
Marquardt JU, Edlich F. Predisposition to Apoptosis in Hepatocellular Carcinoma: From Mechanistic Insights to Therapeutic Strategies. Front Oncol 2019; 9:1421. [PMID: 31921676 PMCID: PMC6923252 DOI: 10.3389/fonc.2019.01421] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks among the most rapidly evolving cancers in the Western world. The majority of HCCs develop on the basis of a chronic inflammatory liver damage that predisposes liver cancer development and leads to deregulation of multiple cellular signaling pathways. The resulting dysbalance between uncontrolled proliferation and impaired predisposition to cell death with consecutive failure to clear inflammatory damage is a key driver of malignant transformation. Therefore, resistance to death signaling accompanied by metabolic changes as well as failed immunological clearance of damaged pre-neoplastic hepatocytes are considered hallmarks of hepatocarcinogenesis. Hereby, the underlying liver disease, the type of liver damage and individual predisposition to apoptosis determines the natural course of the disease as well as the therapeutic response. Here, we will review common and individual aspects of cell death pathways in hepatocarcinogenesis with a particular emphasis on regulatory networks and key molecular alterations. We will further delineate the potential of targeting cell death-related signaling as a viable therapeutic strategy to improve the outcome of HCC patients.
Collapse
Affiliation(s)
- Jens U Marquardt
- Department of Medicine I, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Department of Medicine, Lichtenberg Research Group, University Mainz, Mainz, Germany
| | - Frank Edlich
- Heisenberg Research Group "Regulation von Bcl-2-Proteinen Durch Konformationelle Flexibilität," Institute for Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
O'Hara SP, Splinter PL, Trussoni CE, Guicciardi ME, Splinter NP, Al Suraih MS, Nasser-Ghodsi N, Stollenwerk D, Gores GJ, LaRusso NF. The transcription factor ETS1 promotes apoptosis resistance of senescent cholangiocytes by epigenetically up-regulating the apoptosis suppressor BCL2L1. J Biol Chem 2019; 294:18698-18713. [PMID: 31659122 PMCID: PMC6901313 DOI: 10.1074/jbc.ra119.010176] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is an idiopathic, progressive cholangiopathy. Cholangiocyte senescence is important in PSC pathogenesis, and we have previously reported that senescence is regulated by the transcription factor ETS proto-oncogene 1 (ETS1) and associated with overexpression of BCL2 like 1 (BCL2L1 or BCL-xL), an anti-apoptotic BCL2-family member. Here, we further explored the mechanisms regulating BCL-xL-mediated, apoptosis resistance in senescent cholangiocytes and uncovered that ETS1 and the histone acetyltransferase E1A-binding protein P300 (EP300 or p300) both promote BCL-xL transcription. Using immunofluorescence, we found that BCL-xL protein expression is increased both in cholangiocytes of livers from individuals with PSC and a mouse model of PSC. Using an in vitro model of lipopolysaccharide-induced senescence in normal human cholangiocytes (NHCs), we found increased BCL-xL mRNA and protein levels, and ChIP-PCRs indicated increased occupancy of ETS1, p300, and histone 3 Lys-27 acetylation (H3K27Ac) at the BCL-xL promoter. Using co-immunoprecipitation and proximity ligation assays, we further demonstrate that ETS1 and p300 physically interact in senescent but not control NHCs. Additionally, mutagenesis of predicted ETS1-binding sites within the BCL-xL promoter blocked luciferase reporter activity, and CRISPR/Cas9-mediated genetic deletion of ETS1 reduced senescence-associated BCL-xL expression. In senescent NHCs, TRAIL-mediated apoptosis was reduced ∼70%, and ETS1 deletion or RNAi-mediated BCL-xL suppression increased apoptosis. Overall, our results suggest that ETS1 and p300 promote senescent cholangiocyte resistance to apoptosis by modifying chromatin and inducing BCL-xL expression. These findings reveal ETS1 as a central regulator of both cholangiocyte senescence and the associated apoptosis-resistant phenotype.
Collapse
Affiliation(s)
- Steven P O'Hara
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905.
| | - Patrick L Splinter
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Christy E Trussoni
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Maria Eugenia Guicciardi
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Noah P Splinter
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Mohammed S Al Suraih
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Navine Nasser-Ghodsi
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Deborah Stollenwerk
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
27
|
Huang K, O'Neill KL, Li J, Zhou W, Han N, Pang X, Wu W, Struble L, Borgstahl G, Liu Z, Zhang L, Luo X. BH3-only proteins target BCL-xL/MCL-1, not BAX/BAK, to initiate apoptosis. Cell Res 2019; 29:942-952. [PMID: 31551537 PMCID: PMC6888900 DOI: 10.1038/s41422-019-0231-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/30/2019] [Indexed: 12/25/2022] Open
Abstract
It has been widely accepted that mitochondria-dependent apoptosis initiates when select BH3-only proteins (BID, BIM, etc.) directly engage and allosterically activate effector proteins BAX/BAK. Here, through reconstitution of cells lacking all eight pro-apoptotic BH3-only proteins, we demonstrate that all BH3-only proteins primarily target the anti-apoptotic BCL-2 proteins BCL-xL/MCL-1, whose simultaneous suppression enables membrane-mediated spontaneous activation of BAX/BAK. BH3-only proteins' apoptotic activities correlate with affinities for BCL-xL/MCL-1 instead of abilities to directly activate BAX/BAK. Further, BID and BIM do not distinguish BAX from BAK or accelerate BAX/BAK activation following inactivation of BCL-xL/MCL-1. Remarkably, death ligand-induced apoptosis in cells lacking BH3-only proteins and MCL-1 is fully restored by BID mutants capable of neutralizing BCL-xL, but not direct activation of BAX/BAK. Taken together, our findings provide a "Membrane-mediated Permissive" model, in which the BH3-only proteins only indirectly activate BAX/BAK by neutralizing the anti-apoptotic BCL-2 proteins, and thus allowing BAX/BAK to undergo unimpeded, spontaneous activation in the mitochondrial outer membrane milieu, leading to apoptosis initiation.
Collapse
Affiliation(s)
- Kai Huang
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
| | - Katelyn L O'Neill
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
| | - Jian Li
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
| | - Wei Zhou
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Na Han
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Xiaming Pang
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
| | - Wei Wu
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Lucas Struble
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
| | - Gloria Borgstahl
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
| | - Zhaorui Liu
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Liqiang Zhang
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA.
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA.
| |
Collapse
|
28
|
Yun JM, Min KJ, Kwon TK. Involvement of Up-regulation of Death Receptors and Bim in Hispolon-mediated TNF-related Apoptosis-inducing Ligand Sensitization in Human Renal Carcinoma. J Cancer Prev 2019; 24:155-162. [PMID: 31624721 PMCID: PMC6786807 DOI: 10.15430/jcp.2019.24.3.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Background Hispolon has been shown to possess antitumor effects in various cancer cells. However, the underlying mechanisms are not fully understood. In this study, we evaluated the sensitizing effect of hispolon on TNF-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in human renal carcinoma cells. Methods Apoptosis was analyzed by using cell-based cytometer. The mRNA levels were assessed by reverse transcription-PCR. Bax activation was determined by oligomerization and fluorescence-activated cell sorting with Bax-NT monoclonal antibody. The protein expression was measured by Western blotting. Results Hispolon induced up-regulation of Bim and death receptors expression at the post-translational level. Conclusions Hispolon enhanced TRAIL-mediated apoptosis in renal carcinoma cells, but not in normal cells.
Collapse
Affiliation(s)
- Jung Mi Yun
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Korea
| | - Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Korea
| |
Collapse
|
29
|
Dengler MA, Robin AY, Gibson L, Li MX, Sandow JJ, Iyer S, Webb AI, Westphal D, Dewson G, Adams JM. BAX Activation: Mutations Near Its Proposed Non-canonical BH3 Binding Site Reveal Allosteric Changes Controlling Mitochondrial Association. Cell Rep 2019; 27:359-373.e6. [DOI: 10.1016/j.celrep.2019.03.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/13/2019] [Accepted: 03/12/2019] [Indexed: 12/26/2022] Open
|
30
|
Lee EF, Smith NA, Soares da Costa TP, Meftahi N, Yao S, Harris TJ, Tran S, Pettikiriarachchi A, Perugini MA, Keizer DW, Evangelista M, Smith BJ, Fairlie WD. Structural insights into BCL2 pro-survival protein interactions with the key autophagy regulator BECN1 following phosphorylation by STK4/MST1. Autophagy 2019; 15:785-795. [PMID: 30626284 DOI: 10.1080/15548627.2018.1564557] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
BECN1/Beclin 1 is a critical protein in the initiation of autophagosome formation. Recent studies have shown that phosphorylation of BECN1 by STK4/MST1 at threonine 108 (T108) within its BH3 domain blocks macroautophagy/autophagy by increasing BECN1 affinity for its negative regulators, the anti-apoptotic proteins BCL2/Bcl-2 and BCL2L1/Bcl-xL. It was proposed that this increased binding is due to formation of an electrostatic interaction with a conserved histidine residue on the anti-apoptotic molecules. Here, we performed biophysical studies which demonstrated that a peptide corresponding to the BECN1 BH3 domain in which T108 is phosphorylated (p-T108) does show increased affinity for anti-apoptotic proteins that is significant, though only minor (<2-fold). We also determined X-ray crystal structures of BCL2 and BCL2L1 with T108-modified BECN1 BH3 peptides, but only showed evidence of an interaction between the BH3 peptide and the conserved histidine residue when the histidine flexibility was restrained due to crystal contacts. These data, together with molecular dynamics studies, indicate that the histidine is highly flexible, even when complexed with BECN1 BH3. Binding studies also showed that detergent can increase the affinity of the interaction. Although this increase was similar for both the phosphorylated and non-phosphorylated peptides, it suggests factors such as membranes could impact on the interaction between BECN1 and BCL2 proteins, and therefore, on the regulation of autophagy. Hence, we propose that phosphorylation of BECN1 by STK4/MST1 can increase the affinity of the interaction between BECN1 and anti-apoptotic proteins and this interaction can be stabilized by local environmental factors. Abbreviations: asu: asymmetric unit; BH3: BCL2/Bcl-2 homology 3; DAPK: death associated protein kinase; MD: molecular dynamics; MST: microscale thermophoresis; NMR: nuclear magnetic resonance; PDB: protein data bank; p-T: phosphothreonine; SPR: surface plasmon resonance; STK4/MST1: serine/threonine kinase 4.
Collapse
Affiliation(s)
- Erinna F Lee
- a La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia.,b Cell Death and Survival Group , Olivia Newton-John Cancer Research Institute , Heidelberg , Australia.,c School of Cancer Medicine , La Trobe University , Melbourne , Australia
| | - Nicholas A Smith
- a La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | | | - Nastaran Meftahi
- a La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - Shenggen Yao
- d Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Australia
| | - Tiffany J Harris
- b Cell Death and Survival Group , Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
| | - Sharon Tran
- b Cell Death and Survival Group , Olivia Newton-John Cancer Research Institute , Heidelberg , Australia.,c School of Cancer Medicine , La Trobe University , Melbourne , Australia
| | - Anne Pettikiriarachchi
- e Structural Biology Division , The Walter and Eliza Hall Institute of Medical Research , Parkville , Australia
| | - Matthew A Perugini
- a La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - David W Keizer
- d Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Australia
| | - Marco Evangelista
- b Cell Death and Survival Group , Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
| | - Brian J Smith
- a La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| | - W Douglas Fairlie
- a La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia.,b Cell Death and Survival Group , Olivia Newton-John Cancer Research Institute , Heidelberg , Australia.,c School of Cancer Medicine , La Trobe University , Melbourne , Australia
| |
Collapse
|
31
|
Abstract
BCL-2 family proteins interact in a network that regulates apoptosis. The BH3 amino acid sequence motif serves to bind together this conglomerate protein family, both literally and figuratively. BH3 motifs are present in antiapoptotic and proapoptotic BCL-2 homologs, and in a separate group of unrelated BH3-only proteins often appended to the BCL-2 family. BH3-containing helices mediate many of their physical interactions to determine cell death versus survival, leading to the development of BH3 mimetics as therapeutics. Here we provide an overview of BCL-2 family interactions, their relevance in health and disease, and the progress toward regulating their interactions therapeutically.
Collapse
Affiliation(s)
- Jason D Huska
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Heather M Lamb
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
32
|
Ensemble Properties of Bax Determine Its Function. Structure 2018; 26:1346-1359.e5. [PMID: 30122452 DOI: 10.1016/j.str.2018.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 05/31/2018] [Accepted: 07/21/2018] [Indexed: 11/20/2022]
Abstract
BAX and BAK are essential mediators of intrinsic apoptosis that permeabilize the mitochondrial outer membrane. BAX activation requires its translocation from cytosol to mitochondria where conformational changes cause its oligomerization. To better understand the critical step of translocation, we examined its blockade by mutation near the C terminus (P168G) or by antibody binding near the N terminus. Similarities in the crystal structures of wild-type and BAX P168G but significant other differences suggest that cytosolic BAX exists as an ensemble of conformers, and that the distribution of conformers within the ensemble determines the different functions of wild-type and mutant proteins. We also describe the structure of BAX in complex with an antibody, 3C10, that inhibits cytosolic BAX by limiting exposure of the membrane-associating helix α9, as does the P168G mutation. Our data for both means of BAX inhibition argue for an allosteric model of BAX regulation that derives from properties of the ensemble of conformers.
Collapse
|
33
|
Ma ZW, Liu DX. Humanin decreases mitochondrial membrane permeability by inhibiting the membrane association and oligomerization of Bax and Bid proteins. Acta Pharmacol Sin 2018; 39:1012-1021. [PMID: 29265109 DOI: 10.1038/aps.2017.169] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022] Open
Abstract
Humanin (HN) is a 24-residue peptide identified from the brain of a patient with Alzheimer's disease (AD). HN has been found to protect against neuronal insult caused by Aβ peptides or transfection of familial AD mutant genes. In order to elucidate the molecular mechanisms of HN neuroprotection, we explored the effects of HN on the association of Bax or Bid with lipid bilayers and their oligomerization in the membrane. By using single-molecule fluorescence and Förster resonance energy transfer techniques, we showed that Bax was mainly present as monomers, dimers and tetramers in lipid bilayers, while truncated Bid (tBid) enhanced the membrane association and tetramerization of Bax. HN (100 nmol/L) inhibited the self-association and tBid-activated association of Bax with the bilayers, and significantly decreased the proportion of Bax in tetramers. Furthermore, HN inhibited Bid translocation to lipid bilayers. HN could bind with Bax and Bid either in solution or in the membrane. However, HN could not pull the proteins out of the membrane. Based on these results, we propose that HN binds to Bax and cBid in solution and inhibits their translocation to the membrane. Meanwhile, HN interacts with the membrane-bound Bax and tBid, preventing the recruitment of cytosolic Bax and its oligomerization in the membrane. In this way, HN inhibits Bax pore formation in mitochondrial outer membrane and suppresses cytochrome c release and mitochondria-dependent apoptosis.
Collapse
|
34
|
Edlich F. BCL-2 proteins and apoptosis: Recent insights and unknowns. Biochem Biophys Res Commun 2018; 500:26-34. [DOI: 10.1016/j.bbrc.2017.06.190] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/30/2017] [Indexed: 01/08/2023]
|
35
|
N-terminal acetylation modulates Bax targeting to mitochondria. Int J Biochem Cell Biol 2017; 95:35-42. [PMID: 29233735 DOI: 10.1016/j.biocel.2017.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/28/2017] [Accepted: 12/06/2017] [Indexed: 01/13/2023]
Abstract
The pro-apoptotic Bax protein is the main effector of mitochondrial permeabilization during apoptosis. Bax is controlled at several levels, including post-translational modifications such as phosphorylation and S-palmitoylation. However, little is known about the contribution of other protein modifications to Bax activity. Here, we used heterologous expression of human Bax in yeast to study the involvement of N-terminal acetylation by yNaa20p (yNatB) on Bax function. We found that human Bax is N-terminal (Nt-)acetylated by yNaa20p and that Nt-acetylation of Bax is essential to maintain Bax in an inactive conformation in the cytosol of yeast and Mouse Embryonic Fibroblast (MEF) cells. Bax accumulates in the mitochondria of yeast naa20Δ and Naa25-/- MEF cells, but does not promote cytochrome c release, suggesting that an additional step is required for full activation of Bax. Altogether, our results show that Bax N-terminal acetylation by NatB is involved in its mitochondrial targeting.
Collapse
|
36
|
Fang Y, Yao L, Sun J, Yang R, Chen Y, Tian J, Yang K, Tian L. Does thyroid dysfunction increase the risk of breast cancer? A systematic review and meta-analysis. J Endocrinol Invest 2017; 40:1035-1047. [PMID: 28516372 DOI: 10.1007/s40618-017-0679-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/24/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate the relationship between hypothyroidism, hyperthyroidism, thyroid hormone replacement, and the risk of breast cancer. METHODS We searched the PubMed, Cochrane Library, EMbase, Web of Science, and China Biology Medicine (CBM) databases through June 2016 to identify researches that assessed the relationship between thyroid dysfunction and the risk of breast cancer together with the impact of thyroid hormone substitution treatment on incidence of breast cancer. Quality of evidence was assessed per outcome, using GRADE. RESULTS A total of 13 population-based studies including 24,808 participants were identified as eligible for this meta-analysis. A meta-analysis of 12 researches illustrated that hypothyroidism was not related to the risk for breast cancer [odds ratio (OR) = 0.83, 95% confidence interval (CI) 0.64-1.08, P = 0.162]. 10 researches illustrated that hyperthyroidism was also not related to the risk of breast cancer (OR = 1.03, 95% CI 0.83-1.30, P = 0.767). The impact of therapy was evaluated in six researches; there was no proof of a relationship between thyroid hormone substitution treatment and breast cancer with an overall OR of 0.83 (95% CI 0.57-1.21, P = 0.965). CONCLUSIONS Our meta-analysis illustrated that thyroid dysfunction may not be related to increased risk of breast cancer as well as the thyroid hormone substitution treatment did not reduce the incidence of breast cancer; while this study has some confounders that might weaken the results of this meta-analysis, we believe that the findings provide valuable information for stakeholders concerned with outcomes in patients with thyroid dysfunction.
Collapse
Affiliation(s)
- Y Fang
- Department of Endocrinology, Gansu Provincial Hospital, Dong gang West Road, Lanzhou, 730000, Gansu, People's Republic of China
| | - L Yao
- Clinical Evidence Based Medicine Center, Gansu Provincial Hospital, Dong gang West Road, Lanzhou, 730000, Gansu, People's Republic of China
| | - J Sun
- Department of Endocrinology, Gansu Provincial Hospital, Dong gang West Road, Lanzhou, 730000, Gansu, People's Republic of China
| | - R Yang
- Department of Endocrinology, Gansu Provincial Hospital, Dong gang West Road, Lanzhou, 730000, Gansu, People's Republic of China
| | - Y Chen
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - J Tian
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - K Yang
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - L Tian
- Department of Endocrinology, Gansu Provincial Hospital, Dong gang West Road, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
37
|
Live-cell imaging to measure BAX recruitment kinetics to mitochondria during apoptosis. PLoS One 2017; 12:e0184434. [PMID: 28880942 PMCID: PMC5589231 DOI: 10.1371/journal.pone.0184434] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/23/2017] [Indexed: 12/03/2022] Open
Abstract
The pro-apoptotic BCL2 gene family member, BAX, plays a pivotal role in the intrinsic apoptotic pathway. Under cellular stress, BAX recruitment to the mitochondria occurs when activated BAX forms dimers, then oligomers, to initiate mitochondria outer membrane permeabilization (MOMP), a process critical for apoptotic progression. The activation and recruitment of BAX to form oligomers has been studied for two decades using fusion proteins with a fluorescent reporter attached in-frame to the BAX N-terminus. We applied high-speed live cell imaging to monitor the recruitment of BAX fusion proteins in dying cells. Data from time-lapse imaging was validated against the activity of endogenous BAX in cells, and analyzed using sigmoid mathematical functions to obtain detail of the kinetic parameters of the recruitment process at individual mitochondrial foci. BAX fusion proteins behave like endogenous BAX during apoptosis. Kinetic studies show that fusion protein recruitment is also minimally affected in cells lacking endogenous BAK or BAX genes, but that the kinetics are moderately, but significantly, different with different fluorescent tags in the fusion constructs. In experiments testing BAX recruitment in 3 different cell lines, our results show that regardless of cell type, once activated, BAX recruitment initiates simultaneously within a cell, but exhibits varying rates of recruitment at individual mitochondrial foci. Very early during BAX recruitment, pro-apoptotic molecules are released in the process of MOMP, but different molecules are released at different times and rates relative to the time of BAX recruitment initiation. These results provide a method for BAX kinetic analysis in living cells and yield greater detail of multiple characteristics of BAX-induced MOMP in living cells that were initially observed in cell free studies.
Collapse
|
38
|
BAK α6 permits activation by BH3-only proteins and homooligomerization via the canonical hydrophobic groove. Proc Natl Acad Sci U S A 2017; 114:7629-7634. [PMID: 28673969 DOI: 10.1073/pnas.1702453114] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BAK and BAX are the essential effectors of apoptosis because without them a cell is resistant to most apoptotic stimuli. BAK and BAX undergo conformation changes to homooligomerize then permeabilize the mitochondrial outer membrane during apoptosis. How BCL-2 homology 3 (BH3)-only proteins bind to activate BAK and BAX is unclear. We report that BH3-only proteins bind inactive full-length BAK at mitochondria and then dissociate following exposure of the BAK BH3 and BH4 domains before BAK homodimerization. Using a functional obstructive labeling approach, we show that activation of BAK involves important interactions of BH3-only proteins with both the canonical hydrophobic binding groove (α2-5) and α6 at the rear of BAK, with interaction at α6 promoting an open groove to receive a BH3-only protein. Once activated, how BAK homodimers multimerize to form the putative apoptotic pore is unknown. Obstructive labeling of BAK beyond the BH3 domain and hydrophobic groove did not inhibit multimerization and mitochondrial damage, indicating that critical protein-protein interfaces in BAK self-association are limited to the α2-5 homodimerization domain.
Collapse
|
39
|
Chen W, Liu X, Chen Q, Bao C, Zhao L, Zhu Z, Xu HHK. Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell co-culture with human bone marrow mesenchymal stem cells (MSCs), human umbilical cord MSCs, human induced pluripotent stem cell-derived MSCs and human embryonic stem cell-derived MSCs. J Tissue Eng Regen Med 2017; 12:191-203. [PMID: 28098961 DOI: 10.1002/term.2395] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 10/03/2016] [Accepted: 01/09/2017] [Indexed: 02/05/2023]
Abstract
Angiogenesis is a limiting factor in regenerating large bone defects. The objective of this study was to investigate angiogenic and osteogenic effects of co-culture on calcium phosphate cement (CPC) scaffold using human umbilical vein endothelial cells (hUVECs) and mesenchymal stem cells (MSCs) from different origins for the first time. hUVECs were co-cultured with four types of cell: human umbilical cord MSCs (hUCMSCs), human bone marrow MSCs (hBMSCs) and MSCs from induced pluripotent stem cells (hiPSC-MSCs) and embryonic stem cells (hESC-MSCs). Constructs were implanted in 8 mm cranial defects of rats for 12 weeks. CPC without cells served as control 1. CPC with hBMSCs served as control 2. Microcapillary-like structures were successfully formed on CPC in vitro in all four co-cultured groups. Microcapillary lengths increased with time (p < 0.05). Osteogenic and angiogenic gene expressions were highly elevated and mineralization by co-cultured cells increased with time (p < 0.05). New bone amount and blood vessel density of co-cultured groups were much greater than controls (p < 0.05) in an animal study. hUVECs co-cultured with hUCMSCs, hiPSC-MSCs and hESC-MSCs achieved new bone and vessel density similar to hUVECs co-cultured with hBMSCs (p > 0.1). Therefore, hUCMSCs, hiPSC-MSCs and hESC-MSCs could serve as alternative cell sources to hBMSCs, which require an invasive procedure to harvest. In conclusion, this study showed for the first time that co-cultures of hUVECs with hUCMSCs, hiPSC-MSCs, hESC-MSCs and hBMSCs delivered via CPC scaffold achieved excellent osteogenic and angiogenic capabilities in vivo. The novel co-culture constructs are promising for bone reconstruction with improved angiogenesis for craniofacial/orthopaedic applications. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wenchuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Biomaterials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Xian Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Biomaterials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Qianmin Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Biomaterials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Liang Zhao
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD, USA.,Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD, USA.,Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Mechanical Engineering, University of Maryland at Baltimore County, Baltimore County, MD, USA
| |
Collapse
|
40
|
Reichenbach F, Wiedenmann C, Schalk E, Becker D, Funk K, Scholz-Kreisel P, Todt F, Wolleschak D, Döhner K, Marquardt JU, Heidel F, Edlich F. Mitochondrial BAX Determines the Predisposition to Apoptosis in Human AML. Clin Cancer Res 2017; 23:4805-4816. [DOI: 10.1158/1078-0432.ccr-16-1941] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/05/2016] [Accepted: 04/11/2017] [Indexed: 11/16/2022]
|
41
|
Birkinshaw RW, Czabotar PE. The BCL-2 family of proteins and mitochondrial outer membrane permeabilisation. Semin Cell Dev Biol 2017; 72:152-162. [PMID: 28396106 DOI: 10.1016/j.semcdb.2017.04.001] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/03/2017] [Accepted: 04/06/2017] [Indexed: 01/24/2023]
Abstract
Apoptosis is a form of programmed cell death critical for the development and homeostasis of multicellular organisms. A key event within the mitochondrial pathway to apoptosis is the permeabilisation of the mitochondrial outer membrane (MOM), a point of no return in apoptotic progression. This event is governed by a complex interplay of interactions between BCL-2 family members. Here we discuss the roles of opposing factions within the family. We focus on the structural details of these interactions, how they promote or prevent apoptosis and recent developments towards understanding the conformational changes of BAK and BAX that lead to MOM permeabilisation. These interactions and structural insights are of particular interest for drug discovery, as highlighted by the development of therapeutics that target pro-survival family members and restore apoptosis in cancer cells.
Collapse
Affiliation(s)
- Richard W Birkinshaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
42
|
A Small-Molecule Inhibitor of Bax and Bak Oligomerization Prevents Genotoxic Cell Death and Promotes Neuroprotection. Cell Chem Biol 2017; 24:493-506.e5. [PMID: 28392146 DOI: 10.1016/j.chembiol.2017.03.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/29/2016] [Accepted: 03/13/2017] [Indexed: 11/24/2022]
Abstract
Aberrant apoptosis can lead to acute or chronic degenerative diseases. Mitochondrial outer membrane permeabilization (MOMP) triggered by the oligomerization of the Bcl-2 family proteins Bax/Bak is an irreversible step leading to execution of apoptosis. Here, we describe the discovery of small-molecule inhibitors of Bax/Bak oligomerization that prevent MOMP. We demonstrate that these molecules disrupt multiple, but not all, interactions between Bax dimer interfaces thereby interfering with the formation of higher-order oligomers in the MOM, but not recruitment of Bax to the MOM. Small-molecule inhibition of Bax/Bak oligomerization allowed cells to evade apoptotic stimuli and rescued neurons from death after excitotoxicity, demonstrating that oligomerization of Bax is essential for MOMP. Our discovery of small-molecule Bax/Bak inhibitors provides novel tools for the investigation of the mechanisms leading to MOMP and will ultimately facilitate development of compounds inhibiting Bax/Bak in acute and chronic degenerative diseases.
Collapse
|
43
|
D'Orsi B, Mateyka J, Prehn JHM. Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok. Neurochem Int 2017; 109:162-170. [PMID: 28315370 DOI: 10.1016/j.neuint.2017.03.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 01/14/2023]
Abstract
Neuronal cell death is often triggered by events that involve intracellular increases in Ca2+. Under resting conditions, the intracellular Ca2+ concentration is tightly controlled by a number of extrusion and sequestering mechanisms involving the plasma membrane, mitochondria, and ER. These mechanisms act to prevent a disruption of neuronal ion homeostasis. As these processes require ATP, excessive Ca2+ overloading may cause energy depletion, mitochondrial dysfunction, and may eventually lead to Ca2+-dependent cell death. Excessive Ca2+ entry though glutamate receptors (excitotoxicity) has been implicated in several neurologic and chronic neurodegenerative diseases, including ischemic stroke, epilepsy, and Alzheimer's disease. Recent evidence has revealed that excitotoxic cell death is regulated by the B-cell lymphoma-2 (Bcl-2) family of proteins. Bcl-2 proteins, comprising of both pro-apoptotic and anti-apoptotic members, have been shown to not only mediate the intrinsic apoptosis pathway by controlling mitochondrial outer membrane (MOM) integrity, but to also control neuronal Ca2+ homeostasis and energetics. In this review, the role of Bcl-2 family proteins in the regulation of apoptosis, their expression in the central nervous system and how they control Ca2+-dependent neuronal injury are summarized. We review the current knowledge on Bcl-2 family proteins in the regulation of mitochondrial function and bioenergetics, including the fusion and fission machinery, and their role in Ca2+ homeostasis regulation at the mitochondria and ER. Specifically, we discuss how the 'pro-apoptotic' Bcl-2 family proteins, Bax and Bok, physiologically expressed in the nervous system, regulate such 'non-apoptotic/daytime' functions.
Collapse
Affiliation(s)
- Beatrice D'Orsi
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Julia Mateyka
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
44
|
Maes ME, Schlamp CL, Nickells RW. BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Prog Retin Eye Res 2017; 57:1-25. [PMID: 28064040 DOI: 10.1016/j.preteyeres.2017.01.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/19/2022]
Abstract
Retinal ganglion cell (RGC) death is the principal consequence of injury to the optic nerve. For several decades, we have understood that the RGC death process was executed by apoptosis, suggesting that there may be ways to therapeutically intervene in this cell death program and provide a more direct treatment to the cells and tissues affected in diseases like glaucoma. A major part of this endeavor has been to elucidate the molecular biological pathways active in RGCs from the point of axonal injury to the point of irreversible cell death. A major component of this process is the complex interaction of members of the BCL2 gene family. Three distinct family members of proteins orchestrate the most critical junction in the apoptotic program of RGCs, culminating in the activation of pro-apoptotic BAX. Once active, BAX causes irreparable damage to mitochondria, while precipitating downstream events that finish off a dying ganglion cell. This review is divided into two major parts. First, we summarize the extent of knowledge of how BCL2 gene family proteins interact to facilitate the activation and function of BAX. This area of investigation has rapidly changed over the last few years and has yielded a dramatically different mechanistic understanding of how the intrinsic apoptotic program is run in mammalian cells. Second, we provided a comprehensive analysis of nearly two decades of investigation of the role of BAX in the process of RGC death, much of which has provided many important insights into the overall pathophysiology of diseases like glaucoma.
Collapse
Affiliation(s)
- Margaret E Maes
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Cassandra L Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
45
|
Cakir Z, Funk K, Lauterwasser J, Todt F, Zerbes RM, Oelgeklaus A, Tanaka A, van der Laan M, Edlich F. Parkin promotes proteasomal degradation of misregulated BAX. J Cell Sci 2017; 130:2903-2913. [DOI: 10.1242/jcs.200162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/21/2017] [Indexed: 12/23/2022] Open
Abstract
The pro-apoptotic BCL-2 protein BAX commits human cells to apoptosis by permeabilizing the outer mitochondrial membrane. BAX activation has been suggested to require the separation of helix α5 from α6 and thus the ‘latch’ from the ‘core’ domain among other conformational changes. Here we show that conformational changes in this region impair BAX translocation to the mitochondria and retrotranslocation back into the cytosol and therefore BAX inhibition, but not activation. Redirecting misregulated BAX to the mitochondria revealed an alternative mechanism of BAX inhibition. The E3 ligase Parkin, known to trigger mitochondria-specific autophagy, ubiquitinates BAX K128 and targets the pro-apoptotic BCL-2 protein for proteasomal degradation. Retrotranslocation-deficient BAX is completely degraded in a Parkin-dependent manner. Although only a minor pool of endogenous BAX escapes retrotranslocation into the cytosol, Parkin-dependent targeting of misregulated BAX on the mitochondria provides substantial protection against BAX apoptotic activity.
Collapse
Affiliation(s)
- Zeynep Cakir
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Kathrin Funk
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Joachim Lauterwasser
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Franziska Todt
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf M. Zerbes
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Aline Oelgeklaus
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, SGBM, 79104 Freiburg, Germany
| | - Atsushi Tanaka
- Research Institute of Medical Sciences, Yamagata University School of Medicine, 990-9585 Yamagata, Japan
| | - Martin van der Laan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany
- BIOSS, Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Frank Edlich
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- BIOSS, Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
46
|
Maurya SR, Mahalakshmi R. Mitochondrial VDAC2 and cell homeostasis: highlighting hidden structural features and unique functionalities. Biol Rev Camb Philos Soc 2016; 92:1843-1858. [PMID: 28980434 DOI: 10.1111/brv.12311] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Abstract
Voltage-dependent anion channels (VDACs) are the gateway to mitochondrial processes, interlinking the cytosolic and mitochondrial compartments. The mitochondrion acts as a storehouse for cytochrome c, the effector of apoptosis, and hence VDACs become intricately involved in the apoptotic pathway. Isoform 1 of VDAC is abundant in the outer mitochondrial membrane of many cell types, while isoform 2 is the preferred channel in specialized cells including brain and some cancer cells. The primary role of VDACs is metabolite flux. The pro- and anti-apoptotic role of VDAC1 and VDAC2, respectively, are secondary, and are influenced by external factors and interacting proteins. Herein, we focus on the less-studied VDAC2, and shed light on its unique functions and features. VDAC2, along with sharing many of its functions with VDAC1, such as metabolite and Ca2+ transport, also has many delineating functions. VDAC2 is closely engaged in the gametogenesis and steroidogenesis pathways and in protection from oxidative stress as well as in neurodegenerative diseases like Alzheimer's and epilepsy. A closer examination of the functional pathways of VDACs indicates that the unique functions of VDAC2 are a result of the different interactome of this isoform. We couple functional differences to the structural and biophysical evidence obtained for the VDACs, and present a testament of why the two VDAC isoforms with >90% sequence similarity, are functionally diverse. Based on these differences, we suggest that the VDAC isoforms now be considered as paralogs. An in-depth understanding of VDAC2 will help us to design better biomolecule targets for cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Svetlana Rajkumar Maurya
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, India
| |
Collapse
|
47
|
The porin VDAC2 is the mitochondrial platform for Bax retrotranslocation. Sci Rep 2016; 6:32994. [PMID: 27620692 PMCID: PMC5020405 DOI: 10.1038/srep32994] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/18/2016] [Indexed: 12/25/2022] Open
Abstract
The pro-apoptotic Bcl-2 protein Bax can permeabilize the outer mitochondrial membrane and therefore commit human cells to apoptosis. Bax is regulated by constant translocation to the mitochondria and retrotranslocation back into the cytosol. Bax retrotranslocation depends on pro-survival Bcl-2 proteins and stabilizes inactive Bax. Here we show that Bax retrotranslocation shuttles membrane-associated and membrane-integral Bax from isolated mitochondria. We further discover the mitochondrial porin voltage-dependent anion channel 2 (VDAC2) as essential component and platform for Bax retrotranslocation. VDAC2 ensures mitochondria-specific membrane association of Bax and in the absence of VDAC2 Bax localizes towards other cell compartments. Bax retrotranslocation is also regulated by nucleotides and calcium ions, suggesting a potential role of the transport of these ions through VDAC2 in Bax retrotranslocation. Together, our results reveal the unanticipated bifunctional role of VDAC2 to target Bax specifically to the mitochondria and ensure Bax inhibition by retrotranslocation into the cytosol.
Collapse
|
48
|
Garner TP, Reyna DE, Priyadarshi A, Chen HC, Li S, Wu Y, Ganesan YT, Malashkevich VN, Cheng EH, Gavathiotis E. An Autoinhibited Dimeric Form of BAX Regulates the BAX Activation Pathway. Mol Cell 2016; 63:485-97. [PMID: 27425408 PMCID: PMC4975667 DOI: 10.1016/j.molcel.2016.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 12/21/2022]
Abstract
Pro-apoptotic BAX is a cell fate regulator playing an important role in cellular homeostasis and pathological cell death. BAX is predominantly localized in the cytosol, where it has a quiescent monomer conformation. Following a pro-apoptotic trigger, cytosolic BAX is activated and translocates to the mitochondria to initiate mitochondrial dysfunction and apoptosis. Here, cellular, biochemical, and structural data unexpectedly demonstrate that cytosolic BAX also has an inactive dimer conformation that regulates its activation. The full-length crystal structure of the inactive BAX dimer revealed an asymmetric interaction consistent with inhibition of the N-terminal conformational change of one protomer and the displacement of the C-terminal helix α9 of the second protomer. This autoinhibited BAX dimer dissociates to BAX monomers before BAX can be activated. Our data support a model whereby the degree of apoptosis induction is regulated by the conformation of cytosolic BAX and identify an unprecedented mechanism of cytosolic BAX inhibition.
Collapse
Affiliation(s)
- Thomas P Garner
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Denis E Reyna
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Amit Priyadarshi
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hui-Chen Chen
- Human Oncology and Pathogenesis Program and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sheng Li
- Department of Medicine and UCSD DXMS Proteomics Resource, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yang Wu
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yogesh Tengarai Ganesan
- Human Oncology and Pathogenesis Program and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vladimir N Malashkevich
- Department of Biochemistry and Department of Biophysics and Physiology, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
49
|
Hada M, Subramanian C, Andrews PC, Kwok RPS. Cytosolic Ku70 regulates Bax-mediated cell death. Tumour Biol 2016; 37:13903-13914. [PMID: 27488115 PMCID: PMC5097087 DOI: 10.1007/s13277-016-5202-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/13/2016] [Indexed: 11/29/2022] Open
Abstract
The first known function of Ku70 is as a DNA repair factor in the nucleus. Using neuronal neuroblastoma cells as a model, we have established that cytosolic Ku70 binds to the pro-apoptotic protein Bax in the cytosol and blocks Bax’s cell death activity. Ku70-Bax binding is regulated by Ku70 acetylation in that when Ku70 is acetylated Bax dissociates from Ku70, triggering cell death. We propose that Ku70 may act as a survival factor in these cells such that Ku70 depletion triggers Bax-dependent cell death. Here, we addressed two fundamental questions about this model: (1) Does all Bax, which is a cytosolic protein, bind to all cytosolic Ku70? and (2) Is Ku70 a survival factor in cells types other than neuronal neuroblastoma cells? We show here that, in neuronal neuroblastoma cells, only a small fraction of Ku70 binds to a small fraction of Bax; most Bax is monomeric. Interestingly, there is no free or monomeric Ku70 in the cytosol; most cytosolic Ku70 is in complex with other factors forming several high molecular weight complexes. A fraction of cytosolic Ku70 also binds to cytosolic Ku80, Ku70’s binding partner in the nucleus. Ku70 may not be a survival factor in some cell types (Ku70-depletion less sensitive) because Ku70 depletion does not affect survival of these cells. These results indicate that, in addition to Ku70 acetylation, other factors may be involved in regulating Ku70-Bax binding in the Ku70-depletion less sensitive cells because Ku70 acetylation in these cells is not sufficient to dissociate Bax from Ku70 or to activate Bax.
Collapse
Affiliation(s)
- Manila Hada
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chitra Subramanian
- General Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Phillip C Andrews
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Roland P S Kwok
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA. .,Obstetrics and Gynecology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
50
|
Zhang J, Huang K, O'Neill KL, Pang X, Luo X. Bax/Bak activation in the absence of Bid, Bim, Puma, and p53. Cell Death Dis 2016; 7:e2266. [PMID: 27310874 PMCID: PMC5143395 DOI: 10.1038/cddis.2016.167] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/20/2016] [Accepted: 05/05/2016] [Indexed: 12/13/2022]
Abstract
How BH3-only proteins activate Bax/Bak, the two gateway proteins of the mitochondria-dependent apoptotic pathway, remains incompletely understood. Although all pro-apoptotic BH3-only proteins are known to bind/neutralize the anti-apoptotic Bcl-2 proteins, the three most potent ones, Bid (tBid), Bim, and Puma, possess an additional activity of directly activating Bax/Bak in vitro. This latter activity has been proposed to be responsible for triggering Bax/Bak activation following apoptotic stimulation. To test this hypothesis, we generated Bid−/−Bim−/−Puma−/− (TKO), TKO/Bax−/−/Bak−/− (PentaKO), and PentaKO/Mcl-1−/− (HexaKO) HCT116 cells through gene editing. Surprisingly, although the TKO cells were resistant to several apoptotic stimuli, robust apoptosis was induced upon the simultaneous inactivation of Bcl-xL and Mcl-1, two anti-apoptotic Bcl-2 proteins known to suppress Bax/Bak activation and activity. Importantly, such apoptotic activity was completely abolished in the PentaKO cells. In addition, ABT-737, a BH3 mimetic that inhibits Bcl-xL/Bcl-w/Bcl-2, induced Bax activation in HexaKO cells reconstituted with endogenous level of GFP-Bax. Further, by generating TKO/p53−/− (QKO) cells, we demonstrated that p53, a tumor suppressor postulated to directly activate Bax, is not required for Bid/Bim/Puma-independent Bax/Bak activation. Together, these results strongly suggest that the direct activation activities of Bid (tBid), Bim, Puma, and p53 are not essential for activating Bax/Bak once the anti-apoptotic Bcl-2 proteins are neutralized.
Collapse
Affiliation(s)
- J Zhang
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA.,Xiangya Hospital, Central South University, Changsha 410008, China
| | - K Huang
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - K L O'Neill
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - X Pang
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - X Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA
| |
Collapse
|