1
|
Yang YM, Fekete A, Arsenault J, Sengar AS, Aitoubah J, Grande G, Li A, Salter EW, Wang A, Mark MD, Herlitze S, Egan SE, Salter MW, Wang LY. Intersectin-1 enhances calcium-dependent replenishment of the readily releasable pool of synaptic vesicles during development. J Physiol 2024. [PMID: 39383250 DOI: 10.1113/jp286462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/06/2024] [Indexed: 10/11/2024] Open
Abstract
Intersectin-1 (Itsn1) is a scaffold protein that plays a key role in coupling exocytosis and endocytosis of synaptic vesicles (SVs). However, it is unclear whether and how Itsn1 regulates these processes to support efficient neurotransmission during development. To address this, we examined the calyx of Held synapse in the auditory brainstem of wild-type and Itsn1 mutant mice before (immature) and after (mature) the onset of hearing. Itsn1 was present in the pre- and postsynaptic compartments at both developmental stages. Loss of function of Itsn1 did not alter presynaptic action potentials, Ca2+ entry via voltage-gated Ca2+ channels (VGCCs), transmitter release or short-term depression (STD) induced by depletion of SVs in the readily releasable pool (RRP) in either age group. Yet, fast Ca2+-dependent recovery from STD was attenuated in mature mutant synapses, while it was unchanged in immature mutant synapses. This deficit at mature synapses was rescued by introducing the DH-PH domains of Itsn1 into the presynaptic terminals. Inhibition of dynamin, which interacts with Itsn1 during endocytosis, had no effect on STD recovery. Interestingly, we found a developmental enrichment of Itsn1 near VGCCs, which may underlie the Itsn1-mediated fast replenishment of the RRP. Consequently, the absence of Itsn1 in mature synapses led to a higher failure rate of postsynaptic spiking during high-frequency synaptic transmission. Taken together, our findings suggest that Itsn1 translocation to the vicinity of VGCCs during development is crucial for accelerating Ca2+-dependent RRP replenishment and sustaining high-fidelity neurotransmission. KEY POINTS: Itsn1 is expressed in the pre- and postsynaptic compartments of the calyx of Held synapse. Developmental upregulation of vesicular glutamate transporter-1 is Itsn1 dependent. Itsn1 does not affect basal synaptic transmission at different developmental stages. Itsn1 is required for Ca2+-dependent recovery from short-term depression in mature synapses. Itsn1 mediates the recovery through its DH-PH domains, independent of its interactive partner dynamin. Itsn1 translocates to the vicinity of presynaptic Ca2+ channels during development. Itsn1 supports high-fidelity neurotransmission by enabling rapid recovery from vesicular depletion during repetitive activity.
Collapse
Affiliation(s)
- Yi-Mei Yang
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biomedical Sciences, University of Minnesota, Duluth, Minnesota, USA
| | - Adam Fekete
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jason Arsenault
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Ameet S Sengar
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
| | - Jamila Aitoubah
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Giovanbattista Grande
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Angela Li
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
| | - Eric W Salter
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Alex Wang
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Neuroscience, Yale University, New Haven, Connecticut, USA
| | - Melanie D Mark
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Sean E Egan
- Cell Biology, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Michael W Salter
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Lu-Yang Wang
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Jaye S, Sandau US, McFarland TJ, Woltjer RL, Saugstad JA. A clathrin mediated endocytosis scaffolding protein, Intersectin 1, changes in an isoform, brain region, and sex specific manner in Alzheimer's disease. Front Neurosci 2024; 18:1426180. [PMID: 38915309 PMCID: PMC11195150 DOI: 10.3389/fnins.2024.1426180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by the accumulation of amyloid-beta (Aβ) plaques and neurofibrillary Tau tangles in the brain. We previously identified a set of candidate AD microRNAs (miRNAs) in human cerebrospinal fluid (CSF) and used a target prediction pipeline to identify mRNAs and pathways that could potentially be regulated by the miRNAs. Of these pathways, clathrin mediated endocytosis (CME) was selected for further investigation. CME is altered in multiple brain cell types in AD and is implicated in early cellular phenotypes such as enlarged early endosomes and pathogenic processing of Aβ. However, a comprehensive evaluation of major CME hub proteins in humans with AD across multiple brain regions is lacking. Thus, we used immunoblots to evaluate human post-mortem AD and control (CTL) frontal cortex (FC; AD n = 22, CTL n = 23) and hippocampus (HP; AD n = 34, CTL n = 22) for changes in Intersectin 1 (ITSN1), Phosphatidylinositol Binding Clathrin Assembly Protein gene (PICALM), Clathrin Light Chain (CLT), FCH and Mu Domain Containing Endocytic Adaptor 1 (FCHO1), Adaptor Related Protein Complex 2 (AP2) Subunit Alpha 1 (AP2A1), and Dynamin 2 (DNM2). Of these, we found that in AD, ITSN1-long (ITSN1-L) was decreased in the FC of males and HP of females, while ITSN1-short was increased in the HP of both males and females. We further evaluated ITSN1-L levels in cortex (CTX) and HP of the 5xFAD mouse model of Aβ pathology at different timepoints during aging and disease progression by immunoblot (n = 5-8 per group). At 3 months, female 5xFAD exhibited an increase of ITSN1-L in CTX but a decrease at 6 and 9 months. Additionally, immunofluorescent staining of 5xFAD primary HP neurons showed an increase of ITSN1-L in matured 5xFAD neurons at 21 and 28 days in vitro. Together, our studies show that in AD, isoforms of ITSN1 change in a brain region-and sex-dependent manner. Further, changes in ITSN1-L are transient with levels increasing during early Aβ accumulation and decreasing during later progression. These findings suggest that ITSN1 expression, and consequently CME activity, may change depending on the stage of disease progression.
Collapse
Affiliation(s)
- Sierra Jaye
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Ursula S. Sandau
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Trevor J. McFarland
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Randy L. Woltjer
- Division of Neuropathology, Department of Pathology, Oregon Health and Science University, Portland, OR, United States
| | - Julie A. Saugstad
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
3
|
Mintoo M, Rajagopalan V, O'Bryan JP. Intersectin - many facets of a scaffold protein. Biochem Soc Trans 2024; 52:1-13. [PMID: 38174740 DOI: 10.1042/bst20211241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Intersectin (ITSN) is a multi-domain scaffold protein with a diverse array of functions including regulation of endocytosis, vesicle transport, and activation of various signal transduction pathways. There are two ITSN genes located on chromosomes 21 and 2 encoding for proteins ITSN1 and ITSN2, respectively. Each ITSN gene encodes two major isoforms, ITSN-Long (ITSN-L) and ITSN-Short (ITSN-S), due to alternative splicing. ITSN1 and 2, collectively referred to as ITSN, are implicated in many physiological and pathological processes, such as neuronal maintenance, actin cytoskeletal rearrangement, and tumor progression. ITSN is mis-regulated in many tumors, such as breast, lung, neuroblastomas, and gliomas. Altered expression of ITSN is also found in several neurodegenerative diseases, such as Down Syndrome and Alzheimer's disease. This review summarizes recent studies on ITSN and provides an overview of the function of this important family of scaffold proteins in various biological processes.
Collapse
Affiliation(s)
- Mubashir Mintoo
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Vinodh Rajagopalan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, U.S.A
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, U.S.A
| |
Collapse
|
4
|
Zhong G, Ahimaz P, Edwards NA, Hagen JJ, Faure C, Lu Q, Kingma P, Middlesworth W, Khlevner J, El Fiky M, Schindel D, Fialkowski E, Kashyap A, Forlenza S, Kenny AP, Zorn AM, Shen Y, Chung WK. Identification and validation of candidate risk genes in endocytic vesicular trafficking associated with esophageal atresia and tracheoesophageal fistulas. HGG ADVANCES 2022; 3:100107. [PMID: 35519826 PMCID: PMC9065433 DOI: 10.1016/j.xhgg.2022.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/06/2022] [Indexed: 11/15/2022] Open
Abstract
Esophageal atresias/tracheoesophageal fistulas (EA/TEF) are rare congenital anomalies caused by aberrant development of the foregut. Previous studies indicate that rare or de novo genetic variants significantly contribute to EA/TEF risk, and most individuals with EA/TEF do not have pathogenic genetic variants in established risk genes. To identify the genetic contributions to EA/TEF, we performed whole genome sequencing of 185 trios (probands and parents) with EA/TEF, including 59 isolated and 126 complex cases with additional congenital anomalies and/or neurodevelopmental disorders. There was a significant burden of protein-altering de novo coding variants in complex cases (p = 3.3 × 10-4), especially in genes that are intolerant of loss-of-function variants in the population. We performed simulation analysis of pathway enrichment based on background mutation rate and identified a number of pathways related to endocytosis and intracellular trafficking that as a group have a significant burden of protein-altering de novo variants. We assessed 18 variants for disease causality using CRISPR-Cas9 mutagenesis in Xenopus and confirmed 13 with tracheoesophageal phenotypes. Our results implicate disruption of endosome-mediated epithelial remodeling as a potential mechanism of foregut developmental defects. Our results suggest significant genetic heterogeneity of EA/TEF and may have implications for the mechanisms of other rare congenital anomalies.
Collapse
Affiliation(s)
- Guojie Zhong
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Priyanka Ahimaz
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicole A. Edwards
- Center for Stem Cell & Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Jacob J. Hagen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Christophe Faure
- Division of Pediatric Gastroenterology, CHU Sainte-Justine, Montreal, QC, Canada
| | - Qiao Lu
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Paul Kingma
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William Middlesworth
- Division of Pediatric Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Julie Khlevner
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - Mahmoud El Fiky
- Pediatric Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - David Schindel
- Division of Pediatric Surgery, UT Southwestern School of Medicine Dallas, Texas, USA
| | - Elizabeth Fialkowski
- Division of Pediatric Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Adhish Kashyap
- Center for Stem Cell & Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Sophia Forlenza
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Alan P. Kenny
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Aaron M. Zorn
- Center for Stem Cell & Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Mishra R, Sengül GF, Candiello E, Schu P. Synaptic AP2 CCV life cycle regulation by the Eps15, ITSN1, Sgip1/AP2, synaptojanin1 interactome. Sci Rep 2021; 11:8007. [PMID: 33850201 PMCID: PMC8044098 DOI: 10.1038/s41598-021-87591-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/30/2021] [Indexed: 11/18/2022] Open
Abstract
The AP1/σ1B knockout causes impaired synaptic vesicle recycling and enhanced protein sorting into endosomes, leading to severe intellectual disability. These disturbances in synaptic protein sorting induce as a secondary phenotype the upregulation of AP2 CCV mediated endocytosis. Synapses contain canonical AP2 CCV and AP2 CCV with a more stable coat and thus extended life time. In AP1/σ1B knockout synapses, pool sizes of both CCV classes are doubled. Additionally, stable CCV of the knockout are more stabilised than stable wt CCV. One mechanism responsible for enhanced CCV stabilisation is the reduction of synaptojanin1 CCV levels, the PI-4,5-P2 phosphatase essential for AP2 membrane dissociation. To identify mechanisms regulating synaptojanin1 recruitment, we compared synaptojanin1 CCV protein interactome levels and CCV protein interactions between both CCV classes from wt and knockout mice. We show that ITSN1 determines synaptojanin1 CCV levels. Sgip1/AP2 excess hinders synaptojanin1 binding to ITSN1, further lowering its levels. ITSN1 levels are determined by Eps15, not Eps15L1. In addition, the data reveal that reduced amounts of pacsin1 can be counter balanced by its enhanced activation. These data exemplify the complexity of CCV life cycle regulation and indicate how cargo proteins determine the life cycle of their CCV.
Collapse
Affiliation(s)
- R Mishra
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, England, UK
| | - G F Sengül
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - E Candiello
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
- Institute for Cancer Research and Treatment (IRCC), Turin, Italy
| | - P Schu
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
6
|
Qin S, Predescu DN, Patel M, Drazkowski P, Ganesh B, Predescu SA. Sex differences in the proliferation of pulmonary artery endothelial cells: implications for plexiform arteriopathy. J Cell Sci 2020; 133:133/9/jcs237776. [PMID: 32409569 DOI: 10.1242/jcs.237776] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
The sex-biased disease pulmonary arterial hypertension (PAH) is characterized by the proliferation and overgrowth of dysfunctional pulmonary artery endothelial cells (PAECs). During inflammation associated with PAH, granzyme B cleaves intersectin-1 to produce N-terminal (EHITSN) and C-terminal (SH3A-EITSN) protein fragments. In a murine model of PAH, EHITSN triggers plexiform arteriopathy via p38-ELK1-c-Fos signaling. The SH3A-EITSN fragment also influences signaling, having dominant-negative effects on ERK1 and ERK2 (also known as MAPK3 and MAPK1, respectively). Using PAECs engineered to express tagged versions of EHITSN and SH3A-EITSN, we demonstrate that the two ITSN fragments increase both p38-ELK1 activation and the ratio of p38 to ERK1 and ERK2 activity, leading to PAEC proliferation, with female cells being more responsive than male cells. Furthermore, expression of EHITSN substantially upregulates the expression and activity of the long non-coding RNA Xist in female PAECs, which in turn upregulates the X-linked gene ELK1 and represses expression of krüppel-like factor 2 (KLF2). These events are recapitulated by the PAECs of female idiopathic PAH patients, and may account for their proliferative phenotype. Thus, upregulation of Xist could be an important factor in explaining sexual dimorphism in the proliferative response of PAECs and the imbalanced sex ratio of PAH.
Collapse
Affiliation(s)
- Shanshan Qin
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Dan N Predescu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Monal Patel
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Patrick Drazkowski
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Balaji Ganesh
- Division of Bioanalytics, Biophysics and Cytomics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sanda A Predescu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Color-Aparicio VM, Cervantes-Villagrana RD, García-Jiménez I, Beltrán-Navarro YM, Castillo-Kauil A, Escobar-Islas E, Reyes-Cruz G, Vázquez-Prado J. Endothelial cell sprouting driven by RhoJ directly activated by a membrane-anchored Intersectin 1 (ITSN1) RhoGEF module. Biochem Biophys Res Commun 2020; 524:109-116. [PMID: 31980169 DOI: 10.1016/j.bbrc.2020.01.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/11/2020] [Indexed: 10/25/2022]
Abstract
Endothelial cell sprouting is a critical event in tumor-induced angiogenesis. In melanoma and lung cancer murine models, targeting RhoJ prevents endothelial sprouting, tumor growth and metastasis and enhances the effects of conventional anti-neoplastic therapy. Aiming to understand how RhoJ is activated, we used a gain of function approach to identify constitutively active Rho guanine nucleotide exchange factors (RhoGEFs) able to promote RhoJ-dependent actin-driven membrane protrusions. We demonstrate that a membrane-anchored Intersectin 1 (ITSN1) DH-PH construct promotes endothelial cell sprouting via RhoJ. Mechanistically, this is controlled by direct interaction between the catalytic ITSN1 DH-PH module and RhoJ, it is sensitive to phosphorylation by focal adhesion kinase (FAK) and to endosomal trapping of the ITSN1 construct by dominant negative RhoJ. This ITSN1/RhoJ signaling axis is independent of Cdc42, a previously characterized ITSN1 target and a RhoJ close homologue. In conclusion, our results elucidate an ITSN1/RhoJ molecular link able to promote endothelial cell sprouting and set the basis to explore this signaling pathway in the context of tumor-induced angiogenesis.
Collapse
|
8
|
Abstract
Transcytosis of macromolecules through lung endothelial cells is the primary route of transport from the vascular compartment into the interstitial space. Endothelial transcytosis is mostly a caveolae-dependent process that combines receptor-mediated endocytosis, vesicle trafficking via actin-cytoskeletal remodeling, and SNARE protein directed vesicle fusion and exocytosis. Herein, we review the current literature on caveolae-mediated endocytosis, the role of actin cytoskeleton in caveolae stabilization at the plasma membrane, actin remodeling during vesicle trafficking, and exocytosis of caveolar vesicles. Next, we provide a concise summary of experimental methods employed to assess transcytosis. Finally, we review evidence that transcytosis contributes to the pathogenesis of acute lung injury. © 2020 American Physiological Society. Compr Physiol 10:491-508, 2020.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D. Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Correspondence to
| |
Collapse
|
9
|
Gowrisankaran S, Houy S, Del Castillo JGP, Steubler V, Gelker M, Kroll J, Pinheiro PS, Schwitters D, Halbsgut N, Pechstein A, van Weering JRT, Maritzen T, Haucke V, Raimundo N, Sørensen JB, Milosevic I. Endophilin-A coordinates priming and fusion of neurosecretory vesicles via intersectin. Nat Commun 2020; 11:1266. [PMID: 32152276 PMCID: PMC7062783 DOI: 10.1038/s41467-020-14993-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022] Open
Abstract
Endophilins-A are conserved endocytic adaptors with membrane curvature-sensing and -inducing properties. We show here that, independently of their role in endocytosis, endophilin-A1 and endophilin-A2 regulate exocytosis of neurosecretory vesicles. The number and distribution of neurosecretory vesicles were not changed in chromaffin cells lacking endophilin-A, yet fast capacitance and amperometry measurements revealed reduced exocytosis, smaller vesicle pools and altered fusion kinetics. The levels and distributions of the main exocytic and endocytic factors were unchanged, and slow compensatory endocytosis was not robustly affected. Endophilin-A’s role in exocytosis is mediated through its SH3-domain, specifically via a direct interaction with intersectin-1, a coordinator of exocytic and endocytic traffic. Endophilin-A not able to bind intersectin-1, and intersectin-1 not able to bind endophilin-A, resulted in similar exocytic defects in chromaffin cells. Altogether, we report that two endocytic proteins, endophilin-A and intersectin-1, are enriched on neurosecretory vesicles and regulate exocytosis by coordinating neurosecretory vesicle priming and fusion. Endophilins-A are conserved membrane-associated proteins required for endocytosis. Here, the authors report that endophilins-A also promote exocytosis of neurosecretory vesicles by coordinating priming and fusion through intersectin-1, independently of their roles in different types of endocytosis.
Collapse
Affiliation(s)
- Sindhuja Gowrisankaran
- European Neuroscience Institute-A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society Göttingen, Göttingen, Germany
| | - Sébastien Houy
- University of Copenhagen, Department for Neuroscience, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Johanna G Peña Del Castillo
- European Neuroscience Institute-A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society Göttingen, Göttingen, Germany
| | - Vicky Steubler
- European Neuroscience Institute-A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society Göttingen, Göttingen, Germany
| | - Monika Gelker
- European Neuroscience Institute-A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society Göttingen, Göttingen, Germany
| | - Jana Kroll
- European Neuroscience Institute-A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society Göttingen, Göttingen, Germany
| | - Paulo S Pinheiro
- University of Copenhagen, Department for Neuroscience, Faculty of Health and Medical Sciences, Copenhagen, Denmark.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Dirk Schwitters
- European Neuroscience Institute-A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society Göttingen, Göttingen, Germany
| | - Nils Halbsgut
- European Neuroscience Institute-A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society Göttingen, Göttingen, Germany
| | - Arndt Pechstein
- Leibniz Research Institute for Molecular Pharmacology, Molecular Physiology and Cell Biology Section, Berlin, Germany
| | - Jan R T van Weering
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tanja Maritzen
- Leibniz Research Institute for Molecular Pharmacology, Molecular Physiology and Cell Biology Section, Berlin, Germany
| | - Volker Haucke
- Leibniz Research Institute for Molecular Pharmacology, Molecular Physiology and Cell Biology Section, Berlin, Germany
| | - Nuno Raimundo
- Institute for Cellular Biochemistry, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Jakob B Sørensen
- University of Copenhagen, Department for Neuroscience, Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| | - Ira Milosevic
- European Neuroscience Institute-A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society Göttingen, Göttingen, Germany.
| |
Collapse
|
10
|
Malakooti N, Pritchard MA, Chen F, Yu Y, Sgambelloni C, Adlard PA, Finkelstein DI. The Long Isoform of Intersectin-1 Has a Role in Learning and Memory. Front Behav Neurosci 2020; 14:24. [PMID: 32161523 PMCID: PMC7052523 DOI: 10.3389/fnbeh.2020.00024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/03/2020] [Indexed: 01/15/2023] Open
Abstract
Down syndrome is caused by partial or total trisomy of chromosome 21 and is characterized by intellectual disability and other disorders. Although it is difficult to determine which of the genes over-expressed on the supernumerary chromosome contribute to a specific abnormality, one approach is to study each gene in isolation. This can be accomplished either by using an over-expression model to study increased gene dosage or a gene-deficiency model to study the biological function of the gene. Here, we extend our examination of the function of the chromosome 21 gene, ITSN1. We used mice in which the long isoform of intersectin-1 was knocked out (ITSN1-LKO) to understand how a lack of the long isoform of ITSN1 affects brain function. We examined cognitive and locomotor behavior as well as long term potentiation (LTP) and the mitogen-activated protein kinase (MAPK) and 3'-kinase-C2β-AKT (AKT) cell signaling pathways. We also examined the density of dendritic spines on hippocampal pyramidal neurons. We observed that ITSN1-LKO mice had deficits in learning and long term spatial memory. They also exhibited impaired LTP, and no changes in the levels of the phosphorylated extracellular signal-regulated kinase (ERK) 1/2. The amount of phosphorylated AKT was reduced in the ITSN1-LKO hippocampus and there was a decrease in the number of apical dendritic spines in hippocampal neurons. Our data suggest that the long isoform of ITSN1 plays a part in normal learning and memory.
Collapse
Affiliation(s)
- Nakisa Malakooti
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Melanie A Pritchard
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, Australia
| | - Feng Chen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Yong Yu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, Australia
| | - Charlotte Sgambelloni
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Paul A Adlard
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - David I Finkelstein
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Alternative splicing-derived intersectin1-L and intersectin1-S exert opposite function in glioma progression. Cell Death Dis 2019; 10:431. [PMID: 31160551 PMCID: PMC6547669 DOI: 10.1038/s41419-019-1668-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022]
Abstract
Intersectin1 (ITSN1) contains two isoforms: ITSN1-S and ITSN1-L, which is highly regulated by alternative splicing. However, the alteration of alternative splicing and its importance in cancer is still unknown. In this study, our transcriptome analysis by using a large glioma cohort indicated the two isoforms exerted opposite function in glioma progression. Our previous results had shown ITSN1-S could promote glioma development; however, the function of ITSN1-L remained unknown. In this study, we first confirmed that ITSN1-L exerted an inhibitory role in glioma progression both in vivo and in vitro, which was contrary to the function of ITSN1-S. In additional, we also elucidated the mechanisms of ITSN1-L in inhibiting tumor progression. First, we revealed ITSN1-L could interact with α-tubulin to promote HDAC6-dependent deacetylation of ac-tubulin leading to decreased cell motility. Second, ITSN1-L could attenuate cell-substrate adhesion through FAK/integrin β3 pathway. Third, ITSN1-L was able to strengthen cell-cell adhesion by upregulating N-cadherin expression and its re-localization to membrane by ANXA2 and TUBB3/TUBB4. In conclusion, we found for the first time that two isoforms produced by alternative splicing exerted opposite functions in glioma development. Therefore, upregulation of ITSN1-L expression as well as downregulation of ITSN1-S expression probably was a better strategy in glioma treatment. Our present study laid a foundation for the importance of alternative splicing in glioma progression and raised the possibility of controlling glioma development completely at an alternative splicing level to be a more effective strategy.
Collapse
|
12
|
Aung KT, Yoshioka K, Aki S, Ishimaru K, Takuwa N, Takuwa Y. The class II phosphoinositide 3-kinases PI3K-C2α and PI3K-C2β differentially regulate clathrin-dependent pinocytosis in human vascular endothelial cells. J Physiol Sci 2019; 69:263-280. [PMID: 30374841 PMCID: PMC10717547 DOI: 10.1007/s12576-018-0644-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/13/2018] [Indexed: 01/18/2023]
Abstract
Pinocytosis is an important fundamental cellular process that is used by the cell to transport fluid and solutes. Phosphoinositide 3-kinases (PI3Ks) regulate a diverse array of dynamic membrane events. However, it is not well-understood which PI3K isoforms are involved in specific mechanisms of pinocytosis. We performed knockdown studies of endogenous PI3K isoforms and clathrin heavy chain (CHC) mediated by small interfering RNA (siRNA). The results demonstrated that the class II PI3K PI3K-C2α and PI3K-C2β, but not the class I or III PI3K, were required for pinocytosis, based on an evaluation of fluorescein-5-isothiocyanate (FITC)-dextran uptake in endothelial cells. Pinocytosis was partially dependent on both clathrin and dynamin, and both PI3K-C2α and PI3K-C2β were required for clathrin-mediated-but not clathrin-non-mediated-FITC-dextran uptake at the step leading up to its delivery to early endosomes. Both PI3K-C2α and PI3K-C2β were co-localized with clathrin-coated pits and vesicles. However, PI3K-C2β, but not PI3K-C2α, was highly co-localized with actin filament-associated clathrin-coated structures and required for actin filament formation at the clathrin-coated structures. These results indicate that PI3K-C2α and PI3K-C2β play differential, indispensable roles in clathrin-mediated pinocytosis.
Collapse
Affiliation(s)
- Khin Thuzar Aung
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kazuaki Yoshioka
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8640, Japan
| | - Sho Aki
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kazuhiro Ishimaru
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8640, Japan
| | - Noriko Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8640, Japan
- Department of Health Science, Ishikawa Prefectural University, Kahoku, Ishikawa, 929-1210, Japan
| | - Yoh Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
13
|
Gryaznova T, Gubar O, Burdyniuk M, Kropyvko S, Rynditch A. WIP/ITSN1 complex is involved in cellular vesicle trafficking and formation of filopodia-like protrusions. Gene 2018; 674:49-56. [PMID: 29958948 DOI: 10.1016/j.gene.2018.06.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 01/12/2023]
Abstract
WIP (WASP interacting protein) together with N-WASP (neural Wiskott-Aldrich syndrome protein) regulates actin polymerization that is crucial for invadopodia and filopodia formation. Recently, we reported the WIP interaction with ITSN1 which is highly implicated in endo-/exocytosis, apoptosis, mitogenic signaling and cytoskeleton rearrangements. Here we demonstrate that the WIP/ITSN1 complex is involved in the transferrin receptor recycling and partially co-localizes with a marker of the fast recycling endosomes, RAB4. Moreover, ITSN1 recruits WIP to RAB4-positive vesicles upon overexpression. Our data indicate that WIP enhances the interaction of N-WASP with ITSN1 and promotes ITSN1/β-actin association. Moreover, the WIP/ITSN1-L complex facilitates formation of filopodia-like protrusions in MCF-7 cells. Thus, WIP/ITSN1 complex is involved in the cellular vesicle trafficking and actin-dependent membrane processes.
Collapse
Affiliation(s)
- Tetyana Gryaznova
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine.
| | - Olga Gubar
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Mariia Burdyniuk
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Sergii Kropyvko
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Alla Rynditch
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| |
Collapse
|
14
|
Dergai O, Dergai M, Rynditch A. Ubiquitin-ligase AIP4 controls differential ubiquitination and stability of isoforms of the scaffold protein ITSN1. FEBS Lett 2018; 592:2259-2267. [PMID: 29851086 DOI: 10.1002/1873-3468.13118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/12/2018] [Accepted: 05/17/2018] [Indexed: 11/07/2022]
Abstract
At present, the role of ubiquitination of cargoes internalized from the plasma membrane is better understood than the consequences of ubiquitination of proteins comprising the endocytic machinery. Here, we show that the E3 ubiquitin ligase AIP4/ITCH contributes to the differential ubiquitination of isoforms of the endocytic scaffold protein intersectin1 (ITSN1). The major isoform ITSN1-s is monoubiquitinated, whereas the minor one, ITSN1-22a undergoes a combination of mono- and oligoubiquitination. The monoubiquitination is required for ITSN1-s stability, whereas the oligoubiquitination of ITSN1-22a causes its proteasomal degradation. This explains the observed low abundance of the minor isoform in cells. Thus, different modes of ubiquitination regulated by AIP4 have opposite effects on ITSN1 isoform stability.
Collapse
Affiliation(s)
- Oleksandr Dergai
- Institute of Molecular Biology and Genetics, The National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Mykola Dergai
- Institute of Molecular Biology and Genetics, The National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Alla Rynditch
- Institute of Molecular Biology and Genetics, The National Academy of Science of Ukraine, Kyiv, Ukraine
| |
Collapse
|
15
|
Ioannou MS, Kulasekaran G, Fotouhi M, Morein JJ, Han C, Tse S, Nossova N, Han T, Mannard E, McPherson PS. Intersectin-s interaction with DENND2B facilitates recycling of epidermal growth factor receptor. EMBO Rep 2017; 18:2119-2130. [PMID: 29030480 DOI: 10.15252/embr.201744034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 11/09/2022] Open
Abstract
Epidermal growth factor (EGF) activates the EGF receptor (EGFR) and stimulates its internalization and trafficking to lysosomes for degradation. However, a percentage of EGFR undergoes ligand-independent endocytosis and is rapidly recycled back to the plasma membrane. Importantly, alterations in EGFR recycling are a common hallmark of cancer, and yet, our understanding of the machineries controlling the fate of endocytosed EGFR is incomplete. Intersectin-s is a multi-domain adaptor protein that is required for internalization of EGFR Here, we discover that intersectin-s binds DENND2B, a guanine nucleotide exchange factor for the exocytic GTPase Rab13, and this interaction promotes recycling of ligand-free EGFR to the cell surface. Intriguingly, upon EGF treatment, DENND2B is phosphorylated by protein kinase D and dissociates from intersectin-s, allowing for receptor targeting to degradation. Our study thus reveals a novel mechanism controlling the fate of internalized EGFR with important implications for cancer.
Collapse
Affiliation(s)
- Maria S Ioannou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gopinath Kulasekaran
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Maryam Fotouhi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Justin J Morein
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Chanshuai Han
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sarah Tse
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Nadya Nossova
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tony Han
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Erin Mannard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Hwang HW, Saito Y, Park CY, Blachère NE, Tajima Y, Fak JJ, Zucker-Scharff I, Darnell RB. cTag-PAPERCLIP Reveals Alternative Polyadenylation Promotes Cell-Type Specific Protein Diversity and Shifts Araf Isoforms with Microglia Activation. Neuron 2017; 95:1334-1349.e5. [PMID: 28910620 DOI: 10.1016/j.neuron.2017.08.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/07/2017] [Accepted: 08/11/2017] [Indexed: 12/23/2022]
Abstract
Alternative polyadenylation (APA) is increasingly recognized to regulate gene expression across different cell types, but obtaining APA maps from individual cell types typically requires prior purification, a stressful procedure that can itself alter cellular states. Here, we describe a new platform, cTag-PAPERCLIP, that generates APA profiles from single cell populations in intact tissues; cTag-PAPERCLIP requires no tissue dissociation and preserves transcripts in native states. Applying cTag-PAPERCLIP to profile four major cell types in the mouse brain revealed common APA preferences between excitatory and inhibitory neurons distinct from astrocytes and microglia, regulated in part by neuron-specific RNA-binding proteins NOVA2 and PTBP2. We further identified a role of APA in switching Araf protein isoforms during microglia activation, impacting production of downstream inflammatory cytokines. Our results demonstrate the broad applicability of cTag-PAPERCLIP and a previously undiscovered role of APA in contributing to protein diversity between different cell types and cellular states within the brain.
Collapse
Affiliation(s)
- Hun-Way Hwang
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA; Department of Pathology, University of Pittsburgh, School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15213, USA.
| | - Yuhki Saito
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Christopher Y Park
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Nathalie E Blachère
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Yoko Tajima
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Ilana Zucker-Scharff
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA.
| |
Collapse
|
17
|
Jeganathan N, Predescu D, Predescu S. Intersectin-1s deficiency in pulmonary pathogenesis. Respir Res 2017; 18:168. [PMID: 28874189 PMCID: PMC5585975 DOI: 10.1186/s12931-017-0652-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023] Open
Abstract
Intersectin-1s (ITSN-1s), a multidomain adaptor protein, plays a vital role in endocytosis, cytoskeleton rearrangement and cell signaling. Recent studies have demonstrated that deficiency of ITSN-1s is a crucial early event in pulmonary pathogenesis. In lung cancer, ITSN-1s deficiency impairs Eps8 ubiquitination and favors Eps8-mSos1 interaction which activates Rac1 leading to enhanced lung cancer cell proliferation, migration and metastasis. Restoring ITSN-1s deficiency in lung cancer cells facilitates cytoskeleton changes favoring mesenchymal to epithelial transformation and impairs lung cancer progression. ITSN-1s deficiency in acute lung injury leads to impaired endocytosis which leads to ubiquitination and degradation of growth factor receptors such as Alk5. This deficiency is counterbalanced by microparticles which, via paracrine effects, transfer Alk5/TGFβRII complex to non-apoptotic cells. In the presence of ITSN-1s deficiency, Alk5-restored cells signal via Erk1/2 MAPK pathway leading to restoration and repair of lung architecture. In inflammatory conditions such as pulmonary artery hypertension, ITSN-1s full length protein is cleaved by granzyme B into EHITSN and SH3A-EITSN fragments. The EHITSN fragment leads to pulmonary cell proliferation via activation of p38 MAPK and Elk-1/c-Fos signaling. In vivo, ITSN-1s deficient mice transduced with EHITSN plasmid develop pulmonary vascular obliteration and plexiform lesions consistent with pathological findings seen in severe pulmonary arterial hypertension. These novel findings have significantly contributed to understanding the mechanisms and pathogenesis involved in pulmonary pathology. As demonstrated in these studies, genetically modified ITSN-1s expression mouse models will be a valuable tool to further advance our understanding of pulmonary pathology and lead to novel targets for treating these conditions.
Collapse
Affiliation(s)
| | - Dan Predescu
- Department of Pharmacology and Division of Pulmonary and Critical Care Medicine, Rush University, 1750 W. Harrison Street, 1415 Jelke, Chicago, IL, 60612, USA
| | - Sanda Predescu
- Department of Pharmacology and Division of Pulmonary and Critical Care Medicine, Rush University Medical Center and Rush Medical College, 1750 W. Harrison Street, 1535 Jelke, Chicago, IL, 60612, USA
| |
Collapse
|
18
|
Lucarelli S, Delos Santos RC, Antonescu CN. Measurement of Epidermal Growth Factor Receptor-Derived Signals Within Plasma Membrane Clathrin Structures. Methods Mol Biol 2017; 1652:191-225. [PMID: 28791645 DOI: 10.1007/978-1-4939-7219-7_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The epidermal growth factor (EGF) receptor (EGFR) is an important regulator of cell growth, proliferation, survival, migration, and metabolism. EGF binding to EGFR triggers the activation of the receptor's intrinsic kinase activity, in turn eliciting the recruitment of many secondary signaling proteins and activation of downstream signals, such as the activation of phosphatidylinositol-3-kinase (PI3K) and Akt, a process requiring the phosphorylation of Gab1. While the identity of many signals that can be activated by EGFR has been revealed, how the spatiotemporal organization of EGFR signaling within cells controls receptor outcome remains poorly understood. Upon EGF binding at the plasma membrane, EGFR is internalized by clathrin-mediated endocytosis following recruitment to clathrin-coated pits (CCPs). Further, plasma membrane CCPs, but not EGFR internalization, are required for EGF-stimulated Akt phosphorylation. Signaling intermediates such as phosphorylated Gab1, which lead to Akt phosphorylation, are enriched within CCPs upon EGF stimulation. These findings indicate that some plasma membrane CCPs also serve as signaling microdomains required for certain facets of EGFR signaling and are enriched in key EGFR signaling intermediates. Understanding how the spatiotemporal organization of EGFR signals within CCP microdomains controls receptor signaling outcome requires imaging methods that can systematically resolve and analyze the properties of CCPs, EGFR and key signaling intermediates. Here, we describe methods using total internal reflection fluorescence microscopy imaging and analysis to systematically study the enrichment of EGFR and key EGFR-derived signals within CCPs.
Collapse
Affiliation(s)
- Stefanie Lucarelli
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3.,Graduate Program in Molecular Science, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3
| | - Ralph Christian Delos Santos
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3.,Graduate Program in Molecular Science, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3. .,Graduate Program in Molecular Science, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3. .,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8.
| |
Collapse
|
19
|
Herrero-Garcia E, O'Bryan JP. Intersectin scaffold proteins and their role in cell signaling and endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:23-30. [PMID: 27746143 DOI: 10.1016/j.bbamcr.2016.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/08/2016] [Indexed: 11/29/2022]
Abstract
Intersectins (ITSNs) are a family of multi-domain proteins involved in regulation of diverse cellular pathways. These scaffold proteins are well known for regulating endocytosis but also play important roles in cell signaling pathways including kinase regulation and Ras activation. ITSNs participate in several human cancers, such as neuroblastomas and glioblastomas, while their downregulation is associated with lung injury. Alterations in ITSN expression have been found in neurodegenerative diseases such as Down Syndrome and Alzheimer's disease. Binding proteins for ITSNs include endocytic regulatory factors, cytoskeleton related proteins (i.e. actin or dynamin), signaling proteins as well as herpes virus proteins. This review will summarize recent studies on ITSNs, highlighting the importance of these scaffold proteins in the aforementioned processes.
Collapse
Affiliation(s)
- Erika Herrero-Garcia
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - John P O'Bryan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
20
|
Jeganathan N, Predescu D, Zhang J, Sha F, Bardita C, Patel M, Wood S, Borgia JA, Balk RA, Predescu S. Rac1-mediated cytoskeleton rearrangements induced by intersectin-1s deficiency promotes lung cancer cell proliferation, migration and metastasis. Mol Cancer 2016; 15:59. [PMID: 27629044 PMCID: PMC5024437 DOI: 10.1186/s12943-016-0543-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022] Open
Abstract
Background The mechanisms involved in lung cancer (LC) progression are poorly understood making discovery of successful therapies difficult. Adaptor proteins play a crucial role in cancer as they link cell surface receptors to specific intracellular pathways. Intersectin-1s (ITSN-1s) is an important multidomain adaptor protein implicated in the pathophysiology of numerous pulmonary diseases. To date, the role of ITSN-1s in LC has not been studied. Methods Human LC cells, human LC tissue and A549 LC cells stable transfected with myc-ITSN-1s construct (A549 + ITSN-1s) were used in correlation with biochemical, molecular biology and morphological studies. In addition scratch assay with time lapse microscopy and in vivo xenograft tumor and mouse metastasis assays were performed. Results ITSN-1s, a prevalent protein of lung tissue, is significantly downregulated in human LC cells and LC tissue. Restoring ITSN-1s protein level decreases LC cell proliferation and clonogenic potential. In vivo studies indicate that immunodeficient mice injected with A549 + ITSN-1s cells develop less and smaller metastatic tumors compared to mice injected with A549 cells. Our studies also show that restoring ITSN-1s protein level increases the interaction between Cbl E3 ubiquitin ligase and Eps8 resulting in enhanced ubiquitination of the Eps8 oncoprotein. Subsequently, downstream unproductive assembly of the Eps8-mSos1 complex leads to impaired activation of the small GTPase Rac1. Impaired Rac1 activation mediated by ITSN-1s reorganizes the cytoskeleton (increased thick actin bundles and focal adhesion (FA) complexes as well as collapse of the vimentin filament network) in favor of decreased LC cell migration and metastasis. Conclusion ITSN-1s induced Eps8 ubiquitination and impaired Eps8-mSos1 complex formation, leading to impaired activation of Rac1, is a novel signaling mechanism crucial for abolishing the progression and metastatic potential of LC cells. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0543-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Niranjan Jeganathan
- Division of Pulmonary and Critical Care Medicine, Rush University Medical Center and Rush Medical College, 1750 W. Harrison Street, 299 Jelke South Center, Chicago, IL, 60612, USA.
| | - Dan Predescu
- Department of Pharmacology and Division of Pulmonary and Critical Care Medicine, Rush University, 1750 W. Harrison Street, 1415 Jelke, Chicago, IL, 60612, USA
| | - Jin Zhang
- Department of Pharmacology, Rush University, 1750 W. Harrison Street, 1533 Jelke, Chicago, IL, 60612, USA
| | - Fei Sha
- Department of Pharmacology, Rush University, 1750 W. Harrison Street, 1533 Jelke, Chicago, IL, 60612, USA
| | - Cristina Bardita
- Department of Pharmacology, Rush University, 1750 W. Harrison Street, 1537 Jelke, Chicago, IL, 60612, USA
| | - Monal Patel
- Department of Pharmacology, Rush University, 1750 W. Harrison Street, 1533 Jelke, Chicago, IL, 60612, USA
| | - Stephen Wood
- Department of Immunology, Rush University, 1735 W. Harrison Street, 663 Cohn, Chicago, IL, 60612, USA
| | - Jeffrey A Borgia
- Department of Biochemistry, Rush University, 1750 W. Harrison Street, 1415 Jelke, Chicago, IL, 60612, USA
| | - Robert A Balk
- Division of Pulmonary and Critical Care Medicine, Rush University Medical Center and Rush Medical College, 1750 W. Harrison Street, 293 Jelke, Chicago, IL, 60612, USA
| | - Sanda Predescu
- Department of Pharmacology and Division of Pulmonary and Critical Care Medicine, Rush University Medical Center and Rush Medical College, 1750 W. Harrison Street, 1535 Jelke, Chicago, IL, 60612, USA
| |
Collapse
|
21
|
Kibria KMK, Hossain MU, Oany AR, Ahmad SAI. Novel insights on ENTH domain-containing proteins in apicomplexan parasites. Parasitol Res 2016; 115:2191-202. [PMID: 26922178 DOI: 10.1007/s00436-016-4961-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/17/2016] [Indexed: 11/27/2022]
Abstract
The phylum Apicomplexa includes a large group of early branching eukaryotes having significant medical and economical importance. The molecular machinery responsible for protein trafficking is poorly understood in these apicomplexans. One of the most important proteins involved in clathrin-mediated protein trafficking is Epsin, which contains ENTH domain, a conserved domain crucial for membrane bending leading to vesicle formation. We undertook homology searching and phylogenetic analyses to produce a rigorously annotated set of Epsin homologs retrieved from diverse apicomplexan genomes. Genomic and phylogenetic comparisons revealed that apicomplexans contain unusual Epsin homologs that are distinct from those observed in mammals and yeast. Although there are four Epsin genes in mammalian system and five in the yeast genome, apicomplexan parasites consist only a single Epsin gene. The apicomplexan Epsin contains the conserved ENTH domain consisting of phosphoinositide (PtdIns)-binding sites which indicate about their functional significance in the formation of vesicles; however, the absence of ubiquitin-interacting motif (UIM) suggests a possible different mechanism for protein trafficking. The existence of dileucine motif in Plasmodium, Cryptosporidum parvum and Eimeria tenella Epsins might solve their functionality while lacking a lot of conserved motifs as this motif is known to interact with different adaptor protein complexes (AP1, AP2 and AP3). Other Epsin homologs are also shown to have different peptide motifs reported for possible interaction with α-ear appendage, γ-ear appendage and EH domain present in different adaptors. Bioinformatic and phylogenetic analyses suggest that the apicomplexan Epsins have unusual functionality from that of the mammalian Epsins. This detailed study may greatly facilitate future molecular cell biological investigation for the role of Epsins in these parasites.
Collapse
Affiliation(s)
- K M Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh.
| | - Mohammad Uzzal Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Arafat Rahman Oany
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Shah Adil Ishtiyaq Ahmad
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| |
Collapse
|
22
|
Yang X, Yan F, He Z, Liu S, Cheng Y, Wei K, Gan S, Yuan J, Wang S, Xiao Y, Ren K, Liu N, Hu X, Ding X, Hu X, Xiang S. ITSN2L Interacts with and Negatively Regulates RABEP1. Int J Mol Sci 2015; 16:28242-54. [PMID: 26633357 PMCID: PMC4691038 DOI: 10.3390/ijms161226091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 01/26/2023] Open
Abstract
Intersectin-2Long (ITSN2L) is a multi-domain protein participating in endocytosis and exocytosis. In this study, RABEP1 was identified as a novel ITSN2L interacting protein using a yeast two-hybrid screen from a human brain cDNA library and this interaction, specifically involving the ITSN2L CC domain and RABEP1 CC3 regions, was further confirmed by in vitro GST (glutathione-S-transferase) pull-down and in vivo co-immunoprecipitation assays. Corroboratively, we observed that these two proteins co-localize in the cytoplasm of mammalian cells. Furthermore, over-expression of ITSN2L promotes RABEP1 degradation and represses RABEP1-enhanced endosome aggregation, indicating that ITSN2L acts as a negative regulator of RABEP1. Finally, we showed that ITSN2L and RABEP1 play opposite roles in regulating endocytosis. Taken together, our results indicate that ITSN2L interacts with RABEP1 and stimulates its degradation in regulation of endocytosis.
Collapse
Affiliation(s)
- Xiaoxu Yang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Feng Yan
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Zhicheng He
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Shan Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Yeqing Cheng
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Ke Wei
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Shiquan Gan
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Jing Yuan
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Shang Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Ye Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Kaiqun Ren
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Ning Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Xiaofeng Ding
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Xingwang Hu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410081, China.
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
23
|
Gryaznova T, Kropyvko S, Burdyniuk M, Gubar O, Kryklyva V, Tsyba L, Rynditch A. Intersectin adaptor proteins are associated with actin-regulating protein WIP in invadopodia. Cell Signal 2015; 27:1499-508. [PMID: 25797047 DOI: 10.1016/j.cellsig.2015.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/15/2015] [Indexed: 01/21/2023]
Abstract
Invasive cancer cells form actin-rich membrane protrusions called invadopodia that degrade extracellular matrix and facilitate cell invasion and metastasis. WIP (WASP-interacting protein) together with N-WASP (neural Wiskott-Aldrich syndrome protein) are localized in invadopodia and play a crucial role in their formation. Here we show that WIP interacts with endocytic adaptor proteins of the intersectin (ITSN) family, ITSN1 and ITSN2. The interaction is mediated by the SH3 domains of ITSNs and the middle part of the WIP proline-rich motifs. We have also demonstrated that ITSN1, WIP and N-WASP can form a complex in cells. Endogenous ITSN1 and ITSN2 are located in invasive protrusions of MDA-MB-231 breast cancer cell line. Moreover, data from immunofluorescent analysis revealed co-localization of ITSN1 and WIP at sites of invadopodia formation and in clathrin-coated pits. Together, these findings provide insights into the molecular mechanisms of invadopodia formation and identify ITSNs as scaffold proteins involved in this process.
Collapse
Affiliation(s)
- Tetyana Gryaznova
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine.
| | - Sergii Kropyvko
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Mariia Burdyniuk
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Olga Gubar
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Valentyna Kryklyva
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Liudmyla Tsyba
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Alla Rynditch
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| |
Collapse
|
24
|
Bradford MK, Whitworth K, Wendland B. Pan1 regulates transitions between stages of clathrin-mediated endocytosis. Mol Biol Cell 2015; 26:1371-85. [PMID: 25631817 PMCID: PMC4454182 DOI: 10.1091/mbc.e14-11-1510] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Saccharomyces cerevisiae endocytic protein Pan1 is critical for coat interactions during three transitions of the endocytic pathway. Pan1 depletion arrests endocytosis and causes actin misregulation, leading to actin flares that are connected to the coat but not the membrane. The Pan1 central region is critical for endocytic and essential functions. Endocytosis is a well-conserved process by which cells invaginate small portions of the plasma membrane to create vesicles containing extracellular and transmembrane cargo proteins. Dozens of proteins and hundreds of specific binding interactions are needed to coordinate and regulate these events. Saccharomyces cerevisiae is a powerful model system with which to study clathrin-mediated endocytosis (CME). Pan1 is believed to be a scaffolding protein due to its interactions with numerous proteins that act throughout the endocytic process. Previous research characterized many Pan1 binding interactions, but due to Pan1's essential nature, the exact mechanisms of Pan1's function in endocytosis have been difficult to define. We created a novel Pan1-degron allele, Pan1-AID, in which Pan1 can be specifically and efficiently degraded in <1 h upon addition of the plant hormone auxin. The loss of Pan1 caused a delay in endocytic progression and weakened connections between the coat/actin machinery and the membrane, leading to arrest in CME. In addition, we determined a critical role for the central region of Pan1 in endocytosis and viability. The regions important for endocytosis and viability can be separated, suggesting that Pan1 may have a distinct role in the cell that is essential for viability.
Collapse
Affiliation(s)
| | - Karen Whitworth
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Beverly Wendland
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
25
|
Humphries AC, Donnelly SK, Way M. Cdc42 and the Rho GEF intersectin-1 collaborate with Nck to promote N-WASP-dependent actin polymerisation. J Cell Sci 2014; 127:673-85. [PMID: 24284073 DOI: 10.1242/jcs.141366] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vaccinia virus enhances its cell-to-cell spread by inducing Arp2/3-dependent actin polymerisation. This process is initiated by Src- and Abl-mediated phosphorylation of the viral transmembrane protein A36, leading to recruitment of a signalling network consisting of Grb2, Nck, WIP and N-WASP. Nck is a potent activator of N-WASP-Arp2/3-dependent actin polymerisation. However, recent observations demonstrate that an interaction between Nck and N-WASP is not required for vaccinia actin tail formation. We found that Cdc42 cooperates with Nck to promote actin tail formation by stabilising N-WASP beneath the virus. Cdc42 activation is mediated by the Rho guanine-nucleotide-exchange factor (GEF) intersectin-1 (ITSN1), which is recruited to the virus prior to its actin-based motility. Moreover, Cdc42, ITSN1 and N-WASP function collaboratively in a feed-forward loop to promote vaccinia-induced actin polymerisation. Outside the context of infection, we demonstrate that ITSN1 also functions together with Cdc42, Nck and N-WASP during phagocytosis mediated by the Fc gamma receptor. Our observations suggest that ITSN1 is an important general regulator of Cdc42-, Nck- and N-WASP-dependent actin polymerisation.
Collapse
Affiliation(s)
- Ashley C Humphries
- Cell Motility Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | |
Collapse
|
26
|
Bardita C, Predescu D, Justice MJ, Petrache I, Predescu S. In vivo knockdown of intersectin-1s alters endothelial cell phenotype and causes microvascular remodeling in the mouse lungs. Apoptosis 2013; 18:57-76. [PMID: 23054079 PMCID: PMC3543613 DOI: 10.1007/s10495-012-0762-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intersectin-1s (ITSN-1s) is a general endocytic protein involved in regulating lung vascular permeability and endothelial cells (ECs) survival, via MEK/Erk1/2MAPK signaling. To investigate the in vivo effects of ITSN-1s deficiency and the resulting ECs apoptosis on pulmonary vasculature and lung homeostasis, we used an ITSN-1s knocked-down (KDITSN) mouse generated by repeated delivery of a specific siRNA targeting ITSN-1 gene (siRNAITSN). Biochemical and histological analyses as well as electron microscopy (EM) revealed that acute KDITSN [3-days (3d) post-siRNAITSN treatment] inhibited Erk1/2MAPK pro-survival signaling, causing significant ECs apoptosis and lung injury; at 10d of KDITSN, caspase-3 activation was at peak, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive ECs showed 3.4-fold increase, the mean linear intercept (MLI) showed 48 % augment and pulmonary microvessel density as revealed by aquaporin-1 staining (AQP-1) decreased by 30 %, all compared to controls; pulmonary function was altered. Concomitantly, expression of several growth factors known to activate Erk1/2MAPK and suppress Bad pro-apoptotic activity increased. KDITSN altered Smads activity, downstream of the transforming growth factor beta-receptor-1 (TβR1), as shown by subcellular fractionation and immunoblot analyses. Moreover, 24d post-siRNAITSN, surviving ECs became hyper-proliferative and apoptotic-resistant against ITSN-1s deficiency, as demonstrated by EM imaging, 5-bromo-deoxyuridine (BrdU) incorporation and Bad-Ser112/155 phosphorylation, respectively, leading to increased microvessel density and repair of the injured lungs, as well as matrix deposition. In sum, ECs endocytic dysfunction and apoptotic death caused by KDITSN contribute to the initial lung injury and microvascular loss, followed by endothelial phenotypic changes and microvascular remodeling in the remaining murine pulmonary microvascular bed.
Collapse
Affiliation(s)
- Cristina Bardita
- Department of Pharmacology, Rush University, 1735 W. Harrison St., Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
27
|
Matalon O, Reicher B, Barda-Saad M. Wiskott-Aldrich syndrome protein - dynamic regulation of actin homeostasis: from activation through function and signal termination in T lymphocytes. Immunol Rev 2013; 256:10-29. [DOI: 10.1111/imr.12112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| |
Collapse
|
28
|
Rajasekharan S, Rana J, Gulati S, Sharma SK, Gupta V, Gupta S. Predicting the host protein interactors of Chandipura virus using a structural similarity-based approach. Pathog Dis 2013; 69:29-35. [PMID: 23847124 DOI: 10.1111/2049-632x.12064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/14/2013] [Accepted: 06/26/2013] [Indexed: 01/18/2023] Open
Abstract
Chandipura virus (CHPV), alike other pathogens, exploits the cellular infrastructure of their hosts through complex network of interactions for successful infection. CHPV being a recently emerged pediatric encephalitic virus, the mechanisms involved in the establishment of viral persistence are still ill defined. Because the protein interface between CHPV and its host provides one means by which the virus invades and seize control of their human host machinery, the authors in this study have employed computational methods to create a network of putative protein-protein interactions between CHPV and its human host to shed light on the hitherto less-known CHPV biology. On the basis of the 2105 potential interactions predicted among 1650 human proteins and the five proteins of CHPV, the authors decipher the probable mode by which the virus manipulates the biological pathways of its host toward its own end and replicates while evading the immune system. Identification of such conserved set of putative interactions that allow the virus to take control of the host has the potential to deepen our understanding of the virus-specific remodeling processes of the host cell and illuminate new arenas of disease intervention.
Collapse
Affiliation(s)
- Sreejith Rajasekharan
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Jyoti Rana
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Sahil Gulati
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Sanjeev K Sharma
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi South Campus (UDSC), Benito Juarez Marg, New Delhi, India
| | - Sanjay Gupta
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| |
Collapse
|
29
|
Patel M, Predescu D, Tandon R, Bardita C, Pogoriler J, Bhorade S, Wang M, Comhair S, Ryan-Hemnes A, Chen J, Machado R, Husain A, Erzurum S, Predescu S. A novel p38 mitogen-activated protein kinase/Elk-1 transcription factor-dependent molecular mechanism underlying abnormal endothelial cell proliferation in plexogenic pulmonary arterial hypertension. J Biol Chem 2013; 288:25701-25716. [PMID: 23893408 DOI: 10.1074/jbc.m113.502674] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plexiform lesions (PLs), the hallmark of plexogenic pulmonary arterial hypertension (PAH), contain phenotypically altered, proliferative endothelial cells (ECs). The molecular mechanism that contributes to EC proliferation and formation of PLs is poorly understood. We now show that a decrease in intersectin-1s (ITSN-1s) expression due to granzyme B (GrB) cleavage during inflammation associated with PAH and the high p38/Erk1/2(MAPK) activity ratio caused by the GrB/ITSN cleavage products lead to EC proliferation and selection of a proliferative/plexiform EC phenotype. We used human pulmonary artery ECs of PAH subjects (EC(PAH)), paraffin-embedded and frozen human lung tissue, and animal models of PAH in conjunction with microscopy imaging, biochemical, and molecular biology approaches to demonstrate that GrB cleaves ITSN-1s, a prosurvival protein of lung ECs, and generates two biologically active fragments, an N-terminal fragment (GrB-EH(ITSN)) with EC proliferative potential and a C-terminal product with dominant negative effects on Ras/Erk1/2. The proliferative potential of GrB-EH(ITSN) is mediated via sustained phosphorylation of p38(MAPK) and Elk-1 transcription factor and abolished by chemical inhibition of p38(MAPK). Moreover, lung tissue of PAH animal models and human specimens and EC(PAH) express lower levels of ITSN-1s compared with controls and the GrB-EH(ITSN) cleavage product. Moreover, GrB immunoreactivity is associated with PLs in PAH lungs. The concurrent expression of the two cleavage products results in a high p38/Erk1/2(MAPK) activity ratio, which is critical for EC proliferation. Our findings identify a novel GrB-EH(ITSN)-dependent pathogenic p38(MAPK)/Elk-1 signaling pathway involved in the poorly understood process of PL formation in severe PAH.
Collapse
Affiliation(s)
- Monal Patel
- From the Departments of Pharmacology and Medicine, Vascular Biology, and Pulmonary and Critical Care Medicine, Rush University Medical Center, Chicago, Illinois 60612
| | - Dan Predescu
- From the Departments of Pharmacology and Medicine, Vascular Biology, and Pulmonary and Critical Care Medicine, Rush University Medical Center, Chicago, Illinois 60612
| | - Rajive Tandon
- From the Departments of Pharmacology and Medicine, Vascular Biology, and Pulmonary and Critical Care Medicine, Rush University Medical Center, Chicago, Illinois 60612
| | - Cristina Bardita
- From the Departments of Pharmacology and Medicine, Vascular Biology, and Pulmonary and Critical Care Medicine, Rush University Medical Center, Chicago, Illinois 60612
| | | | - Sangeeta Bhorade
- Center for Lung Transplant, University of Chicago, Chicago, Illinois 60637
| | - Minhua Wang
- From the Departments of Pharmacology and Medicine, Vascular Biology, and Pulmonary and Critical Care Medicine, Rush University Medical Center, Chicago, Illinois 60612
| | - Suzy Comhair
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Anna Ryan-Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee 37240, and
| | - Jiwang Chen
- Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois, Chicago, Illinois 60612
| | - Roberto Machado
- Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois, Chicago, Illinois 60612
| | | | - Serpil Erzurum
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Sanda Predescu
- From the Departments of Pharmacology and Medicine, Vascular Biology, and Pulmonary and Critical Care Medicine, Rush University Medical Center, Chicago, Illinois 60612,.
| |
Collapse
|
30
|
Masud Rana AYK, Tsujioka M, Miyagishima S, Ueda M, Yumura S. Dynamin contributes to cytokinesis by stabilizing actin filaments in the contractile ring. Genes Cells 2013; 18:621-35. [PMID: 23679940 DOI: 10.1111/gtc.12060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/01/2013] [Indexed: 02/03/2023]
Abstract
Dynamin has been proposed to play an important role in cytokinesis, although the nature of its contribution has remained unclear. Dictyostelium discoideum has five dynamin-like proteins: DymA, DymB, DlpA, DlpB and DlpC. Cells mutant for dymA, dlpA or dlpB presented defects in cytokinesis that resulted in multinucleation when the cells were cultured in suspension. However, the cells could divide normally when attached to the substratum; this latter process depends on traction-mediated cytokinesis B. A dynamin GTPase inhibitor also blocked cytokinesis in suspension, suggesting an important role for dynamin in cytokinesis A, which requires a contractile ring powered by myosin II. Myosin II did not properly localize to the cleavage furrow in dynamin mutant cells, and the furrow shape was distorted. DymA and DlpA were associated with actin filaments at the furrow. Fluorescence recovery after photobleaching and a DNase I binding assay showed that actin filaments in the contractile ring were significantly fragmented in mutant cells. Dynamin is therefore involved in the stabilization of actin filaments in the furrow, which, in turn, maintain proper myosin II organization. We conclude that the lack of these dynamins disrupts proper actomyosin organization and thereby disables cytokinesis A.
Collapse
Affiliation(s)
- A Y K Masud Rana
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Japan
| | | | | | | | | |
Collapse
|
31
|
Bhattacharyya S, Mulherkar N, Chandran K. Endocytic pathways involved in filovirus entry: advances, implications and future directions. Viruses 2013; 4:3647-64. [PMID: 23342373 PMCID: PMC3528284 DOI: 10.3390/v4123647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Detailed knowledge of the host-virus interactions that accompany filovirus entry into cells is expected to identify determinants of viral virulence and host range, and to yield targets for the development of antiviral therapeutics. While it is generally agreed that filovirus entry into the host cytoplasm requires viral internalization into acidic endosomal compartments and proteolytic cleavage of the envelope glycoprotein by endo/lysosomal cysteine proteases, our understanding of the specific endocytic pathways co-opted by filoviruses remains limited. This review addresses the current knowledge on cellular endocytic pathways implicated in filovirus entry, highlights the consensus as well as controversies, and discusses important remaining questions.
Collapse
Affiliation(s)
- Suchita Bhattacharyya
- Department of Atomic Energy-Centre for Excellence in Basic Sciences, University of Mumbai, Health Centre Building, Vidyanagari, Kalina, Santacruz East, Mumbai 400098, India; E-Mail:
| | - Nirupama Mulherkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA; E-Mail:
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-718-430-8851
| |
Collapse
|
32
|
Emerging roles for intersectin (ITSN) in regulating signaling and disease pathways. Int J Mol Sci 2013; 14:7829-52. [PMID: 23574942 PMCID: PMC3645719 DOI: 10.3390/ijms14047829] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 01/10/2023] Open
Abstract
Intersectins (ITSNs) represent a family of multi-domain adaptor proteins that regulate endocytosis and cell signaling. ITSN genes are highly conserved and present in all metazoan genomes examined thus far. Lower eukaryotes have only one ITSN gene, whereas higher eukaryotes have two ITSN genes. ITSN was first identified as an endocytic scaffold protein, and numerous studies reveal a conserved role for ITSN in endocytosis. Subsequently, ITSNs were found to regulate multiple signaling pathways including receptor tyrosine kinases (RTKs), GTPases, and phosphatidylinositol 3-kinase Class 2beta (PI3KC2β). ITSN has also been implicated in diseases such as Down Syndrome (DS), Alzheimer Disease (AD), and other neurodegenerative disorders. This review summarizes the evolutionary conservation of ITSN, the latest research on the role of ITSN in endocytosis, the emerging roles of ITSN in regulating cell signaling pathways, and the involvement of ITSN in human diseases such as DS, AD, and cancer.
Collapse
|
33
|
Gubar O, Morderer D, Tsyba L, Croisé P, Houy S, Ory S, Gasman S, Rynditch A. Intersectin: The Crossroad between Vesicle Exocytosis and Endocytosis. Front Endocrinol (Lausanne) 2013; 4:109. [PMID: 23986746 PMCID: PMC3753573 DOI: 10.3389/fendo.2013.00109] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/09/2013] [Indexed: 12/24/2022] Open
Abstract
Intersectins (ITSNs) are a family of highly conserved proteins with orthologs from nematodes to mammals. In vertebrates, ITSNs are encoded by two genes (itsn1 and itsn2), which act as scaffolds that were initially discovered as proteins involved in endocytosis. Further investigation demonstrated that ITSN1 is also implicated in several other processes including regulated exocytosis, thereby suggesting a role for ITSN1 in the coupling between exocytosis and endocytosis in excitatory cells. Despite a high degree of conservation amongst orthologs, ITSN function is not so well preserved as they have acquired new properties during evolution. In this review, we will discuss the role of ITSN1 and its orthologs in exo- and endocytosis, in particular in neurons and neuroendocrine cells.
Collapse
Affiliation(s)
- Olga Gubar
- State Key Laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
- Department of Functional Genomics, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique-Unité Propre de Recherche 3212, Université de Strasbourg, Strasbourg, France
| | - Dmytro Morderer
- State Key Laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
- Department of Functional Genomics, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
| | - Lyudmila Tsyba
- Department of Functional Genomics, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
| | - Pauline Croisé
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique-Unité Propre de Recherche 3212, Université de Strasbourg, Strasbourg, France
| | - Sébastien Houy
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique-Unité Propre de Recherche 3212, Université de Strasbourg, Strasbourg, France
| | - Stéphane Ory
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique-Unité Propre de Recherche 3212, Université de Strasbourg, Strasbourg, France
| | - Stéphane Gasman
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique-Unité Propre de Recherche 3212, Université de Strasbourg, Strasbourg, France
| | - Alla Rynditch
- State Key Laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
- Department of Functional Genomics, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
- *Correspondence: Alla Rynditch, Department of Functional Genomics, Institute of Molecular Biology and Genetics, 150, Zabolotnogo Street, 03680 Kyiv-143, Ukraine e-mail:
| |
Collapse
|
34
|
Zhang W, Shen Y, Xiong G, Guo Y, Deng L, Li B, Yang J, Qi C. Crystal structure of human Intersectin-2L C2 domain. Biochem Biophys Res Commun 2012; 431:76-80. [PMID: 23274495 DOI: 10.1016/j.bbrc.2012.12.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/19/2012] [Indexed: 01/17/2023]
Abstract
Intersectin-2L (ITSN-2L) is a long isoform of ITSN family, which is a multimodule scaffolding protein functioning in membrane-associated molecular trafficking and signal transduction pathways. ITSN-2L possesses a carboxy-terminal extension encoding a Dbl homology domain (DH), a pleckstrin homology domain (PH) and a C2 domain, suggesting that it could act as a guanine nucleotide exchange factor for Rho-like GTPases. But the role of C2 domain is obscure in this process. Here we report the crystal structure of human ITSN-2L C2 domain at 1.56Å resolution. The sequence and structural alignment of ITSN-2L C2 domain with other members of C2 domain protein family indicate its vital cellular roles in membrane trafficking, the generation of lipid-second messengers and activation of GTPases. Moreover, our data show the possible roles of ITSN-2L C2 domain in regulating the activity of Cdc42.
Collapse
Affiliation(s)
- Wei Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Huazhong Normal University, Wuhan 430079, PR China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wong KA, Russo A, Wang X, Chen YJ, Lavie A, O'Bryan JP. A new dimension to Ras function: a novel role for nucleotide-free Ras in Class II phosphatidylinositol 3-kinase beta (PI3KC2β) regulation. PLoS One 2012; 7:e45360. [PMID: 23028960 PMCID: PMC3441633 DOI: 10.1371/journal.pone.0045360] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/14/2012] [Indexed: 12/31/2022] Open
Abstract
The intersectin 1 (ITSN1) scaffold stimulates Ras activation on endocytic vesicles without activating classic Ras effectors. The identification of Class II phosphatidylinositol 3-kinase beta, PI3KC2β, as an ITSN1 target on vesicles and the presence of a Ras binding domain (RBD) in PI3KC2β suggests a role for Ras in PI3KC2β activation. Here, we demonstrate that nucleotide-free Ras negatively regulates PI3KC2β activity. PI3KC2β preferentially interacts in vivo with dominant-negative (DN) Ras, which possesses a low affinity for nucleotides. PI3KC2β interaction with DN Ras is disrupted by switch 1 domain mutations in Ras as well as RBD mutations in PI3KC2β. Using purified proteins, we demonstrate that the PI3KC2β-RBD directly binds nucleotide-free Ras in vitro and that this interaction is not disrupted by nucleotide addition. Finally, nucleotide-free Ras but not GTP-loaded Ras inhibits PI3KC2β lipid kinase activity in vitro. Our findings indicate that PI3KC2β interacts with and is regulated by nucleotide-free Ras. These data suggest a novel role for nucleotide-free Ras in cell signaling in which PI3KC2β stabilizes nucleotide-free Ras and that interaction of Ras and PI3KC2β mutually inhibit one another.
Collapse
Affiliation(s)
- Katy A. Wong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Angela Russo
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Xuerong Wang
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Yun-Ju Chen
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Arnon Lavie
- Cancer Center, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - John P. O'Bryan
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Cancer Center, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
36
|
Morderer D, Nikolaienko O, Skrypkina I, Cherkas V, Tsyba L, Belan P, Rynditch A. Endocytic adaptor protein intersectin 1 forms a complex with microtubule stabilizer STOP in neurons. Gene 2012; 505:360-4. [DOI: 10.1016/j.gene.2012.06.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/18/2012] [Indexed: 12/17/2022]
|
37
|
Moore FB, Baleja JD. Molecular remodeling mechanisms of the neural somatodendritic compartment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1720-30. [PMID: 22705351 DOI: 10.1016/j.bbamcr.2012.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 12/28/2022]
Abstract
Neuronal cells use the process of vesicle trafficking to manipulate the populations of neurotransmitter receptors and other membrane proteins. Long term potentiation (LTP) is a long-lived increase in synaptic strength between neurons and increases postsynaptic dendritic spine size and the concentration of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate-type glutamate receptor (AMPAR) located in the postsynaptic density. AMPAR is removed from the cell surface via clathrin-mediated endocytosis. While the adaptor protein 2 (AP2) complex of endocytosis seems to have the components needed to allow temporal and spatial regulations of internalization, many accessory proteins are involved, such as epidermal growth factor receptor phosphorylation substrate 15 (Eps15). A sequence of repeats in the Eps15 protein is known as the Eps15 homology (EH) domain. It has affinity for asparagine-proline-phenylalanine (NPF) sequences that are contained within vesicle trafficking proteins such as epsin, Rab11 family interacting protein 2 (Rab11-FIP2), and Numb. After endocytosis, a pool of AMPAR is stored in the endosomal recycling compartment that can be transported to the dendritic spine surface upon stimulation during LTP for lateral diffusion into the postsynaptic density. Rab11 and the Eps15 homologue EHD1 are involved in receptor recycling. EHD family members are also involved in transcytosis of the neuronal cell adhesion molecule neuron-glia cell adhesion molecule (NgCAM) from the somatodendritic compartment to the axon. Neurons have a unique morphology comprising many projections of membrane that is constructed in part by the effects of the Eps15 homologue, intersectin. Morphogenesis in the somatodendritic compartment is becoming better understood, but there is still much exciting territory to explore, especially regarding the roles of various EH domain-NPF interactions in endocytic and recycling processes.
Collapse
Affiliation(s)
- Fletcher B Moore
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
38
|
Teckchandani A, Mulkearns EE, Randolph TW, Toida N, Cooper JA. The clathrin adaptor Dab2 recruits EH domain scaffold proteins to regulate integrin β1 endocytosis. Mol Biol Cell 2012; 23:2905-16. [PMID: 22648170 PMCID: PMC3408417 DOI: 10.1091/mbc.e11-12-1007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endocytic adaptor proteins facilitate cargo recruitment and clathrin-coated pit nucleation. The prototypical clathrin adaptor AP2 mediates cargo recruitment, maturation, and scission of the pit by binding cargo, clathrin, and accessory proteins, including the Eps-homology (EH) domain proteins Eps15 and intersectin. However, clathrin-mediated endocytosis of some cargoes proceeds efficiently in AP2-depleted cells. We found that Dab2, another endocytic adaptor, also binds to Eps15 and intersectin. Depletion of EH domain proteins altered the number and size of clathrin structures and impaired the endocytosis of the Dab2- and AP2-dependent cargoes, integrin β1 and transferrin receptor, respectively. To test the importance of Dab2 binding to EH domain proteins for endocytosis, we mutated the EH domain-binding sites. This mutant localized to clathrin structures with integrin β1, AP2, and reduced amounts of Eps15. Of interest, although integrin β1 endocytosis was impaired, transferrin receptor internalization was unaffected. Surprisingly, whereas clathrin structures contain both Dab2 and AP2, integrin β1 and transferrin localize in separate pits. These data suggest that Dab2-mediated recruitment of EH domain proteins selectively drives the internalization of the Dab2 cargo, integrin β1. We propose that adaptors may need to be bound to their cargo to regulate EH domain proteins and internalize efficiently.
Collapse
Affiliation(s)
- Anjali Teckchandani
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
39
|
Knezevic I, Predescu D, Bardita C, Wang M, Sharma T, Keith B, Neamu R, Malik AB, Predescu S. Regulation of dynamin-2 assembly-disassembly and function through the SH3A domain of intersectin-1s. J Cell Mol Med 2012; 15:2364-76. [PMID: 21129155 PMCID: PMC3072443 DOI: 10.1111/j.1582-4934.2010.01226.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Intersectin-1s (ITSN-1s), a five Src homology 3 (SH3) domain-containing protein, is critically required for caveolae and clathrin-mediated endocytosis (CME), due to its interactions with dynamin (dyn). Of the five SH3A-E domains, SH3A is unique because of its high affinity for dyn and potent inhibition of CME. However, the molecular mechanism by which SH3A integrates in the overall function of ITSN-1s to regulate the endocytic process is not understood. Using biochemical and functional approaches as well as high-resolution electron microscopy, we show that SH3A exogenously expressed in human lung endothelial cells caused abnormal endocytic structures, distorted caveolae clusters, frequent staining-dense rings around the caveolar necks and 60% inhibition of caveolae internalization. In vitro studies further revealed that SH3A, similar to full-length ITSN-1s stimulates dyn2 oligomerization and guanosine triphosphatase (GTP)ase activity, effects not detected when other SH3 domains of ITSN-1s were used as controls. Strikingly, in the presence of SH3A, dyn2-dyn2 interactions are stabilized and despite continuous GTP hydrolysis, dyn2 oligomers cannot disassemble. SH3A may hold up caveolae release from the plasma membrane and formation of free-transport vesicles, by prolonging the lifetime of assembled dyn2. Altogether, our results indicate that ITSN-1s, via its SH3A has the unique ability to regulate dyn2 assembly-disassembly and function during endocytosis.
Collapse
Affiliation(s)
- Ivana Knezevic
- Department of Pharmacology, Rush University Medical Center, Medical College, Vascular Biology Section, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Law AHY, Chow CM, Jiang L. Secretory carrier membrane proteins. PROTOPLASMA 2012; 249:269-83. [PMID: 21633931 DOI: 10.1007/s00709-011-0295-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 05/22/2011] [Indexed: 05/24/2023]
Abstract
Secretory carrier membrane proteins (SCAMPs) are a family of integral membrane proteins that play roles in mediating exocytosis in animal cells. However, relatively little is known about the subcellular localization, trafficking, and function of SCAMPs in plants. Several recent studies in plant cells indicate that plant SCAMPs share many similarities with their mammalian homologs although there are differences. In this review, we will first summarize and compare animal and plant SCAMPs in terms of their subcellular localization, trafficking, and possible functions. We will then present a phylogenetic analysis of plant and animal SCAMPs. Finally, we will present expression analysis on selective Arabidopsis SCAMPs in the hope of pointing to directions for functional characterization of plant SCAMPs in the future.
Collapse
Affiliation(s)
- Angus Ho Yin Law
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | |
Collapse
|
41
|
Impaired caveolae function and upregulation of alternative endocytic pathways induced by experimental modulation of intersectin-1s expression in mouse lung endothelium. Biochem Res Int 2012; 2012:672705. [PMID: 22506115 PMCID: PMC3299393 DOI: 10.1155/2012/672705] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/16/2011] [Indexed: 11/17/2022] Open
Abstract
Intersectin-1s (ITSN-1s), a protein containing five SH3 (A-E) domains, regulates via the SH3A the function of dynamin-2 (dyn2) at the endocytic site. ITSN-1s expression was modulated in mouse lung endothelium by liposome delivery of either a plasmid cDNA encoding myc-SH3A or a specific siRNA targeting ITSN-1 gene. The lung vasculature of SH3A-transduced and ITSN-1s- deficient mice was perfused with gold albumin (Au-BSA) to analyze by electron microscopy the morphological intermediates and pathways involved in transendothelial transport or with dinitrophenylated (DNP)-BSA to quantify by ELISA its transport. Acute modulation of ITSN-1s expression decreased the number of caveolae, impaired their transport, and opened the interendothelial junctions, while upregulating compensatory nonconventional endocytic/transcytotic structures. Chronic inhibition of ITSN-1s further increased the occurrence of nonconventional intermediates and partially restored the junctional integrity. These findings indicate that ITSN-1s expression is required for caveolae function and efficient transendothelial transport. Moreover, our results demonstrate that ECs are highly adapted to perform their transport function while maintaining lung homeostasis.
Collapse
|
42
|
Lin L, Tran T, Hu S, Cramer T, Komuniecki R, Steven RM. RHGF-2 is an essential Rho-1 specific RhoGEF that binds to the multi-PDZ domain scaffold protein MPZ-1 in Caenorhabditis elegans. PLoS One 2012; 7:e31499. [PMID: 22363657 PMCID: PMC3282746 DOI: 10.1371/journal.pone.0031499] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/12/2012] [Indexed: 11/18/2022] Open
Abstract
RhoGEF proteins activate the Rho family of small GTPases and thus play a key role in regulating fundamental cellular processes such as cell morphology and polarity, cell cycle progression and gene transcription. We identified a Caenorhabditis elegans RhoGEF protein, RHGF-2, as a binding partner of the C. elegans multi-PDZ domain scaffold protein MPZ-1 (MUPP1 in mammals). RHGF-2 exhibits significant identity to the mammalian RhoGEFs PLEKHG5/Tech/Syx and contains a class I C-terminal PDZ binding motif (SDV) that interacts most strongly to MPZ-1 PDZ domain eight. RHGF-2 RhoGEF activity is specific to the C. elegans RhoA homolog RHO-1 as determined by direct binding, GDP/GTP exchange and serum response element-driven reporter activity. rhgf-2 is an essential gene since rhgf-2 deletion mutants do not elongate during embryogenesis and hatch as short immobile animals that arrest development. Interestingly, the expression of a functional rhgf-2::gfp transgene appears to be exclusively neuronal and rhgf-2 overexpression results in loopy movement with exaggerated body bends. Transient expression of RHGF-2 in N1E-115 neuroblastoma cells prevents neurite outgrowth similar to constitutive RhoA activation in these cells. Together, these observations indicate neuronally expressed RHGF-2 is an essential RHO-1 specific RhoGEF that binds most strongly to MPZ-1 PDZ domain eight and is required for wild-type C. elegans morphology and growth.
Collapse
Affiliation(s)
- Li Lin
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Thuy Tran
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Shuang Hu
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Todd Cramer
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Richard Komuniecki
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Robert M. Steven
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
43
|
Mulkearns EE, Cooper JA. FCH domain only-2 organizes clathrin-coated structures and interacts with Disabled-2 for low-density lipoprotein receptor endocytosis. Mol Biol Cell 2012; 23:1330-42. [PMID: 22323290 PMCID: PMC3315808 DOI: 10.1091/mbc.e11-09-0812] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Clathrin-mediated endocytosis regulates the internalization of many nutrient and signaling receptors. Clathrin and endocytic accessory proteins are recruited to receptors by specific adaptors. The adaptor Disabled-2 (Dab2) recruits its cargoes, including the low-density lipoprotein receptor (LDLR), and mediates endocytosis, even when the major adaptor protein AP2 is depleted. We hypothesized that the accessory proteins normally recruited by AP2 may be recruited by Dab2 if AP2 is absent. We identified one such accessory protein, the F-BAR protein FCH domain only-2 (FCHO2), as a major Dab2-interacting protein. The μ-homology domain (μHD) of FCHO2 binds directly to DPF sequences in Dab2 that also bind AP2. Disrupting the Dab2-FCHO2 interaction inhibited Dab2-mediated LDLR endocytosis in AP2-depleted cells. Depleting FCHO2 reduced the number but increased the size of clathrin structures on the adherent surface of HeLa cells and inhibited LDLR and transferrin receptor clustering. However, LDLR was internalized efficiently by FCHO2-deficient cells when additional time was provided for LDLR to enter the enlarged structures before budding, suggesting that later steps of endocytosis are normal under these conditions. These results indicate FCHO2 regulates the size of clathrin structures, and its interaction with Dab2 is needed for LDLR endocytosis under conditions of low AP2.
Collapse
Affiliation(s)
- Erin E Mulkearns
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
44
|
Bhattacharyya S, Hope TJ, Young JAT. Differential requirements for clathrin endocytic pathway components in cellular entry by Ebola and Marburg glycoprotein pseudovirions. Virology 2011; 419:1-9. [PMID: 21855102 DOI: 10.1016/j.virol.2011.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/24/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
Clathrin-mediated endocytosis was previously implicated as one of the cellular pathways involved in filoviral glycoprotein mediated viral entry into target cells. Here we have further dissected the requirements for different components of this pathway in Ebola versus Marburg virus glycoprotein (GP) mediated viral infection. Although a number of these components were involved in both cases; Ebola GP-dependent viral entry specifically required the cargo recognition proteins Eps15 and DAB2 as well as the clathrin adaptor protein AP-2. In contrast, Marburg GP-mediated infection was independent of these three proteins and instead required beta-arrestin 1 (ARRB1). These findings have revealed an unexpected difference between the clathrin pathway requirements for Ebola GP versus Marburg GP pseudovirion infection. Anthrax toxin also uses a clathrin-, and ARRB1-dependent pathway for cellular entry, indicating that the mechanism used by Marburg GP pseudovirions may be more generally important for pathogen entry.
Collapse
Affiliation(s)
- Suchita Bhattacharyya
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
45
|
Intersectin multidomain adaptor proteins: Regulation of functional diversity. Gene 2011; 473:67-75. [DOI: 10.1016/j.gene.2010.11.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 12/17/2022]
|
46
|
Compartmentalized Ras proteins transform NIH 3T3 cells with different efficiencies. Mol Cell Biol 2010; 31:983-97. [PMID: 21189290 DOI: 10.1128/mcb.00137-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ras GTPases were long thought to function exclusively from the plasma membrane (PM). However, a current model suggests that Ras proteins can compartmentalize to regulate different functions, and an oncogenic H-Ras mutant that is restricted to the endomembrane can still transform cells. In this study, we demonstrated that cells transformed by endomembrane-restricted oncogenic H-Ras formed tumors in nude mice. To define downstream targets of endomembrane Ras pathways, we analyzed Cdc42, which concentrates in the endomembrane and has been shown to act downstream of Ras in Schizosaccharomyces pombe. Our data show that cell transformation induced by endomembrane-restricted oncogenic H-Ras was blocked when Cdc42 activity was inhibited. Moreover, H-Ras formed a complex with Cdc42 on the endomembrane, and this interaction was enhanced when H-Ras was GTP bound or when cells were stimulated by growth factors. H-Ras binding evidently induced Cdc42 activation by recruiting and/or activating Cdc42 exchange factors. In contrast, when constitutively active H-Ras was restricted to the PM by fusing to a PM localization signal from the Rit GTPase, the resulting protein did not detectably activate Cdc42 although it activated Raf-1 and efficiently induced hallmarks of Ras-induced senescence in human BJ foreskin fibroblasts. Surprisingly, PM-restricted oncogenic Ras when expressed alone could only weakly transform NIH 3T3 cells; however, when constitutively active Cdc42 was coexpressed, together they transformed cells much more efficiently than either one alone. These data suggest that efficient cell transformation requires Ras proteins to interact with Cdc42 on the endomembrane and that in order for a given Ras protein to fully transform cells, multiple compartment-specific Ras pathways need to work cooperatively.
Collapse
|
47
|
Abstract
The endocytic pathway is involved in activation and inhibition of cellular signaling. Thus, defining the regulatory mechanisms that link endocytosis and cellular signaling is of interest. An emerging link between these processes is a family of proteins called intersectins (ITSNs). These multidomain proteins serve as scaffolds in the assembly of endocytic vesicles and also regulate components of various signaling pathways, including kinases, guanosine triphosphatases, and ubiquitin ligases. This review summarizes research on the role of ITSNs in regulating both endocytic and signal transduction pathways, discusses the link between ITSNs and human disease, and highlights future directions in the study of ITSNs.
Collapse
Affiliation(s)
- John P O'Bryan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
48
|
MINK and TNIK differentially act on Rap2-mediated signal transduction to regulate neuronal structure and AMPA receptor function. J Neurosci 2010; 30:14786-94. [PMID: 21048137 DOI: 10.1523/jneurosci.4124-10.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Misshapen/NIKs (Nck-interacting kinases)-related kinase (MINK) and closely related TRAF2/Nck-interacting kinase (TNIK) are proteins that specifically bind to activated Rap2 and are thus hypothesized to relay its downstream signal transduction. Activated Rap2 has been found to stimulate dendritic pruning, reduce synaptic density and cause removal of synaptic AMPA receptors (AMPA-Rs) (Zhu et al., 2005; Fu et al., 2007). Here we report that MINK and TNIK are postsynaptically enriched proteins whose clustering within dendrites is bidirectionally regulated by the activation state of Rap2. Expression of MINK and TNIK in neurons is required for normal dendritic arborization and surface expression of AMPA receptors. Overexpression of a truncated MINK mutant unable to interact with Rap2 leads to reduced dendritic branching and this MINK-mediated effect on neuronal morphology is dependent upon Rap2 activation. While similarly truncated TNIK also reduces neuronal complexity, its effect does not require Rap2 activity. Furthermore, Rap2-mediated removal of surface AMPA-Rs from spines is entirely abrogated by coexpression of MINK, but not TNIK. Thus, although both MINK and TNIK bind GTP-bound Rap2, these kinases employ distinct mechanisms to modulate Rap2-mediated signaling. MINK appears to antagonize Rap2 signal transduction by binding to activated Rap2. We suggest that MINK interaction with Rap2 plays a critical role in maintaining the morphological integrity of dendrites and synaptic transmission.
Collapse
|
49
|
Momboisse F, Ory S, Ceridono M, Calco V, Vitale N, Bader MF, Gasman S. The Rho guanine nucleotide exchange factors Intersectin 1L and β-Pix control calcium-regulated exocytosis in neuroendocrine PC12 cells. Cell Mol Neurobiol 2010; 30:1327-33. [PMID: 21088884 DOI: 10.1007/s10571-010-9580-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/02/2010] [Indexed: 12/23/2022]
Abstract
GTPases of the Rho family are molecular switches that play an important role in a wide range of membrane-trafficking processes including neurotransmission and hormone release. We have previously demonstrated that RhoA and Cdc42 regulate calcium-dependent exocytosis in chromaffin cells by controlling actin dynamics, whereas Rac1 regulates lipid organisation. These findings raised the question of the upstream mechanism activating these GTPases during exocytosis. The guanine nucleotide exchange factors (GEFs) that catalyse the exchange of GDP for GTP are crucial elements regulating Rho signalling. Using an RNA interference approach, we have recently demonstrated that the GEFs Intersectin-1L and β-Pix, play essential roles in neuroendocrine exocytosis by controlling the activity of Cdc42 and Rac1, respectively. This review summarizes these results and discusses the functional importance of Rho GEFs in the exocytotic machinery in neuroendocrine cells.
Collapse
Affiliation(s)
- F Momboisse
- CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Dergai O, Novokhatska O, Dergai M, Skrypkina I, Tsyba L, Moreau J, Rynditch A. Intersectin 1 forms complexes with SGIP1 and Reps1 in clathrin-coated pits. Biochem Biophys Res Commun 2010; 402:408-13. [PMID: 20946875 DOI: 10.1016/j.bbrc.2010.10.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 12/28/2022]
Abstract
Intersectin 1 (ITSN1) is an evolutionarily conserved adaptor protein involved in clathrin-mediated endocytosis, cellular signaling and cytoskeleton rearrangement. ITSN1 gene is located on human chromosome 21 in Down syndrome critical region. Several studies confirmed role of ITSN1 in Down syndrome phenotype. Here we report the identification of novel interconnections in the interaction network of this endocytic adaptor. We show that the membrane-deforming protein SGIP1 (Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1) and the signaling adaptor Reps1 (RalBP associated Eps15-homology domain protein) interact with ITSN1 in vivo. Both interactions are mediated by the SH3 domains of ITSN1 and proline-rich motifs of protein partners. Moreover complexes comprising SGIP1, Reps1 and ITSN1 have been identified. We also identified new interactions between SGIP1, Reps1 and the BAR (Bin/amphiphysin/Rvs) domain-containing protein amphiphysin 1. Immunofluorescent data have demonstrated colocalization of ITSN1 with the newly identified protein partners in clathrin-coated pits. These findings expand the role of ITSN1 as a scaffolding molecule bringing together components of endocytic complexes.
Collapse
Affiliation(s)
- Oleksandr Dergai
- Department of Functional Genomics, Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo Street, 03680 Kyiv, Ukraine.
| | | | | | | | | | | | | |
Collapse
|