1
|
Tsuneizumi K, Kasamatsu A, Saito T, Fukushima R, Taga Y, Mizuno K, Sunohara M, Uzawa K, Yamauchi M. Generation of bone-specific lysyl hydroxylase 2 knockout mice and their phenotypes. Biochem Biophys Rep 2024; 39:101790. [PMID: 39156722 PMCID: PMC11327825 DOI: 10.1016/j.bbrep.2024.101790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Lysyl hydroxylase 2 (LH2) catalyzes the hydroxylation of lysine residues in the telopeptides of type I collagen. This modification is critical for the formation of stable hydroxylysine-aldehyde derived collagen cross-links, thus, for the stability of collagen fibrils. Though dysfunction of LH2 causes Bruck syndrome, recessive osteogenesis imperfecta with joint contracture, the molecular mechanisms by which LH2 affects bone formation are still not well understood. Since the Plod2 knockout mice are embryonically lethal, we generated bone-specific LH2 conditional knockout mice (bsLH2-cKO) using the osteocalcin-Cre/loxP system, and evaluated phenotypes of femurs. LH2 mRNA and protein levels assessed by qPCR, immunohistochemistry and Data Independent Acquisition proteomics were all markedly low in bsLH2-cKO femurs when compared to controls. Lysine hydroxylation of both carboxy- and amino-terminal telopeptides of an α1(I) chain were significantly diminished resulting in reduction of the hydroxylysine-aldehyde derived cross-links. The collagen fibrils in bsLH2-cKO appeared to be thicker, often fused and irregular when compared to controls. In addition, bone mineral density and mechanical properties of bsLH2-cKO femurs were significantly impaired. Taken together, these data demonstrate that LH2-catalyzed modification and consequent cross-linking of collagen are critical for proper bone formation and mechanical strength.
Collapse
Affiliation(s)
- Kenta Tsuneizumi
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Tomoaki Saito
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Reo Fukushima
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Ibaraki, Japan
| | | | - Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Chen H, Zhou Y, Hao H, Xiong J. Emerging mechanisms of non-alcoholic steatohepatitis and novel drug therapies. Chin J Nat Med 2024; 22:724-745. [PMID: 39197963 DOI: 10.1016/s1875-5364(24)60690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 09/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver disease globally. It initiates with simple steatosis (NAFL) and can progress to the more severe condition of non-alcoholic steatohepatitis (NASH). NASH often advances to end-stage liver diseases such as liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Notably, the transition from NASH to end-stage liver diseases is irreversible, and the precise mechanisms driving this progression are not yet fully understood. Consequently, there is a critical need for the development of effective therapies to arrest or reverse this progression. This review provides a comprehensive overview of the pathogenesis of NASH, examines the current therapeutic targets and pharmacological treatments, and offers insights for future drug discovery and development strategies for NASH therapy.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
3
|
Stauffer WT, Goodman AZ, Gallay PA. Cyclophilin inhibition as a strategy for the treatment of human disease. Front Pharmacol 2024; 15:1417945. [PMID: 39045055 PMCID: PMC11264201 DOI: 10.3389/fphar.2024.1417945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Cyclophilins (Cyps), characterized as peptidyl-prolyl cis-trans isomerases (PPIases), are highly conserved and ubiquitous, playing a crucial role in protein folding and cellular signaling. This review summarizes the biochemical pathways mediated by Cyps, including their involvement in pathological states such as viral replication, inflammation, and cancer progression, to underscore the therapeutic potential of Cyp inhibition. The exploration of Cyp inhibitors (CypI) in this review, particularly non-immunosuppressive cyclosporine A (CsA) derivatives, highlights their significance as therapeutic agents. The structural and functional nuances of CsA derivatives are examined, including their efficacy, mechanism of action, and the balance between therapeutic benefits and off-target effects. The landscape of CypI is evaluated to emphasize the clinical need for targeted approaches to exploit the complex biology of Cyps and to propose future directions for research that may enhance the utility of non-immunosuppressive CsA derivatives in treating diseases where Cyps play a key pathological role.
Collapse
Affiliation(s)
| | | | - Philippe A. Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
4
|
Ferreira PA. Personal essay of a rookie's journey with Bill Pak and his legacy: tales and perspectives on PI-PLC, NorpA and cyclophilin, NinaA - William L. Pak, PhD., 1932-2023: in memoriam. J Neurogenet 2024:1-10. [PMID: 38913811 DOI: 10.1080/01677063.2024.2366455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
The neurogenetics and vision community recently mourned William L. Pak, PhD, whose pioneering work spearheaded the genetic, electrophysiological, and molecular bases of biological processes underpinning vision. This essay provides a historical background to the daunting challenges and personal experiences that carved the path to seminal findings. It also reflects on the intellectual framework, mentoring philosophy, and inspirational legacy of Bill Pak's research. An emphasis and perspectives are placed on the discoveries and implications to date of the phosphatidylinositol-specific phospholipase C (PI-PLC), NorpA, and the cyclophilin, NinaA of the fruit fly, Drosophila melanogaster, and their respective mammalian homologues, PI-PLCβ4, and cyclophilin-related protein, Ran-binding protein 2 (Ranbp2) in critical biological processes and diseases of photoreceptors and other neurons.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Departments of Ophthalmology and Pathology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
5
|
Patil H, Yi H, Cho KI, Ferreira PA. Proteostatic Remodeling of Small Heat Shock Chaperones─Crystallins by Ran-Binding Protein 2─and the Peptidyl-Prolyl cis-trans Isomerase and Chaperone Activities of Its Cyclophilin Domain. ACS Chem Neurosci 2024; 15:1967-1989. [PMID: 38657106 DOI: 10.1021/acschemneuro.3c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Disturbances in protein phase transitions promote protein aggregation─a neurodegeneration hallmark. The modular Ran-binding protein 2 (Ranbp2) is a cytosolic molecular hub for rate-limiting steps of phase transitions of Ran-GTP-bound protein ensembles exiting nuclear pores. Chaperones also regulate phase transitions and proteostasis by suppressing protein aggregation. Ranbp2 haploinsufficiency promotes the age-dependent neuroprotection of the chorioretina against phototoxicity by proteostatic regulations of neuroprotective substrates of Ranbp2 and by suppressing the buildup of polyubiquitylated substrates. Losses of peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone activities of the cyclophilin domain (CY) of Ranbp2 recapitulate molecular effects of Ranbp2 haploinsufficiency. These CY impairments also stimulate deubiquitylation activities and phase transitions of 19S cap subunits of the 26S proteasome that associates with Ranbp2. However, links between CY moonlighting activity, substrate ubiquitylation, and proteostasis remain incomplete. Here, we reveal the Ranbp2 regulation of small heat shock chaperones─crystallins in the chorioretina by proteomics of mice with total or selective modular deficits of Ranbp2. Specifically, loss of CY PPIase of Ranbp2 upregulates αA-Crystallin, which is repressed in adult nonlenticular tissues. Conversely, impairment of CY's chaperone activity opposite to the PPIase pocket downregulates a subset of αA-Crystallin's substrates, γ-crystallins. These CY-dependent effects cause age-dependent and chorioretinal-selective declines of ubiquitylated substrates without affecting the chorioretinal morphology. A model emerges whereby inhibition of Ranbp2's CY PPIase remodels crystallins' expressions, subdues molecular aging, and preordains the chorioretina to neuroprotection by augmenting the chaperone capacity and the degradation of polyubiquitylated substrates against proteostatic impairments. Further, the druggable Ranbp2 CY holds pan-therapeutic potential against proteotoxicity and neurodegeneration.
Collapse
Affiliation(s)
- Hemangi Patil
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Haiqing Yi
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Kyoung-In Cho
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Paulo A Ferreira
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Pathology Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
6
|
Michalak M. Calreticulin: Endoplasmic reticulum Ca 2+ gatekeeper. J Cell Mol Med 2024; 28:e17839. [PMID: 37424156 PMCID: PMC10902585 DOI: 10.1111/jcmm.17839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
Endoplasmic reticulum (ER) luminal Ca2+ is vital for the function of the ER and regulates many cellular processes. Calreticulin is a highly conserved, ER-resident Ca2+ binding protein and lectin-like chaperone. Over four decades of studying calreticulin demonstrate that this protein plays a crucial role in maintaining Ca2+ supply under different physiological conditions, in managing access to Ca2+ and how Ca2+ is used depending on the environmental events and in making sure that Ca2+ is not misused. Calreticulin plays a role of ER luminal Ca2+ sensor to manage Ca2+-dependent ER luminal events including maintaining interaction with its partners, Ca2+ handling molecules, substrates and stress sensors. The protein is strategically positioned in the lumen of the ER from where the protein manages access to and distribution of Ca2+ for many cellular Ca2+-signalling events. The importance of calreticulin Ca2+ pool extends beyond the ER and includes influence of cellular processes involved in many aspects of cellular pathophysiology. Abnormal handling of the ER Ca2+ contributes to many pathologies from heart failure to neurodegeneration and metabolic diseases.
Collapse
Affiliation(s)
- Marek Michalak
- Department of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
7
|
Patil H, Cho KI, Ferreira PA. Proteostatic remodeling of small heat shock chaperones - crystallins by Ran-binding protein 2 and the peptidyl-prolyl cis-trans isomerase and chaperone activities of its cyclophilin domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577462. [PMID: 38352504 PMCID: PMC10862737 DOI: 10.1101/2024.01.26.577462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Disturbances in phase transitions and intracellular partitions of nucleocytoplasmic shuttling substrates promote protein aggregation - a hallmark of neurodegenerative diseases. The modular Ran-binding protein 2 (Ranbp2) is a cytosolic molecular hub for rate-limiting steps of disassembly and phase transitions of Ran-GTP-bound protein ensembles exiting nuclear pores. Chaperones also play central roles in phase transitions and proteostasis by suppressing protein aggregation. Ranbp2 haploinsufficiency promotes the age-dependent neuroprotection of the chorioretina against photo-oxidative stress by proteostatic regulations of Ranbp2 substrates and by countering the build-up of poly-ubiquitylated substrates. Further, the peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone activities of the cyclophilin domain (CY) of Ranbp2 modulate the proteostasis of selective neuroprotective substrates, such as hnRNPA2B1, STAT3, HDAC4 or L/M-opsin, while promoting a decline of ubiquitylated substrates. However, links between CY PPIase activity on client substrates and its effect(s) on ubiquitylated substrates are unclear. Here, proteomics of genetically modified mice with deficits of Ranbp2 uncovered the regulation of the small heat shock chaperones - crystallins by Ranbp2 in the chorioretina. Loss of CY PPIase of Ranbp2 up-regulates αA-crystallin proteostasis, which is repressed in non-lenticular tissues. Conversely, the αA-crystallin's substrates, γ-crystallins, are down-regulated by impairment of CY's C-terminal chaperone activity. These CY-dependent effects cause the age-dependent decline of ubiquitylated substrates without overt chorioretinal morphological changes. A model emerges whereby the Ranbp2 CY-dependent remodeling of crystallins' proteostasis subdues molecular aging and preordains chorioretinal neuroprotection by augmenting the chaperone buffering capacity and the decline of ubiquitylated substrates against proteostatic impairments. Further, CY's moonlighting activity holds pan -therapeutic potential against neurodegeneration.
Collapse
|
8
|
Tahir I, Alkheraije KA. A review of important heavy metals toxicity with special emphasis on nephrotoxicity and its management in cattle. Front Vet Sci 2023; 10:1149720. [PMID: 37065256 PMCID: PMC10090567 DOI: 10.3389/fvets.2023.1149720] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Toxicity with heavy metals has proven to be a significant hazard with several health problems linked to it. Heavy metals bioaccumulate in living organisms, pollute the food chain, and possibly threaten the health of animals. Many industries, fertilizers, traffic, automobile, paint, groundwater, and animal feed are sources of contamination of heavy metals. Few metals, such as aluminum (Al), may be eliminated by the elimination processes, but other metals like lead (Pb), arsenic (As), and cadmium (Ca) accumulate in the body and food chain, leading to chronic toxicity in animals. Even if these metals have no biological purpose, their toxic effects are still present in some form that is damaging to the animal body and its appropriate functioning. Cadmium (Cd) and Pb have negative impacts on a number of physiological and biochemical processes when exposed to sub-lethal doses. The nephrotoxic effects of Pb, As, and Cd are well known, and high amounts of naturally occurring environmental metals as well as occupational populations with high exposures have an adverse relationship between kidney damage and toxic metal exposure. Metal toxicity is determined by the absorbed dosage, the route of exposure, and the duration of exposure, whether acute or chronic. This can lead to numerous disorders and can also result in excessive damage due to oxidative stress generated by free radical production. Heavy metals concentration can be decreased through various procedures including bioremediation, pyrolysis, phytoremediation, rhizofiltration, biochar, and thermal process. This review discusses few heavy metals, their toxicity mechanisms, and their health impacts on cattle with special emphasis on the kidneys.
Collapse
Affiliation(s)
- Ifrah Tahir
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Khalid Ali Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
9
|
Lysyl hydroxylase 2 mediated collagen post-translational modifications and functional outcomes. Sci Rep 2022; 12:14256. [PMID: 35995931 PMCID: PMC9395344 DOI: 10.1038/s41598-022-18165-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022] Open
Abstract
Lysyl hydroxylase 2 (LH2) is a member of LH family that catalyzes the hydroxylation of lysine (Lys) residues on collagen, and this particular isozyme has been implicated in various diseases. While its function as a telopeptidyl LH is generally accepted, several fundamental questions remain unanswered: 1. Does LH2 catalyze the hydroxylation of all telopeptidyl Lys residues of collagen? 2. Is LH2 involved in the helical Lys hydroxylation? 3. What are the functional consequences when LH2 is completely absent? To answer these questions, we generated LH2-null MC3T3 cells (LH2KO), and extensively characterized the type I collagen phenotypes in comparison with controls. Cross-link analysis demonstrated that the hydroxylysine-aldehyde (Hylald)-derived cross-links were completely absent from LH2KO collagen with concomitant increases in the Lysald-derived cross-links. Mass spectrometric analysis revealed that, in LH2KO type I collagen, telopeptidyl Lys hydroxylation was completely abolished at all sites while helical Lys hydroxylation was slightly diminished in a site-specific manner. Moreover, di-glycosylated Hyl was diminished at the expense of mono-glycosylated Hyl. LH2KO collagen was highly soluble and digestible, fibril diameters were diminished, and mineralization impaired when compared to controls. Together, these data underscore the critical role of LH2-catalyzed collagen modifications in collagen stability, organization and mineralization in MC3T3 cells.
Collapse
|
10
|
Wobbe M, Reinhardt F, Reents R, Tetens J, Stock KF. Quantifying the effect of Warmblood Fragile Foal Syndrome on foaling rates in the German riding horse population. PLoS One 2022; 17:e0267975. [PMID: 35901076 PMCID: PMC9333276 DOI: 10.1371/journal.pone.0267975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/19/2022] [Indexed: 11/19/2022] Open
Abstract
Awareness of breeders of Warmblood Fragile Foal Syndrome (WFFS) increased after a widely discussed case in the USA in 2018. The hereditary connective tissue disorder, first described by a US research group in 2011 and for which a commercial genetic test exists since 2013, is caused by a point mutation in the PLOD1 gene, inherited autosomal recessively. Extension of molecular genetic testing and reporting of test results of organized horse breeders to their studbooks implies new opportunities for analyses. In Germany, data are centrally accessible through the integrated equine data base allowing comprehensive and population-wide investigation of the role of WFFS. The objective of this study was statistical testing for associations between WFFS and reproductive performance of German riding horses and quantifying possible differences between WFFS carriers and non-carriers, also in respect of performance traits. For this purpose, covering data from 2008 to 2020 were provided by ten German studbooks, so almost 400,000 coverings and resulting foaling rates were available for multiple analyses of variance with general and mixed linear models using procedures GLM, MIXED and HPMIXED of SAS software (version 9.2). Published breeding values of stallions were used for respective comparisons of riding horse performance. Assuming a WFFS carrier frequency of 9.5–15.0% in Warmblood horses, Hardy Weinberg principle implied an expected difference of 2.4–3.7% in the foaling rates of carrier and non-carrier stallions. Our results provided statistical evidence of detrimental effects of WFFS on the reproductive performance of Warmblood horses with about 2.7% lower average foaling rate in carriers of the mutant allele than in WFFS free sires, if mated to an average mare population. Indications of favorable dressage performance of WFFS carriers were found. Reported WFFS cases indicate only the tip of the iceberg and assessing the impact of WFFS on reproduction requires consideration of premature foal losses.
Collapse
Affiliation(s)
- Mirell Wobbe
- Genetic Evaluation Division, IT Solutions for Animal Production (vit), Verden, Germany
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), Hanover, Germany
- * E-mail:
| | - Friedrich Reinhardt
- Genetic Evaluation Division, IT Solutions for Animal Production (vit), Verden, Germany
| | - Reinhard Reents
- Genetic Evaluation Division, IT Solutions for Animal Production (vit), Verden, Germany
| | - Jens Tetens
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Goettingen, Germany
| | - Kathrin F. Stock
- Genetic Evaluation Division, IT Solutions for Animal Production (vit), Verden, Germany
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), Hanover, Germany
| |
Collapse
|
11
|
da Cunha Neto CAV, Badial PR, de Oliveira-Filho JP, de Andrade DGA, Araujo JP, Borges AS. Solar radiation leads to increased collagenase gene expression (MMP1) in HERDA (Hereditary equine regional dermal asthenia) affected horses and may explain the typical dorsal distribution of their lesions. Vet Dermatol 2022; 34:209-221. [PMID: 35661451 DOI: 10.1111/vde.13086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/25/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Hereditary equine regional dermal asthenia (HERDA) is a genetic disease that alters collagen biosynthesis. Affected horses exhibit fragile, hyperextensible skin, especially over the dorsal region. Although ultraviolet (UV) radiation seems to contribute to the regional distribution of lesions and worsening of clinical signs, the molecular mechanisms involved are largely unknown. OBJECTIVES To evaluate the effect of solar radiation on matrix metalloproteinase MMP1, MMP8 and MMP13 gene expression in the dorsal and ventral skin of HERDA-affected and HERDA-unaffected horses [wild-type (WT) horses]. ANIMALS Six HERDA-affected and six unaffected Quarter horses (WT) were paired according to age, sex and coat colour. MATERIALS AND METHODS Horses were submitted to 30 day sunlight restriction, followed by 15 day sunlight exposure. Dorsal and ventral skin biopsies were obtained at six sampling times over 45 days. The expression of MMP1, MMP8 and MMP13 genes was measured by quantitative PCR. RESULTS Although solar radiation modulated MMP1, MMP8 and MMP13 expression, the effects were more pronounced on MMP1. Sun exposure for three days significantly upregulated MMP1 in the dorsal region when compared to the ventral skin in both unaffected and HERDA-affected horses. CONCLUSIONS AND CLINICAL RELEVANCE This study shows that solar irradiation leads to upregulation of skin collagenase genes particularly MMP1 in the dorsal, sun-exposed skin of horses. Furthermore, this was more marked in HERDA-affected horses. The increased activity of collagenases on the disorganised collagen present in HERDA affected horses would explain why UV radiation leads to deterioration of clinical signs in affected individuals.
Collapse
Affiliation(s)
| | - Peres Ramos Badial
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - João Pessoa Araujo
- São Paulo State University (Unesp), Institute of Biosciences, São Paulo, SP, Brazil
| | - Alexandre Secorun Borges
- São Paulo State University (Unesp), School of Veterinary Medicine and Animal Science, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Connective Tissue Disorders in Domestic Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:325-335. [PMID: 34807427 DOI: 10.1007/978-3-030-80614-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Though soft tissue disorders have been recognized and described to some detail in several types of domestic animals and small mammals for some years, they remain uncommon. Because of their low prevalence, not much progress has been made not only in improved diagnosis but also in our understanding of the biochemical basis and pathogenesis of these diseases in animals. Ehlers-Danlos syndrome (EDS) described in dogs already in 1943 and later in cats has only minor impact on the well-being of the dog as its effects on skin of these animals are rather limited. The involved skin is thin and hyperextensible with easily inflicted injuries resulting in hemorrhagic wounds and atrophic scars. Joint laxity and dislocation common in people are less frequently found in dogs. No systemic complications, such as organ rupture or cardiovascular problems which have devastating consequences in people have been described in cats and dogs. The diagnosis is based on clinical presentation and on light or electron microscopic features of disorganized and fragmented collagen fibrils. Several case of bovine and ovine dermatosparaxis analogous to human Ehlers-Danlos syndrome type VIIC were found to be caused by mutations in the procollagen I N-proteinase (pnPI) or ADAMTS2 gene, though mutations in other sites are likely responsible for other types of dermatosparaxis. Cattle suffering from a form of Marfan syndrome (MFS) were described to have aortic dilatation and aneurysm together with ocular abnormalities and skeletal involvement. As in people, mutations at different sites of bovine FBN1 may be responsible for Marfan phenotype. Hereditary equine regional dermal asthenia (HERDA), or hyperelastosis cutis, has been recognized in several horse breeds as affecting primarily skin, and, occasionally, tendons. A mutation in cyclophilin B, a chaperon involved in proper folding of collagens, has been identified in some cases. Warmblood fragile foal syndrome (WFFS) is another Ehlers-Danlos-like disorder in horses, affecting primarily Warmbloods who present with skin fragility and joint hyperextensibility. Degenerative suspensory ligament desmitis (DSLD) affects primarily tendons and ligaments of certain horse breeds. Data from our laboratory showed excessive accumulation of proteoglycans in organs with high content of connective tissues. We have identified increased presence of bone morphogenetic protein 2 (BMP2) in active foci of DSLD and an abnormal form of decorin in proteoglycan deposits. Our most recent data obtained from next generation sequencing showed disturbances in expression of genes for numerous proteoglycans and collagens.
Collapse
|
13
|
Pehrsson M, Mortensen JH, Manon-Jensen T, Bay-Jensen AC, Karsdal MA, Davies MJ. Enzymatic cross-linking of collagens in organ fibrosis - resolution and assessment. Expert Rev Mol Diagn 2021; 21:1049-1064. [PMID: 34330194 DOI: 10.1080/14737159.2021.1962711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Enzymatic cross-linking of the collagens within the extracellular matrix (ECM) catalyzed by enzymes such as lysyl oxidase (LOX) and lysyl oxidase like-enzymes 1-4 (LOXL), transglutaminase 2 (TG2), and peroxidasin (PXDN) contribute to fibrosis progression through extensive collagen cross-linking. Studies in recent years have begun elucidating the important role of collagen cross-linking in perpetuating progression of organ fibrosis independently of inflammation through an increasingly stiff and noncompliant ECM. Therefore, collagen cross-linking and the cross-linking enzymes have become new targets in anti-fibrotic therapy as well as targets of novel biomarkers to properly assess resolution of the fibrotic ECM.Areas covered: The enzymatic actions of enzymes catalyzing collagen cross-linking and their relevance in organ fibrosis. Potential biomarkers specifically quantifying proteolytic fragments of collagen cross-linking is discussed based on Pubmed search done in November 2020 as well as the authors knowledge.Expert opinion: Current methods for the assessment of fibrosis involve the use of invasive and/or cumbersome and expensive methods such as tissue biopsies. Thus, an unmet need exists for the development and validation of minimally invasive biomarkers of proteolytic fragments of cross-linked collagens. These biomarkers may aid in the development and proper assessment of fibrosis resolution in coming years.
Collapse
Affiliation(s)
- Martin Pehrsson
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark.,Biomarkers & Research, Nordic Bioscience A/S, Herlev, Denmark
| | | | | | | | | | | |
Collapse
|
14
|
Ishikawa Y, Taga Y, Zientek K, Mizuno N, Salo AM, Semenova O, Tufa SF, Keene DR, Holden P, Mizuno K, Gould DB, Myllyharju J, Bächinger HP. Type I and type V procollagen triple helix uses different subsets of the molecular ensemble for lysine posttranslational modifications in the rER. J Biol Chem 2021; 296:100453. [PMID: 33631195 PMCID: PMC7988497 DOI: 10.1016/j.jbc.2021.100453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/25/2022] Open
Abstract
Collagen is the most abundant protein in humans. It has a characteristic triple-helix structure and is heavily posttranslationally modified. The complex biosynthesis of collagen involves processing by many enzymes and chaperones in the rough endoplasmic reticulum. Lysyl hydroxylase 1 (LH1) is required to hydroxylate lysine for cross-linking and carbohydrate attachment within collagen triple helical sequences. Additionally, a recent study of prolyl 3-hydroxylase 3 (P3H3) demonstrated that this enzyme may be critical for LH1 activity; however, the details surrounding its involvement remain unclear. If P3H3 is an LH1 chaperone that is critical for LH1 activity, P3H3 and LH1 null mice should display a similar deficiency in lysyl hydroxylation. To test this hypothesis, we compared the amount and location of hydroxylysine in the triple helical domains of type V and I collagen from P3H3 null, LH1 null, and wild-type mice. The amount of hydroxylysine in type V collagen was reduced in P3H3 null mice, but surprisingly type V collagen from LH1 null mice contained as much hydroxylysine as type V collagen from wild-type mice. In type I collagen, our results indicate that LH1 plays a global enzymatic role in lysyl hydroxylation. P3H3 is also involved in lysyl hydroxylation, particularly at cross-link formation sites, but is not required for all lysyl hydroxylation sites. In summary, our study suggests that LH1 and P3H3 likely have two distinct mechanisms to recognize different collagen types and to distinguish cross-link formation sites from other sites in type I collagen.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, USA; Research Department, Shriners Hospital for Children, Portland, Oregon, USA; Department of Ophthalmology, University of California San Francisco, School of Medicine, San Francisco, California, USA.
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Ibaraki, Japan
| | - Keith Zientek
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Nobuyo Mizuno
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Antti M Salo
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Olesya Semenova
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Sara F Tufa
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Douglas R Keene
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Paul Holden
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | | | - Douglas B Gould
- Department of Ophthalmology, University of California San Francisco, School of Medicine, San Francisco, California, USA; Department of Anatomy, University of California, San Francisco, School of Medicine, San Francisco, California USA
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Hans Peter Bächinger
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
15
|
Lindgren G, Naboulsi R, Frey R, Solé M. Genetics of Skin Disease in Horses. Vet Clin North Am Equine Pract 2020; 36:323-339. [PMID: 32534850 DOI: 10.1016/j.cveq.2020.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Equine skin diseases are common, causing increased costs and reduced welfare of affected horses.Genetic testing, if available, can complement early detection, disease diagnosis, and clinical treatment and offers horse breeders the possibility to rule out carrier status. The mechanisms of complex disease can be investigated by using the latest state-of-the-art genomic technologies. Genome-based strategies may also serve as an efficient and cost-effective strategy for the management of the disease severity levels, with particular interest in complex traits such as insect bite hypersensitivity, chronic progressive lymphedema, and melanoma.
Collapse
Affiliation(s)
- Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Almas Allé 8, Uppsala 75007, Sweden; Livestock Genetics, Department of Biosystems, KU Leuven Leuven, KasteelparkArenberg 30, Leuven 3001, Belgium
| | - Rakan Naboulsi
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Almas Allé 8, Uppsala 75007, Sweden
| | - Rebecka Frey
- AniCura Norsholms Djursjukhus, Norsholm 61791, Sweden
| | - Marina Solé
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Almas Allé 8, Uppsala 75007, Sweden.
| |
Collapse
|
16
|
Cabral WA, Fratzl-Zelman N, Weis M, Perosky JE, Alimasa A, Harris R, Kang H, Makareeva E, Barnes AM, Roschger P, Leikin S, Klaushofer K, Forlino A, Backlund PS, Eyre DR, Kozloff KM, Marini JC. Substitution of murine type I collagen A1 3-hydroxylation site alters matrix structure but does not recapitulate osteogenesis imperfecta bone dysplasia. Matrix Biol 2020; 90:20-39. [PMID: 32112888 DOI: 10.1016/j.matbio.2020.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023]
Abstract
Null mutations in CRTAP or P3H1, encoding cartilage-associated protein and prolyl 3-hydroxylase 1, cause the severe bone dysplasias, types VII and VIII osteogenesis imperfecta. Lack of either protein prevents formation of the ER prolyl 3-hydroxylation complex, which catalyzes 3Hyp modification of types I and II collagen and also acts as a collagen chaperone. To clarify the role of the A1 3Hyp substrate site in recessive bone dysplasia, we generated knock-in mice with an α1(I)P986A substitution that cannot be 3-hydroxylated. Mutant mice have normal survival, growth, femoral breaking strength and mean bone mineralization. However, the bone collagen HP/LP crosslink ratio is nearly doubled in mutant mice, while collagen fibril diameter and bone yield energy are decreased. Thus, 3-hydroxylation of the A1 site α1(I)P986 affects collagen crosslinking and structural organization, but its absence does not directly cause recessive bone dysplasia. Our study suggests that the functions of the modification complex as a collagen chaperone are thus distinct from its role as prolyl 3-hydroxylase.
Collapse
Affiliation(s)
- Wayne A Cabral
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - MaryAnn Weis
- Orthopaedic Research Laboratories, University of Washington, Seattle, WA, USA
| | - Joseph E Perosky
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Adrienne Alimasa
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Harris
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Heeseog Kang
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA
| | - Elena Makareeva
- Section on Physical Biochemistry, NICHD, NIH, Bethesda, MD, USA
| | - Aileen M Barnes
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Sergey Leikin
- Section on Physical Biochemistry, NICHD, NIH, Bethesda, MD, USA
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Peter S Backlund
- Biomedical Mass Spectrometry Facility, NICHD, NIH, Bethesda, MD, USA
| | - David R Eyre
- Orthopaedic Research Laboratories, University of Washington, Seattle, WA, USA
| | - Kenneth M Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA.
| |
Collapse
|
17
|
Walker NL, Patout AR, Cater M. Industry Perceptions of HERDA in Performance Horses. J Equine Vet Sci 2020; 88:102939. [PMID: 32303321 DOI: 10.1016/j.jevs.2020.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 11/27/2022]
Abstract
Hereditary equine regional derma asthenia (HERDA), an autosomal-recessive trait, found in Quarter Horses, causes abnormal collagen structure. Owing to current breeding practices, 3.5% of registered quarter horses and 28.3% of the cow horse population are heterozygote carriers. Research demonstrated homozygote horses develop hyperextensible skin susceptible to injury and other abnormal tissues containing high fibrillar collagen content. No research exists determining the effects of the disease in heterozygote carriers. Currently, 30% of cutting sires are HERDA carriers, potentially increasing the number of heterozygous individuals when bred. The objective of the present study is to gauge knowledge of the disease, perception, and concerns of the diseases' impact on horse performance and perceived value and breeding decisions. A Qualtrics link was distributed to horse owners via extension specialists and was available online on equine-related Facebook pages. Overall group means and standard deviations for constructs were reported. A total of 228 responses were collected. Most participants were involved in reining and cutting and 34.6% reported they were very familiar with the disease. Participants (78.5%) reported that HERDA status affects value of a breeding animal. Owners of HERDA carriers (62.5%) noticed no difference in performance or injury compared with noncarriers. Respondents (95.2%) believed that all breeding animals should have HERDA status available. Respondents are attempting to make informed breeding decisions based on HERDA status by pairing carriers with noncarriers; however, it remains to be seen if that is adequate to control the disease. Education regarding breeding practices and its impact on the genetic pool are warranted.
Collapse
Affiliation(s)
- Neely L Walker
- Louisiana State University Agricultural Center, Baton Rouge, LA 70803.
| | - Anne R Patout
- Louisiana State University, College of Agriculture, School of Animal Science, Baton Rouge, LA 70803
| | - Melissa Cater
- Louisiana State University Agricultural Center, Baton Rouge, LA 70803
| |
Collapse
|
18
|
Ure DR, Trepanier DJ, Mayo PR, Foster RT. Cyclophilin inhibition as a potential treatment for nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs 2019; 29:163-178. [DOI: 10.1080/13543784.2020.1703948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daren R. Ure
- Hepion Pharmaceuticals Inc, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
19
|
Su T, Li P, Wang H, Wang W, Zhao X, Yu Y, Zhang D, Yu S, Zhang F. Natural variation in a calreticulin gene causes reduced resistance to Ca 2+ deficiency-induced tipburn in Chinese cabbage (Brassica rapa ssp. pekinensis). PLANT, CELL & ENVIRONMENT 2019; 42:3044-3060. [PMID: 31301234 DOI: 10.1111/pce.13612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Tipburn is an irreversible physiological disorder of Chinese cabbage that decreases crop value. Because of a strong environmental component, tipburn-resistant cultivars are the only solution, although tipburn resistance genes are unknown in Chinese cabbage. We studied three populations of Chinese cabbage over four growing seasons under field conditions: (a) 194 diverse inbred lines, (b) a doubled haploid (DH100) population, and (c) an F2 population. The 194 lines were genotyped using single nucleotide polymorphism markers, and genome-wide-association mapping showed that 24 gQTLs were significantly associated with tipburn disease index. Analysis of the DH100 and F2 populations identified a shared tipburn-associated locus, gqbTRA06, that was found to cover the region defined by one of the 24 gQTLs. Of 35 genes predicted in the 0.14-Mb quantitative trait locus region, Bra018575 (calreticulin family protein, BrCRT2) showed higher expression levels during disease development. We cloned the two BrCRT2 alleles from tipburn-resistant (BrCRT2R ) and tipburn-susceptible (BrCRT2S ) lines and identified a 51-bp deletion in BrCRT2S . Overexpression of BrCRT2R increased Ca2+ storage in the Arabidopsis crt2 mutant and also reduced cell death in leaf tips and margins under Ca2+ -depleted conditions. Our results suggest that BrCRT2 is a possible candidate gene for controlling tipburn in Chinese cabbage.
Collapse
Affiliation(s)
- Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Huiping Wang
- National Engineering Research Center for Vegetables, Beijing, 100097, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| |
Collapse
|
20
|
Wu J, Zhang W, Xia L, Feng L, Shu Z, Zhang J, Ye W, Zeng N, Zhou A. Characterization of PPIB interaction in the P3H1 ternary complex and implications for its pathological mutations. Cell Mol Life Sci 2019; 76:3899-3914. [PMID: 30993352 PMCID: PMC11105654 DOI: 10.1007/s00018-019-03102-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/20/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
The P3H1/CRTAP/PPIB complex is essential for prolyl 3-hydroxylation and folding of procollagens in the endoplasmic reticulum (ER). Deficiency in any component of this ternary complex is associated with the misfolding of collagen and the onset of osteogenesis imperfecta. However, little structure information is available about how this ternary complex is assembled and retained in the ER. Here, we assessed the role of the KDEL sequence of P3H1 and probed the spatial interactions of PPIB in the complex. We show that the KDEL sequence is essential for retaining the P3H1 complex in the ER. Its removal resulted in co-secretion of P3H1 and CRTAP out of the cell, which was mediated by the binding of P3H1 N-terminal domain with CRTAP. The secreted P3H1/CRTAP can readily bind PPIB with their C-termini close to PPIB in the ternary complex. Cysteine modification, crosslinking, and mass spectrometry experiments identified PPIB surface residues involved in the complex formation, and showed that the surface of PPIB is extensively covered by the binding of P3H1 and CRTAP. Most importantly, we demonstrated that one disease-associated pathological PPIB mutation on the binding interface did not affect the PPIB prolyl-isomerase activity, but disrupted the formation of P3H1/CRTAP/PPIB ternary complex. This suggests that defects in the integrity of the P3H1 ternary complex are associated with pathological collagen misfolding. Taken together, these results provide novel structural information on how PPIB interacts with other components of the P3H1 complex and indicate that the integrity of P3H1 complex is required for proper collagen formation.
Collapse
Affiliation(s)
- Jiawei Wu
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenting Zhang
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Xia
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lingling Feng
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zimei Shu
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Zhang
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Ye
- Department of Preventive Dentistry, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Naiyan Zeng
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Aiwu Zhou
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
21
|
Acevedo LA, Korson NE, Williams JM, Nicholson LK. Tuning a timing device that regulates lateral root development in rice. JOURNAL OF BIOMOLECULAR NMR 2019; 73:493-507. [PMID: 31407206 PMCID: PMC7141409 DOI: 10.1007/s10858-019-00258-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Peptidyl Prolyl Isomerases (PPIases) accelerate cis-trans isomerization of prolyl peptide bonds. In rice, the PPIase LRT2 is essential for lateral root initiation. LRT2 displays in vitro isomerization of a highly conserved W-P peptide bond (104W-P105) in the natural substrate OsIAA11. OsIAA11 is a transcription repressor that, in response to the plant hormone auxin, is targeted to ubiquitin-mediated proteasomal degradation via specific recognition of the cis isomer of its 104W-P105 peptide bond. OsIAA11 controls transcription of specific genes, including its own, that are required for lateral root development. This auxin-responsive negative feedback circuit governs patterning and development of lateral roots along the primary root. The ability to tune LRT2 activity via mutagenesis is crucial for understanding and modeling the role of this bimodal switch in the auxin circuit and lateral root development. We present characterization of the thermal stability and isomerization rates of several LRT2 mutants acting on the OsIAA11 substrate. The thermally stable mutants display activities lower than that of wild-type (WT) LRT2. These include binding diminished but catalytically active P125K, binding incompetent W128A, and binding capable but catalytically incompetent H133Q mutations. Additionally, LRT2 homologs hCypA from human, TaCypA from Triticum aestivum (wheat) and PPIB from E. coli were shown to have 110, 50 and 60% of WT LRT2 activity on the OsIAA11 substrate. These studies identify several thermally stable LRT2 mutants with altered activities that will be useful for establishing relationships between cis-trans isomerization, auxin circuit dynamics, and lateral root development in rice.
Collapse
Affiliation(s)
- Lucila Andrea Acevedo
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
- Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nathan E Korson
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Justin M Williams
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Linda K Nicholson
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
22
|
Terajima M, Taga Y, Cabral WA, Liu Y, Nagasawa M, Sumida N, Kayashima Y, Chandrasekaran P, Han L, Maeda N, Perdivara I, Hattori S, Marini JC, Yamauchi M. Cyclophilin B control of lysine post-translational modifications of skin type I collagen. PLoS Genet 2019; 15:e1008196. [PMID: 31173582 PMCID: PMC6602281 DOI: 10.1371/journal.pgen.1008196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/01/2019] [Accepted: 05/14/2019] [Indexed: 01/06/2023] Open
Abstract
Covalent intermolecular cross-linking of collagen is essential for tissue stability. Recent studies have demonstrated that cyclophilin B (CypB), an endoplasmic reticulum (ER)-resident peptidyl-prolyl cis-trans isomerase, modulates lysine (Lys) hydroxylation of type I collagen impacting cross-linking chemistry. However, the extent of modulation, the molecular mechanism and the functional outcome in tissues are not well understood. Here, we report that, in CypB null (KO) mouse skin, two unusual collagen cross-links lacking Lys hydroxylation are formed while neither was detected in wild type (WT) or heterozygous (Het) mice. Mass spectrometric analysis of type I collagen showed that none of the telopeptidyl Lys was hydroxylated in KO or WT/Het mice. Hydroxylation of the helical cross-linking Lys residues was almost complete in WT/Het but was markedly diminished in KO. Lys hydroxylation at other sites was also lower in KO but to a lesser extent. A key glycosylation site, α1(I) Lys-87, was underglycosylated while other sites were mostly overglycosylated in KO. Despite these findings, lysyl hydroxylases and glycosyltransferase 25 domain 1 levels were significantly higher in KO than WT/Het. However, the components of ER chaperone complex that positively or negatively regulates lysyl hydroxylase activities were severely reduced or slightly increased, respectively, in KO. The atomic force microscopy-based nanoindentation modulus were significantly lower in KO skin than WT. These data demonstrate that CypB deficiency profoundly affects Lys post-translational modifications of collagen likely by modulating LH chaperone complexes. Together, our study underscores the critical role of CypB in Lys modifications of collagen, cross-linking and mechanical properties of skin. Deficiency of cyclophilin B (CypB), an endoplasmic reticulum-resident peptidyl-prolyl cis-trans isomerase, causes recessive osteogenesis imperfecta type IX, resulting in defective connective tissues. Recent studies using CypB null mice revealed that CypB modulates lysine hydroxylation of type I collagen impacting collagen cross-linking. However, the extent of modulation, the molecular mechanism and the effect on tissue properties are not well understood. In the present study, we show that CypB deficiency in mouse skin results in the formation of unusual collagen cross-links, aberrant tissue formation, altered levels of lysine modifying enzymes and their chaperones, and impaired mechanical property. These findings highlight an essential role of CypB in collagen post-translational modifications which are critical in maintaining the structure and function of connective tissues.
Collapse
Affiliation(s)
- Masahiko Terajima
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Wayne A. Cabral
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health, Bethesda, Maryland, United States of America
- Molecular Genetics Section, Medical Genomics and Metabolic Genetics Branch, NHGRI, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ying Liu
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Masako Nagasawa
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Noriko Sumida
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yukako Kayashima
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Irina Perdivara
- Fujifilm Diosynth Biotechnologies, Morrisville, North Carolina, United States of America
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Joan C. Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
23
|
Warmblood Fragile Foal Syndrome causative single nucleotide polymorphism frequency in Warmblood horses in Brazil. Vet J 2019; 248:101-102. [PMID: 31113555 DOI: 10.1016/j.tvjl.2019.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 11/20/2022]
Abstract
Warmblood Fragile Foal Syndrome (WFFS) is an autosomal recessive genetic disorder caused by a mutation in the procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1) gene, associated with collagen biosynthesis. WFFS causes lesions and malformations of the skin in neonatal foals, and abortion. The objective of this study was to investigate the allelic frequency of the single nucleotide polymorphism (SNP) c.2032G>A in the PLOD1 gene in warmblood samples from Brazil. Of the 374 Warmblood horses tested, 41 animals (11%) were identified as heterozygous for the WFFS SNP and 333 (89%) were homozygous for the wild-type allele (N/N), and therefore, the allele frequency was 5.5%. This study highlights the importance of control measures to prevent an increase in the incidence of WFFS in Warmblood horses worldwide.
Collapse
|
24
|
Abstract
Collagens represent a large family of structurally related proteins containing a unique triple-helical structure. Among them, the fibril-forming collagens are the most abundant in vertebrates providing tissues with form and stability. One of the characteristics of the fibrillar collagens is its sequential posttranslational modifications of specific lysine residues that have major effects on molecular assembly and stability of the fibrils in the extracellular space. Hydroxylation of lysine residues is the first modification catalyzed by lysyl hydroxylases, and is critical for the following glycosylation and in determining the fate of covalent cross-linking. This chapter presents an overview of lysine hydroxylation and cross-linking of collagen, and the analytical methods we have developed.
Collapse
Affiliation(s)
- Mitsuo Yamauchi
- Department of Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA.
| | - Masahiko Terajima
- Department of Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Masashi Shiiba
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
25
|
Li 李靖 J, Liu B, Yu F, Liu T, Peng Y, Fu Y. A 2-Year-Old Filly With Hereditary Equine Regional Dermal Asthenia: The First Case Report From China. J Equine Vet Sci 2018; 64:1-4. [PMID: 30973143 DOI: 10.1016/j.jevs.2018.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 11/26/2022]
Abstract
Hereditary equine regional dermal asthenia (HERDA) is an autosomal recessive inheritable disorder described in the Quarter Horses and related breeds. In this case report, a 2-year-old Quarter Horse filly was diagnosed with HERDA based on clinical findings and genetic testing. The observed clinical signs were stretchy, loose and thin skin, and open wounds on the upper body. Skin biopsy results were consistent with the common findings previously described in the literature. This is the first HERDA case report in China (and in Asia). Genetic testing protocols should be implemented for breeding farms to prevent the disease.
Collapse
Affiliation(s)
- Jing Li 李靖
- Department of Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.
| | - Bo Liu
- Department of Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Feng Yu
- Class of 2020, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - Tianlong Liu
- Department of Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yushi Peng
- Department of Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yunhe Fu
- Department of Clinical Sciences, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
26
|
Kozlov G, Muñoz-Escobar J, Castro K, Gehring K. Mapping the ER Interactome: The P Domains of Calnexin and Calreticulin as Plurivalent Adapters for Foldases and Chaperones. Structure 2017; 25:1415-1422.e3. [DOI: 10.1016/j.str.2017.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/09/2017] [Accepted: 07/25/2017] [Indexed: 10/18/2022]
|
27
|
Terajima M, Taga Y, Cabral WA, Nagasawa M, Sumida N, Hattori S, Marini JC, Yamauchi M. Cyclophilin B Deficiency Causes Abnormal Dentin Collagen Matrix. J Proteome Res 2017; 16:2914-2923. [PMID: 28696707 DOI: 10.1021/acs.jproteome.7b00190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cyclophilin B (CypB) is an endoplasmic reticulum-resident protein that regulates collagen folding, and also contributes to prolyl 3-hydroxylation (P3H) and lysine (Lys) hydroxylation of collagen. In this study, we characterized dentin type I collagen in CypB null (KO) mice, a model of recessive osteogenesis imperfecta type IX, and compared to those of wild-type (WT) and heterozygous (Het) mice. Mass spectrometric analysis demonstrated that the extent of P3H in KO collagen was significantly diminished compared to WT/Het. Lys hydroxylation in KO was significantly diminished at the helical cross-linking sites, α1/α2(I) Lys-87 and α1(I) Lys-930, leading to a significant increase in the under-hydroxylated cross-links and a decrease in fully hydroxylated cross-links. The extent of glycosylation of hydroxylysine residues was, except α1(I) Lys-87, generally higher in KO than WT/Het. Some of these molecular phenotypes were distinct from other KO tissues reported previously, indicating the dentin-specific control mechanism through CypB. Histological analysis revealed that the width of predentin was greater and irregular, and collagen fibrils were sparse and significantly smaller in KO than WT/Het. These results indicate a critical role of CypB in dentin matrix formation, suggesting a possible association between recessive osteogenesis imperfecta and dentin defects that have not been clinically detected.
Collapse
Affiliation(s)
- Masahiko Terajima
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Yuki Taga
- Nippi Research Institute of Biomatrix , Ibaraki 302-0017, Japan
| | - Wayne A Cabral
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Masako Nagasawa
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences , Niigata 951-8514, Japan
| | - Noriko Sumida
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix , Ibaraki 302-0017, Japan
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
28
|
Hudson DM, Garibov M, Dixon DR, Popowics T, Eyre DR. Distinct post-translational features of type I collagen are conserved in mouse and human periodontal ligament. J Periodontal Res 2017. [PMID: 28631261 DOI: 10.1111/jre.12475] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Specifics of the biochemical pathways that modulate collagen cross-links in the periodontal ligament (PDL) are not fully defined. Better knowledge of the collagen post-translational modifications that give PDL its distinct tissue properties is needed to understand the pathogenic mechanisms of human PDL destruction in periodontal disease. In this study, the post-translational phenotypes of human and mouse PDL type I collagen were surveyed using mass spectrometry. PDL is a highly specialized connective tissue that joins tooth cementum to alveolar bone. The main function of the PDL is to support the tooth within the alveolar bone while under occlusal load after tooth eruption. Almost half of the adult population in the USA has periodontal disease resulting from inflammatory destruction of the PDL, leading to tooth loss. Interestingly, PDL is unique from other ligamentous connective tissues as it has a high rate of turnover. Rapid turnover is believed to be an important characteristic for this specialized ligament to function within the oral-microbial environment. Like other ligaments, PDL is composed predominantly of type I collagen. Collagen synthesis is a complex process with multiple steps and numerous post-translational modifications including hydroxylation, glycosylation and cross-linking. The chemistry, placement and quantity of intermolecular cross-links are believed to be important regulators of tissue-specific structural and mechanical properties of collagens. MATERIAL AND METHODS Type I collagen was isolated from several mouse and human tissues, including PDL, and analyzed by mass spectrometry for post-translational variances. RESULTS The collagen telopeptide cross-linking lysines of PDL were found to be partially hydroxylated in human and mouse, as well as in other types of ligament. However, the degree of hydroxylation and glycosylation at the helical Lys87 cross-linking residue varied across species and between ligaments. These data suggest that different types of ligament collagen, notably PDL, appear to have evolved distinctive lysine/hydroxylysine cross-linking variations. Another distinguishing feature of PDL collagen is that, unlike other ligaments, it lacks any of the known prolyl 3-hydroxylase 2-catalyzed 3-hydroxyproline site modifications that characterize tendon and ligament collagens. This gives PDL a novel modification profile, with hybrid features of both ligament and skin collagens. CONCLUSION This distinctive post-translational phenotype may be relevant for understanding why some individuals are at risk of rapid PDL destruction in periodontal disease and warrants further investigation. In addition, developing a murine model for studying PDL collagen may be useful for exploring potential clinical strategies for promoting PDL regeneration.
Collapse
Affiliation(s)
- D M Hudson
- Department of Orthopaedics, University of Washington, Seattle, WA, USA
| | - M Garibov
- Department of Periodontics, University of Washington, Seattle, WA, USA
| | - D R Dixon
- Department of Periodontics, University of Washington, Seattle, WA, USA
| | - T Popowics
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| | - D R Eyre
- Department of Orthopaedics, University of Washington, Seattle, WA, USA
| |
Collapse
|
29
|
Ishikawa Y, Mizuno K, Bächinger HP. Ziploc-ing the structure 2.0: Endoplasmic reticulum-resident peptidyl prolyl isomerases show different activities toward hydroxyproline. J Biol Chem 2017; 292:9273-9282. [PMID: 28385890 DOI: 10.1074/jbc.m116.772657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/27/2017] [Indexed: 12/21/2022] Open
Abstract
Extracellular matrix proteins are biosynthesized in the rough endoplasmic reticulum (rER), and the triple-helical protein collagen is the most abundant extracellular matrix component in the human body. Many enzymes, molecular chaperones, and post-translational modifiers facilitate collagen biosynthesis. Collagen contains a large number of proline residues, so the cis/trans isomerization of proline peptide bonds is the rate-limiting step during triple-helix formation. Accordingly, the rER-resident peptidyl prolyl cis/trans isomerases (PPIases) play an important role in the zipper-like triple-helix formation in collagen. We previously described this process as "Ziploc-ing the structure" and now provide additional information on the activity of individual rER PPIases. We investigated the substrate preferences of these PPIases in vitro using type III collagen, the unhydroxylated quarter fragment of type III collagen, and synthetic peptides as substrates. We observed changes in activity of six rER-resident PPIases, cyclophilin B (encoded by the PPIB gene), FKBP13 (FKBP2), FKBP19 (FKBP11), FKBP22 (FKBP14), FKBP23 (FKBP7), and FKBP65 (FKBP10), due to posttranslational modifications of proline residues in the substrate. Cyclophilin B and FKBP13 exhibited much lower activity toward post-translationally modified substrates. In contrast, FKBP19, FKBP22, and FKBP65 showed increased activity toward hydroxyproline-containing peptide substrates. Moreover, FKBP22 showed a hydroxyproline-dependent effect by increasing the amount of refolded type III collagen in vitro and FKBP19 seems to interact with triple helical type I collagen. Therefore, we propose that hydroxyproline modulates the rate of Ziploc-ing of the triple helix of collagen in the rER.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- From the Department of Biochemistry and Molecular Biology, Oregon Health & Science University and.,Research Department, Shriners Hospital for Children, Portland, Oregon 97239
| | - Kazunori Mizuno
- Research Department, Shriners Hospital for Children, Portland, Oregon 97239
| | - Hans Peter Bächinger
- From the Department of Biochemistry and Molecular Biology, Oregon Health & Science University and .,Research Department, Shriners Hospital for Children, Portland, Oregon 97239
| |
Collapse
|
30
|
Kang H, Aryal A C S, Marini JC. Osteogenesis imperfecta: new genes reveal novel mechanisms in bone dysplasia. Transl Res 2017; 181:27-48. [PMID: 27914223 DOI: 10.1016/j.trsl.2016.11.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
Abstract
Osteogenesis imperfecta (OI) is a skeletal dysplasia characterized by fragile bones and short stature and known for its clinical and genetic heterogeneity which is now understood as a collagen-related disorder. During the last decade, research has made remarkable progress in identifying new OI-causing genes and beginning to understand the intertwined molecular and biochemical mechanisms of their gene products. Most cases of OI have dominant inheritance. Each new gene for recessive OI, and a recently identified gene for X-linked OI, has shed new light on its (often previously unsuspected) function in bone biology. Here, we summarize the literature that has contributed to our current understanding of the pathogenesis of OI.
Collapse
Affiliation(s)
- Heeseog Kang
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, Md
| | - Smriti Aryal A C
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, Md
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, Md.
| |
Collapse
|
31
|
Brinkman EL, Weed BC, Patnaik SS, Brazile BL, Centini RM, Wills RW, Olivier B, Sledge DG, Cooley J, Liao J, Rashmir-Raven AM. Cardiac findings in Quarter Horses with heritable equine regional dermal asthenia. J Am Vet Med Assoc 2017; 250:538-547. [DOI: 10.2460/javma.250.5.538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Jiang Y, Pan J, Guo D, Zhang W, Xie J, Fang Z, Guo C, Fang Q, Jiang W, Guo Y. Two novel mutations in the PPIB gene cause a rare pedigree of osteogenesis imperfecta type IX. Clin Chim Acta 2017; 469:111-118. [PMID: 28242392 DOI: 10.1016/j.cca.2017.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/19/2017] [Accepted: 02/23/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare genetic skeletal disorder characterized by increased bone fragility and vulnerability to fractures. PPIB is identified as a candidate gene for OI-IX, here we detect two pathogenic mutations in PPIB and analyze the genotype-phenotype correlation in a Chinese family with OI. METHODS Next-generation sequencing (NGS) was used to screen the whole exome of the parents of proband. Screening of variation frequency, evolutionary conservation comparisons, pathogenicity evaluation, and protein structure prediction were conducted to assess the pathogenicity of the novel mutations. Sanger sequencing was used to confirm the candidate variants. RTQ-PCR was used to analyze the PPIB gene expression. RESULTS All mutant genes screened out by NGS were excluded except PPIB. Two novel heterozygous PPIB mutations (father, c.25A>G; mother, c.509G>A) were identified in relation to osteogenesis imperfecta type IX. Both mutations were predicted to be pathogenic by bioinformatics analysis and RTQ-PCR analysis revealed downregulated PPIB expression in the two carriers. CONCLUSION We report a rare pedigree with an autosomal recessive osteogenesis imperfecta type IX (OI-IX) caused by two novel PPIB mutations identified for the first time in China. The current study expands our knowledge of PPIB mutations and their associated phenotypes, and provides new information on the genetic defects associated with this disease for clinical diagnosis.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingxin Pan
- Department of Internal Medicine, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| | - Dongwei Guo
- Clinical Medicine, Grade 2014, Medical College, Xiamen University, Xiamen 361102, China
| | - Wei Zhang
- Department of Human and Molecular Genetics, BCM (Baylor College of Medicine), One Baylor Plaza, Nab 2015, Houston, TX 77030, USA; AmCare Genomics Laboratory, Guangzhou 510300, China
| | - Jie Xie
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zishui Fang
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chunmiao Guo
- Department of Internal Medicine, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| | - Qun Fang
- Fetal Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiying Jiang
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yibin Guo
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
33
|
Gjaltema RAF, Bank RA. Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Crit Rev Biochem Mol Biol 2016; 52:74-95. [PMID: 28006962 DOI: 10.1080/10409238.2016.1269716] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Collagen is a macromolecule that has versatile roles in physiology, ranging from structural support to mediating cell signaling. Formation of mature collagen fibrils out of procollagen α-chains requires a variety of enzymes and chaperones in a complex process spanning both intracellular and extracellular post-translational modifications. These processes include modifications of amino acids, folding of procollagen α-chains into a triple-helical configuration and subsequent stabilization, facilitation of transportation out of the cell, cleavage of propeptides, aggregation, cross-link formation, and finally the formation of mature fibrils. Disruption of any of the proteins involved in these biosynthesis steps potentially result in a variety of connective tissue diseases because of a destabilized extracellular matrix. In this review, we give a revised overview of the enzymes and chaperones currently known to be relevant to the conversion of lysine and proline into hydroxyproline and hydroxylysine, respectively, and the O-glycosylation of hydroxylysine and give insights into the consequences when these steps are disrupted.
Collapse
Affiliation(s)
- Rutger A F Gjaltema
- a MATRIX Research Group, Department of Pathology and Medical Biology , University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| | - Ruud A Bank
- a MATRIX Research Group, Department of Pathology and Medical Biology , University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| |
Collapse
|
34
|
Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta. PLoS Genet 2016; 12:e1006156. [PMID: 27441836 PMCID: PMC4956114 DOI: 10.1371/journal.pgen.1006156] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022] Open
Abstract
Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50–70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes. Osteogenesis imperfecta (OI) is a heritable disorder of connective tissues characterized by fracture susceptibility and growth deficiency. Most OI cases are caused by autosomal dominant mutations in the genes encoding type I collagen, COL1A1 and COL1A2. Delineation of novel gene defects causing dominant and recessive forms of OI has led to the understanding that the bone pathology results not only from abnormalities in type I collagen quantity and primary structure, but also from defects in post-translational modification, folding, intracellular transport and extracellular matrix incorporation. Recently, mutations in TMEM38B, which encodes the integral ER membrane K+ channel TRIC-B, have been identified as causative for the OI phenotype. However, the mechanism by which absence of TRIC-B causes OI has not been reported. Using cell lines established from three independent probands, we have demonstrated that absence of TRIC-B leads to abnormal ER Ca2+ flux and store-operated calcium entry (SOCE), although ER steady state Ca2+ is normal. Disruption of intracellular calcium dynamics alters the expression and activity of multiple collagen interacting chaperones and modifying enzymes within the ER. Thus TRIC-B deficiency causes OI by dysregulation of collagen synthesis, through the impairment of calcium-dependent gene expression and protein-protein interactions within the ER.
Collapse
|
35
|
Lindert U, Cabral WA, Ausavarat S, Tongkobpetch S, Ludin K, Barnes AM, Yeetong P, Weis M, Krabichler B, Srichomthong C, Makareeva EN, Janecke AR, Leikin S, Röthlisberger B, Rohrbach M, Kennerknecht I, Eyre DR, Suphapeetiporn K, Giunta C, Marini JC, Shotelersuk V. MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta. Nat Commun 2016; 7:11920. [PMID: 27380894 PMCID: PMC4935805 DOI: 10.1038/ncomms11920] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/12/2016] [Indexed: 11/09/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a collagen-related bone dysplasia. We identified an X-linked recessive form of OI caused by defects in MBTPS2, which encodes site-2 metalloprotease (S2P). MBTPS2 missense mutations in two independent kindreds with moderate/severe OI cause substitutions at highly conserved S2P residues. Mutant S2P has normal stability, but impaired functioning in regulated intramembrane proteolysis (RIP) of OASIS, ATF6 and SREBP transcription factors, consistent with decreased proband secretion of type I collagen. Further, hydroxylation of the collagen lysine residue (K87) critical for crosslinking is reduced in proband bone tissue, consistent with decreased lysyl hydroxylase 1 in proband osteoblasts. Reduced collagen crosslinks presumptively undermine bone strength. Also, proband osteoblasts have broadly defective differentiation. These mutations provide evidence that RIP plays a fundamental role in normal bone development. Osteogenesis imperfecta (OI) is genetically linked to autosomal dominant or autosomal recessive mutations. Here, Marini et al. describe two families with X-chromosome-linked OI with mutations in MBTPS2 that alter regulated intramembrane proteolysis and subsequent defects in collagen crosslinking and osteoblast function.
Collapse
Affiliation(s)
- Uschi Lindert
- Division of Metabolism, Connective Tissue Unit and Children's Research Center, University Children's Hospital Zurich, Zurich 8032, Switzerland
| | - Wayne A Cabral
- Section on Heritable Disorders of Bone and Extracellular Matrix, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Surasawadee Ausavarat
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Siraprapa Tongkobpetch
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Katja Ludin
- Center for Laboratory Medicine, Department of Medical Genetics, Kantonsspital Aarau, Aarau 5001, Switzerland
| | - Aileen M Barnes
- Section on Heritable Disorders of Bone and Extracellular Matrix, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Patra Yeetong
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Maryann Weis
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Birgit Krabichler
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Chalurmpon Srichomthong
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Elena N Makareeva
- Section on Physical Biochemistry, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Andreas R Janecke
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck 6020, Austria.,Department of Pediatrics I, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Sergey Leikin
- Section on Physical Biochemistry, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Benno Röthlisberger
- Center for Laboratory Medicine, Department of Medical Genetics, Kantonsspital Aarau, Aarau 5001, Switzerland
| | - Marianne Rohrbach
- Division of Metabolism, Connective Tissue Unit and Children's Research Center, University Children's Hospital Zurich, Zurich 8032, Switzerland
| | - Ingo Kennerknecht
- Institute of Human Genetics, Westfälische Wilhelms University, Münster 48149, Germany
| | - David R Eyre
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Cecilia Giunta
- Division of Metabolism, Connective Tissue Unit and Children's Research Center, University Children's Hospital Zurich, Zurich 8032, Switzerland
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| |
Collapse
|
36
|
Sc65-Null Mice Provide Evidence for a Novel Endoplasmic Reticulum Complex Regulating Collagen Lysyl Hydroxylation. PLoS Genet 2016; 12:e1006002. [PMID: 27119146 PMCID: PMC4847768 DOI: 10.1371/journal.pgen.1006002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/31/2016] [Indexed: 11/20/2022] Open
Abstract
Collagen is a major component of the extracellular matrix and its integrity is essential for connective tissue and organ function. The importance of proteins involved in intracellular collagen post-translational modification, folding and transport was recently highlighted from studies on recessive forms of osteogenesis imperfecta (OI). Here we describe the critical role of SC65 (Synaptonemal Complex 65, P3H4), a leprecan-family member, as part of an endoplasmic reticulum (ER) complex with prolyl 3-hydroxylase 3. This complex affects the activity of lysyl-hydroxylase 1 potentially through interactions with the enzyme and/or cyclophilin B. Loss of Sc65 in the mouse results in instability of this complex, altered collagen lysine hydroxylation and cross-linking leading to connective tissue defects that include low bone mass and skin fragility. This is the first indication of a prolyl-hydroxylase complex in the ER controlling lysyl-hydroxylase activity during collagen synthesis. Fibrillar collagens are major components of connective tissue extracellular matrix (ECM). Among them, type I collagen is the most abundant protein in the human body and a large constituent of bone, dermis, tendon and ligament ECMs; type I collagen is also present in the stroma of other organs including heart, lung and kidney where, when dysregulated, it significantly contributes to pathological fibrosis. Type I and other collagen molecules have triple-helical folding requirements and undergo numerous intracellular post-translational modifications in the endoplasmic reticulum (ER) and Golgi apparatus. We and others have shown that alterations/loss of specific collagen modifications can lead to severe congenital disease such as osteogenesis imperfecta (OI). Here, using a multidisciplinary approach, we describe functional studies of the SC65 protein (Synaptonemal Complex 65 or P3H4), a poorly characterized member of the Leprecan gene family of proteins. We provide evidence that SC65 is a critical component of an ER complex with prolyl 3-hydroxylase 3 (P3H3), lysyl-hydroxylase 1 (LH1), and potentially cyclophilin B (CYPB). Loss of Sc65 in the mouse results in instability of this complex, site-specific reduction in collagen lysine hydroxylation and connective tissue defects including osteopenia and skin fragility.
Collapse
|
37
|
Ellgaard L, McCaul N, Chatsisvili A, Braakman I. Co- and Post-Translational Protein Folding in the ER. Traffic 2016; 17:615-38. [PMID: 26947578 DOI: 10.1111/tra.12392] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 12/19/2022]
Abstract
The biophysical rules that govern folding of small, single-domain proteins in dilute solutions are now quite well understood. The mechanisms underlying co-translational folding of multidomain and membrane-spanning proteins in complex cellular environments are often less clear. The endoplasmic reticulum (ER) produces a plethora of membrane and secretory proteins, which must fold and assemble correctly before ER exit - if these processes fail, misfolded species accumulate in the ER or are degraded. The ER differs from other cellular organelles in terms of the physicochemical environment and the variety of ER-specific protein modifications. Here, we review chaperone-assisted co- and post-translational folding and assembly in the ER and underline the influence of protein modifications on these processes. We emphasize how method development has helped advance the field by allowing researchers to monitor the progression of folding as it occurs inside living cells, while at the same time probing the intricate relationship between protein modifications during folding.
Collapse
Affiliation(s)
- Lars Ellgaard
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas McCaul
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Anna Chatsisvili
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
38
|
Abstract
Osteogenesis imperfecta is a phenotypically and molecularly heterogeneous group of inherited connective tissue disorders that share similar skeletal abnormalities causing bone fragility and deformity. Previously, the disorder was thought to be an autosomal dominant bone dysplasia caused by defects in type I collagen, but in the past 10 years discoveries of novel (mainly recessive) causative genes have lent support to a predominantly collagen-related pathophysiology and have contributed to an improved understanding of normal bone development. Defects in proteins with very different functions, ranging from structural to enzymatic and from intracellular transport to chaperones, have been described in patients with osteogenesis imperfecta. Knowledge of the specific molecular basis of each form of the disorder will advance clinical diagnosis and potentially stimulate targeted therapeutic approaches. In this Seminar, together with diagnosis, management, and treatment, we describe the defects causing osteogenesis imperfecta and their mechanism and interrelations, and classify them into five groups on the basis of the metabolic pathway compromised, specifically those related to collagen synthesis, structure, and processing; post-translational modification; folding and cross-linking; mineralisation; and osteoblast differentiation.
Collapse
Affiliation(s)
- Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Joan C Marini
- Bone and Extracellular Matrix Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
39
|
Terajima M, Taga Y, Chen Y, Cabral WA, Hou-Fu G, Srisawasdi S, Nagasawa M, Sumida N, Hattori S, Kurie JM, Marini JC, Yamauchi M. Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen. J Biol Chem 2016; 291:9501-12. [PMID: 26934917 DOI: 10.1074/jbc.m115.699470] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 01/07/2023] Open
Abstract
Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1-3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation.
Collapse
Affiliation(s)
- Masahiko Terajima
- From the North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yuki Taga
- the Nippi Research Institute of Biomatrix, Ibaraki 302-0017, Japan
| | - Yulong Chen
- the Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Wayne A Cabral
- the Bone and Extracellular Matrix Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Guo Hou-Fu
- the Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Sirivimol Srisawasdi
- the Departments of Operative Dentistry, Chulalongkorn University, Bangkok 10330, Thailand, and
| | - Masako Nagasawa
- the Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Noriko Sumida
- From the North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Shunji Hattori
- the Nippi Research Institute of Biomatrix, Ibaraki 302-0017, Japan
| | - Jonathan M Kurie
- the Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Joan C Marini
- the Bone and Extracellular Matrix Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Mitsuo Yamauchi
- From the North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599,
| |
Collapse
|
40
|
Rashmir-Raven AM, Spier SJ. Hereditary equine regional dermal asthenia (HERDA) in Quarter Horses: A review of clinical signs, genetics and research. EQUINE VET EDUC 2015. [DOI: 10.1111/eve.12459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- A. M. Rashmir-Raven
- Large Animal Clinical Sciences; College of Veterinary Medicine; Michigan State University; East Lansing USA
| | - S. J. Spier
- Department of Medicine and Epidemiology; School of Veterinary Medicine; University of California; Davis USA
| |
Collapse
|
41
|
Rashmir-Raven A, Lavagnino M, Sedlak A, Gardner K, Arnoczky S. Increased susceptibility of skin from HERDA (Hereditary Equine Regional Dermal Asthenia)-affected horses to bacterial collagenase degradation: a potential contributing factor to the clinical signs of HERDA. Vet Dermatol 2015; 26:476-80, e110-1. [PMID: 26374391 DOI: 10.1111/vde.12256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Hereditary equine regional dermal asthenia (HERDA) is a genetic disorder of collagen resulting in fragile, hyper-extensible skin and ulcerative lesions. The predominance of skin lesions have been shown to occur on the dorsum of HERDA-affected horses. While this has been postulated to be due to increased exposure to sunlight of these areas, the precise pathological mechanism which causes this to occur is unclear. HYPOTHESIS/OBJECTIVES We hypothesized that an increase in collagenase activity, that has been associated with the exposure of dermal fibroblasts to sunlight, will significantly degrade the material properties of skin from HERDA-affected horses when compared to unaffected controls. ANIMALS Six unaffected and seven HERDA-affected horses, all euthanized for other reasons. METHODS Full-thickness skin samples from similar locations on each horse were collected and cut into uniform strips and their material properties (tensile modulus) determined by mechanical testing before (n = 12 samples/horse) or after (n = 12 samples/horse) incubation in bacterial collagenase at 37°C for 6 h. The change in modulus following treatment was then compared between HERDA-affected and unaffected horses using a Student's t-test. RESULTS The modulus of skin from HERDA-affected horses decreased significantly more than that from unaffected horses following collagenase treatment (54 ± 7% versus 30 ± 16%, P = 0.004). CONCLUSIONS AND CLINICAL IMPORTANCE The significant decrease in the modulus of skin from HERDA-affected horses following collagenase exposure suggests that their altered collagen microarchitecture is more susceptible to enzymatic degradation and may explain the localization of skin lesions in HERDA-affected horses to those areas of the body most exposed to sunlight. These findings appear to support the previously reported benefits of sunlight restriction in HERDA-affected horses.
Collapse
Affiliation(s)
- Ann Rashmir-Raven
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 784 Wilson Road G-387, East Lansing, MI, 48824, USA
| | - Michael Lavagnino
- Laboratory for Comparative Orthopaedic Research, Michigan State University, 784 Wilson Road G-387, East Lansing, MI, 48824, USA
| | - Aleksa Sedlak
- Laboratory for Comparative Orthopaedic Research, Michigan State University, 784 Wilson Road G-387, East Lansing, MI, 48824, USA
| | - Keri Gardner
- Laboratory for Comparative Orthopaedic Research, Michigan State University, 784 Wilson Road G-387, East Lansing, MI, 48824, USA
| | - Steven Arnoczky
- Laboratory for Comparative Orthopaedic Research, Michigan State University, 784 Wilson Road G-387, East Lansing, MI, 48824, USA
| |
Collapse
|
42
|
Cho KI, Orry A, Park SE, Ferreira PA. Targeting the cyclophilin domain of Ran-binding protein 2 (Ranbp2) with novel small molecules to control the proteostasis of STAT3, hnRNPA2B1 and M-opsin. ACS Chem Neurosci 2015; 6:1476-85. [PMID: 26030368 DOI: 10.1021/acschemneuro.5b00134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cyclophilins are peptidyl cis-trans prolyl isomerases (PPIases), whose activity is typically inhibited by cyclosporine A (CsA), a potent immunosuppressor. Cyclophilins are also chaperones. Emerging evidence supports that cyclophilins present nonoverlapping PPIase and chaperone activities. The proteostasis of the disease-relevant substrates, signal transducer and activator of transcription 3 and 5 (STAT3/STAT5), heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1), and M-opsin, is regulated by nonoverlapping chaperone and PPIase activities of the cyclophilin domain (CY) of Ranbp2, a multifunctional and modular scaffold that controls nucleocytoplasmic shuttling and proteostasis of selective substrates. Although highly homologous, CY and the archetypal cyclophilin A (CyPA) present distinct catalytic and CsA-binding activities owing to unique structural features between these cylophilins. We explored structural idiosyncrasies between CY and CyPA to screen in silico nearly 9 million small molecules (SM) against the CY PPIase pocket and identify SMs with selective bioactivity toward STAT3, hnRNPA2B1, or M-opsin proteostasis. We found three classes of SMs that enhance the cytokine-stimulated transcriptional activity of STAT3 without changing latent and activated STAT3 levels, down-regulate hnRNPA2B1 or M-opsin proteostasis, or a combination of these. Further, a SM that suppresses hnRNPA2B1 proteostasis also inhibits strongly and selectively the PPIase activity of CY. This study unravels chemical probes for multimodal regulation of CY of Ranbp2 and its substrates, and this regulation likely results in the allosterism stemming from the interconversion of conformational substates of cyclophilins. The results also demonstrate the feasibility of CY in drug discovery against disease-relevant substrates controlled by Ranbp2, and they open new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Kyoung-in Cho
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Andrew Orry
- MolSoft LLC, San Diego, California 92121, United States
| | - Se Eun Park
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Paulo A. Ferreira
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
43
|
Hudson DM, Joeng KS, Werther R, Rajagopal A, Weis M, Lee BH, Eyre DR. Post-translationally abnormal collagens of prolyl 3-hydroxylase-2 null mice offer a pathobiological mechanism for the high myopia linked to human LEPREL1 mutations. J Biol Chem 2015; 290:8613-22. [PMID: 25645914 DOI: 10.1074/jbc.m114.634915] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myopia, the leading cause of visual impairment worldwide, results from an increase in the axial length of the eyeball. Mutations in LEPREL1, the gene encoding prolyl 3-hydroxylase-2 (P3H2), have recently been identified in individuals with recessively inherited nonsyndromic severe myopia. P3H2 is a member of a family of genes that includes three isoenzymes of prolyl 3-hydroxylase (P3H), P3H1, P3H2, and P3H3. Fundamentally, it is understood that P3H1 is responsible for converting proline to 3-hydroxyproline. This limited additional knowledge also suggests that each isoenzyme has evolved different collagen sequence-preferred substrate specificities. In this study, differences in prolyl 3-hydroxylation were screened in eye tissues from P3h2-null (P3h2(n/n)) and wild-type mice to seek tissue-specific effects due the lack of P3H2 activity on post-translational collagen chemistry that could explain myopia. The mice were viable and had no gross musculoskeletal phenotypes. Tissues from sclera and cornea (type I collagen) and lens capsule (type IV collagen) were dissected from mouse eyes, and multiple sites of prolyl 3-hydroxylation were identified by mass spectrometry. The level of prolyl 3-hydroxylation at multiple substrate sites from type I collagen chains was high in sclera, similar to tendon. Almost every known site of prolyl 3-hydroxylation in types I and IV collagen from P3h2(n/n) mouse eye tissues was significantly under-hydroxylated compared with their wild-type littermates. We conclude that altered collagen prolyl 3-hydroxylation is caused by loss of P3H2. We hypothesize that this leads to structural abnormalities in multiple eye tissues, but particularly sclera, causing progressive myopia.
Collapse
Affiliation(s)
- David M Hudson
- From the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195 and
| | - Kyu Sang Joeng
- the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Rachel Werther
- From the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195 and
| | - Abbhirami Rajagopal
- the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - MaryAnn Weis
- From the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195 and
| | - Brendan H Lee
- the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - David R Eyre
- From the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195 and
| |
Collapse
|
44
|
Skin malformations in a neonatal foal tested homozygous positive for Warmblood Fragile Foal Syndrome. BMC Vet Res 2015; 11:12. [PMID: 25637337 PMCID: PMC4327794 DOI: 10.1186/s12917-015-0318-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/05/2015] [Indexed: 01/17/2023] Open
Abstract
Background Skin malformations that resembled manifestations of Ehlers-Danlos-Syndrome were described in a variety of domestic animals during the last century as cutis hyperelastica, hyperelastosis cutis, dermatosparaxis, dermal/collagen dysplasia, dermal/cutaneous asthenia or Ehlers-Danlos-like syndrome/s. In 2007, the mutation responsible for Hereditary Equine Regional Dermal Asthenia (HERDA) in Quarter Horses was discovered. Several case reports are available for similar malformations in other breeds than Quarter Horses (Draught Horses, Arabians, and Thoroughbreds) including four case reports for Warmblood horses. Since 2013, a genetic test for the Warmblood Fragile Foal Syndrome Type 1 (WFFS), interrogating the causative point mutation in the equine procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1, or lysyl hydroxylase 1) gene, has become available. Only limited data are available on the occurrence rate and clinical characteristics of this newly detected genetic disease in horses. In humans mutations in this gene are associated with Ehlers-Danlos Syndrome Type VI (kyphoscoliotic form). Case presentation This is the first report describing the clinical and histopathological findings in a foal confirmed to be homozygous positive for WFFS. The Warmblood filly was born with very thin, friable skin, skin lesions on the legs and the head, and an open abdomen. These abnormalities required euthanasia just after delivery. Histologic examination revealed abnormally thin dermis, markedly reduced amounts of dermal collagen bundles, with loosely orientation and abnormally large spaces between deep dermal fibers. Conclusion WFFS is a novel genetic disease in horses and should be considered in cases of abortion, stillbirth, skin lesions and malformations of the skin in neonatal foals. Genetic testing of suspicious cases will contribute to evaluate the frequency of occurrence of clinical WFFS cases and its relevance for the horse population.
Collapse
|
45
|
Ishikawa Y, Boudko S, Bächinger HP. Ziploc-ing the structure: Triple helix formation is coordinated by rough endoplasmic reticulum resident PPIases. Biochim Biophys Acta Gen Subj 2015; 1850:1983-93. [PMID: 25583561 DOI: 10.1016/j.bbagen.2014.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/26/2014] [Accepted: 12/29/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Protein folding is crucial for proteins' specific functions and is facilitated by various types of enzymes and molecular chaperones. The peptidyl prolyl cis/trans isomerases (PPIase) are one of these families of enzymes. They ubiquitously exist inside the cell and there are eight PPIases in the rough endoplasmic reticulum (rER), a compartment where the folding of most secreted proteins occurs. SCOPE OF REVIEW We review the functional and structural aspects of individual rER resident PPIases. Furthermore, we specifically discuss the role of these PPIases during collagen biosynthesis, since collagen is the most abundant protein in humans, is synthesized in the rER, and contains a proportionally high number of proline residues. MAJOR CONCLUSIONS The rER resident PPIases recognize different sets of substrates and facilitate their folding. Although they are clearly catalysts for protein folding, they also have more broad and multifaceted functions. We propose that PPIases coordinate collagen biosynthesis in the rER. GENERAL SIGNIFICANCE This review expands our understanding of collagen biosynthesis by explaining the influence of novel indirect mechanisms of regulating folding and this is also explored for PPIases. We also suggest future directions of research to obtain a better understanding of collagen biosynthesis and functions of PPIases in the rER. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; Shriners Hospital for Children, Research Department, Portland, OR 97239, USA
| | - Sergei Boudko
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; Shriners Hospital for Children, Research Department, Portland, OR 97239, USA
| | - Hans Peter Bächinger
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; Shriners Hospital for Children, Research Department, Portland, OR 97239, USA.
| |
Collapse
|
46
|
Taga Y, Kusubata M, Ogawa-Goto K, Hattori S. Highly accurate quantification of hydroxyproline-containing peptides in blood using a protease digest of stable isotope-labeled collagen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12096-12102. [PMID: 25417748 DOI: 10.1021/jf5039597] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Collagen-derived hydroxyproline (Hyp)-containing dipeptides and tripeptides, which are known to possess physiological functions, appear in blood at high concentrations after oral ingestion of gelatin hydrolysate. However, highly accurate and sensitive quantification of the Hyp-containing peptides in blood has been challenging because of the analytical interference from numerous other blood components. We recently developed a stable isotope-labeled collagen named "SI-collagen" that can be used as an internal standard in various types of collagen analyses employing liquid chromatography-mass spectrometry (LC-MS). Here we prepared stable isotope-labeled Hyp-containing peptides from SI-collagen using trypsin/chymotrypsin and plasma proteases by mimicking the protein degradation pathways in the body. With the protease digest of SI-collagen used as an internal standard mixture, we achieved highly accurate simultaneous quantification of Hyp and 13 Hyp-containing peptides in human blood by LC-MS. The area under the plasma concentration-time curve of Hyp-containing peptides ranged from 0.663 ± 0.022 nmol/mL·h for Pro-Hyp-Gly to 163 ± 1 nmol/mL·h for Pro-Hyp after oral ingestion of 25 g of fish gelatin hydrolysate, and the coefficient of variation of three separate measurements was <7% for each peptide except for Glu-Hyp-Gly, which was near the detection limit. Our method is useful for absorption/metabolism studies of the Hyp-containing peptides and development of functionally characterized gelatin hydrolysate.
Collapse
Affiliation(s)
- Yuki Taga
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| | | | | | | |
Collapse
|
47
|
Badial PR, Cisneros-Àlvarez LE, Brandão CVS, Ranzani JJT, Tomaz MARV, Machado VM, Borges AS. Ocular dimensions, corneal thickness, and corneal curvature in quarter horses with hereditary equine regional dermal asthenia. Vet Ophthalmol 2014; 18:385-92. [PMID: 25338739 DOI: 10.1111/vop.12222] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of this study was to compare ocular dimensions, corneal curvature, and corneal thickness between horses affected with hereditary equine regional dermal asthenia (HERDA) and unaffected horses. ANIMALS Five HERDA-affected quarter horses and five healthy control quarter horses were used. METHODS Schirmer's tear test, tonometry, and corneal diameter measurements were performed in both eyes of all horses prior to ophthalmologic examinations. Ultrasonic pachymetry was performed to measure the central, temporal, nasal, dorsal, and ventral corneal thicknesses in all horses. B-mode ultrasound scanning was performed on both eyes of each horse to determine the dimensions of the ocular structures and to calculate the corneal curvature. RESULTS Each corneal region examined in this study was thinner in the affected group compared with the healthy control group. However, significant differences in corneal thickness were only observed for the central and dorsal regions. HERDA-affected horses exhibited significant increases in corneal curvature and corneal diameter compared with unaffected animals. The ophthalmologic examinations revealed mild corneal opacity in one eye of one affected horse and in both eyes of three affected horses. No significant between-group differences were observed for Schirmer's tear test, intraocular pressure, or ocular dimensions. CONCLUSIONS Hereditary equine regional dermal asthenia-affected horses exhibit decreased corneal thickness in several regions of the cornea, increased corneal curvature, increased corneal diameter, and mild corneal opacity. Additional research is required to determine whether the increased corneal curvature significantly impacts the visual accuracy of horses with HERDA.
Collapse
Affiliation(s)
- Peres R Badial
- Department of Veterinary Clinical Science, UNESP - Univ Estadual Paulista, Distrito de Rubião Júnior, Botucatu, São Paulo, Brazil
| | - Luis Emiliano Cisneros-Àlvarez
- Department of Animal Reproduction and Veterinary Radiology, UNESP - Univ Estadual Paulista, Distrito de Rubião Júnior, Botucatu, São Paulo, Brazil
| | - Cláudia Valéria S Brandão
- Department of Veterinary Surgery and Anesthesiology, UNESP - Univ Estadual Paulista, Distrito de Rubião Júnior, Botucatu, São Paulo, Brazil
| | - José Joaquim T Ranzani
- Department of Veterinary Surgery and Anesthesiology, UNESP - Univ Estadual Paulista, Distrito de Rubião Júnior, Botucatu, São Paulo, Brazil
| | - Mayana A R V Tomaz
- Department of Veterinary Surgery and Anesthesiology, UNESP - Univ Estadual Paulista, Distrito de Rubião Júnior, Botucatu, São Paulo, Brazil
| | - Vania M Machado
- Department of Animal Reproduction and Veterinary Radiology, UNESP - Univ Estadual Paulista, Distrito de Rubião Júnior, Botucatu, São Paulo, Brazil
| | - Alexandre S Borges
- Department of Veterinary Clinical Science, UNESP - Univ Estadual Paulista, Distrito de Rubião Júnior, Botucatu, São Paulo, Brazil
| |
Collapse
|
48
|
Taga Y, Kusubata M, Ogawa-Goto K, Hattori S. Stable Isotope-Labeled Collagen: A Novel and Versatile Tool for Quantitative Collagen Analyses Using Mass Spectrometry. J Proteome Res 2014; 13:3671-8. [DOI: 10.1021/pr500213a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yuki Taga
- Nippi Research Institute of Biomatrix, 520-11
Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Masashi Kusubata
- Nippi Research Institute of Biomatrix, 520-11
Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Kiyoko Ogawa-Goto
- Nippi Research Institute of Biomatrix, 520-11
Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, 520-11
Kuwabara, Toride, Ibaraki 302-0017, Japan
| |
Collapse
|
49
|
Cabral WA, Perdivara I, Weis M, Terajima M, Blissett AR, Chang W, Perosky JE, Makareeva EN, Mertz EL, Leikin S, Tomer KB, Kozloff KM, Eyre DR, Yamauchi M, Marini JC. Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta. PLoS Genet 2014; 10:e1004465. [PMID: 24968150 PMCID: PMC4072593 DOI: 10.1371/journal.pgen.1004465] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 05/14/2014] [Indexed: 01/24/2023] Open
Abstract
Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib−/− mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2–11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib−/− fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered crosslink pattern was associated with decreased collagen deposition into matrix in culture, altered fibril structure in tissue, and reduced bone strength. These studies demonstrate novel consequences of the indirect regulatory effect of CyPB on collagen hydroxylation, impacting collagen glycosylation, crosslinking and fibrillogenesis, which contribute to maintaining bone mechanical properties. Osteogenesis imperfecta (OI), or brittle bone disease, is characterized by susceptibility to fractures from minimal trauma and growth deficiency. Deficiency of components of the collagen prolyl 3-hydroxylation complex, CRTAP, P3H1 and CyPB, cause recessive types VII, VIII and IX OI, respectively. We have previously shown that mutual protection within the endoplasmic reticulum accounts for the overlapping severe phenotype of patients with CRTAP and P3H1 mutations. However, the bone dysplasia in patients with CyPB deficiency is distinct in terms of phenotype and type I collagen biochemistry. Using a knock-out mouse model of type IX OI, we have demonstrated that CyPB is the major, although not unique, peptidyl prolyl cis-trans isomerase that catalyzes the rate-limiting step in collagen folding. CyPB is also required for activity of the collagen prolyl 3-hydroxylation complex; collagen α1(I) P986 modification is lost in the absence of CyPB. Unexpectedly, CyPB was found to also influence collagen helical lysyl hydroxylation in a tissue-, cell- and residue-specific manner. Thus CyPB facilitates collagen folding directly, but also indirectly regulates collagen hydroxylation, glycosylation, crosslinking and fibrillogenesis through its interactions with other collagen modifying enzymes in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Wayne A. Cabral
- Bone and Extracellular Matrix Branch, NICHD, NIH, Bethesda, Maryland, United States of America
| | - Irina Perdivara
- Laboratory of Structural Biology, NIEHS, NIH, Research Triangle Park, North Carolina, United States of America
| | - MaryAnn Weis
- Orthopaedic Research Laboratories, University of Washington, Seattle, Washington, United States of America
| | - Masahiko Terajima
- North Carolina Oral Health Institute, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Angela R. Blissett
- Bone and Extracellular Matrix Branch, NICHD, NIH, Bethesda, Maryland, United States of America
| | - Weizhong Chang
- Bone and Extracellular Matrix Branch, NICHD, NIH, Bethesda, Maryland, United States of America
| | - Joseph E. Perosky
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Elena N. Makareeva
- Section on Physical Biochemistry, NICHD, NIH, Bethesda, Maryland, United States of America
| | - Edward L. Mertz
- Section on Physical Biochemistry, NICHD, NIH, Bethesda, Maryland, United States of America
| | - Sergey Leikin
- Section on Physical Biochemistry, NICHD, NIH, Bethesda, Maryland, United States of America
| | - Kenneth B. Tomer
- Laboratory of Structural Biology, NIEHS, NIH, Research Triangle Park, North Carolina, United States of America
| | - Kenneth M. Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David R. Eyre
- Orthopaedic Research Laboratories, University of Washington, Seattle, Washington, United States of America
| | - Mitsuo Yamauchi
- North Carolina Oral Health Institute, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joan C. Marini
- Bone and Extracellular Matrix Branch, NICHD, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
50
|
Badial PR, Oliveira-Filho JP, Pantoja JCF, Moreira JCL, Conceição LG, Borges AS. Dermatological and morphological findings in quarter horses with hereditary equine regional dermal asthenia. Vet Dermatol 2014; 25:547-54, e95-6. [PMID: 24964390 DOI: 10.1111/vde.12145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Hereditary equine regional dermal asthenia (HERDA) is an autosomal recessive disorder affecting quarter horses (QHs); affected horses exhibit characteristic skin abnormalities related to abnormal collagen biosynthesis. HYPOTHESIS/OBJECTIVES To characterize the thickness and morphological abnormalities of the skin of HERDA-affected horses and to determine the interobserver agreement and the diagnostic accuracy of histopathological examination of skin biopsies from horses with HERDA. ANIMALS Six affected QHs, confirmed by DNA testing, from a research herd and five unaffected QHs from a stud farm. METHODS The skin thickness in 25 distinct body regions was measured on both sides in all affected and unaffected horses. Histopathological and ultrastructural evaluation of skin biopsies was performed. RESULTS The average skin thickness in all of the evaluated regions was thinner in the affected horses. A statistically significant difference between skin thickness of the affected and unaffected animals was observed only when the average magnitude of difference was ≥38.7% (P = 0.038). The interobserver agreement for the histopathological evaluation was fair to substantial. The histopathological sensitivity for the diagnosis of HERDA was dependent on the evaluator and ranged from 73 to 88%, whereas the specificity was affected by the region sampled and ranged from 35 to 75%. CONCLUSIONS AND CLINICAL IMPORTANCE Despite the regional pattern of the cutaneous signs, skin with decreased thickness was not regionally distributed in the HERDA-affected horses. Histopathological evaluation is informative but not conclusive for establishing the diagnosis. Samples of skin from the neck, croup or back are useful for diagnosis of HERDA. However, the final diagnosis must be confirmed using molecular testing.
Collapse
Affiliation(s)
- Peres R Badial
- Department of Veterinary Clinical Science, School of Veterinary Medicine and Animal Science, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|