1
|
de Dios N, Riedel R, Schanton M, Balestrini P, Pérez L, Pérez-Pérez A, Etcheverry T, Casale R, Farina M, Sánchez-Margalet V, Maymó J, Varone C. Placental apoptosis increased by hypoxia inducible factor-1 stabilization is counteracted by leptin†. Biol Reprod 2024; 111:708-722. [PMID: 38924703 DOI: 10.1093/biolre/ioae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/16/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
During pregnancy, apoptosis is a physiological event critical in the remodeling and aging of the placenta. Increasing evidence has pointed toward the relevance of hypoxia as modulator of trophoblast cell death. Previous reports have shown that leptin, a placental cytokine, promotes cell survival in both cell culture and placental explant models. The aim of this work is to establish the role of leptin in apoptosis under hypoxic condition in trophoblast cells. In this study, we evaluated the effect of cobalt chloride, a hypoxia mimicking agent that stabilizes the expression of hypoxia-inducible factor-1 alpha, on Swan-71 and human placental explants. Hypoxia chamber was also used to generate 2% oxygen. Apoptosis was determined by the presence of apoptotic nucleus, fragmentation of DNA and Caspase-3 and PARP-1 cleavage. The pro-apoptotic proteins BAX, BID, BAD, and BAK and the anti-apoptotic effectors BCL-2, B-cell lymphoma-extra-large, and myeloid cell leukemia-1 were also analyzed. We found that hypoxia-inducible factor-1 alpha stabilization increased the appearance of apoptotic nucleus, fragmentation of DNA, and Caspase-3 and PARP-1 cleavage. Hypoxia mimicking conditions enhanced the expression of pro-apoptotic effectors BAX, BID, BAD, and BAK. Hypoxia-inducible factor-1 alpha stabilization also downregulated the level of BCL-2, B-cell lymphoma-extra-large, and myeloid cell leukemia-1. All these apoptotic parameters changes were reversed with leptin treatment. Moreover, we showed that leptin action on apoptosis modulation involves PI3K and MAPK signaling pathways. Obtained data demonstrate that hypoxia-inducible factor-1 alpha stabilization induces apoptosis in human placenta and leptin counteracts this effect, reinforcing its role as a survival cytokine.
Collapse
Affiliation(s)
- Nataly de Dios
- Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Universidad de Buenos Aires. CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Rodrigo Riedel
- Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Universidad de Buenos Aires. CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Malena Schanton
- Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Universidad de Buenos Aires. CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Paula Balestrini
- Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Universidad de Buenos Aires. CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Luciano Pérez
- Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Universidad de Buenos Aires. CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Antonio Pérez-Pérez
- Departamento de Bioquímica Médica y Biología Molecular. Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Sevilla, España
| | - Tomás Etcheverry
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO, CONICET), Universidad de Buenos Aires. Facultad de Medicina, Buenos Aires, Argentina
| | - Roberto Casale
- Departamento Materno-Infantil, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Mariana Farina
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO, CONICET), Universidad de Buenos Aires. Facultad de Medicina, Buenos Aires, Argentina
| | - Víctor Sánchez-Margalet
- Departamento de Bioquímica Médica y Biología Molecular. Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Sevilla, España
| | - Julieta Maymó
- Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Universidad de Buenos Aires. CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Cecilia Varone
- Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Universidad de Buenos Aires. CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| |
Collapse
|
2
|
Kobyakova MI, Senotov AS, Krasnov KS, Lomovskaya YV, Odinokova IV, Kolotova AA, Ermakov AM, Zvyagina AI, Fadeeva IS, Fetisova EI, Akatov VS, Fadeev RS. Pro-Inflammatory Activation Suppresses TRAIL-induced Apoptosis of Acute Myeloid Leukemia Cells. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:431-440. [PMID: 38648763 DOI: 10.1134/s0006297924030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2023] [Accepted: 12/12/2023] [Indexed: 04/25/2024]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is a promising agent for treatment of AML due to its specific apoptosis-inducing effect on tumor cells but not normal cells. However, emergence of resistance to TRAIL in the AML cells limits its potential as an antileukemic agent. Previously, we revealed increase in the resistance of the human AML THP-1 cells to the TRAIL-induced death during their LPS-dependent proinflammatory activation and in the in vitro model of LPS-independent proinflammatory activation - in a long-term high-density cell culture. In this study, we investigated mechanisms of this phenomenon using Western blot analysis, caspase 3 enzymatic activity analysis, quantitative reverse transcription-PCR, and flow cytometry. The results showed that the increased resistance to the TRAIL-induced cell death of AML THP-1 cells during their pro-inflammatory activation is associated with the decrease in the surface expression of the proapoptotic receptors TRAIL-R1/DR4 and TRAIL-R2/DR5, as well as with the increased content of members of the IAPs family - Livin and cIAP2. The results of this article open up new insights into the role of inflammation in formation of the resistance of AML cells to the action of mediators of antitumor immunity, in particular TRAIL.
Collapse
Affiliation(s)
- Margarita I Kobyakova
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
- Institute of Clinical and Experimental Lymphology, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630060, Russia
| | - Anatoly S Senotov
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Kirill S Krasnov
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Yana V Lomovskaya
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Irina V Odinokova
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anastasia A Kolotova
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Artem M Ermakov
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alena I Zvyagina
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Irina S Fadeeva
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Elena I Fetisova
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vladimir S Akatov
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Roman S Fadeev
- Institute of Theoretical and Experimental Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
3
|
González C, Martínez‐Sánchez L, Clemente P, Toivonen JM, Arredondo JJ, Fernández‐Moreno MÁ, Carrodeguas JA. Dysfunction of Drosophila mitochondrial carrier homolog (Mtch) alters apoptosis and disturbs development. FEBS Open Bio 2024; 14:276-289. [PMID: 38013241 PMCID: PMC10839352 DOI: 10.1002/2211-5463.13742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Mitochondrial carrier homologs 1 (MTCH1) and 2 (MTCH2) are orphan members of the mitochondrial transporter family SLC25. Human MTCH1 is also known as presenilin 1-associated protein, PSAP. MTCH2 is a receptor for tBid and is related to lipid metabolism. Both proteins have been recently described as protein insertases of the outer mitochondrial membrane. We have depleted Mtch in Drosophila and show here that mutant flies are unable to complete development, showing an excess of apoptosis during pupation; this observation was confirmed by RNAi in Schneider cells. These findings are contrary to what has been described in humans. We discuss the implications in view of recent reports concerning the function of these proteins.
Collapse
Affiliation(s)
- Cristina González
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Lidia Martínez‐Sánchez
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Paula Clemente
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Janne Markus Toivonen
- LAGENBIO, Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2)Universidad de ZaragozaSpain
- IIS AragónZaragozaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Juan José Arredondo
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Miguel Ángel Fernández‐Moreno
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER)Facultad de Medicina, UAMMadridSpain
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas Sols‐MorrealeThe Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasMadridSpain
| | - José Alberto Carrodeguas
- IIS AragónZaragozaSpain
- Institute for Biocomputation and Physics of Complex Systems (BIFI)University of ZaragozaSpain
- Department of Biochemistry and Molecular and Cellular Biology, School of SciencesUniversity of ZaragozaSpain
| |
Collapse
|
4
|
Morris DL, Nyenhuis DA, Dean DN, Strub MP, Tjandra N. Observation of pH-Dependent Residual Structure in the Pmel17 Repeat Domain and the Implication for Its Amyloid Formation. Biochemistry 2023; 62:3222-3233. [PMID: 37917797 DOI: 10.1021/acs.biochem.3c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The varying conformational states of amyloid-forming protein monomers can determine their fibrillation outcome. In this study, we utilize solution NMR and the paramagnetic relaxation enhancement (PRE) effect to observe monomer properties of the repeat domain (RPT) from a human functional amyloid, premelanosomal protein, Pmel17. After excision from the full-length protein, RPT can self-assemble into amyloid fibrils, functioning as a scaffold for melanin deposition. Here, we report possible conformational states of the short RPT (sRPT) isoform, which has been demonstrated to be a fibrillation nucleator. NMR experiments were performed to determine conformational differences in sRPT by comparing aggregation-prone vs nonaggregating solution conditions. We observed significant chemical shift perturbations localized to residues near the C-terminus, demonstrating that the local chemical environment of the amyloid core region is highly sensitive to changes in pH. Next, we introduced cysteine point mutations for the covalent attachment of PRE ligands to sRPT to facilitate the observation of intramolecular interactions. We also utilized solvent PRE molecules with opposing charges to measure changes in the electrostatic potential of sRPT in different pH environments. These observed PRE effects offer insight into initial molecular events that might promote intermolecular interactions, which can trigger fibrillation. Taken together, our results show that sRPT monomers adopt a conformation inconsistent with a fully random coil at neutral pH and undergo conformational changes at lower pH values. These observations highlight regulatory mechanisms via organelle-associated pH conditions that can affect the fibrillation activity of proteins like RPT.
Collapse
Affiliation(s)
- Daniel L Morris
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - David A Nyenhuis
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Dexter N Dean
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Marie-Paule Strub
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| |
Collapse
|
5
|
Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol 2023; 24:732-748. [PMID: 37438560 DOI: 10.1038/s41580-023-00629-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
The proteins of the BCL-2 family are key regulators of mitochondrial apoptosis, acting as either promoters or inhibitors of cell death. The functional interplay and balance between the opposing BCL-2 family members control permeabilization of the outer mitochondrial membrane, leading to the release of activators of the caspase cascade into the cytosol and ultimately resulting in cell death. Despite considerable research, our knowledge about the mechanisms of the BCL-2 family of proteins remains insufficient, which complicates cell fate predictions and does not allow us to fully exploit these proteins as targets for drug discovery. Detailed understanding of the formation and molecular architecture of the apoptotic pore in the outer mitochondrial membrane remains a holy grail in the field, but new studies allow us to begin constructing a structural model of its arrangement. Recent literature has also revealed unexpected activities for several BCL-2 family members that challenge established concepts of how they regulate mitochondrial permeabilization. In this Review, we revisit the most important advances in the field and integrate them into a new structure-function-based classification of the BCL-2 family members that intends to provide a comprehensive model for BCL-2 action in apoptosis. We close this Review by discussing the potential of drugging the BCL-2 family in diseases characterized by aberrant apoptosis.
Collapse
Affiliation(s)
- Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Ana J Garcia-Saez
- Membrane Biophysics, Institute of Genetics, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Moldoveanu T. Apoptotic mitochondrial poration by a growing list of pore-forming BCL-2 family proteins. Bioessays 2023; 45:e2200221. [PMID: 36650950 PMCID: PMC9975053 DOI: 10.1002/bies.202200221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
The pore-forming BCL-2 family proteins are effectors of mitochondrial poration in apoptosis initiation. Two atypical effectors-BOK and truncated BID (tBID)-join the canonical effectors BAK and BAX. Gene knockout revealed developmental phenotypes in the absence the effectors, supporting their roles in vivo. During apoptosis effectors are activated and change shape from dormant monomers to dynamic oligomers that associate with and permeabilize mitochondria. BID is activated by proteolysis, BOK accumulates on inhibition of its degradation by the E3 ligase gp78, while BAK and BAX undergo direct activation by BH3-only initiators, autoactivation, and crossactivation. Except tBID, effector oligomers on the mitochondria appear as arcs and rings in super-resolution microscopy images. The BH3-in-groove dimers of BAK and BAX, the tBID monomers, and uncharacterized BOK species are the putative building blocks of apoptotic pores. Effectors interact with lipids and bilayers but the mechanism of membrane poration remains elusive. I discuss effector-mediated mitochondrial poration.
Collapse
Affiliation(s)
- Tudor Moldoveanu
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences,Correspondence:
| |
Collapse
|
7
|
Wang R, Liu H, Du X, Ma Y, Tian Z, Zhang S, Shi L, Guo H, Zhang H. MicroRNA-122 overexpression promotes apoptosis and tumor suppressor gene expression induced by microcystin-leucine arginine in mouse liver. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2123-2134. [PMID: 34180736 DOI: 10.1080/09603123.2021.1946489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-leucine arginine (MC-LR), an important hepatoxin, has the effect of promoting hepatocarcinogenesis. MicroRNA-122 (miR-122), an important tumor suppressor in liver, plays an important role in promoting cell apoptosis. Previous studies found that the expression of miR-122 was reduced after MC-LR exposure in liver. In this study, C57BL/6 mice were exposed to saline, negative control agomir, and MC-LR with or without miR-122 agomir transfection. The results indicated that MC-LR promoted the expressions of tumor suppressor genes and decreased the expressions of anti-apoptotic proteins B cell lymphoma-2 (Bcl-2) and Bcl-2-like 2 (Bcl-w), causing hepatocyte apoptosis. Under MC-LR exposure, miR-122 agomir transfection could further increase the expressions of tumor suppressor genes and the release of cytochrome-c (Cyt-c) and decrease the expressions of Bcl-2 and Bcl-w. In conclusion, miR-122 reduction can mitigate MC-LR-induced apoptosis to a certain extent, which in turn, it is likely to have contributed to MC-LR-induced hepatocarcinogenesis.
Collapse
Affiliation(s)
- Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, P.R. China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
8
|
Ruffini N, Klingenberg S, Heese R, Schweiger S, Gerber S. The Big Picture of Neurodegeneration: A Meta Study to Extract the Essential Evidence on Neurodegenerative Diseases in a Network-Based Approach. Front Aging Neurosci 2022; 14:866886. [PMID: 35832065 PMCID: PMC9271745 DOI: 10.3389/fnagi.2022.866886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
The common features of all neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis (ALS), and Huntington's disease, are the accumulation of aggregated and misfolded proteins and the progressive loss of neurons, leading to cognitive decline and locomotive dysfunction. Still, they differ in their ultimate manifestation, the affected brain region, and the kind of proteinopathy. In the last decades, a vast number of processes have been described as associated with neurodegenerative diseases, making it increasingly harder to keep an overview of the big picture forming from all those data. In this meta-study, we analyzed genomic, transcriptomic, proteomic, and epigenomic data of the aforementioned diseases using the data of 234 studies in a network-based approach to study significant general coherences but also specific processes in individual diseases or omics levels. In the analysis part, we focus on only some of the emerging findings, but trust that the meta-study provided here will be a valuable resource for various other researchers focusing on specific processes or genes contributing to the development of neurodegeneration.
Collapse
Affiliation(s)
- Nicolas Ruffini
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research, Leibniz Association, Mainz, Germany
| | - Susanne Klingenberg
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Raoul Heese
- Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
| | - Susann Schweiger
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
9
|
Chota A, George BP, Abrahamse H. Dicoma anomala Enhances Phthalocyanine Mediated Photodynamic Therapy in MCF-7 Breast Cancer Cells. Front Pharmacol 2022; 13:892490. [PMID: 35559263 PMCID: PMC9086192 DOI: 10.3389/fphar.2022.892490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/08/2022] [Indexed: 01/20/2023] Open
Abstract
Breast cancer is one of the most common types of cancer in women, and it is regarded as the second leading cause of cancer-related deaths worldwide. The present study investigated phytochemical profiling, in vitro anticancer effects of Dicoma anomala methanol root extract and its enhancing effects in phthalocyanine mediated PDT on MCF-7 (ATCC® HTB-22™) breast cancer cells. Ultra-high performance liquid chromatography coupled to electrospray ionization quadrupole-time of flight mass spectrometry (UHPLC-qTOF-MS2) was used to identify the secondary metabolites in the crude extract. The 50% inhibitory concentration (IC50) of the two experimental models was established from dose response studies 24 h post-treatment with D. anomala methanol root extract (25, 50, and 100 μg/ml) and ZnPcS4 (5, 10, 20, 40, and 60 μM) mediated PDT. The inverted microscope was used to analyze morphological changes, trypan blue exclusion assay for viability, and Annexin V-fluorescein isothiocyanate (FITC)-propidium iodide (PI) for cell death mechanisms. Immunofluorescence analysis was used to investigate the qualitative expression of the Bax, p53, and caspase 3 apoptotic proteins. Experiments were performed 4 times (n = 4) and SPSS version 27 software was used to analyze statistical significances. D. anomala methanol root extract induced cell death in MCF-7 cells by decreasing cell viability. The combination of D. anomala methanol root extract and ZnPcS4 mediated PDT led to a significant increase in apoptotic activities, expression of Bax, and p53 with significant decrease in cell viability. These findings pinpoint the possibility of D. anomala methanol root extract of being employed as a natural antiproliferative agent in the treatment of various cancers.
Collapse
Affiliation(s)
- Alexander Chota
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
10
|
Protein-protein and protein-lipid interactions of pore-forming BCL-2 family proteins in apoptosis initiation. Biochem Soc Trans 2022; 50:1091-1103. [PMID: 35521828 DOI: 10.1042/bst20220323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 01/26/2023]
Abstract
Apoptosis is a common cell death program that is important in human health and disease. Signaling in apoptosis is largely driven through protein-protein interactions. The BCL-2 family proteins function in protein-protein interactions as key regulators of mitochondrial poration, the process that initiates apoptosis through the release of cytochrome c, which activates the apoptotic caspase cascade leading to cellular demolition. The BCL-2 pore-forming proteins BAK and BAX are the key executors of mitochondrial poration. We review the state of knowledge of protein-protein and protein-lipid interactions governing the apoptotic function of BAK and BAX, as determined through X-ray crystallography and NMR spectroscopy studies. BAK and BAX are dormant, globular α-helical proteins that participate in protein-protein interactions with other pro-death BCL-2 family proteins, transforming them into active, partially unfolded proteins that dimerize and associate with and permeabilize mitochondrial membranes. We compare the protein-protein interactions observed in high-resolution structures with those derived in silico by AlphaFold, making predictions based on combining experimental and in silico approaches to delineate the structural basis for novel protein-protein interaction complexes of BCL-2 family proteins.
Collapse
|
11
|
Mamur S, Gündüzer E, Yaman M. Toxicological aspect of bioinsecticide pyrethrum extract and expressions of apoptotic gene levels in human hepotacellular carcinoma HepG2 cells. Toxicol Mech Methods 2022; 32:373-384. [PMID: 35321623 DOI: 10.1080/15376516.2022.2057266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pyrethrum extract (PE), an important natural bioinsecticide, is extensively used across the world to control pest insects in homes and farms. The aim of this study was to evaluate the potential cytotoxic effect of PE using MTT assay and genotoxic effect using micronucleus (MN) assay. The changes in the expressions of the apoptosis genes in mRNA levels were also investigated using Real Time qPCR analysis as well as the ratio of apoptotic/necrotic cells with AnnexinV-FITC/Propidium iodide (PI) assay in HepG2 cells. PE markedly suppressed the cell proliferation on HepG2 cells. It significantly increased the frequency of micronucleus (MN) at 500 and 1000 µg/mL. PE also induced the percentage of cell population of late apoptotic/necrotic cells (FITC + PI+) and necrotic cells (FITC- PI+) especially at 4000 μg/mL analyzed by flow cytometry. PE caused significant fold changes in the expression of several apoptotic genes including APAF1, BIK, BAX, BAD, BİD, MCL-1, CASP3, CASP1, CASP2, FAS, FADD and TNFRSF1A. In particularly, the pro-apoptotic gene Hrk (Harakiri) remarkably and dose-dependently was overexpressed of the mRNA level. As a result, PE may exhibit cyto-genotoxic effects especially at higher concentrations and lead to significant changes in the expression of mRNA levels in several apoptotic genes.Highlights [Database][Mismatch]Natural bioinsecticide PE exhibited cytotoxic effect in HepG2 cells.PE significantly induced the micronucleus (MN) frequency at 500 and 1000 µg/mL.This bioinsecticide induced cell death and it lead to significant fold changes in the expression of mRNA levels in several apoptotic genes in HepG2 cells.The highest increase of the expression of mRNA levels was determined in Hrk (Harakiri) at 4000 µg/mL.
Collapse
Affiliation(s)
- Sevcan Mamur
- Gazi University, Life Sciences Application and Research Center, 06830, Ankara, Turkey
| | - Esra Gündüzer
- Gazi University, Science Faculty, Deparment of Biology, 06560, Ankara, Turkey
| | - Melek Yaman
- Gazi University, Medicine Faculty, Department of Immunology, 06800, Ankara, Turkey
| |
Collapse
|
12
|
Premeaux TA, Yeung ST, Bukhari Z, Bowler S, Alpan O, Gupta R, Ndhlovu LC. Emerging Insights on Caspases in COVID-19 Pathogenesis, Sequelae, and Directed Therapies. Front Immunol 2022; 13:842740. [PMID: 35265086 PMCID: PMC8899608 DOI: 10.3389/fimmu.2022.842740] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/01/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a significant global health emergency with new variants in some cases evading current therapies and approved vaccines. COVID-19 presents with a broad spectrum of acute and long-term manifestations. Severe COVID-19 is characterized by dysregulated cytokine release profile, dysfunctional immune responses, and hypercoagulation with a high risk of progression to multi-organ failure and death. Unraveling the fundamental immunological processes underlying the clinical manifestations of COVID-19 is vital for the identification and design of more effective therapeutic interventions for individuals at the highest risk of severe outcomes. Caspases are expressed in both immune and non-immune cells and mediate inflammation and cell death, including apoptosis and pyroptosis. Here we review accumulating evidence defining the importance of the expression and activity of caspase family members following SARS-CoV-2 infection and disease. Research suggests SARS-CoV-2 infection is linked to the function of multiple caspases, both mechanistically in vitro as well as in observational studies of individuals with severe COVID-19, which may further the impact on disease severity. We also highlight immunological mechanisms that occur in severe COVID-19 pathology upstream and downstream of activated caspase pathways, including innate recognition receptor signaling, inflammasomes, and other multiprotein complex assembly, inflammatory mediators IL-1β and IL-18, and apoptotic and pyroptotic cell death. Finally, we illuminate discriminate and indiscriminate caspase inhibitors that have been identified for clinical use that could emerge as potential therapeutic interventions that may benefit clinical efforts to prevent or ameliorate severe COVID-19.
Collapse
Affiliation(s)
- Thomas A. Premeaux
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Stephen T. Yeung
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Zaheer Bukhari
- Department of Pathology, The State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
| | - Scott Bowler
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Oral Alpan
- Immunopathogenesis Section, Amerimmune, Fairfax, VA, United States
| | - Raavi Gupta
- Department of Pathology, The State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
13
|
Jang DM, Oh EK, Hahn H, Kim HS, Han BW. Structural insights into apoptotic regulation of human Bfk as a novel Bcl-2 family member. Comput Struct Biotechnol J 2022; 20:745-756. [PMID: 35140891 PMCID: PMC8814693 DOI: 10.1016/j.csbj.2022.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Dong Man Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Eun Kyung Oh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunggu Hahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoun Sook Kim
- Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
- Corresponding authors.
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Corresponding authors.
| |
Collapse
|
14
|
Mohiuddin M, Kasahara K. Paclitaxel Impedes EGFR-mutated PC9 Cell Growth via Reactive Oxygen Species-mediated DNA Damage and EGFR/PI3K/AKT/mTOR Signaling Pathway Suppression. Cancer Genomics Proteomics 2021; 18:645-659. [PMID: 34479917 DOI: 10.21873/cgp.20287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND/AIM Paclitaxel is used as a first-line and subsequent therapy for the treatment of various cancers. However, the function and mechanisms of action of paclitaxel in non-small-cell lung cancer (NSCLC) remain unknown. In this study, the molecular mechanism underlying the anticancer activity of paclitaxel was investigated in vitro in a human NSCLC cell line carrying the EGFR exon 19 deletion (PC9). MATERIALS AND METHODS PC9 cells were treated with paclitaxel and then evaluated with a cell viability assay, DAPI staining, Giemsa staining, apoptosis assay, reactive oxygen species (ROS) assay, terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and Western blotting. RESULTS Paclitaxel markedly decreased the viability of PC9 cells and induced morphological signs of apoptosis. The apoptotic effects of paclitaxel were observed through caspase cascade activation, along with ROS generation and loss of mitochondrial membrane potential (MMP). Furthermore, paclitaxel induced ROS-mediated DNA damage that triggered the activation of the extrinsic pathway of apoptosis via the up-regulation of death receptor (DR5) and caspase-8 activation. In addition, we found that paclitaxel effectively suppressed the EGFR/PI3K/AKT/mTOR signaling pathway to impede PC9 cell growth. Paclitaxel induced cell cycle arrest at the G1 phase in response to DNA damage, in association with the suppression of CDC25A, Cdk2 and Cyclin E1 protein expression. CONCLUSION Paclitaxel showed anticancer effects against NSCLC by activating extrinsic and intrinsic apoptotic pathways through enhancing ROS generation, inducing cell cycle arrest, and suppressing EGFR/PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Md Mohiuddin
- Department of Respiratory Medicine, Kanazawa University, Ishikawa, Japan
| | - Kazuo Kasahara
- Department of Respiratory Medicine, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
15
|
Hung CL, Chang HH, Lee SW, Chiang YW. Stepwise activation of the pro-apoptotic protein Bid at mitochondrial membranes. Cell Death Differ 2021; 28:1910-1925. [PMID: 33462413 PMCID: PMC8184993 DOI: 10.1038/s41418-020-00716-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/01/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023] Open
Abstract
Caspase-8-cleaved Bid (cBid) associates with mitochondria and promotes the activation of BAX, leading to mitochondria outer membrane permeabilization (MOMP) and apoptosis. However, current structural models of cBid are largely based on studies using membrane vesicles and detergent micelles. Here we employ spin-label ESR and site-directed PEGylation methods to identify conformations of cBid at real mitochondrial membranes, revealing stepwise mechanisms in the activation process. Upon the binding of cBid to mitochondria, its structure is reorganized to expose the BH3 domain while leaving the structural integrity only slightly altered. The mitochondria-bound cBid is in association with Mtch2 and it remains in the primed state until interacting with BAX. The interaction subsequently triggers the fragmentation of cBid, causes large conformational changes, and promotes BAX-mediated MOMP. Our results reveal structural differences of cBid between mitochondria and other lipid-like environments and, moreover, highlight the role of the membrane binding in modifying cBid structure and assisting the inactive-to-active transition in function.
Collapse
Affiliation(s)
- Chien-Lun Hung
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Ho Chang
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Su Wei Lee
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
16
|
Dadsena S, Jenner A, García-Sáez AJ. Mitochondrial outer membrane permeabilization at the single molecule level. Cell Mol Life Sci 2021; 78:3777-3790. [PMID: 33576840 PMCID: PMC8106609 DOI: 10.1007/s00018-021-03771-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
Apoptotic cell death is essential for development, immune function or tissue homeostasis, and its mis-regulation is linked to various diseases. Mitochondrial outer membrane permeabilization (MOMP) is a central event in the intrinsic apoptotic pathway and essential to control the execution of cell death. Here we review current concepts in regulation of MOMP focusing on the interaction network of the Bcl-2 family proteins as well as further regulatory elements influencing MOMP. As MOMP is a complex spatially and temporally controlled process, we point out the importance of single-molecule techniques to unveil processes which would be masked by ensemble measurements. We report key single-molecule studies applied to decipher the composition, assembly mechanism and structure of protein complexes involved in MOMP regulation.
Collapse
Affiliation(s)
- Shashank Dadsena
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Andreas Jenner
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany.
| |
Collapse
|
17
|
Morris DL, Tjandra N. Inducible fold-switching as a mechanism to fibrillate pro-apoptotic BCL-2 proteins. Biopolymers 2021; 112:e23424. [PMID: 33764501 DOI: 10.1002/bip.23424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases often are associated with cellular dysregulation that results in premature cell death or apoptosis. A common example is the accumulation of amyloid plaques that promotes the excessive expression of p38 mitogen-activated protein kinase. The increased abundance of this enzyme leads to mass phosphorylation and activation of a protein from the B-cell lymphoma 2 (BCL-2) family, BAX. BAX is the central regulatory protein for mitochondrial outer membrane permeabilization (MOMP), a poration process that commits cells to apoptosis by releasing death-propagating factors from the mitochondria. Recent reports identify a naturally occurring peptide, Humanin (HN), that could block amyloid-beta-associated neuronal apoptosis by interacting with BCL-2 proteins. We recently showed humanin interaction leads to the amyloid-like fibrillation of BAX and a second BCL-2 family member, BID. We proposed this as a novel anti-apoptotic mechanism that inhibits pro-apoptotic BCL-2 proteins from initiating MOMP by sequestering them into fibrils, a heretofore unprecedented phenomenon that involves refolding globular BCL-2 proteins rapidly into fibrils where they undergo significant alpha-helix to beta-sheet fold-switching. Here we seek to further characterize the fibrillation and fold-switch in conditions that are known to induce amyloid fibrillation.
Collapse
Affiliation(s)
- Daniel L Morris
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Miles JA, Hobor F, Trinh CH, Taylor J, Tiede C, Rowell PR, Jackson BR, Nadat FA, Ramsahye P, Kyle HF, Wicky BIM, Clarke J, Tomlinson DC, Wilson AJ, Edwards TA. Selective Affimers Recognise the BCL-2 Family Proteins BCL-x L and MCL-1 through Noncanonical Structural Motifs*. Chembiochem 2021; 22:232-240. [PMID: 32961017 PMCID: PMC7821230 DOI: 10.1002/cbic.202000585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Indexed: 12/26/2022]
Abstract
The BCL-2 family is a challenging group of proteins to target selectively due to sequence and structural homologies across the family. Selective ligands for the BCL-2 family regulators of apoptosis are useful as probes to understand cell biology and apoptotic signalling pathways, and as starting points for inhibitor design. We have used phage display to isolate Affimer reagents (non-antibody-binding proteins based on a conserved scaffold) to identify ligands for MCL-1, BCL-xL , BCL-2, BAK and BAX, then used multiple biophysical characterisation methods to probe the interactions. We established that purified Affimers elicit selective recognition of their target BCL-2 protein. For anti-apoptotic targets BCL-xL and MCL-1, competitive inhibition of their canonical protein-protein interactions is demonstrated. Co-crystal structures reveal an unprecedented mode of molecular recognition; where a BH3 helix is normally bound, flexible loops from the Affimer dock into the BH3 binding cleft. Moreover, the Affimers induce a change in the target proteins towards a desirable drug-bound-like conformation. These proof-of-concept studies indicate that Affimers could be used as alternative templates to inspire the design of selective BCL-2 family modulators and more generally other protein-protein interaction inhibitors.
Collapse
Affiliation(s)
- Jennifer A. Miles
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Fruzsina Hobor
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Chi H. Trinh
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - James Taylor
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Christian Tiede
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Philip R. Rowell
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Brian R. Jackson
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Protein Production FacilityUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Fatima A. Nadat
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Protein Production FacilityUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Pallavi Ramsahye
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Hannah F. Kyle
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Basile I. M. Wicky
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Jane Clarke
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Darren C. Tomlinson
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Andrew J. Wilson
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Thomas A. Edwards
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
19
|
Morris DL, Johnson S, Bleck CKE, Lee DY, Tjandra N. Humanin selectively prevents the activation of pro-apoptotic protein BID by sequestering it into fibers. J Biol Chem 2020; 295:18226-18238. [PMID: 33106313 DOI: 10.1074/jbc.ra120.013023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/23/2020] [Indexed: 03/01/2024] Open
Abstract
Members of the B-cell lymphoma (BCL-2) protein family regulate mitochondrial outer membrane permeabilization (MOMP), a phenomenon in which mitochondria become porous and release death-propagating complexes during the early stages of apoptosis. Pro-apoptotic BCL-2 proteins oligomerize at the mitochondrial outer membrane during MOMP, inducing pore formation. Of current interest are endogenous factors that can inhibit pro-apoptotic BCL-2 mitochondrial outer membrane translocation and oligomerization. A mitochondrial-derived peptide, Humanin (HN), was reported being expressed from an alternate ORF in the mitochondrial genome and inhibiting apoptosis through interactions with the pro-apoptotic BCL-2 proteins. Specifically, it is known to complex with BAX and BID. We recently reported the fibrillation of HN and BAX into β-sheets. Here, we detail the fibrillation between HN and BID. These fibers were characterized using several spectroscopic techniques, protease fragmentation with mass analysis, and EM. Enhanced fibrillation rates were detected with rising temperatures or pH values and the presence of a detergent. BID fibers are similar to those produced using BAX; however, the structures differ in final conformations of the BCL-2 proteins. BID fibers display both types of secondary structure in the fiber, whereas BAX was converted entirely to β-sheets. The data show that two distinct segments of BID are incorporated into the fiber structure, whereas other portions of BID remain solvent-exposed and retain helical structure. Similar analyses show that anti-apoptotic BCL-xL does not form fibers with humanin. These results support a general mechanism of sequestration of pro-apoptotic BCL-2 proteins into fibers by HN to inhibit MOMP.
Collapse
Affiliation(s)
- Daniel L Morris
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Sabrina Johnson
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher K E Bleck
- Electron Microscopy Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Duck-Yeon Lee
- Biochemistry Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
20
|
Yu T, Park ES, Song GH, Zhao X, Yi RK, Park KY. Kimchi markedly induces apoptosis in HT-29 human colon carcinoma cells. J Food Biochem 2020; 45:e13532. [PMID: 33140497 DOI: 10.1111/jfbc.13532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/05/2020] [Accepted: 10/02/2020] [Indexed: 12/23/2022]
Abstract
This study investigated kimchi-induced apoptosis in HT-29 human colon carcinoma cells. Three types of kimchi samples were prepared: standardized kimchi brined with general commercial Baechu cabbage by a standardized recipe (SK), Amtak Baechu kimchi brined with Amtak Baechu cabbage by a standardized recipe (AmK), and anticancer kimchi brined with organically cultivated Baechu cabbage by a functional recipe (AK). MTT assay, qRT-PCR, and Western blotting analysis were performed. The results indicate that AmK and AK, especially AK significantly upregulated mRNA expression of apoptosis-related genes Bim, Bax, Bak, caspase-8, -9, -3, and p53 but suppressed Bcl-xL and Bcl-2 expression. In addition, AK treatment significantly upregulated protein expression levels of caspase-3 but strikingly reduced the protein expression level of Bcl-2 (p < .05), followed by AmK treatment. Our data suggest that AK and AmK can markedly suppress the proliferation of HT-29 cells via activation of apoptosis. PRACTICAL APPLICATIONS: Colon cancer is the fourth cancer with the highest incidence in the world. Cell apoptosis is a type of programmed cell death and plays an important role in the cancer cells study. Kimchi is a traditional fermented food in Korea, with a relatively high daily consumption. Our present study used three kinds of kimchi which prepared with different main ingredients and recipes. The results suggest that organically cultivated Baechu cabbage and functional recipe in kimchi preparation play an important role in the anticancer efficacy of kimchi, which has been shown to promote induction of apoptosis in HT-29 cells.
Collapse
Affiliation(s)
- Ting Yu
- Department of Food Science and Biotechnology, Cha University, Seongnam, South Korea.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Eui-Seong Park
- Department of Food and Nutrition, Yonsei University, Seoul, South Korea
| | - Gil-Hoon Song
- Department of Food and Nutrition, Yonsei University, Seoul, South Korea
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Ruo-Kun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Kun-Young Park
- Department of Food Science and Biotechnology, Cha University, Seongnam, South Korea.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
21
|
Patil AA, Bhor SA, Rhee WJ. Cell death in culture: Molecular mechanisms, detections, and inhibition strategies. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Monolysocardiolipin (MLCL) interactions with mitochondrial membrane proteins. Biochem Soc Trans 2020; 48:993-1004. [PMID: 32453413 PMCID: PMC7329354 DOI: 10.1042/bst20190932] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Monolysocardiolipin (MLCL) is a three-tailed variant of cardiolipin (CL), the signature lipid of mitochondria. MLCL is not normally found in healthy tissue but accumulates in mitochondria of people with Barth syndrome (BTHS), with an overall increase in the MLCL:CL ratio. The reason for MLCL accumulation remains to be fully understood. The effect of MLCL build-up and decreased CL content in causing the characteristics of BTHS are also unclear. In both cases, an understanding of the nature of MLCL interaction with mitochondrial proteins will be key. Recent work has shown that MLCL associates less tightly than CL with proteins in the mitochondrial inner membrane, suggesting that MLCL accumulation is a result of CL degradation, and that the lack of MLCL–protein interactions compromises the stability of the protein-dense mitochondrial inner membrane, leading to a decrease in optimal respiration. There is some data on MLCL–protein interactions for proteins involved in the respiratory chain and in apoptosis, but there remains much to be understood regarding the nature of MLCL–protein interactions. Recent developments in structural, analytical and computational approaches mean that these investigations are now possible. Such an understanding will be key to further insights into how MLCL accumulation impacts mitochondrial membranes. In turn, these insights will help to support the development of therapies for people with BTHS and give a broader understanding of other diseases involving defective CL content.
Collapse
|
23
|
Yang F, Qu W, Du M, Mai Z, Wang B, Ma Y, Wang X, Chen T. Stoichiometry and regulation network of Bcl-2 family complexes quantified by live-cell FRET assay. Cell Mol Life Sci 2020; 77:2387-2406. [PMID: 31492967 PMCID: PMC11104934 DOI: 10.1007/s00018-019-03286-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 01/07/2023]
Abstract
The stoichiometry and affinity of Bcl-2 family complexes are essential information for understanding how their interactome network is orchestrated to regulate mitochondrial permeabilization and apoptosis. Based on over-expression model system, FRET analysis was used to quantify the protein-protein interactions among Bax, Bcl-xL, Bad and tBid in healthy and apoptotic cells. Our data indicate that the stoichiometry and affinity of Bcl-2 complexes are dependent on their membrane environment. Bcl-xL, Bad and tBid can form hetero-trimers in mitochondria. Bcl-xL binds preferentially to Bad, then to tBid and Bax in mitochondria, whilst Bcl-xL displays higher affinity to Bad or tBid than to itself. Strikingly, Bax can bind to Bcl-xL in cytosol. In cytosol of apoptotic cells, Bcl-xL associates with Bax to form hetero-trimer with 1:2 stoichiometry, while Bcl-xL associates with Bad to form hetero-trimer with 2:1 stoichiometry and Bcl-xL associates with tBid to form hetero-dimer. In mitochondria, Bcl-xL associates with Bax/Bad to form hetero-dimer in healthy cells, while Bcl-xL associates with Bad to form hetero-tetramer with 3:1 stoichiometry in apoptotic cells.
Collapse
Affiliation(s)
- Fangfang Yang
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wenfeng Qu
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Mengyan Du
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zihao Mai
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Bin Wang
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yunyun Ma
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xiaoping Wang
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China.
| |
Collapse
|
24
|
Zhang D, Liu Y, Luo Z, Chen Y, Xu A, Liang Y, Wu B, Tong X, Liu X, Shen H, Liu L, Wei Y, Zhou H, Liu Y, Zhou F. The novel thioredoxin reductase inhibitor A-Z2 triggers intrinsic apoptosis and shows efficacy in the treatment of acute myeloid leukemia. Free Radic Biol Med 2020; 146:275-286. [PMID: 31730934 DOI: 10.1016/j.freeradbiomed.2019.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/10/2019] [Indexed: 11/24/2022]
Abstract
Chemoresistance and high incidence of relapse in acute myeloid leukemia (AML) patients are associated with thioredoxin (Trx) overexpression. Thus, targeting the Trx system has emerged as a promising approach to treating AML. Both arsenicals and azelaic acid (AZA) are thioredoxin reductase (TrxR) inhibitors and possess antileukemic effects. In this study, to exploit agents with higher potency and lower toxicity, we got some organic arsenicals and further synthesized a series of targeted compounds by binding AZA to organic arsenicals, and then screened the most effective one, N-(4-(1, 3, 2-dithiarsinan-2-yl) phenyl)-azelamide (A-Z2). A-Z2 showed a stronger inhibitory effect against TrxR activity and in AML cell lines than did AZA or arsenicals. Additionally, A-Z2 was less toxic to healthy cells compared with traditional chemotherapeutic drugs. A-Z2 induces apoptosis by collapsing of mitochondrial membrane potential, reducing ATP level, releasing of cytochrome c and TNF-α, activating of caspase 9, 8 and 3. Analysis of the mechanism revealed that A-Z2 activates the intrinsic apoptotic pathway by directly selectively targeting TrxR/Trx and indirectly inhibiting NF-κB. A-Z2's better efficacy and safety profile against arsenicals and azelaic acid were also evident in vivo. A-Z2 had better plasma stability and biological activity in rats. A-Z2-treated mice displayed significant symptom relief and prolonged survival in a patient-derived xenograft (PDX) AML model. Herein, our study provides a novel antitumor candidate and approach for treating AML.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Yujiao Liu
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ziyi Luo
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Yanling Chen
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Anjie Xu
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Yuxing Liang
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Balu Wu
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Xiqin Tong
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Hui Shen
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Li Liu
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Haibing Zhou
- State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Yi Liu
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 4300071, Hubei Province, China.
| |
Collapse
|
25
|
Dihydrochalcone Derivative Induces Breast Cancer Cell Apoptosis via Intrinsic, Extrinsic, and ER Stress Pathways but Abolishes EGFR/MAPK Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7298539. [PMID: 31772936 PMCID: PMC6855007 DOI: 10.1155/2019/7298539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/07/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022]
Abstract
Dihydrochalcone derivatives are active compounds that have been purified from the Thai medicinal plant Cyathostemma argenteum. The objectives of this study were to investigate the effects of two dihydrochalcone derivatives on human breast cancer MDA-MB-231 and MCF-7 cell proliferation and to study the relevant mechanisms involved. The two dihydrochalcone derivatives are 4′,6′-dihydroxy-2′,4-dimethoxy-5′-(2″-hydroxybenzyl)dihydrochalcone (compound 1) and calomelanone (2′,6′-dihydroxy-4,4′-dimethoxydihydrochalcone, compound 2), both of which induced cytotoxicity toward both cell lines in a dose-dependent manner by using MTT assay. Treatment with both derivatives induced apoptosis as determined by annexin V-FITC/propidium iodide employing flow cytometry. The reduction of mitochondrial transmembrane potential (staining with 3,3′-dihexyloxacarbocyanine iodide, DiOC6, employing a flow cytometer) was established in the compound 1-treated cells. Compound 1 induced caspase-3, caspase-8, and caspase-9 activities in both cell lines, as has been determined by specific colorimetric substrates and a spectrophotometric microplate reader which indicated the involvement of both the extrinsic and intrinsic pathways. Calcium ion levels in mitochondrial and cytosolic compartments increased in compound 1-treated cells as detected by Rhod-2AM and Fluo-3AM intensity, respectively, indicating the involvement of the endoplasmic reticulum (ER) stress pathway. Compound 1 induced cell cycle arrest via enhanced atm and atr expressions and by upregulating proapoptotic proteins, namely, Bim, Bad, and tBid. Moreover, compound 1 significantly inhibited the EGFR/MAPK signaling pathway. In conclusion, compound 1 induced MDA-MB-231 and MCF-7 cell apoptosis via intrinsic, extrinsic, and ER stress pathways, whereas it ameliorated the EGFR/MAPK pathway in the MCF-7 cell line. Consequently, it is believed that compound 1 could be effectively developed for cancer treatments.
Collapse
|
26
|
Ma L, Hu S, He X, Yang N, Chen L, Yang C, Ye F, Wei T, Li M. Detection of tBid Oligomerization and Membrane Permeabilization by Graphene-Based Single-Molecule Surface-Induced Fluorescence Attenuation. NANO LETTERS 2019; 19:6937-6944. [PMID: 31558028 DOI: 10.1021/acs.nanolett.9b02223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The permeabilization of organelle membranes by BCL-2 family proteins is a pivotal step during the regulation of apoptosis; the underlying mechanisms remain unclear. Based on the fluorescence attenuation by graphene oxide, we developed a single-molecule imaging method termed surface-induced fluorescence attenuation (smSIFA), which enabled us to track both vertical and lateral kinetics of singly labeled BCL-2 family protein tBid during membrane permeabilization. We found that tBid monomers lie shallowly on the lipid bilayer, where they self-assemble to form oligomers. During the initiation phase of self-assembly, the two central hydrophobic helices (α6 and α7) of tBid insert halfway into the phospholipid core, while the other helices remain on the surface. In oligomerized tBid clusters, α6 and α7 prefer to float up, and the other helices may sink to the bottom of the membrane and cause the formation of transient two-dimensional, micelle-like pore structures, which are responsible for the permeabilization of membranes and the induction of apoptosis. Our results shed light on the understanding of tBid-induced apoptosis, and this nanotechnology-based smSIFA approach could be used to dissect the kinetic interaction between membrane protein and lipid bilayer at the single-molecule level with subnanometer precision.
Collapse
Affiliation(s)
- Li Ma
- National Laboratory of Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shuxin Hu
- National Laboratory of Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
| | - Xiaolong He
- National Laboratory of Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- National Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Na Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Licui Chen
- National Laboratory of Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
| | - Chenguang Yang
- National Laboratory of Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Fangfu Ye
- National Laboratory of Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ming Li
- National Laboratory of Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Songshan Lake Materials Laboratory , Dongguan , Guangdong 523808 , China
| |
Collapse
|
27
|
Burns JM, Vankayala R, Mac JT, Anvari B. Erythrocyte-Derived Theranostic Nanoplatforms for Near Infrared Fluorescence Imaging and Photodestruction of Tumors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27621-27630. [PMID: 30036031 PMCID: PMC6526021 DOI: 10.1021/acsami.8b08005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanoparticles activated by near-infrared (NIR) excitation provide a capability for optical imaging and photodestruction of tumors. We have engineered optical nanoconstructs derived from erythrocytes, which are doped with the FDA-approved NIR dye, indocyanine green (ICG). We refer to these constructs as NIR erythrocyte-mimicking transducers (NETs). Herein, we investigate the phototheranostic capabilities of NETs for fluorescence imaging and photodestruction of SKBR3 breast cancer cells and subcutaneous xenograft tumors in mice. Our cellular studies demonstrate that NETs are internalized by these cancer cells and localized to their lysosomes. As evidenced by NIR fluorescence imaging and in vivo laser irradiation studies, NETs remain available within tumors at 24 h postintravenous injection. In response to continuous wave 808 nm laser irradiation at intensity of 680 mW/cm2 for 10-15 min, NETs mediate the destruction of cancer cells and tumors in mice through synergistic photochemical and photothermal effects. We demonstrate that NETs are effective in mediating photoactivation of Caspase-3 to induce tumor apoptosis. Our results provide support for the effectiveness of NETs as theranostic agents for fluorescence imaging and photodestruction of tumors and their role in photoinduced apoptosis initiated by their localization to lysosomes.
Collapse
Affiliation(s)
- Joshua M. Burns
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Raviraj Vankayala
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Jenny T. Mac
- Department of Biochemistry, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Biochemistry, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
- Corresponding Author:
| |
Collapse
|
28
|
Ekanayake V, Nisan D, Ryzhov P, Yao Y, Marassi FM. Lipoprotein Particle Formation by Proapoptotic tBid. Biophys J 2018; 115:533-542. [PMID: 30017071 DOI: 10.1016/j.bpj.2018.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022] Open
Abstract
The interactions of Bcl-2 family proteins with intracellular lipids are essential for the regulation of apoptosis, a mechanism of programmed cell death that is central to the health and development of multicellular organisms. Bid and its caspase-8 cleavage product, tBid, promote the permeabilization of the mitochondrial outer membrane and sequester antiapoptotic Bcl-2 proteins to counter their cytoprotective activity. Bid and tBid also promote lipid exchange, a characteristic trait of apoptosis. Here, we show that tBid is capable of associating with phospholipids to form soluble, nanometer-sized lipoprotein particles that retain binding affinity for the antiapoptotic protein Bcl-xL. The tBid lipoprotein particles form with a lipid/protein stoichiometry in the range of 20/1 and have a diameter of ∼11.5 nm. Lipoparticle-bound tBid retains an α-helical structure and binds Bcl-xL through its third Bcl-2 homology motif, forming a soluble, lipid-associated heteroprotein complex. The results shed light on the role of lipids in mediating Bcl-2 protein mobility and interactions.
Collapse
Affiliation(s)
- Vindana Ekanayake
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Danielle Nisan
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Pavel Ryzhov
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Yong Yao
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Francesca M Marassi
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| |
Collapse
|
29
|
Chen Q, Kang J, Fu C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct Target Ther 2018; 3:18. [PMID: 29967689 PMCID: PMC6026494 DOI: 10.1038/s41392-018-0018-5] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Cell death is an essential biological process for physiological growth and development. Three classical forms of cell death-apoptosis, autophagy, and necrosis-display distinct morphological features by activating specific signaling pathways. With recent research advances, we have started to appreciate that these cell death processes can cross-talk through interconnecting, even overlapping, signaling pathways, and the final cell fate is the result of the interplay of different cell death programs. This review provides an insight into the independence of and associations among these three types of cell death and explores the significance of cell death under the specific conditions of human diseases, particularly neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Qi Chen
- 1College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 China
| | - Jian Kang
- 3Cancer Signalling Laboratory, Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, 305 Grattan street, Melbourne, VIC 3000 Australia
| | - Caiyun Fu
- 1College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 China.,4Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, CA 94158 USA.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, 310014 China
| |
Collapse
|
30
|
Ma L, Li Y, Ma J, Hu S, Li M. Watching Three-Dimensional Movements of Single Membrane Proteins in Lipid Bilayers. Biochemistry 2018; 57:4735-4740. [PMID: 29619828 DOI: 10.1021/acs.biochem.8b00253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is challenging to assess protein-membrane interactions because of the lack of appropriate tools to detect position changes of single proteins in the ∼4 nm range of biological membranes. We developed an assay recently, termed surface-induced fluorescence attenuation (SIFA). It is able to track both vertical and lateral dynamic motion of singly labeled membrane proteins in supported lipid bilayers. Similar to the FRET (fluorescence resonance energy transfer) principle, SIFA takes advantage of the energy transfer from a fluorophore to a light-absorbing surface to determine the distance at 2-8 nm away from the surface. By labeling a protein with a proper fluorophore and using graphene oxide as a two-dimensional quencher, we showed that SIFA is capable of monitoring three-dimensional movements of the fluorophore-labeled protein not only inside but also above the lipid bilayer atop the graphene oxide. Our data show that SIFA is a well-suited method to study the interplay between proteins and membranes.
Collapse
Affiliation(s)
- Li Ma
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China.,School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ying Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China.,School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jianbing Ma
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China.,School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shuxin Hu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China.,School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China.,School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
31
|
Kuo HM, Tseng CC, Chen NF, Tai MH, Hung HC, Feng CW, Cheng SY, Huang SY, Jean YH, Wen ZH. MSP-4, an Antimicrobial Peptide, Induces Apoptosis via Activation of Extrinsic Fas/FasL- and Intrinsic Mitochondria-Mediated Pathways in One Osteosarcoma Cell Line. Mar Drugs 2018; 16:E8. [PMID: 29301308 PMCID: PMC5793056 DOI: 10.3390/md16010008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OS) is a common malignant bone cancer. The relatively high density of a person's bone structure means low permeability for drugs, and so finding drugs that can be more effective is important and should not be delayed. MSPs are marine antimicrobial peptides (AMP) and natural compounds extracted from Nile tilapia (Oreochromis niloticus). MSP-4 is a part of the AMPs series, with the advantage of having a molecular weight of about 2.7-kDa and anticancer effects, although the responsible anticancer mechanism is not very clear. The goal of this study is to determine the workings of the mechanism associated with apoptosis resulting from MSP-4 in osteosarcoma MG63 cells. The study showed that MSP-4 significantly induced apoptosis in MG63 cells, with Western blot indicating that MSP-4 induced this apoptosis through an intrinsic pathway and an extrinsic pathway. Thus, a pretreatment system with a particular inhibitor of Z-IETD-FMK (caspase-8 inhibitor) and Z-LEHD-FMK (caspase-9 inhibitor) significantly attenuated the cleavage of caspase-3 and prevented apoptosis. These observations indicate that low concentrations of MSP-4 can help induce the apoptosis of MG63 through a Fas/FasL- and mitochondria-mediated pathway and suggest a potentially innovative alternative to the treatment of human osteosarcoma.
Collapse
Affiliation(s)
- Hsiao-Mei Kuo
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Chung-Chih Tseng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Department of Dentisry, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 81357, Taiwan.
| | - Nan-Fu Chen
- Department of Neurosurgery and Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan.
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Ming-Hong Tai
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Han-Chun Hung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Chien-Wei Feng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Shu-Yu Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Shi-Ying Huang
- College of Oceanology and Food Scienece, Quanzhou Normal University, Quanzhou 362000, China.
| | - Yen-Hsuan Jean
- Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung 90059, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Marine Biomedical Laboratory and Center for Translational Biopharmaceuticals, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
32
|
Hung CL, Lin YY, Chang HH, Chiang YW. Accessing local structural disruption of Bid protein during thermal denaturation by absorption-mode ESR spectroscopy. RSC Adv 2018; 8:34656-34669. [PMID: 35548640 PMCID: PMC9087001 DOI: 10.1039/c8ra06740f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/04/2018] [Indexed: 01/19/2023] Open
Abstract
The apoptotic function of Bid does not depend on its native structure.
Collapse
Affiliation(s)
- Chien-Lun Hung
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Yu-Ying Lin
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Hsin-Ho Chang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| |
Collapse
|
33
|
The Bcl-2 Family in Host-Virus Interactions. Viruses 2017; 9:v9100290. [PMID: 28984827 PMCID: PMC5691641 DOI: 10.3390/v9100290] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022] Open
Abstract
Members of the B cell lymphoma-2 (Bcl-2) family are pivotal arbiters of mitochondrially mediated apoptosis, a process of fundamental importance during tissue development, homeostasis, and disease. At the structural and mechanistic level, the mammalian members of the Bcl-2 family are increasingly well understood, with their interplay ultimately deciding the fate of a cell. Dysregulation of Bcl-2-mediated apoptosis underlies a plethora of diseases, and numerous viruses have acquired homologs of Bcl-2 to subvert host cell apoptosis and autophagy to prevent premature death of an infected cell. Here we review the structural biology, interactions, and mechanisms of action of virus-encoded Bcl-2 proteins, and how they impact on host-virus interactions to ultimately enable successful establishment and propagation of viral infections.
Collapse
|
34
|
Bleicken S, Hantusch A, Das KK, Frickey T, Garcia-Saez AJ. Quantitative interactome of a membrane Bcl-2 network identifies a hierarchy of complexes for apoptosis regulation. Nat Commun 2017; 8:73. [PMID: 28706229 PMCID: PMC5509671 DOI: 10.1038/s41467-017-00086-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 05/31/2017] [Indexed: 11/10/2022] Open
Abstract
The Bcl-2 proteins form a complex interaction network that controls mitochondrial permeabilization and apoptosis. The relative importance of different Bcl-2 complexes and their spatio-temporal regulation is debated. Using fluorescence cross-correlation spectroscopy to quantify the interactions within a minimal Bcl-2 network, comprised by cBid, Bax, and Bcl-xL, we show that membrane insertion drastically alters the pattern of Bcl-2 complexes, and that the C-terminal helix of Bcl-xL determines its binding preferences. At physiological temperature, Bax can spontaneously activate in a self-amplifying process. Strikingly, Bax also recruits Bcl-xL to membranes, which is sufficient to retrotranslocate Bax back into solution to secure membrane integrity. Our study disentangles the hierarchy of Bcl-2 complex formation in relation to their environment: Bcl-xL association with cBid occurs in solution and in membranes, where the complex is stabilized, whereas Bcl-xL binding to Bax occurs only in membranes and with lower affinity than to cBid, leading instead to Bax retrotranslocation. The permeabilization of the mitochondrial outer membrane to induce apoptosis is regulated by complex interactions between Bcl-2 family members. Here the authors develop a quantitative interactome of a membrane Bcl-2 network and identify a hierarchy of protein complexes in apoptosis induction.
Collapse
Affiliation(s)
- Stephanie Bleicken
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany.,German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 4, 72076, Tübingen, Germany.,ZEMOS, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Annika Hantusch
- University of Konstanz, Applied Bioinformatics, Universitaetsstr. 10, 78457, Konstanz, Germany
| | - Kushal Kumar Das
- Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 4, 72076, Tübingen, Germany
| | - Tancred Frickey
- University of Konstanz, Applied Bioinformatics, Universitaetsstr. 10, 78457, Konstanz, Germany
| | - Ana J Garcia-Saez
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany. .,German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 4, 72076, Tübingen, Germany.
| |
Collapse
|
35
|
Gao X, Liu Y, Xie Y, Wang Y, Qi S. Remote ischemic postconditioning confers neuroprotective effects via inhibition of the BID-mediated mitochondrial apoptotic pathway. Mol Med Rep 2017; 16:515-522. [PMID: 28560462 PMCID: PMC5482128 DOI: 10.3892/mmr.2017.6652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/15/2017] [Indexed: 11/25/2022] Open
Abstract
Ischemic postconditioning has been demonstrated to alleviate brain ischemia/reperfusion-induced neuronal apoptosis; however, the protective mechanisms underlying the improved and more convenient method of remote ischemic postconditioning (RIPostC) are only recently beginning to be elucidated. Mitochondria are important in the regulation of cell apoptosis, and the B-cell lymphoma 2 (Bcl-2) homology 3 interacting-domain death agonist (BID) promotes the insertion/oligomerization of Bcl-2-associated X protein into the mitochondrial outer membrane, leading to the release of proapoptotic proteins from the mitochondria. The present study hypothesized that RIPostC targets the BID-mediated mitochondrial apoptotic pathway to exert neuroprotective effects, and the optimal time window for RIPostC application was investigated. RIPostC was conducted as follows: Three 10-min cycles of bilateral femoral artery occlusion with intervals of 10 min reperfusion after 0, 10 or 30 min of brain reperfusion. The results revealed that reperfusion induced significant activation of BID, via proteolytic cleavage and translocation to the mitochondria, as determined using western blot analysis and immunofluorescence staining. Mitochondrial release of cytochrome c was additionally detected during BID activation, all of which were inhibited by the application of RIPostC. When RIPostC was applied during reperfusion, it demonstrated a significant protective effect. Furthermore, the infarct volume, neurological function and the degree of neuronal apoptosis were improved with application of RIPostC. These results suggested that the protective mechanisms of RIPostC may be associated with inhibition of the BID-mediated mitochondrial apoptotic pathway, which may act as a potential molecular target for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Xiaoying Gao
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yun Liu
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuying Xie
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ying Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Sihua Qi
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
36
|
Birkinshaw RW, Czabotar PE. The BCL-2 family of proteins and mitochondrial outer membrane permeabilisation. Semin Cell Dev Biol 2017; 72:152-162. [PMID: 28396106 DOI: 10.1016/j.semcdb.2017.04.001] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/03/2017] [Accepted: 04/06/2017] [Indexed: 01/24/2023]
Abstract
Apoptosis is a form of programmed cell death critical for the development and homeostasis of multicellular organisms. A key event within the mitochondrial pathway to apoptosis is the permeabilisation of the mitochondrial outer membrane (MOM), a point of no return in apoptotic progression. This event is governed by a complex interplay of interactions between BCL-2 family members. Here we discuss the roles of opposing factions within the family. We focus on the structural details of these interactions, how they promote or prevent apoptosis and recent developments towards understanding the conformational changes of BAK and BAX that lead to MOM permeabilisation. These interactions and structural insights are of particular interest for drug discovery, as highlighted by the development of therapeutics that target pro-survival family members and restore apoptosis in cancer cells.
Collapse
Affiliation(s)
- Richard W Birkinshaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
37
|
Gahl RF, Dwivedi P, Tjandra N. Bcl-2 proteins bid and bax form a network to permeabilize the mitochondria at the onset of apoptosis. Cell Death Dis 2016; 7:e2424. [PMID: 27763642 PMCID: PMC5133987 DOI: 10.1038/cddis.2016.320] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/23/2016] [Accepted: 09/05/2016] [Indexed: 12/23/2022]
Abstract
The most critical step in the initiation of apoptosis is the activation of the Bcl-2 family of proteins to oligomerize and permeabilize the outer-mitochondrial membrane (OMM). As this step results in the irreversible release of factors that enhance cellular degradation, it is the point of no return in programmed cell death and would be an ideal therapeutic target. However, the arrangement of the Bcl-2 proteins in the OMM during permeabilization still remains unknown. It is also unclear whether the Bcl-2 protein, Bid, directly participates in the formation of the oligomers in live cells, even though it is cleaved and translocates to the OMM at the initiation of apoptosis. Therefore, we utilized confocal microscopy to measure Förster resonance energy transfer (FRET) efficiencies in live cells to determine the conformation(s) and intermolecular contacts of Bid within these Bcl-2 oligomers. We found that Bid adopts an extended conformation, which appears to be critical for its association with the mitochondrial membrane. This conformation is also important for intermolecular contacts within the Bid oligomer. More importantly for the first time, direct intermolecular contacts between Bid and Bax were observed, thereby, confirming Bid as a key component of these oligomers. Furthermore, the observed FRET efficiencies allowed us to propose an oligomeric arrangement of Bid, Bax, and possibly other members of the Bcl-2 family of proteins that form a self-propagating network that permeabilizes the OMM.
Collapse
Affiliation(s)
- Robert F Gahl
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda 20892, MD, USA
| | - Pallavi Dwivedi
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda 20892, MD, USA
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda 20892, MD, USA
| |
Collapse
|
38
|
Luna-Vargas MP, Chipuk JE. The deadly landscape of pro-apoptotic BCL-2 proteins in the outer mitochondrial membrane. FEBS J 2016; 283:2676-89. [PMID: 26662859 PMCID: PMC4907887 DOI: 10.1111/febs.13624] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/11/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023]
Abstract
Apoptosis is a biological process that removes damaged, excess or infected cells through a genetically controlled mechanism. This process plays a crucial role in organismal development, immunity and tissue homeostasis, and alterations in apoptosis contribute to human diseases including cancer and auto-immunity. In the past two decades, significant efforts have focused on understanding the function of the BCL-2 proteins, a complex family of pro-survival and pro-apoptotic α-helical proteins that directly control the mitochondrial pathway of apoptosis. Diverse structural investigations of the BCL-2 family members have broadened our mechanistic understanding of their individual functions. However, an often over-looked aspect of the mitochondrial pathway of apoptosis is how the BCL-2 family specifically interacts with and targets the outer mitochondrial membrane to initiate apoptosis. Structural information on the relationship between the BCL-2 family and the outer mitochondrial membrane is missing; likewise, knowledge of the biophysical mechanisms by which the outer mitochondrial membrane affects and effects apoptosis is lacking. In this mini-review, we provide a current overview of the BCL-2 family members and discuss the latest structural insights into BAK/BAX activation and oligomerization in the context of the outer mitochondrial membrane and mitochondrial biology.
Collapse
Affiliation(s)
- Mark P.A. Luna-Vargas
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Jerry E. Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
39
|
Csizmok V, Follis AV, Kriwacki RW, Forman-Kay JD. Dynamic Protein Interaction Networks and New Structural Paradigms in Signaling. Chem Rev 2016; 116:6424-62. [PMID: 26922996 DOI: 10.1021/acs.chemrev.5b00548] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding signaling and other complex biological processes requires elucidating the critical roles of intrinsically disordered proteins (IDPs) and regions (IDRs), which represent ∼30% of the proteome and enable unique regulatory mechanisms. In this review, we describe the structural heterogeneity of disordered proteins that underpins these mechanisms and the latest progress in obtaining structural descriptions of conformational ensembles of disordered proteins that are needed for linking structure and dynamics to function. We describe the diverse interactions of IDPs that can have unusual characteristics such as "ultrasensitivity" and "regulated folding and unfolding". We also summarize the mounting data showing that large-scale assembly and protein phase separation occurs within a variety of signaling complexes and cellular structures. In addition, we discuss efforts to therapeutically target disordered proteins with small molecules. Overall, we interpret the remodeling of disordered state ensembles due to binding and post-translational modifications within an expanded framework for allostery that provides significant insights into how disordered proteins transmit biological information.
Collapse
Affiliation(s)
- Veronika Csizmok
- Molecular Structure & Function, The Hospital for Sick Children , Toronto, ON M5G 0A4, Canada
| | - Ariele Viacava Follis
- Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center , Memphis, Tennessee 38163, United States
| | - Julie D Forman-Kay
- Molecular Structure & Function, The Hospital for Sick Children , Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto , Toronto, ON M5S 1A8, Canada
| |
Collapse
|
40
|
Bleicken S, Hofhaus G, Ugarte-Uribe B, Schröder R, García-Sáez AJ. cBid, Bax and Bcl-xL exhibit opposite membrane remodeling activities. Cell Death Dis 2016; 7:e2121. [PMID: 26913610 PMCID: PMC4849160 DOI: 10.1038/cddis.2016.34] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 12/19/2022]
Abstract
The proteins of the Bcl-2 family have a crucial role in mitochondrial outer membrane permeabilization during apoptosis and in the regulation of mitochondrial dynamics. Current models consider that Bax forms toroidal pores at mitochondria that are responsible for the release of cytochrome c, whereas Bcl-xL inhibits pore formation. However, how Bcl-2 proteins regulate mitochondrial fission and fusion remains poorly understood. By using a systematic analysis at the single vesicle level, we found that cBid, Bax and Bcl-xL are able to remodel membranes in different ways. cBid and Bax induced a reduction in vesicle size likely related to membrane tethering, budding and fission, besides membrane permeabilization. Moreover, they are preferentially located at highly curved membranes. In contrast, Bcl-xL not only counterbalanced pore formation but also membrane budding and fission. Our findings support a mechanism of action by which cBid and Bax induce or stabilize highly curved membranes including non-lamellar structures. This molecular activity reduces the energy for membrane remodeling, which is a necessary step in toroidal pore formation, as well as membrane fission and fusion, and provides a common mechanism that links the two main functions of Bcl-2 proteins.
Collapse
Affiliation(s)
- S Bleicken
- Membrane Biophysics, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, Stuttgart 70569, Germany.,German Cancer Research Center, Im Neuenheimer Feld 267, Heidelberg 69120, Germany.,Membrane Biophysics, Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Hoppe-Seyler-Strasse 4, Tübingen 72076, Germany
| | - G Hofhaus
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
| | - B Ugarte-Uribe
- Membrane Biophysics, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, Stuttgart 70569, Germany.,German Cancer Research Center, Im Neuenheimer Feld 267, Heidelberg 69120, Germany.,Membrane Biophysics, Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Hoppe-Seyler-Strasse 4, Tübingen 72076, Germany
| | - R Schröder
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
| | - A J García-Sáez
- Membrane Biophysics, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, Stuttgart 70569, Germany.,German Cancer Research Center, Im Neuenheimer Feld 267, Heidelberg 69120, Germany.,Membrane Biophysics, Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Hoppe-Seyler-Strasse 4, Tübingen 72076, Germany
| |
Collapse
|
41
|
Zheng JH, Viacava Follis A, Kriwacki RW, Moldoveanu T. Discoveries and controversies in BCL-2 protein-mediated apoptosis. FEBS J 2015; 283:2690-700. [DOI: 10.1111/febs.13527] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/30/2015] [Accepted: 09/23/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Janet H. Zheng
- Department of Structural Biology; St Jude Children's Research Hospital; Memphis TN USA
| | - Ariele Viacava Follis
- Department of Structural Biology; St Jude Children's Research Hospital; Memphis TN USA
| | - Richard W. Kriwacki
- Department of Structural Biology; St Jude Children's Research Hospital; Memphis TN USA
| | - Tudor Moldoveanu
- Department of Structural Biology; St Jude Children's Research Hospital; Memphis TN USA
| |
Collapse
|
42
|
Kvansakul M, Hinds MG. The Bcl-2 family: structures, interactions and targets for drug discovery. Apoptosis 2015; 20:136-50. [PMID: 25398535 DOI: 10.1007/s10495-014-1051-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two phylogenetically and structurally distinct groups of proteins regulate stress induced intrinsic apoptosis, the programmed disassembly of cells. Together they form the B cell lymphoma-2 (Bcl-2) family. Bcl-2 proteins appeared early in metazoan evolution and are identified by the presence of up to four short conserved sequence blocks known as Bcl-2 homology (BH) motifs, or domains. The simple BH3-only proteins bear only a BH3-motif and are intrinsically disordered proteins and antagonize or activate the other group, the multi-motif Bcl-2 proteins that have up to four BH motifs, BH1-BH4. Multi-motif Bcl-2 proteins are either pro-survival or pro-apoptotic in action and have remarkably similar α-helical bundle structures that provide a binding groove formed from the BH1, BH2, and BH3-motifs for their BH3-bearing antagonists. In mammals a network of interactions between Bcl-2 members regulates mitochondrial outer membrane permeability (MOMP) and efflux of cytochrome c and other death inducing factors from mitochondria to initiate the apoptotic caspase cascade, but the molecular events leading to MOMP are uncertain. Dysregulation of the Bcl-2 family occurs in many diseases and pathogenic viruses have assimilated pro-survival Bcl-2 proteins to evade immune responses. Their role in disease has made the Bcl-2 family the focus of drug design attempts and clinical trials are showing promise for 'BH3-mimics', drugs that mimic the ability of BH3-only proteins to neutralize selected pro-survival proteins to induce cell death in tumor cells. This review focuses on the structural biology of Bcl-2 family proteins, their interactions and attempts to harness them as targets for drug design.
Collapse
Affiliation(s)
- Marc Kvansakul
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, 3086, Australia,
| | | |
Collapse
|
43
|
Planas-Iglesias J, Dwarakanath H, Mohammadyani D, Yanamala N, Kagan VE, Klein-Seetharaman J. Cardiolipin Interactions with Proteins. Biophys J 2015; 109:1282-94. [PMID: 26300339 DOI: 10.1016/j.bpj.2015.07.034] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/18/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022] Open
Abstract
Cardiolipins (CL) represent unique phospholipids of bacteria and eukaryotic mitochondria with four acyl chains and two phosphate groups that have been implicated in numerous functions from energy metabolism to apoptosis. Many proteins are known to interact with CL, and several cocrystal structures of protein-CL complexes exist. In this work, we describe the collection of the first systematic and, to the best of our knowledge, the comprehensive gold standard data set of all known CL-binding proteins. There are 62 proteins in this data set, 21 of which have nonredundant crystal structures with bound CL molecules available. Using binding patch analysis of amino acid frequencies, secondary structures and loop supersecondary structures considering phosphate and acyl chain binding regions together and separately, we gained a detailed understanding of the general structural and dynamic features involved in CL binding to proteins. Exhaustive docking of CL to all known structures of proteins experimentally shown to interact with CL demonstrated the validity of the docking approach, and provides a rich source of information for experimentalists who may wish to validate predictions.
Collapse
Affiliation(s)
- Joan Planas-Iglesias
- Division of Metabolic and Vascular Health, Medical School, University of Warwick, Coventry, United Kingdom
| | - Himal Dwarakanath
- Division of Metabolic and Vascular Health, Medical School, University of Warwick, Coventry, United Kingdom
| | - Dariush Mohammadyani
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Naveena Yanamala
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Judith Klein-Seetharaman
- Division of Metabolic and Vascular Health, Medical School, University of Warwick, Coventry, United Kingdom; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
44
|
Bracken JD, Carlson AD, Frederich JH, Nguyen M, Shore GC, Harran PG. Tailored fragments of roseophilin selectively antagonize Mcl-1 in vitro. Tetrahedron Lett 2015; 56:3612-3616. [PMID: 26019371 DOI: 10.1016/j.tetlet.2015.01.191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have discovered a fragment of the natural product roseophilin, a member of the prodiginine family, that antagonizes Mcl-1 functions in a liposome-based assay for mitochondrial membrane permeabilization. By tailoring this substance such that it can participate in salt bridging with the protein surface, we have prepared the first prodiginine inspired structure that shows direct, saturable binding to a recombinant Bcl-2 family member in vitro.
Collapse
Affiliation(s)
- Jack D Bracken
- Department of Chemistry and Biochemistry, University of California at Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, United States
| | - Andrew D Carlson
- Department of Chemistry and Biochemistry, University of California at Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, United States
| | - James H Frederich
- Department of Chemistry and Biochemistry, University of California at Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, United States
| | - Mai Nguyen
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | - Gordon C Shore
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | - Patrick G Harran
- Department of Chemistry and Biochemistry, University of California at Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, United States
| |
Collapse
|
45
|
Landeta O, Landajuela A, Garcia-Saez A, Basañez G. Minimalist Model Systems Reveal Similarities and Differences between Membrane Interaction Modes of MCL1 and BAK. J Biol Chem 2015; 290:17004-19. [PMID: 25987560 DOI: 10.1074/jbc.m114.602193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Indexed: 11/06/2022] Open
Abstract
Proteins belonging to the BCL2 family are key modulators of apoptosis that establish a complex network of interactions among themselves and with other cellular factors to regulate cell fate. It is well established that mitochondrial membranes are the main locus of action of all BCL2 family proteins, but it is difficult to obtain a precise view of how BCL2 family members operate at the native mitochondrial membrane environment during apoptosis. Here, we used minimalist model systems and multiple fluorescence-based techniques to examine selected membrane activities of MCL1 and BAK under apoptotic-like conditions. We show that three distinct apoptosis-related factors (i.e. the BCL2 homology 3 ligand cBID, the mitochondrion-specific lipid cardiolipin, and membrane geometrical curvature) all promote membrane association of BCL2-like structural folds belonging to both MCL1 and BAK. However, at the same time, the two proteins exhibited distinguishing features in their membrane association modes under apoptotic-like conditions. In addition, scanning fluorescence cross-correlation spectroscopy and FRET measurements revealed that the BCL2-like structural fold of MCL1, but not that of BAK, forms stable heterodimeric complexes with cBID in a manner adjustable by membrane cardiolipin content and curvature degree. Our results add significantly to a growing body of evidence indicating that the mitochondrial membrane environment plays a complex and active role in the mode of action of BCL2 family proteins.
Collapse
Affiliation(s)
- Olatz Landeta
- From the Unidad de Biofísica, Centro Mixto Centro Superior de Investigaciones Científicas (CSIC)-EuskalHerriko Unibertsitatea/Universidad del País Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain,
| | - Ane Landajuela
- From the Unidad de Biofísica, Centro Mixto Centro Superior de Investigaciones Científicas (CSIC)-EuskalHerriko Unibertsitatea/Universidad del País Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Ana Garcia-Saez
- the Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany, and the Max-Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany, and the German Cancer Research Center, BioQuant, ImNeuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Gorka Basañez
- From the Unidad de Biofísica, Centro Mixto Centro Superior de Investigaciones Científicas (CSIC)-EuskalHerriko Unibertsitatea/Universidad del País Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain,
| |
Collapse
|
46
|
Hockings C, Anwari K, Ninnis RL, Brouwer J, O'Hely M, Evangelista M, Hinds MG, Czabotar PE, Lee EF, Fairlie WD, Dewson G, Kluck RM. Bid chimeras indicate that most BH3-only proteins can directly activate Bak and Bax, and show no preference for Bak versus Bax. Cell Death Dis 2015; 6:e1735. [PMID: 25906158 PMCID: PMC4650538 DOI: 10.1038/cddis.2015.105] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 01/01/2023]
Abstract
The mitochondrial pathway of apoptosis is initiated by Bcl-2 homology region 3 (BH3)-only members of the Bcl-2 protein family. On upregulation or activation, certain BH3-only proteins can directly bind and activate Bak and Bax to induce conformation change, oligomerization and pore formation in mitochondria. BH3-only proteins, with the exception of Bid, are intrinsically disordered and therefore, functional studies often utilize peptides based on just their BH3 domains. However, these reagents do not possess the hydrophobic membrane targeting domains found on the native BH3-only molecule. To generate each BH3-only protein as a recombinant protein that could efficiently target mitochondria, we developed recombinant Bid chimeras in which the BH3 domain was replaced with that of other BH3-only proteins (Bim, Puma, Noxa, Bad, Bmf, Bik and Hrk). The chimeras were stable following purification, and each immunoprecipitated with full-length Bcl-xL according to the specificity reported for the related BH3 peptide. When tested for activation of Bak and Bax in mitochondrial permeabilization assays, Bid chimeras were ~1000-fold more effective than the related BH3 peptides. BH3 sequences from Bid and Bim were the strongest activators, followed by Puma, Hrk, Bmf and Bik, while Bad and Noxa were not activators. Notably, chimeras and peptides showed no apparent preference for activating Bak or Bax. In addition, within the BH3 domain, the h0 position recently found to be important for Bax activation, was important also for Bak activation. Together, our data with full-length proteins indicate that most BH3-only proteins can directly activate both Bak and Bax.
Collapse
Affiliation(s)
- C Hockings
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - K Anwari
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - R L Ninnis
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - J Brouwer
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - M O'Hely
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - M Evangelista
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - M G Hinds
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - P E Czabotar
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - E F Lee
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - W D Fairlie
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - G Dewson
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - R M Kluck
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
47
|
Distinct lipid effects on tBid and Bim activation of membrane permeabilization by pro-apoptotic Bax. Biochem J 2015; 467:495-505. [DOI: 10.1042/bj20141291] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
After exposure to stressful stimuli, apoptotic signals can be relayed to mitochondria by pro-apoptotic activator proteins, tBid (truncated Bid/p15) and Bim (Bcl-2 interacting mediator), which activate Bax (Bcl-2 associated X protein) and or Bak (Bcl-2 antagonist/killer) to induce mitochondrial outer membrane (MOM) permeabilization (MOMP). These protein–protein and protein–membrane interactions are critical for apoptosis regulation, since MOMP irreversibly leads to cell death. Whereas the distinct roles of tBid and Bim as sensors of different types of stress are well recognized, it is not known whether the molecular mechanisms whereby they initiate MOMP are the same. In the present study, we compare membrane permeabilization by Bax activated by either cBid [cleaved Bid (p7 and p15)] or Bim and we examine the role of membrane lipids in the recruitment and activation of these three Bcl-2 (B-cell lymphoma 2) pro-apoptotic proteins. We employ fluorescently-labelled proteins and liposomes to quantify the effects of specific lipids on each of the well-characterized steps in Bax-mediated membrane permeabilization. We show that high levels of cholesterol in the membrane inhibit permeabilization by categorically identifying the recruitment of Bax by the activators and Bax insertion in the membrane as the steps being hindered by cholesterol. Furthermore, we show that binding of both cBid and Bim to membranes is facilitated by electrostatic interactions with anionic phospholipids. However, whereas Bim does not require any particular anionic lipids, the conformational change in tBid depends on cardiolipin (CL). This suggests that CL can activate tBid in a similar manner to Mtch2 (mitochondrial carrier homologue 2). Thus, lipids modify multiple aspects of Bax-mediated membrane permeabilization.
Collapse
|
48
|
Keoni CL, Brown TL. Inhibition of Apoptosis and Efficacy of Pan Caspase Inhibitor, Q-VD-OPh, in Models of Human Disease. J Cell Death 2015; 8:1-7. [PMID: 25922583 PMCID: PMC4395138 DOI: 10.4137/jcd.s23844] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/08/2015] [Accepted: 03/10/2015] [Indexed: 12/25/2022] Open
Abstract
Apoptosis is physiological cell death required for the cellular maintenance of homeostasis, and caspases play a major role in the execution of this process. Numerous disorders occur when levels of apoptosis within an organism are excessive, and several studies have explored the possibility of using caspase inhibitors to prevent these disorders. Q-VD-OPh (quinolyl-valyl-O-methylaspartyl-[2,6-difluorophenoxy]-methyl ketone), a novel pan caspase inhibitor, has been used because of its efficacy to inhibit apoptosis at low concentrations, its ability to cross the blood-brain barrier, as well as being nontoxic in vivo. This review examines Q-VD-OPh's ability to inhibit apoptosis in several animal models of human disease.
Collapse
Affiliation(s)
- Chanel Li Keoni
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
49
|
Ding Y, Fujimoto LM, Yao Y, Marassi FM. Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation. JOURNAL OF BIOMOLECULAR NMR 2015; 61:275-86. [PMID: 25578899 PMCID: PMC4398618 DOI: 10.1007/s10858-014-9893-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/20/2014] [Indexed: 05/22/2023]
Abstract
Solid-state NMR studies of sedimented soluble proteins has been developed recently as an attractive approach for overcoming the size limitations of solution NMR spectroscopy while bypassing the need for sample crystallization or precipitation (Bertini et al. Proc Natl Acad Sci USA 108(26):10396-10399, 2011). Inspired by the potential benefits of this method, we have investigated the ability to sediment lipid bilayer nanodiscs reconstituted with a membrane protein. In this study, we show that nanodiscs containing the outer membrane protein Ail from Yersinia pestis can be sedimented for solid-state NMR structural studies, without the need for precipitation or lyophilization. Optimized preparations of Ail in phospholipid nanodiscs support both the structure and the fibronectin binding activity of the protein. The same sample can be used for solution NMR, solid-state NMR and activity assays, facilitating structure-activity correlation experiments across a wide range of timescales.
Collapse
Affiliation(s)
- Yi Ding
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla CA 92037, USA
| | - L. Miya Fujimoto
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla CA 92037, USA
| | - Yong Yao
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla CA 92037, USA
| | - Francesca M. Marassi
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla CA 92037, USA
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla CA 92037, USA. [Tel: 858-795-5282; Mail: ]
| |
Collapse
|
50
|
Wu A, Wu K, Li M, Bao L, Shen X, Li S, Li J, Yang Z. Upregulation of microRNA-492 induced by epigenetic drug treatment inhibits the malignant phenotype of clear cell renal cell carcinoma in vitro. Mol Med Rep 2015; 12:1413-20. [PMID: 25815441 DOI: 10.3892/mmr.2015.3550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 02/13/2015] [Indexed: 11/06/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of cancer of the renal parenchyma. MicroRNAs (miRNAs) are non-coding RNAs of ~22 nucleotides in length, which function as post‑transcriptional regulators. Recently, the downregulation of miRNA (miR)-492 was observed to be associated with ccRCC; however, the molecular mechanism by which miR492 inhibited ccRCC remained to be elucidated. In the present study, it was demonstrated that miR-492 was markedly downregulated in ccRCC tissues when compared with adjacent normal tissues, as determined by reverse transcription-quantitative poymerase chain reaction (PCR). This downregulation was predominantly due to the hypermethylation of the CpG island of the miR-492 promoter, which was detected by methylation specific PCR and bisulfite genomic sequencing PCR, and was shown to inhibit miR-492 transcription. Through the use of a DNA demethylation agent, 5-aza-2'-deoxycytidine or the histone deacetylase inhibitor 4-phenylbutyric acid, the expression level of miR-492 was significantly upregulated in ccRCC cells, which further inhibited cell proliferation and invasion, while promoting cell apoptosis and adhesion. In conclusion, the present study provided novel insights into the potential mechanisms involved in ccRCC and it is hypothesized that miR-492 may become a promising therapeutic agent in the treatment of ccRCC.
Collapse
Affiliation(s)
- Aibing Wu
- Oncology Center, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Kunpeng Wu
- Oncology Center, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Mingchun Li
- Oncology Center, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Lingli Bao
- Oncology Center, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Xiang Shen
- Oncology Center, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Shunjun Li
- Oncology Center, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Jinmei Li
- Oncology Center, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Zhixiong Yang
- Oncology Center, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|