1
|
Costas MJ, Couto A, Cabezas A, Pinto RM, Ribeiro JM, Cameselle JC. Alternative Splicing of the Last TKFC Intron Yields Transcripts Differentially Expressed in Human Tissues That Code In Vitro for a Protein Devoid of Triokinase and FMN Cyclase Activity. Biomolecules 2024; 14:1288. [PMID: 39456221 PMCID: PMC11506722 DOI: 10.3390/biom14101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The 18-exon human TKFC gene codes for dual-activity triokinase and FMN cyclase (TKFC) in an ORF, spanning from exon 2 to exon 18. In addition to TKFC-coding transcripts (classified as tkfc type by their intron-17 splice), databases contain evidence for alternative TKFC transcripts, but none of them has been expressed, studied, and reported in the literature. A novel full-ORF transcript was cloned from brain cDNA and sequenced (accession no. DQ344550). It results from an alternative 3' splice-site in intron 17. The cloned cDNA contains an ORF also spanning from exon 2 to exon 18 of the TKFC gene but with a 56-nt insertion between exons 17 and 18 (classified as tkfc_ins56 type). This insertion introduces an in-frame stop, and the resulting ORF codes for a shorter TKFC variant, which, after expression, is enzymatically inactive. TKFC intron-17 splicing was found to be differentially expressed in human tissues. In a multiple-tissue northern blot using oligonucleotide probes, the liver showed a strong expression of the tkfc-like splice of intron 17, and the heart preferentially expressed the tkfc_ins56-like splice. Through a comparison to global expression data from massive-expression studies of human tissues, it was inferred that the intestine preferentially expresses TKFC transcripts that contain neither of those splices. An analysis of transcript levels quantified by RNA-Seq in the GTEX database revealed an exception to this picture due to the occurrence of a non-coding short transcript with a tkfc-like splice. Altogether, the results support the occurrence of potentially relevant transcript variants of the TKFC gene, differentially expressed in human tissues. (This work is dedicated in memoriam to Professor Antonio Sillero, 1938-2024, for his lifelong mentoring and his pioneering work on triokinase).
Collapse
Affiliation(s)
| | | | | | | | - João Meireles Ribeiro
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain; (M.J.C.); (A.C.); (A.C.); (R.M.P.)
| | - José Carlos Cameselle
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain; (M.J.C.); (A.C.); (A.C.); (R.M.P.)
| |
Collapse
|
2
|
Liu F, Tian JT, Wang YT, Zhao L, Liu Z, Chen J, Wei LJ, Fickers P, Hua Q. Improving an Alternative Glycerol Catabolism Pathway in Yarrowia lipolytica to Enhance Erythritol Production. Yeast 2024; 41:605-614. [PMID: 39262092 DOI: 10.1002/yea.3980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Engineering the glycerol-3-phosphate pathway could enhance erythritol production by accelerating glycerol uptake. However, little work has been conducted on the alternative dihydroxyacetone (DHA) pathway in Yarrowia lipolytica. Herein, this route was identified and characterized in Y. lipolytica by metabolomic and transcriptomic analysis. Moreover, the reaction catalyzed by dihydroxyacetone kinase encoded by dak2 was identified as the rate-limiting step. By combining NHEJ-mediated insertion mutagenesis with a push-and-pull strategy, Y. lipolytica strains with high-yield erythritol synthesis from glycerol were obtained. Screening of a library of insertion mutants allows the identification of a mutant with fourfold increased erythritol production. Overexpression of DAK2 and glycerol dehydrogenase GCY3 together with gene encoding transketolase and transaldolase from the nonoxidative part of the pentose phosphate pathway led to a strain with further increased productivity with a titer of 53.1 g/L and a yield 0.56 g/g glycerol, which were 8.1- and 4.2-fold of starting strain.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jing-Tao Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ya-Ting Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lingxuan Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
| |
Collapse
|
3
|
Zhao J, Chen Y, Ding Z, Zhou Y, Bi R, Qin Z, Yang L, Sun P, Sun Q, Chen G, Sun D, Jiang X, Zheng L, Chen XL, Wan H, Wang G, Li Q, Teng H, Li G. Identification of propranolol and derivatives that are chemical inhibitors of phosphatidate phosphatase as potential broad-spectrum fungicides. PLANT COMMUNICATIONS 2024; 5:100679. [PMID: 37653727 PMCID: PMC10811373 DOI: 10.1016/j.xplc.2023.100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Plant diseases cause enormous economic losses in agriculture and threaten global food security, and application of agrochemicals is an important method of crop disease control. Exploration of disease-resistance mechanisms and synthesis of highly bioactive agrochemicals are thus important research objectives. Here, we show that propranolol, a phosphatidate phosphatase (Pah) inhibitor, effectively suppresses fungal growth, sporulation, sexual reproduction, and infection of diverse plants. The MoPah1 enzyme activity of the rice blast fungus Magnaporthe oryzae is inhibited by propranolol. Alterations in lipid metabolism are associated with inhibited hyphal growth and appressorium formation caused by propranolol in M. oryzae. Propranolol inhibits a broad spectrum of 12 plant pathogens, effectively inhibiting infection of barley, wheat, maize, tomato, and pear. To improve antifungal capacity, we synthesized a series of propranolol derivatives, one of which shows a 16-fold increase in antifungal ability and binds directly to MoPah1. Propranolol and its derivatives can also reduce the severity of rice blast and Fusarium head blight of wheat in the field. Taken together, our results demonstrate that propranolol suppresses fungal development and infection through mechanisms involved in lipid metabolism. Propranolol and its derivatives may therefore be promising candidates for fungicide development.
Collapse
Affiliation(s)
- Juan Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China; College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu 611130, China
| | - Yu Chen
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhifen Ding
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaru Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiqing Bi
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziting Qin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiping Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guang Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Daiyuan Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xianya Jiang
- Yangjiang Institute of Agricultural Sciences, Yangjiang 529500, China
| | - Lu Zheng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Lin Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Wan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huailong Teng
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Blomberg A. Yeast osmoregulation - glycerol still in pole position. FEMS Yeast Res 2022; 22:6655991. [PMID: 35927716 PMCID: PMC9428294 DOI: 10.1093/femsyr/foac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/29/2022] [Accepted: 08/02/2022] [Indexed: 11/14/2022] Open
Abstract
In response to osmotic dehydration cells sense, signal, alter gene expression, and metabolically counterbalance osmotic differences. The main compatible solute/osmolyte that accumulates in yeast cells is glycerol, which is produced from the glycolytic intermediate dihydroxyacetone phosphate. This review covers recent advancements in understanding mechanisms involved in sensing, signaling, cell-cycle delays, transcriptional responses as well as post-translational modifications on key proteins in osmoregulation. The protein kinase Hog1 is a key-player in many of these events, however, there is also a growing body of evidence for important Hog1-independent mechanisms playing vital roles. Several missing links in our understanding of osmoregulation will be discussed and future avenues for research proposed. The review highlights that this rather simple experimental system—salt/sorbitol and yeast—has developed into an enormously potent model system unravelling important fundamental aspects in biology.
Collapse
Affiliation(s)
- Anders Blomberg
- Dept. of Chemistry and Molecular Biology, University of Gothenburg, Sweden
| |
Collapse
|
5
|
Du C, Li Y, Xiang R, Yuan W. Formate Dehydrogenase Improves the Resistance to Formic Acid and Acetic Acid Simultaneously in Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms23063406. [PMID: 35328826 PMCID: PMC8954399 DOI: 10.3390/ijms23063406] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 01/06/2023] Open
Abstract
Bioethanol from lignocellulosic biomass is a promising and sustainable strategy to meet the energy demand and to be carbon neutral. Nevertheless, the damage of lignocellulose-derived inhibitors to microorganisms is still the main bottleneck. Developing robust strains is critical for lignocellulosic ethanol production. An evolved strain with a stronger tolerance to formate and acetate was obtained after adaptive laboratory evolution (ALE) in the formate. Transcriptional analysis was conducted to reveal the possible resistance mechanisms to weak acids, and fdh coding for formate dehydrogenase was selected as the target to verify whether it was related to resistance enhancement in Saccharomyces cerevisiae F3. Engineered S. cerevisiae FA with fdh overexpression exhibited boosted tolerance to both formate and acetate, but the resistance mechanism to formate and acetate was different. When formate exists, it breaks down by formate dehydrogenase into carbon dioxide (CO2) to relieve its inhibition. When there was acetate without formate, FDH1 converted CO2 from glucose fermentation to formate and ATP and enhanced cell viability. Together, fdh overexpression alone can improve the tolerance to both formate and acetate with a higher cell viability and ATP, which provides a novel strategy for robustness strain construction to produce lignocellulosic ethanol.
Collapse
Affiliation(s)
- Cong Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Y.L.); (R.X.)
| | - Yimin Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Y.L.); (R.X.)
| | - Ruijuan Xiang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Y.L.); (R.X.)
| | - Wenjie Yuan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Y.L.); (R.X.)
- Ningbo Research Institute, Dalian University of Technology, Ningbo 315000, China
- Correspondence:
| |
Collapse
|
6
|
Kocaefe-Özşen N, Yilmaz B, Alkım C, Arslan M, Topaloğlu A, Kısakesen HLB, Gülsev E, Çakar ZP. Physiological and Molecular Characterization of an Oxidative Stress-Resistant Saccharomyces cerevisiae Strain Obtained by Evolutionary Engineering. Front Microbiol 2022; 13:822864. [PMID: 35283819 PMCID: PMC8911705 DOI: 10.3389/fmicb.2022.822864] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is a major stress type observed in yeast bioprocesses, resulting in a decrease in yeast growth, viability, and productivity. Thus, robust yeast strains with increased resistance to oxidative stress are in highly demand by the industry. In addition, oxidative stress is also associated with aging and age-related complex conditions such as cancer and neurodegenerative diseases. Saccharomyces cerevisiae, as a model eukaryote, has been used to study these complex eukaryotic processes. However, the molecular mechanisms underlying oxidative stress responses and resistance are unclear. In this study, we have employed evolutionary engineering (also known as adaptive laboratory evolution – ALE) strategies to obtain an oxidative stress-resistant and genetically stable S. cerevisiae strain. Comparative physiological, transcriptomic, and genomic analyses of the evolved strain were then performed with respect to the reference strain. The results show that the oxidative stress-resistant evolved strain was also cross-resistant against other types of stressors, including heat, freeze-thaw, ethanol, cobalt, iron, and salt. It was also found to have higher levels of trehalose and glycogen production. Further, comparative transcriptomic analysis showed an upregulation of many genes associated with the stress response, transport, carbohydrate, lipid and cofactor metabolic processes, protein phosphorylation, cell wall organization, and biogenesis. Genes that were downregulated included those related to ribosome and RNA processing, nuclear transport, tRNA, and cell cycle. Whole genome re-sequencing analysis of the evolved strain identified mutations in genes related to the stress response, cell wall organization, carbohydrate metabolism/transport, which are in line with the physiological and transcriptomic results, and may give insight toward the complex molecular mechanisms of oxidative stress resistance.
Collapse
Affiliation(s)
- Nazlı Kocaefe-Özşen
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Bahtiyar Yilmaz
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Ceren Alkım
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Mevlüt Arslan
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Alican Topaloğlu
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Halil L Brahim Kısakesen
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Erdinç Gülsev
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Z Petek Çakar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
7
|
Yaakoub H, Sanchez NS, Ongay-Larios L, Courdavault V, Calenda A, Bouchara JP, Coria R, Papon N. The high osmolarity glycerol (HOG) pathway in fungi †. Crit Rev Microbiol 2021; 48:657-695. [PMID: 34893006 DOI: 10.1080/1040841x.2021.2011834] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While fungi are widely occupying nature, many species are responsible for devastating mycosis in humans. Such niche diversity explains how quick fungal adaptation is necessary to endow the capacity of withstanding fluctuating environments and to cope with host-imposed conditions. Among all the molecular mechanisms evolved by fungi, the most studied one is the activation of the phosphorelay signalling pathways, of which the high osmolarity glycerol (HOG) pathway constitutes one of the key molecular apparatus underpinning fungal adaptation and virulence. In this review, we summarize the seminal knowledge of the HOG pathway with its more recent developments. We specifically described the HOG-mediated stress adaptation, with a particular focus on osmotic and oxidative stress, and point out some lags in our understanding of its involvement in the virulence of pathogenic species including, the medically important fungi Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, compared to the model yeast Saccharomyces cerevisiae. Finally, we also highlighted some possible applications of the HOG pathway modifications to improve the fungal-based production of natural products in the industry.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| | - Norma Silvia Sanchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Vincent Courdavault
- EA2106 "Biomolécules et Biotechnologies Végétales", Université de Tours, Tours, France
| | | | | | - Roberto Coria
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| |
Collapse
|
8
|
Viecenz JM, Garavaglia PA, Tasso LM, Maidana CG, Bautista Cannata JJ, García GA. Identification and biochemical characterization of an ATP-dependent dihydroxyacetone kinase from Trypanosoma cruzi. Exp Parasitol 2021; 231:108178. [PMID: 34767777 DOI: 10.1016/j.exppara.2021.108178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022]
Abstract
Dihydroxyacetone (DHA) can be used as an energy source by many cell types; however, it is toxic at high concentrations. The enzyme dihydroxyacetone kinase (DAK) has shown to be involved in DHA detoxification and osmoregulation. Among protozoa of the genus Trypanosoma, T. brucei, which causes sleeping sickness, is highly sensitive to DHA and does not have orthologous genes to DAK. Conversely, T. cruzi, the etiological agent of Chagas Disease, has two putative ATP-dependent DAK (TcDAKs) sequences in its genome. Here we show that T. cruzi epimastigote lysates present a DAK specific activity of 27.1 nmol/min/mg of protein and that this form of the parasite is able to grow in the presence of 2 mM DHA. TcDAK gene was cloned and the recombinant enzyme (recTcDAK) was expressed in Escherichia coli. An anti-recTcDAK serum reacted with a protein of the expected molecular mass of 61 kDa in epimastigotes. recTcDAK presented maximal activity using Mg+2, showing a Km of 6.5 μM for DHA and a K0.5 of 124.7 μM for ATP. As it was reported for other DAKs, recTcDAK activity was inhibited by FAD with an IC50 value of 0.33 mM. In conclusion, TcDAK is the first DAK described in trypanosomatids confirming another divergent metabolism between T. brucei and T. cruzi.
Collapse
Affiliation(s)
- Juan Matías Viecenz
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben"-ANLIS "Dr. Carlos G. Malbrán". Paseo Colón 568, Buenos Aires, (1063), Argentina
| | - Patricia Andrea Garavaglia
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben"-ANLIS "Dr. Carlos G. Malbrán". Paseo Colón 568, Buenos Aires, (1063), Argentina
| | - Laura Mónica Tasso
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben"-ANLIS "Dr. Carlos G. Malbrán". Paseo Colón 568, Buenos Aires, (1063), Argentina
| | - Cristina Graciela Maidana
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben"-ANLIS "Dr. Carlos G. Malbrán". Paseo Colón 568, Buenos Aires, (1063), Argentina
| | - Joaquín Juan Bautista Cannata
- Instituto de Investigaciones Biotecnológicas (IIB-INTECH) "Dr. Rodolfo A. Ugalde", Universidad Nacional de General San Martín-CONICET, San Martín, (1650), Prov. Buenos Aires, Argentina
| | - Gabriela Andrea García
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben"-ANLIS "Dr. Carlos G. Malbrán". Paseo Colón 568, Buenos Aires, (1063), Argentina.
| |
Collapse
|
9
|
Efficient Conversion of Glycerol to Ethanol by an Engineered Saccharomyces cerevisiae Strain. Appl Environ Microbiol 2021; 87:e0026821. [PMID: 34524902 DOI: 10.1128/aem.00268-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycerol is an eco-friendly solvent that enhances plant biomass decomposition via glycerolysis in many pretreatment methods. Nonetheless, inefficient conversion of glycerol to ethanol by natural Saccharomyces cerevisiae limits its use in these processes. In this study, we have developed an efficient glycerol-converting yeast strain by genetically modifying the oxidation of cytosolic NAD (NADH) by an O2-dependent dynamic shuttle and abolishing both glycerol phosphorylation and biosynthesis in S. cerevisiae strain D452-2, as well as by vigorous expression of whole genes in the dihydroxyacetone (DHA) pathway (Candida utilis glycerol facilitator, Ogataea polymorpha glycerol dehydrogenase, endogenous dihydroxyacetone kinase, and triosephosphate isomerase). The engineered strain showed conversion efficiencies (CE) up to 0.49 g ethanol/g glycerol (98% of theoretical CE), with a production rate of >1 g liter-1 h-1 when glycerol was supplemented in a single fed-batch fermentation in a rich medium. Furthermore, the engineered strain converted a mixture of glycerol and glucose into bioethanol (>86 g/liter) with 92.8% CE. To the best of our knowledge, this is the highest reported titer of bioethanol produced from glycerol and glucose. Notably, we developed a glycerol-utilizing transformant from a parent strain which cannot utilize glycerol as a sole carbon source. The developed strain converted glycerol to ethanol with a productivity of 0.44 g liter-1 h-1 on minimal medium under semiaerobic conditions. Our findings will promote the utilization of glycerol in eco-friendly biorefineries and integrate bioethanol and plant oil industries. IMPORTANCE With the development of efficient lignocellulosic biorefineries, glycerol has attracted attention as an eco-friendly biomass-derived solvent that can enhance the dissociation of lignin and cell wall polysaccharides during the pretreatment process. Coconversion of glycerol with the sugars released from biomass after glycerolysis increases the resources for ethanol production and lowers the burden of component separation. However, low conversion efficiency from glycerol and sugars limits the industrial application of this process. Therefore, the generation of an efficient glycerol-fermenting yeast will promote the applicability of integrated biorefineries. Hence, metabolic flux control in yeast grown on glycerol will lead to the generation of cell factories that produce chemicals, which will boost biodiesel and bioethanol industries. Additionally, the use of glycerol-fermenting yeast will reduce global warming and generation of agricultural waste, leading to the establishment of a sustainable society.
Collapse
|
10
|
Cai T, Sun H, Qiao J, Zhu L, Zhang F, Zhang J, Tang Z, Wei X, Yang J, Yuan Q, Wang W, Yang X, Chu H, Wang Q, You C, Ma H, Sun Y, Li Y, Li C, Jiang H, Wang Q, Ma Y. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science 2021; 373:1523-1527. [PMID: 34554807 DOI: 10.1126/science.abh4049] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Tao Cai
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Hongbing Sun
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jing Qiao
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Leilei Zhu
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Fan Zhang
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jie Zhang
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zijing Tang
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xinlei Wei
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jiangang Yang
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qianqian Yuan
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wangyin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xue Yang
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Huanyu Chu
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qian Wang
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chun You
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hongwu Ma
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yuanxia Sun
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yin Li
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Huifeng Jiang
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qinhong Wang
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yanhe Ma
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
11
|
Zhan C, Li X, Yang Y, Nielsen J, Bai Z, Chen Y. Strategies and challenges with the microbial conversion of methanol to high-value chemicals. Biotechnol Bioeng 2021; 118:3655-3668. [PMID: 34133022 DOI: 10.1002/bit.27862] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
As alternatives to traditional fermentation substrates, methanol (CH3 OH), carbon dioxide (CO2 ) and methane (CH4 ) represent promising one-carbon (C1) sources that are readily available at low-cost and share similar metabolic pathway. Of these C1 compounds, methanol is used as a carbon and energy source by native methylotrophs, and can be obtained from CO2 and CH4 by chemical catalysis. Therefore, constructing and rewiring methanol utilization pathways may enable the use of one-carbon sources for microbial fermentations. Recent bioengineering efforts have shown that both native and nonnative methylotrophic organisms can be engineered to convert methanol, together with other carbon sources, into biofuels and other commodity chemicals. However, many challenges remain and must be overcome before industrial-scale bioprocessing can be established using these engineered cell refineries. Here, we provide a comprehensive summary and comparison of methanol metabolic pathways from different methylotrophs, followed by a review of recent progress in engineering methanol metabolic pathways in vitro and in vivo to produce chemicals. We discuss the major challenges associated with establishing efficient methanol metabolic pathways in microbial cells, and propose improved designs for future engineering.
Collapse
Affiliation(s)
- Chunjun Zhan
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Xiaowei Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.,BioInnovation Institute, Copenhagen N, Denmark
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
12
|
Onoufriadis A, Cabezas A, Ng JCF, Canales J, Costas MJ, Ribeiro JM, Rodrigues JR, McAleer MA, Castelo-Soccio L, Simpson MA, Fraternali F, Irvine AD, Cameselle JC, McGrath JA. Autosomal recessive hypotrichosis with loose anagen hairs associated with TKFC mutations. Br J Dermatol 2020; 184:935-943. [PMID: 32790068 DOI: 10.1111/bjd.19481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Loose anagen hair is a rare form of impaired hair anchorage in which anagen hairs that lack inner and outer root sheaths can be gently and painlessly plucked from the scalp. This condition usually occurs in children and is often self-limiting. A genetic basis for the disorder has been suggested but not proven. A better understanding the aetiology of loose anagen hair may improve prevention and treatment strategies. OBJECTIVES To identify a possible genetic basis of loose anagen hair using next-generation DNA sequencing and functional analysis of variants identified. METHODS In this case study, whole-exome sequencing analysis of a pedigree with one affected individual with features of loose anagen hair was performed. RESULTS The patient was found to be compound heterozygous for two single-nucleotide substitutions in TKFC resulting in the following missense mutations: c.574G> C (p.Gly192Arg) and c.682C> T (p.Arg228Trp). Structural analysis of human TKFC showed that both mutations are located near the active site cavity. Kinetic assays of recombinant proteins bearing either of these amino acid substitutions showed almost no dihydroxyacetone kinase or D-glyceraldehyde kinase activity, and FMN cyclase activity reduced to just 10% of wildtype catalytic activity. CONCLUSIONS TKFC missense mutations may predispose to the development of loose anagen hairs. Identification of this new biochemical pathobiology expands the metabolic and genetic basis of hypotrichosis.
Collapse
Affiliation(s)
- A Onoufriadis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, Guy's Hospital, King's College London, London, UK
| | - A Cabezas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - J C F Ng
- Randall Centre for Cell and Molecular Biophysics, Guy's Hospital, King's College London, London, UK
| | - J Canales
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - M J Costas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - J M Ribeiro
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - J R Rodrigues
- Laboratório Associado LSRE-LCM, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, Leiria, Portugal
| | - M A McAleer
- Paediatric Dermatology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - L Castelo-Soccio
- Pediatric Dermatology, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - M A Simpson
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, Guy's Hospital, King's College London, London, UK
| | - F Fraternali
- Randall Centre for Cell and Molecular Biophysics, Guy's Hospital, King's College London, London, UK
| | - A D Irvine
- Paediatric Dermatology, Children's Health Ireland at Crumlin, Dublin, Ireland.,Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - J C Cameselle
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - J A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, Guy's Hospital, King's College London, London, UK
| |
Collapse
|
13
|
Tondini F, Onetto CA, Jiranek V. Early adaptation strategies of Saccharomyces cerevisiae and Torulaspora delbrueckii to co-inoculation in high sugar grape must-like media. Food Microbiol 2020; 90:103463. [DOI: 10.1016/j.fm.2020.103463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/18/2019] [Accepted: 02/18/2020] [Indexed: 12/28/2022]
|
14
|
Bai C, Tesker M, Melamed-Kadosh D, Engelberg D, Admon A. Hog1-induced transcription of RTC3 and HSP12 is robust and occurs in cells lacking Msn2, Msn4, Hot1 and Sko1. PLoS One 2020; 15:e0237540. [PMID: 32804965 PMCID: PMC7430751 DOI: 10.1371/journal.pone.0237540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/28/2020] [Indexed: 11/19/2022] Open
Abstract
The yeast MAP kinase Hog1 pathway activates transcription of several hundreds genes. Large-scale gene expression and DNA binding assays suggest that most Hog1-induced genes are regulated by the transcriptional activators Msn2/4, Hot1 and Sko1. These studies also revealed the target genes of each activator and the putative binding sites on their promoters. In a previous study we identified a group of genes, which we considered the bona fide targets of Hog1, because they were induced in response to expression of intrinsically active mutant of Hog1, in the absence of any stress. We previously analyzed the promoter of the most highly induced gene, STL1, and noticed that some promoter properties were different from those proposed by large-scale data. We therefore continue to study promoters individually and present here analyses of promoters of more Hog1's targets, RTC3, HSP12, DAK1 and ALD3. We report that RTC3 and HSP12 promoters are robust and are induced, to different degrees, even in cells lacking all four activators. DAK1 and ALD3 promoters are not robust and fully depend on a single activator, DAK1 on Sko1 and ALD3 on Msn2/4. Most of these observations could not be inferred from the large-scale data. Msn2/4 are involved in regulating all four promoters. It was assumed, therefore, that the promoters are spontaneously active in ras2Δ cells, in which Msn2/4 are known to be de-repressed. Intriguingly, the promoters were not active in BY4741ras2Δ cells, but were de-repressed, as expected, in ras2Δ cells of other genetic backgrounds. This study describes two phenomena. One, some Hog1's target promoters are most robust, backupped by many activators. Second, in contrast to most laboratory strains, the widely used BY4741 strain does not induce Msn2/4 activity when the Ras/cAMP cascade is downregulated.
Collapse
Affiliation(s)
- Chen Bai
- Singapore-HUJ Alliance for Research and Enterprise, Molecular Mechanisms of Inflammatory Diseases Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore, Singapore
- Dept. of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Masha Tesker
- Dept. of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - David Engelberg
- Singapore-HUJ Alliance for Research and Enterprise, Molecular Mechanisms of Inflammatory Diseases Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore, Singapore
- Dept. of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Dept. of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail: (AA); (DE)
| | - Arie Admon
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
- * E-mail: (AA); (DE)
| |
Collapse
|
15
|
Bi-allelic Variants in TKFC Encoding Triokinase/FMN Cyclase Are Associated with Cataracts and Multisystem Disease. Am J Hum Genet 2020; 106:256-263. [PMID: 32004446 DOI: 10.1016/j.ajhg.2020.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
We report an inborn error of metabolism caused by TKFC deficiency in two unrelated families. Rapid trio genome sequencing in family 1 and exome sequencing in family 2 excluded known genetic etiologies, and further variant analysis identified rare homozygous variants in TKFC. TKFC encodes a bifunctional enzyme involved in fructose metabolism through its glyceraldehyde kinase activity and in the generation of riboflavin cyclic 4',5'-phosphate (cyclic FMN) through an FMN lyase domain. The TKFC homozygous variants reported here are located within the FMN lyase domain. Functional assays in yeast support the deleterious effect of these variants on protein function. Shared phenotypes between affected individuals with TKFC deficiency include cataracts and developmental delay, associated with cerebellar hypoplasia in one case. Further complications observed in two affected individuals included liver dysfunction and microcytic anemia, while one had fatal cardiomyopathy with lactic acidosis following a febrile illness. We postulate that deficiency of TKFC causes disruption of endogenous fructose metabolism leading to generation of by-products that can cause cataract. In line with this, an affected individual had mildly elevated urinary galactitol, which has been linked to cataract development in the galactosemias. Further, in light of a previously reported role of TKFC in regulating innate antiviral immunity through suppression of MDA5, we speculate that deficiency of TKFC leads to impaired innate immunity in response to viral illness, which may explain the fatal illness observed in the most severely affected individual.
Collapse
|
16
|
Choi S, Chung JH, Nam MH, Bang E, Hong KS, Kim YH, Seo JB, Chi SG. Elevated aldolase 1A, retrogene 1 expression induces cardiac apoptosis in rat experimental autoimmune myocarditis model. Can J Physiol Pharmacol 2020; 98:373-382. [PMID: 31999472 DOI: 10.1139/cjpp-2019-0539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Acute myocarditis is an unpredictable heart disease that is caused by inflammation-associated cell death. Although viral infection and drug exposure are known to induce acute myocarditis, the molecular basis for its development remains undefined. Using proteomics and molecular analyses in myosin-induced rat experimental autoimmune myocarditis (EAM), we identified that elevated expression of aldolase 1A, retrogene 1 (Aldoart1) is critical to induce mitochondrial dysfunction and acute myocarditis development. Here, we demonstrate that cardiac cell death is associated with increased expressions of proapoptotic genes in addition to high levels of glucose, lactate, and triglyceride in metabolite profiling. The functional protein association network analysis also suggests that Aldoart1 upregulation correlates with high levels of dihydroxyacetone kinase and triglyceride. In H9c2 cardiac cells, lipopolysaccharides (LPS) or high glucose exposure significantly increases the cytochrome c release and the conversion of pro-caspase 3 into the cleaved form of caspase 3. We also found that LPS- or glucose-induced toxicities are almost completely reversed by siRNA-mediated knockdown of Aldoartl, which consequently increases cell viability. Together, our study strongly suggests that Aldoart1 may be involved in inducing mitochondrial apoptotic processes and can be a novel therapeutic target to prevent the onset of acute myocarditis or cardiac apoptosis.
Collapse
Affiliation(s)
- Seungmin Choi
- Department of Life Sciences, Korea University, Seoul 02841, Korea.,Korea Basic Science Institute, Seoul Center, Seoul 02841, Korea
| | - Joo Hee Chung
- Korea Basic Science Institute, Seoul Center, Seoul 02841, Korea
| | - Myung-Hee Nam
- Korea Basic Science Institute, Seoul Center, Seoul 02841, Korea
| | - Eunjung Bang
- Korea Basic Science Institute, Western Seoul Center, Seoul 03759, Korea
| | - Kwan Soo Hong
- Korea Basic Science Institute, Bioimaging Research Team, Cheongju 28123, Korea
| | - Yong-Hwan Kim
- Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA
| | - Jong Bok Seo
- Korea Basic Science Institute, Seoul Center, Seoul 02841, Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
17
|
Dinh HV, Suthers PF, Chan SHJ, Shen Y, Xiao T, Deewan A, Jagtap SS, Zhao H, Rao CV, Rabinowitz JD, Maranas CD. A comprehensive genome-scale model for Rhodosporidium toruloides IFO0880 accounting for functional genomics and phenotypic data. Metab Eng Commun 2019; 9:e00101. [PMID: 31720216 PMCID: PMC6838544 DOI: 10.1016/j.mec.2019.e00101] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Rhodosporidium toruloides is a red, basidiomycetes yeast that can accumulate a large amount of lipids and produce carotenoids. To better assess this non-model yeast's metabolic capabilities, we reconstructed a genome-scale model of R. toruloides IFO0880's metabolic network (iRhto1108) accounting for 2204 reactions, 1985 metabolites and 1108 genes. In this work, we integrated and supplemented the current knowledge with in-house generated biomass composition and experimental measurements pertaining to the organism's metabolic capabilities. Predictions of genotype-phenotype relations were improved through manual curation of gene-protein-reaction rules for 543 reactions leading to correct recapitulations of 84.5% of gene essentiality data (sensitivity of 94.3% and specificity of 53.8%). Organism-specific macromolecular composition and ATP maintenance requirements were experimentally measured for two separate growth conditions: (i) carbon and (ii) nitrogen limitations. Overall, iRhto1108 reproduced R. toruloides's utilization capabilities for 18 alternate substrates, matched measured wild-type growth yield, and recapitulated the viability of 772 out of 819 deletion mutants. As a demonstration to the model's fidelity in guiding engineering interventions, the OptForce procedure was applied on iRhto1108 for triacylglycerol overproduction. Suggested interventions recapitulated many of the previous successful implementations of genetic modifications and put forth a few new ones.
Collapse
Affiliation(s)
- Hoang V. Dinh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, 306 Chemical and Biomedical Engineering Building, PA, 16802-4400, USA
| | - Patrick F. Suthers
- Department of Chemical Engineering, The Pennsylvania State University, University Park, 306 Chemical and Biomedical Engineering Building, PA, 16802-4400, USA
| | - Siu Hung Joshua Chan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, 306 Chemical and Biomedical Engineering Building, PA, 16802-4400, USA
| | - Yihui Shen
- Department of Chemistry, Princeton University, 285 Frick Laboratory, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Tianxia Xiao
- Department of Chemistry, Princeton University, 285 Frick Laboratory, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Anshu Deewan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champagne, 114 Roger Adams Laboratory MC 712, Urbana, IL, 61801, USA
| | - Sujit S. Jagtap
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champagne, 114 Roger Adams Laboratory MC 712, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champagne, 114 Roger Adams Laboratory MC 712, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christopher V. Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champagne, 114 Roger Adams Laboratory MC 712, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joshua D. Rabinowitz
- Department of Chemistry, Princeton University, 285 Frick Laboratory, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, 306 Chemical and Biomedical Engineering Building, PA, 16802-4400, USA
| |
Collapse
|
18
|
Godara A, Rodriguez MAG, Weatherston JD, Peabody GL, Wu HJ, Kao KC. Beneficial mutations for carotenoid production identified from laboratory-evolved Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2019; 46:1793-1804. [PMID: 31595456 DOI: 10.1007/s10295-019-02241-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/26/2019] [Indexed: 01/26/2023]
Abstract
Adaptive laboratory evolution (ALE) is a powerful tool used to increase strain fitness in the presence of environmental stressors. If production and strain fitness can be coupled, ALE can be used to increase product formation. In earlier work, carotenoids hyperproducing mutants were obtained using an ALE strategy. Here, de novo mutations were identified in hyperproducers, and reconstructed mutants were explored to determine the exact impact of each mutation on production and tolerance. A single mutation in YMRCTy1-3 conferred increased carotenoid production, and when combined with other beneficial mutations led to further increased β-carotene production. Findings also suggest that the ALE strategy selected for mutations that confer increased carotenoid production as primary phenotype. Raman spectroscopy analysis and total lipid quantification revealed positive correlation between increased lipid content and increased β-carotene production. Finally, we demonstrated that the best combinations of mutations identified for β-carotene production were also beneficial for production of lycopene.
Collapse
Affiliation(s)
- Avinash Godara
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | - Joshua D Weatherston
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | - Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Katy C Kao
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA. .,Department of Chemical and Materials Engineering, San Jose State University, One Washington Square, San Jose, CA, 95129, USA.
| |
Collapse
|
19
|
Chemical and Metabolic Controls on Dihydroxyacetone Metabolism Lead to Suboptimal Growth of Escherichia coli. Appl Environ Microbiol 2019; 85:AEM.00768-19. [PMID: 31126940 PMCID: PMC6643234 DOI: 10.1128/aem.00768-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/11/2019] [Indexed: 12/26/2022] Open
Abstract
DHA is an attractive triose molecule with a wide range of applications, notably in cosmetics and the food and pharmaceutical industries. DHA is found in many species, from microorganisms to humans, and can be used by Escherichia coli as a growth substrate. However, knowledge about the mechanisms and regulation of this process is currently lacking, motivating our investigation of DHA metabolism in E. coli. We show that under aerobic conditions, E. coli growth on DHA is far from optimal and is hindered by chemical, hierarchical, and possibly allosteric constraints. We show that optimal growth on DHA can be restored by releasing the hierarchical constraint. These results improve our understanding of DHA metabolism and are likely to help unlock biotechnological applications involving DHA as an intermediate, such as the bioconversion of glycerol or C1 substrates into value-added chemicals. In this work, we shed light on the metabolism of dihydroxyacetone (DHA), a versatile, ubiquitous, and important intermediate for various chemicals in industry, by analyzing its metabolism at the system level in Escherichia coli. Using constraint-based modeling, we show that the growth of E. coli on DHA is suboptimal and identify the potential causes. Nuclear magnetic resonance analysis shows that DHA is degraded nonenzymatically into substrates known to be unfavorable to high growth rates. Transcriptomic analysis reveals that DHA promotes genes involved in biofilm formation, which may reduce the bacterial growth rate. Functional analysis of the genes involved in DHA metabolism proves that under the aerobic conditions used in this study, DHA is mainly assimilated via the dihydroxyacetone kinase pathway. In addition, these results show that the alternative routes of DHA assimilation (i.e., the glycerol and fructose-6-phosphate aldolase pathways) are not fully activated under our conditions because of anaerobically mediated hierarchical control. These pathways are therefore certainly unable to sustain fluxes as high as the ones predicted in silico for optimal aerobic growth on DHA. Overexpressing some of the genes in these pathways releases these constraints and restores the predicted optimal growth on DHA. IMPORTANCE DHA is an attractive triose molecule with a wide range of applications, notably in cosmetics and the food and pharmaceutical industries. DHA is found in many species, from microorganisms to humans, and can be used by Escherichia coli as a growth substrate. However, knowledge about the mechanisms and regulation of this process is currently lacking, motivating our investigation of DHA metabolism in E. coli. We show that under aerobic conditions, E. coli growth on DHA is far from optimal and is hindered by chemical, hierarchical, and possibly allosteric constraints. We show that optimal growth on DHA can be restored by releasing the hierarchical constraint. These results improve our understanding of DHA metabolism and are likely to help unlock biotechnological applications involving DHA as an intermediate, such as the bioconversion of glycerol or C1 substrates into value-added chemicals.
Collapse
|
20
|
Krocová E, Neradová S, Kupcik R, Janovská S, Bílková Z, Heidingsfeld O. PHO15 genes of Candida albicans and Candida parapsilosis encode HAD-type phosphatases dephosphorylating 2-phosphoglycolate. FEMS Yeast Res 2019; 19:5126360. [PMID: 30304493 PMCID: PMC6211248 DOI: 10.1093/femsyr/foy112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/08/2018] [Indexed: 11/12/2022] Open
Abstract
Most of the phosphatases of human fungal pathogens Candida albicans and C. parapsilosis have never been experimentally characterised, although dephosphorylation reactions are central to many biological processes. PHO15 genes of these yeasts have been annotated as the sequences encoding 4-nitrophenyl phosphatase, on the basis of homology to PHO13 gene from the bakers' yeast Saccharomyces cerevisiae. To examine the real function of these potential phosphatases from Candida spp., CaPho15p and CpPho15p were prepared using expression in Escherichia coli and characterised. They share the hallmark motifs of the haloacid dehalogenase superfamily, readily hydrolyse 4-nitrophenyl phosphate at pH 8-8.3 and require divalent cations (Mg2+, Mn2+ or Co2+) as cofactors. CaPho15p and CpPho15p did not dephosphorylate phosphopeptides, but rather hydrolysed molecules related to carbohydrate metabolism. The preferred substrate for the both phosphatases was 2-phosphoglycolate. Among the other molecules tested, CaPho15 showed preference for glyceraldehyde phosphate and ß-glycerol phosphate, while CpPho15 dephosphorylated mainly 1,3-dihydroxyacetone phosphate. This type of substrate specificity indicates that CaPho15 and CpPho15 may be a part of metabolic repair system of C. albicans and C. parapsilosis.
Collapse
Affiliation(s)
- Eliška Krocová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Sylva Neradová
- Gymnasium, Pardubice, Mozartova, 530 09 Pardubice, Czech Republic
| | - Rudolf Kupcik
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Sylva Janovská
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Zuzana Bílková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Olga Heidingsfeld
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague, Czech Republic
| |
Collapse
|
21
|
Rodrigues JR, Cameselle JC, Cabezas A, Ribeiro JM. Closure of the Human TKFC Active Site: Comparison of the Apoenzyme and the Complexes Formed with Either Triokinase or FMN Cyclase Substrates. Int J Mol Sci 2019; 20:E1099. [PMID: 30836629 PMCID: PMC6429413 DOI: 10.3390/ijms20051099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 11/17/2022] Open
Abstract
Human triokinase/flavin mononucleotide (FMN) cyclase (hTKFC) catalyzes the adenosine triphosphate (ATP)-dependent phosphorylation of D-glyceraldehyde and dihydroxyacetone (DHA), and the cyclizing splitting of flavin adenine dinucleotide (FAD). hTKFC structural models are dimers of identical subunits, each with two domains, K and L, with an L2-K1-K2-L1 arrangement. Two active sites lie between L2-K1 and K2-L1, where triose binds K and ATP binds L, although the resulting ATP-to-triose distance is too large (≈14 Å) for phosphoryl transfer. A 75-ns trajectory of molecular dynamics shows considerable, but transient, ATP-to-DHA approximations in the L2-K1 site (4.83 Å or 4.16 Å). To confirm the trend towards site closure, and its relationship to kinase activity, apo-hTKFC, hTKFC:2DHA:2ATP and hTKFC:2FAD models were submitted to normal mode analysis. The trajectory of hTKFC:2DHA:2ATP was extended up to 160 ns, and 120-ns trajectories of apo-hTKFC and hTKFC:2FAD were simulated. The three systems were comparatively analyzed for equal lengths (120 ns) following the principles of essential dynamics, and by estimating site closure by distance measurements. The full trajectory of hTKFC:2DHA:2ATP was searched for in-line orientations and short distances of DHA hydroxymethyl oxygens to ATP γ-phosphorus. Full site closure was reached only in hTKFC:2DHA:2ATP, where conformations compatible with an associative phosphoryl transfer occurred in L2-K1 for significant trajectory time fractions.
Collapse
Affiliation(s)
- Joaquim Rui Rodrigues
- Laboratório Associado LSRE-LCM, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, P-2411-901 Leiria, Portugal.
| | - José Carlos Cameselle
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, E-06006 Badajoz, Spain.
| | - Alicia Cabezas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, E-06006 Badajoz, Spain.
| | - João Meireles Ribeiro
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, E-06006 Badajoz, Spain.
| |
Collapse
|
22
|
Minor Isozymes Tailor Yeast Metabolism to Carbon Availability. mSystems 2019; 4:mSystems00170-18. [PMID: 30834327 PMCID: PMC6392091 DOI: 10.1128/msystems.00170-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/21/2019] [Indexed: 11/23/2022] Open
Abstract
Gene duplication is one of the main evolutionary paths to new protein function. Typically, duplicated genes either accumulate mutations and degrade into pseudogenes or are retained and diverge in function. Some duplicated genes, however, show long-term persistence without apparently acquiring new function. An important class of isozymes consists of those that catalyze the same reaction in the same compartment, where knockout of one isozyme causes no known functional defect. Here we present an approach to assigning specific functional roles to seemingly redundant isozymes. First, gene expression data are analyzed computationally to identify conditions under which isozyme expression diverges. Then, knockouts are compared under those conditions. This approach revealed that the expression of many yeast isozymes diverges in response to carbon availability and that carbon source manipulations can induce fitness phenotypes for seemingly redundant isozymes. A driver of these fitness phenotypes is differential allosteric enzyme regulation, indicating isozyme divergence to achieve more-optimal control of metabolism. Isozymes are enzymes that differ in sequence but catalyze the same chemical reactions. Despite their apparent redundancy, isozymes are often retained over evolutionary time, suggesting that they contribute to fitness. We developed an unsupervised computational method for identifying environmental conditions under which isozymes are likely to make fitness contributions. This method analyzes published gene expression data to find specific experimental perturbations that induce differential isozyme expression. In yeast, we found that isozymes are strongly enriched in the pathways of central carbon metabolism and that many isozyme pairs show anticorrelated expression during the respirofermentative shift. Building on these observations, we assigned function to two minor central carbon isozymes, aconitase 2 (ACO2) and pyruvate kinase 2 (PYK2). ACO2 is expressed during fermentation and proves advantageous when glucose is limiting. PYK2 is expressed during respiration and proves advantageous for growth on three-carbon substrates. PYK2’s deletion can be rescued by expressing the major pyruvate kinase only if that enzyme carries mutations mirroring PYK2’s allosteric regulation. Thus, central carbon isozymes help to optimize allosteric metabolic regulation under a broad range of potential nutrient conditions while requiring only a small number of transcriptional states. IMPORTANCE Gene duplication is one of the main evolutionary paths to new protein function. Typically, duplicated genes either accumulate mutations and degrade into pseudogenes or are retained and diverge in function. Some duplicated genes, however, show long-term persistence without apparently acquiring new function. An important class of isozymes consists of those that catalyze the same reaction in the same compartment, where knockout of one isozyme causes no known functional defect. Here we present an approach to assigning specific functional roles to seemingly redundant isozymes. First, gene expression data are analyzed computationally to identify conditions under which isozyme expression diverges. Then, knockouts are compared under those conditions. This approach revealed that the expression of many yeast isozymes diverges in response to carbon availability and that carbon source manipulations can induce fitness phenotypes for seemingly redundant isozymes. A driver of these fitness phenotypes is differential allosteric enzyme regulation, indicating isozyme divergence to achieve more-optimal control of metabolism.
Collapse
|
23
|
Toxicity of dihydroxyacetone is exerted through the formation of methylglyoxal in Saccharomyces cerevisiae: effects on actin polarity and nuclear division. Biochem J 2018; 475:2637-2652. [DOI: 10.1042/bcj20180234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 01/21/2023]
Abstract
Dihydroxyacetone (DHA) is the smallest ketotriose, and it is utilized by many organisms as an energy source. However, at higher concentrations, DHA becomes toxic towards several organisms including the budding yeast Saccharomyces cerevisiae. In the present study, we show that DHA toxicity is due to its spontaneous conversion to methylglyoxal (MG) within yeast cells. A mutant defective in MG-metabolizing enzymes (glo1Δgre2Δgre3Δ) exhibited higher susceptibility to DHA. Intracellular MG levels increased following the treatment of glo1Δgre2Δgre3Δ cells with DHA. We previously reported that MG depolarized the actin cytoskeleton and changed vacuolar morphology. We herein demonstrated the depolarization of actin and morphological changes in vacuoles following a treatment with DHA. Furthermore, we found that both MG and DHA caused the morphological change in nucleus, and inhibited the nuclear division. Our results suggest that the conversion of DHA to MG is a dominant contributor to its cytotoxicity.
Collapse
|
24
|
Patterson K, Yu J, Landberg J, Chang I, Shavarebi F, Bilanchone V, Sandmeyer S. Functional genomics for the oleaginous yeast Yarrowia lipolytica. Metab Eng 2018; 48:184-196. [PMID: 29792930 DOI: 10.1016/j.ymben.2018.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 12/19/2022]
Abstract
Oleaginous yeasts are valuable systems for biosustainable production of hydrocarbon-based chemicals. Yarrowia lipolytica is one of the best characterized of these yeast with respect to genome annotation and flux analysis of metabolic processes. Nonetheless, progress is hampered by a dearth of genome-wide tools enabling functional genomics. In order to remedy this deficiency, we developed a library of Y. lipolytica insertion mutants via transposon mutagenesis. The Hermes DNA transposon was expressed to achieve saturation mutagenesis of the genome. Over 534,000 independent insertions were identified by next-generation sequencing. Poisson analysis of insertion density classified ~ 22% of genes as essential. As expected, most essential genes have homologs in Saccharomyces cerevisiae and Schizosaccharomyces pombe, and the majority of those are also essential. As an obligate aerobe, Y. lipolytica has significantly more respiration - related genes that are classified as essential than do S. cerevisiae and S. pombe. Contributions of non-essential genes to growth in glucose and glycerol carbon sources were assessed and used to evaluate two recent genome-scale models of Y. lipolytica metabolism. Fluorescence-activated cell sorting identified mutants in which lipid accumulation is increased. Our findings provide insights into biosynthetic pathways, compartmentalization of enzymes, and distinct functions of paralogs. This functional genomic analysis of the oleaginous yeast Y. lipolytica provides an important resource for modeling, bioengineering, and design of synthetic minimalized strains of respiratory yeasts.
Collapse
Affiliation(s)
- Kurt Patterson
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA.
| | - James Yu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA.
| | - Jenny Landberg
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA.
| | - Ivan Chang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA.
| | - Farbod Shavarebi
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA.
| | - Virginia Bilanchone
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA.
| | - Suzanne Sandmeyer
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-1700, USA; Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA 92697-1700, USA; Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697-1700, USA.
| |
Collapse
|
25
|
Gauss D, Sánchez-Moreno I, Oroz-Guinea I, García-Junceda E, Wohlgemuth R. Phosphorylation Catalyzed by Dihydroxyacetone Kinase. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dominik Gauss
- Member of Merck Group; Sigma-Aldrich; Industriestrasse 25, CH -9470 Buchs Switzerland
| | - Israel Sánchez-Moreno
- Departamento de Química Bioorgánica; Instituto de Química Orgánica General; CSIC (IQOG-CSIC); Instituto de Química Orgánica General; 28006 Madrid Spain
| | - Isabel Oroz-Guinea
- Departamento de Química Bioorgánica; Instituto de Química Orgánica General; CSIC (IQOG-CSIC); Instituto de Química Orgánica General; 28006 Madrid Spain
| | - Eduardo García-Junceda
- Departamento de Química Bioorgánica; Instituto de Química Orgánica General; CSIC (IQOG-CSIC); Instituto de Química Orgánica General; 28006 Madrid Spain
| | - Roland Wohlgemuth
- Member of Merck Group; Sigma-Aldrich; Industriestrasse 25, CH -9470 Buchs Switzerland
| |
Collapse
|
26
|
Kuanyshev N, Adamo GM, Porro D, Branduardi P. The spoilage yeastZygosaccharomyces bailii: Foe or friend? Yeast 2017; 34:359-370. [DOI: 10.1002/yea.3238] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Nurzhan Kuanyshev
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 Milano 20126 Italy
| | - Giusy M. Adamo
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 Milano 20126 Italy
| | - Danilo Porro
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 Milano 20126 Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 Milano 20126 Italy
| |
Collapse
|
27
|
Carly F, Gamboa-Melendez H, Vandermies M, Damblon C, Nicaud JM, Fickers P. Identification and characterization of EYK1, a key gene for erythritol catabolism in Yarrowia lipolytica. Appl Microbiol Biotechnol 2017; 101:6587-6596. [PMID: 28608278 DOI: 10.1007/s00253-017-8361-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
Erythritol is a four-carbon sugar alcohol synthesized by osmophilic yeasts, such as Yarrowia lipolytica, in response to osmotic stress. This metabolite has application as food additive due to its sweetening properties. Although Y. lipolytica can produce erythritol at a high level from glycerol, it is also able to consume it as carbon source. This ability negatively affects erythritol productivity and represents a serious drawback for the development of an efficient erythritol production process. In this study, we have isolated by insertion mutagenesis a Y. lipolytica mutant unable to grow on erythritol. Genomic characterization of the latter highlighted that the mutant phenotype is directly related to the disruption of the YALI0F01606g gene. Several experimental evidences suggested that the identified gene, renamed EYK1, encodes an erythrulose kinase. The mutant strain showed an enhanced capacity to produce erythritol as compared to the wild-type strain. Moreover, in specific experimental conditions, it is also able to convert erythritol to erythrulose, another compound of biotechnological interest.
Collapse
Affiliation(s)
- F Carly
- Unité de Biotechnologies et Bioprocédés, Université Libre de Bruxelles, Brussels, Belgium
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - H Gamboa-Melendez
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - M Vandermies
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège-Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - C Damblon
- Laboratoire de Chimie Biologique Structurale, Département de Chimie, Université de Liège, Liège, Belgium
| | - J M Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - P Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège-Gembloux Agro-Bio Tech, Gembloux, Belgium.
| |
Collapse
|
28
|
Abstract
Adaptation to altered osmotic conditions is a fundamental property of living cells and has been studied in detail in the yeast Saccharomyces cerevisiae. Yeast cells accumulate glycerol as compatible solute, controlled at different levels by the High Osmolarity Glycerol (HOG) response pathway. Up to now, essentially all osmostress studies in yeast have been performed with glucose as carbon and energy source, which is metabolised by glycolysis with glycerol as a by-product. Here we investigated the response of yeast to osmotic stress when yeast is respiring ethanol as carbon and energy source. Remarkably, yeast cells do not accumulate glycerol under these conditions and it appears that trehalose may partly take over the role as compatible solute. The HOG pathway is activated in very much the same way as during growth on glucose and is also required for osmotic adaptation. Slower volume recovery was observed in ethanol-grown cells as compared to glucose-grown cells. Dependence on key regulators as well as the global gene expression profile were similar in many ways to those previously observed in glucose-grown cells. However, there are indications that cells re-arrange redox-metabolism when respiration is hampered under osmostress, a feature that could not be observed in glucose-grown cells.
Collapse
|
29
|
Klein M, Swinnen S, Thevelein JM, Nevoigt E. Glycerol metabolism and transport in yeast and fungi: established knowledge and ambiguities. Environ Microbiol 2017; 19:878-893. [DOI: 10.1111/1462-2920.13617] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/16/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Mathias Klein
- Department of Life Sciences and Chemistry; Jacobs University Bremen gGmbH; Campus Ring 1 Bremen 28759 Germany
| | - Steve Swinnen
- GlobalYeast NV; Kasteelpark Arenberg 31, Leuven-Heverlee 3001 Belgium
| | - Johan M. Thevelein
- GlobalYeast NV; Kasteelpark Arenberg 31, Leuven-Heverlee 3001 Belgium
- Laboratory of Molecular Cell Biology; Institute of Botany and Microbiology, KU Leuven; Leuven Belgium
- Department of Molecular Microbiology; VIB; Kasteelpark Arenberg 31, 3001 Heverlee-Leuven Flanders Belgium
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry; Jacobs University Bremen gGmbH; Campus Ring 1 Bremen 28759 Germany
| |
Collapse
|
30
|
Shen W, Kong C, Xue Y, Liu Y, Cai M, Zhang Y, Jiang T, Zhou X, Zhou M. Kinase Screening in Pichia pastoris Identified Promising Targets Involved in Cell Growth and Alcohol Oxidase 1 Promoter (PAOX1) Regulation. PLoS One 2016; 11:e0167766. [PMID: 27936065 PMCID: PMC5147967 DOI: 10.1371/journal.pone.0167766] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/18/2016] [Indexed: 11/19/2022] Open
Abstract
As one of the most commonly used eukaryotic recombinant protein expression systems, P. pastoris relies heavily on the AOX1 promoter (PAOX1), which is strongly induced by methanol but strictly repressed by glycerol and glucose. However, the complicated signaling pathways involved in PAOX1 regulation when supplemented with different carbon sources are poorly understood. Here we constructed a kinase deletion library in P. pastoris and identified 27 mutants which showed peculiar phenotypes in cell growth or PAOX1 regulation. We analyzed both annotations and possible functions of these 27 targets, and then focused on the MAP kinase Hog1. In order to locate its potential downstream components, we performed the phosphoproteome analysis on glycerol cultured WT and Δhog1 strains and identified 157 differentially phosphorylated proteins. Our results identified important kinases involved in P. pastoris cell growth and PAOX1 regulation, which could serve as valuable targets for further mechanistic studies.
Collapse
Affiliation(s)
- Wei Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Chuixing Kong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ying Xue
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiqi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, China
| | - Tianyi Jiang
- Roche R&D Center (China) Ltd, Pudong, Shanghai, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
31
|
Towards the exploitation of glycerol's high reducing power in Saccharomyces cerevisiae-based bioprocesses. Metab Eng 2016; 38:464-472. [DOI: 10.1016/j.ymben.2016.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 11/19/2022]
|
32
|
Solieri L, Vezzani V, Cassanelli S, Dakal TC, Pazzini J, Giudici P. Differential hypersaline stress response inZygosaccharomyces rouxiicomplex yeasts: a physiological and transcriptional study. FEMS Yeast Res 2016; 16:fow063. [DOI: 10.1093/femsyr/fow063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2016] [Indexed: 11/13/2022] Open
|
33
|
Wang C, Cai H, Chen Z, Zhou Z. Engineering a glycerol utilization pathway in Corynebacterium glutamicum for succinate production under O2 deprivation. Biotechnol Lett 2016; 38:1791-7. [DOI: 10.1007/s10529-016-2166-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 01/26/2023]
|
34
|
Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures. Appl Microbiol Biotechnol 2015; 100:969-85. [DOI: 10.1007/s00253-015-7038-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 12/27/2022]
|
35
|
Genome-Wide Transcription Study of Cryptococcus neoformans H99 Clinical Strain versus Environmental Strains. PLoS One 2015; 10:e0137457. [PMID: 26360021 PMCID: PMC4567374 DOI: 10.1371/journal.pone.0137457] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
The infection of Cryptococcus neoformans is acquired through the inhalation of desiccated yeast cells and basidiospores originated from the environment, particularly from bird’s droppings and decaying wood. Three environmental strains of C. neoformans originated from bird droppings (H4, S48B and S68B) and C. neoformans reference clinical strain (H99) were used for intranasal infection in C57BL/6 mice. We showed that the H99 strain demonstrated higher virulence compared to H4, S48B and S68B strains. To examine if gene expression contributed to the different degree of virulence among these strains, a genome-wide microarray study was performed to inspect the transcriptomic profiles of all four strains. Our results revealed that out of 7,419 genes (22,257 probes) examined, 65 genes were significantly up-or down-regulated in H99 versus H4, S48B and S68B strains. The up-regulated genes in H99 strain include Hydroxymethylglutaryl-CoA synthase (MVA1), Mitochondrial matrix factor 1 (MMF1), Bud-site-selection protein 8 (BUD8), High affinity glucose transporter 3 (SNF3) and Rho GTPase-activating protein 2 (RGA2). Pathway annotation using DAVID bioinformatics resource showed that metal ion binding and sugar transmembrane transporter activity pathways were highly expressed in the H99 strain. We suggest that the genes and pathways identified may possibly play crucial roles in the fungal pathogenesis.
Collapse
|
36
|
Transcriptomic response of Saccharomyces cerevisiae for its adaptation to sulphuric acid-induced stress. Antonie van Leeuwenhoek 2015; 108:1147-60. [DOI: 10.1007/s10482-015-0568-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/20/2015] [Indexed: 01/13/2023]
|
37
|
Gene expression associated with intersterility in Heterobasidion. Fungal Genet Biol 2014; 73:104-19. [PMID: 25459536 DOI: 10.1016/j.fgb.2014.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/10/2014] [Accepted: 10/08/2014] [Indexed: 12/18/2022]
Abstract
Intersterility (IS) is thought to prevent mating compatibility between homokaryons that belong to different species. Although IS in Heterobasidion is regulated by the genes located at the IS loci, it is not yet known how the IS genes influence sexual compatibility and heterokaryon formation. To increase our understanding of the molecular events underlying IS, we studied mRNA abundance changes during IS compatible and incompatible interactions over time. The clustering of the transcripts into expression profiles, followed by the application of Gene Ontology (GO) enrichment pathway analysis of each of the clusters, allowed inference of biological processes participating in IS. These analyses identified events involved in mating and sexual development (i.e., linked with IS compatibility), which included processes associated with cell-cell adhesion and recognition, cell cycle control and signal transduction. We also identified events potentially involved in overriding mating between individuals belonging to different species (i.e., linked with IS incompatibility), which included reactive oxygen species (ROS) production, responses to stress (especially to oxidative stress), signal transduction and metabolic biosynthesis. Our findings thus enabled detection and characterization of gene expression changes associated with IS in Heterobasidion, as well as identification of important processes and pathways associated with this phenomenon. Overall, the results of this study increase current knowledge regarding the molecular mechanisms underpinning IS in Heterobasidion and allowed for the establishment of a vital baseline for further studies.
Collapse
|
38
|
Rodrigues JR, Couto A, Cabezas A, Pinto RM, Ribeiro JM, Canales J, Costas MJ, Cameselle JC. Bifunctional homodimeric triokinase/FMN cyclase: contribution of protein domains to the activities of the human enzyme and molecular dynamics simulation of domain movements. J Biol Chem 2014; 289:10620-10636. [PMID: 24569995 DOI: 10.1074/jbc.m113.525626] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈ 14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4'-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr(112) (hydrogen bonding of ATP adenine to K in the closed active center), His(221) (covalent anchoring of dihydroxyacetone to K), Asp(401) and Asp(403) (metal coordination to L), and Asp(556) (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His(221) point mutant acted specifically as a cyclase without kinase activity.
Collapse
Affiliation(s)
- Joaquim Rui Rodrigues
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, E-06006 Badajoz, Spain; Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, P-2411-901 Leiria, Portugal
| | - Ana Couto
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, E-06006 Badajoz, Spain
| | - Alicia Cabezas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, E-06006 Badajoz, Spain
| | - Rosa María Pinto
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, E-06006 Badajoz, Spain
| | - João Meireles Ribeiro
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, E-06006 Badajoz, Spain
| | - José Canales
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, E-06006 Badajoz, Spain
| | - María Jesús Costas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, E-06006 Badajoz, Spain
| | - José Carlos Cameselle
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, E-06006 Badajoz, Spain.
| |
Collapse
|
39
|
Ravin NV, Eldarov MA, Kadnikov VV, Beletsky AV, Schneider J, Mardanova ES, Smekalova EM, Zvereva MI, Dontsova OA, Mardanov AV, Skryabin KG. Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1. BMC Genomics 2013; 14:837. [PMID: 24279325 PMCID: PMC3866509 DOI: 10.1186/1471-2164-14-837] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 11/15/2013] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Hansenula polymorpha DL1 is a methylotrophic yeast, widely used in fundamental studies of methanol metabolism, peroxisome biogenesis and function, and also as a microbial cell factory for production of recombinant proteins and metabolic engineering towards the goal of high temperature ethanol production. RESULTS We have sequenced the 9 Mbp H. polymorpha DL1 genome and performed whole-genome analysis for the H. polymorpha transcriptome obtained from both methanol- and glucose-grown cells. RNA-seq analysis revealed the complex and dynamic character of the H. polymorpha transcriptome under the two studied conditions, identified abundant and highly unregulated expression of 40% of the genome in methanol grown cells, and revealed alternative splicing events. We have identified subtelomerically biased protein families in H. polymorpha, clusters of LTR elements at G + C-poor chromosomal loci in the middle of each of the seven H. polymorpha chromosomes, and established the evolutionary position of H. polymorpha DL1 within a separate yeast clade together with the methylotrophic yeast Pichia pastoris and the non-methylotrophic yeast Dekkera bruxellensis. Intergenome comparisons uncovered extensive gene order reshuffling between the three yeast genomes. Phylogenetic analyses enabled us to reveal patterns of evolution of methylotrophy in yeasts and filamentous fungi. CONCLUSIONS Our results open new opportunities for in-depth understanding of many aspects of H. polymorpha life cycle, physiology and metabolism as well as genome evolution in methylotrophic yeasts and may lead to novel improvements toward the application of H. polymorpha DL-1 as a microbial cell factory.
Collapse
Affiliation(s)
- Nikolai V Ravin
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Michael A Eldarov
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Vitaly V Kadnikov
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Alexey V Beletsky
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Jessica Schneider
- Institute for Bioinformatics, Center for Biotechnology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Eugenia S Mardanova
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Elena M Smekalova
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia and Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Maria I Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia and Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Olga A Dontsova
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia and Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Andrey V Mardanov
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Konstantin G Skryabin
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| |
Collapse
|
40
|
Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production. J Ind Microbiol Biotechnol 2013; 40:1153-60. [PMID: 23896974 PMCID: PMC3769588 DOI: 10.1007/s10295-013-1311-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 07/08/2013] [Indexed: 11/24/2022]
Abstract
Glycerol is a major by-product of industrial ethanol production and its formation consumes up to 4 % of the sugar substrate. This study modified the glycerol decomposition pathway of an industrial strain of Saccharomyces cerevisiae to optimize the consumption of substrate and yield of ethanol. This study is the first to couple glycerol degradation with ethanol formation, to the best of our knowledge. The recombinant strain overexpressing GCY1 and DAK1, encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, in glycerol degradation pathway, exhibited a moderate increase in ethanol yield (2.9 %) and decrease in glycerol yield (24.9 %) compared to the wild type with the initial glucose concentration of 15 % under anaerobic conditions. However, when the mhpF gene, encoding acetylating NAD+-dependent acetaldehyde dehydrogenase from Escherichia coli, was co-expressed in the aforementioned recombinant strain, a further increase in ethanol yield by 5.5 % and decrease in glycerol yield by 48 % were observed for the resultant recombinant strain GDMS1 when acetic acid was added into the medium prior to inoculation compared to the wild type. The process outlined in this study which enhances glycerol consumption and cofactor regulation in an industrial yeast is a promising metabolic engineering strategy to increase ethanol production by reducing the formation of glycerol.
Collapse
|
41
|
Xu YF, Létisse F, Absalan F, Lu W, Kuznetsova E, Brown G, Caudy AA, Yakunin AF, Broach JR, Rabinowitz JD. Nucleotide degradation and ribose salvage in yeast. Mol Syst Biol 2013; 9:665. [PMID: 23670538 PMCID: PMC4039369 DOI: 10.1038/msb.2013.21] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/08/2013] [Indexed: 12/30/2022] Open
Abstract
Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose-derived carbon accumulates as sedoheptulose-7-phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde-3-phosphate. Oxidative stress increases glyceraldehyde-3-phosphate, resulting in rapid consumption of sedoheptulose-7-phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress.
Collapse
Affiliation(s)
- Yi-Fan Xu
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Guerreiro JF, Mira NP, Sá-Correia I. Adaptive response to acetic acid in the highly resistant yeast species Zygosaccharomyces bailii revealed by quantitative proteomics. Proteomics 2013; 12:2303-18. [PMID: 22685079 DOI: 10.1002/pmic.201100457] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Zygosaccharomyces bailii is the most tolerant yeast species to acetic acid-induced toxicity, being able to grow in the presence of concentrations of this food preservative close to the legal limits. For this reason, Z. bailii is the most important microbial contaminant of acidic food products but the mechanisms behind this intrinsic resistance to acetic acid are very poorly characterized. To gain insights into the adaptive response and tolerance to acetic acid in Z. bailii, we explored an expression proteomics approach, based on quantitative 2DE, to identify alterations occurring in the protein content in response to sudden exposure or balanced growth in the presence of an inhibitory but nonlethal concentration of this weak acid. A coordinate increase in the content of proteins involved in cellular metabolism, in particular, in carbohydrate metabolism (Mdh1p, Aco1p, Cit1p, Idh2p, and Lpd1p) and energy generation (Atp1p and Atp2p), as well as in general and oxidative stress response (Sod2p, Dak2p, Omp2p) was registered. Results reinforce the concept that glucose and acetic acid are coconsumed in Z. bailii, with acetate being channeled into the tricarboxylic acid cycle. When acetic acid is the sole carbon source, results suggest the activation of gluconeogenic and pentose phosphate pathways, based on the increased content of several proteins of these pathways after glucose exhaustion.
Collapse
Affiliation(s)
- Joana F Guerreiro
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Portugal
| | | | | |
Collapse
|
43
|
Erni B. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS): an interface between energy and signal transduction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0185-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Jung JY, Kim TY, Ng CY, Oh MK. Characterization of GCY1 in Saccharomyces cerevisiae by metabolic profiling. J Appl Microbiol 2012; 113:1468-78. [PMID: 22979944 DOI: 10.1111/jam.12013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/29/2012] [Accepted: 09/07/2012] [Indexed: 12/20/2022]
Abstract
AIMS The analytical study of intracellular (IC) metabolites has developed with advances in chromatography-linked mass spectrometry and fast sampling procedures. We applied the IC metabolite analysis to characterize the role of GCY1 in the glycerol (GLY) catabolic pathway in Saccharomyces cerevisiae. METHODS AND RESULTS Strains with disrupted or overexpressing GLY catabolic genes such as GCY1, DAK1 and DAK2 were constructed. The strains were cultivated under different aeration conditions and quickly quenched using a novel rapid sampling port. IC concentrations of GLY, dihydroxyacetone (DHA), glycerol 3-phosphate and dihydroxyacetone phosphate were analysed in the strains by gas chromatography/mass spectrometry. DHA was not detected in the gcy1 gene-disrupted strain but accumulated 225.91 μmol g DCW(-1) in a DHA kinase gene-deficient strain under micro-aerobic conditions. Additionally, a 16.1% increase in DHA occurred by overexpressing GCY1 in the DHA kinase-deficient strain. CONCLUSIONS Metabolic profiling showed that the GCY1 gene product functions as a GLY dehydrogenase in S. cerevisiae, particularly under micro-aerobic conditions. SIGNIFICANCE AND IMPACT OF THE STUDY Metabolic profiling of the GLY dissimilation pathway was successfully demonstrated in S. cerevisiae, and the function of GCY1 was explained by the results.
Collapse
Affiliation(s)
- J-Y Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| | | | | | | |
Collapse
|
45
|
Celton M, Goelzer A, Camarasa C, Fromion V, Dequin S. A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae. Metab Eng 2012; 14:366-79. [PMID: 22709677 DOI: 10.1016/j.ymben.2012.03.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/22/2012] [Accepted: 03/16/2012] [Indexed: 11/28/2022]
Abstract
Controlling the amounts of redox cofactors to manipulate metabolic fluxes is emerging as a useful approach to optimizing byproduct yields in yeast biotechnological processes. Redox cofactors are extensively interconnected metabolites, so predicting metabolite patterns is challenging and requires in-depth knowledge of how the metabolic network responds to a redox perturbation. Our aim was to analyze comprehensively the metabolic consequences of increased cytosolic NADPH oxidation during yeast fermentation. Using a genetic device based on the overexpression of a modified 2,3-butanediol dehydrogenase catalyzing the NADPH-dependent reduction of acetoin into 2,3-butanediol, we increased the NADPH demand to between 8 and 40-fold the anabolic demand. We developed (i) a dedicated constraint-based model of yeast fermentation and (ii) a constraint-based modeling method based on the dynamical analysis of mass distribution to quantify the in vivo contribution of pathways producing NADPH to the maintenance of redox homeostasis. We report that yeast responds to NADPH oxidation through a gradual increase in the flux through the PP and acetate pathways, providing 80% and 20% of the NADPH demand, respectively. However, for the highest NADPH demand, the model reveals a saturation of the PP pathway and predicts an exchange between NADH and NADPH in the cytosol that may be mediated by the glycerol-DHA futile cycle. We also reveal the contribution of mitochondrial shuttles, resulting in a net production of NADH in the cytosol, to fine-tune the NADH/NAD(+) balance. This systems level study helps elucidate the physiological adaptation of yeast to NADPH perturbation. Our findings emphasize the robustness of yeast to alterations in NADPH metabolism and highlight the role of the glycerol-DHA cycle as a redox valve, providing additional NADPH from NADH under conditions of very high demand.
Collapse
Affiliation(s)
- Magalie Celton
- INRA, UMR1083, Sciences Pour l'Oenologie, 2 Place Viala, F-34060 Montpellier, France.
| | | | | | | | | |
Collapse
|
46
|
Ochoa-Estopier A, Lesage J, Gorret N, Guillouet SE. Kinetic analysis of a Saccharomyces cerevisiae strain adapted for improved growth on glycerol: Implications for the development of yeast bioprocesses on glycerol. BIORESOURCE TECHNOLOGY 2011; 102:1521-1527. [PMID: 20869237 DOI: 10.1016/j.biortech.2010.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/30/2010] [Accepted: 08/02/2010] [Indexed: 05/29/2023]
Abstract
Glycerol is an agro-industrial residue generated in high amounts during the biodiesel production. The growing production of biodiesel is creating a worldwide glycerol surplus. Therefore, replacing sugar-based feedstock in bioprocesses by glycerol could be potentially attractive. Saccharomyces cerevisiae is one of the most commonly used microorganisms in the agri-food industry and therefore currently produced in large quantities from sugar-based feedstock. Unfortunately, growth of S. cerevisiae strains on glycerol is very low with reported μmax around 0.01 h(-1). This study demonstrates that successive growth of the S. cerevisiae CBS 8066, CEN.PK 113-7 D and Ethanol Red on glycerol as sole carbon source considerably improved the μmax from 0.01 up to 0.2 h(-1). The "adapted strain" CBS 8066-FL20 was kinetically characterized during aerobic and oxygen-limited cultivation in bioreactor and the results discussed in terms of their implication for developing glycerol-based S. cerevisiae bioprocesses.
Collapse
Affiliation(s)
- A Ochoa-Estopier
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Av. de Rangueil, F-31077 Toulouse, France
| | | | | | | |
Collapse
|
47
|
Smith AM, Ammar R, Nislow C, Giaever G. A survey of yeast genomic assays for drug and target discovery. Pharmacol Ther 2010; 127:156-64. [PMID: 20546776 DOI: 10.1016/j.pharmthera.2010.04.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 04/28/2010] [Indexed: 01/01/2023]
Abstract
Over the past decade, the development and application of chemical genomic assays using the model organism Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of known drugs and novel small molecules in vivo. These assays identify drug target candidates, genes involved in buffering drug target pathways and also help to define the general cellular response to small molecules. In this review, we examine current yeast chemical genomic assays and summarize the potential applications of each approach.
Collapse
Affiliation(s)
- Andrew M Smith
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
48
|
The gld1+ gene encoding glycerol dehydrogenase is required for glycerol metabolism in Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2010; 87:715-27. [PMID: 20396879 DOI: 10.1007/s00253-010-2586-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
Abstract
The budding yeast Saccharomyces cerevisiae is able to utilize glycerol as the sole carbon source via two pathways (glycerol 3-phosphate pathway and dihydroxyacetone [DHA] pathway). In contrast, the fission yeast Schizosaccharomyces pombe does not grow on media containing glycerol as the sole carbon source. However, in the presence of other carbon sources such as galactose and ethanol, S. pombe could assimilate glycerol and glycerol was preferentially utilized over ethanol and galactose. No equivalent of S. cerevisiae Gcy1/glycerol dehydrogenase has been identified in S. pombe. However, we identified a gene in S. pombe, SPAC13F5.03c (gld1 (+)), that is homologous to bacterial glycerol dehydrogenase. Deletion of gld1 caused a reduction in glycerol dehydrogenase activity and prevented glycerol assimilation. The gld1 Delta cells grew on 50 mM DHA as the sole carbon source, indicating that the glycerol dehydrogenase encoded by gld1 (+) is essential for glycerol assimilation in S. pombe. Strains of S. pombe deleted for dak1 (+) and dak2 (+) encoding DHA kinases could not grow on glycerol and showed sensitivity to a higher concentration of DHA. The dak1 Delta strain showed a more severe reduction of growth on glycerol and DHA than the dak2 Delta strain because the expression of dak1 (+) mRNA was higher than that of dak2 (+). In wild-type S. pombe, expression of the gld1 (+), dak1 (+), and dak2 (+) genes was repressed at a high concentration of glucose and was derepressed during glucose starvation. We found that gld1 (+) was regulated by glucose repression and that it was derepressed in scr1 Delta and tup12 Delta strains.
Collapse
|
49
|
de Figueiredo LF, Podhorski A, Rubio A, Kaleta C, Beasley JE, Schuster S, Planes FJ. Computing the shortest elementary flux modes in genome-scale metabolic networks. ACTA ACUST UNITED AC 2009; 25:3158-65. [PMID: 19793869 DOI: 10.1093/bioinformatics/btp564] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
MOTIVATION Elementary flux modes (EFMs) represent a key concept to analyze metabolic networks from a pathway-oriented perspective. In spite of considerable work in this field, the computation of the full set of elementary flux modes in large-scale metabolic networks still constitutes a challenging issue due to its underlying combinatorial complexity. RESULTS In this article, we illustrate that the full set of EFMs can be enumerated in increasing order of number of reactions via integer linear programming. In this light, we present a novel procedure to efficiently determine the K-shortest EFMs in large-scale metabolic networks. Our method was applied to find the K-shortest EFMs that produce lysine in the genome-scale metabolic networks of Escherichia coli and Corynebacterium glutamicum. A detailed analysis of the biological significance of the K-shortest EFMs was conducted, finding that glucose catabolism, ammonium assimilation, lysine anabolism and cofactor balancing were correctly predicted. The work presented here represents an important step forward in the analysis and computation of EFMs for large-scale metabolic networks, where traditional methods fail for networks of even moderate size. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|
50
|
Lee H, Chi SW, Lee PY, Kang S, Cho S, Lee CK, Bae KH, Park BC, Park SG. Reduced formation of advanced glycation endproducts via interactions between glutathione peroxidase 3 and dihydroxyacetone kinase 1. Biochem Biophys Res Commun 2009; 389:177-80. [PMID: 19715675 DOI: 10.1016/j.bbrc.2009.08.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 08/21/2009] [Indexed: 11/20/2022]
Abstract
Dihydroxyacetone (DHA) induces the formation of advanced glycation endproducts (AGEs), which are involved in several diseases. Earlier, we identified dihydroxyacetone kinase 1 (Dak1) as a candidate glutathione peroxidase 3 (Gpx3)-interacting protein in Saccharomyces cerevisiae. This finding is noteworthy, as no clear evidence on the involvement of oxidative stress systems in DHA-induced AGE formation has been found to date. Here, we demonstrate that Gpx3 interacts with Dak1, alleviates DHA-mediated stress by upregulating Dak activity, and consequently suppresses AGE formation. Based on these results, we propose that defense systems against oxidative stress and DHA-induced AGE formation are related via interactions between Gpx3 and Dak1.
Collapse
Affiliation(s)
- Hana Lee
- Medical Proteomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|