1
|
Ghasemi M, Mehranfard N. Neuroprotective actions of norepinephrine in neurological diseases. Pflugers Arch 2024; 476:1703-1725. [PMID: 39136758 DOI: 10.1007/s00424-024-02999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/24/2024] [Indexed: 10/09/2024]
Abstract
Precise control of norepinephrine (NE) levels and NE-receptor interaction is crucial for proper function of the brain. Much evidence for this view comes from experimental studies that indicate an important role for NE in the pathophysiology and treatment of various conditions, including cognitive dysfunction, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and sleep disorders. NE provides neuroprotection against several types of insults in multiple ways. It abrogates oxidative stress, attenuates neuroinflammatory responses in neurons and glial cells, reduces neuronal and glial cell activity, promotes autophagy, and ameliorates apoptotic responses to a variety of insults. It is beneficial for the treatment of neurodegenerative diseases because it improves the generation of neurotrophic factors, promotes neuronal survival, and plays an important role in the regulation of adult neurogenesis. This review aims to present the evidence supporting a principal role for NE in neuroprotection, and molecular mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Nanokadeh Darooee Samen Private Joint Stock Company, Shafa Street, Urmia, 5715793731, Iran.
| |
Collapse
|
2
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
3
|
Frazier HN, Braun DJ, Bailey CS, Coleman MJ, Davis VA, Dundon SR, McLouth CJ, Muzyk HC, Powell DK, Rogers CB, Roy SM, Van Eldik LJ. A small molecule p38α MAPK inhibitor, MW150, attenuates behavioral deficits and neuronal dysfunction in a mouse model of mixed amyloid and vascular pathologies. Brain Behav Immun Health 2024; 40:100826. [PMID: 39161874 PMCID: PMC11331815 DOI: 10.1016/j.bbih.2024.100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/21/2024] Open
Abstract
Background Inhibition of p38 alpha mitogen activated protein kinase (p38α) has shown great promise as a treatment for Alzheimer's disease (AD) in preclinical tests. However, previous preclinical studies were performed in "pure" models of AD pathology. A vast majority of AD patients have comorbid dementia-contributing pathologies, particularly some form of vascular damage. The present study therefore aimed to test the potential of p38α inhibition to address dysfunction in the context of comorbid amyloid and vascular pathologies. Methods An amyloid overexpressing mouse strain (5xFAD) was placed on an 8-week long diet to induce the hyperhomocysteinemia (HHcy) model of small vessel disease. Mice were treated with the brain-penetrant small molecule p38α inhibitor MW150 for the duration of the HHcy diet, and subsequently underwent behavioral, neuroimaging, electrophysiological, or biochemical/immunohistochemical analyses. Results MW150 successfully reduced behavioral impairment in the Morris Water Maze, corresponding with attenuation of synaptic loss, reduction in tau phosphorylation, and a partial normalization of electrophysiological parameters. No effect of MW150 was observed on the amyloid, vascular, or neuroinflammatory endpoints measured. Conclusions This study provides proof-of-principle that the inhibition of p38α is able to provide benefit even in the context of mixed pathological contributions to cognitive impairment. Interestingly, the benefit was mediated primarily via rescue of neuronal function without any direct effects on the primary pathologies. These data suggest a potential use for p38 inhibitors in the preservation of cognition across contexts, and in particular AD, either alone or as an adjunct to other AD therapies (i.e. anti-amyloid approaches). Future studies to delineate the precise neuronal pathways implicated in the benefit may help define other specific comorbid conditions amenable to this type of approach or suggest future refinement in pharmacological targeting.
Collapse
Affiliation(s)
- Hilaree N. Frazier
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - David J. Braun
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Caleb S. Bailey
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Meggie J. Coleman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Verda A. Davis
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Stephen R. Dundon
- Magnetic Resonance Imaging & Spectroscopy Center, University of Kentucky, Lexington, KY, 40536, USA
| | | | - Hana C. Muzyk
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - David K. Powell
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
- Magnetic Resonance Imaging & Spectroscopy Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Colin B. Rogers
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Saktimayee M. Roy
- Department of Pharmacology, Northwestern University, Chicago, IL, 60611, USA
| | - Linda J. Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
4
|
Yang W, Liao W, Li X, Ai W, Pan Q, Shen Z, Jiang W, Guo S. Hepatic p38α MAPK controls gluconeogenesis via FOXO1 phosphorylation at S273 during glucagon signalling in mice. Diabetologia 2023:10.1007/s00125-023-05916-5. [PMID: 37202506 DOI: 10.1007/s00125-023-05916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/09/2023] [Indexed: 05/20/2023]
Abstract
AIMS/HYPOTHESIS Hyperglucagonaemia-stimulated hepatic glucose production (HGP) contributes to hyperglycaemia during type 2 diabetes. A better understanding of glucagon action is important to enable efficient therapies to be developed for the treatment of diabetes. Here, we aimed to investigate the role of p38 MAPK family members in glucagon-induced HGP and determine the underlying mechanisms by which p38 MAPK regulates glucagon action. METHODS p38α, β, γ and δ MAPK siRNAs were transfected into primary hepatocytes, followed by measurement of glucagon-induced HGP. Adeno-associated virus serotype 8 carrying p38α MAPK short hairpin RNA (shRNA) was injected into liver-specific Foxo1 knockout, liver-specific Irs1/Irs2 double knockout and Foxo1S273D knockin mice. Foxo1S273A knockin mice were fed a high-fat diet for 10 weeks. Pyruvate tolerance tests, glucose tolerance tests, glucagon tolerance tests and insulin tolerance tests were carried out in mice, liver gene expression profiles were analysed and serum triglyceride, insulin and cholesterol levels were measured. Phosphorylation of forkhead box protein O1 (FOXO1) by p38α MAPK in vitro was analysed by LC-MS. RESULTS We found that p38α MAPK, but not the other p38 isoforms, stimulates FOXO1-S273 phosphorylation and increases FOXO1 protein stability, promoting HGP in response to glucagon stimulation. In hepatocytes and mouse models, inhibition of p38α MAPK blocked FOXO1-S273 phosphorylation, decreased FOXO1 levels and significantly impaired glucagon- and fasting-induced HGP. However, the effect of p38α MAPK inhibition on HGP was abolished by FOXO1 deficiency or a Foxo1 point mutation at position 273 from serine to aspartic acid (Foxo1S273D) in both hepatocytes and mice. Moreover, an alanine mutation at position 273 (Foxo1S273A) decreased glucose production, improved glucose tolerance and increased insulin sensitivity in diet-induced obese mice. Finally, we found that glucagon activates p38α through exchange protein activated by cAMP 2 (EPAC2) signalling in hepatocytes. CONCLUSIONS/INTERPRETATION This study found that p38α MAPK stimulates FOXO1-S273 phosphorylation to mediate the action of glucagon on glucose homeostasis in both health and disease. The glucagon-induced EPAC2-p38α MAPK-pFOXO1-S273 signalling pathway is a potential therapeutic target for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Wanbao Yang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Wang Liao
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Xiaopeng Li
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Weiqi Ai
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Quan Pan
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Zheng Shen
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Wen Jiang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
5
|
Iba M, Kim C, Kwon S, Szabo M, Horan-Portelance L, Peer CJ, Figg WD, Reed X, Ding J, Lee SJ, Rissman RA, Cookson MR, Overk C, Wrasidlo W, Masliah E. Inhibition of p38α MAPK restores neuronal p38γ MAPK and ameliorates synaptic degeneration in a mouse model of DLB/PD. Sci Transl Med 2023; 15:eabq6089. [PMID: 37163617 DOI: 10.1126/scitranslmed.abq6089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
Alterations in the p38 mitogen-activated protein kinases (MAPKs) play an important role in the pathogenesis of dementia with Lewy bodies (DLB) and Parkinson's disease (PD). Activation of the p38α MAPK isoform and mislocalization of the p38γ MAPK isoform are associated with neuroinflammation and synaptic degeneration in DLB and PD. Therefore, we hypothesized that p38α might be associated with neuronal p38γ distribution and synaptic dysfunction in these diseases. To test this hypothesis, we treated in vitro cellular and in vivo mouse models of DLB/PD with SKF-86002, a compound that attenuates inflammation by inhibiting p38α/β, and then investigated the effects of this compound on p38γ and neurodegenerative pathology. We found that inhibition of p38α reduced neuroinflammation and ameliorated synaptic, neurodegenerative, and motor behavioral deficits in transgenic mice overexpressing human α-synuclein. Moreover, treatment with SKF-86002 promoted the redistribution of p38γ to synapses and reduced the accumulation of α-synuclein in mice overexpressing human α-synuclein. Supporting the potential value of targeting p38 in DLB/PD, we found that SKF-86002 promoted the redistribution of p38γ in neurons differentiated from iPS cells derived from patients with familial PD (carrying the A53T α-synuclein mutation) and healthy controls. Treatment with SKF-86002 ameliorated α-synuclein-induced neurodegeneration in these neurons only when microglia were pretreated with this compound. However, direct treatment of neurons with SKF-86002 did not affect α-synuclein-induced neurotoxicity, suggesting that SKF-86002 treatment inhibits α-synuclein-induced neurotoxicity mediated by microglia. These findings provide a mechanistic connection between p38α and p38γ as well as a rationale for targeting this pathway in DLB/PD.
Collapse
Affiliation(s)
- Michiyo Iba
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Changyoun Kim
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Somin Kwon
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcell Szabo
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liam Horan-Portelance
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cody J Peer
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William D Figg
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xylena Reed
- Laboratory of Neurogenetics, Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinhui Ding
- Laboratory of Neurogenetics, Computational Biology Group, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark R Cookson
- Laboratory of Neurogenetics, Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cassia Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wolf Wrasidlo
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eliezer Masliah
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- Division of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Potential Mechanisms of Shu Gan Jie Yu Capsule in the Treatment of Mild to Moderate Depression Based on Systemic Pharmacology and Current Evidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3321099. [PMID: 36045654 PMCID: PMC9423969 DOI: 10.1155/2022/3321099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
Background Shu Gan Jie Yu (SGJY) capsule has a good effect on relieving depressive symptoms in China. However, the mechanism of action is still unclear. Therefore, systemic pharmacology and molecular docking approaches were used to clarify its corresponding antidepressant mechanisms. Methods Traditional Chinese Medicine Database and Analysis Platform (TCMSP), the Encyclopedia of Traditional Chinese Medicine (ETCM), and Swiss Target Prediction servers were used to screen and predict the bioactive components of the SGJY capsule and their antidepressive targets. Mild to moderate depression (MMD) related genes were obtained from GeneCards and DisGeNET databases. A network of bioactive components-therapeutic targets of the SGJY capsule was established by STRING 11.5 and Cytoscape 3.9.0 software. Gene function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed by utilizing Database for Annotation, Visualization, and Integrated Discovery (DAVID) platform. Active components were taken to dock with the hypothetical proteins by iGEMDOCK and SwissDock, and the docking details were visually displayed by UCSF Chimera software. Then, the related research literature of the SGJY capsule was reviewed, summarized, sorted, and analyzed, including experimental evidence and clinical experience. Results Seven active components and 45 intersection targets were included in the study. PPI network had genuinely uncovered the potential therapeutic targets, such as AKT1, HSP90AA1, ESR1, EGFR, and PTGS2. KEGG pathway analysis showed that the mechanism of the SGJY capsule on MMD was mainly involved in the PI3K-Akt signaling pathway. Conclusions In this study, we have successfully predicted the biochemically active constituents, potential therapeutic targets, and comprehensively predicted the related drug-gene interaction of the SGJY capsule for treating MMD and provided a basis for subsequent experiments.
Collapse
|
7
|
Fading memories in aging and neurodegeneration: Is p75 neurotrophin receptor a culprit? Ageing Res Rev 2022; 75:101567. [PMID: 35051645 DOI: 10.1016/j.arr.2022.101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/12/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
Aging and age-related neurodegenerative diseases have become one of the major concerns in modern times as cognitive abilities tend to decline when we get older. It is well known that the main cause of this age-related cognitive deficit is due to aberrant changes in cellular, molecular circuitry and signaling pathways underlying synaptic plasticity and neuronal connections. The p75 neurotrophin receptor (p75NTR) is one of the important mediators regulating the fate of the neurons in the nervous system. Its importance in neuronal apoptosis is well documented. However, the mechanisms involving the regulation of p75NTR in synaptic plasticity and cognitive function remain obscure, although cognitive impairment has been associated with a higher expression of p75NTR in neurons. In this review, we discuss the current understanding of how neurons are influenced by p75NTR function to maintain normal neuronal synaptic strength and connectivity, particularly to support learning and memory in the hippocampus. We then discuss the age-associated alterations in neurophysiological mechanisms of synaptic plasticity and cognitive function. Furthermore, we also describe current evidence that has begun to elucidate how p75NTR regulates synaptic changes in aging and age-related neurodegenerative diseases, focusing on the hippocampus. Elucidating the role that p75NTR signaling plays in regulating synaptic plasticity will contribute to a better understanding of cognitive processes and pathological conditions. This will in turn provide novel approaches to improve therapies for the treatment of neurological diseases in which p75NTR dysfunction has been demonstrated.
Collapse
|
8
|
Zhou X, Ying C, Hu B, Zhang Y, Gan T, Zhu Y, Wang N, Li A, Song Y. Receptor for advanced glycation end products aggravates cognitive deficits in type 2 diabetes through binding of C-terminal AAs 2-5 to mitogen-activated protein kinase kinase 3 (MKK3) and facilitation of MEKK3-MKK3-p38 module assembly. Aging Cell 2022; 21:e13543. [PMID: 35080104 PMCID: PMC8844116 DOI: 10.1111/acel.13543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/28/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022] Open
Abstract
In this study, we explored the precise mechanisms underlying the receptor for advanced glycation end products (RAGE)‐mediated neuronal loss and behavioral dysfunction induced by hyperglycemia. We used immunoprecipitation (IP) and GST pull‐down assays to assess the interaction between RAGE and mitogen‐activated protein kinase kinase 3 (MKK3). Then, we investigated the effect of specific mutation of RAGE on plasticity at hippocampal synapses and behavioral deficits in db/db mice through electrophysiological recordings, morphological assays, and behavioral tests. We discovered that RAGE binds MKK3 and that this binding is required for assembly of the MEKK3‐MKK3‐p38 signaling module. Mechanistically, we found that activation of p38 mitogen‐activated protein kinase (MAPK)/NF‐κB signaling depends on mediation of the RAGE‐MKK3 interaction by C‐terminal RAGE (ctRAGE) amino acids (AAs) 2‐5. We found that ctRAGE R2A‐K3A‐R4A‐Q5A mutation suppressed neuronal damage, improved synaptic plasticity, and alleviated behavioral deficits in diabetic mice by disrupting the RAGE‐MKK3 conjugation. High glucose induces direct binding of RAGE and MKK3 via ctRAGE AAs 2‐5, which leads to assembly of the MEKK3‐MKK3‐p38 signaling module and subsequent activation of the p38MAPK/NF‐κB pathway, and ultimately results in diabetic encephalopathy (DE).
Collapse
Affiliation(s)
- Xiao‐Yan Zhou
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
- Department of Genetics, Xuzhou Engineering Research Center of Medical Genetics and Transformation Xuzhou Medical University Xuzhou China
| | - Chang‐Jiang Ying
- Department of Endocrinology Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Bin Hu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Yu‐Sheng Zhang
- The Graduate School Xuzhou Medical University Xuzhou China
| | - Tian Gan
- The Graduate School Xuzhou Medical University Xuzhou China
| | - Yan‐Dong Zhu
- The Graduate School Xuzhou Medical University Xuzhou China
| | - Nan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - An‐An Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Yuan‐Jian Song
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
- Department of Genetics, Xuzhou Engineering Research Center of Medical Genetics and Transformation Xuzhou Medical University Xuzhou China
| |
Collapse
|
9
|
LRRK2 at Striatal Synapses: Cell-Type Specificity and Mechanistic Insights. Cells 2022; 11:cells11010169. [PMID: 35011731 PMCID: PMC8750662 DOI: 10.3390/cells11010169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause Parkinson’s disease with a similar clinical presentation and progression to idiopathic Parkinson’s disease, and common variation is linked to disease risk. Recapitulation of the genotype in rodent models causes abnormal dopamine release and increases the susceptibility of dopaminergic neurons to insults, making LRRK2 a valuable model for understanding the pathobiology of Parkinson’s disease. It is also a promising druggable target with targeted therapies currently in development. LRRK2 mRNA and protein expression in the brain is highly variable across regions and cellular identities. A growing body of work has demonstrated that pathogenic LRRK2 mutations disrupt striatal synapses before the onset of overt neurodegeneration. Several substrates and interactors of LRRK2 have been identified to potentially mediate these pre-neurodegenerative changes in a cell-type-specific manner. This review discusses the effects of pathogenic LRRK2 mutations in striatal neurons, including cell-type-specific and pathway-specific alterations. It also highlights several LRRK2 effectors that could mediate the alterations to striatal function, including Rabs and protein kinase A. The lessons learned from improving our understanding of the pathogenic effects of LRRK2 mutations in striatal neurons will be applicable to both dissecting the cell-type specificity of LRRK2 function in the transcriptionally diverse subtypes of dopaminergic neurons and also increasing our understanding of basal ganglia development and biology. Finally, it will inform the development of therapeutics for Parkinson’s disease.
Collapse
|
10
|
Pišlar A, Kos J. γ-Enolase enhances Trk endosomal trafficking and promotes neurite outgrowth in differentiated SH-SY5Y cells. Cell Commun Signal 2021; 19:118. [PMID: 34895236 PMCID: PMC8665614 DOI: 10.1186/s12964-021-00784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurotrophins can activate multiple signalling pathways in neuronal cells through binding to their cognate receptors, leading to neurotrophic processes such as cell survival and differentiation. γ-Enolase has been shown to have a neurotrophic activity that depends on its translocation towards the plasma membrane by the scaffold protein γ1-syntrophin. The association of γ-enolase with its membrane receptor or other binding partners at the plasma membrane remains unknown. METHODS In the present study, we used immunoprecipitation and immunofluorescence to show that γ-enolase associates with the intracellular domain of the tropomyosin receptor kinase (Trk) family of tyrosine kinase receptors at the plasma membrane of differentiated SH-SY5Y cells. RESULTS In differentiated SH-SY5Y cells with reduced expression of γ1-syntrophin, the association of γ-enolase with the Trk receptor was diminished due to impaired translocation of γ-enolase towards the plasma membrane or impaired Trk activity. Treatment of differentiated SH-SY5Y cells with a γ-Eno peptide that mimics γ-enolase neurotrophic activity promoted Trk receptor internalisation and endosomal trafficking, as defined by reduced levels of Trk in clathrin-coated vesicles and increased levels in late endosomes. In this way, γ-enolase triggers Rap1 activation, which is required for neurotrophic activity of γ-enolase. Additionally, the inhibition of Trk kinase activity by K252a revealed that increased SH-SY5Y cell survival and neurite outgrowth mediated by the γ-Eno peptide through activation of signalling cascade depends on Trk kinase activity. CONCLUSIONS These data therefore establish the Trk receptor as a binding partner of γ-enolase, whereby Trk endosomal trafficking is promoted by γ-Eno peptide to mediate its neurotrophic signalling. Video abstract.
Collapse
Affiliation(s)
- Anja Pišlar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Janko Kos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Potential Correlation Between Depression-like Behavior and the Mitogen-Activated Protein Kinase Pathway in the Rat Hippocampus Following Spinal Cord Injury. World Neurosurg 2021; 154:e29-e38. [PMID: 34271150 DOI: 10.1016/j.wneu.2021.06.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Depression induced by spinal cord injury (SCI) has been demonstrated in clinical and experimental studies; it significantly impacts patients' lives and may be associated with changes in the hippocampus. However, the biological mechanisms underlying depression after SCI are unknown. The mitogen-activated protein kinase (MAPK) signaling pathway participates in potential mechanisms of depression; it is unknown whether this pathway plays a role in SCI-induced depression. METHODS We applied an animal model of depression induced by SCI, established using an aneurysm clip, to determine whether MAPK activation in the hippocampus is associated with depression-like behavior. RESULTS SCI led to depression-like behavior, such as anhedonia in the sucrose preference test, decreased number of crossings in the open field test, decreased body weight, and decreased immobility time in the forced swim test. Western blot analysis further showed that SCI significantly increased the levels of phosphorylated p38 MAPK and cleaved caspase-3 in the hippocampus and inhibited the phosphorylation of extracellular signal-related kinase 1/2 and c-Jun N-terminal kinase 1/2. In addition, there were significant negative correlations between depression-like behavior and phosphorylated extracellular signal-related kinase 1/2 and positive correlations between depression-like behavior and phosphorylated p38 MAPK and cleaved caspase-3. CONCLUSIONS These findings suggest that the MAPK pathway in the rat hippocampus may be involved in the pathophysiology of depression induced by SCI.
Collapse
|
12
|
Sahasrabudhe A, Begum F, Guevara CA, Morrison C, Hsiao K, Kezunovic N, Bozdagi-Gunal O, Benson DL. Cyfip1 Regulates SynGAP1 at Hippocampal Synapses. Front Synaptic Neurosci 2021; 12:581714. [PMID: 33613257 PMCID: PMC7892963 DOI: 10.3389/fnsyn.2020.581714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
In humans, copy number variations in CYFIP1 appear to have sweeping physiological and structural consequences in the brain, either producing or altering the severity of intellectual disability, autism, and schizophrenia. Independently, SynGAP1 haploinsufficiency produces intellectual disability and, frequently, autism. Cyfip1 inhibits protein translation and promotes actin polymerization, and SynGAP1 is a synaptically localized Ras/Rap GAP. While these proteins are clearly distinct, studies investigating their functions in mice have shown that each regulates the maturation of synapses in the hippocampus and haploinsufficiency for either produces an exaggerated form of mGluR-dependent long-term depression, suggesting that some signaling pathways converge. In this study, we examined how Cyfip1 haploinsufficiency impacts SynGAP1 levels and localization, as well as potential sites for mechanistic interaction in mouse hippocampus. The data show that synaptic, but not total, levels of SynGAP1 in Cyfip1 +/- mice were abnormally low during early postnatal development and in adults. This may be in response to a shift in the balance of kinases that activate SynGAP1 as levels of Cdk5 were reduced and those of activated CaMKII were maintained in Cyfip1 +/- mice compared to wild-type mice. Alternatively, this could reflect altered actin dynamics as Rac1 activity in Cyfip1 +/- hippocampus was boosted significantly compared to wild-type mice, and levels of synaptic F-actin were generally enhanced due in part to an increase in the activity of the WAVE regulatory complex. Decreased synaptic SynGAP1 coupled with a CaMKII-mediated bias toward Rap1 inactivation at synapses is also consistent with increased levels of synaptic GluA2, increased AMPA receptor-mediated responses to stimulation, and increased levels of synaptic mGluR1/5 compared to wild-type mice. Collectively, our data suggest that Cyfip1 regulates SynGAP1 and the two proteins work coordinately at synapses to appropriately direct actin polymerization and GAP activity.
Collapse
Affiliation(s)
- Abhishek Sahasrabudhe
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States
| | - Fatema Begum
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States
| | - Christopher A Guevara
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States.,Graduate School of Biomedical Sciences, New York, NY, United States
| | - Chenel Morrison
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States
| | - Kuangfu Hsiao
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States
| | - Nebojsa Kezunovic
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States
| | - Ozlem Bozdagi-Gunal
- Department of Psychiatry, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Deanna L Benson
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States
| |
Collapse
|
13
|
Wong L, Chong YS, Lin W, Kisiswa L, Sim E, Ibáñez CF, Sajikumar S. Age-related changes in hippocampal-dependent synaptic plasticity and memory mediated by p75 neurotrophin receptor. Aging Cell 2021; 20:e13305. [PMID: 33448137 PMCID: PMC7884039 DOI: 10.1111/acel.13305] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 11/25/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
The plasticity mechanisms in the nervous system that are important for learning and memory are greatly impacted during aging. Notably, hippocampal-dependent long-term plasticity and its associative plasticity, such as synaptic tagging and capture (STC), show considerable age-related decline. The p75 neurotrophin receptor (p75NTR ) is a negative regulator of structural and functional plasticity in the brain and thus represents a potential candidate to mediate age-related alterations. However, the mechanisms by which p75NTR affects synaptic plasticity of aged neuronal networks and ultimately contribute to deficits in cognitive function have not been well characterized. Here, we report that mutant mice lacking the p75NTR were resistant to age-associated changes in long-term plasticity, associative plasticity, and associative memory. Our study shows that p75NTR is responsible for age-dependent disruption of hippocampal homeostatic plasticity by modulating several signaling pathways, including BDNF, MAPK, Arc, and RhoA-ROCK2-LIMK1-cofilin. p75NTR may thus represent an important therapeutic target for limiting the age-related memory and cognitive function deficits.
Collapse
Affiliation(s)
- Lik‐Wei Wong
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
- Healthy Longevity Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
| | - Yee Song Chong
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
| | - Wei Lin
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
| | - Lilian Kisiswa
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
| | - Eunice Sim
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
| | - Carlos F. Ibáñez
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
- Department of NeuroscienceKarolinska InstituteStockholmSweden
| | - Sreedharan Sajikumar
- Department of PhysiologyNational University of SingaporeSingapore CitySingapore
- Life Sciences Institute Neurobiology ProgrammeNational University of SingaporeSingapore CitySingapore
- Healthy Longevity Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
| |
Collapse
|
14
|
Beamer E, Corrêa SAL. The p38 MAPK-MK2 Signaling Axis as a Critical Link Between Inflammation and Synaptic Transmission. Front Cell Dev Biol 2021; 9:635636. [PMID: 33585492 PMCID: PMC7876405 DOI: 10.3389/fcell.2021.635636] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 01/04/2023] Open
Abstract
p38 is a mitogen-activated protein kinase (MAPK), that responds primarily to stress stimuli. p38 has a number of targets for phosphorylation, including MAPK-activated protein kinase 2 (MK2). MK2 primarily functions as a master regulator of RNA-binding proteins, indirectly controlling gene expression at the level of translation. The role of MK2 in regulating the synthesis of pro-inflammatory cytokines downstream of inflammation and cellular stress is well-described. A significant amount of evidence, however, now points to a role for the p38MAPK-MK2 signaling axis in mediating synaptic plasticity through control of AMPA receptor trafficking and the morphology of dendritic spines. These processes are mediated through control of cytoskeletal dynamics via the activation of cofilin-1 and possibly control of the expression of Arc/Arg3.1. There is evidence that MK2 is necessary for group I metabotropic glutamate receptors long-term depression (mGluR-LTD). Disruption of this signaling may play an important role in mediating cognitive dysfunction in neurological disorders such as fragile X syndrome and Alzheimer’s disease. To date, the role of neuronal MK2 mediating synaptic plasticity in response to inflammatory stimuli has not yet been investigated. In immune cells, it is clear that MK2 is phosphorylated following activation of a broad range of cell surface receptors for cytokines and other inflammatory mediators. We propose that neuronal MK2 may be an important player in the link between inflammatory states and dysregulation of synaptic plasticity underlying cognitive functions. Finally, we discuss the potential of the p38MAPK-MK2 signaling axis as target for therapeutic intervention in a number of neurological disorders.
Collapse
Affiliation(s)
- Edward Beamer
- Faculty of Science and Engineering, Department of Life Sciences, Manchester Metropolitan University Manchester, Manchester, United Kingdom
| | - Sonia A L Corrêa
- Faculty of Science and Engineering, Department of Life Sciences, Manchester Metropolitan University Manchester, Manchester, United Kingdom
| |
Collapse
|
15
|
Asih PR, Prikas E, Stefanoska K, Tan ARP, Ahel HI, Ittner A. Functions of p38 MAP Kinases in the Central Nervous System. Front Mol Neurosci 2020; 13:570586. [PMID: 33013322 PMCID: PMC7509416 DOI: 10.3389/fnmol.2020.570586] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein (MAP) kinases are a central component in signaling networks in a multitude of mammalian cell types. This review covers recent advances on specific functions of p38 MAP kinases in cells of the central nervous system. Unique and specific functions of the four mammalian p38 kinases are found in all major cell types in the brain. Mechanisms of p38 activation and downstream phosphorylation substrates in these different contexts are outlined and how they contribute to functions of p38 in physiological and under disease conditions. Results in different model organisms demonstrated that p38 kinases are involved in cognitive functions, including functions related to anxiety, addiction behavior, neurotoxicity, neurodegeneration, and decision making. Finally, the role of p38 kinases in psychiatric and neurological conditions and the current progress on therapeutic inhibitors targeting p38 kinases are covered and implicate p38 kinases in a multitude of CNS-related physiological and disease states.
Collapse
Affiliation(s)
- Prita R Asih
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Emmanuel Prikas
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kristie Stefanoska
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amanda R P Tan
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Holly I Ahel
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Arne Ittner
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
16
|
Germann UA, Alam JJ. P38α MAPK Signaling-A Robust Therapeutic Target for Rab5-Mediated Neurodegenerative Disease. Int J Mol Sci 2020; 21:E5485. [PMID: 32751991 PMCID: PMC7432772 DOI: 10.3390/ijms21155485] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Multifactorial pathologies, involving one or more aggregated protein(s) and neuroinflammation are common in major neurodegenerative diseases, such as Alzheimer's disease and dementia with Lewy bodies. This complexity of multiple pathogenic drivers is one potential explanation for the lack of success or, at best, the partial therapeutic effects, respectively, with approaches that have targeted one specific driver, e.g., amyloid-beta, in Alzheimer's disease. Since the endosome-associated protein Rab5 appears to be a convergence point for many, if not all the most prominent pathogenic drivers, it has emerged as a major therapeutic target for neurodegenerative disease. Further, since the alpha isoform of p38 mitogen-activated protein kinase (p38α) is a major regulator of Rab5 activity and its effectors, a biology that is distinct from the classical nuclear targets of p38 signaling, brain-penetrant selective p38α kinase inhibitors provide the opportunity for significant therapeutic advances in neurogenerative disease through normalizing dysregulated Rab5 activity. In this review, we provide a brief summary of the role of Rab5 in the cell and its association with neurodegenerative disease pathogenesis. We then discuss the connection between Rab5 and p38α and summarize the evidence that through modulating Rab5 activity there are therapeutic opportunities in neurodegenerative diseases for p38α kinase inhibitors.
Collapse
|
17
|
El Rawas R, Amaral IM, Hofer A. Is p38 MAPK Associated to Drugs of Abuse-Induced Abnormal Behaviors? Int J Mol Sci 2020; 21:E4833. [PMID: 32650599 PMCID: PMC7402127 DOI: 10.3390/ijms21144833] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
The family members of the mitogen-activated protein kinases (MAPK) mediate a wide variety of cellular behaviors in response to extracellular stimuli. p38 MAPKs are key signaling molecules in cellular responses to external stresses and regulation of pro-inflammatory cytokines. Some studies have suggested that p38 MAPK in the region of the nucleus accumbens is involved in abnormal behavioral responses induced by drugs of abuse. In this review, we discuss the role of the p38 MAPK in the rewarding effects of drugs of abuse. We also summarize the implication of p38 MAPK in stress, anxiety, and depression. We opine that p38 MAPK activation is more closely associated to stress-induced aversive responses rather than drug effects per se, in particular cocaine. p38 MAPK is only involved in cocaine reward, predominantly when promoted by stress. Downstream substrates of p38 that may contribute to the p38 MAPK associated-behavioral responses are proposed. Finally, we suggest p38 MAPK inhibitors as possible therapeutic interventions against stress-related disorders by potentially increasing resilience against stress and addiction relapse induced by adverse experiences.
Collapse
Affiliation(s)
- Rana El Rawas
- Experimental Addiction Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Division of Psychiatry I, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (A.H.)
| | | | | |
Collapse
|
18
|
Sanderson TM, Georgiou J, Collingridge GL. Illuminating Relationships Between the Pre- and Post-synapse. Front Neural Circuits 2020; 14:9. [PMID: 32308573 PMCID: PMC7146027 DOI: 10.3389/fncir.2020.00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Excitatory synapses in the mammalian cortex are highly diverse, both in terms of their structure and function. However, relationships between synaptic features indicate they are highly coordinated entities. Imaging techniques, that enable physiology at the resolution of individual synapses to be investigated, have allowed the presynaptic activity level of the synapse to be related to postsynaptic function. This approach has revealed that neuronal activity induces the pre- and post-synapse to be functionally correlated and that subsets of synapses are more susceptible to certain forms of synaptic plasticity. As presynaptic function is often examined in isolation from postsynaptic properties, the effect it has on the post-synapse is not fully understood. However, since postsynaptic receptors at excitatory synapses respond to release of glutamate, it follows that they may be differentially regulated depending on the frequency of its release. Therefore, examining postsynaptic properties in the context of presynaptic function may be a useful way to approach a broad range of questions on synaptic physiology. In this review, we focus on how optophysiology tools have been utilized to study relationships between the pre- and the post-synapse. Multiple imaging techniques have revealed correlations in synaptic properties from the submicron to the dendritic level. Optical tools together with advanced imaging techniques are ideally suited to illuminate this area further, due to the spatial resolution and control they allow.
Collapse
Affiliation(s)
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, Department of Physiology, University of Toronto, Toronto, ON, Canada.,Glutamate Research Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
19
|
Effect of chronic methylphenidate treatment on hippocampal neurovascular unit and memory performance in late adolescent rats. Eur Neuropsychopharmacol 2019; 29:195-210. [PMID: 30554860 DOI: 10.1016/j.euroneuro.2018.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/13/2018] [Accepted: 12/01/2018] [Indexed: 12/21/2022]
Abstract
Methylphenidate (MPH) is the classic treatment for attention deficit hyperactivity disorder (ADHD) among children and adults. Despite its beneficial effects, non-medical use of MPH is nowadays a problem with high impact on society. Thus, our goal was to uncover the neurovascular and cognitive effects of MPH chronic use during a critical period of development in control conditions. For that, male Wistar Kyoto rats were treated with MPH (1.5 or 5 mg/kg/day at weekdays, per os) from P28 to P55. We concluded that the higher dose of MPH caused hippocampal blood-brain barrier (BBB) hyperpermeability by vesicular transport (transcytosis) concomitantly with the presence of peripheral immune cells in the brain parenchyma. These observations were confirmed by in vitro studies, in which the knockdown of caveolin-1 in human brain endothelial cells prevented the increased permeability and leukocytes transmigration triggered by MPH (100 µM, 24 h). Furthermore, MPH led to astrocytic atrophy and to a decrease in the levels of several synaptic proteins and impairment of AKT/CREB signaling, together with working memory deficit assessed in the Y-maze test. On the contrary, we verified that the lower dose of MPH (1.5 mg/kg/day) increased astrocytic processes and upregulated several neuronal proteins as well as signaling pathways involved in synaptic plasticity culminating in working memory improvement. In conclusion, the present study reveals that a lower dose of MPH in normal rats improves memory performance being associated with the modulation of astrocytic morphology and synaptic machinery. However, a higher dose of MPH leads to BBB dysfunction and memory impairment.
Collapse
|
20
|
Chemogenetic Activation of Excitatory Neurons Alters Hippocampal Neurotransmission in a Dose-Dependent Manner. eNeuro 2019; 6:ENEURO.0124-19.2019. [PMID: 31645362 PMCID: PMC6860986 DOI: 10.1523/eneuro.0124-19.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 11/21/2022] Open
Abstract
Designer receptors exclusively activated by designer drugs (DREADD)-based chemogenetic tools are extensively used to manipulate neuronal activity in a cell type-specific manner. Whole-cell patch-clamp recordings indicate membrane depolarization, coupled with increased neuronal firing rate, following administration of the DREADD ligand, clozapine-N-oxide (CNO) to activate the Gq-coupled DREADD, hM3Dq. Although hM3Dq has been used to enhance neuronal firing in order to manipulate diverse behaviors, often within 30 min to 1 h after CNO administration, the physiological effects on excitatory neurotransmission remain poorly understood. We investigated the influence of CNO-mediated hM3Dq DREADD activation on distinct aspects of hippocampal excitatory neurotransmission at the Schaffer collateral-CA1 synapse in hippocampal slices derived from mice expressing hM3Dq in Ca2+/calmodulin-dependent protein kinase α (CamKIIα)-positive excitatory neurons. Our results indicate a clear dose-dependent effect on field EPSP (fEPSP) slope, with no change noted at the lower dose of CNO (1 µM) and a significant, long-term decline in fEPSP slope observed at higher doses (5-20 µM). Further, we noted a robust θ burst stimulus (TBS) induced long-term potentiation (LTP) in the presence of the lower CNO (1 µM) dose, which was significantly attenuated at the higher CNO (20 µM) dose. Whole-cell patch-clamp recording revealed both complex dose-dependent regulation of excitability, and spontaneous and evoked activity of CA1 pyramidal neurons in response to hM3Dq activation across CNO concentrations. Our data indicate that CNO-mediated activation of the hM3Dq DREADD results in dose-dependent regulation of excitatory hippocampal neurotransmission and highlight the importance of careful interpretation of behavioral experiments involving chemogenetic manipulation.
Collapse
|
21
|
Maeta K, Hattori S, Ikutomo J, Edamatsu H, Bilasy SE, Miyakawa T, Kataoka T. Comprehensive behavioral analysis of mice deficient in Rapgef2 and Rapgef6, a subfamily of guanine nucleotide exchange factors for Rap small GTPases possessing the Ras/Rap-associating domain. Mol Brain 2018; 11:27. [PMID: 29747665 PMCID: PMC5946393 DOI: 10.1186/s13041-018-0370-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/29/2018] [Indexed: 12/22/2022] Open
Abstract
Rapgef2 and Rapgef6 define a subfamily of guanine nucleotide exchange factors for Rap small GTPases, characterized by the possession of the Ras/Rap-associating domain. Previous genomic analyses suggested their possible involvement in the etiology of schizophrenia. We recently demonstrated the development of an ectopic cortical mass (ECM), which resembles the human subcortical band heterotopia, in the dorsal telencephalon-specific Rapgef2 conditional knockout (Rapgef2-cKO) brains. Additional knockout of Rapgef6 in Rapgef2-cKO mice resulted in gross enlargement of the ECM whereas knockout of Rapgef6 alone (Rapgef6-KO) had no discernible effect on the brain morphology. Here, we performed a battery of behavioral tests to examine the effects of Rapgef2 or Rapgef6 deficiency on higher brain functions. Rapgef2-cKO mice exhibited hyperlocomotion phenotypes. They showed decreased anxiety-like behavior in the elevated plus maze and the open-field tests as well as increased depression-like behavior in the Porsolt forced swim and tail suspension tests. They also exhibited increased sociability especially in novel environments. They showed defects in cognitive function as evidenced by reduced learning ability in the Barnes circular maze test and by impaired working memory in the T maze tests. In contrast, although Rapgef6 and Rapgef2 share similarities in biochemical roles, Rapgef6-KO mice exhibited mild behavioral abnormalities detected with a number of behavioral tests, such as hyperlocomotion phenotype in the open-field test and the social interaction test with a novel environment and working-memory defects in the T-maze test. In conclusion, although there were differences in their brain morphology and the magnitude of the behavioral abnormalities, Rapgef2-cKO mice and Rapgef6-KO mice exhibited hyperlocomotion phenotype and working-memory defect, both of which could be recognized as schizophrenia-like behavior.
Collapse
Affiliation(s)
- Kazuhiro Maeta
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
- Present address: Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192 Japan
| | - Junji Ikutomo
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Hironori Edamatsu
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Shymaa E. Bilasy
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
- Present address: Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, El-shikh Zayed, Ismailia, 41522 Egypt
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192 Japan
| | - Tohru Kataoka
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| |
Collapse
|
22
|
Mitochondrial proteomics investigation of frontal cortex in an animal model of depression: Focus on chronic antidepressant drugs treatment. Pharmacol Rep 2018; 70:322-330. [DOI: 10.1016/j.pharep.2017.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 12/31/2022]
|
23
|
Griffith CM, Eid T, Rose GM, Patrylo PR. Evidence for altered insulin receptor signaling in Alzheimer's disease. Neuropharmacology 2018; 136:202-215. [PMID: 29353052 DOI: 10.1016/j.neuropharm.2018.01.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 12/11/2022]
Abstract
Epidemiological data have shown that metabolic disease can increase the propensity for developing cognitive decline and dementia, particularly Alzheimer's disease (AD). While this interaction is not completely understood, clinical studies suggest that both hyper- and hypoinsulinemia are associated with an increased risk for developing AD. Indeed, insulin signaling is altered in post-mortem brain tissue from AD patients and treatments known to enhance insulin signaling can improve cognitive function. Further, clinical evidence has shown that AD patients and mouse models of AD often display alterations in peripheral metabolism. Since insulin is primarily derived from the periphery, it is likely that changes in peripheral insulin levels lead to alterations in central nervous system (CNS) insulin signaling and could contribute to cognitive decline and pathogenesis. Developing a better understanding of the relationship between alterations in peripheral metabolism and cognitive function might provide a foundation for the development of better treatment options for patients with AD. In this article we will begin to piece together the present data defining this relationship by briefly discussing insulin signaling in the periphery and CNS, its role in cognitive function, insulin's relationship to AD, peripheral metabolic alterations in mouse models of AD and how information from these models helps understand the mechanisms through which these changes potentially lead to impairments in insulin signaling in the CNS, and potential ways to target insulin signaling that could improve cognitive function in AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Chelsea M Griffith
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University Carbondale, IL 62901, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gregory M Rose
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University Carbondale, IL 62901, USA
| | - Peter R Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University Carbondale, IL 62901, USA.
| |
Collapse
|
24
|
Unconventional NMDA Receptor Signaling. J Neurosci 2017; 37:10800-10807. [PMID: 29118208 DOI: 10.1523/jneurosci.1825-17.2017] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 11/21/2022] Open
Abstract
In the classical view, NMDA receptors (NMDARs) are stably expressed at the postsynaptic membrane, where they act via Ca2+ to signal coincidence detection in Hebbian plasticity. More recently, it has been established that NMDAR-mediated transmission can be dynamically regulated by neural activity. In addition, NMDARs have been found presynaptically, where they cannot act as conventional coincidence detectors. Unexpectedly, NMDARs have also been shown to signal metabotropically, without the need for Ca2+ This review highlights novel findings concerning these unconventional modes of NMDAR action.
Collapse
|
25
|
The SEK-1 p38 MAP Kinase Pathway Modulates Gq Signaling in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2017; 7:2979-2989. [PMID: 28696924 PMCID: PMC5592925 DOI: 10.1534/g3.117.043273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gq is a heterotrimeric G protein that is widely expressed in neurons and regulates neuronal activity. To identify pathways regulating neuronal Gq signaling, we performed a forward genetic screen in Caenorhabditis elegans for suppressors of activated Gq. One of the suppressors is an allele of sek-1, which encodes a mitogen-activated protein kinase kinase (MAPKK) in the p38 MAPK pathway. Here, we show that sek-1 mutants have a slow locomotion rate and that sek-1 acts in acetylcholine neurons to modulate both locomotion rate and Gq signaling. Furthermore, we find that sek-1 acts in mature neurons to modulate locomotion. Using genetic and behavioral approaches, we demonstrate that other components of the p38 MAPK pathway also play a positive role in modulating locomotion and Gq signaling. Finally, we find that mutants in the SEK-1 p38 MAPK pathway partially suppress an activated mutant of the sodium leak channel, NCA-1/NALCN, a downstream target of Gq signaling. Our results suggest that the SEK-1 p38 pathway may modulate the output of Gq signaling through NCA-1(unc-77).
Collapse
|
26
|
Tidball P, Burn HV, Teh KL, Volianskis A, Collingridge GL, Fitzjohn SM. Differential ability of the dorsal and ventral rat hippocampus to exhibit group I metabotropic glutamate receptor-dependent synaptic and intrinsic plasticity. Brain Neurosci Adv 2017; 1. [PMID: 28413831 PMCID: PMC5390859 DOI: 10.1177/2398212816689792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The hippocampus is critically involved in learning and memory processes. Although once considered a relatively homogenous structure, it is now clear that the hippocampus can be divided along its longitudinal axis into functionally distinct domains, responsible for the encoding of different types of memory or behaviour. Although differences in extrinsic connectivity are likely to contribute to this functional differentiation, emerging evidence now suggests that cellular and molecular differences at the level of local hippocampal circuits may also play a role. Methods: In this study, we have used extracellular field potential recordings to compare basal input/output function and group I metabotropic glutamate receptor-dependent forms of synaptic and intrinsic plasticity in area CA1 of slices taken from the dorsal and ventral sectors of the adult rat hippocampus. Results: Using two extracellular electrodes to simultaneously record field EPSPs and population spikes, we show that dorsal and ventral hippocampal slices differ in their basal levels of excitatory synaptic transmission, paired-pulse facilitation, and EPSP-to-Spike coupling. Furthermore, we show that slices taken from the ventral hippocampus have a greater ability than their dorsal counterparts to exhibit long-term depression of synaptic transmission and EPSP-to-Spike potentiation induced by transient application of the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine. Conclusions: Together, our results provide further evidence that the information processing properties of local hippocampal circuits differ in the dorsal and ventral hippocampal sectors, and that these differences may in turn contribute to the functional differentiation that exists along the hippocampal longitudinal axis.
Collapse
Affiliation(s)
- Patrick Tidball
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Hannah V Burn
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Kai Lun Teh
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Arturas Volianskis
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Graham L Collingridge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Stephen M Fitzjohn
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
27
|
Pick JE, Khatri L, Sathler MF, Ziff EB. mGluR long-term depression regulates GluA2 association with COPII vesicles and exit from the endoplasmic reticulum. EMBO J 2016; 36:232-244. [PMID: 27856517 DOI: 10.15252/embj.201694526] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 01/05/2023] Open
Abstract
mGluR long-term depression (mGluR-LTD) is a form of synaptic plasticity induced at excitatory synapses by metabotropic glutamate receptors (mGluRs). mGluR-LTD reduces synaptic strength and is relevant to learning and memory, autism, and sensitization to cocaine; however, the mechanism is not known. Here we show that activation of Group I mGluRs in medium spiny neurons induces trafficking of GluA2 from the endoplasmic reticulum (ER) to the synapse by enhancing GluA2 binding to essential COPII vesicle proteins, Sec23 and Sec13. GluA2 exit from the ER further depends on IP3 and Ryanodine receptor-controlled Ca2+ release as well as active translation. Synaptic insertion of GluA2 is coupled to removal of high-conducting Ca2+-permeable AMPA receptors from synapses, resulting in synaptic depression. This work demonstrates a novel mechanism in which mGluR signals release AMPA receptors rapidly from the ER and couple ER release to GluA2 synaptic insertion and GluA1 removal.
Collapse
Affiliation(s)
- Joseph E Pick
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
| | - Latika Khatri
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
| | - Matheus F Sathler
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA.,Department of Pharmacology and Physiology, Fluminense Federal University, Niteroi, Brazil
| | - Edward B Ziff
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
28
|
Regulation of extrasynaptic signaling by polysialylated NCAM: Impact for synaptic plasticity and cognitive functions. Mol Cell Neurosci 2016; 81:12-21. [PMID: 27865768 DOI: 10.1016/j.mcn.2016.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 01/24/2023] Open
Abstract
The activation of synaptic N-methyl-d-aspartate-receptors (NMDARs) is crucial for induction of synaptic plasticity and supports cell survival, whereas activation of extrasynaptic NMDARs inhibits long-term potentiation and triggers neurodegeneration. A soluble polysialylated form of the neural cell adhesion molecule (polySia-NCAM) suppresses signaling through peri-/extrasynaptic GluN2B-containing NMDARs. Genetic or enzymatic manipulations blocking this mechanism result in impaired synaptic plasticity and learning, which could be repaired by reintroduction of polySia, or inhibition of either GluN1/GluN2B receptors or downstream signaling through RasGRF1 and p38 MAP kinase. Ectodomain shedding of NCAM, and hence generation of soluble NCAM, is controlled by metalloproteases of a disintegrin and metalloprotease (ADAM) family. As polySia-NCAM is predominantly associated with GABAergic interneurons in the prefrontal cortex, it is noteworthy that EphrinA5/EphA3-induced ADAM10 activity promotes polySia-NCAM shedding in these neurons. Thus, in addition to the well-known regulation of synaptic NMDARs by the secreted molecule Reelin, shed polySia-NCAM may restrain activation of extrasynaptic NMDARs. These data support a concept that GABAergic interneuron-derived extracellular proteins control the balance in synaptic/extrasynaptic NMDAR-mediated signaling in principal cells. Strikingly, dysregulation of Reelin or polySia expression is linked to schizophrenia. Thus, targeting of the GABAergic interneuron-principle cell communication and restoring the balance in synaptic/extrasynaptic NMDARs represent promising strategies for treatment of psychiatric diseases.
Collapse
|
29
|
Latif-Hernandez A, Faldini E, Ahmed T, Balschun D. Separate Ionotropic and Metabotropic Glutamate Receptor Functions in Depotentiation vs. LTP: A Distinct Role for Group1 mGluR Subtypes and NMDARs. Front Cell Neurosci 2016; 10:252. [PMID: 27872582 PMCID: PMC5098392 DOI: 10.3389/fncel.2016.00252] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/14/2016] [Indexed: 01/01/2023] Open
Abstract
Depotentiation (DP) is a mechanism by which synapses that have recently undergone long-term potentiation (LTP) can reverse their synaptic strengthening within a short time-window after LTP induction. Group 1 metabotropic glutamate receptors (mGluRs) were shown to be involved in different forms of LTP and long-term depression (LTD), but little is known about their roles in DP. Here, we generated DP by applying low-frequency stimulation (LFS) at 5 Hz after LTP had been induced by a single train of theta-burst-stimulation (TBS). While application of LFS for 2 min (DP2′) generated only a short-lasting DP that was independent of the activation of N-methyl-D-aspartate receptors (NMDARs) and group 1 mGluRs, LFS given for 8 min (DP8′) induced a robust DP that was maintained for at least 2 h. This strong form of DP was contingent on NMDAR activation. Interestingly, DP8′ appears to include a metabotropic NMDAR function because it was blocked by the competitive NMDAR antagonist D-AP5 but not by the use-dependent inhibitor MK-801 or high Mg2+. Furthermore, DP8′ was enhanced by application of the mGluR1 antagonist (YM 298198, 1 μM). The mGluR5 antagonist 2-Methyl-6(phenylethynyl) pyridine (MPEP, 40 μM), in contrast, failed to affect it. The induction of LTP, in turn, was NMDAR dependent (as tested with D-AP5), and blocked by MPEP but not by YM 298198. These results indicate a functional dissociation of mGluR1 and mGluR5 in two related and consecutively induced types of NMDAR-dependent synaptic plasticity (LTP → DP) with far-reaching consequences for their role in plasticity and learning under normal and pathological conditions.
Collapse
Affiliation(s)
| | - Enrico Faldini
- Laboratory of Biological Psychology, KU Leuven Leuven, Belgium
| | - Tariq Ahmed
- Laboratory of Biological Psychology, KU Leuven Leuven, Belgium
| | - Detlef Balschun
- Laboratory of Biological Psychology, KU Leuven Leuven, Belgium
| |
Collapse
|
30
|
Sheng Y, Zhang L, Su SC, Tsai LH, Julius Zhu J. Cdk5 is a New Rapid Synaptic Homeostasis Regulator Capable of Initiating the Early Alzheimer-Like Pathology. Cereb Cortex 2016; 26:2937-51. [PMID: 26088971 PMCID: PMC4898661 DOI: 10.1093/cercor/bhv032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase implicated in synaptic plasticity, behavior, and cognition, yet its synaptic function remains poorly understood. Here, we report that physiological Cdk5 signaling in rat hippocampal CA1 neurons regulates homeostatic synaptic transmission using an unexpectedly rapid mechanism that is different from all known slow homeostatic regulators, such as beta amyloid (Aβ) and activity-regulated cytoskeleton-associated protein (Arc, aka Arg3.1). Interestingly, overproduction of the potent Cdk5 activator p25 reduces synapse density, and dynamically regulates synaptic size by suppressing or enhancing Aβ/Arc production. Moreover, chronic overproduction of p25, seen in Alzheimer's patients, induces initially concurrent reduction in synapse density and increase in synaptic size characteristic of the early Alzheimer-like pathology, and later persistent synapse elimination in intact brains. These results identify Cdk5 as the regulator of a novel rapid form of homeostasis at central synapses and p25 as the first molecule capable of initiating the early Alzheimer's synaptic pathology.
Collapse
Affiliation(s)
- Yanghui Sheng
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Undergraduate Class of 2011, Yuanpei Honors College, Peking University, Beijing100871, China
- Current address: Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lei Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Susan C. Su
- Picower Institute for Learning and Memory and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J. Julius Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
31
|
Sanderson TM, Hogg EL, Collingridge GL, Corrêa SAL. Hippocampal metabotropic glutamate receptor long-term depression in health and disease: focus on mitogen-activated protein kinase pathways. J Neurochem 2016; 139 Suppl 2:200-214. [PMID: 26923875 DOI: 10.1111/jnc.13592] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/16/2016] [Accepted: 02/21/2016] [Indexed: 12/16/2022]
Abstract
Group I metabotropic glutamate receptor (mGluR) dependent long-term depression (LTD) is a major form of synaptic plasticity underlying learning and memory. The molecular mechanisms involved in mGluR-LTD have been investigated intensively for the last two decades. In this 60th anniversary special issue article, we review the recent advances in determining the mechanisms that regulate the induction, transduction and expression of mGluR-LTD in the hippocampus, with a focus on the mitogen-activated protein kinase (MAPK) pathways. In particular we discuss the requirement of p38 MAPK and extracellular signal-regulated kinase 1/2 (ERK 1/2) activation. The recent advances in understanding the signaling cascades regulating mGluR-LTD are then related to the cognitive impairments observed in neurological disorders, such as fragile X syndrome and Alzheimer's disease. mGluR-LTD is a form of synaptic plasticity that impacts on memory formation. In the hippocampus mitogen-activated protein kinases (MAPKs) have been found to be important in mGluR-LTD. In this 60th anniversary special issue article, we review the independent and complementary roles of two classes of MAPK, p38 and ERK1/2 and link this to the aberrant mGluR-LTD that has an important role in diseases. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Thomas M Sanderson
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Ellen L Hogg
- Bradford School of Pharmacy, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Graham L Collingridge
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK. .,Department of Physiology, University of Toronto, Toronto, Ontario, Canada. .,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | - Sonia A L Corrêa
- Bradford School of Pharmacy, Faculty of Life Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
32
|
Guntupalli S, Widagdo J, Anggono V. Amyloid-β-Induced Dysregulation of AMPA Receptor Trafficking. Neural Plast 2016; 2016:3204519. [PMID: 27073700 PMCID: PMC4814684 DOI: 10.1155/2016/3204519] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/28/2016] [Indexed: 01/22/2023] Open
Abstract
Evidence from neuropathological, genetic, animal model, and biochemical studies has indicated that the accumulation of amyloid-beta (Aβ) is associated with, and probably induces, profound neuronal changes in brain regions critical for memory and cognition in the development of Alzheimer's disease (AD). There is considerable evidence that synapses are particularly vulnerable to AD, establishing synaptic dysfunction as one of the earliest events in pathogenesis, prior to neuronal loss. It is clear that excessive Aβ levels can disrupt excitatory synaptic transmission and plasticity, mainly due to dysregulation of the AMPA and NMDA glutamate receptors in the brain. Importantly, AMPA receptors are the principal glutamate receptors that mediate fast excitatory neurotransmission. This is essential for synaptic plasticity, a cellular correlate of learning and memory, which are the cognitive functions that are most disrupted in AD. Here we review recent advances in the field and provide insights into the molecular mechanisms that underlie Aβ-induced dysfunction of AMPA receptor trafficking. This review focuses primarily on NMDA receptor- and metabotropic glutamate receptor-mediated signaling. In particular, we highlight several mechanisms that underlie synaptic long-term depression as common signaling pathways that are hijacked by the neurotoxic effects of Aβ.
Collapse
Affiliation(s)
- Sumasri Guntupalli
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
33
|
Hogg EL, Müller J, Corrêa SAL. Does the MK2-dependent Production of TNFα Regulate mGluR-dependent Synaptic Plasticity? Curr Neuropharmacol 2016; 14:474-80. [PMID: 27296641 PMCID: PMC4983755 DOI: 10.2174/1570159x13666150624165939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/22/2015] [Accepted: 06/26/2015] [Indexed: 11/22/2022] Open
Abstract
The molecular mechanisms and signalling cascades that trigger the induction of group I metabotropic glutamate receptor (GI-mGluR)-dependent long-term depression (LTD) have been the subject of intensive investigation for nearly two decades. The generation of genetically modified animals has played a crucial role in elucidating the involvement of key molecules regulating the induction and maintenance of mGluR-LTD. In this review we will discuss the requirement of the newly discovered MAPKAPK-2 (MK2) and MAPKAPK-3 (MK3) signalling cascade in regulating GI-mGluR-LTD. Recently, it has been shown that the absence of MK2 impaired the induction of GI-mGluR-dependent LTD, an effect that is caused by reduced internalization of AMPA receptors (AMPAR). As the MK2 cascade directly regulates tumour necrosis factor alpha (TNFα) production, this review will examine the evidence that the release of TNFα acts to regulate glutamate receptor expression and therefore may play a functional role in the impairment of GI-mGluRdependent LTD and the cognitive deficits observed in MK2/3 double knockout animals. The strong links of increased TNFα production in both aging and neurodegenerative disease could implicate the action of MK2 in these processes.
Collapse
Affiliation(s)
| | | | - Sônia A L Corrêa
- School of Life Sciences, Bradford University, Bradford, BD18 3LX.
| |
Collapse
|
34
|
DLK-1/p38 MAP Kinase Signaling Controls Cilium Length by Regulating RAB-5 Mediated Endocytosis in Caenorhabditis elegans. PLoS Genet 2015; 11:e1005733. [PMID: 26657059 PMCID: PMC4686109 DOI: 10.1371/journal.pgen.1005733] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/19/2015] [Indexed: 01/11/2023] Open
Abstract
Cilia are sensory organelles present on almost all vertebrate cells. Cilium length is constant, but varies between cell types, indicating that cilium length is regulated. How this is achieved is unclear, but protein transport in cilia (intraflagellar transport, IFT) plays an important role. Several studies indicate that cilium length and function can be modulated by environmental cues. As a model, we study a C. elegans mutant that carries a dominant active G protein α subunit (gpa-3QL), resulting in altered IFT and short cilia. In a screen for suppressors of the gpa-3QL short cilium phenotype, we identified uev-3, which encodes an E2 ubiquitin-conjugating enzyme variant that acts in a MAP kinase pathway. Mutation of two other components of this pathway, dual leucine zipper-bearing MAPKKK DLK-1 and p38 MAPK PMK-3, also suppress the gpa-3QL short cilium phenotype. However, this suppression seems not to be caused by changes in IFT. The DLK-1/p38 pathway regulates several processes, including microtubule stability and endocytosis. We found that reducing endocytosis by mutating rabx-5 or rme-6, RAB-5 GEFs, or the clathrin heavy chain, suppresses gpa-3QL. In addition, gpa-3QL animals showed reduced levels of two GFP-tagged proteins involved in endocytosis, RAB-5 and DPY-23, whereas pmk-3 mutant animals showed accumulation of GFP-tagged RAB-5. Together our results reveal a new role for the DLK-1/p38 MAPK pathway in control of cilium length by regulating RAB-5 mediated endocytosis. Cells detect cues in their environment using many different receptor and channel proteins, most of which localize to the plasma membrane of the cell. Some of these receptors and channels localize to a specialized sensory organelle, the primary cilium, that extends from the cell like a small antenna. Almost all cells of the human body have one or more cilia. Defects in cilium structure or function have been implicated in many diseases. Many studies have shown that the length of cilia is regulated and can be modulated by environmental signals. Several genes have been identified that function in cilium length regulation and it is clear that transport of proteins inside the cilium plays an important role. Here, we identify several genes of a MAP kinase cascade that modulate the length of cilia of the nematode Caenorhabditis elegans. Interestingly, this regulation seems not to be mediated by the transport system in the cilia, but by modulation of endocytosis. Our results suggest that regulated delivery and removal of proteins and/or lipids at the base of the cilium contributes to the regulation of cilium length.
Collapse
|
35
|
Ondrovics M, Gasser RB, Joachim A. Recent Advances in Elucidating Nematode Moulting - Prospects of Using Oesophagostomum dentatum as a Model. ADVANCES IN PARASITOLOGY 2015; 91:233-64. [PMID: 27015950 DOI: 10.1016/bs.apar.2015.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There are major gaps in our knowledge of many molecular biological processes that take place during the development of parasitic nematodes, in spite of the fact that understanding such processes could lead to new ways of treating and controlling parasitic diseases via the disruption of one or more biological pathways in the parasites. Progress in genomics, transcriptomics, proteomics and bioinformatics now provides unique opportunities to investigate the molecular basis of key developmental processes in parasitic nematodes. The porcine nodule worm, Oesophagostomum dentatum, represents a large order (Strongylida) of socioeconomically important nematodes, and provides a useful platform for exploring molecular developmental processes, particularly given that this nematode can be grown and maintained in culture in vitro for periods longer than most other nematodes of this order. In this article, we focus on the moulting process (ecdysis) in nematodes; review recent advances in our understanding of molecular aspects of moulting in O. dentatum achieved by using integrated proteomic-bioinformatic tools and discuss key implications and future prospects for research in this area, also with respect to developing new anti-nematode interventions and biotechnological outcomes.
Collapse
Affiliation(s)
- Martina Ondrovics
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
36
|
Birnbaum JH, Bali J, Rajendran L, Nitsch RM, Tackenberg C. Calcium flux-independent NMDA receptor activity is required for Aβ oligomer-induced synaptic loss. Cell Death Dis 2015; 6:e1791. [PMID: 26086964 PMCID: PMC4669839 DOI: 10.1038/cddis.2015.160] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 12/20/2022]
Abstract
Synaptic loss is one of the major features of Alzheimer's disease (AD) and correlates with the degree of dementia. N-methyl-d-aspartate receptors (NMDARs) have been shown to mediate downstream effects of the β-amyloid peptide (Aβ) in AD models. NMDARs can trigger intracellular cascades via Ca2+ entry, however, also Ca2+-independent (metabotropic) functions of NMDARs have been described. We aimed to determine whether ionotropic or metabotropic NMDAR signaling is required for the induction of synaptic loss by Aβ. We show that endogenous Aβ as well as exogenously added synthetic Aβ oligomers induced dendritic spine loss and reductions in pre- and postsynaptic protein levels in hippocampal slice cultures. Synaptic alterations were mitigated by blocking glutamate binding to NMDARs using NMDAR antagonist APV, but not by preventing ion flux with Ca2+ chelator BAPTA or open-channel blockers MK-801 or memantine. Aβ increased the activity of p38 MAPK, a kinase involved in long-term depression and inhibition of p38 MAPK abolished the loss of dendritic spines. Aβ-induced increase of p38 MAPK activity was prevented by APV but not by BAPTA, MK-801 or memantine treatment highlighting the role of glutamate binding to NMDARs but not Ca2+ flux for synaptic degeneration by Aβ. We further show that treatment with the G protein inhibitor pertussis toxin (PTX) did not prevent dendritic spine loss in the presence of Aβ oligomers. Our data suggest that Aβ induces the activation of p38 MAPK and subsequent synaptic loss through Ca2+ flux- and G protein-independent mechanisms.
Collapse
Affiliation(s)
- J H Birnbaum
- 1] Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland [2] Graduate Program of the Zurich Neuroscience Center, University of Zurich, Schlieren, Switzerland
| | - J Bali
- 1] Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland [2] Systems and Cell Biology of Neurodegeneration, University of Zurich, Schlieren, Switzerland
| | - L Rajendran
- 1] Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland [2] Systems and Cell Biology of Neurodegeneration, University of Zurich, Schlieren, Switzerland
| | - R M Nitsch
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| | - C Tackenberg
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| |
Collapse
|
37
|
Cho IK, Jeong M, You AS, Park KH, Li QX. Pulmonary Proteome and Protein Networks in Response to the Herbicide Paraquat in Rats. JOURNAL OF PROTEOMICS & BIOINFORMATICS 2015; 8:67-79. [PMID: 26538867 PMCID: PMC4629535 DOI: 10.4172/jpb.1000354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Paraquat (PQ) has been one of the most widely used herbicides in the world. PQ, when ingested, is toxic to humans and may cause acute respiratory distress syndrome. To investigate molecular perturbation in lung tissues caused by PQ, Sprague Dawley male rats were fed with PQ at a dose of 25 mg/kg body weight for 20 times in four weeks. The effects of PQ on cellular processes and biological pathways were investigated by analyzing proteome in the lung tissues in comparison with the control. Among the detected proteins, 321 and 254 proteins were over-represented and under-represented, respectively, in the PQ-exposed rat lung tissues in comparison with the no PQ control. All over- and under-represented proteins were subjected to Ingenuity Pathway Analysis to create 25 biological networks and 38 pathways of interacting protein clusters. Over-represented proteins were involved in the C-jun-amino-terminal kinase pathway, caveolae-mediated endocytosis signaling, cardiovascular-cancer-respiratory pathway, regulation of clathrin-mediated endocytosis, non-small cell lung cancer signaling, pulmonary hypertension, glutamate receptor, immune response and angiogenesis. Under-represented proteins occurred in the p53 signaling pathway, mitogen-activated protein kinase signaling pathway, cartilage development and angiogenesis inhibition in the PQ-treated lungs. The results suggest that PQ may generate reactive oxygen species, impair the MAPK/p53 signaling pathway, activate angiogenesis and depress apoptosis in the lungs.
Collapse
Affiliation(s)
- Il Kyu Cho
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Mihye Jeong
- Department of Agro-Food Safety, National Academy of Agricultural Science, Rural Development Administration, Chonbuk 565-851, Republic of Korea
| | - Are-Sun You
- Department of Agro-Food Safety, National Academy of Agricultural Science, Rural Development Administration, Chonbuk 565-851, Republic of Korea
| | - Kyung Hun Park
- Department of Agro-Food Safety, National Academy of Agricultural Science, Rural Development Administration, Chonbuk 565-851, Republic of Korea
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
38
|
Meade ML, Hoffmann A, Makley MK, Snider TH, Schlager JJ, Gearhart JM. Quantitative proteomic analysis of the brainstem following lethal sarin exposure. Brain Res 2015; 1611:101-13. [PMID: 25842371 DOI: 10.1016/j.brainres.2015.03.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/11/2015] [Accepted: 03/24/2015] [Indexed: 11/15/2022]
Abstract
The brainstem represents a major tissue area affected by sarin organophosphate poisoning due to its function in respiratory and cardiovascular control. While the acute toxic effects of sarin on brainstem-related responses are relatively unknown, other brain areas e.g., cortex or cerebellum, have been studied more extensively. The study objective was to analyze the guinea pig brainstem toxicology response following sarin (2×LD50) exposure by proteome pathway analysis to gain insight into the complex regulatory mechanisms that lead to impairment of respiratory and cardiovascular control. Guinea pig exposure to sarin resulted in the typical acute behavior/physiology outcomes with death between 15 and 25min. In addition, brain and blood acetylcholinesterase activity was significantly reduced in the presence of sarin to 95%, and 89%, respectively, of control values. Isobaric-tagged (iTRAQ) liquid chromatography tandem mass spectrometry (LC-MS/MS) identified 198 total proteins of which 23% were upregulated, and 18% were downregulated following sarin exposure. Direct gene ontology (GO) analysis revealed a sarin-specific broad-spectrum proteomic profile including glutamate-mediated excitotoxicity, calcium overload, energy depletion responses, and compensatory carbohydrate metabolism, increases in ROS defense, DNA damage and chromatin remodeling, HSP response, targeted protein degradation (ubiquitination) and cell death response. With regards to the sarin-dependent effect on respiration, our study supports the potential interference of sarin with CO2/H(+) sensitive chemoreceptor neurons of the brainstem retrotrapezoid nucleus (RTN) that send excitatory glutamergic projections to the respiratory centers. In conclusion, this study gives insight into the brainstem broad-spectrum proteome following acute sarin exposure and the gained information will assist in the development of novel countermeasures.
Collapse
Affiliation(s)
- Mitchell L Meade
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 2729 R Street, Wright Patterson AFB, Dayton, OH 45433, USA; Molecular Bioeffects Branch, Bioeffects Division, 711 Human Performance Wing, Human Effectiveness Directorate, Air Force Research Laboratory (711 HPW/RHDJ), WPAFB, Dayton, OH 45433, USA.
| | - Andrea Hoffmann
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 2729 R Street, Wright Patterson AFB, Dayton, OH 45433, USA.
| | - Meghan K Makley
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 2729 R Street, Wright Patterson AFB, Dayton, OH 45433, USA.
| | - Thomas H Snider
- Battelle Biomedical Research Center, 1425 Plain City Georgesville Road, West Jefferson, OH 43162, USA.
| | - John J Schlager
- Molecular Bioeffects Branch, Bioeffects Division, 711 Human Performance Wing, Human Effectiveness Directorate, Air Force Research Laboratory (711 HPW/RHDJ), WPAFB, Dayton, OH 45433, USA.
| | - Jeffery M Gearhart
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 2729 R Street, Wright Patterson AFB, Dayton, OH 45433, USA; BoonShoft School of Medicine, Wright State University, 3640 Col. Glenn Highway, Dayton, OH 45433, USA.
| |
Collapse
|
39
|
Beske PH, Byrnes NM, Astruc-Diaz F, Jackson DA. Identification of NADPH oxidase as a key mediator in the post-ischemia-induced sequestration and degradation of the GluA2 AMPA receptor subunit. J Neurochem 2015; 132:504-19. [PMID: 25475532 DOI: 10.1111/jnc.13005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/22/2014] [Accepted: 11/06/2014] [Indexed: 12/17/2022]
Abstract
A hallmark of ischemic/reperfusion injury is a change in subunit composition of synaptic 2-amino-3-(3-hydroxy-5-methylisoazol-4-yl)propionic acid receptors (AMPARs). This change in AMPAR subunit composition leads to an increase in surface expression of GluA2-lacking Ca(2+) /Zn(2+) permeable AMPARs. These GluA2-lacking AMPARs play a key role in promoting delayed neuronal death following ischemic injury. At present, the mechanism(s) responsible for the ischemia/reperfusion-induced subunit composition switch and degradation of the GluA2 subunit remain unclear. In this study, we investigated the role of NADPH oxidase, and its importance in mediating endocytosis and subsequent degradation of the GluA2 AMPAR subunit in adult rat hippocampal slices subjected to oxygen-glucose deprivation/reperfusion (OGD/R) injury. In hippocampal slices pre-treated with the NADPH oxidase inhibitor apocynin attenuated OGD/R-mediated sequestration of GluA2 and GluA1 as well as prevent the degradation of GluA2. We provide compelling evidence that NADPH oxidase mediated sequestration of GluA1- and GluA2- involved activation of p38 MAPK. Furthermore, we demonstrate that inhibition of NADPH oxidase blunts the OGD/R-induced association of GluA2 with protein interacting with C kinase-1. In summary, this study identifies a novel mechanism that may underlie the ischemia/reperfusion-induced AMPAR subunit composition switch and a potential therapeutic target.
Collapse
Affiliation(s)
- Phillip H Beske
- Department of Biomedical and Pharmaceutical Sciences and the Center for Structural and Functional Neuroscience, The University of Montana, Missoula, Montana, USA
| | - Nicole M Byrnes
- Department of Biomedical and Pharmaceutical Sciences and the Center for Structural and Functional Neuroscience, The University of Montana, Missoula, Montana, USA
| | - Fanny Astruc-Diaz
- Department of Biomedical and Pharmaceutical Sciences and the Center for Structural and Functional Neuroscience, The University of Montana, Missoula, Montana, USA
| | - Darrell A Jackson
- Department of Biomedical and Pharmaceutical Sciences and the Center for Structural and Functional Neuroscience, The University of Montana, Missoula, Montana, USA
| |
Collapse
|
40
|
Holland S, Scholich K. Regulation of neuronal functions by the E3-ubiquitinligase Protein Associated with MYC (MYCBP2). Commun Integr Biol 2014. [DOI: 10.4161/cib.15967] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
41
|
Nguyen CT, Le NT, Tran TDH, Kim EH, Park SS, Luong TT, Chung KT, Pyo S, Rhee DK. Streptococcus pneumoniae ClpL modulates adherence to A549 human lung cells through Rap1/Rac1 activation. Infect Immun 2014; 82:3802-10. [PMID: 24980975 PMCID: PMC4187815 DOI: 10.1128/iai.02012-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/12/2014] [Indexed: 11/20/2022] Open
Abstract
Caseinolytic protease L (ClpL) is a member of the HSP100/Clp chaperone family, which is found mainly in Gram-positive bacteria. ClpL is highly expressed during infection for refolding of stress-induced denatured proteins, some of which are important for adherence. However, the role of ClpL in modulating pneumococcal virulence is poorly understood. Here, we show that ClpL impairs pneumococcal adherence to A549 lung cells by inducing and activating Rap1 and Rac1, thus increasing phosphorylation of cofilin (inactive form). Moreover, infection with a clpL mutant (ΔclpL) causes a greater degree of filopodium formation than D39 wild-type (WT) infection. Inhibition of Rap1 and Rac1 impairs filopodium formation and pneumococcal adherence. Therefore, ClpL can reduce pneumococcal adherence to A549 cells, likely via modulation of Rap1- and Rac1-mediated filopodium formation. These results demonstrate a potential role for ClpL in pneumococcal resistance to host cell adherence during infection. This study provides insight into further understanding the interactions between hosts and pathogens.
Collapse
Affiliation(s)
| | - Nhat-Tu Le
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | | | - Eun-Hye Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sang-Sang Park
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | | | - Kyung-Tae Chung
- Department of Clinical Laboratory Science, Dong-Eui University, Busan, South Korea
| | - Suhkneung Pyo
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
42
|
Yuen EY, Qin L, Wei J, Liu W, Liu A, Yan Z. Synergistic regulation of glutamatergic transmission by serotonin and norepinephrine reuptake inhibitors in prefrontal cortical neurons. J Biol Chem 2014; 289:25177-85. [PMID: 25056951 DOI: 10.1074/jbc.m114.567610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The monoamine system in the prefrontal cortex has been implicated in various mental disorders and has been the major target of anxiolytics and antidepressants. Clinical studies show that serotonin and norepinephrine reuptake inhibitors (SNRIs) produce better therapeutic effects than single selective reuptake inhibitors, but the underlying mechanisms are largely unknown. Here, we found that low dose SNRIs, by acting on 5-HT(1A) and α2-adrenergic receptors, synergistically reduced AMPA receptor (AMPAR)-mediated excitatory postsynaptic currents and AMPAR surface expression in prefrontal cortex pyramidal neurons via a mechanism involving Rab5/dynamin-mediated endocytosis of AMPARs. The synergistic effect of SNRIs on AMPARs was blocked by inhibition of activator of G protein signaling 3, a G protein modulator that prevents reassociation of G(i) protein α subunit and prolongs the βγ-mediated signaling pathway. Moreover, the depression of AMPAR-mediated excitatory postsynaptic currents by SNRIs required p38 kinase activity, which was increased by 5-HT(1A) and α2-adrenergic receptor co-activation in an activator of G protein signaling 3-dependent manner. These results have revealed a potential mechanism for the synergy between the serotonin and norepinephrine systems in the regulation of glutamatergic transmission in cortical neurons.
Collapse
Affiliation(s)
- Eunice Y Yuen
- From the Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214 and
| | - Luye Qin
- From the Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214 and
| | - Jing Wei
- From the Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214 and Veterans Affairs Western New York Healthcare System, Buffalo, New York 14215
| | - Wenhua Liu
- From the Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214 and
| | - Aiyi Liu
- From the Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214 and
| | - Zhen Yan
- From the Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214 and Veterans Affairs Western New York Healthcare System, Buffalo, New York 14215
| |
Collapse
|
43
|
Sohn YI, Lee NJ, Chung A, Saavedra JM, Scott Turner R, Pak DTS, Hoe HS. Antihypertensive drug Valsartan promotes dendritic spine density by altering AMPA receptor trafficking. Biochem Biophys Res Commun 2013; 439:464-70. [PMID: 24012668 DOI: 10.1016/j.bbrc.2013.08.091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 08/29/2013] [Indexed: 02/07/2023]
Abstract
Recent studies demonstrated that the antihypertensive drug Valsartan improved spatial and episodic memory in mouse models of Alzheimer's Disease (AD) and human subjects with hypertension. However, the molecular mechanism by which Valsartan can regulate cognitive function is still unknown. Here, we investigated the effect of Valsartan on dendritic spine formation in primary hippocampal neurons, which is correlated with learning and memory. Interestingly, we found that Valsartan promotes spinogenesis in developing and mature neurons. In addition, we found that Valsartan increases the puncta number of PSD-95 and trends toward an increase in the puncta number of synaptophysin. Moreover, Valsartan increased the cell surface levels of AMPA receptors and selectively altered the levels of spinogenesis-related proteins, including CaMKIIα and phospho-CDK5. These data suggest that Valsartan may promote spinogenesis by enhancing AMPA receptor trafficking and synaptic plasticity signaling.
Collapse
Affiliation(s)
- Young In Sohn
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Simultaneous monitoring of presynaptic transmitter release and postsynaptic receptor trafficking reveals an enhancement of presynaptic activity in metabotropic glutamate receptor-mediated long-term depression. J Neurosci 2013; 33:5867-5877. [PMID: 23536098 DOI: 10.1523/jneurosci.1508-12.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although the contribution of postsynaptic mechanisms to long-term synaptic plasticity has been studied extensively, understanding the contribution of presynaptic modifications to this process lags behind, primarily because of a lack of techniques with which to directly and quantifiably measure neurotransmitter release from synaptic terminals. Here, we developed a method to measure presynaptic activity through the biotinylation of vesicular transporters in vesicles fused with presynaptic membranes during neurotransmitter release. This method allowed us for the first time to selectively quantify the spontaneous or evoked release of glutamate or GABA at their respective synapses. Using this method to investigate presynaptic changes during the expression of group I metabotropic glutamate receptor (mGluR1/5)-mediated long-term depression (LTD) in cultured rat hippocampal neurons, we discovered that this form of LTD was associated with increased presynaptic release of glutamate, despite reduced miniature EPSCs measured with whole-cell recording. Moreover, we found that specific blockade of AMPA receptor (AMPAR) endocytosis with a membrane-permeable GluR2-derived peptide not only prevented the expression of LTD but also eliminated LTD-associated increase in presynaptic release. Thus, our work not only demonstrates that mGluR1/5-mediated LTD is associated with increased endocytosis of postsynaptic AMPARs but also reveals an unexpected homeostatic/compensatory increase in presynaptic release. In addition, this study indicates that biotinylation of vesicular transporters in live cultured neurons is a valuable tool for studying presynaptic function.
Collapse
|
45
|
Tambuyzer T, Ahmed T, Taylor CJ, Berckmans D, Balschun D, Aerts JM. System Identification of mGluR-Dependent Long-Term Depression. Neural Comput 2013; 25:650-70. [DOI: 10.1162/neco_a_00408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent advances have started to uncover the underlying mechanisms of metabotropic glutamate receptor (mGluR)–dependent long-term depression (LTD). However, it is not completely clear how these mechanisms are linked, and it is believed that several crucial mechanisms remain to be revealed. In this study, we investigated whether system identification (SI) methods can be used to gain insight into the mechanisms of synaptic plasticity. SI methods have been shown to be an objective and powerful approach for describing how sensory neurons encode information about stimuli. However, to our knowledge, it is the first time that SI methods have been applied to electrophysiological brain slice recordings of synaptic plasticity responses. The results indicate that the SI approach is a valuable tool for reverse-engineering of mGluR-LTD responses. We suggest that such SI methods can aid in unraveling the complexities of synaptic function.
Collapse
Affiliation(s)
- Tim Tambuyzer
- M3-BIORES: Measure, Model and Manage Bioresponses, Department of Biosystems, Catholic University of Leuven, Leuven B-3001, Belgium
| | - Tariq Ahmed
- Laboratory for Biological Psychology, Department of Psychology, Catholic University of Leuven, Leuven B-3001, Belgium
| | - C. James Taylor
- Engineering Department, Lancaster University, Lancaster, LA1 4YR, U.K
| | - Daniel Berckmans
- M3-BIORES: Measure, Model and Manage Bioresponses, Department of Biosystems, Catholic University of Leuven, Leuven B-3001, Belgium
| | - Detlef Balschun
- Laboratory for Biological Psychology, Department of Psychology, Catholic University of Leuven, Leuven B-3001, Belgium
| | - Jean-Marie Aerts
- M3-BIORES: Measure, Model and Manage Bioresponses, Department of Biosystems, Catholic University of Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Huang CC, Hsu KS. Activation of NMDA receptors reduces metabotropic glutamate receptor-induced long-term depression in the nucleus accumbens via a CaMKII-dependent mechanism. Neuropharmacology 2012; 63:1298-307. [DOI: 10.1016/j.neuropharm.2012.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/30/2012] [Accepted: 08/14/2012] [Indexed: 01/12/2023]
|
47
|
Boaglio AC, Zucchetti AE, Toledo FD, Barosso IR, Sánchez Pozzi EJ, Crocenzi FA, Roma MG. ERK1/2 and p38 MAPKs are complementarily involved in estradiol 17ß-D-glucuronide-induced cholestasis: crosstalk with cPKC and PI3K. PLoS One 2012; 7:e49255. [PMID: 23166621 PMCID: PMC3498151 DOI: 10.1371/journal.pone.0049255] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/04/2012] [Indexed: 12/17/2022] Open
Abstract
Objective The endogenous, cholestatic metabolite estradiol 17ß-d-glucuronide (E217G) induces endocytic internalization of the canalicular transporters relevant to bile formation, Bsep and Mrp2. We evaluated here whether MAPKs are involved in this effect. Design ERK1/2, JNK1/2, and p38 MAPK activation was assessed by the increase in their phosphorylation status. Hepatocanalicular function was evaluated in isolated rat hepatocyte couplets (IRHCs) by quantifying the apical secretion of fluorescent Bsep and Mrp2 substrates, and in isolated, perfused rat livers (IPRLs), using taurocholate and 2,4-dinitrophenyl-S-glutathione, respectively. Protein kinase participation in E217G-induced secretory failure was assessed by co-administering selective inhibitors. Internalization of Bsep/Mrp2 was assessed by confocal microscopy and image analysis. Results E217G activated all kinds of MAPKs. The PI3K inhibitor wortmannin prevented ERK1/2 activation, whereas the cPKC inhibitor Gö6976 prevented p38 activation, suggesting that ERK1/2 and p38 are downstream of PI3K and cPKC, respectively. The p38 inhibitor SB203580 and the ERK1/2 inhibitor PD98059, but not the JNK1/2 inhibitor SP600125, partially prevented E217G-induced changes in transporter activity and localization in IRHCs. p38 and ERK1/2 co-inhibition resulted in additive protection, suggesting complementary involvement of these MAPKs. In IPRLs, E217G induced endocytosis of canalicular transporters and a rapid and sustained decrease in bile flow and biliary excretion of Bsep/Mrp2 substrates. p38 inhibition prevented this initial decay, and the internalization of Bsep/Mrp2. Contrarily, ERK1/2 inhibition accelerated the recovery of biliary secretion and the canalicular reinsertion of Bsep/Mrp2. Conclusions cPKC/p38 MAPK and PI3K/ERK1/2 signalling pathways participate complementarily in E217G-induced cholestasis, through internalization and sustained intracellular retention of canalicular transporters, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernando A. Crocenzi
- Institute of Experimental Physiology, National Scientific and Technical Research Council/National University of Rosario, Rosario, Argentina
- * E-mail: (FAC); (MGR)
| | - Marcelo G. Roma
- Institute of Experimental Physiology, National Scientific and Technical Research Council/National University of Rosario, Rosario, Argentina
- * E-mail: (FAC); (MGR)
| |
Collapse
|
48
|
Wang H, Zhuo M. Group I metabotropic glutamate receptor-mediated gene transcription and implications for synaptic plasticity and diseases. Front Pharmacol 2012; 3:189. [PMID: 23125836 PMCID: PMC3485740 DOI: 10.3389/fphar.2012.00189] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/11/2012] [Indexed: 12/05/2022] Open
Abstract
Stimulation of group I metabotropic glutamate receptors (mGluRs) initiates a wide variety of signaling pathways. Group I mGluR activation can regulate gene expression at both translational and transcriptional levels, and induces translation or transcription-dependent synaptic plastic changes in neurons. The group I mGluR-mediated translation-dependent neural plasticity has been well reviewed. In this review, we will highlight group I mGluR-induced gene transcription and its role in synaptic plasticity. The signaling pathways (PKA, CaMKs, and MAPKs) which have been shown to link group I mGluRs to gene transcription, the relevant transcription factors (CREB and NF-κB), and target proteins (FMRP and ARC) will be documented. The significance and future direction for characterizing group I mGluR-mediated gene transcription in fragile X syndrome, schizophrenia, drug addiction, and other neurological disorders will also be discussed.
Collapse
Affiliation(s)
- Hansen Wang
- Department of Physiology, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | | |
Collapse
|
49
|
Wildburger NC, Laezza F. Control of neuronal ion channel function by glycogen synthase kinase-3: new prospective for an old kinase. Front Mol Neurosci 2012; 5:80. [PMID: 22811658 PMCID: PMC3397315 DOI: 10.3389/fnmol.2012.00080] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/20/2012] [Indexed: 12/19/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK-3) is an evolutionarily conserved multifaceted ubiquitous enzyme. In the central nervous system (CNS), GSK-3 acts through an intricate network of intracellular signaling pathways culminating in a highly divergent cascade of phosphorylations that control neuronal function during development and adulthood. Accumulated evidence indicates that altered levels of GSK-3 correlate with maladaptive plasticity of neuronal circuitries in psychiatric disorders, addictive behaviors, and neurodegenerative diseases, and pharmacological interventions known to limit GSK-3 can counteract some of these deficits. Thus, targeting the GSK-3 cascade for therapeutic interventions against this broad spectrum of brain diseases has raised a tremendous interest. Yet, the multitude of GSK-3 downstream effectors poses a substantial challenge in the development of selective and potent medications that could efficiently block or modulate the activity of this enzyme. Although the full range of GSK-3 molecular targets are far from resolved, exciting new evidence indicates that ion channels regulating excitability, neurotransmitter release, and synaptic transmission, which ultimately contribute to the mechanisms underling brain plasticity and higher level cognitive and emotional processing, are new promising targets of this enzyme. Here, we will revise this new emerging role of GSK-3 in controling the activity of voltage-gated Na(+), K(+), Ca(2+) channels and ligand-gated glutamate receptors with the goal of highlighting new relevant endpoints of the neuronal GSK-3 cascade that could provide a platform for a better understanding of the mechanisms underlying the dysfunction of this kinase in the CNS and serve as a guidance for medication development against the broad range of GSK-3-linked human diseases.
Collapse
Affiliation(s)
- Norelle C. Wildburger
- Department of Pharmacology and Toxicology, University of Texas Medical BranchGalveston, TX, USA
- Neuroscience Graduate Program, University of Texas Medical BranchGalveston, TX, USA
- Sealy Center for Cancer Cell Biology, University of Texas Medical BranchGalveston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical BranchGalveston, TX, USA
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical BranchGalveston, TX, USA
- Center for Addiction Research, University of Texas Medical BranchGalveston, TX, USA
| |
Collapse
|
50
|
Fernandez F, Soon I, Li Z, Kuan TC, Min DH, Wong ESM, Demidov ON, Paterson MC, Dawe G, Bulavin DV, Xiao ZC. Wip1 phosphatase positively modulates dendritic spine morphology and memory processes through the p38MAPK signaling pathway. Cell Adh Migr 2012; 6:333-43. [PMID: 22983193 DOI: 10.4161/cam.20892] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dendritic spine morphology is modulated by protein kinase p38, a mitogen-activated protein (MAPK), in the hippocampus. Protein p38MAPK is a substrate of wip1, a protein phosphatase. The role of wip1 in the central nervous system (CNS) has never been explored. Here, we report a novel function of wip1 in dendritic spine morphology and memory processes. Wip1 deficiency decreases dendritic spine size and density in pyramidal neurons of the hippocampal CA1 region. Simultaneously, impairments in object recognition tasks and contextual memory occur in wip1 deficient mice, but are reversed in wip1/p38 double mutant mice. Thus, our findings demonstrate that wip1 modulates dendritic morphology and memory processes through the p38MAPK signaling pathway. In addition to the well-characterized role of the wip1/p38MAPK in cell death and differentiation, we revealed the novel contribution of wip1 to cognition and dendritic spine morphology, which may suggest new approaches to treating neurodegenerative disorders.
Collapse
|