1
|
Zhu Z, Song J, Zhang C, Zhang J, Shan Z. Rapamycin alleviates irradiation-induced parotid injury by enhancing the whole gland homeostasis. Oral Dis 2024. [PMID: 38569076 DOI: 10.1111/odi.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/14/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVES Salivary gland injury is one of the most common complications of radiotherapy in head-and-neck cancers. This study investigated the mechanism by which rapamycin prevents irradiation (IR)-induced injury in the parotid glands. MATERIALS AND METHODS Miniature pigs either received (a) no treatment (NT), (b) IR in the right parotid gland for 5 consecutive days (IR), or intraperitoneal administration of rapamycin (Rap) 1 h prior to IR (IR + Rap). Tissues were collected at three distinct time points (24 h, 4 weeks, and 16 weeks) after IR. Histological analyses, western blot, and real-time reverse transcriptase-polymerase chain reaction were performed to explore the mechanisms of IR-induced injury in the parotid gland. RESULTS Rapamycin treatment maintained parotid salivary flow 16 weeks post-IR, preserved the number of acinar cells, and reduced parotid tissue fibrosis, as well as reduced apoptosis levels, decreased cleaved caspase-3 expression, and increased the Bcl-2/Bax ratio in the parotid glands. Autophagy marker LC3B was upregulated by rapamycin after IR, while P62 expression was downregulated. Rapamycin reduced the expression of pro-inflammatory factors and the mesenchymal tissue fibrosis following IR. CONCLUSIONS Rapamycin maintains gland homeostasis after IR by decreasing apoptosis, reducing the expression of pro-inflammatory factors, and enhancing autophagy.
Collapse
Affiliation(s)
- Zhao Zhu
- Outpatient Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jiaxin Song
- Outpatient Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Chunmei Zhang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Outpatient Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhaochen Shan
- Outpatient Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Boittin FX, Guitard N, Toth M, Riccobono D, Théry H, Bobe R. The Protein Kinase A Inhibitor KT5720 Prevents Endothelial Dysfunctions Induced by High-Dose Irradiation. Int J Mol Sci 2024; 25:2269. [PMID: 38396945 PMCID: PMC10889412 DOI: 10.3390/ijms25042269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
High-dose irradiation can trigger numerous endothelial dysfunctions, including apoptosis, the overexpression of adhesion molecules, and alteration of adherens junctions. Altogether, these endothelial dysfunctions contribute to the development of tissue inflammation and organ damage. The development of endothelial dysfunctions may depend on protein phosphorylation by various protein kinases, but the possible role of protein kinase A (PKA) has not been investigated so far, and efficient compounds able to protect the endothelium from irradiation effects are needed. Here we report the beneficial effects of the PKA inhibitor KT5720 on a panel of irradiation-induced endothelial dysfunctions in human pulmonary microvascular endothelial cells (HPMECs). High-dose X-irradiation (15 Gy) triggered the late apoptosis of HPMECs independent of the ceramide/P38 MAP kinase pathway or p53. In contrast, the treatment of HPMECs with KT5720 completely prevented irradiation-induced apoptosis, whether applied before or after cell irradiation. Immunostainings of irradiated monolayers revealed that KT5720 treatment preserved the overall integrity of endothelial monolayers and adherens junctions linking endothelial cells. Real-time impedance measurements performed in HPMEC monolayers confirmed the overall protective role of KT5720 against irradiation. Treatment with KT5720 before or after irradiation also reduced irradiation-induced ICAM-1 overexpression. Finally, the possible role for PKA in the development of endothelial dysfunctions is discussed, but the potency of KT5720 to inhibit the development of a panel of irradiation-induced endothelial dysfunctions, whether applied before or after irradiation, suggests that this compound could be of great interest for both the prevention and treatment of vascular damages in the event of exposure to a high dose of radiation.
Collapse
Affiliation(s)
- François-Xavier Boittin
- Unité de Radiobiologie, Département Effets Biologiques des Rayonnements, IRBA—Institut de Recherche Biomédicale des Armées, Place du Général Valérie André, 91223 Brétigny-sur-Orge, France
| | - Nathalie Guitard
- Unité de Radiobiologie, Département Effets Biologiques des Rayonnements, IRBA—Institut de Recherche Biomédicale des Armées, Place du Général Valérie André, 91223 Brétigny-sur-Orge, France
| | - Maeliss Toth
- Université Paris-Saclay, INSERM, Laboratory of Signalling and Cardiovascular Pathophysiology U1180, 91400 Orsay, France
| | - Diane Riccobono
- Unité de Radiobiologie, Département Effets Biologiques des Rayonnements, IRBA—Institut de Recherche Biomédicale des Armées, Place du Général Valérie André, 91223 Brétigny-sur-Orge, France
| | - Hélène Théry
- Unité de Radiobiologie, Département Effets Biologiques des Rayonnements, IRBA—Institut de Recherche Biomédicale des Armées, Place du Général Valérie André, 91223 Brétigny-sur-Orge, France
| | - Régis Bobe
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, 94276 Le Kremlin-Bicêtre, France;
| |
Collapse
|
3
|
Ciummo SL, Sorrentino C, Fieni C, Di Carlo E. Interleukin-30 subverts prostate cancer-endothelium crosstalk by fostering angiogenesis and activating immunoregulatory and oncogenic signaling pathways. J Exp Clin Cancer Res 2023; 42:336. [PMID: 38087324 PMCID: PMC10714661 DOI: 10.1186/s13046-023-02902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cancer-endothelial interplay is crucial for tumor behavior, yet the molecular mechanisms involved are largely unknown. Interleukin(IL)-30, which is expressed as a membrane-anchored cytokine by human prostate cancer (PC) cells, promotes PC vascularization and progression, but the underlying mechanisms have yet to be fully explored. METHODS PC-endothelial cell (EC) interactions were investigated, after coculture, by flow cytometry, transcriptional profiling, western blot, and ELISA assays. Proteome profiler phospho-kinase array unveiled the molecular pathways involved. The role of tumor-derived IL30 on the endothelium's capacity to generate autocrine circuits and vascular budding was determined following IL30 overexpression, by gene transfection, or its deletion by CRISPR/Cas9 genome editing. Clinical value of the experimental findings was determined through immunopathological study of experimental and patient-derived PC samples, and bioinformatics of gene expression profiles from PC patients. RESULTS Contact with PC cells favors EC proliferation and production of angiogenic and angiocrine factors, which are boosted by PC expression of IL30, that feeds autocrine loops, mediated by IGF1, EDN1, ANG and CXCL10, and promotes vascular budding and inflammation, via phosphorylation of multiple signaling proteins, such as Src, Yes, STAT3, STAT6, RSK1/2, c-Jun, AKT and, primarily CREB, GSK-3α/β, HSP60 and p53. Deletion of the IL30 gene in PC cells inhibits endothelial expression of IGF1, EDN1, ANG and CXCL10 and substantially impairs tumor angiogenesis. In its interaction with IL30-overexpressing PC cells the endothelium boosts their expression of a wide range of immunity regulatory genes, including CCL28, CCL4, CCL5, CCR2, CCR7, CXCR4, IL10, IL13, IL17A, FASLG, IDO1, KITLG, TNFA, TNFSF10 and PDCD1, and cancer driver genes, including BCL2, CCND2, EGR3, IL6, VEGFA, KLK3, PTGS1, LGALS4, GNRH1 and SHBG. Immunopathological analyses of PC xenografts and in silico investigation of 1116 PC cases, from the Prostate Cancer Transcriptome Atlas, confirmed the correlation between the expression of IL30 and that of both pro-inflammatory genes, NOS2, TNFA, CXCR5 and IL12B, and cancer driver genes, LGALS4, GNRH1 and SHBG, which was validated in a cohort of 80 PC patients. CONCLUSIONS IL30 regulates the crosstalk between PC and EC and reshapes their transcriptional profiles, triggering angiogenic, immunoregulatory and oncogenic gene expression programs. These findings highlight the angiostatic and oncostatic efficacy of targeting IL30 to fight PC.
Collapse
Affiliation(s)
- Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy.
| |
Collapse
|
4
|
Huang T, Chen C, Du J, Zheng Z, Ye S, Fang S, Liu K. A tRF-5a fragment that regulates radiation resistance of colorectal cancer cells by targeting MKNK1. J Cell Mol Med 2023; 27:4021-4033. [PMID: 37864471 PMCID: PMC10747413 DOI: 10.1111/jcmm.17982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023] Open
Abstract
Radiotherapy serves as a crucial strategy in the treatment of colorectal cancer (CRC). However, its efficacy is often hindered by the challenge of radiation resistance. Although the literature suggests that some tRNA-derived small RNAs (tsRNAs) are associated with various cancers, studies reporting the relationship of tsRNAs with cancer cell radiosensitivity have not been published yet. In our study, we utilized tsRNAs sequencing to predict differentially expressed tsRNAs in two CRC cells and their radioresistant cells, and 10 tsRNAs with significant differences in expression were validated by qPCR. The target genes of tRF-16-7X9PN5D were predicted and verified by the bioinformatics, dual-luciferase reporter gene assay and western blotting analyses. Wound healing, colony formation, transwell invasion and CCK-8 assays were performed to detect the effects of tRF-16-7X9PN5D on cell function and radiosensitivity. Western blotting evaluated the relationship between tRF-16-7X9PN5D and the MKNK-eIF4E axis. Our findings demonstrated that tRF-16-7X9PN5D expression was substantially downregulated in radioresistant CRC cells. Furthermore, tRF-16-7X9PN5D could promote CRC cells' ability to proliferate, migrate, invade and obtain radiation resistance by targeting MKNK1. Finally, tRF-16-7X9PN5D could regulate eIF4E phosphorylation via MKNK1. This investigation indicated that tRF-16-7X9PN5D has an essential regulatory role in the radiation resistance of CRC by directly targeting MKNK1, and may be a new pathway for regulating the CRC radiosensitivity.
Collapse
Affiliation(s)
- Tianyi Huang
- Department of Radiation OncologyThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| | - Chujia Chen
- Health Science CenterNingbo UniversityNingboZhejiangChina
| | - Juan Du
- Department of Radiation OncologyThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| | - Zhen Zheng
- Department of Radiation OncologyThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| | - Shuang Ye
- Department of Radiation OncologyThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| | - Shuai Fang
- Department of Thoracic SurgeryThe Affiliated Hospital of Medical School of Ningbo UniversityNingboZhejiangChina
| | - Kaitai Liu
- Department of Radiation OncologyThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| |
Collapse
|
5
|
Wang SC, Huang YC, Hsiao CC, Sheen JM, Huang LT, Lo WS, Hsieh HY, Chen YC. Melatonin protects against methotrexate hepatotoxicity in young rats: Impact of PI3K/Akt/mTOR signaling. J Biochem Mol Toxicol 2023; 37:e23323. [PMID: 36890697 DOI: 10.1002/jbt.23323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 12/13/2022] [Accepted: 02/08/2023] [Indexed: 03/10/2023]
Abstract
With the improvement in children's acute lymphoblastic leukemia (ALL) care, the survival rate in children ALL has improved much. Methotrexate (MTX) plays an essential role in the success of children's ALL treatment. Since hepatotoxicity is commonly reported in individuals treated with intravenous or oral MTX, our study further examined the hepatic effect following intrathecal MTX treatment, which is an essential treatment for leukemia patients. Specifically, we examined the pathogenesis of MTX hepatotoxicity in young rats and explored the impact of melatonin treatment in protection against MTX hepatotoxicity. Successfully, we found that melatonin was able to protect against MTX hepatotoxicity.
Collapse
Affiliation(s)
- Su-Chen Wang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chuan Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Cheng Hsiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Shan Lo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsin-Yi Hsieh
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
6
|
García-Flores N, Jiménez-Suárez J, Garnés-García C, Fernández-Aroca DM, Sabater S, Andrés I, Fernández-Aramburo A, Ruiz-Hidalgo MJ, Belandia B, Sanchez-Prieto R, Cimas FJ. P38 MAPK and Radiotherapy: Foes or Friends? Cancers (Basel) 2023; 15:861. [PMID: 36765819 PMCID: PMC9913882 DOI: 10.3390/cancers15030861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Over the last 30 years, the study of the cellular response to ionizing radiation (IR) has increased exponentially. Among the various signaling pathways affected by IR, p38 MAPK has been shown to be activated both in vitro and in vivo, with involvement in key processes triggered by IR-mediated genotoxic insult, such as the cell cycle, apoptosis or senescence. However, we do not yet have a definitive clue about the role of p38 MAPK in terms of radioresistance/sensitivity and its potential use to improve current radiotherapy. In this review, we summarize the current knowledge on this family of MAPKs in response to IR as well as in different aspects related to radiotherapy, such as their role in the control of REDOX, fibrosis, and in the radiosensitizing effect of several compounds.
Collapse
Affiliation(s)
- Natalia García-Flores
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Jaime Jiménez-Suárez
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Cristina Garnés-García
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Diego M. Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Sebastia Sabater
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Ignacio Andrés
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Antonio Fernández-Aramburo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Servicio de Oncología Médica, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - María José Ruiz-Hidalgo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Borja Belandia
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain
| | - Ricardo Sanchez-Prieto
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Francisco J. Cimas
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
7
|
Deng H, Chen Y, Li P, Hang Q, Zhang P, Jin Y, Chen M. PI3K/AKT/mTOR pathway, hypoxia, and glucose metabolism: Potential targets to overcome radioresistance in small cell lung cancer. CANCER PATHOGENESIS AND THERAPY 2023; 1:56-66. [PMID: 38328610 PMCID: PMC10846321 DOI: 10.1016/j.cpt.2022.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/02/2022] [Accepted: 09/25/2022] [Indexed: 02/09/2024]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive tumor type for which limited therapeutic progress has been made. Platinum-based chemotherapy with or without thoracic radiotherapy remains the backbone of treatment, but most patients with SCLC acquire therapeutic resistance. Given the need for more effective therapies, better elucidation of the molecular pathogenesis of SCLC is imperative. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is frequently activated in SCLC and strongly associated with resistance to ionizing radiation in many solid tumors. This pathway is an important regulator of cancer cell glucose metabolism, and its activation probably effects radioresistance by influencing bioenergetic processes in SCLC. Glucose metabolism has three main branches-aerobic glycolysis, oxidative phosphorylation, and the pentose phosphate pathway-involved in radioresistance. The interaction between the PI3K/AKT/mTOR pathway and glucose metabolism is largely mediated by hypoxia-inducible factor 1 (HIF-1) signaling. The PI3K/AKT/mTOR pathway also influences glucose metabolism through other mechanisms to participate in radioresistance, including inhibiting the ubiquitination of rate-limiting enzymes of the pentose phosphate pathway. This review summarizes our understanding of links among the PI3K/AKT/mTOR pathway, hypoxia, and glucose metabolism in SCLC radioresistance and highlights promising research directions to promote cancer cell death and improve the clinical outcome of patients with this devastating disease.
Collapse
Affiliation(s)
- Huan Deng
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yamei Chen
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Peijing Li
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qingqing Hang
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Peng Zhang
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ying Jin
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ming Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| |
Collapse
|
8
|
Blanco I, Marquina M, Tura-Ceide O, Ferrer E, Ramírez AM, Lopez-Meseguer M, Callejo M, Perez-Vizcaino F, Peinado VI, Barberà JA. Survivin inhibition with YM155 ameliorates experimental pulmonary arterial hypertension. Front Pharmacol 2023; 14:1145994. [PMID: 37188265 PMCID: PMC10176173 DOI: 10.3389/fphar.2023.1145994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Background: Imbalance between cell proliferation and apoptosis underlies the development of pulmonary arterial hypertension (PAH). Current vasodilator treatment of PAH does not target the uncontrolled proliferative process in pulmonary arteries. Proteins involved in the apoptosis pathway may play a role in PAH and their inhibition might represent a potential therapeutic target. Survivin is a member of the apoptosis inhibitor protein family involved in cell proliferation. Objectives: This study aimed to explore the potential role of survivin in the pathogenesis of PAH and the effects of its inhibition. Methods: In SU5416/hypoxia-induced PAH mice we assessed the expression of survivin by immunohistochemistry, western-blot analysis, and RT-PCR; the expression of proliferation-related genes (Bcl2 and Mki67); and the effects of the survivin inhibitor YM155. In explanted lungs from patients with PAH we assessed the expression of survivin, BCL2 and MKI67. Results: SU5416/hypoxia mice showed increased expression of survivin in pulmonary arteries and lung tissue extract, and upregulation of survivin, Bcl2 and Mki67 genes. Treatment with YM155 reduced right ventricle (RV) systolic pressure, RV thickness, pulmonary vascular remodeling, and the expression of survivin, Bcl2, and Mki67 to values similar to those in control animals. Lungs of patients with PAH also showed increased expression of survivin in pulmonary arteries and lung extract, and also that of BCL2 and MKI67 genes, compared with control lungs. Conclusion: We conclude that survivin might be involved in the pathogenesis of PAH and that its inhibition with YM155 might represent a novel therapeutic approach that warrants further evaluation.
Collapse
Affiliation(s)
- Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic-University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- *Correspondence: Isabel Blanco,
| | - Maribel Marquina
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Biomedical Research Institute-IDIBGI, Girona, Spain
| | - Elisabet Ferrer
- Department of Pulmonary Medicine, Hospital Clínic-University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Ana M. Ramírez
- Department of Pulmonary Medicine, Hospital Clínic-University of Barcelona, Barcelona, Spain
| | | | - Maria Callejo
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Departament of Pharmacology and Toxicology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Perez-Vizcaino
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Departament of Pharmacology and Toxicology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Universidad Complutense de Madrid, Madrid, Spain
| | - Victor Ivo Peinado
- Department of Pulmonary Medicine, Hospital Clínic-University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Department of Experimental Pathology, Institut d’Investigacions Biomèdiques de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic-University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| |
Collapse
|
9
|
Chaudhary N, Joshi N, Doloi R, Shivashankar A, Thorat R, Dalal SN. Plakophilin3 loss leads to an increase in autophagy and radio-resistance. Biochem Biophys Res Commun 2022; 620:1-7. [DOI: 10.1016/j.bbrc.2022.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
|
10
|
The p38 MAPK Components and Modulators as Biomarkers and Molecular Targets in Cancer. Int J Mol Sci 2021; 23:ijms23010370. [PMID: 35008796 PMCID: PMC8745478 DOI: 10.3390/ijms23010370] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) family is an important bridge in the transduction of extracellular and intracellular signals in different responses at the cellular level. Within this MAPK family, the p38 kinases can be found altered in various diseases, including cancer, where these kinases play a fundamental role, sometimes with antagonistic mechanisms of action, depending on several factors. In fact, this family has an immense number of functionalities, many of them yet to be discovered in terms of regulation and action in different types of cancer, being directly involved in the response to cancer therapies. To date, three main groups of MAPKs have been identified in mammals: the extracellular signal-regulated kinases (ERK), Jun N-terminal kinase (JNK), and the different isoforms of p38 (α, β, γ, δ). In this review, we highlight the mechanism of action of these kinases, taking into account their extensive regulation at the cellular level through various modifications and modulations, including a wide variety of microRNAs. We also analyze the importance of the different isoforms expressed in the different tissues and their possible role as biomarkers and molecular targets. In addition, we include the latest preclinical and clinical trials with different p38-related drugs that are ongoing with hopeful expectations in the present/future of developing precision medicine in cancer.
Collapse
|
11
|
Radiobiological Studies of Microvascular Damage through In Vitro Models: A Methodological Perspective. Cancers (Basel) 2021; 13:cancers13051182. [PMID: 33803333 PMCID: PMC7967181 DOI: 10.3390/cancers13051182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ionizing radiation (IR) is used in radiotherapy as a treatment to destroy cancer. Such treatment also affects other tissues, resulting in the so-called normal tissue complications. Endothelial cells (ECs) composing the microvasculature have essential roles in the microenvironment's homeostasis (ME). Thus, detrimental effects induced by irradiation on ECs can influence both the tumor and healthy tissue. In-vitro models can be advantageous to study these phenomena. In this systematic review, we analyzed in-vitro models of ECs subjected to IR. We highlighted the critical issues involved in the production, irradiation, and analysis of such radiobiological in-vitro models to study microvascular endothelial cells damage. For each step, we analyzed common methodologies and critical points required to obtain a reliable model. We identified the generation of a 3D environment for model production and the inclusion of heterogeneous cell populations for a reliable ME recapitulation. Additionally, we highlighted how essential information on the irradiation scheme, crucial to correlate better observed in vitro effects to the clinical scenario, are often neglected in the analyzed studies, limiting the translation of achieved results.
Collapse
|
12
|
Dobbin SJ, Petrie MC, Myles RC, Touyz RM, Lang NN. Cardiotoxic effects of angiogenesis inhibitors. Clin Sci (Lond) 2021; 135:71-100. [PMID: 33404052 PMCID: PMC7812690 DOI: 10.1042/cs20200305] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
The development of new therapies for cancer has led to dramatic improvements in survivorship. Angiogenesis inhibitors represent one such advancement, revolutionising treatment for a wide range of malignancies. However, these drugs are associated with cardiovascular toxicities which can impact optimal cancer treatment in the short-term and may lead to increased morbidity and mortality in the longer term. Vascular endothelial growth factor inhibitors (VEGFIs) are associated with hypertension, left ventricular systolic dysfunction (LVSD) and heart failure as well as arterial and venous thromboembolism, QTc interval prolongation and arrhythmia. The mechanisms behind the development of VEGFI-associated LVSD and heart failure likely involve the combination of a number of myocardial insults. These include direct myocardial effects, as well as secondary toxicity via coronary or peripheral vascular damage. Cardiac toxicity may result from the 'on-target' effects of VEGF inhibition or 'off-target' effects resulting from inhibition of other tyrosine kinases. Similar mechanisms may be involved in the development of VEGFI-associated right ventricular (RV) dysfunction. Some VEGFIs can be associated with QTc interval prolongation and an increased risk of ventricular and atrial arrhythmia. Further pre-clinical and clinical studies and trials are needed to better understand the impact of VEGFI on the cardiovascular system. Once mechanisms are elucidated, therapies can be investigated in clinical trials and surveillance strategies for identifying VEGFI-associated cardiovascular complications can be developed.
Collapse
Affiliation(s)
- Stephen J.H. Dobbin
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| | - Mark C. Petrie
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| | - Rachel C. Myles
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| | - Rhian M. Touyz
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| | - Ninian N. Lang
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| |
Collapse
|
13
|
Gamma Radiation-Induced Disruption of Cellular Junctions in HUVECs Is Mediated through Affecting MAPK/NF- κB Inflammatory Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1486232. [PMID: 31467629 PMCID: PMC6701340 DOI: 10.1155/2019/1486232] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 07/02/2019] [Indexed: 12/15/2022]
Abstract
Ionizing radiation-induced cardiovascular diseases (CVDs) have been well documented. However, the mechanisms of CVD genesis are still not fully understood. In this study, human umbilical vein endothelial cells (HUVECs) were exposed to gamma irradiation at different doses ranging from 0.2 Gy to 5 Gy. Cell viability, migration ability, permeability, oxidative and nitrosative stresses, inflammation, and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) pathway activation were evaluated postirradiation. It was found that gamma irradiation at doses ranging from 0.5 Gy to 5 Gy inhibited the migration ability of HUVECs without any significant effects on cell viability at 6 h and 24 h postirradiation. The decreased transendothelial electrical resistance (TEER), increased permeability, and disruption of cellular junctions were observed in HUVECs after gamma irradiation accompanied by the lower levels of junction-related proteins such as ZO-1, occludin, vascular endothelial- (VE-) cadherin, and connexin 40. The enhanced oxidative and nitrosative stresses, e.g., ROS and NO2 - levels and inflammatory cytokines IL-6 and TNF-α were demonstrated in HUVECs after gamma irradiation. Western blot results showed that protein levels of mitogen-activated protein kinase (MAPK) pathway molecules p38, p53, p21, and p27 increased after gamma irradiation, which further induced the activation of the NF-κB pathway. BAY 11-7085, an inhibitor of NF-κB activation, was demonstrated to partially block the effects of gamma radiation in HUVECs examined by TEER and FITC-dextran permeability assay. We therefore concluded that the gamma irradiation-induced disruption of cellular junctions in HUVECs was through the inflammatory MAPK/NF-κB signaling pathway.
Collapse
|
14
|
Mahmoud AR, Ali FEM, Abd-Elhamid TH, Hassanein EHM. Coenzyme Q 10 protects hepatocytes from ischemia reperfusion-induced apoptosis and oxidative stress via regulation of Bax/Bcl-2/PUMA and Nrf-2/FOXO-3/Sirt-1 signaling pathways. Tissue Cell 2019; 60:1-13. [PMID: 31582012 DOI: 10.1016/j.tice.2019.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
Coenzyme Q10 (CoQ10) is a component of the mitochondrial electron transport chain and regarded as a strong anti-oxidant agent. In this study, we focused on the mechanistic insights involved in the hepato-protective effects of CoQ10 against hepatic ischemia reperfusion (IR) injury. Our results revealed that CoQ10 significantly improved hepatic dysfunctions and oxidative stress caused by IR injury. Interestingly, as compared to IR subjected rat, CoQ10 inhibited apoptosis by marked down-regulation of both Bax and PUMA genes while the level of Bcl-2 gene was significantly increased. Moreover, CoQ10 up-regulated PI3K, Akt and mTOR protein expressions while it inhibited the expression of both GSK-3β and β-catenin. Additionally, CoQ10 restored oxidant/antioxidant balance via marked activated Nrf-2 protein as well as up-regulation of both Sirt-1 and FOXO-3 genes. Moreover, CoQ10 strongly inhibited inflammatory response through down-regulation of NF-κB-p65 and decrease both JAK1 and STAT-3 protein expressions with a subsequent modulating circulating inflammatory cytokines. Furthermore, histopathological analysis showed that CoQ10 remarkably ameliorated the histopathological damage induced by IR injury. Taken together, our results suggested and proved that CoQ10 provided a hepato-protection against hepatic IR injury via inhibition of apoptosis, oxidative stress, inflammation and their closed related pathways.
Collapse
Affiliation(s)
- Amany R Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt; Department of Anatomy, Unaizah College of Medicine, Qassim University, Unaizah Al Qassim Region, Saudi Arabia
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
15
|
Premkumar K, Nair J, Shankar BS. Differential radio-adaptive responses in BALB/c and C57BL/6 mice: pivotal role of calcium and nitric oxide signalling. Int J Radiat Biol 2019; 95:655-666. [PMID: 30676176 DOI: 10.1080/09553002.2019.1571647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: Our earlier studies demonstrated that transient radio-adaptive responses (RAR) in BALB/c mice were due to MAPK hyperactivation. The objective of this study was to determine the time duration of this low dose induced MAPK activation in BALB/c mice and to find out if similar adaptive responses are observed in C57BL/6 mice. Materials and methods: Mice were irradiated with 0.1 Gy priming dose (PD), 2 Gy challenge dose (CD) with an interval of 4 h (P + CD) and radiation induced immunosuppression in splenic lymphocytes was monitored as the endpoint for RAR. Results: Time kinetics following 0.1 Gy demonstrated persistence of MAPK hyperactivation till 48 h. Similar experiments in C57BL/6 mice indicated absence of RAR at 24 h following CD, in spite of MAPK activation which was also confirmed by time kinetics. Therefore, upstream activators of MAPK, viz., reactive oxygen and nitrogen species (ROS, RNS) and calcium levels were estimated. There was increased intracellular calcium (Ca2+) and nitric oxide (NO) in BALB/c and an increase in intracellular ROS in C57BL/6 mice 24 h after PD. Inhibition of NO and calcium chelation abrogated RAR in BALB/c mice. In vitro treatment of spleen cells with combination of NO donor and Ca2+ ionophore mimicked the effect of PD and induced adaptive response after 2 Gy not only in BALB/c but also in C57BL/6 mice confirming their crucial role in RAR. Conclusions: These results suggest that low dose induced differential induction of Ca2+ and NO signaling along with MAPK was responsible for contrasting RAR with respect to immune system of BALB/c and C57BL/6 mice. Abbreviations [3H]-TdR: 3H-methyl-thymidine; BAPTA: 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid; CD: Challenge Dose; CFSE: Carboxy Fluorescein Succinamidyl Ester; on A: Concanavalin A; DAF-FM: 4-amino-5-methylamino-2',7'-difluorescein; DCF-DA: 2',7'-dichlorofluorescein diacetate; DSB: Double Strand Break; ELISA: Enzyme Linked ImmunoSorbent Assay; ERK: Extracellular signal-Regulated protein Kinase; FBS: Fetal Bovine Serum; HIF-1A: Hypoxia-Inducible Factor 1-alpha; LDR: Low Dose Radiation; MAPK: Mitogen Activated Protein Kinase; MAPKK/MKK: MAPK Kinase; MAPKKK: MAPK Kinase Kinase; NO: Nitric Oxide; NOS: Nitric Oxide Synthase; P + CD: Priming + Challenge dose; PBS: Phosphate Buffered Saline; PBST: Phosphate Buffered Saline-Tween 20; PD: Priming Dose; PI3K: Phosphatidyl Inositol 3-Kinase; PKC: Protein Kinase C; RAR: Radio Adaptive Response; RNS: Reactive Nitrogen Species; ROS: Reactive Oxygen Species; RPMI-1640: Roswell Park Memorial Institute-1640 medium; SAPK/JNK: Stress-Activated Protein Kinase/ c-Jun NH2-terminal Kinase; SEM: Standard Error of Mean; SNAP: S-nitro amino penicillamine; TP53: Tumor Protein 53; γ-H2AX: Gamma- H2A histone family member X; Th1: Type 1 helper T cell responses; Th2: Type 2 helper T cell responses.
Collapse
Affiliation(s)
- Kavitha Premkumar
- a Immunology Section, Radiation Biology & Health Sciences Division , Bio-Science Group, Bhabha Atomic Research Centre , Mumbai , India
| | - Jisha Nair
- a Immunology Section, Radiation Biology & Health Sciences Division , Bio-Science Group, Bhabha Atomic Research Centre , Mumbai , India
| | - Bhavani S Shankar
- a Immunology Section, Radiation Biology & Health Sciences Division , Bio-Science Group, Bhabha Atomic Research Centre , Mumbai , India
| |
Collapse
|
16
|
Ricciotti E, Sarantopoulou D, Grant GR, Sanzari JK, Krigsfeld GS, Kiliti AJ, Kennedy AR, Grosser T. Distinct vascular genomic response of proton and gamma radiation-A pilot investigation. PLoS One 2019; 14:e0207503. [PMID: 30742630 PMCID: PMC6370185 DOI: 10.1371/journal.pone.0207503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
The cardiovascular biology of proton radiotherapy is not well understood. We aimed to compare the genomic dose-response to proton and gamma radiation of the mouse aorta to assess whether their vascular effects may diverge. We performed comparative RNA sequencing of the aorta following (4 hrs) total-body proton and gamma irradiation (0.5–200 cGy whole body dose, 10 dose levels) of conscious mice. A trend analysis identified genes that showed a dose response. While fewer genes were dose-responsive to proton than gamma radiation (29 vs. 194 genes; q-value ≤ 0.1), the magnitude of the effect was greater. Highly responsive genes were enriched for radiation response pathways (DNA damage, apoptosis, cellular stress and inflammation; p-value ≤ 0.01). Gamma, but not proton radiation induced additionally genes in vasculature specific pathways. Genes responsive to both radiation types showed almost perfectly superimposable dose-response relationships. Despite the activation of canonical radiation response pathways by both radiation types, we detected marked differences in the genomic response of the murine aorta. Models of cardiovascular risk based on photon radiation may not accurately predict the risk associated with proton radiation.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gregory R. Grant
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jenine K. Sanzari
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gabriel S. Krigsfeld
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amber J. Kiliti
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ann R. Kennedy
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tilo Grosser
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
17
|
Wei S, Sun P, Guo Y, Chen J, Wang J, Song C, Li Z, Xue L, Qiao M. Gene Expression in the Hippocampus in a Rat Model of Premenstrual Dysphoric Disorder After Treatment With Baixiangdan Capsules. Front Psychol 2018; 9:2065. [PMID: 30483168 PMCID: PMC6242977 DOI: 10.3389/fpsyg.2018.02065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022] Open
Abstract
Objective: To explore the targets, signal regulatory networks and mechanisms involved in Baixiangdan (BXD) capsule regulation of premenstrual dysphoric disorder (PMDD) at the gene transcription level, since the etiology and pathogenesis of PMDD are not well understood. Methods: The PMDD rat model was prepared using the resident-intruder paradigm. The rats were tested for aggressive behavior, and those with scores in the lowest 30% were used as controls, while rats with scores in the highest 30% were divided into a PMDD model group, BXD administration group and fluoxetine administration group, which were evaluated with open-field tests and aggressive behavior tests. We also analyzed gene expression profiles in the hippocampus for each group, and verified differential expression of genes by real-time PCR. Results: Before and after BXD or fluoxetine administration, scores in the open-field test exhibited no significant differences. The aggressive behavior of the PMDD model rats was improved to a degree after administration of both substances. Gene chip data indicated that 715 genes were differentially expressed in the control and BXD groups. Other group-to-group comparisons exhibited smaller numbers of differentially expressed genes. The effective targets of both drugs included the Htr2c, Cdh3, Serpinb1a, Ace, Trpv4, Cacna1a, Mapk13, Mapk8, Cyp2c13, and Htr1a genes. The results of real-time PCR tests were in accordance with the gene chip data. Based on the target genes and signaling pathway network analysis, we have elaborated the impact and likely mechanism of BXD in treating PMDD and premenstrual irritability. Conclusion: Our work contributes to the understanding of PMDD pathogenesis and the mechanisms of BXD treatment. We speculate that the differentially expressed genes could participate in neuroactive ligand-receptor interactions, mitogen-activated protein kinase, calcium, and gamma-aminobutyric acid signal transduction.
Collapse
Affiliation(s)
- Sheng Wei
- Lab of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China.,Behavioral Phenotyping Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Sun
- Lab of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yinghui Guo
- Lab of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingxuan Chen
- Lab of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China.,Behavioral Phenotyping Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jieqiong Wang
- Lab of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunhong Song
- Lab of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zifa Li
- Behavioral Phenotyping Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ling Xue
- Lab of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingqi Qiao
- Lab of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
18
|
Hu Z, Tie Y, Lv G, Zhu J, Fu H, Zheng X. Transcriptional activation of miR-320a by ATF2, ELK1 and YY1 induces cancer cell apoptosis under ionizing radiation conditions. Int J Oncol 2018; 53:1691-1702. [PMID: 30066913 DOI: 10.3892/ijo.2018.4497] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/06/2018] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) play important roles in numerous cellular processes, including development, proliferation, tumorigenesis and apoptosis. It has been reported that miRNA expression is induced by ionizing radiation (IR) in cancer cells. However, the underlying molecular mechanisms are not yet fully understood. In this study, endogenous miR‑320a and its primary precursor (pri‑miR‑320a) were assayed by reverse transcription‑quantitative PCR (RT‑qPCR). Luciferase activities were measured using a dual‑luciferase reporter assay system. Western blot analysis was used to determine the protein expressions of upstream and downstream genes of miR‑320a. Cell apoptosis was evaluated by Annexin V apoptosis assay and cell proliferation was measured using the trypan blue exclusion method. The results revealed that miR‑320a expression increased linearly with the IR dose and treatment duration. Three transcription factors, activating transcription factor 2 (ATF2), ETS transcription factor (ELK1) and YY1 transcription factor (YY1), were activated by p38 mitogen‑activated protein kinase (MAPK) and mitogen‑activated protein kinase 8 (JNK) and by upregulated miR‑320a expression under IR conditions. In addition, it was identified that X‑linked inhibitor of apoptosis (XIAP) was an miR‑320a target gene during the IR response. By targeting XIAP, miR‑320a induced apoptosis and inhibited the proliferation of the cancer cells. On the whole, the results of this study demonstrated that miRNA‑320a, regulated by the p38 MAPK/JNK pathway, enhanced the radiosensitivity of cancer cells by inhibiting XIAP and this may thus prove to be a potential therapeutic approach with which to overcome radioresistance in cancer treatment.
Collapse
Affiliation(s)
- Zheng Hu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yi Tie
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Guixiang Lv
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Jie Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Hanjiang Fu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xiaofei Zheng
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
19
|
The long non-coding RNA CRNDE acts as a ceRNA and promotes glioma malignancy by preventing miR-136-5p-mediated downregulation of Bcl-2 and Wnt2. Oncotarget 2017; 8:88163-88178. [PMID: 29152149 PMCID: PMC5675701 DOI: 10.18632/oncotarget.21513] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/08/2017] [Indexed: 11/25/2022] Open
Abstract
The colorectal neoplasia differentially expressed (CRNDE) gene encodes a long non-coding RNA (lncRNA) that is the most unregulated among 129 lncRNAs differentially expressed in gliomas. In this study, we confirmed high CRNDE expression in clinical glioma specimens and observed through experiments in human glioma cell lines a novel molecular mechanism by which CRNDE may contribute to glioma pathogenesis. By inducing or silencing CRNDE expression, we detected a positive correlation between CRNDE levels and the proliferative, migratory, and invasive capacities of glioma cells, which were concomitant with a decreased apoptosis rate. Our experiments also suggest that these effects are mediated by downregulation of miR-136-5p, which correlated with the glioma WHO grade. Based on predicted CRNDE/miR-136-5p/mRNA interactions, both the mRNA and protein expression analyses suggested that miR-136-5p-mediated repression of Bcl-2 and Wnt2 underlies the pro-tumoral actions of CRNDE. We therefore propose that CRNDE functions as a competing endogenous RNA (ceRNA) that binds to and negatively regulates miR-136-5p, thereby protecting Bcl-2 and Wnt2 from miR-136-5p-mediated inhibition in glioma.
Collapse
|
20
|
Bao RK, Zheng SF, Wang XY. Selenium protects against cadmium-induced kidney apoptosis in chickens by activating the PI3K/AKT/Bcl-2 signaling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20342-20353. [PMID: 28707237 DOI: 10.1007/s11356-017-9422-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that can induce apoptosis. Selenium (Se) is a necessary trace element and can antagonize the toxicity of many heavy metals, including Cd. PI3K/AKT/Bcl-2 is a key survival signaling pathway that regulates cellular defense system against oxidative injury as well as cell proliferation, survival, and apoptosis. The antagonistic effects of Se on Cd-induced toxicity have been reported. However, little is known about the effect of Se on Cd-induced apoptosis in chicken kidneys via the PI3K/AKT/Bcl-2 signaling pathway. In the present study, we fed chickens with Se, Cd, or both Se and Cd supplements, and after 90 days of treatment, we detected the related index. The results showed that the activity of inducible nitric oxide synthase (iNOS) and concentration of nitric oxide (NO) were increased; activities of the mitochondrial respiratory chain complexes (complexes I, II, and V) and ATPases (the Na+-K+-ATPase, the Mg2+-ATPase, and the Ca2+-ATPase) were decreased; expression of PI3K, AKT, and Bcl-2 were decreased; and expression of Bax, Bak, P53, Caspase-3, Caspase-9, and cytochrome c (Cyt c) were increased. Additionally, the results of the TUNEL assay showed that the number of apoptotic cells was increased in the Cd group. By contrast, there was a significant improvement of the correlation indicators and occurrence of apoptosis in the Se + Cd group compared to the Cd group. In conclusion, our results confirmed that Se had a positive effect on ameliorating Cd-induced apoptosis in chicken kidney tissue by activating the PI3K/AKT/Bcl-2 signaling pathway.
Collapse
Affiliation(s)
- Rong-Kun Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Key Laboratory of the Provincial Education, Harbin, People's Republic of China.
| | - Shu-Fang Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xin-Yue Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
21
|
Corre I, Paris F, Huot J. The p38 pathway, a major pleiotropic cascade that transduces stress and metastatic signals in endothelial cells. Oncotarget 2017; 8:55684-55714. [PMID: 28903453 PMCID: PMC5589692 DOI: 10.18632/oncotarget.18264] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/03/2017] [Indexed: 12/29/2022] Open
Abstract
By gating the traffic of molecules and cells across the vessel wall, endothelial cells play a central role in regulating cardiovascular functions and systemic homeostasis and in modulating pathophysiological processes such as inflammation and immunity. Accordingly, the loss of endothelial cell integrity is associated with pathological disorders that include atherosclerosis and cancer. The p38 mitogen-activated protein kinase (MAPK) cascades are major signaling pathways that regulate several functions of endothelial cells in response to exogenous and endogenous stimuli including growth factors, stress and cytokines. The p38 MAPK family contains four isoforms p38α, p38β, p38γ and p38δ that are encoded by four different genes. They are all widely expressed although to different levels in almost all human tissues. p38α/MAPK14, that is ubiquitously expressed is the prototype member of the family and is referred here as p38. It regulates the production of inflammatory mediators, and controls cell proliferation, differentiation, migration and survival. Its activation in endothelial cells leads to actin remodeling, angiogenesis, DNA damage response and thereby has major impact on cardiovascular homeostasis, and on cancer progression. In this manuscript, we review the biology of p38 in regulating endothelial functions especially in response to oxidative stress and during the metastatic process.
Collapse
Affiliation(s)
- Isabelle Corre
- CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France
| | - François Paris
- CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Jacques Huot
- Le Centre de Recherche du CHU de Québec-Université Laval et le Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada
| |
Collapse
|
22
|
Liu T, Zhang Q, Mo W, Yu Q, Xu S, Li J, Li S, Feng J, Wu L, Lu X, Zhang R, Li L, Cheng K, Zhou Y, Zhou S, Kong R, Wang F, Dai W, Chen K, Xia Y, Lu J, Zhou Y, Zhao Y, Guo C. The protective effects of shikonin on hepatic ischemia/reperfusion injury are mediated by the activation of the PI3K/Akt pathway. Sci Rep 2017; 7:44785. [PMID: 28322249 PMCID: PMC5359611 DOI: 10.1038/srep44785] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/13/2017] [Indexed: 12/20/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury, which can result in severe liver injury and dysfunction, occurs in a variety of conditions such as liver transplantation, shock, and trauma. Cell death in hepatic I/R injury has been linked to apoptosis and autophagy. Shikonin plays a significant protective role in ischemia/reperfusion injury. The purpose of the present study was to investigate the protective effect of shikonin on hepatic I/R injury and explore the underlying mechanism. Mice were subjected to segmental (70%) hepatic warm ischemia to induce hepatic I/R injury. Two doses of shikonin (7.5 and 12.5 mg/kg) were administered 2 h before surgery. Balb/c mice were randomly divided into four groups: normal control, I/R, and shikonin preconditioning at two doses (7.5 and 12.5 mg/kg). The serum and liver tissues were collected at three time points (3, 6, and 24 h). Shikonin significantly reduced serum AST and ALT levels and improved pathological features. Shikonin affected the expression of Bcl-2, Bax, caspase 3, caspase 9, Beclin-1, and LC3, and upregulated PI3K and p-Akt compared with the levels in the I/R group. Shikonin attenuated hepatic I/R injury by inhibiting apoptosis and autophagy through a mechanism involving the activation of PI3K/Akt signaling.
Collapse
Affiliation(s)
- Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - QingHui Zhang
- Department of Clinical Laboratory, Kunshan First People's Hospital Affiliated to Jiangsu University, 215300, Kunshan, JiangSu, China
| | - Wenhui Mo
- Department of Gastroenterology, Minhang Hospital, Shanghai Medical School of Fudan University, Shanghai, 201100, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Shizan Xu
- Department of Gastroenterology, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiya Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Rong Zhang
- Department of Gastroenterology, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Linqiang Li
- The School of Medicine of Soochow University, Suzhou 215006, China
| | - Keran Cheng
- The School of Medicine of Soochow University, Suzhou 215006, China
| | - Yuqing Zhou
- The School of Medicine of Soochow University, Suzhou 215006, China
| | - Shunfeng Zhou
- The School of Medicine of Soochow University, Suzhou 215006, China
| | - Rui Kong
- The School of Medicine of Soochow University, Suzhou 215006, China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yan Zhao
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
23
|
Niaudet C, Bonnaud S, Guillonneau M, Gouard S, Gaugler MH, Dutoit S, Ripoche N, Dubois N, Trichet V, Corre I, Paris F. Plasma membrane reorganization links acid sphingomyelinase/ceramide to p38 MAPK pathways in endothelial cells apoptosis. Cell Signal 2017; 33:10-21. [PMID: 28179144 DOI: 10.1016/j.cellsig.2017.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 12/11/2022]
Abstract
The p38 MAPK signaling pathway is essential in the cellular response to stress stimuli, in particular in the endothelial cells that are major target of external stress. The importance of the bioactive sphingolipid ceramide generated by acid sphingomyelinase is also firmly established in stress-induced endothelial apoptotic cell death. Despite a suggested link between the p38 MAPK and ceramide pathways, the exact molecular events of this connection remain elusive. In the present study, by using two different activators of p38 MAPK, namely anisomycin and ionizing radiation, we depicted how ceramide generated by acid sphingomyelinase was involved in p38 MAPK-dependent apoptosis of endothelial cells. We first proved that both anisomycin and ionizing radiation conducted to apoptosis through activation of p38 MAPK in human microvascular endothelial cells HMEC-1. We then found that both treatments induced activation of acid sphingomyelinase and the generation of ceramide. This step was required for p38 MAPK activation and apoptosis. We finally showed that irradiation, as well as treatment with exogenous C16-ceramide or bacterial sphingomyelinase, induced in endothelial cells a deep reorganization of the plasma membrane with formation of large lipid platforms at the cell surface, leading to p38 MAPK activation and apoptosis in endothelial cells. Altogether, our results proved that the plasma membrane reorganization leading to ceramide production is essential for stress-induced activation of p38 MAPK and apoptosis in endothelial cells and established the link between the acid sphingomyelinase/ceramide and p38 MAPK pathways.
Collapse
Affiliation(s)
- Colin Niaudet
- CRCNA, INSERM, CNRS, Université de Nantes, Nantes, France
| | | | | | | | - Marie-Hélène Gaugler
- CRCNA, INSERM, CNRS, Université de Nantes, Nantes, France; IRSN, Fontenay-aux-roses, France
| | - Soizic Dutoit
- CRCNA, INSERM, CNRS, Université de Nantes, Nantes, France
| | | | - Nolwenn Dubois
- CRCNA, INSERM, CNRS, Université de Nantes, Nantes, France
| | | | - Isabelle Corre
- CRCNA, INSERM, CNRS, Université de Nantes, Nantes, France
| | - François Paris
- CRCNA, INSERM, CNRS, Université de Nantes, Nantes, France; Laboratoire de Biologie du Cancer et Théranostique, ICO, Saint-Herblain, France.
| |
Collapse
|
24
|
Choi HE, Shin JS, Leem DG, Kim SD, Cho WJ, Lee KT. 6-(3,4-Dihydro-1H-isoquinoline-2-yl)-N-(6-methoxypyridine-2-yl) nicotinamide-26 (DIMN-26) decreases cell proliferation by induction of apoptosis and downregulation of androgen receptor signaling in human prostate cancer cells. Chem Biol Interact 2016; 260:196-207. [DOI: 10.1016/j.cbi.2016.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 08/23/2016] [Accepted: 10/04/2016] [Indexed: 01/11/2023]
|
25
|
Yang S, Huang J, Liu P, Li J, Zhao S. Apoptosis-inducing factor (AIF) nuclear translocation mediated caspase-independent mechanism involves in X-ray-induced MCF-7 cell death. Int J Radiat Biol 2016; 93:270-278. [PMID: 27809636 DOI: 10.1080/09553002.2016.1254833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Breast cancer is the most common cancer among women and radiotherapy is a conventional therapy following surgery. Previous studies have demonstrated that except the caspase-dependent pathway, caspase-independent pathway is also involved in the cell death responding to irradiation, despite the unclear mechanism. The purpose of the present study was to observe the role of apoptosis-inducing factor (AIF), the first identified caspase-independent molecule, in X-ray-induced breast cancer cell (MCF-7) cell death. MATERIALS AND METHODS In this study, WST-1 assay, DAPI nuclear staining and clonogenic survival assay were used to test the cell response to different treatments; Western blot was used to detect the protein expression; RT-PCR and plasmid transfection were used to observe the role of AIF. RESULTS X-ray-induced AIF transferred from the mitochondrion to the nucleus. Inhibition of AIF expression reduced X-ray-induced MCF-7 cell death. Further, AIF nuclear translocation is in a caspase-independent manner in this process, but not caspase-dependent manner. CONCLUSIONS The present study revealed that AIF nuclear translocation proceeded in X-ray-induced MCF-7 cell death in a caspase-independent manner.
Collapse
Affiliation(s)
- Shana Yang
- a Department of Physiology , Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Jianrong Huang
- b Department of Orthopaedics , The Sun Yat-sen Memory Hospital, Sun Yat-sen Memory Hospital University , Guangzhou , Guangdong , China
| | - Pan Liu
- a Department of Physiology , Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Jianhua Li
- a Department of Physiology , Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Shenting Zhao
- a Department of Physiology , Guangzhou Medical University , Guangzhou , Guangdong , China
| |
Collapse
|
26
|
MTUS1 silencing promotes E-selectin production through p38 MAPK-dependent CREB ubiquitination in endothelial cells. J Mol Cell Cardiol 2016; 101:1-10. [PMID: 27789289 DOI: 10.1016/j.yjmcc.2016.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/21/2016] [Accepted: 10/22/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Endothelial cell activation is thought to be a key event in atherosclerosis. p38 mitogen-activated protein kinase (p38 MAPK) plays an important role in regulating pro-inflammatory cytokine production in endothelial cells (ECs), however, how p38 MAPK is controlled in EC activation remain unclear. In this study, we investigated the effect of mitochondrial tumor suppressor 1 (MTUS1) on p38 MAPK activation, cytokine induction and the underlying molecular mechanisms in ECs. METHODS AND RESULTS Using qPCR and ELISA methods, we found that knockdown of MTUS1 led to a marked increase in the mRNA and protein expression of E-selectin (SELE) and monocyte chemotactic protein-1 in ECs, which is accompanied with increased phosphorylation of p38 MAPK (Thr180/Tyr182), MKK3/6 (Ser 189) and IκBα (Ser 32). Using luciferase reporter assay, we found that MTUS1 silencing also activated NF-κB transcriptional activity. The inhibition of p38 MAPK and NF-κB pathway was shown to abrogate MTUS1 silencing-induced cytokine expression in ECs. Furthermore, MTUS1 silencing induced p38 MAPK-dependent ubiquitination of cAMP-response element binding protein (CREB) which potentiated CREB-binding protein-mediated NF-κB p65 acetylation and binding to the promoter of the SELE gene. Conversely, adenovirus-mediated overexpression of MTUS1 inhibited p38 MAPK activation in ECs in vitro and in vivo. Importantly, decreased expression of MTUS1 and CREB, accompanied with induced activation of p38 MAPK were observed in aortas of apoE-/- mice after high-fat diet challenge. CONCLUSIONS Our findings showed that MTUS1 regulates the p38 MAPK-mediated cytokine production in ECs. MTUS1 gene probably plays a protective role against pro-inflammatory response of ECs.
Collapse
|
27
|
Guillonneau M, Paris F, Dutoit S, Estephan H, Bénéteau E, Huot J, Corre I. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response. FASEB J 2016; 30:2899-914. [PMID: 27142525 DOI: 10.1096/fj.201500194r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/26/2016] [Indexed: 11/11/2022]
Abstract
Oxidative stress is a leading cause of endothelial dysfunction. The p38 MAPK pathway plays a determinant role in allowing cells to cope with oxidative stress and is tightly regulated by a balanced interaction between p38 protein and its interacting partners. By using a proteomic approach, we identified nucleophosmin (NPM) as a new partner of p38 in HUVECs. Coimmunoprecipitation and microscopic analyses confirmed the existence of a cytosolic nucleophosmin (NPM)/p38 interaction in basal condition. Oxidative stress, which was generated by exposure to 500 µM H2O2, induces a rapid dephosphorylation of NPM at T199 that depends on phosphatase PP2A, another partner of the NPM/p38 complex. Blocking PP2A activity leads to accumulation of NPM-pT199 and to an increased association of NPM with p38. Concomitantly to its dephosphorylation, oxidative stress promotes translocation of NPM to the nucleus to affect the DNA damage response. Dephosphorylated NPM impairs the signaling of oxidative stress-induced DNA damage via inhibition of the phosphorylation of ataxia-telangiectasia mutated and DNA-dependent protein kinase catalytic subunit. Overall, these results suggest that the p38/NPM/PP2A complex acts as a dynamic sensor, allowing endothelial cells to react rapidly to acute oxidative stress.-Guillonneau, M., Paris, F., Dutoit, S., Estephan, H., Bénéteau, E., Huot, J., Corre, I. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response.
Collapse
Affiliation(s)
- Maëva Guillonneau
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, Nantes, France; INSERM, Unité Mixte de Recherche 892, Nantes, France; Université de Nantes, Nantes, France; and Le Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval et le Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada
| | - François Paris
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, Nantes, France; INSERM, Unité Mixte de Recherche 892, Nantes, France; Université de Nantes, Nantes, France; and
| | - Soizic Dutoit
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, Nantes, France; INSERM, Unité Mixte de Recherche 892, Nantes, France; Université de Nantes, Nantes, France; and
| | - Hala Estephan
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, Nantes, France; INSERM, Unité Mixte de Recherche 892, Nantes, France; Université de Nantes, Nantes, France; and
| | - Elise Bénéteau
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, Nantes, France; INSERM, Unité Mixte de Recherche 892, Nantes, France; Université de Nantes, Nantes, France; and
| | - Jacques Huot
- Le Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval et le Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada
| | - Isabelle Corre
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, Nantes, France; INSERM, Unité Mixte de Recherche 892, Nantes, France; Université de Nantes, Nantes, France; and Le Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval et le Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada
| |
Collapse
|
28
|
Marampon F, Gravina GL, Festuccia C, Popov VM, Colapietro A, Sanità P, Musio D, De Felice F, Lenzi A, Jannini EA, Di Cesare E, Tombolini V. Vitamin D protects endothelial cells from irradiation-induced senescence and apoptosis by modulating MAPK/SirT1 axis. J Endocrinol Invest 2016; 39:411-22. [PMID: 26335302 DOI: 10.1007/s40618-015-0381-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/11/2015] [Indexed: 01/07/2023]
Abstract
PURPOSE Radiotherapy toxicity is related to oxidative stress-mediated endothelial dysfunction. Here, we investigated on radioprotective properties of Vitamin D (Vit.D) on human endothelial cells (HUVEC). METHODS HUVEC, pre-treated with Vit.D, were exposed to ionizing radiation (IR): ROS production, cellular viability, apoptosis, senescence and western blot for protein detection were performed. The role of MAPKs pathway was investigated by using U0126 (10 μM) MEKs/ERKs-, SB203580 (2.5 μM) p38-inhibitor or by over/expressing MKK6 p38-upstream activator. RESULTS Vit.D reduced IR-induced ROS production protecting proliferating and quiescent HUVEC from cellular apoptosis or senescence, respectively, by regulating MAPKs pathways. In proliferating HUVEC, Vit.D prevented IR-induced apoptosis by activating ERKs while in quiescent HUVEC counteracted IR-induced senescence by inhibiting the p38-IR-induced activation. MEKs&ERKs inhibition in proliferating or MKK6/mediated p38 activation in quiescent HUVEC, respectively, reverted anti-apoptotic or anti-senescent Vit.D properties. SirT1 protein expression levels were up-regulated by Vit.D. ERKs inhibition blocked Vit.D-induced SirT1 protein up-regulation in proliferating cells. In quiescent HUVEC cells, p38 inhibition counteracted the IR-induced SirT1 protein down-regulation, while MKK6 transfection abrogated the Vit.D positive effects on SirT1 protein levels after irradiation. SirT1 inhibition by sirtinol blocked the Vit.D radioprotective effects. CONCLUSION Vit.D protects HUVEC from IR induced/oxidative stress by positively regulating the MAPKs/SirT1 axis.
Collapse
Affiliation(s)
- F Marampon
- Division of Radiotherapy and Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - G L Gravina
- Division of Radiotherapy and Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - C Festuccia
- Division of Radiotherapy and Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - V M Popov
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - A Colapietro
- Division of Radiotherapy and Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - P Sanità
- Division of Radiotherapy and Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - D Musio
- Department of Radiotherapy, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| | - F De Felice
- Department of Radiotherapy, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| | - A Lenzi
- Department Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - E A Jannini
- Department of System Medicine, University of Tor Vergata, 00133, Rome, Italy
| | - E Di Cesare
- Division of Radiotherapy and Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - V Tombolini
- Department of Radiotherapy, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
29
|
WANG FANG, LI LIN, CHEN ZHUO, ZHU MINGZHI, GU YUANTING. MicroRNA-214 acts as a potential oncogene in breast cancer by targeting the PTEN-PI3K/Akt signaling pathway. Int J Mol Med 2016; 37:1421-8. [DOI: 10.3892/ijmm.2016.2518] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/25/2016] [Indexed: 11/06/2022] Open
|
30
|
Yadav A, Kumar B, Yu JG, Old M, Teknos TN, Kumar P. Tumor-Associated Endothelial Cells Promote Tumor Metastasis by Chaperoning Circulating Tumor Cells and Protecting Them from Anoikis. PLoS One 2015; 10:e0141602. [PMID: 26509633 PMCID: PMC4624958 DOI: 10.1371/journal.pone.0141602] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/09/2015] [Indexed: 11/18/2022] Open
Abstract
Tumor metastasis is a highly inefficient biological process as millions of tumor cells are released in circulation each day and only a few of them are able to successfully form distal metastatic nodules. This could be due to the fact that most of the epithelial origin cancer cells are anchorage-dependent and undergo rapid anoikis in harsh circulating conditions. A number of studies have shown that in addition to tumor cells, activated endothelial cells are also released into the blood circulation from the primary tumors. However, the precise role of these activated circulating endothelial cells (CECs) in tumor metastasis process is not known. Therefore, we performed a series of experiments to examine if CECs promoted tumor metastasis by chaperoning the tumor cells to distal sites. Our results demonstrate that blood samples from head and neck cancer patients contain significantly higher Bcl-2-positive CECs as compared to healthy volunteers. Technically, it is challenging to know the origin of CECs in patient blood samples, therefore we used an orthotopic SCID mouse model and co-implanted GFP-labeled endothelial cells along with tumor cells. Our results suggest that activated CECs (Bcl-2-positive) were released from primary tumors and they co-migrated with tumor cells to distal sites. Bcl-2 overexpression in endothelial cells (EC-Bcl-2) significantly enhanced adhesion molecule expression and tumor cell binding that was predominantly mediated by E-selectin. In addition, tumor cells bound to EC-Bcl-2 showed a significantly higher anoikis resistance via the activation of Src-FAK pathway. In our in vivo experiments, we observed significantly higher lung metastasis when tumor cells were co-injected with EC-Bcl-2 as compared to EC-VC. E-selectin knockdown in EC-Bcl-2 cells or FAK/FUT3 knockdown in tumor cells significantly reversed EC-Bcl-2-mediated tumor metastasis. Taken together, our results suggest a novel role for CECs in protecting the tumor cells in circulation and chaperoning them to distal sites.
Collapse
Affiliation(s)
- Arti Yadav
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, 43210, United States of America
| | - Bhavna Kumar
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, 43210, United States of America
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Jun-Ge Yu
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, 43210, United States of America
| | - Matthew Old
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, 43210, United States of America
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Theodoros N. Teknos
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, 43210, United States of America
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Pawan Kumar
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, 43210, United States of America
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, 43210, United States of America
- * E-mail:
| |
Collapse
|
31
|
An in vitro assessment of liposomal topotecan simulating metronomic chemotherapy in combination with radiation in tumor-endothelial spheroids. Sci Rep 2015; 5:15236. [PMID: 26468877 PMCID: PMC4606561 DOI: 10.1038/srep15236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/02/2015] [Indexed: 12/31/2022] Open
Abstract
Low dose metronomic chemotherapy (LDMC) refers to prolonged administration of low dose chemotherapy designed to minimize toxicity and target the tumor endothelium, causing tumor growth inhibition. Topotecan (TPT) when administered at its maximum tolerated dose (MTD) is often associated with systemic hematological toxicities. Liposomal encapsulation of TPT enhances efficacy by shielding it from systemic clearance, allowing greater uptake and extended tissue exposure in tumors. Extended release of TPT from liposomal formulations also has the potential to mimic metronomic therapies with fewer treatments. Here we investigate potential toxicities of equivalent doses of free and actively loaded liposomal TPT (LTPT) and compare them to a fractionated low dose regimen of free TPT in tumor-endothelial spheroids (TES) with/without radiation exposure for a prolonged period of 10 days. Using confocal microscopy, TPT fluorescence was monitored to determine the accumulation of drug within TES. These studies showed TES, being more reflective of the in vivo tumor microenvironment, were more sensitive to LTPT in comparison to free TPT with radiation. More importantly, the response of TES to low-dose metronomic TPT with radiation was comparable to similar treatment with LTPT. This TES study suggests nanoparticle formulations designed for extended release of drug can simulate LDMC in vivo.
Collapse
|
32
|
Kim EH, Kim MS, Jeong YK, Cho I, You SH, Cho SH, Lee H, Jung WG, Kim HD, Kim J. Mechanisms for SU5416 as a radiosensitizer of endothelial cells. Int J Oncol 2015; 47:1440-50. [PMID: 26314590 DOI: 10.3892/ijo.2015.3127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/22/2015] [Indexed: 11/06/2022] Open
Abstract
Endothelial cells (ECs), that comprise the tumor vasculature, are critical targets for anticancer radiotherapy. The aim of this work was to study the mechanism by which SU5416, a known anti-angiogenesis inhibitor, modifies the radiation responses of human vascular ECs. Two human endothelial cell lines (HUVEC and 2H11) were treated with SU5416 alone, radiation alone, or a combination of both. In vitro tests were performed using colony forming assays, FACS analysis, western blotting, immunohistochemistry, migration assay, invasion assays and endothelial tube formation assays. The combination of radiation and SU5416 significantly inhibited cell survival, the repair of radiation-induced DNA damage, and induced apoptosis. It also caused cell cycle arrest, inhibited cell migration and invasion, and suppressed angiogenesis. In this study, our results first provide a scientific rationale to combine SU5416 with radiotherapy to target ECs and suggest its clinical application in combination cancer treatment with radiotherapy.
Collapse
Affiliation(s)
- Eun Ho Kim
- Division of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Mi-Sook Kim
- Division of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Youn Kyoung Jeong
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Ilsung Cho
- Division of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Seung Hoon You
- Division of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Sung Ho Cho
- Division of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Hanna Lee
- Division of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Won-Gyun Jung
- Division of Heavy Ion Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Hag Dong Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| |
Collapse
|
33
|
Jiang LH, Yuan XL, Yang NY, Ren L, Zhao FM, Luo BX, Bian YY, Xu JY, Lu DX, Zheng YY, Zhang CJ, Diao YM, Xia BM, Chen G. Daucosterol protects neurons against oxygen-glucose deprivation/reperfusion-mediated injury by activating IGF1 signaling pathway. J Steroid Biochem Mol Biol 2015; 152:45-52. [PMID: 25864625 DOI: 10.1016/j.jsbmb.2015.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/03/2015] [Accepted: 04/04/2015] [Indexed: 12/11/2022]
Abstract
We previously reported that daucosterol (a sterolin) up-regulates the expression of insulin-like growth factor I (IGF1)(1) protein in neural stem cells. In this study, we investigated the effects of daucosterol on the survival of cultured cortical neurons after neurons were subjected to oxygen and glucose deprivation and simulated reperfusion (OGD/R)(2), and determined the corresponding molecular mechanism. The results showed that post-treatment of daucosterol significantly reduced neuronal loss, as well as apoptotic rate and caspase-3 activity, displaying the neuroprotective activity. We also found that daucosterol increased the expression level of IGF1 protein, diminished the down-regulation of p-AKT(3) and p-GSK-3β(4), thus activating the AKT(5) signal pathway. Additionally, it diminished the down-regulation of the anti-apoptotic proteins Mcl-1(6) and Bcl-2(7), and decreased the expression level of the pro-apoptotic protein Bax(8), thus raising the ratio of Bcl-2/Bax. The neuroprotective effect of daucosterol was inhibited in the presence of picropodophyllin (PPP)(9), the inhibitor of insulin-like growth factor I receptors (IGF1R)(10). Our study provided information about daucosterol as an efficient and inexpensive neuroprotectants, to which the IGF1-like activity of daucosterol contributes. Daucosterol could be potentially developed as a medicine for ischemic stroke treatment.
Collapse
Affiliation(s)
- Li-hua Jiang
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China; Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-lin Yuan
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Nian-yun Yang
- Department of Pharmacogonosy, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Li Ren
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Feng-ming Zhao
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Ban-xin Luo
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Yao-yao Bian
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Jian-ya Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Da-xiang Lu
- School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yuan-yuan Zheng
- School of Medicine, Jinan University, Guangzhou 510632, China
| | | | - Yuan-ming Diao
- School of Basic Medical Science,Guangzhou University of Chinese Medicine, Guangzhou 510006,China
| | - Bao-mei Xia
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Gang Chen
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China; Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
34
|
Jimenez L, Jayakar SK, Ow TJ, Segall JE. Mechanisms of Invasion in Head and Neck Cancer. Arch Pathol Lab Med 2015; 139:1334-48. [PMID: 26046491 DOI: 10.5858/arpa.2014-0498-ra] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
CONTEXT The highly invasive properties demonstrated by head and neck squamous cell carcinoma (HNSCC) are often associated with locoregional recurrence and lymph node metastasis in patients and is a key factor leading to an expected 5-year survival rate of approximately 50% for patients with advanced disease. It is important to understand the features and mediators of HNSCC invasion so that new treatment approaches can be developed. OBJECTIVES To provide an overview of the characteristics, mediators, and mechanisms of HNSCC invasion. DATA SOURCES A literature review of peer-reviewed articles in PubMed on HNSCC invasion. CONCLUSIONS Histologic features of HNSCC tumors can help predict prognosis and influence clinical treatment decisions. Cell surface receptors, signaling pathways, proteases, invadopodia function, epithelial-mesenchymal transition, microRNAs, and tumor microenvironment are all involved in the regulation of the invasive behavior of HNSCC cells. Identifying effective HNSCC invasion inhibitors has the potential to improve outcomes for patients by reducing the rate of spread and increasing responsiveness to chemoradiation.
Collapse
Affiliation(s)
| | | | | | - Jeffrey E Segall
- From the Departments of Pathology (Mss Jimenez and Jayakar, and Drs Ow and Segall) and Anatomy and Structural Biology (Mss Jimenez and Jayakar, and Dr Segall), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
35
|
Kang MW, Song HJ, Kang SK, Kim Y, Jung SB, Jee S, Moon JY, Suh KS, Lee SD, Jeon BH, Kim CS. Nafamostat Mesilate Inhibits TNF-α-Induced Vascular Endothelial Cell Dysfunction by Inhibiting Reactive Oxygen Species Production. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:229-34. [PMID: 25954127 PMCID: PMC4422962 DOI: 10.4196/kjpp.2015.19.3.229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/16/2015] [Accepted: 02/22/2015] [Indexed: 11/15/2022]
Abstract
Nafamostat mesilate (NM) is a serine protease inhibitor with anticoagulant and anti-inflammatory effects. NM has been used in Asia for anticoagulation during extracorporeal circulation in patients undergoing continuous renal replacement therapy and extra corporeal membrane oxygenation. Oxidative stress is an independent risk factor for atherosclerotic vascular disease and is associated with vascular endothelial function. We investigated whether NM could inhibit endothelial dysfunction induced by tumor necrosis factor-α (TNF-α). Human umbilical vein endothelial cells (HUVECs) were treated with TNF-α for 24 h. The effects of NM on monocyte adhesion, vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) protein expression, p38 mitogen-activated protein kinase (MAPK) activation, and intracellular superoxide production were then examined. NM (0.01~100 µg/mL) did not affect HUVEC viability; however, it inhibited the increases in reactive oxygen species (ROS) production and p66shc expression elicited by TNF-α (3 ng/mL), and it dose dependently prevented the TNF-α-induced upregulation of endothelial VCAM-1 and ICAM-1. In addition, it mitigated TNF-α-induced p38 MAPK phosphorylation and the adhesion of U937 monocytes. These data suggest that NM mitigates TNF-α-induced monocyte adhesion and the expression of endothelial cell adhesion molecules, and that the anti-adhesive effect of NM is mediated through the inhibition of p66shc, ROS production, and p38 MAPK activation.
Collapse
Affiliation(s)
- Min-Woong Kang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Daejeon 301-721, Korea
| | - Hee-Jung Song
- Department of Neurology, School of Medicine, Chungnam National University, Daejeon 301-721, Korea
| | - Shin Kwang Kang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Daejeon 301-721, Korea
| | - Yonghwan Kim
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Daejeon 301-721, Korea
| | - Saet-Byel Jung
- Department of Endocrinology, School of Medicine, Chungnam National University, Daejeon 301-721, Korea
| | - Sungju Jee
- Department of Rehabilitation Medicine, School of Medicine, Chungnam National University, Daejeon 301-721, Korea
| | - Jae Young Moon
- Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon 301-721, Korea
| | - Kwang-Sun Suh
- Department of Pathology, School of Medicine, Chungnam National University, Daejeon 301-721, Korea
| | - Sang Do Lee
- Department of physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Byeong Hwa Jeon
- Department of physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Cuk-Seong Kim
- Department of physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| |
Collapse
|
36
|
Song M, Tian X, Lu M, Zhang X, Ma K, Lv Z, Wang Z, Hu Y, Xun C, Zhang Z, Wang S. Genistein exerts growth inhibition on human osteosarcoma MG-63 cells via PPARγ pathway. Int J Oncol 2015; 46:1131-40. [PMID: 25586304 DOI: 10.3892/ijo.2015.2829] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/03/2014] [Indexed: 11/06/2022] Open
Abstract
The peroxisome proliferator-activated receptor γ (PPARγ) is emerging as an important regulator in various metabolic processes of cancer. Genistein, as a major isoflavonoid isolated from dietary soybean, possesses a wide variety of biological activities, particularly, in cancer prevention. However, the mechanisms by which genistein elicits its growth inhibiting effects in osteosarcoma (OS) MG-63 cells have not been extensively elucidated. MG-63 cells were treated for 2 days with various concentrations of genistein and/or GW9662 (a selective antagonist of PPARγ). The effect of different drugs on cell viability was determined by Cell Counting Kit-8 (CCK-8). The assay of cell proliferation was performed using 5-ethynyl-2'-deoxyuridine (EdU). The changes of apoptosis and cell cycle progression were detected by flow cytometry experiments. The protein expression of PPARγ pathway (PPARγ, PTEN, BCL-2, Survivin, P21WAF1/CIP1 and Cyclin B1) was determined by western blot analysis. The expression of PPARγ and PTEN mRNA was detected by real-time quantitative RT-PCR analysis. We report that genistein caused OS cell growth inhibition. We found that the PPARγ expression in OS cells increased after genistein treatment. Further studies on the mechanisms of genistein revealed a series of cell growth changes related to the PPARγ pathway; while cell cycle changes can be reversed by GW9662. Genistein plays an important role in preventing OS cell growth, which can impede the OS cell cycle as a non-toxic activator of PPARγ, providing novel insights into the mechanisms of the therapeutic activities of genistein.
Collapse
Affiliation(s)
- Mingzhi Song
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiliang Tian
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Ming Lu
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xianbin Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Kai Ma
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhichao Lv
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhenxing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yang Hu
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Chong Xun
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhen Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Shouyu Wang
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
37
|
Ji Y, Chen S, Li K, Xiao X, Xu T, Zheng S. Upregulated autocrine vascular endothelial growth factor (VEGF)/VEGF receptor-2 loop prevents apoptosis in haemangioma-derived endothelial cells. Br J Dermatol 2015; 170:78-86. [PMID: 24033364 DOI: 10.1111/bjd.12592] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND The autocrine vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR)-2 loop is required to maintain the transformed phenotype of many tumours, in part, by preventing apoptotic cell death in response to many different stimuli. However, it is unclear whether constitutive VEGF/VEGFR-2 activation in haemangioma-derived endothelial cells (HaemECs) can lead to a general suppression of apoptosis. OBJECTIVES The objective of this study was to investigate whether the autocrine VEGF loop promotes HaemEC survival via its receptor, VEGFR-2. METHODS HaemECs and human umbilical vein endothelial cells (HUVECs) were serum-starved for 12-48 h. Cell apoptosis was measured. The potential mechanisms of VEGF/VEGFR-2-induced HaemEC survival were investigated, and the role of the autocrine VEGF/VEGFR-2 loop in preventing propranolol-induced apoptotic HaemEC death was also analysed. RESULTS Compared with HUVECs, HaemECs showed increased resistance to apoptosis induced by serum starvation. Upregulated VEGF/VEGFR-2 signalling in HaemECs induced an autocrine signalling loop, which resulted in Akt activation. Furthermore, this activation of Akt was necessary for VEGF/VEGFR-2-induced protection against serum deprivation-induced HaemEC apoptosis. In addition, Bcl-2, which functions as an anti-apoptotic factor and direct downstream target of PI3K/Akt, was decreased by the inhibition of VEGF/VEGFR-2, which led to an increase in caspase-3 activity, caspase-9 activity and HaemEC apoptosis. Moreover, HaemECs acquired greater resistance to propranolol treatment than HUVECs, whereas inhibition of VEGF/VEGFR-2 signalling in HaemECs sensitized these cells to propranolol-induced apoptosis. CONCLUSIONS Our results demonstrate that upregulation of the autocrine VEGF/VEGFR-2 loop can induce general resistance to apoptotic stimuli in HaemECs.
Collapse
Affiliation(s)
- Y Ji
- Division of Oncology, Department of Pediatric Surgery, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | | | | | | | | | | |
Collapse
|
38
|
Zhu D, Wang J, Sun X, Chen J, Duan Y, Pan J, Xu T, Qin Y, He X, Huang C. Septin4_i1 regulates apoptosis in hepatic stellate cells through peroxisome proliferator-activated receptor-γ/Akt/B-cell lymphoma 2 pathway. J Histochem Cytochem 2014; 63:163-9. [PMID: 25527525 DOI: 10.1369/0022155414567230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Apoptosis of activated hepatic stellate cells (HSCs) has been verified as a potential mechanism to aid in hepatic fibrosis remission. Earlier research suggests that Septin4_i1 may sensitize hepatocellular carcinoma cells to serum starvation-induced apoptosis. Here, we aimed to investigate the effect of Septin4_i1 on HSC apoptosis and explore the associated signaling pathways. We found that Septin4_i1 can induce apoptosis in LX-2 cells and that this is accompanied by an up-regulation in cleaved-caspase-3 and peroxisome proliferator-activated receptor-γ (PPAR-γ) expression and a down-regulation in α-SMA expression. Over-expression of Septin4_i1 reduced phosphorylated Akt and B-cell lymphoma 2 (Bcl-2) expression but had no effect on the expression of p53 and death receptor (DR)-5. The decreased expression of Bcl-2 and the increased expression of cleaved-caspase-3 induced by Sept4_i1 could be reversed by GW501516, a PPAR-β/δ agonist that has been reported by others to enhance Akt signaling. In addition, GW9662, an antagonist of PPAR-γ, could also inhibit apoptosis in LX-2 cells induced by Sept4_i1. In conclusion, our data suggest that Sept4_i1 induces HSC apoptosis by inhibiting Akt and Bcl-2 expression and up-regulating PPAR-γ expression.
Collapse
Affiliation(s)
- Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Jianxin Wang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, People's Republic of China (JW)
| | - Xiaolei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Jing Pan
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Tianhua Xu
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Yongwei Qin
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Xingxin He
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Caiqun Huang
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| |
Collapse
|
39
|
Ramasamy S, Bennet D, Kim S. Drug and bioactive molecule screening based on a bioelectrical impedance cell culture platform. Int J Nanomedicine 2014; 9:5789-809. [PMID: 25525360 PMCID: PMC4266242 DOI: 10.2147/ijn.s71128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This review will present a brief discussion on the recent advancements of bioelectrical impedance cell-based biosensors, especially the electric cell-substrate impedance sensing (ECIS) system for screening of various bioactive molecules. The different technical integrations of various chip types, working principles, measurement systems, and applications for drug targeting of molecules in cells are highlighted in this paper. Screening of bioactive molecules based on electric cell-substrate impedance sensing is a trial-and-error process toward the development of therapeutically active agents for drug discovery and therapeutics. In general, bioactive molecule screening can be used to identify active molecular targets for various diseases and toxicity at the cellular level with nanoscale resolution. In the innovation and screening of new drugs or bioactive molecules, the activeness, the efficacy of the compound, and safety in biological systems are the main concerns on which determination of drug candidates is based. Further, drug discovery and screening of compounds are often performed in cell-based test systems in order to reduce costs and save time. Moreover, this system can provide more relevant results in in vivo studies, as well as high-throughput drug screening for various diseases during the early stages of drug discovery. Recently, MEMS technologies and integration with image detection techniques have been employed successfully. These new technologies and their possible ongoing transformations are addressed. Select reports are outlined, and not all the work that has been performed in the field of drug screening and development is covered.
Collapse
Affiliation(s)
- Sakthivel Ramasamy
- Department of Bionanotechnology, Gachon University, Gyeonggi-Do, Republic of Korea
| | - Devasier Bennet
- Department of Bionanotechnology, Gachon University, Gyeonggi-Do, Republic of Korea
| | - Sanghyo Kim
- Department of Bionanotechnology, Gachon University, Gyeonggi-Do, Republic of Korea ; Graduate Gachon Medical Research Institute, Gil Medical Center, Incheon, Republic of Korea
| |
Collapse
|
40
|
Fang J, Zhou SH, Fan J, Yan SX. Roles of glucose transporter-1 and the phosphatidylinositol 3‑kinase/protein kinase B pathway in cancer radioresistance (review). Mol Med Rep 2014; 11:1573-81. [PMID: 25376370 DOI: 10.3892/mmr.2014.2888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 09/19/2014] [Indexed: 11/06/2022] Open
Abstract
The mechanisms underlying cancer radioresistance remain unclear. Several studies have found that increased glucose transporter‑1 (GLUT‑1) expression is associated with radioresistance. Recently, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway was reported to be involved in the control of GLUT‑1 trafficking and activity. Activation of the PI3K/Akt pathway may itself be associated with cancer radioresistance. Thus, increasing attention has been devoted to the effects of modifying the expression of GLUT‑1 and the PI3K/Akt pathway on the increase in the radiosensitivity of cancer cells. This review discusses the importance of the association between elevated expression of GLUT‑1 and activation of the PI3K/Akt pathway in the development of radioresistance in cancer.
Collapse
Affiliation(s)
- Jin Fang
- Department of Otolaryngology, The Second Hospital of Jiaxing City, Jiaxing, Zhejiang 314000, P.R. China
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Sen-Xiang Yan
- Department of Radiotherapy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
41
|
Cary LH, Noutai D, Salber RE, Williams MS, Ngudiankama BF, Whitnall MH. Interactions between Endothelial Cells and T Cells Modulate Responses to Mixed Neutron/Gamma Radiation. Radiat Res 2014; 181:592-604. [DOI: 10.1667/rr13550.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Nakamura N, Naruse K, Kobayashi Y, Matsuki T, Hamada Y, Nakashima E, Kamiya H, Hata M, Nishikawa T, Enomoto A, Takahashi M, Murohara T, Matsubara T, Oiso Y, Nakamura J. High glucose impairs the proliferation and increases the apoptosis of endothelial progenitor cells by suppression of Akt. J Diabetes Investig 2014; 2:262-70. [PMID: 24843496 PMCID: PMC4014965 DOI: 10.1111/j.2040-1124.2010.00093.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Aims/Introduction: Endothelial progenitor cells (EPC) play a critical role in adult vasculogenesis and vascular repair. Previous studies have described the dysfunction of EPC in diabetic patients, but the precise mechanism is still unclear. To elucidate the dysfunction of EPC in diabetic patients, we investigated the functions and intracellular signaling of EPC under normal or high glucose conditions. We also examined the number of EPC in the peripheral blood of Japanese type 2 diabetic patients. MATERIALS AND METHODS EPC were cultured with normal or high glucose. Subsequently, the proliferation and the apoptosis of EPC were assessed in the presence or absence of vascular endothelial growth factor (VEGF). The phosphorylation of Akt was assessed by western blot analyses. We compared the number of CD34(+)CD45(low) progenitor cells, which is considered as a marker of EPC in non-diabetic and type 2 diabetic subjects, using flow cytometry. RESULTS High glucose decreased the proliferation of EPC and increased the number of apoptotic cells. VEGF significantly increased the proliferation and suppressed the apoptosis of EPC, both of which were abolished by PI 3-kinase inhibitor, LY294002. High glucose significantly suppressed the basal and VEGF-stimulated phosphorylation of Akt in EPC. Furthermore, the number of circulating EPC was decreased in type 2 diabetic patients, although there were no significant differences in the serum levels of VEGF between control subjects and diabetic patients. CONCLUSIONS These findings suggest that high glucose impairs the functions of EPC through the suppression of Akt phosphorylation stimulated by VEGF. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00093.x, 2011).
Collapse
Affiliation(s)
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi-Gakuin University ; Endocrinology and Diabetes
| | - Yasuko Kobayashi
- Department of Internal Medicine, School of Dentistry, Aichi-Gakuin University
| | | | | | | | - Hideki Kamiya
- CKD Initiatives, Nagoya University School of Medicine
| | - Masaki Hata
- Department of Internal Medicine, School of Dentistry, Aichi-Gakuin University
| | - Toru Nishikawa
- Department of Internal Medicine, School of Dentistry, Aichi-Gakuin University
| | | | | | | | - Tatsuaki Matsubara
- Department of Internal Medicine, School of Dentistry, Aichi-Gakuin University
| | | | | |
Collapse
|
43
|
Ginsenoside Rd attenuates tau protein phosphorylation via the PI3K/AKT/GSK-3β pathway after transient forebrain ischemia. Neurochem Res 2014; 39:1363-73. [PMID: 24792734 DOI: 10.1007/s11064-014-1321-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/16/2014] [Accepted: 04/25/2014] [Indexed: 01/17/2023]
Abstract
Phosphorylated tau was found to be regulated after cerebral ischemia and linked to high risk for the development of post-stroke dementia. Our previous study showed that ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, decreased tau phosphorylation in Alzheimer model. As an extending study, here we investigated whether Rd could reduce tau phosphorylation and sequential cognition impairment after ischemic stroke. Sprague-Dawley rats were subjected to focal cerebral ischemia. The tau phosphorylation of rat brains were analyzed following ischemia by Western blot and animal cognitive functions were examined by Morris water maze and Novel object recognition task. Ischemic insults increased the levels of phosphorylated tau protein at Ser199/202 and PHF-1 sites and caused animal memory deficits. Rd treatment attenuated ischemia-induced enhancement of tau phosphorylation and ameliorated behavior impairment. Furthermore, we revealed that Rd inhibited the activity of Glycogen synthase kinase-3β (GSK-3β), the most important kinase involving tau phosphorylation, but enhanced the activity of protein kinase B (PKB/AKT), a key kinase suppressing GSK-3β activity. Moreover, we found that LY294002, an antagonist for phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway, abolished the inhibitory effect of Rd on GSK-3β activity and tau phosphorylation. Taken together, our findings provide the first evidence that Rd may reduce cerebral ischemia-induced tau phosphorylation via the PI3K/AKT/GSK-3β pathway.
Collapse
|
44
|
Khubutiya MS, Vagabov AV, Temnov AA, Sklifas AN. Paracrine mechanisms of proliferative, anti-apoptotic and anti-inflammatory effects of mesenchymal stromal cells in models of acute organ injury. Cytotherapy 2014; 16:579-85. [DOI: 10.1016/j.jcyt.2013.07.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 01/12/2023]
|
45
|
Zaporozhets TS, Ermakova SV, Zvyagintseva TN, Besednova NN. Antitumor effects of sulfated polysaccharides produced from marine algae. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s2079086414020078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Perez-Aso M, Flacco N, Carpena N, Montesinos MC, D'Ocon P, Ivorra MD. β-Adrenoceptors differentially regulate vascular tone and angiogenesis of rat aorta via ERK1/2 and p38. Vascul Pharmacol 2014; 61:80-9. [PMID: 24768830 DOI: 10.1016/j.vph.2014.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 01/14/2023]
Abstract
β-Adrenoceptors (β-ARs) modulate ERK1/2 and p38 in different cells, but little is known about the contribution of these signaling pathways to the function of β-ARs in vascular tissue. Immunoblotting analysis of rat aortic rings, primary endothelial (ECs) and smooth muscle cells (SMCs) isolated from aorta showed that β-AR stimulation with isoprenaline activated p38 in aortic rings and in both cultured cell types, whereas it had a dual effect on ERK1/2 phosphorylation, decreasing it in ECs while increasing it in SMCs. These effects were reversed by propranolol, which by itself increased p-ERK1/2 in ECs. Isoprenaline β-AR mediated vasodilation of aortic rings was potentiated by the ERK1/2 inhibitor, U0126, in the presence or absence of endothelium or L-NAME, whereas inhibition of p38 had no impact. Isoprenaline moderately decreased sprouting from aorta rings in the Matrigel angiogenesis assay; conversely propranolol not only prevented isoprenaline inhibition, but stimulated angiogenesis. ERK1/2 inhibition decreased angiogenesis, while a dramatic stimulation was observed by p38 blockade. Our results suggest that ERK1/2 activation after β-ARs stimulation in the smooth muscle hinders the vasodilator effect of isoprenaline, but in the endothelium β-ARs decreases ERK1/2 and increases p38 activity reducing therefore angiogenesis.
Collapse
Affiliation(s)
- Miguel Perez-Aso
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | - Nicla Flacco
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | - Nuria Carpena
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | - M Carmen Montesinos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain; Institut de Reconociment Molecular i Desenvolupament Tecnològic, Centre Mixte Universitat Politècnica de València - Universitat de València, Spain
| | - Pilar D'Ocon
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | - M Dolores Ivorra
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain.
| |
Collapse
|
47
|
|
48
|
Zhang X, Shi M, Bjørås M, Wang W, Zhang G, Han J, Liu Z, Zhang Y, Wang B, Chen J, Zhu Y, Xiong L, Zhao G. Ginsenoside Rd promotes glutamate clearance by up-regulating glial glutamate transporter GLT-1 via PI3K/AKT and ERK1/2 pathways. Front Pharmacol 2013; 4:152. [PMID: 24376419 PMCID: PMC3858668 DOI: 10.3389/fphar.2013.00152] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/24/2013] [Indexed: 01/20/2023] Open
Abstract
Ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, has been showed to protect against ischemic cerebral damage both in vitro and in vivo. However, the underlying mechanism of Rd is largely unknown. Excessive extracellular glutamate causes excitatory toxicity, leading to cell death, and neurodegenerative processes after brain ischemia. The clearance of extracellular glutamate by astrocytic glutamate transporter GLT-1 is essential for neuronal survival after stroke. Here we investigated the effects of Rd on the levels of extracellular glutamate and the expression of GLT-1 in vivo and in vitro. After rat middle cerebral artery occlusion, Rd significantly increased the mRNA and protein expression levels of GLT-1, and reduced the burst of glutamate as revealed by microdialysis. Consistently, specific glutamate uptake by cultured astrocytes was elevated after Rd exposure. Furthermore, we showed that Rd increased the levels of phosphorylated protein kinase B (PKB/Akt) and phospho-ERK1/2 (p-ERK1/2) in astrocyte culture after oxygen-glucose deprivation. Moreover, the effect of Rd on GLT-1 expression and glutamate uptake can be abolished by PI3K/AKT agonist LY294002 or ERK1/2 inhibitor PD98059. Taken together, our findings provide the first evidence that Rd can promote glutamate clearance by up-regulating GLT-1 expression through PI3K/AKT and ERK1/2 pathways.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Ming Shi
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Magnar Bjørås
- Department of Microbiology, Institute of Clinical Medicine, Oslo University Hospital Oslo, Norway
| | - Wei Wang
- Department of Microbiology, Institute of Clinical Medicine, Oslo University Hospital Oslo, Norway
| | - Guangyun Zhang
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Junliang Han
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Zhirong Liu
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Yunxia Zhang
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Bing Wang
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Jing Chen
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Yi Zhu
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Lize Xiong
- Department of Anesthesiology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, The Forth Military Medical University Xi'an, Shaanxi, China
| |
Collapse
|
49
|
Nakayama F, Umeda S, Yasuda T, Fujita M, Asada M, Meineke V, Imamura T, Imai T. Cellular internalization of fibroblast growth factor-12 exerts radioprotective effects on intestinal radiation damage independently of FGFR signaling. Int J Radiat Oncol Biol Phys 2013; 88:377-84. [PMID: 24315567 DOI: 10.1016/j.ijrobp.2013.10.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/21/2013] [Accepted: 10/25/2013] [Indexed: 12/22/2022]
Abstract
PURPOSE Several fibroblast growth factors (FGFs) were shown to inhibit radiation-induced tissue damage through FGF receptor (FGFR) signaling; however, this signaling was also found to be involved in the pathogenesis of several malignant tumors. In contrast, FGF12 cannot activate any FGFRs. Instead, FGF12 can be internalized readily into cells using 2 cell-penetrating peptide domains (CPP-M, CPP-C). Therefore, this study focused on clarifying the role of FGF12 internalization in protection against radiation-induced intestinal injury. METHODS AND MATERIALS Each FGF or peptide was administered intraperitoneally to BALB/c mice in the absence of heparin 24 hours before or after total body irradiation with γ rays at 9 to 12 Gy. Several radioprotective effects were examined in the jejunum. RESULTS Administration of FGF12 after radiation exposure was as effective as pretreatment in significantly promoting intestinal regeneration, proliferation of crypt cells, and epithelial differentiation. Two domains, comprising amino acid residues 80 to 109 and 140 to 169 of FGF12B, were identified as being responsible for the radioprotective activity, so that deletion of both domains from FGF12B resulted in a reduction in activity. Interestingly, these regions included the CPP-M and CPP-C domains, respectively; however, CPP-C by itself did not show an antiapoptotic effect. In addition, FGF1, prototypic FGF, possesses a domain corresponding to CPP-M, whereas it lacks CPP-C, so the fusion of FGF1 with CPP-C (FGF1/CPP-C) enhanced cellular internalization and increased radioprotective activity. However, FGF1/CPP-C reduced in vitro mitogenic activity through FGFRs compared with FGF1, implying that FGFR signaling might not be essential for promoting the radioprotective effect of FGF1/CPP-C. In addition, internalized FGF12 suppressed the activation of p38α after irradiation, resulting in reduced radiation-induced apoptosis. CONCLUSIONS These findings indicate that FGF12 can protect the intestine against radiation-induced injury through its internalization, independently of FGFRs, suggesting that cellular uptake of FGF12 is an alternative signaling pathway useful for cancer radiation therapy.
Collapse
Affiliation(s)
- Fumiaki Nakayama
- Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, Chiba, Japan.
| | - Sachiko Umeda
- Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, Chiba, Japan
| | - Takeshi Yasuda
- Radiation Emergency Medicine Research Program, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, Chiba, Japan
| | - Mayumi Fujita
- Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, Chiba, Japan
| | - Masahiro Asada
- Signaling Molecules Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Viktor Meineke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Toru Imamura
- Signaling Molecules Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takashi Imai
- Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, Chiba, Japan
| |
Collapse
|
50
|
Tan C, Qian X, Jia R, Wu M, Liang Z. Matrine induction of reactive oxygen species activates p38 leading to caspase-dependent cell apoptosis in non-small cell lung cancer cells. Oncol Rep 2013; 30:2529-35. [PMID: 24026034 DOI: 10.3892/or.2013.2727] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/22/2013] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is one of the most refractory cancers in the clinic; it is insensitive to chemotherapy and is usually excised. However, screening natural compounds from herbs is also considered a possible method for its therapy. In the present study, we investigated whether matrine, a natural compound isolated from Sophora flavescens Ait. and exerting an inhibitory effect on lung cancer cells, also indicates inhibition on NSCLC cells and elucidated its molecular mechanism. Firstly, it is confirmed that matrine induces apoptosis of human NSCLC cells with anti-apoptotic factors inhibited and dependent on caspase activity. In addition, we found that matrine increases the phosphorylation of p38 but not its total protein, and inhibition of the p38 pathway with SB202190 partially prevents matrine-induced apoptosis. Furthermore, matrine generates reactive oxygen species (ROS) in a dose- and time-dependent manner, which is reversed by pretreatment with N-acetyl-L-cysteine (NAC). Additionally, inhibition of cell proliferation and increase of phosphorylation of p38 was also partially reversed by NAC. Collectively, matrine activates p38 pathway leading to a caspase-dependent apoptosis by inducing generation of ROS in NSCLC cells and may be a potential chemical for NSCLC.
Collapse
Affiliation(s)
- Caihong Tan
- College of Pharmacy, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | | | | | | | | |
Collapse
|