1
|
Gao Y, Li F, Yuan Z, Luo Z, Rao Y. Elucidation and biosynthesis of tetrahydroisoquinoline alkaloids: Recent advances and prospects. Biotechnol Adv 2025; 79:108524. [PMID: 39884566 DOI: 10.1016/j.biotechadv.2025.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/11/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Tetrahydroisoquinoline alkaloids (THIAs) are a prominent class of plant-derived compounds with various important pharmaceutical applications. Considerable progress has been made in the biosynthesis of THIAs in microorganisms due to the elucidation of their natural biosynthetic pathways and the discovery of key enzymes. In this review, we systematically summarize recent progress in elucidating the natural biosynthetic pathways of THIAs and their biosynthesis in industrial microorganisms. In addition, recent advancements in the synthesis of THIAs through the construction of artificial multi-enzyme cascades and chemoenzymatic cascades are highlighted. Finally, the current challenges in developing efficient cell factories for producing THIAs are discussed, along with proposed strategies aimed at providing insights into the industrial production of THIAs.
Collapse
Affiliation(s)
- Yue Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.; College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Fei Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China..
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China..
| |
Collapse
|
2
|
Qiu S, Wang J, Pei T, Gao R, Xiang C, Chen J, Zhang C, Xiao Y, Li Q, Wu Z, He M, Wang R, Zhao Q, Xu Z, Hu J, Chen W. Functional evolution and diversification of CYP82D subfamily members have shaped flavonoid diversification in the genus Scutellaria. PLANT COMMUNICATIONS 2025; 6:101134. [PMID: 39277789 PMCID: PMC11783885 DOI: 10.1016/j.xplc.2024.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Flavonoids, the largest class of polyphenols, exhibit substantial structural and functional diversity, yet their evolutionary diversification and specialized functions remain largely unexplored. The genus Scutellaria is notable for its rich flavonoid diversity, particularly of 6/8-hydroxylated variants biosynthesized by the cytochrome P450 subfamily CYP82D. Our study analyzes metabolic differences between Scutellaria baicalensis and Scutellaria barbata, and the results suggest that CYP82Ds have acquired a broad range of catalytic functions over their evolution. By integrating analyses of metabolic networks and gene evolution across 22 Scutellaria species, we rapidly identified 261 flavonoids and delineated five clades of CYP82Ds associated with various catalytic functions. This approach revealed a unique catalytic mode for 6/8-hydroxylation of flavanone substrates and the first instance of 7-O-demethylation of flavonoid substrates catalyzed by a cytochrome P450. Ancestral sequence reconstruction and functional validation demonstrated that gradual neofunctionalization of CYP82Ds has driven the chemical diversity of flavonoids in the genus Scutellaria throughout its evolutionary history. These findings enhance our understanding of flavonoid diversity, reveal the intricate roles of CYP82Ds in Scutellaria species, and highlight the extensive catalytic versatility of cytochrome P450 members within plant taxa.
Collapse
Affiliation(s)
- Shi Qiu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Jing Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tianlin Pei
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Ranran Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Chunlei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Junfeng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chen Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Li
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China
| | - Ziding Wu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min He
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rong Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
| | - Zhichao Xu
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Jiadong Hu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China.
| | - Wansheng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China.
| |
Collapse
|
3
|
Shi W, Li Q, Li X, Luo L, Gan J, Ma Y, Wang J, Chen T, Zhang Y, Su P, Ma X, Guo J, Huang L. Transcriptome Analysis of Stephania yunnanensis and Functional Validation of CYP80s Involved in Benzylisoquinoline Alkaloid Biosynthesis. Molecules 2025; 30:259. [PMID: 39860129 PMCID: PMC11767795 DOI: 10.3390/molecules30020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
The medicinal plant Stephania yunnanensis is rich in aporphine alkaloids, a type of benzylisoquinoline alkaloid (BIA), with aporphine being the representative and most abundant compound, but our understanding of the biosynthesis of BIAs in this plant has been relatively limited. Previous research reported the genome of S. yunnanensis and preliminarily identified the norcoclaurine synthase (NCS), which is involved in the early stages of the BIA biosynthetic pathways. However, the key genes promoting the formation of the aporphine skeleton have not yet been reported. In this study, based on the differences in the content of crebanine and several other BIAs in different tissues, we conducted transcriptome sequencing of roots, stems, and leaves. We then identified candidate genes through functional annotation and sequence alignment and further analyzed them in combination with the genome. Based on this analysis, we identified three CYP80 enzymes (SyCYP80Q5-1, SyCYP80Q5-3, and SyCYP80G6), which exhibited different activities toward (S)- and (R)-configured substrates in S. yunnanensis and demonstrated strict stereoselectivity enroute to aporphine. This study provides metabolomic and transcriptomic information on the biosynthesis of BIAs in S. yunnanensis, offers valuable insights into the elucidation of BIA biosynthesis, and lays the foundation for the complete analysis of pathways for more aporphine alkaloids.
Collapse
Affiliation(s)
- Wenlong Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Qishuang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Xinyi Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Linglong Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Jingyi Gan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Ying Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Jian Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Tong Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Yifeng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Xiaohui Ma
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| |
Collapse
|
4
|
Du Z, Cao J, Meng J, Zhou H, Hu Q, Li L, Liao Y, Miao S, Li W, Ji S, Wang T. Effects of typical plant growth regulator chlormequat chloride on alkaloidal compounds in Corydalis yanhusuo and molecular mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117579. [PMID: 39718287 DOI: 10.1016/j.ecoenv.2024.117579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
The effects of chlormequat chloride, a typical plant growth regulator, on the medicinal herb Corydalis yanhusuo were investigated. A standardized field experiment was conducted to investigate the molecular mechanisms and variations in active compounds resulting from chlormequat chloride treatment. Samples of C. yanhusuo were collected under controlled conditions and at varying doses of chlormequat chloride. The differential compounds identified in both control and treated groups of C. yanhusuo were primarily alkaloids, as determined by non-targeted metabolomics analysis. The metabolite content was determined through the precise quantification of 12 enriched alkaloidal compounds across various categories of C. yanhusuo using targeted metabolomics. A comprehensive metabolomics evaluation method was developed that focuses on pharmacodynamically active compounds. Transcriptomic analysis also facilitates the identification of differential genes and enzymes associated with alkaloid production between the two groups. Chlormequat chloride significantly increased the yield of C. yanhusuo, but the content of the quantitatively abundant alkaloids decreased. It was suggested that the level of cytochrome P450 enzymes, primarily involved in the biosynthesis of benzylisoquinoline alkaloids, was inhibited by chlormequat chloride. In conclusion, this study revealed a dose-dependent effect of chlormequat chloride on C. yanhusuo and its associated molecular mechanisms as determined by omics analysis.
Collapse
Affiliation(s)
- Zixuan Du
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, Shanghai 200336, China; NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, 1500 Zhangheng Road, Pudong New Area, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New Area, Shanghai 201203, China.
| | - Jiayin Cao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, 1500 Zhangheng Road, Pudong New Area, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New Area, Shanghai 201203, China.
| | - Jie Meng
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, Shanghai 200336, China.
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, 1500 Zhangheng Road, Pudong New Area, Shanghai 201203, China.
| | - Qing Hu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, 1500 Zhangheng Road, Pudong New Area, Shanghai 201203, China.
| | - Ling Li
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, Shanghai 200336, China.
| | - Yun Liao
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, Shanghai 200336, China.
| | - Shui Miao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, 1500 Zhangheng Road, Pudong New Area, Shanghai 201203, China.
| | - Wenting Li
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, 1500 Zhangheng Road, Pudong New Area, Shanghai 201203, China.
| | - Shen Ji
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, 1500 Zhangheng Road, Pudong New Area, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New Area, Shanghai 201203, China.
| | - Tongshuai Wang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 720 Xianxia Road, Changning District, Shanghai 200336, China.
| |
Collapse
|
5
|
Cao L, Teo D, Wang Y, Ye Q, Liu C, Ding C, Li X, Chang M, Han Y, Li Z, Sun X, Huang Q, Zhang CY, Foo JL, Wong A, Yu A. Advancements in Microbial Cell Engineering for Benzylisoquinoline Alkaloid Production. ACS Synth Biol 2024; 13:3842-3856. [PMID: 39579377 DOI: 10.1021/acssynbio.4c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a class of natural compounds found in plants of the Ranunculaceae family, known for their diverse pharmacological activities. However, the extraction yields of BIAs from plants are limited, and the cost of chemical synthesis is prohibitively high. Recent advancements in systems metabolic engineering and genomics have made it feasible to use microbes as bioreactors for BIAs production. This review explores recent progress in enhancing the production and yields of BIAs in two microbial systems: Escherichia coli and Saccharomyces cerevisiae. It covers various BIAs, including (S)-reticuline, morphinane, protoberberine, and aporphine alkaloids. The review provides strategies and technologies for BIAs synthesis, analyzes current challenges in BIAs research, and offers recommendations for future research directions.
Collapse
Affiliation(s)
- Liyan Cao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Desmond Teo
- Food Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore 828608, Singapore
| | - Yuyang Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Qingqing Ye
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Chang Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Chen Ding
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Xiangyu Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Mingxin Chang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Yuqing Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Zhuo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Xu Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Qingeng Huang
- Qingyuan One Alive Institute of Biological Research Co., Ltd, Qingyuan 500112, PR China
| | - Cui-Ying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Jee Loon Foo
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National Centre for Engineering Biology (NCEB), 119077Singapore, Singapore
| | - Adison Wong
- Food Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore 828608, Singapore
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| |
Collapse
|
6
|
Fu K, Dai S, Ma C, Zhang Y, Zhang S, Wang C, Gong L, Zhou H, Li Y. Lignans are the main active components of
Schisandrae Chinensis Fructus for liver disease treatment: a review. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:2425-2444. [DOI: 10.26599/fshw.2022.9250200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Li Q, Jiao X, Li X, Shi W, Ma Y, Tan X, Gan J, Liu J, Yang J, Wang J, Jin B, Chen T, Su P, Zhao Y, Zhang Y, Tang J, Cui G, Chen Y, Guo J, Huang L. Identification of the cytochrome P450s responsible for the biosynthesis of two types of aporphine alkaloids and their de novo biosynthesis in yeast. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1703-1717. [PMID: 38953746 DOI: 10.1111/jipb.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Aporphine alkaloids have diverse pharmacological activities; however, our understanding of their biosynthesis is relatively limited. Previous studies have classified aporphine alkaloids into two categories based on the configuration and number of substituents of the D-ring and have proposed preliminary biosynthetic pathways for each category. In this study, we identified two specific cytochrome P450 enzymes (CYP80G6 and CYP80Q5) with distinct activities toward (S)-configured and (R)-configured substrates from the herbaceous perennial vine Stephania tetrandra, shedding light on the biosynthetic mechanisms and stereochemical features of these two aporphine alkaloid categories. Additionally, we characterized two CYP719C enzymes (CYP719C3 and CYP719C4) that catalyzed the formation of the methylenedioxy bridge, an essential pharmacophoric group, on the A- and D-rings, respectively, of aporphine alkaloids. Leveraging the functional characterization of these crucial cytochrome P450 enzymes, we reconstructed the biosynthetic pathways for the two types of aporphine alkaloids in budding yeast (Saccharomyces cerevisiae) for the de novo production of compounds such as (R)-glaziovine, (S)-glaziovine, and magnoflorine. This study provides key insight into the biosynthesis of aporphine alkaloids and lays a foundation for producing these valuable compounds through synthetic biology.
Collapse
Affiliation(s)
- Qishuang Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiang Jiao
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Xinyi Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wenlong Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ying Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiangmei Tan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingyi Gan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jimei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, The Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jian Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baolong Jin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tong Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yujun Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yifeng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinfu Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guanghong Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
8
|
Omondi EO, Lin CY, Huang SM, Liao CA, Lin YP, Oliva R, van Zonneveld M. Landscape genomics reveals genetic signals of environmental adaptation of African wild eggplants. Ecol Evol 2024; 14:e11662. [PMID: 38983700 PMCID: PMC11232056 DOI: 10.1002/ece3.11662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
Crop wild relatives (CWR) provide a valuable resource for improving crops. They possess desirable traits that confer resilience to various environmental stresses. To fully utilize crop wild relatives in breeding and conservation programs, it is important to understand the genetic basis of their adaptation. Landscape genomics associates environments with genomic variation and allows for examining the genetic basis of adaptation. Our study examined the differences in allele frequency of 15,416 single nucleotide polymorphisms (SNPs) generated through genotyping by sequencing approach among 153 accessions of 15 wild eggplant relatives and two cultivated species from Africa, the principal hotspot of these wild relatives. We also explored the correlation between these variations and the bioclimatic and soil conditions at their collection sites, providing a comprehensive understanding of the genetic signals of environmental adaptation in African wild eggplant. Redundancy analysis (RDA) results showed that the environmental variation explained 6% while the geographical distances among the collection sites explained 15% of the genomic variation in the eggplant wild relative populations when controlling for population structure. Our findings indicate that even though environmental factors are not the main driver of selection in eggplant wild relatives, it is influential in shaping the genomic variation over time. The selected environmental variables and candidate SNPs effectively revealed grouping patterns according to the environmental characteristics of sampling sites. Using four genotype-environment association methods, we detected 396 candidate SNPs (2.5% of the initial SNPs) associated with eight environmental factors. Some of these SNPs signal genes involved in pathways that help adapt to environmental stresses such as drought, heat, cold, salinity, pests, and diseases. These candidate SNPs will be useful for marker-assisted improvement and characterizing the germplasm of this crop for developing climate-resilient eggplant varieties. The study provides a model for applying landscape genomics to other crops' wild relatives.
Collapse
Affiliation(s)
- Emmanuel O Omondi
- Genetic Resources and Seed Unit World Vegetable Center Tainan Taiwan
| | - Chen-Yu Lin
- Biotechnology, World Vegetable Center Tainan Taiwan
| | | | - Cheng-An Liao
- Department of Horticulture National Taiwan University Taipei Taiwan
| | - Ya-Ping Lin
- Biotechnology, World Vegetable Center Tainan Taiwan
| | - Ricardo Oliva
- Plant Pathology World Vegetable Center Tainan Taiwan
| | | |
Collapse
|
9
|
Meng F, Zhang S, Su J, Zhu B, Pan X, Qiu X, Cui X, Wang C, Niu L, Li C, Lu S. Characterization of two CYP80 enzymes provides insights into aporphine alkaloid skeleton formation in Aristolochia contorta. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1439-1454. [PMID: 38379355 DOI: 10.1111/tpj.16686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Aporphine alkaloids are a large group of natural compounds with extensive pharmaceutical application prospects. The biosynthesis of aporphine alkaloids has been paid attentions in the past decades. Here, we determined the contents of four 1-benzylisoquinoline alkaloids and five aporphine alkaloids in root, stem, leaf, and flower of Aristolochia contorta Bunge, which belongs to magnoliids. Two CYP80 enzymes were identified and characterized from A. contorta. Both of them catalyze the unusual C-C phenol coupling reactions and directly form the aporphine alkaloid skeleton. AcCYP80G7 catalyzed the formation of hexacyclic aporphine corytuberine. AcCYP80Q8 catalyzed the formation of pentacyclic proaporphine glaziovine. Kingdom-wide phylogenetic analysis of the CYP80 family suggested that CYP80 first appeared in Nymphaeales. The functional divergence of hydroxylation and C-C (or C-O) phenol coupling preceded the divergence of magnoliids and eudicots. Probable crucial residues of AcCYP80Q8 were selected through sequence alignment and molecular docking. Site-directed mutagenesis revealed two crucial residues E284 and Y106 for the catalytic reaction. Identification and characterization of two aporphine skeleton-forming enzymes provide insights into the biosynthesis of aporphine alkaloids.
Collapse
Affiliation(s)
- Fanqi Meng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Sixuan Zhang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Jiaxian Su
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Butuo Zhu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xian Pan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xiaoxiao Qiu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xinyun Cui
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Chunling Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Lili Niu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Caili Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Shanfa Lu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| |
Collapse
|
10
|
Zhao X, Pan Y, Tan J, Lv H, Wang Y, Chen DX. Metabolomics and transcriptomics reveal the mechanism of alkaloid synthesis in Corydalis yanhusuo bulbs. PLoS One 2024; 19:e0304258. [PMID: 38781178 PMCID: PMC11115222 DOI: 10.1371/journal.pone.0304258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Corydalis yanhusuo W.T. Wang is a traditional herb. Benzylisoquinoline alkaloids (BIAs) are the main pharmacological active ingredients that play an important role in sedation, relieving pain, promoting blood circulation, and inhibiting cancer cells. However, there are few studies on the biosynthetic pathway of benzylisoquinoline alkaloids in Corydalis yanhusuo, especially on some specific components, such as tetrahydropalmatine. We carried out widely targeted metabolome and transcriptomic analyses to construct the biosynthetic pathway of benzylisoquinoline alkaloids and identified candidate genes. In this study, 702 metabolites were detected, including 216 alkaloids. Protoberberine-type and aporphine-type alkaloids are the main chemical components in C. yanhusuo bulbs. Key genes for benzylisoquinoline alkaloids biosynthesis, including 6-OMT, CNMT, NMCH, BBE, SOMT1, CFS, SPS, STOX, MSH, TNMT and P6H, were successfully identified. There was no significant difference in the content of benzylisoquinoline alkaloids and the expression level of genes between the two suborgans (mother-bulb and son-bulb). The expression levels of BIA genes in the expansion stage (MB-A and SB-A) were significantly higher than those in the maturity stage (MB-C and SB-C), and the content of benzylisoquinoline alkaloids was consistent with the pattern of gene regulation. Five complete single genes were likely to encode the functional enzyme of CoOMT, which participated in tetrahydropalmatine biosynthesis in C. yanhusuo bulbs. These studies provide a strong theoretical basis for the subsequent development of metabolic engineering of benzylisoquinoline alkaloids (especially tetrahydropalmatine) of C. yanhusuo.
Collapse
Affiliation(s)
- Xiao Zhao
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing College of Traditional Chinese Medicine, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Yuan Pan
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Jun Tan
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Hui Lv
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing College of Traditional Chinese Medicine, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Yu Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Da-xia Chen
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing College of Traditional Chinese Medicine, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| |
Collapse
|
11
|
Jayawardena TU, Merindol N, Liyanage NS, Desgagné-Penix I. Unveiling Amaryllidaceae alkaloids: from biosynthesis to antiviral potential - a review. Nat Prod Rep 2024; 41:721-747. [PMID: 38131392 DOI: 10.1039/d3np00044c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Covering: 2017 to 2023 (now)Amaryllidaceae alkaloids (AAs) are a unique class of specialized metabolites containing heterocyclic nitrogen bridging that play a distinct role in higher plants. Irrespective of their diverse structures, most AAs are biosynthesized via intramolecular oxidative coupling. The complex organization of biosynthetic pathways is constantly enlightened by new insights owing to the advancement of natural product chemistry, synthetic organic chemistry, biochemistry, systems and synthetic biology tools and applications. These promote novel compound identification, trace-level metabolite quantification, synthesis, and characterization of enzymes engaged in AA catalysis, enabling the recognition of biosynthetic pathways. A complete understanding of the pathway benefits biotechnological applications in the long run. This review emphasizes the structural diversity of the AA specialized metabolites involved in biogenesis although the process is not entirely defined yet. Moreover, this work underscores the pivotal role of synthetic and enantioselective studies in justifying biosynthetic conclusions. Their prospective candidacy as lead constituents for antiviral drug discovery has also been established. However, a complete understanding of the pathway requires further interdisciplinary efforts in which antiviral studies address the structure-activity relationship. This review presents current knowledge on the topic.
Collapse
Affiliation(s)
- Thilina U Jayawardena
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G8Z 4M3, Canada.
| | - Natacha Merindol
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G8Z 4M3, Canada.
| | - Nuwan Sameera Liyanage
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G8Z 4M3, Canada.
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G8Z 4M3, Canada.
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
12
|
An Z, Gao R, Chen S, Tian Y, Li Q, Tian L, Zhang W, Kong L, Zheng B, Hao L, Xin T, Yao H, Wang Y, Song W, Hua X, Liu C, Song J, Fan H, Sun W, Chen S, Xu Z. Lineage-Specific CYP80 Expansion and Benzylisoquinoline Alkaloid Diversity in Early-Diverging Eudicots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309990. [PMID: 38477432 PMCID: PMC11109638 DOI: 10.1002/advs.202309990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Indexed: 03/14/2024]
Abstract
Menispermaceae species, as early-diverging eudicots, can synthesize valuable benzylisoquinoline alkaloids (BIAs) like bisbenzylisoquinoline alkaloids (bisBIAs) and sinomenines with a wide range of structural diversity. However, the evolutionary mechanisms responsible for their chemo-diversity are not well understood. Here, a chromosome-level genome assembly of Menispermum dauricum is presented and demonstrated the occurrence of two whole genome duplication (WGD) events that are shared by Ranunculales and specific to Menispermum, providing a model for understanding chromosomal evolution in early-diverging eudicots. The biosynthetic pathway for diverse BIAs in M. dauricum is reconstructed by analyzing the transcriptome and metabolome. Additionally, five catalytic enzymes - one norcoclaurine synthase (NCS) and four cytochrome P450 monooxygenases (CYP450s) - from M. dauricum are responsible for the formation of the skeleton, hydroxylated modification, and C-O/C-C phenol coupling of BIAs. Notably, a novel leaf-specific MdCYP80G10 enzyme that catalyzes C2'-C4a phenol coupling of (S)-reticuline into sinoacutine, the enantiomer of morphinan compounds, with predictable stereospecificity is discovered. Moreover, it is found that Menispermum-specific CYP80 gene expansion, as well as tissue-specific expression, has driven BIA diversity in Menispermaceae as compared to other Ranunculales species. This study sheds light on WGD occurrences in early-diverging eudicots and the evolution of diverse BIA biosynthesis.
Collapse
Affiliation(s)
- Zhoujie An
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Shanshan Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Ya Tian
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Qi Li
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Lixia Tian
- School of Pharmaceutical SciencesGuizhou UniversityGuiyang550025China
| | - Wanran Zhang
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Lingzhe Kong
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Baojiang Zheng
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Lijun Hao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Tianyi Xin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Wei Song
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Xin Hua
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Chengwei Liu
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Huahao Fan
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
- Institute of HerbgenomicsChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Zhichao Xu
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| |
Collapse
|
13
|
Li X, Liu Y. Multiscale Study on the Intramolecular C-S Bond Formation Catalyzed by P450 Monooxygenase CxnD Involved in the Biosynthesis of Chuangxinmycin: The Critical Roles of Noncrystal Water Molecule and Conformational Change. Inorg Chem 2024; 63:4086-4098. [PMID: 38376137 DOI: 10.1021/acs.inorgchem.3c03748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Cytochrome P450 monooxygenase CxnD catalyzes intramolecular C-S bond formation in the biosynthesis of chuangxinmycin, which is representative of the synthesis of sulfur-containing natural heterocyclic compounds. The intramolecular cyclization usually requires the activation of two reaction sites and a large conformational change; thus, illuminating its detailed reaction mechanism remains challengeable. Here, the reaction pathway of CxnD-catalyzed C-S bond formation was clarified by a series of calculations, including Gaussian accelerated molecular dynamics simulations and quantum mechanical-molecular mechanical calculations. Our results revealed that the C-S formation follows a diradical coupling mechanism. CxnD first employs Cpd I to abstract the hydrogen atom from the imino group of the indole ring, and then, the resulted Cpd II further extracts another hydrogen atom from the thiol group of the side chain to afford a diradical intermediate, in which a noncrystal water molecule entering into the active site after the formation of Cpd I was proved to play an indispensable role. Moreover, the diradical intermediate cannot directly perform the coupling reaction. It should first undergo a series of conformational changes leading to the proximity of two reaction sites. It is the flexibility of the active site of the enzyme and the side chain of the substrate that makes the diradical coupling to be successful.
Collapse
Affiliation(s)
- Xinyi Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
14
|
Lei W, Zhu H, Cao M, Zhang F, Lai Q, Lu S, Dong W, Sun J, Ru D. From genomics to metabolomics: Deciphering sanguinarine biosynthesis in Dicranostigma leptopodum. Int J Biol Macromol 2024; 257:128727. [PMID: 38092109 DOI: 10.1016/j.ijbiomac.2023.128727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Dicranostigma leptopodum (Maxim) Fedde (DLF) is a renowned medicinal plant in China, known to be rich in alkaloids. However, the unavailability of a reference genome has impeded investigation into its plant metabolism and genetic breeding potential. Here we present a high-quality chromosomal-level genome assembly for DLF, derived using a combination of Nanopore long-read sequencing, Illumina short-read sequencing and Hi-C technologies. Our assembly genome spans a size of 621.81 Mb with an impressive contig N50 of 93.04 Mb. We show that the species-specific whole-genome duplication (WGD) of DLF and Papaver somniferum corresponded to two rounds of WGDs of Papaver setigerum. Furthermore, we integrated comprehensive homology searching, gene family analyses and construction of a gene-to-metabolite network. These efforts led to the discovery of co-expressed transcription factors, including NAC and bZIP, alongside sanguinarine (SAN) pathway genes CYP719 (CFS and SPS). Notably, we identified P6H as a promising gene for enhancing SAN production. By providing the first reference genome for Dicranostigma, our study confirms the genomic underpinning of SAN biosynthesis and establishes a foundation for advancing functional genomic research on Papaveraceae species. Our findings underscore the pivotal role of high-quality genome assemblies in elucidating genetic variations underlying the evolutionary origin of secondary metabolites.
Collapse
Affiliation(s)
- Weixiao Lei
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hui Zhu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Man Cao
- Gansu Pharmacovigilance Center, Lanzhou 730070, China
| | - Feng Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Qing Lai
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Shengming Lu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wenpan Dong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Jiahui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dafu Ru
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
15
|
Hao C, Yu Y, Liu Y, Liu A, Chen S. The CYP80A and CYP80G Are Involved in the Biosynthesis of Benzylisoquinoline Alkaloids in the Sacred Lotus ( Nelumbo nucifera). Int J Mol Sci 2024; 25:702. [PMID: 38255776 PMCID: PMC10815925 DOI: 10.3390/ijms25020702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Bisbenzylisoquinoline and aporphine alkaloids are the two main pharmacological compounds in the ancient sacred lotus (Nelumbo nucifera). The biosynthesis of bisbenzylisoquinoline and aporphine alkaloids has attracted extensive attention because bisbenzylisoquinoline alkaloids have been reported as potential therapeutic agents for COVID-19. Our study showed that NnCYP80A can catalyze C-O coupling in both (R)-N-methylcoclaurine and (S)-N-methylcoclaurine to produce bisbenzylisoquinoline alkaloids with three different linkages. In addition, NnCYP80G catalyzed C-C coupling in aporphine alkaloids with extensive substrate selectivity, specifically using (R)-N-methylcoclaurine, (S)-N-methylcoclaurine, coclaurine and reticuline as substrates, but the synthesis of C-ring alkaloids without hydroxyl groups in the lotus remains to be elucidated. The key residues of NnCYP80G were also studied using the 3D structure of the protein predicted using Alphafold 2, and six key amino acids (G39, G69, A211, P288, R425 and C427) were identified. The R425A mutation significantly decreased the catalysis of (R)-N-methylcoclaurine and coclaurine inactivation, which might play important role in the biosynthesis of alkaloids with new configurations.
Collapse
Affiliation(s)
| | | | | | - An Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China; (C.H.); (Y.Y.); (Y.L.)
| | - Sha Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China; (C.H.); (Y.Y.); (Y.L.)
| |
Collapse
|
16
|
Mares C, Udrea AM, Buiu C, Staicu A, Avram S. Therapeutic Potentials of Aconite-like Alkaloids: Bioinformatics and Experimental Approaches. Mini Rev Med Chem 2024; 24:159-175. [PMID: 36994982 DOI: 10.2174/1389557523666230328153417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 03/31/2023]
Abstract
Compounds from plants that are used in traditional medicine may have medicinal properties. It is well known that plants belonging to the genus Aconitum are highly poisonous. Utilizing substances derived from Aconitum sp. has been linked to negative effects. In addition to their toxicity, the natural substances derived from Aconitum species may have a range of biological effects on humans, such as analgesic, anti-inflammatory, and anti-cancer characteristics. Multiple in silico, in vitro, and in vivo studies have demonstrated the effectiveness of their therapeutic effects. In this review, the clinical effects of natural compounds extracted from Aconitum sp., focusing on aconitelike alkaloids, are investigated particularly by bioinformatics tools, such as the quantitative structure- activity relationship method, molecular docking, and predicted pharmacokinetic and pharmacodynamic profiles. The experimental and bioinformatics aspects of aconitine's pharmacogenomic profile are discussed. Our review could help shed light on the molecular mechanisms of Aconitum sp. compounds. The effects of several aconite-like alkaloids, such as aconitine, methyllycacintine, or hypaconitine, on specific molecular targets, including voltage-gated sodium channels, CAMK2A and CAMK2G during anesthesia, or BCL2, BCL-XP, and PARP-1 receptors during cancer therapy, are evaluated. According to the reviewed literature, aconite and aconite derivatives have a high affinity for the PARP-1 receptor. The toxicity estimations for aconitine indicate hepatotoxicity and hERG II inhibitor activity; however, this compound is not predicted to be AMES toxic or an hERG I inhibitor. The efficacy of aconitine and its derivatives in treating many illnesses has been proven experimentally. Toxicity occurs as a result of the high ingested dose; however, the usage of this drug in future research is based on the small quantity of an active compound that fulfills a therapeutic role.
Collapse
Affiliation(s)
- Catalina Mares
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| | - Ana-Maria Udrea
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, Magurele, 077125, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, 50567, Romania
| | - Catalin Buiu
- Department of Automatic Control and Systems Engineering, Politehnica University of Bucharest, Bucharest, 060042, Romania
| | - Angela Staicu
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, Magurele, 077125, Romania
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| |
Collapse
|
17
|
Min X, Zhu T, Hu X, Hou C, He J, Liu X. Transcriptome and Metabolome Analysis of Isoquinoline Alkaloid Biosynthesis of Coptis chinensis in Different Years. Genes (Basel) 2023; 14:2232. [PMID: 38137054 PMCID: PMC10742649 DOI: 10.3390/genes14122232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Coptis chinensis is a perennial herb of the Ranunculaceae family. The isoquinoline alkaloid is the main active component of C. chinensis, mainly exists in its rhizomes and has high clinical application potential. The in vitro synthesis of isoquinoline alkaloids is difficult because their structures are complex; hence, plants are still the main source of them. In this study, two-year and four-year rhizomes of C. chinensis were selected to investigate the effect of growth years on the accumulation of isoquinoline alkaloids. Two-year and four-year C. chinensis were selected for metabolomics detection and transcriptomic analysis. A total of 413 alkaloids were detected by metabolomics analysis, of which 92 were isoquinoline alkaloids. (S)-reticuline was a significantly different accumulated metabolite of the isoquinoline alkaloids biosynthetic pathway in C. chinensis between the two groups. The results of transcriptome analysis showed that a total of 464 differential genes were identified, 36 of which were associated with the isoquinoline alkaloid biosynthesis pathway of C. chinensis. Among them, 18 genes were correlated with the content of important isoquinoline alkaloids. Overall, this study provided a comprehensive metabolomic and transcriptomic analysis of the rapid growth stage of C. chinensis rhizome from the perspective of growth years. It brought new insights into the biosynthetic pathway of isoquinoline alkaloids and provided information for utilizing biotechnology to improve their contents in C. chinensis.
Collapse
Affiliation(s)
| | | | | | | | | | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430700, China; (X.M.); (T.Z.); (X.H.); (C.H.); (J.H.)
| |
Collapse
|
18
|
Mazzotta S, Rositano V, Senaldi L, Bernardi A, Allegrini P, Appendino G. Scalemic natural products. Nat Prod Rep 2023; 40:1647-1671. [PMID: 37439042 DOI: 10.1039/d3np00014a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Covering: up to the end of 2022The area of scalemic natural products is often enigmatic from a mechanistic standpoint, since low optical purity is observed in compounds having multiple contiguous stereogenic centers resulting from mechanistically distinct biogenetic steps. A scalemic state is rarely the result of a sloppy enzymatic activity, rather resulting from the expression of antipodal enzymes/directing proteins or from the erosion of optical purity by enzymatic or spontaneous reactions. Evidence for these processes is critically reviewed, identifying the mechanisms most often associated to the enzymatic generation of scalemic natural products and also discussing analytical exploitations of natural products' scalemicity.
Collapse
Affiliation(s)
- Sarah Mazzotta
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Vincenzo Rositano
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- Indena SpA, Via Don Minzoni 6, 20049 Settala, MI, Italy
| | - Luca Senaldi
- Indena SpA, Via Don Minzoni 6, 20049 Settala, MI, Italy
| | - Anna Bernardi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | | | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Largo Donegani 2, 28100 Novara, Italy.
| |
Collapse
|
19
|
Menéndez-Perdomo IM, Facchini PJ. Elucidation of the (R)-enantiospecific benzylisoquinoline alkaloid biosynthetic pathways in sacred lotus (Nelumbo nucifera). Sci Rep 2023; 13:2955. [PMID: 36805479 PMCID: PMC9940101 DOI: 10.1038/s41598-023-29415-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
Benzylisoquinoline alkaloids (BIAs) are a structurally diverse group of plant specialized metabolites found mainly in members of the order Ranunculales, including opium poppy (Papaver somniferum), for which BIA biosynthetic pathways leading to the critical drugs morphine, noscapine, and sanguinarine have been elucidated. Sacred lotus (Nelumbo nucifera), in the order Proteales, accumulates medicinal BIAs in the proaporphine, aporphine, and bisbenzylisoquinoline structural subgroups with a prevalence of R enantiomers, opposed to the dominant S configuration occurring in the Ranunculales. Nevertheless, distinctive BIA biosynthetic routes in sacred lotus have not been explored. In planta labeling experiments and in vitro assays with recombinant enzymes and plant protein extracts showed that dopamine and 4-hydroxyphenylacetaldehyde derived from L-tyrosine serve as precursors for the formation of (R,S)-norcoclaurine in sacred lotus, whereas only (R)-norcoclaurine byproducts are favored in the plant by action of R-enantiospecific methyltransferases and cytochrome P450 oxidoreductases (CYPs). Enzymes responsible for the R-enantiospecific formation of proaporphine (NnCYP80Q1) and bisbenzylisoquinoline (NnCYP80Q2) scaffolds, and a methylenedioxy bridge introduction on aporphine substrates (NnCYP719A22) were identified, whereas additional aspects of the biosynthetic pathways leading to the distinctive alkaloid profile are discussed. This work expands the availability of molecular tools that can be deployed in synthetic biology platforms for the production of high-value alkaloids.
Collapse
Affiliation(s)
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
20
|
Schuh T, Kataeva O, Knölker HJ. μ-Oxo-bis[(octacosafluoro- meso-tetraphenylporphyrinato)iron(iii)] - synthesis, crystal structure, and catalytic activity in oxidation reactions. Chem Sci 2023; 14:257-265. [PMID: 36687339 PMCID: PMC9811517 DOI: 10.1039/d2sc06083c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
We describe the synthesis and X-ray crystal structure of μ-oxo-bis[(octacosafluoro-meso-tetraphenylporphyrinato)iron(iii)] [(FeTPPF28)2O]. This novel iron complex is an efficient catalyst for oxidative biaryl coupling reactions of diarylamines and carbazoles. The asymmetric oxidative coupling in the presence of an axially chiral biaryl phosphoric acid as co-catalyst provides the 2,2'-bis(arylamino)-1,1'-biaryl in 96% ee. The Wacker-type oxidation of alkenes to the corresponding ketones with (FeTPPF28)2O as catalyst in the presence of phenylsilane proceeds at room temperature with air as the terminal oxidant. For internal and aliphatic alkenes increased ketone/alcohol product ratios were obtained.
Collapse
Affiliation(s)
- Tristan Schuh
- Fakultät Chemie, Technische Universität DresdenBergstrasse 6601069 DresdenGermanyhttps://tu-dresden.de/mn/chemie/oc/oc2+49 351-463-37030
| | - Olga Kataeva
- Fakultät Chemie, Technische Universität DresdenBergstrasse 6601069 DresdenGermanyhttps://tu-dresden.de/mn/chemie/oc/oc2+49 351-463-37030
| | - Hans-Joachim Knölker
- Fakultät Chemie, Technische Universität DresdenBergstrasse 6601069 DresdenGermanyhttps://tu-dresden.de/mn/chemie/oc/oc2+49 351-463-37030
| |
Collapse
|
21
|
Molinaro C, Kawasaki Y, Wanyoike G, Nishioka T, Yamamoto T, Snedecor B, Robinson SJ, Gosselin F. Engineered Cytochrome P450-Catalyzed Oxidative Biaryl Coupling Reaction Provides a Scalable Entry into Arylomycin Antibiotics. J Am Chem Soc 2022; 144:14838-14845. [PMID: 35905381 DOI: 10.1021/jacs.2c06019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report herein the first example of a cytochrome P450-catalyzed oxidative carbon-carbon coupling process for a scalable entry into arylomycin antibiotic cores. Starting from wild-type hydroxylating cytochrome P450 enzymes and engineered Escherichia coli, a combination of enzyme engineering, random mutagenesis, and optimization of reaction conditions generated a P450 variant that affords the desired arylomycin core 2d in 84% assay yield. Furthermore, this process was demonstrated as a viable route for the production of the arylomycin antibiotic core on the gram scale. Finally, this new entry affords a viable, scalable, and practical route for the synthesis of novel Gram-negative antibiotics.
Collapse
Affiliation(s)
- Carmela Molinaro
- Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yukie Kawasaki
- Applied Microbiotechnology Department, MicroBiopharm Japan Co. Ltd., 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - George Wanyoike
- Production Technology Department, MicroBiopharm Japan Co. Ltd., 1808 Nakaizumi, Iwata, Shizuoka 438-0078, Japan
| | - Taiki Nishioka
- Applied Microbiotechnology Department, MicroBiopharm Japan Co. Ltd., 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Tsuyoshi Yamamoto
- Applied Microbiotechnology Department, MicroBiopharm Japan Co. Ltd., 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Brad Snedecor
- Department of Cell Culture and Bioprocess Operations, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sarah J Robinson
- Department of Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Francis Gosselin
- Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
22
|
Qiang TY, Liu JS, Dong YQ, Mu XL, Chen Y, Luo HM, Zhang BG, Liu HT. Identification, Molecular Cloning, and Functional Characterization of a Coniferyl Alcohol Acyltransferase Involved in the Biosynthesis of Dibenzocyclooctadiene Lignans in Schisandra chinensis. FRONTIERS IN PLANT SCIENCE 2022; 13:881342. [PMID: 35812978 PMCID: PMC9260284 DOI: 10.3389/fpls.2022.881342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Schisandra chinensis owes its therapeutic efficacy to the dibenzocyclooctadiene lignans, which are limited to the Schisandraceae family and whose biosynthetic pathway has not been elucidated. Coniferyl alcohol is the synthetic precursor of various types of lignans and can be acetylated to form coniferyl acetate by coniferyl alcohol acyltransferase (CFAT), which belongs to the BAHD acyltransferase family. This catalytic reaction is important because it is the first committed step of the hypothetical biosynthetic pathway in which coniferyl alcohol gives rise to dibenzocyclooctadiene lignans. However, the gene encoding CFAT in S. chinensis has not been identified. In this study, firstly we identified 37 ScBAHD genes from the transcriptome datasets of S. chinensis. According to bioinformatics, phylogenetic, and expression profile analyses, 1 BAHD gene, named ScBAHD1, was cloned from S. chinensis. The heterologous expression in Escherichia coli and in vitro activity assays revealed that the recombinant enzyme of ScBAHD1 exhibits acetyltransferase activity with coniferyl alcohol and some other alcohol substrates by using acetyl-CoA as the acetyl donor, which indicates ScBAHD1 functions as ScCFAT. Subcellular localization analysis showed that ScCFAT is mainly located in the cytoplasm. In addition, we generated a three-dimensional (3D) structure of ScCFAT by homology modeling and explored the conformational interaction between protein and ligands by molecular docking simulations. Overall, this study identified the first enzyme with catalytic activity from the Schisandraceae family and laid foundations for future investigations to complete the biosynthetic pathway of dibenzocyclooctadiene lignans.
Collapse
Affiliation(s)
- Ting-Yan Qiang
- Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiu-Shi Liu
- Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu-Qing Dong
- Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xin-Lu Mu
- Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Chen
- Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong-Mei Luo
- Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ben-Gang Zhang
- Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hai-Tao Liu
- Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Li K, Chen X, Zhang J, Wang C, Xu Q, Hu J, Kai G, Feng Y. Transcriptome Analysis of Stephania tetrandra and Characterization of Norcoclaurine-6-O-Methyltransferase Involved in Benzylisoquinoline Alkaloid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:874583. [PMID: 35432428 PMCID: PMC9009073 DOI: 10.3389/fpls.2022.874583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Stephania tetrandra (S. Moore) is a source of traditional Chinese medicine that is widely used to treat rheumatism, rheumatoid arthritis, edema, and hypertension. Benzylisoquinoline alkaloids (BIAs) are the main bioactive compounds. However, the current understanding of the biosynthesis of BIAs in S. tetrandra is poor. Metabolite and transcriptomic analyses of the stem, leaf, xylem, and epidermis of S. tetrandra were performed to identify candidate genes associated with BIAs biosynthesis. According to the metabolite analysis, the majority of the BIAs accumulated in the root, especially in the epidermis. Transcriptome sequencing revealed a total of 113,338 unigenes that were generated by de novo assembly. Among them, 79,638 unigenes were successfully annotated, and 42 candidate structural genes associated with 15 steps of BIA biosynthesis identified. Additionally, a new (S)-norcoclaurine-6-O-methyltransferase (6OMT) gene was identified in S. tetrandra, named St6OMT2. Recombinant St6OMT2 catalyzed (S)-norcoclaurine methylation to form (S)-coclaurine in vitro. Maximum activity of St6OMT2 was determined at 30°C and pH 6.0 in NaAc-HAc buffer. Its half-life at 50°C was 22 min with the Km and kcat of 28.2 μM and 1.5 s-1, respectively. Our results provide crucial transcriptome information for S. tetrandra, shedding light on the understanding of BIAs biosynthesis and further gene functional characterization.
Collapse
Affiliation(s)
- Kunlun Li
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuefei Chen
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianbo Zhang
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Can Wang
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiwei Xu
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiangning Hu
- Zhejiang Conba Pharmaceutical Limited Company, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Feng
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
24
|
Potential Therapeutic Applications of Plant-Derived Alkaloids against Inflammatory and Neurodegenerative Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7299778. [PMID: 35310033 PMCID: PMC8926539 DOI: 10.1155/2022/7299778] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
Alkaloids are a type of natural compound possessing different pharmacological activities. Natural products, including alkaloids, which originate from plants, have emerged as potential protective agents against neurodegenerative disorders (NDDs) and chronic inflammations. A wide array of prescription drugs are used against these conditions, however, not free of limitations of potency, side effects, and intolerability. In the context of personalized medicine, further research on alkaloids to unravel novel therapeutic approaches in reducing complications is critical. In this review, a systematic survey was executed to collect the literature on alkaloids and their health complications, from which we found that majority of alkaloids exhibit anti-inflammatory action via nuclear factor-κB and cyclooxygenase-2 (COX-2), and neuroprotective interaction through acetylcholinesterase (AChE), COX, and β-site amyloid precursor protein activity. In silico ADMET and ProTox-II-related descriptors were calculated to predict the pharmacological properties of 280 alkaloids isolated from traditional medicinal plants towards drug development. Out of which, eight alkaloids such as tetrahydropalmatine, berberine, tetrandrine, aloperine, sinomenine, oxymatrine, harmine, and galantamine are found to be optimal within the categorical range when compared to nicotine. These alkaloids could be exploited as starting materials for novel drug synthesis or, to a lesser extent, manage inflammation and neurodegenerative-related complications.
Collapse
|
25
|
Cui X, Meng F, Pan X, Qiu X, Zhang S, Li C, Lu S. Chromosome-level genome assembly of Aristolochia contorta provides insights into the biosynthesis of benzylisoquinoline alkaloids and aristolochic acids. HORTICULTURE RESEARCH 2022; 9:uhac005. [PMID: 35147168 PMCID: PMC8973263 DOI: 10.1093/hr/uhac005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 05/11/2023]
Abstract
Aristolochic acids (AAs) and their derivatives exist in multiple Aristolochiaceae species which had been or are being used as medicinal materials. During the past decades, AAs have received increasing attention due to their nephrotoxicity and carcinogenecity. Elimination of AAs in medicinal materials using biotechnological approaches is important to improve medication safety. However, it has not been achieved because of the limited information of AA biosynthesis available. Here, we report a high-quality reference-grade genome assembly of the AA-containing vine, Aristolochia contorta. Total size of the assembly is 209.27 Mb, which is assembled into 7 pseudochromosomes. Synteny analysis, Ks distribution and 4DTv suggest absences of whole-genome duplication events in A. contorta after the angiosperm-wide WGD. Based on genomic, transcriptomic and metabolic data, pathways and candidate genes of benzylisoquinoline alkaloid (BIA) and AA biosynthesis in A. contorta were proposed. Five O-methyltransferase genes, including AcOMT1-3, AcOMT5 and AcOMT7, were cloned and functionally characterized. The results provide a high-quality reference genome for AA-containing species of Aristolochiaceae. It lays a solid foundation for further elucidation of AA biosynthesis and regulation and molecular breeding of Aristolochiaceae medicinal materials.
Collapse
Affiliation(s)
- Xinyun Cui
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Fanqi Meng
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Xian Pan
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Xiaoxiao Qiu
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Sixuan Zhang
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Caili Li
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| | - Shanfa Lu
- Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing 100193, China
| |
Collapse
|
26
|
Complete biosynthesis of the bisbenzylisoquinoline alkaloids guattegaumerine and berbamunine in yeast. Proc Natl Acad Sci U S A 2021; 118:2112520118. [PMID: 34903659 PMCID: PMC8713753 DOI: 10.1073/pnas.2112520118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/28/2022] Open
Abstract
This work demonstrates microbial biosynthesis of bisbenzylisoquinoline (bisBIA) alkaloids. We show that several didomain epimerases can function in yeast to epimerize the nonnative substrate N-methylcoclaurine, an essential step in bisBIA biosynthesis. The N-methylcoclaurine epimerase activity was increased 10-fold by combining individual reductase and oxidase domains from different plant species. Strain engineering and optimization of media and growth conditions increased the bisBIA titer over 10,000-fold. We show that strains can be engineered to primarily produce one bisBIA product by selection of the cytochrome P450 variant that couples the monomer BIA subunits. We then leverage our bisBIA biosynthetic strain as a platform for the screening of other plant enzymes to produce two additional plant natural products de novo in a heterologous host. Benzylisoquinoline alkaloids (BIAs) are a diverse class of medicinal plant natural products. Nearly 500 dimeric bisbenzylisoquinoline alkaloids (bisBIAs), produced by the coupling of two BIA monomers, have been characterized and display a range of pharmacological properties, including anti-inflammatory, antitumor, and antiarrhythmic activities. In recent years, microbial platforms have been engineered to produce several classes of BIAs, which are rare or difficult to obtain from natural plant hosts, including protoberberines, morphinans, and phthalideisoquinolines. However, the heterologous biosyntheses of bisBIAs have thus far been largely unexplored. Here, we describe the engineering of yeast strains that produce the Type I bisBIAs guattegaumerine and berbamunine de novo. Through strain engineering, protein engineering, and optimization of growth conditions, a 10,000-fold improvement in the production of guattegaumerine, the major bisBIA pathway product, was observed. By replacing the cytochrome P450 used in the final coupling reaction with a chimeric variant, the product profile was inverted to instead produce solely berbamunine. Our highest titer engineered yeast strains produced 108 and 25 mg/L of guattegaumerine and berbamunine, respectively. Finally, the inclusion of two additional putative BIA biosynthesis enzymes, SiCNMT2 and NnOMT5, into our bisBIA biosynthetic strains enabled the production of two derivatives of bisBIA pathway intermediates de novo: magnocurarine and armepavine. The de novo heterologous biosyntheses of bisBIAs presented here provide the foundation for the production of additional medicinal bisBIAs in yeast.
Collapse
|
27
|
Wang Z, Li Y, Ma D, Zeng M, Wang Z, Qin F, Chen J, Christian M, He Z. Alkaloids from lotus ( Nelumbo nucifera): recent advances in biosynthesis, pharmacokinetics, bioactivity, safety, and industrial applications. Crit Rev Food Sci Nutr 2021:1-34. [PMID: 34845950 DOI: 10.1080/10408398.2021.2009436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Different parts of lotus (Nelumbo nucifera Gaertn.) including the seeds, rhizomes, leaves, and flowers, are used for medicinal purposes with health promoting and illness preventing benefits. The presence of active chemicals such as alkaloids, phenolic acids, flavonoids, and terpenoids (particularly alkaloids) may account for this plant's pharmacological effects. In this review, we provide a comprehensive overview and summarize up-to-date research on the biosynthesis, pharmacokinetics, and bioactivity of lotus alkaloids as well as their safety. Moreover, the potential uses of lotus alkaloids in the food, pharmaceutical, and cosmetic sectors are explored. Current evidence shows that alkaloids, mainly consisting of aporphines, 1-benzylisoquinolines, and bisbenzylisoquinolines, are present in different parts of lotus. The bioavailability of these alkaloids is relatively low in vivo but can be enhanced by technological modification using nanoliposomes, liposomes, microcapsules, and emulsions. Available data highlights their therapeutic and preventive effects on obesity, diabetes, neurodegeneration, cancer, cardiovascular disease, etc. Additionally, industrial applications of lotus alkaloids include their use as food, medical, and cosmetic ingredients in tea, other beverages, and healthcare products; as lipid-lowering, anticancer, and antipsychotic drugs; and in facial masks, toothpastes, and shower gels. However, their clinical efficacy and safety remains unclear; hence, larger and longer human trials are needed to achieve their safe and effective use with minimal side effects.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Yong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Dandan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
28
|
Liu X, Bu J, Ma Y, Chen Y, Li Q, Jiao X, Hu Z, Cui G, Tang J, Guo J, Huang L. Functional characterization of (S)-N-methylcoclaurine 3'-hydroxylase (NMCH) involved in the biosynthesis of benzylisoquinoline alkaloids in Corydalis yanhusuo. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:507-515. [PMID: 34757301 DOI: 10.1016/j.plaphy.2021.09.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 05/24/2023]
Abstract
Benzylisoquinoline alkaloids (BIAs) are compounds naturally found in plants and can have significant value in clinical settings. Metabolic engineering and synthetic biology are both promising approaches for the heterologous acquisition of benzylisoquinoline alkaloids. (S)-N-methylcoclaurine 3'-hydroxylase (NMCH), a member of the CYP80 family of CYP450, is the penultimate catalytic enzyme that forms the central branch-point intermediate (S)-reticuline and plays a key role in the biosynthesis of BIAs. In this study, an NMCH gene was cloned from Corydalis yanhusuo, while in vitro reactions demonstrated that CyNMCH can catalyze (S)-N-methylcoclaurine to produce (S)-3'-hydroxy-N-methylcoclaurine. The Km and Kcat of CyNMCH were estimated and compared with those identified in Eschscholzia californica and Coptis japonica. This newly discovered CyNMCH will provide alternative genetic resources for the synthetic biological production of benzylisoquinoline alkaloids and provides a foundation to help analyze the biosynthetic pathway of BIAs biosynthesis in C. yanhusuo.
Collapse
Affiliation(s)
- Xiuyu Liu
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450008, China; State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Junling Bu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Ying Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, Sweden.
| | - Qishuang Li
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Xiang Jiao
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, Sweden.
| | - Zhimin Hu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| |
Collapse
|
29
|
Cárdenas C, Torres-Vargas JA, Cárdenas-Valdivia A, Jurado N, Quesada AR, García-Caballero M, Martínez-Poveda B, Medina MÁ. Non-targeted metabolomics characterization of Annona muricata leaf extracts with anti-angiogenic activity. Biomed Pharmacother 2021; 144:112263. [PMID: 34626933 DOI: 10.1016/j.biopha.2021.112263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022] Open
Abstract
The tropical plant Annona muricata has been widely used for traditional ethnobotanic and pharmacologic applications. Extracts from different parts of this plant have been shown to have a wide range of biological activities. In the present study, we carry out a metabolomic study of both aqueous and DMSO extracts from Annona muricata leaves that has allowed us to identify 33 bioactive compounds. Furthermore, we have shown that aqueous extracts are able to inhibit endothelial cell migration and both aqueous and DMSO extracts inhibit the formation of tubule-like structures by endothelial cells cultured on Matrigel. We conclude that extracts of Annona muricata leaves have great potential as anti-angiogenic natural combinations of bioactive compounds.
Collapse
Affiliation(s)
- Casimiro Cárdenas
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain; Research Support Central Services (SCAI) of the University of Málaga, Spain
| | - José Antonio Torres-Vargas
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain; IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Abel Cárdenas-Valdivia
- Department of Physical Chemistry, Faculty of Sciences, University of Malaga, Malaga, Spain
| | - Nuria Jurado
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
| | - Ana R Quesada
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain; IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain; CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain
| | - Melissa García-Caballero
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain; IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Beatriz Martínez-Poveda
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain; IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel Ángel Medina
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain; IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain; CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain.
| |
Collapse
|
30
|
Huang Z, Hou Z, Liu F, Zhang M, Hu W, Xu S. Scientometric Analysis of Medicinal and Edible Plant Coptis. Front Pharmacol 2021; 12:725162. [PMID: 34456737 PMCID: PMC8387930 DOI: 10.3389/fphar.2021.725162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
Objective: A scientometric analysis to obtain knowledge mapping of Coptis revealed the current research situation, knowledge base and research hotspots in Coptis research. Methods:Coptis-related documents published from 1987 to 2020 were selected through the Web of Science Core Collection. CiteSpace, VOSviewer and Microsoft Excel were used to construct knowledge maps of the Coptis research field. Results: A total of 367 documents and their references were analyzed. These papers were primarily published in mainland China (214), followed by Japan (57) and South Korea (52), and they each formed respective cooperation networks. The document co-citation analysis suggested that the identification of Coptis Salisb. species, the production of alkaloids, and the mechanisms of action of these alkaloids formed the knowledge bases in this field. A keyword analysis further revealed that the research hotspots were primarily concentrated in three fields of research involving berberine, Coptis chinensis Franch, and Coptis japonica (Thunb) Makino. Oxidative stress, rat plasma (for the determination of plasma alkaloid contents), and Alzheimer’s disease are recent research hotspots associated with Coptis. Conclusion:Coptis research was mainly distributed in three countries: China, Japan, and South Korea. Researchers were concerned with the identification of Coptis species, the production of Coptis alkaloids, and the efficacy and pharmacological mechanism of the constituent alkaloids. In addition, the anti-oxidative stress, pharmacokinetics, and Alzheimer’s disease treatment of Coptis are new hotspots in this field. This study provides a reference for Coptis researchers.
Collapse
Affiliation(s)
- Zhibang Huang
- Postgraduate College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhengkun Hou
- Department of Gastroenterology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengbin Liu
- Department of Gastroenterology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Baiyun Hospital of the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mei Zhang
- Department of Integrative Medicine, Changsha Central Hospital, University of South China, Changsha, China
| | - Wen Hu
- Intensive Care Unit, Huanggang Hospital of Traditional Chinese Medicine, Huanggang, China
| | - Shaofen Xu
- Postgraduate College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
31
|
Hansen CC, Nelson DR, Møller BL, Werck-Reichhart D. Plant cytochrome P450 plasticity and evolution. MOLECULAR PLANT 2021; 14:1244-1265. [PMID: 34216829 DOI: 10.1016/j.molp.2021.06.028] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/28/2021] [Accepted: 06/30/2021] [Indexed: 05/27/2023]
Abstract
The superfamily of cytochrome P450 (CYP) enzymes plays key roles in plant evolution and metabolic diversification. This review provides a status on the CYP landscape within green algae and land plants. The 11 conserved CYP clans known from vascular plants are all present in green algae and several green algae-specific clans are recognized. Clan 71, 72, and 85 remain the largest CYP clans and include many taxa-specific CYP (sub)families reflecting emergence of linage-specific pathways. Molecular features and dynamics of CYP plasticity and evolution are discussed and exemplified by selected biosynthetic pathways. High substrate promiscuity is commonly observed for CYPs from large families, favoring retention of gene duplicates and neofunctionalization, thus seeding acquisition of new functions. Elucidation of biosynthetic pathways producing metabolites with sporadic distribution across plant phylogeny reveals multiple examples of convergent evolution where CYPs have been independently recruited from the same or different CYP families, to adapt to similar environmental challenges or ecological niches. Sometimes only a single or a few mutations are required for functional interconversion. A compilation of functionally characterized plant CYPs is provided online through the Plant P450 Database (erda.dk/public/vgrid/PlantP450/).
Collapse
Affiliation(s)
- Cecilie Cetti Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Daniele Werck-Reichhart
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France.
| |
Collapse
|
32
|
Han J, Wu Y, Zhou Y, Li S. Engineering Saccharomyces cerevisiae to produce plant benzylisoquinoline alkaloids. ABIOTECH 2021; 2:264-275. [PMID: 34377581 PMCID: PMC8286646 DOI: 10.1007/s42994-021-00055-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a diverse family of plant natural products with extensive pharmacological properties, but the yield of BIAs from plant is limited. The understanding of BIA biosynthetic mechanism in plant and the development of synthetic biology enable the possibility to produce BIAs through microbial fermentation, as an alternative to agriculture-based supply chains. In this review, we discussed the engineering strategies to synthesize BIAs in Saccharomyces cerevisiae (yeast) and improve BIA production level, including heterologous pathway reconstruction, enzyme engineering, expression regulation, host engineering and fermentation engineering. We also highlight recent metabolic engineering advances in the production of BIAs in yeast.
Collapse
Affiliation(s)
- Jianing Han
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, 230A Olin Hall, Cornell University, Ithaca, NY 14853 USA
| | - Yinan Wu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, 230A Olin Hall, Cornell University, Ithaca, NY 14853 USA
| | - Yilun Zhou
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, 230A Olin Hall, Cornell University, Ithaca, NY 14853 USA
| | - Sijin Li
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, 230A Olin Hall, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
33
|
Nguyen TD, Dang TTT. Cytochrome P450 Enzymes as Key Drivers of Alkaloid Chemical Diversification in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:682181. [PMID: 34367208 PMCID: PMC8336426 DOI: 10.3389/fpls.2021.682181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/01/2021] [Indexed: 05/30/2023]
Abstract
Plants produce more than 20,000 nitrogen-containing heterocyclic metabolites called alkaloids. These chemicals serve numerous eco-physiological functions in the plants as well as medicines and psychedelic drugs for human for thousands of years, with the anti-cancer agent vinblastine and the painkiller morphine as the best-known examples. Cytochrome P450 monooxygenases (P450s) play a key role in generating the structural variety that underlies this functional diversity of alkaloids. Most alkaloid molecules are heavily oxygenated thanks to P450 enzymes' activities. Moreover, the formation and re-arrangement of alkaloid scaffolds such as ring formation, expansion, and breakage that contribute to their structural diversity and bioactivity are mainly catalyzed by P450s. The fast-expanding genomics and transcriptomics databases of plants have accelerated the investigation of alkaloid metabolism and many players behind the complexity and uniqueness of alkaloid biosynthetic pathways. Here we discuss recent discoveries of P450s involved in the chemical diversification of alkaloids and how these inform our approaches in understanding plant evolution and producing plant-derived drugs.
Collapse
|
34
|
Gene Expression and Isoform Identification of PacBio Full-Length cDNA Sequences for Berberine Biosynthesis in Berberis koreana. PLANTS 2021; 10:plants10071314. [PMID: 34203474 PMCID: PMC8308982 DOI: 10.3390/plants10071314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022]
Abstract
Berberis koreana is a medicinal plant containing berberine, which is a bioactive compound of the benzylisoquinoline alkaloid (BIA) class. BIA is widely used in the food and drug industry for its health benefits. To investigate the berberine biosynthesis pathway, gene expression analysis was performed in leaves, flowers, and fruits at different stages of growth. This was followed by full-length cDNA sequencing analysis using the PacBio sequencer platform to determine the number of isoforms of those expressed genes. We identified 23,246 full-length unigenes, among which 8479 had more than one isoform. The number of isoforms ranged between two to thirty-one among all genes. Complete isoform analysis was carried out on the unigenes encoding BIA synthesis. Thirteen of the sixteen genes encoding enzymes for berberine synthesis were present in more than one copy. This demonstrates that gene duplication and translation into isoforms may contribute to the functional specificity of the duplicated genes and isoforms in plant alkaloid synthesis. Our study also demonstrated the streamlining of berberine biosynthesis via the absence of genes for enzymes of other BIAs, but the presence of all the genes for berberine biosynthesize in B. koreana. In addition to genes encoding enzymes for the berberine biosynthesis pathway, the genes encoding enzymes for other BIAs were not present in our dataset except for those encoding corytuberine synthase (CTS) and berbamunine synthase (BS). Therefore, this explains how B. koreana produces berberine by blocking the pathways leading to other BIAs, effectively only allowing the pathway to lead to berberine synthesis.
Collapse
|
35
|
Singh A, Panwar R, Mittal P, Hassan MI, Singh IK. Plant cytochrome P450s: Role in stress tolerance and potential applications for human welfare. Int J Biol Macromol 2021; 184:874-886. [PMID: 34175340 DOI: 10.1016/j.ijbiomac.2021.06.125] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/06/2023]
Abstract
Cytochrome P450s (CYPs) are a versatile group of enzymes and one of the largest families of proteins, controlling various physiological processes via biosynthetic and detoxification pathways. CYPs perform multiple roles through a critical irreversible enzymatic reaction in which an oxygen atom is inserted within hydrophobic molecules, converting them into the reactive and hydro soluble components. During evolution, plants have acquired significantly more number of CYPs and represent about 1% of the encoded genes . CYPs are highly conserved proteins involved in growth, development and tolerance against biotic and abiotic stresses. Furthermore, CYPs reinforce plants' molecular and chemical defense mechanisms by regulating the biosynthesis of secondary metabolites, enhancing reactive oxygen species (ROS) scavenging and controlling biosynthesis and homeostasis of phytohormones, including abscisic acid (ABA) and jasmonates. Thus, they are the critical targets of metabolic engineering for enhancing plant defense against environmental stresses. Additionally, CYPs are also used as biocatalysts in the fields of pharmacology and phytoremediation. Herein, we highlight the role of CYPs in plant stress tolerance and their applications for human welfare.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India.
| | - Ruby Panwar
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India
| | - Pooja Mittal
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India.
| |
Collapse
|
36
|
Liu Y, Wang B, Shu S, Li Z, Song C, Liu D, Niu Y, Liu J, Zhang J, Liu H, Hu Z, Huang B, Liu X, Liu W, Jiang L, Alami MM, Zhou Y, Ma Y, He X, Yang Y, Zhang T, Hu H, Barker MS, Chen S, Wang X, Nie J. Analysis of the Coptis chinensis genome reveals the diversification of protoberberine-type alkaloids. Nat Commun 2021; 12:3276. [PMID: 34078898 PMCID: PMC8172641 DOI: 10.1038/s41467-021-23611-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/07/2021] [Indexed: 02/04/2023] Open
Abstract
Chinese goldthread (Coptis chinensis Franch.), a member of the Ranunculales, represents an important early-diverging eudicot lineage with diverse medicinal applications. Here, we present a high-quality chromosome-scale genome assembly and annotation of C. chinensis. Phylogenetic and comparative genomic analyses reveal the phylogenetic placement of this species and identify a single round of ancient whole-genome duplication (WGD) shared by the Ranunculaceae. We characterize genes involved in the biosynthesis of protoberberine-type alkaloids in C. chinensis. In particular, local genomic tandem duplications contribute to member amplification of a Ranunculales clade-specific gene family of the cytochrome P450 (CYP) 719. The functional versatility of a key CYP719 gene that encodes the (S)-canadine synthase enzyme involved in the berberine biosynthesis pathway may play critical roles in the diversification of other berberine-related alkaloids in C. chinensis. Our study provides insights into the genomic landscape of early-diverging eudicots and provides a valuable model genome for genetic and applied studies of Ranunculales.
Collapse
Affiliation(s)
- Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Bo Wang
- Hubei Institute for Drug Control, Wuhan, China
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Chi Song
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Di Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Niu
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Jinxin Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Heping Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Bisheng Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiuyu Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Liping Jiang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | | | - Yuxin Zhou
- Hubei Institute for Drug Control, Wuhan, China
| | - Yutao Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiangxiang He
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Yicheng Yang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Tianyuan Zhang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Hui Hu
- Jing Brand Chizhengtang Pharmaceutical Company Limited, Huangshi, China
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xuekui Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Jing Nie
- Hubei Institute for Drug Control, Wuhan, China.
| |
Collapse
|
37
|
Wang H, Wang Q, Liu Y, Liao X, Chu H, Chang H, Cao Y, Li Z, Zhang T, Cheng J, Jiang H. PCPD: Plant cytochrome P450 database and web-based tools for structural construction and ligand docking. Synth Syst Biotechnol 2021; 6:102-109. [PMID: 33997360 PMCID: PMC8094579 DOI: 10.1016/j.synbio.2021.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 01/03/2023] Open
Abstract
Plant cytochrome P450s play key roles in the diversification and functional modification of plant natural products. Although over 200,000 plant P450 gene sequences have been recorded, only seven crystalized P450 genes severely hampered the functional characterization, gene mining and engineering of important P450s. Here, we combined Rosetta homologous modeling and MD-based refinement to construct a high-resolution P450 structure prediction process (PCPCM), which was applied to 181 plant P450s with identified functions. Furthermore, we constructed a ligand docking process (PCPLD) that can be applied for plant P450s virtual screening. 10 examples of virtual screening indicated the process can reduce about 80% screening space for next experimental verification. Finally, we constructed a plant P450 database (PCPD: http://p450.biodesign.ac.cn/), which includes the sequences, structures and functions of the 181 plant P450s, and a web service based on PCPCM and PCPLD. Our study not only developed methods for the P450-specific structure analysis, but also introduced a universal approach that can assist the mining and functional analysis of P450 enzymes.
Collapse
Affiliation(s)
- Hui Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Qian Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoping Liao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huanyu Chu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Hong Chang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yang Cao
- Department of Environmental Medicine, Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhigang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
38
|
Xu D, Lin H, Tang Y, Huang L, Xu J, Nian S, Zhao Y. Integration of full-length transcriptomics and targeted metabolomics to identify benzylisoquinoline alkaloid biosynthetic genes in Corydalis yanhusuo. HORTICULTURE RESEARCH 2021; 8:16. [PMID: 33423040 PMCID: PMC7797006 DOI: 10.1038/s41438-020-00450-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 05/04/2023]
Abstract
Corydalis yanhusuo W.T. Wang is a classic herb that is frequently used in traditional Chinese medicine and is efficacious in promoting blood circulation, enhancing energy, and relieving pain. Benzylisoquinoline alkaloids (BIAs) are the main bioactive ingredients in Corydalis yanhusuo. However, few studies have investigated the BIA biosynthetic pathway in C. yanhusuo, and the biosynthetic pathway of species-specific chemicals such as tetrahydropalmatine remains unclear. We performed full-length transcriptomic and metabolomic analyses to identify candidate genes that might be involved in BIA biosynthesis and identified a total of 101 full-length transcripts and 19 metabolites involved in the BIA biosynthetic pathway. Moreover, the contents of 19 representative BIAs in C. yanhusuo were quantified by classical targeted metabolomic approaches. Their accumulation in the tuber was consistent with the expression patterns of identified BIA biosynthetic genes in tubers and leaves, which reinforces the validity and reliability of the analyses. Full-length genes with similar expression or enrichment patterns were identified, and a complete BIA biosynthesis pathway in C. yanhusuo was constructed according to these findings. Phylogenetic analysis revealed a total of ten enzymes that may possess columbamine-O-methyltransferase activity, which is the final step for tetrahydropalmatine synthesis. Our results span the whole BIA biosynthetic pathway in C. yanhusuo. Our full-length transcriptomic data will enable further molecular cloning of enzymes and activity validation studies.
Collapse
Affiliation(s)
- Dingqiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi, China
| | - Hanfeng Lin
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi, China
| | - Lu Huang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi, China
| | - Jian Xu
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Sihui Nian
- Institute of Modern Chinese Medicine, School of Pharmacy, Wannan Medical College, 241002, Wuhu, Anhui, China.
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
39
|
Schnabel A, Cotinguiba F, Athmer B, Vogt T. Piper nigrum CYP719A37 Catalyzes the Decisive Methylenedioxy Bridge Formation in Piperine Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2021; 10:128. [PMID: 33435446 PMCID: PMC7826766 DOI: 10.3390/plants10010128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Abstract
Black pepper (Piper nigrum) is among the world's most popular spices. Its pungent principle, piperine, has already been identified 200 years ago, yet the biosynthesis of piperine in black pepper remains largely enigmatic. In this report we analyzed the characteristic methylenedioxy bridge formation of the aromatic part of piperine by a combination of RNA-sequencing, functional expression in yeast, and LC-MS based analysis of substrate and product profiles. We identified a single cytochrome P450 transcript, specifically expressed in black pepper immature fruits. The corresponding gene was functionally expressed in yeast (Saccharomyces cerevisiae) and characterized for substrate specificity with a series of putative aromatic precursors with an aromatic vanilloid structure. Methylenedioxy bridge formation was only detected when feruperic acid (5-(4-hydroxy-3-methoxyphenyl)-2,4-pentadienoic acid) was used as a substrate, and the corresponding product was identified as piperic acid. Two alternative precursors, ferulic acid and feruperine, were not accepted. Our data provide experimental evidence that formation of the piperine methylenedioxy bridge takes place in young black pepper fruits after a currently hypothetical chain elongation of ferulic acid and before the formation of the amide bond. The partially characterized enzyme was classified as CYP719A37 and is discussed in terms of specificity, storage, and phylogenetic origin of CYP719 catalyzed reactions in magnoliids and eudicots.
Collapse
Affiliation(s)
- Arianne Schnabel
- Leibniz Institute of Plant Biochemistry, Department Cell and Metabolic Biology, Weinberg 3, D-06120 Halle (Saale), Germany; (A.S.); (B.A.)
| | - Fernando Cotinguiba
- Instituto de Pesquisas de Produtos Naturais (IPPN), Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro/RJ, Brazil;
| | - Benedikt Athmer
- Leibniz Institute of Plant Biochemistry, Department Cell and Metabolic Biology, Weinberg 3, D-06120 Halle (Saale), Germany; (A.S.); (B.A.)
| | - Thomas Vogt
- Leibniz Institute of Plant Biochemistry, Department Cell and Metabolic Biology, Weinberg 3, D-06120 Halle (Saale), Germany; (A.S.); (B.A.)
| |
Collapse
|
40
|
Zhang Y, Kang Y, Xie H, Wang Y, Li Y, Huang J. Comparative Transcriptome Analysis Reveals Candidate Genes Involved in Isoquinoline Alkaloid Biosynthesis in Stephania tetrandra. PLANTA MEDICA 2020; 86:1258-1268. [PMID: 32757201 DOI: 10.1055/a-1209-3407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The roots of Stephania tetrandra are used as a traditional Chinese medicine. Isoquinoline alkaloids are considered to be the most important and effective components in this herb, but little is known about the molecular mechanism underlying their biosynthesis. In this context, this study aimed to reveal candidate genes related to isoquinoline alkaloid biosynthesis in S. tetrandra. Determination of tetrandrine and fangchinoline in the roots and leaves of S. tetrandra by HPLC showed that the roots had much higher contents of the two isoquinoline alkaloids than the leaves. Thus, a comparative transcriptome analysis of the two tissues was performed to uncover candidate genes involved in isoquinoline alkaloid biosynthesis. A total of 71 674 unigenes was obtained and 31 994 of these were assigned putative functions based on BLAST searches against 6 annotation databases. Among the 79 isoquinoline alkaloid-related unigenes, 51 were differentially expressed, with 42 and 9 genes upregulated and downregulated, respectively, when the roots were compared with the leaves. The upregulated differentially expressed genes were consistent with isoquinoline alkaloid accumulation in roots and thus were deemed key candidate genes for isoquinoline alkaloid biosynthesis in the roots. Moreover, the expression profiles of 10 isoquinoline alkaloid-related differentially expressed genes between roots and leaves were validated by quantitative real-time polymerase chain reaction, which indicated that our transcriptome and gene expression profiles were reliable. This study not only provides a valuable genomic resource for S. tetrandra but also proposes candidate genes involved in isoquinoline alkaloid biosynthesis and transcription factors related to the regulation of isoquinoline alkaloid biosynthesis. The results lay a foundation for further studies on isoquinoline alkaloid biosynthesis in this medicinal plant.
Collapse
Affiliation(s)
- Yangyang Zhang
- School of Pharmacy, Fudan University, Shanghai, P. R. China
| | - Yun Kang
- School of Pharmacy, Fudan University, Shanghai, P. R. China
| | - Hui Xie
- Human Phenome Institute, Fudan University, Shanghai, P. R. China
| | - Yaqin Wang
- School of Pharmacy, Fudan University, Shanghai, P. R. China
| | - Yaoting Li
- School of Pharmacy, Fudan University, Shanghai, P. R. China
| | - Jianming Huang
- School of Pharmacy, Fudan University, Shanghai, P. R. China
| |
Collapse
|
41
|
Zetzsche LE, Narayan ARH. Broadening the scope of biocatalytic C-C bond formation. Nat Rev Chem 2020; 4:334-346. [PMID: 34430708 PMCID: PMC8382263 DOI: 10.1038/s41570-020-0191-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
The impeccable control over chemo-, site-, and stereoselectivity possible in enzymatic reactions has led to a surge in the development of new biocatalytic methods. Despite carbon-carbon (C-C) bonds providing the central framework for organic molecules, development of biocatalytic methods for their formation has been largely confined to the use of a select few lyases over the last several decades, limiting the types of C-C bond-forming transformations possible through biocatalytic methods. This Review provides an update on the suite of enzymes available for highly selective biocatalytic C-C bond formation. Examples will be discussed in reference to the (1) native activity of enzymes, (2) alteration of activity through protein or substrate engineering for broader applicability, and (3) utility of the biocatalyst for abiotic synthesis.
Collapse
Affiliation(s)
- Lara E. Zetzsche
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alison R. H. Narayan
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
42
|
Zhong F, Huang L, Qi L, Ma Y, Yan Z. Full-length transcriptome analysis of Coptis deltoidea and identification of putative genes involved in benzylisoquinoline alkaloids biosynthesis based on combined sequencing platforms. PLANT MOLECULAR BIOLOGY 2020; 102:477-499. [PMID: 31902069 DOI: 10.1007/s11103-019-00959-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/30/2019] [Indexed: 05/20/2023]
Abstract
The study carry out comprehensive transcriptome analysis of C. deltoidea and exploration of BIAs biosynthesis and accumulation based on UHPLC-MS/MS and combined sequencing platforms. Coptis deltoidea is an important medicinal plant with a long history of medicinal use, which is rich in benzylisoquinoline alkaloids (BIAs). In this study, Ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) and combined sequencing platforms were performed for exploration of BIAs biosynthesis, accumulation and comprehensive transcriptome analysis of C. deltoidea. By metabolism profiling, the accumulation of ten BIAs was analyzed using UHPLC-MS/MS and different contents were observed in different organs. From transcriptome sequencing result, we applied single-molecule real-time (SMRT) sequencing to C. deltoidea and generated a total of 75,438 full-length transcripts. We proposed the candidate biosynthetic pathway of tyrosine, precursor of BIAs, and identified 64 full length-transcripts encoding enzymes putatively involved in BIAs biosynthesis. RNA-Seq data indicated that the majority of genes exhibited relatively high expression level in roots. Transport of BIAs was also important for their accumulation. Here, 9 ABC transporters and 2 MATE transporters highly homologous to known alkaloid transporters related with BIAs transport in roots and rhizomes were identified. These findings based on the combined sequencing platforms provide valuable genetic information for C. deltoidea and the results of transcriptome combined with metabolome analysis can help us better understand BIAs biosynthesis and transport in this medicinal plant. The information will be critical for further characterization of C. deltoidea transcriptome and molecular-assisted breeding for this medicinal plant with scarce resources.
Collapse
Affiliation(s)
- Furong Zhong
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ling Huang
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Luming Qi
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuntong Ma
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhuyun Yan
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
43
|
Menéndez-Perdomo IM, Facchini PJ. Isolation and characterization of two O-methyltransferases involved in benzylisoquinoline alkaloid biosynthesis in sacred lotus ( Nelumbo nucifera). J Biol Chem 2020; 295:1598-1612. [PMID: 31914404 PMCID: PMC7008365 DOI: 10.1074/jbc.ra119.011547] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/28/2019] [Indexed: 12/15/2022] Open
Abstract
Benzylisoquinoline alkaloids (BIAs) are a major class of plant metabolites with many pharmacological benefits. Sacred lotus (Nelumbo nucifera) is an ancient aquatic plant of medicinal value because of antiviral and immunomodulatory activities linked to its constituent BIAs. Although more than 30 BIAs belonging to the 1-benzylisoquinoline, aporphine, and bisbenzylisoquinoline structural subclasses and displaying a predominant R-enantiomeric conformation have been isolated from N. nucifera, its BIA biosynthetic genes and enzymes remain unknown. Herein, we report the isolation and biochemical characterization of two O-methyltransferases (OMTs) involved in BIA biosynthesis in sacred lotus. Five homologous genes, designated NnOMT1-5 and encoding polypeptides sharing >40% amino acid sequence identity, were expressed in Escherichia coli Functional characterization of the purified recombinant proteins revealed that NnOMT1 is a regiospecific 1-benzylisoquinoline 6-O-methyltransferase (6OMT) accepting both R- and S-substrates, whereas NnOMT5 is mainly a 7-O-methyltransferase (7OMT), with relatively minor 6OMT activity and a strong stereospecific preference for S-enantiomers. Available aporphines were not accepted as substrates by either enzyme, suggesting that O-methylation precedes BIA formation from 1-benzylisoquinoline intermediates. Km values for NnOMT1 and NnOMT5 were 20 and 13 μm for (R,S)-norcoclaurine and (S)-N-methylcoclaurine, respectively, similar to those for OMTs from other BIA-producing plants. Organ-based correlations of alkaloid content, OMT activity in crude extracts, and OMT gene expression supported physiological roles for NnOMT1 and NnOMT5 in BIA metabolism, occurring primarily in young leaves and embryos of sacred lotus. In summary, our work identifies two OMTs involved in BIA metabolism in the medicinal plant N. nucifera.
Collapse
Affiliation(s)
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
44
|
Morris JS, Yu L, Facchini PJ. A single residue determines substrate preference in benzylisoquinoline alkaloid N-methyltransferases. PHYTOCHEMISTRY 2020; 170:112193. [PMID: 31765874 DOI: 10.1016/j.phytochem.2019.112193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
N-methylation is a recurring feature in the biosynthesis of many plant specialized metabolites, including alkaloids. A crucial step in the conserved central pathway that provides intermediates for the biosynthesis of benzylisoquinoline alkaloids (BIAs) involves conversion of the secondary amine (S)-coclaurine into the tertiary amine (S)-N-methylcoclaurine by coclaurine N-methyltransferase (CNMT). Subsequent enzymatic steps yield the core intermediate (S)-reticuline, from which various branch pathways for the biosynthesis of major BIAs such as morphine, noscapine and sanguinarine diverge. An additional N-methylation yielding quaternary BIAs is catalyzed by reticuline N-methyltransferase (RNMT), such as in the branch pathway leading to the taxonomically widespread and ecologically significant alkaloid magnoflorine. Despite their functional differences, analysis of primary sequence information has been unable to accurately distinguish between CNMT-like and RNMT-like enzymes, necessitating laborious in vitro screening. Furthermore, despite a recent emphasis on structural characterization of BIA NMTs, the features and mechanisms underlying the CNMT-RNMT functional dichotomy were unknown. We report the identification of structural variants tightly correlated with function in known BIA NMTs and show through reciprocal mutagenesis that a single residue acts as a switch between CNMT- and RNMT-like functions. We use yeast in vivo screening to show that this discovery allows for accurate prediction of activity strictly from primary sequence information and, on this basis, improve the annotation of previously reported putative BIA NMTs. Our results highlight the unusually short mutational distance separating ancestral CNMT-like enzymes from more evolutionarily advanced RNMT-like enzymes, and thus help explain the widespread yet sporadic occurrence of quaternary BIAs in plants. While this is the first report of structural variants controlling mono-versus di-methylation activity among plant NMT enzymes, comparison with bacterial MT enzymes also suggests possible convergent evolution.
Collapse
Affiliation(s)
- Jeremy S Morris
- University of Calgary, Department of Biological Sciences, Calgary, Alberta, T2N 1N4, Canada
| | - Lisa Yu
- University of Calgary, Department of Biological Sciences, Calgary, Alberta, T2N 1N4, Canada
| | - Peter J Facchini
- University of Calgary, Department of Biological Sciences, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
45
|
Li H, Zhu W, Liu Y. Mechanism of Uncoupled Carbocyclization and Epimerization Catalyzed by Two Non-Heme Iron/α-Ketoglutarate Dependent Enzymes. J Chem Inf Model 2019; 59:5086-5098. [PMID: 31790238 DOI: 10.1021/acs.jcim.9b00837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The non-heme iron/α-ketoglutarate dependent enzymes SnoK and SnoN from Streptomyces nogalater are involved in the biosynthesis of anthracycline nogalamycin. Although they have similar active sites, SnoK is responsible for carbocyclization whereas SnoN solely catalyzes the hydroxyl epimerization. Herein, we performed docking, molecular simulations, and a series of combined quantum mechanics and molecular mechanics (QM/MM) calculations to illuminate the mechanisms of two enzymes. The catalytic reactions of two enzymes occur on the quintet state surface. For SnoK, the whole reaction includes two separated hydrogen-abstraction steps and one radical addition, and the latter step is calculated to be rate limiting with an energy barrier of 21.7 kcal/mol. Residue D106 is confirmed to participate in the construction of the hydrogen bond network, which plays a crucial role in positioning the bulky substrate in a specific orientation. Moreover, it is found that SnoN is only responsible for the hydrogen abstraction of the intermediate, and no residue was suggested to be suitable for donating a hydrogen atom to the substrate radical, which further confirms the suggestion based on experiments that either a cellular reductant or another enzyme protein could donate a hydrogen atom to the substrate. Our docking results coincide with the previous structural study that the different roles of two enzymes are achieved by minor changes in the alignment of the substrates in front of the reactive ferryl-oxo species. This work highlights the reaction mechanisms catalyzed by SnoK and SnoN, which is helpful for engineering the enzymes for the biosynthesis of anthracycline nogalamycin.
Collapse
Affiliation(s)
- Hong Li
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Wenyou Zhu
- College of Chemistry and Chemical Engineering , Xuzhou Institute of Technology , Xuzhou , Jiangsu 221111 , China
| | - Yongjun Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| |
Collapse
|
46
|
Canedo-Téxon A, Ramón-Farias F, Monribot-Villanueva JL, Villafán E, Alonso-Sánchez A, Pérez-Torres CA, Ángeles G, Guerrero-Analco JA, Ibarra-Laclette E. Novel findings to the biosynthetic pathway of magnoflorine and taspine through transcriptomic and metabolomic analysis of Croton draco (Euphorbiaceae). BMC PLANT BIOLOGY 2019; 19:560. [PMID: 31852435 PMCID: PMC6921603 DOI: 10.1186/s12870-019-2195-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 12/10/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Croton draco is an arboreal species and its latex as well as some other parts of the plant, are traditionally used in the treatment of a wide range of ailments and diseases. Alkaloids, such as magnoflorine, prevent early atherosclerosis progression while taspine, an abundant constituent of latex, has been described as a wound-healer and antitumor-agent. Despite the great interest for these and other secondary metabolites, no omics resources existed for the species and the biosynthetic pathways of these alkaloids remain largely unknown. RESULTS To gain insights into the pathways involved in magnoflorine and taspine biosynthesis by C. draco and identify the key enzymes in these processes, we performed an integrated analysis of the transcriptome and metabolome in the major organs (roots, stem, leaves, inflorescences, and flowers) of this species. Transcript profiles were generated through high-throughput RNA-sequencing analysis while targeted and high resolution untargeted metabolomic profiling was also performed. The biosynthesis of these compounds appears to occur in the plant organs examined, but intermediaries may be translocated from the cells in which they are produced to other cells in which they accumulate. CONCLUSIONS Our results provide a framework to better understand magnoflorine and taspine biosynthesis in C. draco. In addition, we demonstrate the potential of multi-omics approaches to identify candidate genes involved in the biosynthetic pathways of interest.
Collapse
Affiliation(s)
- Anahí Canedo-Téxon
- Instituto de Ecología A.C., Red de Estudios Moleculares Avanzados, 91070 Xalapa, Veracruz, México
| | - Feliza Ramón-Farias
- Universidad Veracruzana (Campus Peñuela-Córdoba), Amatlán de los Reyes, 94945 Veracruz, México
| | | | - Emanuel Villafán
- Instituto de Ecología A.C., Red de Estudios Moleculares Avanzados, 91070 Xalapa, Veracruz, México
| | - Alexandro Alonso-Sánchez
- Instituto de Ecología A.C., Red de Estudios Moleculares Avanzados, 91070 Xalapa, Veracruz, México
| | - Claudia Anahí Pérez-Torres
- Instituto de Ecología A.C., Red de Estudios Moleculares Avanzados, 91070 Xalapa, Veracruz, México
- Catedrático CONACyT en el Instituto de Ecología A.C, Veracruz, México
| | - Guillermo Ángeles
- Instituto de Ecología A.C., Red de Ecología Funcional, 91070 Xalapa, Veracruz, México
| | | | - Enrique Ibarra-Laclette
- Instituto de Ecología A.C., Red de Estudios Moleculares Avanzados, 91070 Xalapa, Veracruz, México
| |
Collapse
|
47
|
|
48
|
Song H, Naowarojna N, Cheng R, Lopez J, Liu P. Non-heme iron enzyme-catalyzed complex transformations: Endoperoxidation, cyclopropanation, orthoester, oxidative C-C and C-S bond formation reactions in natural product biosynthesis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 117:1-61. [PMID: 31564305 DOI: 10.1016/bs.apcsb.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Non-heme iron enzymes catalyze a wide range of chemical transformations, serving as one of the key types of tailoring enzymes in the biosynthesis of natural products. Hydroxylation reaction is the most common type of reactions catalyzed by these enzymes and hydroxylation reactions have been extensively investigated mechanistically. However, the mechanistic details for other types of transformations remain largely unknown or unexplored. In this paper, we present some of the most recently discovered transformations, including endoperoxidation, orthoester formation, cyclopropanation, oxidative C-C and C-S bond formation reactions. In addition, many of them are multi-functional enzymes, which further complicate their mechanistic investigations. In this work, we summarize their biosynthetic pathways, with special emphasis on the mechanistic details available for these newly discovered enzymes.
Collapse
Affiliation(s)
- Heng Song
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, People's Republic of China
| | | | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Juan Lopez
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, United States
| |
Collapse
|
49
|
1,6-Conjugate addition of C-nucleophiles to p-quinone methide surrogate: Synthesis of diarylpropanes. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
50
|
Menéndez-Perdomo IM, Facchini PJ. Benzylisoquinoline Alkaloids Biosynthesis in Sacred Lotus. Molecules 2018; 23:E2899. [PMID: 30404216 PMCID: PMC6278464 DOI: 10.3390/molecules23112899] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 12/30/2022] Open
Abstract
Sacred lotus (Nelumbo nucifera Gaertn.) is an ancient aquatic plant used throughout Asia for its nutritional and medicinal properties. Benzylisoquinoline alkaloids (BIAs), mostly within the aporphine and bisbenzylisoquinoline structural categories, are among the main bioactive constituents in the plant. The alkaloids of sacred lotus exhibit promising anti-cancer, anti-arrhythmic, anti-HIV, and anti-malarial properties. Despite their pharmacological significance, BIA metabolism in this non-model plant has not been extensively investigated. In this review, we examine the diversity of BIAs in sacred lotus, with an emphasis on the distinctive stereochemistry of alkaloids found in this species. Additionally, we discuss our current understanding of the biosynthetic genes and enzymes involved in the formation of 1-benzylisoquinoline, aporphine, and bisbenzylisoquinoline alkaloids in the plant. We conclude that a comprehensive functional characterization of alkaloid biosynthetic enzymes using both in vitro and in vivo methods is required to advance our limited knowledge of BIA metabolism in the sacred lotus.
Collapse
Affiliation(s)
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|