1
|
Kungwani NA, Panda J, Mishra AK, Chavda N, Shukla S, Vikhe K, Sharma G, Mohanta YK, Sharifi-Rad M. Combating bacterial biofilms and related drug resistance: Role of phyto-derived adjuvant and nanomaterials. Microb Pathog 2024; 195:106874. [PMID: 39181190 DOI: 10.1016/j.micpath.2024.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The emergence of antimicrobial resistance (AMR) in clinical microbes has led to a search for novel antibiotics for combating bacterial infections. The treatment of bacterial infections becomes more challenging with the onset of biofilm formation. AMR is further accelerated by biofilm physiology and differential gene expression in bacteria with an inherent resistance to conventional antibiotics. In the search for innovative strategies to control the spread of AMR in clinical isolates, plant-derived therapeutic metabolites can be repurposed to control biofilm-associated drug resistance. Unlike antibiotics, designed to act on a single cellular process, phytochemicals can simultaneously target multiple cellular components. Furthermore, they can disrupt biofilm formation and inhibit quorum sensing, offering a comprehensive approach to combat bacterial infections. In bacterial biofilms, the first line of AMR is due to biofilms associated with the extracellular matrix, diffusion barriers, quorum sensing, and persister cells. These extracellular barriers can be overcome using phytochemical-based antibiotic adjuvants to increase the efficacy of antibiotic treatment and restrict the spread of AMR. Furthermore, phytochemicals can be used to target bacterial intracellular machinery such as DNA replication, protein synthesis, efflux pumps, and degrading enzymes. In parallel with pristine phytochemicals, phyto-derived nanomaterials have emerged as an effective means of fighting bacterial biofilms. These nanomaterials can be formulated to cross the biofilm barriers and function on cellular targets. This review focuses on the synergistic effects of phytochemicals and phyto-derived nanomaterials in controlling the progression of biofilm-related AMR. IT provides comprehensive insights into recent advancements and the underlying mechanisms of the use of phyto-derived adjuvants and nanomaterials.
Collapse
Affiliation(s)
- Neelam Amit Kungwani
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Techno City, 9th Mile, Baridua, Ri-Bhoi, 793101, Meghalaya, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | | | - Sudhir Shukla
- Homi Bhabha National Institute, Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, Tamilnadu, 603102, India
| | - Kalyani Vikhe
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Gunjan Sharma
- Department of Plant Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Techno City, 9th Mile, Baridua, Ri-Bhoi, 793101, Meghalaya, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol, 98613-35856, Iran.
| |
Collapse
|
2
|
Vadakkan K, Sathishkumar K, Mapranathukaran VO, Ngangbam AK, Nongmaithem BD, Hemapriya J, Nair JB. Critical review on plant-derived quorum sensing signaling inhibitors in pseudomonas aeruginosa. Bioorg Chem 2024; 151:107649. [PMID: 39029321 DOI: 10.1016/j.bioorg.2024.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/21/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Pseudomonas aeruginosa, a biofilm-forming organism with complex quorum mechanisms (Las, Rhl, PQS, and IQS), poses an imminent danger to the healthcare sector and renders current treatment options for chemotherapy ineffectual. The pathogen's diverse pathogenicity, antibiotic resistance, and biofilms make it difficult to eradicate it effectively. Quorum sensing, a complex system reliant on cell density, controls P. aeruginosa's pathogenesis. Quorum-sensing genes are key components of P. aeruginosa's pathogenic arsenal, and their expression determines how severe the spread of infection becomes. Over the past ten years, there has been a noticeable increase in the quest for and development of new antimicrobial medications. Quorum sensing may be an effective treatment for infections triggered by bacteria. Introducing quorum-sensing inhibitors as an anti-virulent strategy might be an intriguing therapeutic method that can be effectively employed along with current medications. Amongst the several speculated processes, a unique anti-virulence strategy using anti-quorum sensing and antibiofilm medications for targeting pseudomonal infestations seems to be at the forefront. Due to their noteworthy quorum quenching capabilities, biologically active phytochemicals have become more well-known in the realm of science in this context. Recent research showed how different phytochemical quorum quenching actions affect P. aeruginosa's QS-dependent pathogenicity. This review focuses on the most current data supporting the implementation of plant bio-actives to treat P.aeruginosa-associated diseases, as well as the benefits and future recommendationsof employing them in anti-virulence therapies as a supplementary drug development approach towards conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | - Janarthanam Hemapriya
- Department of Microbiology, DKM College for Women, Vellore, Tamil Nadu 632001, India
| | - Jyotsna B Nair
- Department of Biotechnology, JDT Islam College of Arts and Science, Vellimadukunnu, Kozhikode, Kerala 673012, India
| |
Collapse
|
3
|
Abdelgadir A, Adnan M, Patel M, Saxena J, Alam MJ, Alshahrani MM, Singh R, Sachidanandan M, Badraoui R, Siddiqui AJ. Probiotic Lactobacillus salivarius mediated synthesis of silver nanoparticles (AgNPs-LS): A sustainable approach and multifaceted biomedical application. Heliyon 2024; 10:e37987. [PMID: 39347420 PMCID: PMC11437860 DOI: 10.1016/j.heliyon.2024.e37987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Biogenic synthesis of silver nanoparticles (AgNPs) has emerged as an eco-friendly and sustainable approach with diverse biological applications. This study presents synthesis of AgNPs-LS using a probiotic strain Lactobacillus salivarius (L. salivarius) and explores their multifaceted biological activities, including antibacterial, antibiofilm, anti-quorum sensing, antifungal, antioxidant, anticancer, anticoagulant and thrombolytic properties. The biosynthesis of AgNPs-LS was successfully achieved using L. salivarius cell free supernatants, resulting in well-characterized nanoparticles as confirmed by UV-Vis spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) and zeta potential analysis. The AgNPs-LS demonstrated potent antibacterial activity against different pathogenic bacteria (C. violaceum, P. aeruginosa, S. aureus, E. coli and S. marcescens), emphasizing their potential in combating bacterial infections. Moreover, these AgNPs-LS were effective in inhibiting biofilm formation (>60 % at 1/2 MIC), a key mechanism of bacterial virulence, highlighting their utility in preventing biofilm-related infections. AgNPs-LS exhibited anti-quorum sensing activity, disrupting bacterial communication systems and potentially reducing virulence factor such as, violacein production in C. violaceum, pyocyanin production in P. aeruginosa and prodigiosin production in S. marcescens. Additionally, AgNPs-LS also exhibited notable antifungal activity towards a different pathogenic fungus (F. proliferatum, P. purpurogenum, A. niger and R. stolonifer). In terms of health applications, the AgNPs-LS displayed significant antioxidant activity, effectively scavenging DPPH• (IC50 = 42.65 μg/mL) and ABTS•+ (IC50 = 53.77 μg/mL) free radicals. Furthermore, AgNPs-LS showed cytotoxicity against breast cancer cells (MCF-7) (IC50 = 52.29 μg/mL), positioning them as promising candidates for cancer therapy. Moreover, AgNPs-LS were also shown promising anticoagulant and thrombolytic activities under practical conditions. Therefore, the biogenic synthesis of AgNPs-LS using L. salivarius offers a sustainable and cost-effective route for producing AgNPs with an array of biological activities. These AgNPs-LS have the potential to address various challenges in healthcare, ranging from antimicrobial, anticancer applications to biofilm inhibition, antioxidant therapy, anticoagulant and thrombolytic agents.
Collapse
Affiliation(s)
- Abdelmushin Abdelgadir
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, 391760, India
| | - Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran, 61441, Saudi Arabia
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail, P.O. Box 2440, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| |
Collapse
|
4
|
Abdel-Fatah SS, Mohammad NH, Elshimy R, Mosallam FM. Impeding microbial biofilm formation and Pseudomonas aeruginosa virulence genes using biologically synthesized silver Carthamus nanoparticles. Microb Cell Fact 2024; 23:240. [PMID: 39238019 PMCID: PMC11378559 DOI: 10.1186/s12934-024-02508-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Long-term antibiotic treatment results in the increasing resistance of bacteria to antimicrobials drugs, so it is necessary to search for effective alternatives to prevent and treat pathogens that cause diseases. This study is aimed for biological synthesis of silver Carthamus nanoparticles (Ag-Carth-NPs) to combat microbial biofilm formation and Pseudomonas aeruginosa virulence genes. Ag-Carth-NPs are synthesized using Carthamus tenuis aqueous extract as environmentally friendly method has no harmful effect on environment. General factorial design is used to optimize Ag-Carth-NPs synthesis using three variables in three levels are Carthamus extract concentration, silver nitrate concentration and gamma radiation doses. Analysis of response data indicates gamma radiation has a significant effect on Ag-Carth-NPs production. Ag-Carth-NPs have sharp peak at λ max 425 nm, small and spherical particles with size 20.0 ± 1.22 nm, high stability up to 240 day with zeta potential around - 43 ± 0.12 mV, face centered cubic crystalline structure and FT-IR spectroscopy shows peak around 620 cm-1 that corresponding to AgNPs that stabilized by C. tenuis extract functional moiety. The antibacterial activity of Ag-Carth-NPs against pathogenic bacteria and fungi was determined using well diffusion method. The MIC values of Ag-Carth-NPs were (6.25, 6.25, 3.126, 25, 12.5, 12.5, 25 and 12.5 µg/ml), MBC values were (12.5, 12.5, 6.25, 50, 25, 25, 50 and 25 µg/ml) and biofilm inhibition% were (62.12, 68.25, 90.12, 69.51, 70.61, 71.12, 75.51 and 77.71%) against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis, Candida tropicalis and Candida albicans respectively. Ag-Carth-NPs has bactericidal efficacy and significantly reduced the swarming, swimming motility, pyocyanin and protease production of P. aeruginosa. Furthermore, P. aeruginosa ToxA gene expression was significantly down regulated by 81.5%, while exoU reduced by 78.1%, where lasR gene expression reduction was 68%, while the reduction in exoU was 66% and 60.1% decrease in lasB gene expression after treatment with Ag-Carth-NPs. This activity is attributed to effect of Ag-Carth-NPs on cell membrane integrity, down regulation of virulence gene expression, and induction of general and oxidative stress in P. aeruginosa. Ag-Carth-NPs have no significant cytotoxic effects on normal human cell (Hfb4) but have IC50 at 5.6µg/mL against of HepG-2 cells. Limitations of the study include studies with low risks of silver nanoparticles for in vitro antimicrobial effects and its toxicity.
Collapse
Affiliation(s)
- Sobhy S Abdel-Fatah
- Drug Radiation Research Department, Drug Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nasser H Mohammad
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Rana Elshimy
- Microbiology and Immunology, Egyptian Drug Authority, Cairo, Egypt
- Microbiology and immunology, Faculty of Pharmacy, AL-Aharm Canadian University (ACU), Giza, Egypt
| | - Farag M Mosallam
- Drug Radiation Research Department, Drug Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
5
|
Rajkhowa S, Hussain SZ, Agarwal M, Zaheen A, Al-Hussain SA, Zaki MEA. Advancing Antibiotic-Resistant Microbe Combat: Nanocarrier-Based Systems in Combination Therapy Targeting Quorum Sensing. Pharmaceutics 2024; 16:1160. [PMID: 39339197 PMCID: PMC11434747 DOI: 10.3390/pharmaceutics16091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The increase in antibiotic-resistant bacteria presents a significant risk to worldwide public health, emphasizing the necessity of novel approaches to address infections. Quorum sensing, an essential method of communication among bacteria, controls activities like the formation of biofilms, the production of virulence factors, and the synthesis of secondary metabolites according to the number of individuals in the population. Quorum quenching, which interferes with these processes, emerges as a vital approach to diminish bacterial virulence and prevent biofilm formation. Nanocarriers, characterized by their small size, high surface-area-to-volume ratio, and modifiable surface chemistry, offer a versatile platform for the disruption of bacterial communication by targeting various stages within the quorum sensing pathway. These features allow nanocarriers to infiltrate biofilms, disrupt cell membranes, and inhibit bacterial proliferation, presenting a promising alternative to traditional antibiotics. Integrating nanocarrier-based systems into combination therapies provides a multi-pronged approach to infection control, enhancing both the efficacy and specificity of treatment regimens. Nonetheless, challenges related to the stability, safety, and clinical effectiveness of nanomaterial-based antimicrobial treatments remain. Continued research and development are essential to overcoming these obstacles and fully harnessing the potential of nano-antimicrobial therapies. This review emphasizes the importance of quorum sensing in bacterial behavior and highlights the transformative potential of nanotechnology in advancing antimicrobial treatments, offering innovative solutions to combat antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Safrina Zeenat Hussain
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Manisha Agarwal
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Alaiha Zaheen
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Sami A. Al-Hussain
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Magdi E. A. Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| |
Collapse
|
6
|
Ridha DM, Al-Awady MJ, Abd Al-Zwaid AJ, Balakit AA, Al-Dahmoshi HOM, Alotaibi MH, El-Hiti GA. Antibacterial and antibiofilm activities of selenium nanoparticles-antibiotic conjugates against anti-multidrug-resistant bacteria. Int J Pharm 2024; 658:124214. [PMID: 38723732 DOI: 10.1016/j.ijpharm.2024.124214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The crucial demand to overcome the issue of multidrug resistance is required to refine the performance of antibiotics. Such a process can be achieved by fastening them to compatible nanoparticles to obtain effective pharmaceuticals at a low concentration. Thus, selenium nanoparticles (Se NPs) are considered biocompatible agents that are applied to prevent infections resulting from bacterial resistance to multi-antibiotics. The current evaluated the effectiveness of Se NPs and their conjugates with antibiotics such as amikacin (AK), levofloxacin (LEV), and piperacillin (PIP) against Pseudomonas aeruginosa (P. aeruginosa). In addition, the study determined the antibacterial and antibiofilm properties of Se NPs and their conjugates with LEV against urinary tract pathogens such as Staphylococcus aureus (S. aureus), Enterococcus faecalis (E. faecalis), P. aeruginosa, and Escherichia coli (E. coli). The result of minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) for eight isolates of P. aeruginosa revealed that the conjugation of Se NPs with AK, LEV, and PIP resulted in a reduction in the concentration of antibiotic-conjugated Se NPs. The concentration was found to be about 10-20 times lower than that of bare antibiotics. The MIC of the Se NPs with LEV (i.e., Se NPs:LEV) for S. aureus, E. faecalis, P. aeruginosa, and E. coli was found to be 1.4:0.5, 0.7:0.25, 22:8, and 11:4 µg/mL, respectively. The results of the half-maximal inhibitory concentration (IC50) demonstrated that Se NPs:LEV conjugate have inhibited 50 % of the mature biofilms of S. aureus, E. faecalis, P. aeruginosa, and E. coli at a concentration of 27.5 ± 10.5, 18.8 ± 3.1, 40.6 ± 10.7, and 21.6 ± 3.3 µg/mL, respectively compared to the control. It has been suggested that the antibiotic-conjugated Se NPs have great potential for biomedical applications. The conjugation of Se NPs with AK, LEV, and PIP increases the antibacterial potency against resistant pathogens at a low concentration.
Collapse
Affiliation(s)
- Dalal M Ridha
- Department of Biology, College of Science, University of Babylon, Iraq
| | - Mohammed J Al-Awady
- Department of Medical Biotechnology Faculty of Biotechnology, Al Qasim Green University Babylon, Iraq
| | - Afrah J Abd Al-Zwaid
- Mirjan Teaching Hospital, Babylon, Iraq; Medical Laboratories Techniques Department, College of Health and Medical Technologies, Al-Mustaqbal University, Babylon 51001, Iraq
| | - Asim A Balakit
- College of Pharmacy, University of Babylon, Babylon, Iraq
| | | | - Mohammad Hayal Alotaibi
- Institute of Waste Management and Recycling Technologies, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Gamal A El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Xiao S, Sun G, Huang S, Lin C, Li Y. Nanoarchitectonics-Based Materials as a Promising Strategy in the Treatment of Endodontic Infections. Pharmaceutics 2024; 16:759. [PMID: 38931881 PMCID: PMC11207628 DOI: 10.3390/pharmaceutics16060759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Endodontic infections arise from the interactive activities of microbial communities colonizing in the intricate root canal system. The present study aims to update the latest knowledge of nanomaterials, their antimicrobial mechanisms, and their applications in endodontics. A detailed literature review of the current knowledge of nanomaterials used in endodontic applications was performed using the PubMed database. Antimicrobial nanomaterials with a small size, large specific surface area, and high chemical activity are introduced to act as irrigants, photosensitizer delivery systems, and medicaments, or to modify sealers. The application of nanomaterials in the endodontic field could enhance antimicrobial efficiency, increase dentin tubule penetration, and improve treatment outcomes. This study supports the potential of nanomaterials as a promising strategy in treating endodontic infections.
Collapse
Affiliation(s)
- Suli Xiao
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen 361003, China;
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361003, China
| | - Guanwen Sun
- Department of Stomatology, Fujian Medical University Xiamen Humanity Hospital, Xiamen 361018, China;
| | - Shan Huang
- Department of Stomatology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361005, China;
| | - Chen Lin
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen 361003, China;
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361003, China
| | - Yijun Li
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen 361003, China;
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361003, China
| |
Collapse
|
8
|
Chen G, Zhang H, Yuan M, Huang R, Xiao Y, Qu Y, Ren Y. Physiological responses and molecular mechanisms of biofilm formation induced by extracellular metabolites of euglena in Pseudomonas aeruginosa LNR1 for diesel biodegradation based on transcriptomic and proteomic. ENVIRONMENTAL RESEARCH 2024; 248:118273. [PMID: 38280528 DOI: 10.1016/j.envres.2024.118273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Diesel, as a toxic and complex pollutant, is one of the main components in oily wastewater, and poses serious threats to the aquatic environment and the health of organisms. Employing environmentally friendly biostimulants to enhance the metabolic functions of microorganisms is currently the optimal choice to improve the biodegradation of oil-containing wastewater efficiency. This study takes Pseudomonas aeruginosa LNR1 as the target, analyzing the physiological responses and molecular mechanisms of biofilm formation when enhanced by the extracellular metabolites of euglena (EME) for diesel degradation. The results show that EME not only induces auto-aggregation behavior of strain LNR1, forming aerobic suspended granule biofilm, but also promotes the secretion of signaling molecules in the quorum sensing (QS) system. Transcriptomic and proteomic analyses indicate that the stimulatory effect of EME on strain LNR1 mainly manifests in biofilm formation, substance transmembrane transport, signal transduction, and other biological processes, especially the QS system in signal transduction, which plays a significant regulatory role in biofilm formation, chemotaxis, and two-component system (TCS). This study collectively unveils the molecular mechanisms of biostimulant EME inducing strain LNR1 to enhance diesel degradation from different aspects, providing theoretical guidance for the practical application of EME in oily wastewater pollution control.
Collapse
Affiliation(s)
- Guotao Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Huiqun Zhang
- GH Water Supply (Holdings) Co., Ltd., Shenzhen 518021, China
| | - Meng Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Rui Huang
- GH Water Supply (Holdings) Co., Ltd., Shenzhen 518021, China
| | - Yibo Xiao
- Protoga Biotechnology Co., Ltd., Shenzhen 518000, China; Microalgae Biosynthesis R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Yujiao Qu
- Protoga Biotechnology Co., Ltd., Shenzhen 518000, China; Microalgae Biosynthesis R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, China.
| |
Collapse
|
9
|
Kuik C, van Hoogstraten SWG, Arts JJC, Honing M, Cillero-Pastor B. Matrix-assisted laser desorption/ionization mass spectrometry imaging for quorum sensing. AMB Express 2024; 14:45. [PMID: 38662284 PMCID: PMC11045684 DOI: 10.1186/s13568-024-01703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
Quorum sensing (QS) is a complex communication system in bacteria, directing their response to the environment. QS is also one of the main regulators of bacterial biofilms' formation, maturation and dispersion. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) is a molecular imaging technique that allows the mapping of QS molecules in bacterial biofilms. Here, we highlight the latest advances in MALDI-MSI in recent years and how this technology can improve QS understanding at the molecular level.
Collapse
Affiliation(s)
- Christel Kuik
- Maastricht MultiModal Molecular Imaging institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Sanne W G van Hoogstraten
- Department of Orthopaedic Surgery, Laboratory for Experimental Orthopaedics, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jacobus J C Arts
- Department of Orthopaedic Surgery, Laboratory for Experimental Orthopaedics, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Maarten Honing
- Maastricht MultiModal Molecular Imaging institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging institute (M4i), Maastricht University, Maastricht, the Netherlands.
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
10
|
Iungin O, Shydlovska O, Moshynets O, Vasylenko V, Sidorenko M, Mickevičius S, Potters G. Metal-based nanoparticles: an alternative treatment for biofilm infection in hard-to-heal wounds. J Wound Care 2024; 33:xcix-cx. [PMID: 38588056 DOI: 10.12968/jowc.2024.33.sup4a.xcix] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Metal-based nanoparticles (MNPs) are promoted as effective compounds in the treatment of bacterial infections and as possible alternatives to antibiotics. These MNPs are known to affect a broad spectrum of microorganisms using a multitude of strategies, including the induction of reactive oxygen species and interaction with the inner structures of the bacterial cells. The aim of this review was to summarise the latest studies about the effect of metal-based nanoparticles on pathogenic bacterial biofilm formed in wounds, using the examples of Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Pseudomonas aeruginosa, as well as provide an overview of possible clinical applications.
Collapse
Affiliation(s)
- Olga Iungin
- 1 Kyiv National University of Technologies and Design (KNUTD), Kyiv, Ukraine
- 2 Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olga Shydlovska
- 1 Kyiv National University of Technologies and Design (KNUTD), Kyiv, Ukraine
| | - Olena Moshynets
- 2 Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Volodymyr Vasylenko
- 3 Vytautas Magnus University, Faculty of Natural Science, Akademija, Lithuania
| | - Marina Sidorenko
- 3 Vytautas Magnus University, Faculty of Natural Science, Akademija, Lithuania
| | - Saulius Mickevičius
- 3 Vytautas Magnus University, Faculty of Natural Science, Akademija, Lithuania
| | - Geert Potters
- 4 Antwerp Maritime Academy, Antwerp, Belgium
- 5 University of Antwerp, Antwerp, Belgium
| |
Collapse
|
11
|
Shariati A, Noei M, Askarinia M, Khoshbayan A, Farahani A, Chegini Z. Inhibitory effect of natural compounds on quorum sensing system in Pseudomonas aeruginosa: a helpful promise for managing biofilm community. Front Pharmacol 2024; 15:1350391. [PMID: 38628638 PMCID: PMC11019022 DOI: 10.3389/fphar.2024.1350391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Pseudomonas aeruginosa biofilm is a community of bacteria that adhere to live or non-living surfaces and are encapsulated by an extracellular polymeric substance. Unlike individual planktonic cells, biofilms possess a notable inherent resistance to sanitizers and antibiotics. Overcoming this resistance is a substantial barrier in the medical and food industries. Hence, while antibiotics are ineffective in eradicating P. aeruginosa biofilm, scientists have explored alternate strategies, including the utilization of natural compounds as a novel treatment option. To this end, curcumin, carvacrol, thymol, eugenol, cinnamaldehyde, coumarin, catechin, terpinene-4-ol, linalool, pinene, linoleic acid, saponin, and geraniol are the major natural compounds extensively utilized for the management of the P. aeruginosa biofilm community. Noteworthy, the exact interaction of natural compounds and the biofilm of this bacterium is not elucidated yet; however, the interference with the quorum sensing system and the inhibition of autoinducer production in P. aeruginosa are the main possible mechanisms. Noteworthy, the use of different drug platforms can overcome some drawbacks of natural compounds, such as insolubility in water, limited oral bioavailability, fast metabolism, and degradation. Additionally, drug platforms can deliver different antibiofilm agents simultaneously, which enhances the antibiofilm potential of natural compounds. This article explores many facets of utilizing natural compounds to inhibit and eradicate P. aeruginosa biofilms. It also examines the techniques and protocols employed to enhance the effectiveness of these compounds.
Collapse
Affiliation(s)
- Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Milad Noei
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Askarinia
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Farahani
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Hu C, He G, Yang Y, Wang N, Zhang Y, Su Y, Zhao F, Wu J, Wang L, Lin Y, Shao L. Nanomaterials Regulate Bacterial Quorum Sensing: Applications, Mechanisms, and Optimization Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306070. [PMID: 38350718 PMCID: PMC11022734 DOI: 10.1002/advs.202306070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/19/2024] [Indexed: 02/15/2024]
Abstract
Anti-virulence therapy that interferes with bacterial communication, known as "quorum sensing (QS)", is a promising strategy for circumventing bacterial resistance. Using nanomaterials to regulate bacterial QS in anti-virulence therapy has attracted much attention, which is mainly attributed to unique physicochemical properties and excellent designability of nanomaterials. However, bacterial QS is a dynamic and multistep process, and there are significant differences in the specific regulatory mechanisms and related influencing factors of nanomaterials in different steps of the QS process. An in-depth understanding of the specific regulatory mechanisms and related influencing factors of nanomaterials in each step can significantly optimize QS regulatory activity and enhance the development of novel nanomaterials with better comprehensive performance. Therefore, this review focuses on the mechanisms by which nanomaterials regulate bacterial QS in the signal supply (including signal synthesis, secretion, and accumulation) and signal transduction cascade (including signal perception and response) processes. Moreover, based on the two key influencing factors (i.e., the nanomaterial itself and the environment), optimization strategies to enhance the QS regulatory activity are comprehensively summarized. Collectively, applying nanomaterials to regulate bacterial QS is a promising strategy for anti-virulence therapy. This review provides reference and inspiration for further research on the anti-virulence application of nanomaterials.
Collapse
Affiliation(s)
- Chen Hu
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Guixin He
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yujun Yang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Ning Wang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yanli Zhang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yuan Su
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
- Stomatology CenterShunde HospitalSouthern Medical University (The First People's Hospital of Shunde)Foshan528399China
| | - Fujian Zhao
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Junrong Wu
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Linlin Wang
- Hainan General Hospital·Hainan Affiliated Hospital of Hainan medical UniversityHaikou570311China
| | - Yuqing Lin
- Shenzhen Luohu People's HospitalShenzhen518000China
| | - Longquan Shao
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
13
|
Iaconis A, De Plano LM, Caccamo A, Franco D, Conoci S. Anti-Biofilm Strategies: A Focused Review on Innovative Approaches. Microorganisms 2024; 12:639. [PMID: 38674584 PMCID: PMC11052202 DOI: 10.3390/microorganisms12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilm (BF) can give rise to systemic infections, prolonged hospitalization times, and, in the worst case, death. This review aims to provide an overview of recent strategies for the prevention and destruction of pathogenic BFs. First, the main phases of the life cycle of BF and maturation will be described to identify potential targets for anti-BF approaches. Then, an approach acting on bacterial adhesion, quorum sensing (QS), and the extracellular polymeric substance (EPS) matrix will be introduced and discussed. Finally, bacteriophage-mediated strategies will be presented as innovative approaches against BF inhibition/destruction.
Collapse
Affiliation(s)
- Antonella Iaconis
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- URT Lab Sens Beyond Nano—CNR-DSFTM, Department of Physical Sciences and Technologies of Matter, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
14
|
Thirumoorthy G, Balasubramanian B, George JA, Nizam A, Nagella P, Srinatha N, Pappuswamy M, Alanazi AM, Meyyazhagan A, Rengasamy KRR, Veerappa Lakshmaiah V. Phytofabricated bimetallic synthesis of silver-copper nanoparticles using Aerva lanata extract to evaluate their potential cytotoxic and antimicrobial activities. Sci Rep 2024; 14:1270. [PMID: 38218918 PMCID: PMC10787839 DOI: 10.1038/s41598-024-51647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
In this study, we demonstrate the green synthesis of bimetallic silver-copper nanoparticles (Ag-Cu NPs) using Aerva lanata plant extract. These NPs possess diverse biological properties, including in vitro antioxidant, antibiofilm, and cytotoxic activities. The synthesis involves the reduction of silver nitrate and copper oxide salts mediated by the plant extract, resulting in the formation of crystalline Ag-Cu NPs with a face-centered cubic structure. Characterization techniques confirm the presence of functional groups from the plant extract, acting as stabilizing and reducing agents. The synthesized NPs exhibit uniform-sized spherical morphology ranging from 7 to 12 nm. They demonstrate significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, inhibiting extracellular polysaccharide secretion in a dose-dependent manner. The Ag-Cu NPs also exhibit potent cytotoxic activity against cancerous HeLa cell lines, with an inhibitory concentration (IC50) of 17.63 µg mL-1. Additionally, they demonstrate strong antioxidant potential, including reducing capability and H2O2 radical scavenging activity, particularly at high concentrations (240 µg mL-1). Overall, these results emphasize the potential of A. lanata plant metabolite-driven NPs as effective agents against infectious diseases and cancer.
Collapse
Affiliation(s)
- Gopishankar Thirumoorthy
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Rd, Bengaluru, Karnataka, 560029, India
| | | | - Jincy A George
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Rd, Bengaluru, Karnataka, 560029, India
| | - Aatika Nizam
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Rd, Bengaluru, Karnataka, 560029, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Rd, Bengaluru, Karnataka, 560029, India
| | - N Srinatha
- Department of Physics, RV Institute of Technology and Management, Bengaluru, 560 076, India
| | - Manikantan Pappuswamy
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Rd, Bengaluru, Karnataka, 560029, India
| | - Amer M Alanazi
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Arun Meyyazhagan
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Rd, Bengaluru, Karnataka, 560029, India
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, India.
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa.
| | | |
Collapse
|
15
|
Rambaran N, Naidoo Y, Mohamed F, Chenia HY, Baijnath H. Antibacterial and Anti-Quorum Sensing Properties of Silver Nanoparticles Phytosynthesized Using Embelia ruminata. PLANTS (BASEL, SWITZERLAND) 2024; 13:168. [PMID: 38256722 PMCID: PMC10821412 DOI: 10.3390/plants13020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024]
Abstract
The rise in antibiotic resistance (AR) poses an imminent threat to human health. Nanotechnology, together with mechanisms such as quorum sensing (QS), which relies on communication between bacterial cells, may decrease the selective pressure for AR. Thus, this study aimed to investigate the effectiveness of silver nanoparticles (AgNPs) synthesized at room temperature (Rt) and 80 °C using Embelia ruminata leaf, stem-bark, and fruit extracts as antibacterial and anti-QS agents. The phytosynthesized AgNPs solutions were subjected to various characterization assays and assessed for their antibacterial activities. Quantitative QS assays were performed using Chromobacterium subtsugae CV017 and Chromobacterium violaceum ATCC 12472. Synthesized AgNPs were spherical-to-near-spherical in shape, poly-dispersed, and crystalline, with a size range of 21.06-32.15 nm. Fruit AgNPs showed stronger antibacterial activity than AgNPs from other plant organs against selected bacterial strains. In the QS assays, fruit 80 °C AgNPs demonstrated the most significant violacein inhibition in an assay performed using the short-chain acyl homoserine lactone CV017 biosensor, while the leaf and fruit Rt AgNPs demonstrated the most violacein inhibition in an assay performed using the long-chain acyl homoserine lactone ATCC 12472 biosensor. The investigations carried out in this study lay the groundwork for future innovative research into antibacterial and anti-QS strategies using E. ruminata.
Collapse
Affiliation(s)
- Neervana Rambaran
- Biological Sciences Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (Y.N.); (H.B.)
| | - Yougasphree Naidoo
- Biological Sciences Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (Y.N.); (H.B.)
| | - Farzana Mohamed
- Microbiology Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (F.M.); (H.Y.C.)
| | - Hafizah Y. Chenia
- Microbiology Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (F.M.); (H.Y.C.)
| | - Himansu Baijnath
- Biological Sciences Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (Y.N.); (H.B.)
| |
Collapse
|
16
|
Chan RK, Nuutila K, Mathew-Steiner SS, Diaz V, Anselmo K, Batchinsky M, Carlsson A, Ghosh N, Sen CK, Roy S. A Prospective, Randomized, Controlled Study to Evaluate the Effectiveness of a Fabric-Based Wireless Electroceutical Dressing Compared to Standard-of-Care Treatment Against Acute Trauma and Burn Wound Biofilm Infection. Adv Wound Care (New Rochelle) 2024; 13:1-13. [PMID: 36855334 PMCID: PMC10654645 DOI: 10.1089/wound.2023.0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Objective: Despite advances in the use of topical and parenteral antimicrobial therapy and the practice of early tangential burn wound excision to manage bacterial load, 60% of the mortality from burns is attributed to bacterial biofilm infection. A low electric field (∼1 V) generated by the novel FDA-cleared wireless electroceutical dressing (WED) was previously shown to significantly prevent and disrupt burn biofilm infection in preclinical studies. Based on this observation, the purpose of this clinical trial was to evaluate the efficacy of the WED dressing powered by a silver-zinc electrocouple in the prevention and disruption of biofilm infection. Approach: A prospective, randomized, controlled, single-center clinical trial was performed to evaluate the efficacy of the WED compared with standard-of-care (SoC) dressing to treat biofilms. Burn wounds were randomized to receive either SoC or WED. Biopsies were collected on days 0 and 7 for histology, scanning electron microscopy (SEM) examination of biofilm, and for quantitative bacteriological analyses. Results: In total, 38 subjects were enrolled in the study. In 52% of the WED-treated wounds, little to no biofilm could be detected by SEM. WED significantly lowered or prevented increase of biofilm in all wounds compared with the pair-matched SoC-treated wounds. Innovation: WED is a simple, easy, and rapid method to protect the wound while also inhibiting infection. It is activated by a moist environment and the electrical field induces transient and micromolar amounts of superoxide anion radicals that will prevent bacterial growth. Conclusion: WED decreased biofilm infection better compared with SoC. The study was registered in clinicaltrials.gov as NCT04079998.
Collapse
Affiliation(s)
- Rodney K. Chan
- United States Army Institute of Surgical Research, Ft. Sam Houston, Texas, USA
| | - Kristo Nuutila
- United States Army Institute of Surgical Research, Ft. Sam Houston, Texas, USA
| | | | | | | | - Maria Batchinsky
- United States Army Institute of Surgical Research, Ft. Sam Houston, Texas, USA
| | - Anders Carlsson
- United States Army Institute of Surgical Research, Ft. Sam Houston, Texas, USA
- Metis Foundation, San Antonio, Texas, USA
| | - Nandini Ghosh
- Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chandan K. Sen
- Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sashwati Roy
- Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
17
|
Rather MA, Mandal M. Attenuation of biofilm and quorum sensing regulated virulence factors of an opportunistic pathogen Pseudomonas aeruginosa by phytofabricated silver nanoparticles. Microb Pathog 2023; 185:106433. [PMID: 37913826 DOI: 10.1016/j.micpath.2023.106433] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Green-synthesized nanoparticles provide an effective strategy for inhibiting microbial pathogenesis by affecting biofilm formation, quorum sensing (QS), and other surface properties of microorganisms. QS is a density-dependent communication signaling cascade that regulates biofilm formation and other pathogenic factors of Pseudomonas aeruginosa. In this context, the effect of phytofabricated silver nanoparticles (CC-AgNPs) synthesized using Cuphea carthagenensis extract on biofilm, QS, and QS-dependent virulence factors of P. aeruginosa were evaluated in this study. CC-AgNPs demonstrated significant attenuation of biofilm, QS, and QS-dependent virulence factors at sub-MICs. A significant inhibition of 88.39 ± 4.32 %, 79.64 ± 3.31 %, 73.07 ± 3.0 %, and 61.67 ± 1.5 % of biofilm formation, quorum sensing, pyocyanin, and LasB elastase, respectively was reported in the study at 20 μg/mL. The study also demonstrated a significant reduction of LasA Staphylolytic activity and 91.37 ± 1.05 % exoprotease production in comparison to untreated control. The lower concentrations of CC-AgNPs also demonstrated significant attenuation of biofilm and other virulence factors suggesting the strong potency of NPs against P. aeruginosa. XTT analysis reported the effect of CC-AgNPs on sessile cells of P. aeruginosa without impacting growth of planktonic cells at sub-MICs. Cell-proliferation study in human cell lines (HEK 293 and Caco-2 cells) demonstrated the safe nature of CC-AgNPs at tested concentrations. This study is novel in a way that environmentally friendly CC-AgNPs were used to inhibit QS at sub-MICs without killing the tested strains, therefore, could be developed as an anti-virulent drug to overcome biofilm and antimicrobial resistance problems.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, India.
| |
Collapse
|
18
|
Tończyk A, Niedziałkowska K, Lisowska K. Optimizing the microbial synthesis of silver nanoparticles using Gloeophyllum striatum and their antimicrobial potential evaluation. Sci Rep 2023; 13:21124. [PMID: 38036613 PMCID: PMC10689739 DOI: 10.1038/s41598-023-48414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023] Open
Abstract
The search for new sources of silver nanoparticles (AgNPs) is highly relevant in many fields. Mycosynthesis seems to be advantageous for large-scale production, and using brown rot fungi might be a promising solution. In this study, AgNP synthesis using Gloeophyllum striatum DSM 9592 was performed under various process conditions. The resulting AgNPs were characterized using UV/Vis, FT-IR, SEM and NTA techniques and their biological activities were determined. It was found that different synthesis conditions changed the production efficiency, which was the highest in 28 s AgNPs. Moreover, temperature and shaking conditions slightly affected the activity of the resulting AgNP types. Gram-negative bacteria were generally more susceptible to the action of AgNPs with MIC values two- or three-fold lower compared to Gram-positive strains. Pseudomonas aeruginosa was the most sensitive among tested strains with a MIC value of 1.56 µg/ml. The research was additionally extended by the biofilm formation assay for this strain. It was found that AgNPs of all types led to a reduction in biofilm-forming capability of P. aeruginosa over the tested concentration range. Haemolytic and cytotoxic activity assays showed that synthesis conditions also affected AgNP toxicity. For instance, 4 ns AgNPs were the least cytotoxic and cause less than 50% reduction of fibroblast viability in the concentration that inhibits the growth of P. aeruginosa completely. These results highlight the possible utility of mycogenic silver nanoparticles as an antibacterial agent in antiseptics or other external treatments.
Collapse
Affiliation(s)
- Aleksandra Tończyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
- The BioMedChem Doctoral School of University of Lodz and Lodz Institutes of Polish Academy of Sciences, University of Lodz, 21/23 Matejki Street, 90-237, Lodz, Poland
| | - Katarzyna Niedziałkowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland.
| |
Collapse
|
19
|
Lami R, Urios L, Molmeret M, Grimaud R. Quorum sensing in biofilms: a key mechanism to target in ecotoxicological studies. Crit Rev Microbiol 2023; 49:786-804. [PMID: 36334083 DOI: 10.1080/1040841x.2022.2142089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Our environment is heavily contaminated by anthropogenic compounds, and this issue constitutes a significant threat to all life forms, including biofilm-forming microorganisms. Cell-cell interactions shape microbial community structures and functions, and pollutants that affect intercellular communications impact biofilm functions and ecological roles. There is a growing interest in environmental science fields for evaluating how anthropogenic pollutants impact cell-cell interactions. In this review, we synthesize existing literature that evaluates the impacts of quorum sensing (QS), which is a widespread density-dependent communication system occurring within many bacterial groups forming biofilms. First, we examine the perturbating effects of environmental contaminants on QS circuits; and our findings reveal that QS is an essential yet underexplored mechanism affected by pollutants. Second, our work highlights that QS is an unsuspected and key resistance mechanism that assists bacteria in dealing with environmental contamination (caused by metals or organic pollutants) and that favors bacterial growth in unfavourable environments. We emphasize the value of considering QS a critical mechanism for monitoring microbial responses in ecotoxicology. Ultimately, we determine that QS circuits constitute promising targets for innovative biotechnological approaches with major perspectives for applications in the field of environmental science.
Collapse
Affiliation(s)
- Raphaël Lami
- Sorbonne Université, USR3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer, France
- Centre National de la Recherche Scientifique, USR 3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Laurent Urios
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Maëlle Molmeret
- Université de Toulon, Laboratoire MAPIEM, EA4323, Avenue de l'université, BP 20132, La Garde Cedex, France
| | - Régis Grimaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
20
|
Silva JM, Teixeira AB, Reis AC. Silver-based gels for oral and skin infections: antimicrobial effect and physicochemical stability. Future Microbiol 2023; 18:985-996. [PMID: 37750752 DOI: 10.2217/fmb-2023-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Aim: To systematically evaluate the literature on silver (Ag) gels and their antimicrobial efficacy and physicochemical stability. Materials & methods: A search was performed in PubMed/MEDLINE, LILACS, Web of Science, Scopus, Embase and Google Scholar. Results: Gels were formulated with Ag nanoparticles, Ag oxynitrate and colloidal Ag and showed antimicrobial activity for concentrations ranging from 0.002 to 30%. Gels showed stability of their chemical components, and their physicochemical properties, including viscosity, organoleptic characteristics, homogeneity, pH and spreadability, were suitable for topical application. Conclusion: Ag-based gels show antimicrobial action proportional to concentration, with higher action against Gram-negative bacteria and physicochemical stability for oral and skin infection applications.
Collapse
Affiliation(s)
- João Mc Silva
- Department of Dental Materials & Prosthesis, Ribeirão Preto Dental School, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, São Paulo, 14040-904, Brazil
| | - Ana Bv Teixeira
- Department of Dental Materials & Prosthesis, Ribeirão Preto Dental School, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, São Paulo, 14040-904, Brazil
| | - Andréa C Reis
- Department of Dental Materials & Prosthesis, Ribeirão Preto Dental School, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, São Paulo, 14040-904, Brazil
| |
Collapse
|
21
|
Hafeez R, Kanwal Z, Raza MA, Rasool S, Riaz S, Naseem S, Rabani S, Haider I, Ahmad N, Alomar SY. Role of Citrullus colocynthis and Psidium guajava Mediated Green Synthesized Silver Nanoparticles in Disease Resistance against Aeromonas hydrophila Challenge in Labeo rohita. Biomedicines 2023; 11:2349. [PMID: 37760791 PMCID: PMC10525728 DOI: 10.3390/biomedicines11092349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Green synthesis of metallic nanoparticles is an auspicious method of preparing nanoparticles using plant extracts that have lesser toxicity to animal cells and the host. In the present work, we analyzed the antibacterial activity of Citrullus colocynthis and Psidium guajava-mediated silver nanoparticles (Cc-AgNPs and Pg-AgNPs, respectively) against Aeromonas hydrophila (A. hydrophila) in an in vivo assay employing Labeo rohita (L. rohita). L. rohita were divided into six groups for both Cc-AgNPs and Pg-AgNPs treatments separately: Control, A. hydrophila infected, A. hydrophila + Ampicillin, A. hydrophila + Cc/Pg-AgNPs (25 µg/L), A. hydrophila + Cc/Pg-AgNPs (50 µg/L), and A. hydrophila + Cc/Pg-AgNPs (75 µg/L). Changes in different bio-indicators such as hematological, histological, oxidative stress, and cytokine analysis were observed. Interestingly, the infected fish treated with both types of AgNPs (Cc-AgNPs and Pg-AgNPs) exhibited a higher survival rate than the untreated infected fish and demonstrated signs of recovery from the infection, providing a compelling indication of the positive impact of phytosynthesized AgNPs. Disruptions in hematological and histological parameters were found in the infected fish. Both Cc-AgNPs and Pg-AgNPs showed recovery on the hematological and histological parameters. Analysis of oxidative stress and cytokine markers also revealed provoking evidence of the positive impact of Cc-AgNPs and Pg-AgNPs treatment against disease progression in the infected fish. The major finding of the study was that the higher concentrations of the nanoparticles (50 µg/L in the case of Cc-AgNPs and 75 µg/L in the case of Pg-AgNPs) were more effective in fighting against disease. In conclusion, our work presents novel insights for the use of green-synthesized AgNPs as economic and innocuous antibacterial candidates in aquaculture.
Collapse
Affiliation(s)
- Ramsha Hafeez
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Jail Road, Lahore 54000, Pakistan; (R.H.); (S.R.)
| | - Zakia Kanwal
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Jail Road, Lahore 54000, Pakistan; (R.H.); (S.R.)
| | - Muhammad Akram Raza
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (M.A.R.); (S.R.); (S.R.); (S.N.)
| | - Shafqat Rasool
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (M.A.R.); (S.R.); (S.R.); (S.N.)
| | - Saira Riaz
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (M.A.R.); (S.R.); (S.R.); (S.N.)
| | - Shahzad Naseem
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (M.A.R.); (S.R.); (S.R.); (S.N.)
| | - Shifa Rabani
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Jail Road, Lahore 54000, Pakistan; (R.H.); (S.R.)
| | - Imran Haider
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1012 Amsterdam, The Netherlands;
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Suliman Yousef Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
22
|
Kanak KR, Dass RS, Pan A. Anti-quorum sensing potential of selenium nanoparticles against LasI/R, RhlI/R, and PQS/MvfR in Pseudomonas aeruginosa: a molecular docking approach. Front Mol Biosci 2023; 10:1203672. [PMID: 37635941 PMCID: PMC10449602 DOI: 10.3389/fmolb.2023.1203672] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Pseudomonas aeruginosa is an infectious pathogen which has the ability to cause primary and secondary contagions in the blood, lungs, and other body parts of immunosuppressed individuals, as well as community-acquired diseases, such as folliculitis, osteomyelitis, pneumonia, and others. This opportunistic bacterium displays drug resistance and regulates its pathogenicity via the quorum sensing (QS) mechanism, which includes the LasI/R, RhlI/R, and PQS/MvfR systems. Targeting the QS systems might be an excellent way to treat P. aeruginosa infections. Although a wide array of antibiotics, namely, newer penicillins, cephalosporins, and combination drugs are being used, the use of selenium nanoparticles (SeNPs) to cure P. aeruginosa infections is extremely rare as their mechanistic interactions are weakly understood, which results in carrying out this study. The present study demonstrates a computational approach of binding the interaction pattern between SeNPs and the QS signaling proteins in P. aeruginosa, utilizing multiple bioinformatics approaches. The computational investigation revealed that SeNPs were acutely 'locked' into the active region of the relevant proteins by the abundant residues in their surroundings. The PatchDock-based molecular docking analysis evidently indicated the strong and significant interaction between SeNPs and the catalytic cleft of LasI synthase (Phe105-Se = 2.7 Å and Thr121-Se = 3.8 Å), RhlI synthase (Leu102-Se = 3.7 Å and Val138-Se = 3.2 Å), transcriptional receptor protein LasR (Lys42-Se = 3.9 Å, Arg122-Se = 3.2 Å, and Glu124-Se = 3.9 Å), RhlR (Tyr43-Se = 2.9 Å, Tyr45-Se = 3.4 Å, and His61-Se = 3.5 Å), and MvfR (Leu208-Se = 3.2 Å and Arg209-Se = 4.0 Å). The production of acyl homoserine lactones (AHLs) was inhibited by the use of SeNPs, thereby preventing QS as well. Obstructing the binding affinity of transcriptional regulatory proteins may cause the suppression of LasR, RhlR, and MvfR systems to become inactive, thereby blocking the activation of QS-regulated virulence factors along with their associated gene expression. Our findings clearly showed that SeNPs have anti-QS properties against the established QS systems of P. aeruginosa, which strongly advocated that SeNPs might be a potent solution to tackle drug resistance and a viable alternative to conventional antibiotics along with being helpful in therapeutic development to cure P. aeruginosa infections.
Collapse
Affiliation(s)
- Kanak Raj Kanak
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University (A Central University), Pondicherry, India
| | - Regina Sharmila Dass
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University (A Central University), Pondicherry, India
| | - Archana Pan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University (A Central University), Pondicherry, India
| |
Collapse
|
23
|
Amiri N, Ghaffari S, Hassanpour I, Chae T, Jalili R, Kilani RT, Ko F, Ghahary A, Lange D. Antibacterial Thermosensitive Silver-Hydrogel Nanocomposite Improves Wound Healing. Gels 2023; 9:542. [PMID: 37504421 PMCID: PMC10379397 DOI: 10.3390/gels9070542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Bacterial infection and poor cell recruitment are among the main factors that prolong wound healing. To address this, a strategy is required that can prevent infection while promoting tissue repair. Here, we have created a silver nanoparticle-based hydrogel composite that is antibacterial and provides nutrients for cell growth, while filling cavities of various geometries in wounds that are difficult to reach with other dressings. Silver nanoparticles (AgNPs) were synthesized by chemical reduction and characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), and inductively coupled plasma-mass spectroscopy (ICP-MS). Using varying concentrations of AgNPs (200, 400, and 600 ppm), several collagen-based silver-hydrogel nanocomposite candidates were generated. The impact of these candidates on wound healing was assessed in a rat splinted wound model, while their ability to prevent wound infection from a contaminated surface was assessed using a rat subcutaneous infection model. Biocompatibility was assessed using the standard MTT assay and in vivo histological analyses. Synthesized AgNPs were spherical and stable, and while hydrogel alone did not have any antibacterial effect, AgNP-hydrogel composites showed significant antibacterial activity both in vitro and in vivo. Wound healing was found to be accelerated with AgNP-hydrogel composite treatment, and no negative effects were observed compared to the control group. The formulations were non-cytotoxic and did not differ significantly in hematological and biochemical factors from the control group in the in vivo study. By presenting promising antibacterial and wound healing activities, silver-hydrogel nanocomposite offers a safe therapeutic option that can be used as a functional scaffold for an acceleration of wound healing.
Collapse
Affiliation(s)
- Nafise Amiri
- Professional Fire Fighters' Burn and Wound Healing Research Laboratory, Division of Plastic Surgery, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- ICORD and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Sahand Ghaffari
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Ida Hassanpour
- Professional Fire Fighters' Burn and Wound Healing Research Laboratory, Division of Plastic Surgery, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Taesik Chae
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Reza Jalili
- Aspect Biosystems, Vancouver, BC V6P 6P2, Canada
| | - Ruhangiz Taghi Kilani
- Professional Fire Fighters' Burn and Wound Healing Research Laboratory, Division of Plastic Surgery, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Frank Ko
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Aziz Ghahary
- Professional Fire Fighters' Burn and Wound Healing Research Laboratory, Division of Plastic Surgery, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Dirk Lange
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
24
|
Liu WX, Wang J, Liu SY, Chen YP, Fang F, Yan P. Potential role of quorum quenching activity of silver nanoparticles in controlling non-filamentous bulking within activated sludge process. CHEMOSPHERE 2023:139324. [PMID: 37356593 DOI: 10.1016/j.chemosphere.2023.139324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
The effective prevention and control of non-filamentous bulking is a significant challenge. In this study, the underlying effect of quorum sensing (QS) on inducing non-filamentous bulking and the maintenance effect of silver nanoparticles (AgNPs) on sludge floc stability, aggregation and settleability based on the quorum quenching (QQ) activity during non-filamentous bulking were investigated. The results showed that the concentration of N-acyl homoserine lactone (AHL) increased significantly in the activated sludge system at a high organic load rate (OLR), triggering the AHL-mediated QS. Additionally, the triggered QS promoted exopolysaccharide secretion, reducing the surface charge and hydrophobicity of the sludge aggregates, and further deteriorating the settleability of the sludge aggregates. AgNPs, a quorum sensing inhibitor (QSI), inhibited the AHL-QS based on QQ activity under high OLR, which maintained the physicochemical properties of extracellular polymeric substances (EPS). AgNPs-QQ maintained the surface energy barrier and electrostatic barrier of sludge aggregates and the gel properties of exopolysaccharides, which is favorable for microbial aggregation. The appropriate concentrations of AgNPs (≤10 mg/L) had no negative effect on biological nutrient removal in the sequencing batch reactors (SBRs) at the high organic loading. Therefore, AgNPs effectively prevent and control non-filamentous bulking by their QQ activity in the activated sludge process. Thus, the present study provided new insights into controlling non-filamentous bulking during the activated sludge process.
Collapse
Affiliation(s)
- Wei-Xin Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Jing Wang
- Chongqing Jianzhu College, Chongqing, 400072, China
| | - Shao-Yang Liu
- Department of Chemistry and Physics, Troy University, Troy, AL, 36082, USA
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
25
|
Lu Q, Pan K, Liu J, Zhang T, Yang L, Yi X, Zhong G. Quorum sensing system effectively enhances DegU-mediated degradation of pyrethroids by Bacillus subtilis. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131586. [PMID: 37178530 DOI: 10.1016/j.jhazmat.2023.131586] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
The contamination of the natural environment is a growing concern that threatens all life forms, including microorganisms. Bacteria protect themselves by initiating quorum sensing (QS), a bacterial cell-cell communication, to generate adaptive responses to these pollutants. Bacillus subtilis has a typical QS ComQXPA system that regulates the phosphorylation of the transcription factor DegU (DegU-P), and thus can mediate the expression of various downstream genes under different stress conditions. Herein, we found that cesB, a gene of Bacillus subtilis 168, plays a key role in pyrethroid degradation, and cesB-mediated degradation could be enhanced by coordinating with the ComX communication system. Using β-cypermethrin (β-CP) as a paradigm, we demonstrated that DegU-P increased upon exposure to β-CP, thus facilitating β-CP degradation by binding to the upstream regulatory regions of cesB, leading to the activation of the expression of cesB. Further, we showed that the expression of different levels of phosphorylated DegU in a degU deletion strain resulted in varying degrees of β-CP degradation efficiency, with phosphorylated DegUH12L achieving 78.39% degradation efficiency on the first day, surpassing the 56.27% degradation efficiency in the wild type strain. Consequently, based on the conserved regulatory mechanism of ComQXPA system, we propose that DegU-P-dependent regulation serves as a conserved defense mechanism owing to its ability to fine-tune the expression of genes involved in the degradation of pollutants upon exposure to different pesticides.
Collapse
Affiliation(s)
- Qiqi Lu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Keqing Pan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jie Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Liying Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Yi
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
26
|
Younas M, Rasool MH, Khurshid M, Khan A, Nawaz MZ, Ahmad I, Lakhan MN. Moringa oleifera leaf extract mediated green synthesis of silver nanoparticles and their antibacterial effect against selected gram-negative strains. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Al-Momani H, Al Balawi D, Hamed S, Albiss BA, Almasri M, AlGhawrie H, Ibrahim L, Al Balawi H, Al Haj Mahmoud S, Pearson J, Ward C. The impact of biosynthesized ZnO nanoparticles from Olea europaea (Common Olive) on Pseudomonas aeruginosa growth and biofilm formation. Sci Rep 2023; 13:5096. [PMID: 36991258 PMCID: PMC10060419 DOI: 10.1038/s41598-023-32366-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
AbstractThere is a limitation in the range of effectual antibiotics due to the Pseudomonas aeruginosa (PA) infection due to its innate antimicrobial resistance. Researchers have therefore been concentrating their efforts to discover advanced and cost effective antibacterial agents among the ever-increasing PA bacterial resistance strains. It has been discovered that various nanoparticles can be employed as antimicrobial agents. Here, we evaluated the antibacterial properties of the Zinc Oxide nanoparticles (ZnO NPs), which was biosynthesized, being examined on six hospital strains of PA alongside a reference strain (ATCC 27853). A chemical approach was applied to biosynthesize the ZnO NPs from Olea europaea was performed, and confirmed by using X-ray diffraction and Scanning Electron Microscopes. The nanoparticles then applied their antibacterial properties to examine them against six clinically isolated PA strains alongside the reference strain. This process tested for the results of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The Growth, biofilm formation and eradication were analyzed. The influence of the differentiating degrees ZnO NPs in regard to Quorom sensing gene expression were further examined. The ZnO NPs exhibited a crystalline size and diameter (Dc) of 40–60 nm and both the MIC and MBC tests revealed positive outcomes of concentrations of 3 and 6 mg/ml for each PA strain, respectively. At sub inhibitory concentration, The ZnO NPs were found to significantly inhibit the growth and biofilm formation of all PA strains and decreases in the biomass and metabolic behavior of PA established biofilms; these decreases varied depending on the dosage. At ZnO NPs concentrations of 900 µg/ml, the expression of majority of quorum sensing genes of all strains were significantly reduced, at ZnO NPs concentrations of 300 µg/ml, few genes were significantly impacted. In conclusion, the treatment of PA and could be other antibiotic resistant bacteria can therefore be approached by using ZnO NPs as it has been uncovered that they withhold advanced antibacterial properties.
Collapse
|
28
|
Jeevitha Rani J, Mary Imelda Jayaseeli A, Sankarganesh M, Nandini Asha R. Bovine serum albumin interaction, molecular docking, anticancer and antimicrobial activities of Co(II) Schiff base complex derived from Nophen ligand. J Biomol Struct Dyn 2023; 41:1895-1903. [PMID: 35037822 DOI: 10.1080/07391102.2022.2026249] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this report, synthesis, characterization, biological and molecular modeling studies of Nophen Schiff base [N,N-bis(2-hydroxy-1-naphthaldehyde)-o-phenylenediamine] and Co(II)-Nophen complex have been furnished. BSA binding affinities of the ligand and Co(II)-Nophen complex have been appraised by UV-visible, fluorescence and cyclic voltammetric techniques. Spectroscopic measurements indicate strong binding of the complex with BSA protein through static quenching mechanism with binding constant in the order of 104 M-1. The negative shift of the peak potential in cyclic voltammetry suggested an electrostatic interaction. Molecular docking analysis reveals significant binding affinity (-6.3 kcal/mol) of the complex towards BSA protein. It is amazing that the in vitro cytotoxicity of Co(II)-Nophen complex against A549 cell lines (Human lung carcinoma cells) has remarkable potentials with 29 ± 1.2 µM as IC50 value. Comparing the biological activity towards microorganisms, Co(II)-Nophen complex show substantial response than the Nophen ligand.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- J Jeevitha Rani
- Post Graduate and Research Center of Chemistry, Jayaraj Annapackiam College for Women (Autonomous), Affiliated to Mother Teresa Women's University, Kodaikanal, Periyakulam, Theni, Tamil Nadu, India
| | - A Mary Imelda Jayaseeli
- Post Graduate and Research Center of Chemistry, Jayaraj Annapackiam College for Women (Autonomous), Affiliated to Mother Teresa Women's University, Kodaikanal, Periyakulam, Theni, Tamil Nadu, India
| | - M Sankarganesh
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - R Nandini Asha
- Department of Chemistry, Pope's College (Autonomous), Sawyerpuram, Thoothukudi, Tamil Nadu, India
| |
Collapse
|
29
|
Ghaffarlou M, İlk S, Rahimi H, Danafar H, Barsbay M, Sharafi A. Bovine serum albumin-mediated synthesis and quorum sensing inhibitory properties of Ag-Ag 2S nanoparticles. Nanomedicine (Lond) 2023; 17:2145-2155. [PMID: 36853339 DOI: 10.2217/nnm-2022-0203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Aim: Quorum sensing (QS) is a density-dependent chemical process of cell-to-cell communication in which certain signals are activated, leading to the coordination of pathogenic behaviors and the regulation of virulence in bacteria. Inhibition of QS can prevent biofilm formation and reduce virulence behaviors of bacteria. Herein, bovine serum albumin (BSA)-coated silver nanoparticles (NPs) (Ag-Ag2S@BSA NPs) were synthesized and studied as an anti-QS agent. Materials & methods: Ag-Ag2S NPs prepared through a BSA-mediated biomineralization process under ambient aqueous conditions and their physicochemical properties were characterized. The anti-QS activity of the resulting BSA-coated NPs (Ag-Ag2S@BSA NPs) was investigated for the first time. Results & conclusion: The result confirmed the potential of Ag-Ag2S@BSA NPs as novel and useful therapeutic tools for antibacterial purposes.
Collapse
Affiliation(s)
| | - Sedef İlk
- Faculty of Medicine, Department of Immunology, Niğde Ömer Halisdemir University, Niğde, 51240, Turkey.,School of Engineering Sciences in Chemistry, Biotechnology & Health, Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, Stockholm, SE-10691, Sweden
| | - Hossein Rahimi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Murat Barsbay
- Department of Chemistry, Hacettepe University, Beytepe, Ankara, 06800, Turkey
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| |
Collapse
|
30
|
Alavi M, Li L, Nokhodchi A. Metal, metal oxide and polymeric nanoformulations for the inhibition of bacterial quorum sensing. Drug Discov Today 2023; 28:103392. [PMID: 36208725 DOI: 10.1016/j.drudis.2022.103392] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/18/2022] [Accepted: 09/29/2022] [Indexed: 01/09/2023]
Abstract
Antibiotic resistance of bacteria has caused a significant public health challenge and economic problem, resulting in a necessity to find efficient antibacterial agents. Conventional bactericidal agents hinder the growth of bacteria by slowing down the cell wall synthesis or disturbing bacterial DNA replication, protein production or other bacterial cellular metabolism that can augment natural selection pressure for turning up new antibiotic-resistant strains. Virulence properties and biofilm formation of bacteria are orchestrated by quorum-sensing systems. These quorum-sensing systems normally control antimicrobial production; and targeting these systems using metal-based nanoparticles or polymeric nanoparticles can be considered as powerful antibacterial treatments owing to their specific physicochemical and therapeutic properties. In this review, recent advances and challenges related to the inactivation of quorum-sensing systems by these nanoparticles are presented to obtain comprehensive viewpoints for future studies.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran.
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK; Lupin Pharmaceuticals Research Center, Coral Springs, 4006 NW 124th Ave, Florida 33065, USA.
| |
Collapse
|
31
|
Potential and Metabolic Pathways of Eugenol in the Management of Xanthomonas perforans, a Pathogen of Bacterial Spot of Tomato. Int J Mol Sci 2022; 23:ijms232314648. [PMID: 36498976 PMCID: PMC9739100 DOI: 10.3390/ijms232314648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Bacterial spot of tomato continues to pose a significant problem to tomato production worldwide. In Florida, bacterial spot of tomato caused by Xanthomonas perforans is one of the most important diseases responsible for tomato yield loss. This disease is difficult to control, and new strategies are continually being investigated to combat the devastating effect of this disease. Recent efforts focusing on essential oils based on small molecules have spurred interests in the utilization of this class of chemicals for disease management. In this study, we evaluated the efficacy of eugenol for the management of bacterial spot of tomato caused by X. perforans. In the greenhouse experiments, eugenol applied as a foliar spray significantly (p < 0.5) reduced bacterial spot disease compared to the untreated control. In the field experiments, the area under the disease progress curve (AUDPC) was significantly (p < 0.5) lower in the plots treated with eugenol or eugenol combined with the surfactant Cohere than in the untreated control plots, and it was comparable to the copper-based treatments. To provide additional insights into the possible pathways of eugenol activities, we applied a liquid chromatography mass spectrometry (LC-MS)-based metabolomic study using a thermo Q-Exactive orbitrap mass spectrometer with Dionex ultra high-performance liquid chromatography (UHPLC) on X. perforans strain 91−118 treated with eugenol. Our results showed that eugenol affected metabolite production in multiple pathways critical to bacterial survival. For example, treatment of cells with eugenol resulted in the downregulation of the glutathione metabolism pathway and associated metabolites, except for 5-oxoproline, which accumulation is known to be toxic to living cells. While the peaks corresponding to the putatively identified sarmentosin showed the most significant impact and reduced in response to eugenol treatment, branched-chain amino acids, such as L-isoleucine, increased in production, suggesting that eugenol may not negatively affect the protein biosynthesis pathways. The results from our study demonstrated the efficacy of eugenol in the management of bacterial spot of tomato under greenhouse and field conditions and identified multiple pathways that are targeted.
Collapse
|
32
|
Tawre MS, Shiledar A, Satpute SK, Ahire K, Ghosh S, Pardesi K. Synergistic and antibiofilm potential of Curcuma aromatica derived silver nanoparticles in combination with antibiotics against multidrug-resistant pathogens. Front Chem 2022; 10:1029056. [PMID: 36438875 PMCID: PMC9682076 DOI: 10.3389/fchem.2022.1029056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/14/2022] [Indexed: 06/12/2024] Open
Abstract
Hospital acquired infections caused due to ESKAPE pathogens pose a challenge for treatment due to their growing antimicrobial resistance. Curcuma aromatica (CA) is traditionally known for its antibacterial, wound healing and anti-inflammatory properties. The present study highlights the biogenic synthesis of silver nanoparticles (CAAgNPs) capped and stabilized by the compounds from CA rhizome extract, also further demonstrating their antibacterial, antibiofilm and synergistic effects against multidrug-resistant (MDR) pathogens. CAAgNPs were synthesized using aqueous rhizome extract of CA (5 mg/ml) and AgNO3 (0.8 mM) incubated at 60°C up to 144 h. UV-vis spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) revealed CAAgNPs with characteristic peak at 430 nm, 13 ± 5 nm size of spherical shape, showing presence of silver and crystalline nature, respectively. Dynamic light scattering (DLS) and zeta potential confirmed their monodispersed nature with average diameter of 77.88 ± 48.60 nm and stability. Fourier transform infrared spectroscopic (FTIR) analysis demonstrated the presence of phenolic -OH and carbonyl groups possibly involved in the reduction and stabilization of CAAgNPs. The minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs) and minimum biofilm inhibitory concentrations (MBICs) of CAAgNPs against Pseudomonas aeruginosa, NCIM 5029 and PAW1, and, Staphylococcus aureus, NCIM 5021 and S8 were in range from 8 to 128 μg/ml. Almost 50% disruption of pre-formed biofilms at concentrations 8-1,024 μg/ml was observed. Fluorescence microscopy and FESEM analysis confirmed cell death and disruption of pre-formed biofilms of P. aeruginosa PAW1 and S. aureus S8. Checkerboard assay demonstrated the synergistic effect of CAAgNPs (0.125-4 μg/ml) in combination with various antibiotics (0.063-1,024 μg/ml) against planktonic and biofilm forms of P. aeruginosa PAW1. The study confirms the antibacterial and antibiofilm activity of CAAgNPs alone and in combination with antibiotics against MDR pathogens, thus, reducing the dose as well as toxicity of both. CAAgNPs have the potential to be used in wound dressings and ointments, and to improve the performances of medical devices and surgical implants. In vivo toxicity of CAAgNPs however needs to be tested further using mice models.
Collapse
Affiliation(s)
- Madhumita S. Tawre
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Aishwarya Shiledar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Surekha K. Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Kedar Ahire
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sougata Ghosh
- Department of Microbiology, School of Science, RK University, Rajkot, Gujarat, India
| | - Karishma Pardesi
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
33
|
Bhattacharjee G, Gohil J, Gohil N, Chaudhari H, Gangapuram B, Khambhati K, Maurya R, Alzahrani KJ, Ramakrishna S, Singh V. Biosynthesis and characterization of Serratia marcescens derived silver nanoparticles: Investigating its antibacterial, anti-biofilm potency and molecular docking analysis with biofilm-associated proteins. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Sangeet S, Pawar S, Nawani N, Junnarkar M, Gaikwad S. Computational approach to attenuate virulence of Pseudomonas aeruginosa through bioinspired silver nanoparticles. 3 Biotech 2022; 12:317. [PMID: 36276439 PMCID: PMC9547761 DOI: 10.1007/s13205-022-03367-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/17/2022] [Indexed: 11/24/2022] Open
Abstract
In this study we aim to investigate the computational docking approach of biofabricated silver nanoparticles against P. aeruginosa virulent exoenzymes, such as ExoS and ExoY. Therefore, the synthesis and characterization of biofabricated silver nanoparticles using Piper betle leaves (Pb-AgNPs) were carried out. The surface topology and functional group attachment on the surface of Pb-AgNPs were analyzed using UV-visible spectroscopy, Scanning Electron Microscopy, Fourier Transformed Infrared Spectroscopy (FTIR), and X-Ray Diffraction. The FTIR analysis revealed that the synthesized silver nanoparticles were capped with P. betle phytochemicals importantly Eugenol and Hydroxychavicol. These are the major bioactive compounds present in P. betle leaves; therefore, computational docking of Eugenol-conjugated AgNPs (PbEu-AgNPs) and Hydroxychavicol-conjugated AgNPs (PbHy-AgNPs) against ExoS and ExoY was performed. The active residues of PbEu-AgNPs and PbHy-AgNPs interacted with the active site of ExoS and ExoY exoenzymes. Biofabricated AgNP-mediated inhibition of these virulent exoenzymes blocked the adverse effect of P. aeruginosa on the host cell. The computational analysis provides new approach into the design of biofabricated AgNPs as promising anti-infective nanomedicine agents. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03367-0.
Collapse
Affiliation(s)
- Satyam Sangeet
- Microbial Diversity Research Center, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra India
- Present Address: Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246 India
| | - Sarika Pawar
- Microbial Diversity Research Center, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra India
| | - Neelu Nawani
- Microbial Diversity Research Center, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra India
| | - Manisha Junnarkar
- Microbial Diversity Research Center, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra India
| | - Swapnil Gaikwad
- Microbial Diversity Research Center, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra India
| |
Collapse
|
35
|
Garg D, Matai I, Agrawal S, Sachdev A. Hybrid gum tragacanth/sodium alginate hydrogel reinforced with silver nanotriangles for bacterial biofilm inhibition. BIOFOULING 2022; 38:965-983. [PMID: 36519335 DOI: 10.1080/08927014.2022.2156286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Biomaterial associated bacterial infections are indomitable to treatment due to the rise in antibiotic resistant strains, thereby triggering the need for new antibacterial agents. Herein, composite bactericidal hydrogels were formulated by incorporating silver nanotriangles (AgNTs) inside a hybrid polymer network of Gum Tragacanth/Sodium Alginate (GT/SA) hydrogels. Physico-chemical examination revealed robust mechanical strength, appreciable porosity and desirable in vitro enzymatic biodegradation of composite hydrogels. The antibacterial activity of AgNT-hydrogel was tested against planktonic and biofilm-forming Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. For all the strains, AgNT-hydrogel showed a dose-dependent decrease in bacterial growth. The addition of AgNT-hydrogels (40-80 mg ml-1) caused 87% inhibition of planktonic biomass and up to 74% reduction in biofilm formation. Overall, this study proposes a promising approach for designing antibacterial composite hydrogels to mitigate various forms of bacterial infection.
Collapse
Affiliation(s)
- Deepa Garg
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ishita Matai
- Department of Biotechnology, Amity University Punjab, Mohali, India
| | - Shruti Agrawal
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, India
| | - Abhay Sachdev
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
36
|
Wu K, Li H, Cui X, Feng R, Chen W, Jiang Y, Tang C, Wang Y, Wang Y, Shen X, Liu Y, Lynch M, Long H. Mutagenesis and Resistance Development of Bacteria Challenged by Silver Nanoparticles. Antimicrob Agents Chemother 2022; 66:e0062822. [PMID: 36094196 PMCID: PMC9578424 DOI: 10.1128/aac.00628-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022] Open
Abstract
Because of their extremely broad spectrum and strong biocidal power, nanoparticles of metals, especially silver (AgNPs), have been widely applied as effective antimicrobial agents against bacteria, fungi, and so on. However, the mutagenic effects of AgNPs and resistance mechanisms of target cells remain controversial. In this study, we discover that AgNPs do not speed up resistance mutation generation by accelerating genome-wide mutation rate of the target bacterium Escherichia coli. AgNPs-treated bacteria also show decreased expression in quorum sensing (QS), one of the major mechanisms leading to population-level drug resistance in microbes. Nonetheless, these nanomaterials are not immune to resistance development by bacteria. Gene expression analysis, experimental evolution in response to sublethal or bactericidal AgNPs treatments, and gene editing reveal that bacteria acquire resistance mainly through two-component regulatory systems, especially those involved in metal detoxification, osmoregulation, and energy metabolism. Although these findings imply low mutagenic risks of nanomaterial-based antimicrobial agents, they also highlight the capacity for bacteria to evolve resistance.
Collapse
Affiliation(s)
- Kun Wu
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Haichao Li
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Xiao Cui
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Ruobing Feng
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Weizhe Chen
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Yuchen Jiang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Chao Tang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Yan Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Xiaopeng Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yufei Liu
- Key Laboratory of Optoelectronic Technology & Systems, Chongqing University, Ministry of Education, Chongqing, China
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
37
|
Adu OT, Mohamed F, Naidoo Y, Adu TS, Chenia H, Dewir YH, Rihan H. Green Synthesis of Silver Nanoparticles from Diospyros villosa Extracts and Evaluation of Antioxidant, Antimicrobial and Anti-Quorum Sensing Potential. PLANTS 2022; 11:plants11192514. [PMID: 36235380 PMCID: PMC9573728 DOI: 10.3390/plants11192514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
The biosynthesis of silver nanoparticles (AgNPs) from Diospyros villosa leaves and stem bark extracts is described. The stem bark AgNPs of D. villosa synthesized at 80 °C (S80) showed good scavenging activity with a lower IC50 value of 8.75 µg·mL−1 compared to ascorbic acid (9.58 µg·mL−1). The total phenol content of the S80 AgNPs was measured and found to be 10.22 ± 0.14 mg.g−1 gallic acid equivalence (GAE). Bacterial growth inhibition (% GI) and violacein inhibition (% VI) of 10.08% and 58.83%, respectively, was observed against C.subtsugae CV017 with leaf AgNPs synthesized at 80 °C (L80) at 80 μg·mL−1. Stem bark AgNPs synthesized at room temperature (SRT) also indicated % GI of 13.83% and % VI of 65.97% against C. subtsugae CV017 at 160 μg·mL−1. Leaf AgNPs of D. villosa synthesized at room temperature (LRT), showed % GI of 29.07% and % VI of 56.53%, respectively, against C. violaceum ATCC 12472 at 320 μg·mL−1. The L80 and SRT at 160 μg·mL−1 and LRT at 320 μg·mL−1 may be considered as potential QS inhibitors following their activity against C. subtsugae CV017 and C. violaceum ATCC 12472, respectively. Therefore, D. villosa represents a potential source of antioxidants as well as an anti-quorum sensing therapeutic candidate for the control of Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Oluwatosin Temilade Adu
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4041, South Africa
| | - Farzana Mohamed
- Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4041, South Africa
| | - Yougasphree Naidoo
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4041, South Africa
| | - Temitope Samson Adu
- Department of Physiological Sciences, Obafemi Awolowo University, Ile Ife 220005, Nigeria
| | - Hafizah Chenia
- Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4041, South Africa
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Hail Rihan
- School of Biological Sciences, Faculty of Science and Environment, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
- Phytome Life Sciences, Launceston PL15 7AB, UK
| |
Collapse
|
38
|
Sun C, Wang X, Dai J, Ju Y. Metal and Metal Oxide Nanomaterials for Fighting Planktonic Bacteria and Biofilms: A Review Emphasizing on Mechanistic Aspects. Int J Mol Sci 2022; 23:11348. [PMID: 36232647 PMCID: PMC9569886 DOI: 10.3390/ijms231911348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The misuse and mismanagement of antibiotics have made the treatment of bacterial infections a challenge. This challenge is magnified when bacteria form biofilms, which can increase bacterial resistance up to 1000 times. It is desirable to develop anti-infective materials with antibacterial activity and no resistance to drugs. With the rapid development of nanotechnology, anti-infective strategies based on metal and metal oxide nanomaterials have been widely used in antibacterial and antibiofilm treatments. Here, this review expounds on the state-of-the-art applications of metal and metal oxide nanomaterials in bacterial infective diseases. A specific attention is given to the antibacterial mechanisms of metal and metal oxide nanomaterials, including disrupting cell membranes, damaging proteins, and nucleic acid. Moreover, a practical antibiofilm mechanism employing these metal and metal oxide nanomaterials is also introduced based on the composition of biofilm, including extracellular polymeric substance, quorum sensing, and bacteria. Finally, current challenges and future perspectives of metal and metal oxide nanomaterials in the anti-infective field are presented to facilitate their development and use.
Collapse
Affiliation(s)
- Caixia Sun
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaobai Wang
- Department of Materials Application Research, AVIC Manufacturing Technology Institute, Beijing 100024, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 211198, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Animal Bacteriology (Ministry of Agriculture), College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
39
|
Methoxyisoflavan derivative from Trigonella stellata inhibited quorum sensing and virulence factors of Pseudomonas aeruginosa. World J Microbiol Biotechnol 2022; 38:156. [PMID: 35798919 PMCID: PMC9262770 DOI: 10.1007/s11274-022-03337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
The number of deaths caused by multidrug-resistant Pseudomonas aeruginosa has risen in the recent decade. The development of quorum sensing inhibition (QSI) is a promising approach for controlling Pseudomonas infection. Therefore, this study mainly aimed to investigate how a plant-source material inhibits QSI to produce an antipathogenic effect for fighting microbial infections. The QSI effect of Trigonella stellata was assessed by using Chromobacterium violaceum ATCC 12472 reporter strain. Trigonella stellata exhibited high QSI activity, and an ethanolic extract of T. stellata was prepared for phytochemical isolation of the most active QSI compound. Nine pure compounds were isolated and identified as kaempferitrin (1), soyasaponin I (2), β-sitosterol-3-O-glucoside (3), dihydromelilotoside (4), astrasikokioside I (5), methyl dihydromelilotoside (6), (3R, 4S)-4, 2′, 4′-trihydroxy-7-methoxy-4′-O-β-d-glucopyranosylisoflavan (7), (3S, 4R)-4, 2′, 4′-trihydroxy-7-methoxyisoflavan (8, TMF), and (+)-d-pinitol (9). These compounds were screened against C. violaceum ATCC 12472, and TMF exhibited a potent QSI. The effect of TMF at sub-minimum inhibitory concentrations (MICs) was assessed against P. aeruginosa virulence factors, including biofilm, pyocyanin formation protease and hemolysin activity. TMF induced significant elimination of QS-associated virulence behavior. In addition, TMF at sub-MICs significantly reduced the relative expression of lasI, lasR, rhlI, and rhlR compared with that in untreated cells. Furthermore, molecular docking was performed to predict structural basis of the QSI activity of TMF. The study demonstrated the importance of T. stellata as a signal modulator and inhibitor of P. aeruginosa pathogenesis.
Collapse
|
40
|
Muthulakshmi L, Suganya K, Murugan M, Annaraj J, Duraipandiyan V, Al Farraj DA, Elshikh MS, Juliet A, Pasupuleti M, Arockiaraj J. Antibiofilm efficacy of novel biogenic silver nanoparticles from Terminalia catappa against food-borne Listeria monocytogenes ATCC 15,313 and mechanisms investigation in-vivo and in-vitro. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102083. [DOI: 10.1016/j.jksus.2022.102083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
|
41
|
Knocking down Pseudomonas aeruginosa virulence by oral hypoglycemic metformin nano emulsion. World J Microbiol Biotechnol 2022; 38:119. [PMID: 35644864 PMCID: PMC9148876 DOI: 10.1007/s11274-022-03302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
Abstract
Long-term antibiotic treatment results in the spread of multi-drug resistance in Pseudomonas aeruginosa that complicates treatment. Anti-virulence agents can be viewed as alternative options that cripple virulence factors of the bacteria to facilitate their elimination by the host immunity. The use of nanoparticles in the inhibition of P. aeruginosa virulence factors is a promising strategy. This study aims to study the effect of metformin (MET), metformin nano emulsions (MET-NEs), silver metformin nano emulsions (Ag-MET-NEs) and silver nanoparticles (AgNPs) on P. aeruginosa virulence factors’ expression. The phenotypic results showed that MET-NEs had the highest virulence inhibitory activity. However, concerning RT-PCR results, all tested agents significantly decreased the expression of quorum sensing regulatory genes of P. aeruginosa; lasR, lasI, pqsA, fliC, exoS and pslA, with Ag-MET-NEs being the most potent one, however, it failed to protect mice from P. aeruginosa pathogenesis. MET-NEs showed the highest protective activity against pseudomonal infection in vivo. Our findings support the promising use of nano formulations particularly Ag-MET-NEs as an alternative against multidrug resistant pseudomonal infections via inhibition of virulence factors and quorum sensing gene expression.
Collapse
|
42
|
Berini F, Orlandi V, Gornati R, Bernardini G, Marinelli F. Nanoantibiotics to fight multidrug resistant infections by Gram-positive bacteria: hope or reality? Biotechnol Adv 2022; 57:107948. [PMID: 35337933 DOI: 10.1016/j.biotechadv.2022.107948] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
Abstract
The spread of antimicrobial resistance in Gram-positive pathogens represents a threat to human health. To counteract the current lack of novel antibiotics, alternative antibacterial treatments have been increasingly investigated. This review covers the last decade's developments in using nanoparticles as carriers for the two classes of frontline antibiotics active on multidrug-resistant Gram-positive pathogens, i.e., glycopeptide antibiotics and daptomycin. Most of the reviewed papers deal with vancomycin nanoformulations, being teicoplanin- and daptomycin-carrying nanosystems much less investigated. Special attention is addressed to nanoantibiotics used for contrasting biofilm-associated infections. The status of the art related to nanoantibiotic toxicity is critically reviewed.
Collapse
Affiliation(s)
- Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Viviana Orlandi
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
43
|
Ranjani S, Parthasarathy P, Rameshkumar P, Hemalatha S. Myrobalan-Mediated Nanocolloids in Controlling Marine Pathogens. Appl Biochem Biotechnol 2022; 194:1120-1135. [PMID: 35037167 DOI: 10.1007/s12010-022-03816-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 11/25/2022]
Abstract
Aquaculture production is affected by disease outbreak, which affects the production, profitability, and sustainability of the global aquaculture industry. Antibiotics have been widely used to control various infectious diseases. Indiscriminate usage of antibiotics results in development of antibiotic resistance in pathogens. This current study aims to synthesize myrobalan-mediated green silver nanocolloids (MBNc) by using the extract of three myrobalans and characterized by using various physiochemical techniques. Antibacterial potential of MBNc was screened in vibriosis causing pathogens (V. harveyi, V. alginolyticus, V. Parahaemolyticus), and foodborne pathogen S. haemolyticus, isolated from infected fish. Further, the presence of ESBL genes including CTX-M-15 and Amp C was analyzed in control and MBNc-treated strains. From our studies, it was observed that MBNc was very effective in controlling the growth. MBNc confirmed the anti-biofilm property in all tested marine pathogens and effectively abolish the genes encoding CTX-M-15 in tested pathogens. Thus, MBNc can be formulated to control the growth of marine pathogens and it can be used as an alternative to antibiotics to prevent infection in cage culturing and aquafarming.
Collapse
Affiliation(s)
- S Ranjani
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India
| | - Pradeep Parthasarathy
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India
| | - P Rameshkumar
- Central Marine Fisheries Research Institute, Mandapam, India
| | - S Hemalatha
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India.
| |
Collapse
|
44
|
Lokhande KB, Pawar SV, Madkaiker S, Nawani N, Venkateswara SK, Ghosh P. High throughput virtual screening and molecular dynamics simulation analysis of phytomolecules against BfmR of Acinetobacter baumannii: anti-virulent drug development campaign. J Biomol Struct Dyn 2022; 41:2698-2712. [PMID: 35156902 DOI: 10.1080/07391102.2022.2038271] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acinetobacter baumannii is a notorious multidrug resistant bacterium responsible for several hospital acquired infections assisted by its capacity to develop biofilms. A. baumannii BfmR (RstA), a response regulator from the BfmR/S two-component signal transduction system, is the major controller of A. baumannii biofilm development and formation. As a result, BfmR represents a novel target for anti-biofilm treatment against A. baumannii. The discovery of the high-resolution crystal structure of BfmR provides a good chance for computational screening of its probable inhibitors. Therefore, in this study we aim to search new, less toxic, and natural BfmR inhibitors from 8450 phytomolecules available in the Indian Medicinal Plants, Phytochemistry and Therapeutic (IMPPAT) database by analyzing molecular docking against BfmR (PDB ID: 6BR7). Out of these 8450 phytomolecules 6742 molecules were successfully docked with BfmR with the docking score range -6.305 kcal/mol to +5.120 kcal/mol. Structure based-molecular docking (SB-MD) and ADMET (absorption, distribution, metabolism, excretion, & toxicity) profile examination revealed that Norepinephrine, Australine, Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline phytocompounds strongly binds to the active site residues of BfmR. Furthermore, molecular dynamics simulation (MDS) studies for 100 ns and the binding free energy (MM/GBSA) analysis elucidated the binding mechanism of Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline to BfmR. In summary, these phytocompounds seems to have the promising molecules against BfmR, and thus necessitates further verification by both in vitro and in vivo experiments. HighlightsBfmR plays a key role in biofilm development and exopolysaccharide (EPS) synthesis in A. baumannii.Computational approach to search for promising BfmR inhibitors from IMPAAT database.The lead phytomolecules such as Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline displayed significant binding with BfmR active site.The outcome of BfmR binding phytomolecules has broadened the scope of hit molecules validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kiran Bharat Lokhande
- Dr. D. Y. Patil Vidyapeeth, Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Sarika Vishnu Pawar
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Smriti Madkaiker
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Neelu Nawani
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Swamy K Venkateswara
- Bioinformatics Research Group, MIT School of Bioengineering Sciences & Research, MIT-ADT University, Pune, Maharashtra, India
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
45
|
Current Knowledge on the Oxidative-Stress-Mediated Antimicrobial Properties of Metal-Based Nanoparticles. Microorganisms 2022; 10:microorganisms10020437. [PMID: 35208891 PMCID: PMC8877623 DOI: 10.3390/microorganisms10020437] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/30/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) bacteria in recent years has been alarming and represents a major public health problem. The development of effective antimicrobial agents remains a key challenge. Nanotechnologies have provided opportunities for the use of nanomaterials as components in the development of antibacterial agents. Indeed, metal-based nanoparticles (NPs) show an effective role in targeting and killing bacteria via different mechanisms, such as attraction to the bacterial surface, destabilization of the bacterial cell wall and membrane, and the induction of a toxic mechanism mediated by a burst of oxidative stress (e.g., the production of reactive oxygen species (ROS)). Considering the lack of new antimicrobial drugs with novel mechanisms of action, the induction of oxidative stress represents a valuable and powerful antimicrobial strategy to fight MDR bacteria. Consequently, it is of particular interest to determine and precisely characterize whether NPs are able to induce oxidative stress in such bacteria. This highlights the particular interest that NPs represent for the development of future antibacterial drugs. Therefore, this review aims to provide an update on the latest advances in research focusing on the study and characterization of the induction of oxidative-stress-mediated antimicrobial mechanisms by metal-based NPs.
Collapse
|
46
|
Ghaffarlou M, İlk S, Hammamchi H, Kıraç F, Okan M, Güven O, Barsbay M. Green and Facile Synthesis of Pullulan-Stabilized Silver and Gold Nanoparticles for the Inhibition of Quorum Sensing. ACS APPLIED BIO MATERIALS 2022; 5:517-527. [PMID: 35113519 PMCID: PMC8895461 DOI: 10.1021/acsabm.1c00964] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Pullulan (Pull) decorated with monodisperse
Ag and Au nanoparticles
(NPs) was synthesized by a simple and green method. Samples were characterized
by FTIR, UV–vis, NMR, XRD, TGA, SEM, XPS, DLS, and TEM. SEM
images showed highly oriented microforms reported for the first time
for Pull, because of the supramolecular self-assembling behavior of
Pull chains. Antimicrobial and quorum sensing (QS) inhibition activities
were tested against six pathogen bacteria and reporter and biomonitor
strain. Pull decorated with NPs, in particular, Ag-modified ones,
outperformed pristine Pull. The cell proliferation was tested with
an MTT assay. NPs-decorated Pull was studied for the first time as
an inhibitory agent against bacterial signal molecules and found to
be a good candidate. The promising performance of AgNPs@Pull compared
to the commercial antibiotic gentamicin showed that it has great potential
as a therapeutic approach to overcome the bacterial resistance that
has developed against conventional antibiotics.
Collapse
Affiliation(s)
| | - Sedef İlk
- Faculty of Medicine, Department of Immunology, Niǧde Ömer Halisdemir University, Niǧde 51240, Turkey.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, Stockholm SE-10691, Sweden
| | - Hamideh Hammamchi
- Department of Biology, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Feyza Kıraç
- Department of Chemistry, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Meltem Okan
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Olgun Güven
- Department of Chemistry, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Murat Barsbay
- Department of Chemistry, Hacettepe University, Beytepe, Ankara 06800, Turkey
| |
Collapse
|
47
|
Dalal A, Kushwaha T, Choudhir G, Inampudi KK, Karmakar T, Hariprasad P, Gholap SL. Computational investigations on the potential role of hygrophorones as quorum sensing inhibitors against LasR protein of Pseudomonas aeruginosa. J Biomol Struct Dyn 2022; 41:2249-2259. [PMID: 35075974 DOI: 10.1080/07391102.2022.2029570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa is a gram negative, rod shape bacterium that infects people with compromised immune systems, such as those suffering from AIDS, organ transplantation and cancer. This bacterium is responsible for diseases like cystic fibrosis, chronic lung infection, and ulcerative keratitis. It is diagnosed in most of the patients who were on prolonged ventilation with long term critical care stay. P. aeruginosa develops rapid antimicrobial resistance that is challenging for the treatment and eventually it causes high mortality rate. Thus, the search for potential novel inhibitors that can inhibit the pathogenic activity of P. aeruginosa is of utmost importance. In P. aeruginosa, an important protein, LasR that participates in the gene regulations and expressions has been proposed to be a suitable drug target. Here, we identify a set of hygrophorone molecules as effective inhibitors for this LasR protein based on molecular docking and simulations studies. At first, large number of hygrophorone series of small molecules were screened against the LasR protein and their binding affinities were assessed based on the docking scores. Top scored molecules were selected for calculating various pharmacophore properties, and finally, their potential in inhibiting the LasR protein was delineated by atomistic molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area-based calculations. Both docking and simulations studies reveal that a subset of hygrophorone molecules have a good binding affinity for LasR protein and form stable LasR-inhibitor complexes. The present study illustrates that the hygrophorones can be effective inhibitors for the LasR protein and will spur further in vitro studies that would aid to the ongoing search for new antibiotics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anu Dalal
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Tushar Kushwaha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Gourav Choudhir
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Krishna K Inampudi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - P Hariprasad
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Shivajirao L Gholap
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
48
|
Korzekwa K, Kędziora A, Stańczykiewicz B, Bugla-Płoskońska G, Wojnicz D. Benefits of Usage of Immobilized Silver Nanoparticles as Pseudomonas aeruginosa Antibiofilm Factors. Int J Mol Sci 2021; 23:284. [PMID: 35008720 PMCID: PMC8745484 DOI: 10.3390/ijms23010284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to assess the beneficial inhibitory effect of silver nanoparticles immobilized on SiO2 or TiO2 on biofilm formation by Pseudomonas aeruginosa-one of the most dangerous pathogens isolated from urine and bronchoalveolar lavage fluid of patients hospitalized in intensive care units. Pure and silver doped nanoparticles of SiO2 and TiO2 were prepared using a novel modified sol-gel method. Ten clinical strains of P. aeruginosa and the reference PAO1 strain were used. The minimal inhibitory concentration (MIC) was determined by the broth microdilution method. The minimal biofilm inhibitory concentration (MBIC) and biofilm formation were assessed by colorimetric assay. Bacterial enumeration was used to assess the viability of bacteria in the biofilm. Silver nanoparticles immobilized on the SiO2 and TiO2 indicated high antibacterial efficacy against P. aeruginosa planktonic and biofilm cultures. TiO2/Ag0 showed a better bactericidal effect than SiO2/Ag0. Our results indicate that the inorganic compounds (SiO2, TiO2) after nanotechnological modification may be successfully used as antibacterial agents against multidrug-resistant P. aeruginosa strains.
Collapse
Affiliation(s)
- Kamila Korzekwa
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, 50-137 Wroclaw, Poland; (A.K.); (G.B.-P.)
| | - Anna Kędziora
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, 50-137 Wroclaw, Poland; (A.K.); (G.B.-P.)
| | | | - Gabriela Bugla-Płoskońska
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, 50-137 Wroclaw, Poland; (A.K.); (G.B.-P.)
| | - Dorota Wojnicz
- Department of Biology and Medical Parasitology, Wroclaw Medical University, 50-345 Wroclaw, Poland
| |
Collapse
|
49
|
Das P, Ghosh S, Nayak B. Phyto-fabricated Nanoparticles and Their Anti-biofilm Activity: Progress and Current Status. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.739286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biofilm is the self-synthesized, mucus-like extracellular polymeric matrix that acts as a key virulence factor in various pathogenic microorganisms, thereby posing a serious threat to human health. It has been estimated that around 80% of hospital-acquired infections are associated with biofilms which are found to be present on both biotic and abiotic surfaces. Antibiotics, the current mainstream treatment strategy for biofilms are often found to be futile in the eradication of these complex structures, and to date, there is no effective therapeutic strategy established against biofilm infections. In this regard, nanotechnology can provide a potential platform for the alleviation of this problem owing to its unique size-dependent properties. Accordingly, various novel strategies are being developed for the synthesis of different types of nanoparticles. Bio-nanotechnology is a division of nanotechnology which is gaining significant attention due to its ability to synthesize nanoparticles of various compositions and sizes using biotic sources. It utilizes the rich biodiversity of various biological components which are biocompatible for the synthesis of nanoparticles. Additionally, the biogenic nanoparticles are eco-friendly, cost-effective, and relatively less toxic when compared to chemically or physically synthesized alternatives. Biogenic synthesis of nanoparticles is a bottom-top methodology in which the nanoparticles are formed due to the presence of biological components (plant extract and microbial enzymes) which act as stabilizing and reducing agents. These biosynthesized nanoparticles exhibit anti-biofilm activity via various mechanisms such as ROS production, inhibiting quorum sensing, inhibiting EPS production, etc. This review will provide an insight into the application of various biogenic sources for nanoparticle synthesis. Furthermore, we have highlighted the potential of phytosynthesized nanoparticles as a promising antibiofilm agent as well as elucidated their antibacterial and antibiofilm mechanism.
Collapse
|
50
|
Kamli MR, Malik MA, Srivastava V, Sabir JSM, Mattar EH, Ahmad A. Biogenic ZnO Nanoparticles Synthesized from Origanum vulgare Abrogates Quorum Sensing and Biofilm Formation in Opportunistic Pathogen Chromobacterium violaceum. Pharmaceutics 2021; 13:1743. [PMID: 34834158 PMCID: PMC8625425 DOI: 10.3390/pharmaceutics13111743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/23/2022] Open
Abstract
This study presents an inexpensive, eco-friendly, and simple green synthesis of ZnO nanoparticles using Origanum vulgare extract. These nanoparticles are non-hazardous, environmentally friendly, and cheaper than other methods of biosynthesis. Ongoing research determines the role of phytochemicals in the fabrication and biosynthesis of ZnO NPs and their role in antibacterial activity and biomedical applications. Characterizations by fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV-visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) determine the successful biosynthesis of ZnO NPs. Meanwhile, TEM and X-ray diffraction studies approximated the spherical morphology and crystalline nature of biosynthesized ZnO NPs of nano size in the range of 20-30 nm. The global increase in drug resistance necessitates the search for new drugs with different mechanisms of action. Quorum sensing (QS), a cell-to-cell communication, has gained attention as an emerging drug target. It controls numerous biochemical processes in bacteria, which are essential for their survival and pathogenicity. The potential of nanomedicines has also been tested to synthesize new antibiotics to tackle drug resistance. ZnO NPs were explored for their antibacterial, antiquorum sensing, and antibiofilm activities with a bioreporter strain of Chromobacterium violaceum. Susceptibility testing results indicated the potential antibacterial activity of ZnO NPs with a minimum inhibitory concentration (MIC) of 4 µg/mL and minimum bactericidal concentration (MBC) of 16 µg/mL. Antiquorum-sensing assays revealed that these nanoparticles inhibit quorum sensing with minimum antiquorum sensing activity (MQSIC) of 1 µg/mL, without causing any bacterial growth inhibition. In addition, ZnO NPs inhibit biofilm formation at inhibitory and higher concentrations. RT-qPCR results supported the downregulation of the quorum sensing genes when C. violaceum was treated with ZnO NPs. The outcomes of this study are promising with regard to the biofilm and quorum sensing, emphasizing the potential applications of ZnO NPs against bacterial communication and biofilm formation.
Collapse
Affiliation(s)
- Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (J.S.M.S.); (E.H.M.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maqsood Ahmad Malik
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vartika Srivastava
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (V.S.); (A.A.)
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (J.S.M.S.); (E.H.M.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ehab H. Mattar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (J.S.M.S.); (E.H.M.)
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (V.S.); (A.A.)
- Infection Control Unit, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| |
Collapse
|