1
|
Tzeng YL, Sannigrahi S, Borrow R, Stephens DS. Neisseria gonorrhoeae lipooligosaccharide glycan epitopes recognized by bactericidal IgG antibodies elicited by the meningococcal group B-directed vaccine, MenB-4C. Front Immunol 2024; 15:1350344. [PMID: 38440731 PMCID: PMC10909805 DOI: 10.3389/fimmu.2024.1350344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Outer membrane vesicles (OMVs) of Neisseria meningitidis in the group B-directed vaccine MenB-4C (BexseroR) protect against infections with Neisseria gonorrhoeae. The immunological basis for protection remains unclear. N. meningitidis OMV vaccines generate human antibodies to N. meningitidis and N. gonorrhoeae lipooligosaccharide (LOS/endotoxin), but the structural specificity of these LOS antibodies is not defined. Methods Ten paired human sera obtained pre- and post-MenB-4C immunization were used in Western blots to probe N. meningitidis and N. gonorrhoeae LOS. Post-MenB-4C sera (7v5, 19v5, and 17v5), representing individual human variability in LOS recognition, were then used to interrogate structurally defined LOSs of N. meningitidis and N. gonorrhoeae strains and mutants and studied in bactericidal assays. Results and discussion Post-MenB-4C sera recognized both N. meningitidis and N. gonorrhoeae LOS species, ~10% of total IgG to gonococcal OMV antigens. N. meningitidis and N. gonorrhoeae LOSs were broadly recognized by post-IgG antibodies, but with individual variability for LOS structures. Deep truncation of LOS, specifically a rfaK mutant without α-, β-, or γ-chain glycosylation, eliminated LOS recognition by all post-vaccine sera. Serum 7v5 IgG antibodies recognized the unsialyated L1 α-chain, and a 3-PEA-HepII or 6-PEA-HepII was part of the conformational epitope. Replacing the 3-PEA on HepII with a 3-Glc blocked 7v5 IgG antibody recognition of N. meningitidis and N. gonorrhoeae LOSs. Serum 19v5 recognized lactoneotetrose (LNT) or L1 LOS-expressing N. meningitidis or N. gonorrhoeae with a minimal α-chain structure of Gal-Glc-HepI (L8), a 3-PEA-HepII or 6-PEA-HepII was again part of the conformational epitope and a 3-Glc-HepII blocked 19v5 antibody binding. Serum 17v5 LOS antibodies recognized LNT or L1 α-chains with a minimal HepI structure of three sugars and no requirement for HepII modifications. These LOS antibodies contributed to the serum bactericidal activity against N. gonorrhoeae. The MenB-4C vaccination elicits bactericidal IgG antibodies to N. gonorrhoeae conformational epitopes involving HepI and HepII glycosylated LOS structures shared between N. meningitidis and N. gonorrhoeae. LOS structures should be considered in next-generation gonococcal vaccine design.
Collapse
Affiliation(s)
- Yih-Ling Tzeng
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Soma Sannigrahi
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, United Kingdom
| | - David S. Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
2
|
Abstract
Gram-negative bacteria are intrinsically resistant to many antibiotics, due in large part to the permeability barrier formed by their cell envelope. The complex and synergistic interplay of the two Gram-negative membranes and active efflux prevents the accumulation of a diverse range of compounds that are effective against Gram-positive bacteria. A lack of detailed information on how components of the cell envelope contribute to this has been identified as a key barrier to the rational development of new antibiotics with efficacy against Gram-negative species. This review describes the current understanding of the role of the different components of the Gram-negative cell envelope in preventing compound accumulation and the state of efforts to describe properties that allow compounds to overcome this barrier and apply them to the development of new broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Claire Maher
- College of Engineering, Science and Environment, University of Newcastle, Newcastle, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Karl A. Hassan
- College of Engineering, Science and Environment, University of Newcastle, Newcastle, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
3
|
Hong Y, Hu D, Verderosa AD, Qin J, Totsika M, Reeves PR. Repeat-Unit Elongations To Produce Bacterial Complex Long Polysaccharide Chains, an O-Antigen Perspective. EcoSal Plus 2023; 11:eesp00202022. [PMID: 36622162 PMCID: PMC10729934 DOI: 10.1128/ecosalplus.esp-0020-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/02/2022] [Indexed: 01/10/2023]
Abstract
The O-antigen, a long polysaccharide that constitutes the distal part of the outer membrane-anchored lipopolysaccharide, is one of the critical components in the protective outer membrane of Gram-negative bacteria. Most species produce one of the structurally diverse O-antigens, with nearly all the polysaccharide components having complex structures made by the Wzx/Wzy pathway. This pathway produces repeat-units of mostly 3-8 sugars on the cytosolic face of the cytoplasmic membrane that is translocated by Wzx flippase to the periplasmic face and polymerized by Wzy polymerase to give long-chain polysaccharides. The Wzy polymerase is a highly diverse integral membrane protein typically containing 10-14 transmembrane segments. Biochemical evidence confirmed that Wzy polymerase is the sole driver of polymerization, and recent progress also began to demystify its interacting partner, Wzz, shedding some light to speculate how the proteins may operate together during polysaccharide biogenesis. However, our knowledge of how the highly variable Wzy proteins work as part of the O-antigen processing machinery remains poor. Here, we discuss the progress to the current understanding of repeat-unit polymerization and propose an updated model to explain the formation of additional short chain O-antigen polymers found in the lipopolysaccharide of diverse Gram-negative species and their importance in the biosynthetic process.
Collapse
Affiliation(s)
- Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Dalong Hu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Anthony D. Verderosa
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Peter R. Reeves
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
4
|
Brusletto BS, Hellerud BC, Øvstebø R, Brandtzaeg P. Neisseria meningitidis accumulate in large organs during meningococcal sepsis. Front Cell Infect Microbiol 2023; 13:1298360. [PMID: 38089821 PMCID: PMC10713808 DOI: 10.3389/fcimb.2023.1298360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Background Neisseria meningitidis (Nm) is the cause of epidemic meningitis and fulminant meningococcal septicemia. The clinical presentations and outcome of meningococcal septic shock is closely related to the circulating levels of lipopolysaccharides (LPS) and of Neisseria meningitidis DNA (Nm DNA). We have previously explored the distribution of Nm DNA in tissues from large organs of patients dying of meningococcal septic shock and in a porcine meningococcal septic shock model. Objective 1) To explore the feasibility of measuring LPS levels in tissues from the large organs in patients with meningococcal septic shock and in a porcine meningococcal septic shock model. 2) To evaluate the extent of contamination of non-specific LPS during the preparation of tissue samples. Patients and methods Plasma, serum, and fresh frozen (FF) tissue samples from the large organs of three patients with lethal meningococcal septic shock and two patients with lethal pneumococcal disease. Samples from a porcine meningococcal septic shock model were included. Frozen tissue samples were thawed, homogenized, and prepared for quantification of LPS by Pyrochrome® Limulus Amoebocyte Lysate (LAL) assay. Results N. meningitidis DNA and LPS was detected in FF tissue samples from large organs in all patients with meningococcal septic shock. The lungs are the organs with the highest LPS and Nm DNA concentration followed by the heart in two of the three meningococcal shock patients. Nm DNA was not detected in any plasma or tissue sample from patients with lethal pneumococcal infection. LPS was detected at a low level in all FF tissues from the two patients with lethal pneumococcal disease. The experimental porcine meningococcal septic shock model indicates that also in porcinis the highest LPS and Nm DNA concentration are detected in lungs tissue samples. The quantification analysis showed that the highest concentration of both Nm DNA and LPS are in the organs and not in the circulation of patients with lethal meningococcal septic shock. This was also shown in the experimental porcine meningococcal septic shock model. Conclusion Our results suggest that LPS can be quantified in mammalian tissues by using the LAL assay.
Collapse
Affiliation(s)
| | | | - Reidun Øvstebø
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Petter Brandtzaeg
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Pediatrics, Oslo University Hospital, Nydalen, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Chiu CY, Chang KC, Chang LC, Wang CJ, Chung WH, Hsieh WP, Su SC. Phenotype-specific signatures of systems-level gut microbiome associated with childhood airway allergies. Pediatr Allergy Immunol 2023; 34:e13905. [PMID: 36705037 DOI: 10.1111/pai.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Perturbation of gut symbiosis has been linked to childhood allergic diseases. However, the underlying host-microbe interaction connected with specific phenotypes is poorly understood. METHODS To address this, integrative analyses of stool metagenomic and metabolomic profiles associated with IgE reactions in 56 children with mite-sensitized airway allergies (25 with rhinitis and 31 with asthma) and 28 nonallergic healthy controls were conducted. RESULTS We noted a decrease in the number and abundance of gut microbiome-encoded carbohydrate-active enzyme (CAZyme) genes, accompanied with a reduction in species richness, in the asthmatic gut microflora but not in that from allergic rhinitis. Such loss of CAZymes was consistent with the observation that a CAZyme-linked decrease in fecal butyrate was found in asthmatics and negatively correlated with mite-specific IgE responses. Different from the CAZymes, we demonstrated an increase in α diversity at the virulome levels in asthmatic gut microbiota and identified phenotype-specific variations of gut virulome. Moreover, use of fecal metagenomic and metabolomic signatures resulted in distinct effects on differentiating rhinitis and asthma from nonallergic healthy controls. CONCLUSION Overall, our integrative analyses reveal several signatures of systems-level gut microbiome in robust associations with fecal metabolites and disease phenotypes, which may be of etiological and diagnostic implications in childhood airway allergies.
Collapse
Affiliation(s)
- Chih-Yung Chiu
- Division of Pediatric Pulmonology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ko-Chun Chang
- Institute of Statistics, National Tsing-Hua University, Hsinchu, Taiwan
| | - Lun-Ching Chang
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, USA
| | - Chia-Jung Wang
- Division of Pediatric Pulmonology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Wen-Hung Chung
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Wen-Ping Hsieh
- Institute of Statistics, National Tsing-Hua University, Hsinchu, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| |
Collapse
|
6
|
Pearson C, Tindall S, Potts JR, Thomas GH, van der Woude MW. Diverse functions for acyltransferase-3 proteins in the modification of bacterial cell surfaces. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001146. [PMID: 35253642 PMCID: PMC9558356 DOI: 10.1099/mic.0.001146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/21/2022] [Indexed: 12/27/2022]
Abstract
The acylation of sugars, most commonly via acetylation, is a widely used mechanism in bacteria that uses a simple chemical modification to confer useful traits. For structures like lipopolysaccharide, capsule and peptidoglycan, that function outside of the cytoplasm, their acylation during export or post-synthesis requires transport of an activated acyl group across the membrane. In bacteria this function is most commonly linked to a family of integral membrane proteins - acyltransferase-3 (AT3). Numerous studies examining production of diverse extracytoplasmic sugar-containing structures have identified roles for these proteins in O-acylation. Many of the phenotypes conferred by the action of AT3 proteins influence host colonisation and environmental survival, as well as controlling the properties of biotechnologically important polysaccharides and the modification of antibiotics and antitumour drugs by Actinobacteria. Herein we present the first systematic review, to our knowledge, of the functions of bacterial AT3 proteins, revealing an important protein family involved in a plethora of systems of importance to bacterial function that is still relatively poorly understood at the mechanistic level. By defining and comparing this set of functions we draw out common themes in the structure and mechanism of this fascinating family of membrane-bound enzymes, which, due to their role in host colonisation in many pathogens, could offer novel targets for the development of antimicrobials.
Collapse
Affiliation(s)
| | - Sarah Tindall
- Department of Biology, University of York, Heslington, UK
| | | | - Gavin H. Thomas
- Department of Biology, University of York, Heslington, UK
- York Biomedical Institute, University of York, Heslington, UK
| | - Marjan W. van der Woude
- York Biomedical Institute, University of York, Heslington, UK
- Hull York Medical School, Heslington, UK
| |
Collapse
|
7
|
Mullally CA, Mikucki A, Wise MJ, Kahler CM. Modelling evolutionary pathways for commensalism and hypervirulence in Neisseria meningitidis. Microb Genom 2021; 7. [PMID: 34704920 PMCID: PMC8627216 DOI: 10.1099/mgen.0.000662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neisseria meningitidis, the meningococcus, resides exclusively in humans and causes invasive meningococcal disease (IMD). The population of N. meningitidis is structured into stable clonal complexes by limited horizontal recombination in this naturally transformable species. N. meningitidis is an opportunistic pathogen, with some clonal complexes, such as cc53, effectively acting as commensal colonizers, while other genetic lineages, such as cc11, are rarely colonizers but are over-represented in IMD and are termed hypervirulent. This study examined theoretical evolutionary pathways for pathogenic and commensal lineages by examining the prevalence of horizontally acquired genomic islands (GIs) and loss-of-function (LOF) mutations. Using a collection of 4850 genomes from the BIGSdb database, we identified 82 GIs in the pan-genome of 11 lineages (10 hypervirulent and one commensal lineage). A new computational tool, Phaser, was used to identify frameshift mutations, which were examined for statistically significant association with genetic lineage. Phaser identified a total of 144 frameshift loci of which 105 were shown to have a statistically significant non-random distribution in phase status. The 82 GIs, but not the LOF loci, were associated with genetic lineage and invasiveness using the disease carriage ratio metric. These observations have been integrated into a new model that infers the early events of the evolution of the human adapted meningococcus. These pathways are enriched for GIs that are involved in modulating attachment to the host, growth rate, iron uptake and toxin expression which are proposed to increase competition within the meningococcal population for the limited environmental niche of the human nasopharynx. We surmise that competition for the host mucosal surface with the nasopharyngeal microbiome has led to the selection of isolates with traits that enable access to cell types (non-phagocytic and phagocytic) in the submucosal tissues leading to an increased risk for IMD.
Collapse
Affiliation(s)
- Christopher A. Mullally
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - August Mikucki
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Michael J. Wise
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, Australia
| | - Charlene M. Kahler
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth Children’s Hospital, Perth, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
8
|
Guest RL, Rutherford ST, Silhavy TJ. Border Control: Regulating LPS Biogenesis. Trends Microbiol 2021; 29:334-345. [PMID: 33036869 PMCID: PMC7969359 DOI: 10.1016/j.tim.2020.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
The outer membrane (OM) is a defining feature of Gram-negative bacteria that serves as a permeability barrier and provides rigidity to the cell. Critical to OM function is establishing and maintaining an asymmetrical bilayer structure with phospholipids in the inner leaflet and the complex glycolipid lipopolysaccharide (LPS) in the outer leaflet. Cells ensure this asymmetry by regulating the biogenesis of lipid A, the conserved and essential anchor of LPS. Here we review the consequences of disrupting the regulatory components that control lipid A biogenesis, focusing on the rate-limiting step performed by LpxC. Dissection of these processes provides critical insights into bacterial physiology and potential new targets for antibiotics able to overcome rapidly spreading resistance mechanisms.
Collapse
Affiliation(s)
- Randi L Guest
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
9
|
The serogroup B meningococcal outer membrane vesicle-based vaccine 4CMenB induces cross-species protection against Neisseria gonorrhoeae. PLoS Pathog 2020; 16:e1008602. [PMID: 33290434 PMCID: PMC7748408 DOI: 10.1371/journal.ppat.1008602] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/18/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
There is a pressing need for a gonorrhea vaccine due to the high disease burden associated with gonococcal infections globally and the rapid evolution of antibiotic resistance in Neisseria gonorrhoeae (Ng). Current gonorrhea vaccine research is in the stages of antigen discovery and the identification of protective immune responses, and no vaccine has been tested in clinical trials in over 30 years. Recently, however, it was reported in a retrospective case-control study that vaccination of humans with a serogroup B Neisseria meningitidis (Nm) outer membrane vesicle (OMV) vaccine (MeNZB) was associated with reduced rates of gonorrhea. Here we directly tested the hypothesis that Nm OMVs induce cross-protection against gonorrhea in a well-characterized female mouse model of Ng genital tract infection. We found that immunization with the licensed Nm OMV-based vaccine 4CMenB (Bexsero) significantly accelerated clearance and reduced the Ng bacterial burden compared to administration of alum or PBS. Serum IgG and vaginal IgA and IgG that cross-reacted with Ng OMVs were induced by 4CMenB vaccination by either the subcutaneous or intraperitoneal routes. Antibodies from vaccinated mice recognized several Ng surface proteins, including PilQ, BamA, MtrE, NHBA (known to be recognized by humans), PorB, and Opa. Immune sera from both mice and humans recognized Ng PilQ and several proteins of similar apparent molecular weight, but MtrE was only recognized by mouse serum. Pooled sera from 4CMenB-immunized mice showed a 4-fold increase in serum bactericidal50 titers against the challenge strain; in contrast, no significant difference in bactericidal activity was detected when sera from 4CMenB-immunized and unimmunized subjects were compared. Our findings directly support epidemiological evidence that Nm OMVs confer cross-species protection against gonorrhea, and implicate several Ng surface antigens as potentially protective targets. Additionally, this study further defines the usefulness of murine infection model as a relevant experimental system for gonorrhea vaccine development.
Collapse
|
10
|
Interactions and Signal Transduction Pathways Involved during Central Nervous System Entry by Neisseria meningitidis across the Blood-Brain Barriers. Int J Mol Sci 2020; 21:ijms21228788. [PMID: 33233688 PMCID: PMC7699760 DOI: 10.3390/ijms21228788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative diplococcus Neisseria meningitidis, also called meningococcus, exclusively infects humans and can cause meningitis, a severe disease that can lead to the death of the afflicted individuals. To cause meningitis, the bacteria have to enter the central nervous system (CNS) by crossing one of the barriers protecting the CNS from entry by pathogens. These barriers are represented by the blood–brain barrier separating the blood from the brain parenchyma and the blood–cerebrospinal fluid (CSF) barriers at the choroid plexus and the meninges. During the course of meningococcal disease resulting in meningitis, the bacteria undergo several interactions with host cells, including the pharyngeal epithelium and the cells constituting the barriers between the blood and the CSF. These interactions are required to initiate signal transduction pathways that are involved during the crossing of the meningococci into the blood stream and CNS entry, as well as in the host cell response to infection. In this review we summarize the interactions and pathways involved in these processes, whose understanding could help to better understand the pathogenesis of meningococcal meningitis.
Collapse
|
11
|
Portilho AI, Trzewikoswki de Lima G, De Gaspari E. Neisseria meningitidis: analysis of pili and LPS in emerging Brazilian strains. Ther Adv Vaccines Immunother 2020; 8:2515135520919195. [PMID: 32435751 PMCID: PMC7225800 DOI: 10.1177/2515135520919195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/23/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neisseria meningitidis is the main cause of bacterial meningitis in Brazil, where the main serogroups isolated are B and C; however, the serogroup W has recently emerged. LPS and type IV pili are important virulence factors that increase meningococci pathogenicity. METHODS The characterization of Lipopolysaccharide (LPS) and type IV pili in 19 meningococci strains of serogroup B, 21 of serogroup C, 45 of serogroup W and 28 of serogroup Y, isolated in Brazil between 2011 and 2017, was conducted using the Enzyme-linked Immunosorbent Assay (Dot- ELISA) technique and monoclonal antibodies. RESULTS We would like to emphasize the importance of characterizing relevant antigens, such as pili and LPS, the use of monoclonal antibodies to support it, and how such studies improve vaccine development and monitoring. Most of the strains studied presented L3,7,9 LPS and type IV pili; both antigens are associated with the capacity to cause invasive disease. CONCLUSION Due to the impact of meningococcal disease, it is important to maintain and improve vaccine studies. Epitopes characterization provides data about the virulence of circulating strains. The use of monoclonal antibodies and serological techniques are relevant and support vaccine development.
Collapse
Affiliation(s)
- Amanda Izeli Portilho
- Departament of Immunology, Adolfo Lutz Institute, São Paulo, Brazil Post-Graduate Program Interunity in Biotechnology, Biomedical Sciences Institute, São Paulo University, São Paulo, Brazil
| | - Gabriela Trzewikoswki de Lima
- Departament of Immunology, Adolfo Lutz Institute, São Paulo, Brazil Post-Graduate Program Interunity in Biotechnology, Biomedical Sciences Institute, São Paulo University, São Paulo, Brazil
| | - Elizabeth De Gaspari
- Departament of Immunology, Adolfo Lutz Institute, Dr Arnaldo Avenue 355, 11 floor, São Paulo, SP 01246-902, Brazil
- Post-Graduate Program Interunity in Biotechnology, Biomedical Sciences Institute, São Paulo University, São Paulo, Brazil
| |
Collapse
|
12
|
Christodoulides M. Preparation of Lipooligosaccharide (LOS) from Neisseria gonorrhoeae. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2020; 1997:87-96. [PMID: 31119619 DOI: 10.1007/978-1-4939-9496-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neisseria gonorrhoeae is a gram-negative obligate human pathogen that contains lipooligosaccharide (LOS) as a major constituent within the outer membrane. LOS plays a major role in pathogenesis by inducing host inflammatory responses and also enabling evasion of host innate immunity through sialylation. Epitopes within LOS are also potential vaccine candidates. In this chapter, we describe a general method based on the Westphal hot phenol extraction process to purify whole LOS from N. gonorrhoeae for structural analyses and for use in in vivo and in vitro biological assays.
Collapse
Affiliation(s)
- Myron Christodoulides
- Molecular Microbiology Group, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
13
|
Bartley SN, Mowlaboccus S, Mullally CA, Stubbs KA, Vrielink A, Maiden MCJ, Harrison OB, Perkins TT, Kahler CM. Acquisition of the capsule locus by horizontal gene transfer in Neisseria meningitidis is often accompanied by the loss of UDP-GalNAc synthesis. Sci Rep 2017; 7:44442. [PMID: 28290510 PMCID: PMC5349592 DOI: 10.1038/srep44442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/08/2017] [Indexed: 12/27/2022] Open
Abstract
Pathogenic meningococci have acquired a 24 kb capsule synthesis island (cps) by horizontal gene transfer which consists of a synthetic locus and associated capsule transport genes flanked by repetitive Regions D and D'. Regions D and D' contain an intact gene encoding a UDP-galactose epimerase (galE1) and a truncated remnant (galE2), respectively. In this study, GalE protein alleles were shown to be either mono-functional, synthesising UDP-galactose (UDP-Gal), or bi-functional, synthesising UDP-Gal and UDP-galactosamine (UDP-GalNAc). Meningococci possessing a capsule null locus (cnl) typically possessed a single bi-functional galE. Separation of functionality between galE1 and galE2 alleles in meningococcal isolates was retained for all serogroups except serogroup E which has a synthetic requirement for UDP-GalNAc. The truncated galE2 remnant in Region D' was also phylogenetically related to the bi-functional galE of the cnl locus suggesting common ancestry. A model is proposed in which the illegitimate recombination of the cps island into the galE allele of the cnl locus results in the formation of Region D' containing the truncated galE2 locus and the capture of the cps island en bloc. The retention of the duplicated Regions D and D' enables inversion of the synthetic locus within the cps island during bacterial growth.
Collapse
Affiliation(s)
- Stephanie N. Bartley
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
- The Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Perth, Australia
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Shakeel Mowlaboccus
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
- The Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Perth, Australia
| | - Christopher A. Mullally
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
- The Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Perth, Australia
| | - Keith A. Stubbs
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Martin C. J. Maiden
- University of Oxford, Department of Zoology, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Odile B. Harrison
- University of Oxford, Department of Zoology, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Timothy T. Perkins
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
- The Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Perth, Australia
| | - Charlene M. Kahler
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
- The Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Perth, Australia
| |
Collapse
|
14
|
Abstract
Antigenic variation is a strategy used by a broad diversity of microbial pathogens to persist within the mammalian host. Whereas viruses make use of a minimal proofreading capacity combined with large amounts of progeny to use random mutation for variant generation, antigenically variant bacteria have evolved mechanisms which use a stable genome, which aids in protecting the fitness of the progeny. Here, three well-characterized and highly antigenically variant bacterial pathogens are discussed: Anaplasma, Borrelia, and Neisseria. These three pathogens display a variety of mechanisms used to create the structural and antigenic variation needed for immune escape and long-term persistence. Intrahost antigenic variation is the focus; however, the role of these immune escape mechanisms at the population level is also presented.
Collapse
|
15
|
Shafer WM, Datta A, Kumar Kolli V, Mahbubur Rahman M, Balthazar JT, Martin LE, Veal WL, Stephens DS, Carlson R. Phase variable changes in genes lgtA and lgtC within the lgtABCDE operon of Neisseria gonorrhoeae can modulate gonococcal susceptibility to normal human serum. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519020080010501] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The α-chain of the core oligosaccharide of the lipo-oligosaccharide (LOS) produced by Neisseria gonorrhoeae can undergo reversible and rapid changes in structure due to phase-variable production of certain enzymes employed in the biosynthesis of the lacto- N-neotetraose structure. Five of these enzymes are encoded by the lgtABCDE operon, and polynucleotide tracts within three of these genes ( lgtA, lgtC and lgtD) can be substrates for slipped-strand mispairing events that lead to nucleotide insertions or deletion events which result in variable production of their respective gene products. We now report that phase-variable synthesis of the lgtA and lgtC gene products in strain FA19 results in the production of elongated LOS α-chains and that the presence of these LOS species can result in gonococci being sensitive to the bacteriolytic action of serum-antibody and complement. Hence, phase variation within the lgtABCDE operon can significantly impact the ability of gonococci to subvert this important host defense system.
Collapse
Affiliation(s)
- William M. Shafer
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center (Atlanta), Decatur, Georgia USA, , Departments of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anup Datta
- The Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - V.S. Kumar Kolli
- The Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - M. Mahbubur Rahman
- The Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Jacqueline T. Balthazar
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center (Atlanta), Decatur, Georgia USA, Departments of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Larry E. Martin
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Wendy L. Veal
- Departments of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David S. Stephens
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center (Atlanta), Decatur, Georgia USA, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Russell Carlson
- The Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
16
|
Rustam T, McClean S, Newcombe J, McFadden J, Eales-Reynolds LJ. Reduced toxicity of lipo-oligosaccharide from a phoP mutant of Neisseria meningitidis: an in vitro demonstration. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120010401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PhoP is part of a two-component regulatory system, which we have previously demonstrated in Neisseria meningitidis and shown to be an important regulator of virulence in an in vivo model. The phoP mutant clearly induced cross-species reactive antibodies and lacks the obvious toxic effects of the wild-type strain. In the current study, we demonstrate distinct differences between the wild-type and mutant strains in an in vitro model of toxicity. At concentrations likely to be present early in an infection, the mutant was more efficient at stimulating an inflammatory response than the wild-type. However, at the concentrations likely to be found at the site of a fulminant infection, the mutant showed significantly weaker ability to stimulate the release of pro-inflammatory cytokines and the production of reactive oxygen and nitrogen intermediates. SDS-PAGE analysis of the isolated LOS from the wild-type and mutant showed a difference in the level of expression of two major species of LOS, a finding which was supported by preliminary MALDI-TOF analysis. These results suggest that the altered toxicity of the mutant may be due to the increased expression of a conformationally altered LOS species, which shows less affinity and avidity for the cellular receptors responsible for the inflammatory response to endotoxin.
Collapse
Affiliation(s)
- Tarick Rustam
- Institute for Biological and Biomolecular Science, University of Portsmouth, Hampshire, UK
| | - Stephen McClean
- School of Biomedical Sciences, University of Ulster, Coleraine, Co Londonderry, UK
| | - Jane Newcombe
- School of Biomedical and Molecular Science, University of Surrey, Guildford, UK
| | - Johnjoe McFadden
- School of Biomedical and Molecular Science, University of Surrey, Guildford, UK
| | | |
Collapse
|
17
|
Gronow S, Brade H. Invited review: Lipopolysaccharide biosynthesis: which steps do bacteria need to survive? ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519010070010301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A detailed knowledge of LPS biosynthesis is of the utmost importance in understanding the function of the outer membrane of Gram-negative bacteria. The regulation of LPS biosynthesis affects many more compartments of the bacterial cell than the outer membrane and thus contributes to the understanding of the physiology of Gram-negative bacteria in general, on the basis of which only mechanisms of virulence and antibiotic resistance can be studied to find new targets for antibacterial treatment. The study of LPS biosynthesis is also an excellent example to demonstrate the limitations of `genomics' and `proteomics', since secondary gene products can be studied only by the combined tools of molecular genetics, enzymology and analytical structural biochemistry. Thus, the door to the field of `glycomics' is opened.
Collapse
Affiliation(s)
- Sabine Gronow
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany,
| | - Helmut Brade
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| |
Collapse
|
18
|
John CM, Phillips NJ, Din R, Liu M, Rosenqvist E, Høiby EA, Stein DC, Jarvis GA. Lipooligosaccharide Structures of Invasive and Carrier Isolates of Neisseria meningitidis Are Correlated with Pathogenicity and Carriage. J Biol Chem 2015; 291:3224-38. [PMID: 26655715 DOI: 10.1074/jbc.m115.666214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 11/06/2022] Open
Abstract
The degree of phosphorylation and phosphoethanolaminylation of lipid A on neisserial lipooligosaccharide (LOS), a major cell-surface antigen, can be correlated with inflammatory potential and the ability to induce immune tolerance in vitro. On the oligosaccharide of the LOS, the presence of phosphoethanolamine and sialic acid substituents can be correlated with in vitro serum resistance. In this study, we analyzed the structure of the LOS from 40 invasive isolates and 25 isolates from carriers of Neisseria meningitidis without disease. Invasive strains were classified as groups 1-3 that caused meningitis, septicemia without meningitis, and septicemia with meningitis, respectively. Intact LOS was analyzed by high resolution matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Prominent peaks for lipid A fragment ions with three phosphates and one phosphoethanolamine were detected in all LOS analyzed. LOS from groups 2 and 3 had less abundant ions for highly phosphorylated lipid A forms and induced less TNF-α in THP-1 monocytic cells compared with LOS from group 1. Lipid A from all invasive strains was hexaacylated, whereas lipid A of 6/25 carrier strains was pentaacylated. There were fewer O-acetyl groups and more phosphoethanolamine and sialic acid substitutions on the oligosaccharide from invasive compared with carrier isolates. Bioinformatic and genomic analysis of LOS biosynthetic genes indicated significant skewing to specific alleles, dependent on the disease outcome. Our results suggest that variable LOS structures have multifaceted effects on homeostatic innate immune responses that have critical impact on the pathophysiology of meningococcal infections.
Collapse
Affiliation(s)
- Constance M John
- From the Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California 94121, the Departments of Laboratory Medicine and
| | | | - Richard Din
- From the Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California 94121
| | - Mingfeng Liu
- From the Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California 94121, the Departments of Laboratory Medicine and
| | - Einar Rosenqvist
- the Norwegian Institute of Public Health, P. O. Box 4404, Nydalen, 0403 Oslo, Norway, and
| | - E Arne Høiby
- the Norwegian Institute of Public Health, P. O. Box 4404, Nydalen, 0403 Oslo, Norway, and
| | - Daniel C Stein
- the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Gary A Jarvis
- From the Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California 94121, the Departments of Laboratory Medicine and
| |
Collapse
|
19
|
Antimicrobial peptide resistance in Neisseria meningitidis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3026-31. [PMID: 26002321 DOI: 10.1016/j.bbamem.2015.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 12/26/2022]
Abstract
Antimicrobial peptides (AMPs) play an important role as a host defense against microbial pathogens and are key components of the human innate immune response. Neisseria meningitidis frequently colonizes the human nasopharynx as a commensal but also is a worldwide cause of epidemic meningitis and rapidly fatal sepsis. In the human respiratory tract, the only known reservoir of N. meningitidis, meningococci are exposed to human endogenous AMPs. Thus, it is not surprising that meningococci have evolved effective mechanisms to confer intrinsic and high levels of resistance to the action of AMPs. This article reviews the current knowledge about AMP resistance mechanisms employed by N. meningitidis. Two major resistance mechanisms employed by meningococci are the constitutive modification of the lipid A head groups of lipooligosaccharides by phosphoethanolamine and the active efflux pump mediated excretion of AMPs. Other factors influencing AMP resistance, such as the major porin PorB, the pilin biogenesis apparatus, and capsular polysaccharides, have also been identified. Even with an inherently high intrinsic resistance, several AMP resistance determinants can be further induced upon exposure to AMPs. Many well-characterized AMP resistance mechanisms in other Gram-negative bacteria are not found in meningococci. Thus, N. meningitidis utilizes a limited but highly effective set of molecular mechanisms to mediate antimicrobial peptide resistance. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
|
20
|
Piek S, Wang Z, Ganguly J, Lakey AM, Bartley SN, Mowlaboccus S, Anandan A, Stubbs KA, Scanlon MJ, Vrielink A, Azadi P, Carlson RW, Kahler CM. The role of oxidoreductases in determining the function of the neisserial lipid A phosphoethanolamine transferase required for resistance to polymyxin. PLoS One 2014; 9:e106513. [PMID: 25215579 PMCID: PMC4162559 DOI: 10.1371/journal.pone.0106513] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/31/2014] [Indexed: 01/04/2023] Open
Abstract
The decoration of the lipid A headgroups of the lipooligosaccharide (LOS) by the LOS phosphoethanolamine (PEA) transferase (LptA) in Neisseria spp. is central for resistance to polymyxin. The structure of the globular domain of LptA shows that the protein has five disulphide bonds, indicating that it is a potential substrate of the protein oxidation pathway in the bacterial periplasm. When neisserial LptA was expressed in Escherichia coli in the presence of the oxidoreductase, EcDsbA, polymyxin resistance increased 30-fold. LptA decorated one position of the E. coli lipid A headgroups with PEA. In the absence of the EcDsbA, LptA was degraded in E. coli. Neisseria spp. express three oxidoreductases, DsbA1, DsbA2 and DsbA3, each of which appear to donate disulphide bonds to different targets. Inactivation of each oxidoreductase in N. meningitidis enhanced sensitivity to polymyxin with combinatorial mutants displaying an additive increase in sensitivity to polymyxin, indicating that the oxidoreductases were required for multiple pathways leading to polymyxin resistance. Correlates were sought between polymyxin sensitivity, LptA stability or activity and the presence of each of the neisserial oxidoreductases. Only meningococcal mutants lacking DsbA3 had a measurable decrease in the amount of PEA decoration on lipid A headgroups implying that LptA stability was supported by the presence of DsbA3 but did not require DsbA1/2 even though these oxidoreductases could oxidise the protein. This is the first indication that DsbA3 acts as an oxidoreductase in vivo and that multiple oxidoreductases may be involved in oxidising the one target in N. meningitidis. In conclusion, LptA is stabilised by disulphide bonds within the protein. This effect was more pronounced when neisserial LptA was expressed in E. coli than in N. meningitidis and may reflect that other factors in the neisserial periplasm have a role in LptA stability.
Collapse
Affiliation(s)
- Susannah Piek
- School of Pathology and Laboratory Medicine, and The Marshall Center for Infectious Diseases, Research and Training, University of Western Australia, Perth, Western Australia, Australia
| | - Zhirui Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Jhuma Ganguly
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Adam M. Lakey
- School of Pathology and Laboratory Medicine, and The Marshall Center for Infectious Diseases, Research and Training, University of Western Australia, Perth, Western Australia, Australia
| | - Stephanie N. Bartley
- School of Pathology and Laboratory Medicine, and The Marshall Center for Infectious Diseases, Research and Training, University of Western Australia, Perth, Western Australia, Australia
| | - Shakeel Mowlaboccus
- School of Pathology and Laboratory Medicine, and The Marshall Center for Infectious Diseases, Research and Training, University of Western Australia, Perth, Western Australia, Australia
| | - Anandhi Anandan
- School of Chemistry and Biochemistry, University of Western Australia, Perth, Western Australia, Australia
| | - Keith A. Stubbs
- School of Chemistry and Biochemistry, University of Western Australia, Perth, Western Australia, Australia
| | - Martin J. Scanlon
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
- ARC Centre of Excellence for Coherent X-ray Science, Monash University, Melbourne, Victoria, Australia
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, Perth, Western Australia, Australia
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Russell W. Carlson
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Charlene M. Kahler
- School of Pathology and Laboratory Medicine, and The Marshall Center for Infectious Diseases, Research and Training, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
21
|
Broecker F, Aretz J, Yang Y, Hanske J, Guo X, Reinhardt A, Wahlbrink A, Rademacher C, Anish C, Seeberger PH. Epitope recognition of antibodies against a Yersinia pestis lipopolysaccharide trisaccharide component. ACS Chem Biol 2014; 9:867-73. [PMID: 24479563 DOI: 10.1021/cb400925k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Today, the process of selecting carbohydrate antigens as a basis for active vaccination and the generation of antibodies for therapeutic and diagnostic purposes is based on intuition combined with trial and error experiments. In efforts to establish a rational process for glycan epitope selection, we employed glycan array screening, surface plasmon resonance, and saturation transfer difference (STD)-NMR to elucidate the interactions between antibodies and glycans representing the Yersinia pestis lipopolysaccharide (LPS). A trisaccharide epitope of the LPS inner core glycan and different LPS-derived oligosaccharides from various Gram-negative bacteria were analyzed using this combination of techniques. The antibody-glycan interaction with a heptose substructure was determined at atomic-level detail. Antibodies specifically recognize the Y. pestis trisaccharide and some substructures with high affinity and specificity. No significant binding to LPS glycans from other bacteria was observed, which suggests that the epitopes for just one particular bacterial species can be identified. On the basis of these results we are beginning to understand the rules for structure-based design and selection of carbohydrate antigens.
Collapse
Affiliation(s)
- Felix Broecker
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jonas Aretz
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - You Yang
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Jonas Hanske
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Xiaoqiang Guo
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Anika Reinhardt
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Annette Wahlbrink
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | | | - Chakkumkal Anish
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Peter H. Seeberger
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
22
|
Hung MC, Christodoulides M. The biology of Neisseria adhesins. BIOLOGY 2013; 2:1054-109. [PMID: 24833056 PMCID: PMC3960869 DOI: 10.3390/biology2031054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/15/2023]
Abstract
Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology.
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
23
|
Wanty C, Anandan A, Piek S, Walshe J, Ganguly J, Carlson RW, Stubbs KA, Kahler CM, Vrielink A. The structure of the neisserial lipooligosaccharide phosphoethanolamine transferase A (LptA) required for resistance to polymyxin. J Mol Biol 2013; 425:3389-402. [PMID: 23810904 DOI: 10.1016/j.jmb.2013.06.029] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
Abstract
Gram-negative bacteria possess an outer membrane envelope consisting of an outer leaflet of lipopolysaccharides, also called endotoxins, which protect the pathogen from antimicrobial peptides and have multifaceted roles in virulence. Lipopolysaccharide consists of a glycan moiety attached to lipid A, embedded in the outer membrane. Modification of the lipid A headgroups by phosphoethanolamine (PEA) or 4-amino-arabinose residues increases resistance to the cationic cyclic polypeptide antibiotic, polymyxin. Lipid A PEA transferases are members of the YhjW/YjdB/YijP superfamily and usually consist of a transmembrane domain anchoring the enzyme to the periplasmic face of the cytoplasmic membrane attached to a soluble catalytic domain. The crystal structure of the soluble domain of the protein of the lipid A PEA transferase from Neisseria meningitidis has been determined crystallographically and refined to 1.4Å resolution. The structure reveals a core hydrolase fold similar to that of alkaline phosphatase. Loop regions in the structure differ, presumably to enable interaction with the membrane-localized substrates and to provide substrate specificity. A phosphorylated form of the putative nucleophile, Thr280, is observed. Metal ions present in the active site are coordinated to Thr280 and to residues conserved among the family of transferases. The structure reveals the protein components needed for the transferase chemistry; however, substrate-binding regions are not evident and are likely to reside in the transmembrane domain of the protein.
Collapse
Affiliation(s)
- Christopher Wanty
- School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Malott RJ, Keller BO, Gaudet RG, McCaw SE, Lai CCL, Dobson-Belaire WN, Hobbs JL, St. Michael F, Cox AD, Moraes TF, Gray-Owen SD. Neisseria gonorrhoeae-derived heptose elicits an innate immune response and drives HIV-1 expression. Proc Natl Acad Sci U S A 2013; 110:10234-9. [PMID: 23733950 PMCID: PMC3690901 DOI: 10.1073/pnas.1303738110] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clinical and epidemiological synergy exists between the globally important sexually transmitted infections, gonorrhea and HIV. Neisseria gonorrhoeae, which causes gonorrhea, is particularly adept at driving HIV-1 expression, but the molecular determinants of this relationship remain undefined. N. gonorrhoeae liberates a soluble factor that potently induces expression from the HIV-1 LTR in coinfected cluster of differentiation 4-positive (CD4(+)) T lymphocytes, but this factor is not a previously described innate effector. A genome-wide mutagenesis approach was undertaken to reveal which component(s) of N. gonorrhoeae induce HIV-1 expression in CD4(+) T lymphocytes. A mutation in the ADP-heptose biosynthesis gene, hldA, rendered the bacteria unable to induce HIV-1 expression. The hldA mutant has a truncated lipooligosaccharide structure, contains lipid A in its outer membrane, and remains bioactive in a TLR4 reporter-based assay but did not induce HIV-1 expression. Mass spectrometry analysis of extensively fractionated N. gonorrhoeae-derived supernatants revealed that the LTR-inducing fraction contained a compound having a mass consistent with heptose-monophosphate (HMP). Heptose is a carbohydrate common in microbes but is absent from the mammalian glycome. Although ADP-heptose biosynthesis is common among Gram-negative bacteria, and heptose is a core component of most lipopolysaccharides, N. gonorrhoeae is peculiar in that it effectively liberates HMP during growth. This N. gonorrhoeae-derived HMP activates CD4(+) T cells to invoke an NF-κB-dependent transcriptional response that drives HIV-1 expression and viral production. Our study thereby shows that heptose is a microbial-specific product that is sensed as an innate immune agonist and unveils the molecular link between N. gonorrhoeae and HIV-1.
Collapse
Affiliation(s)
- Rebecca J. Malott
- Departments of Molecular Genetics and
- Centre for Understanding and Preventing Infection in Children, Department of Pediatrics, and
| | - Bernd O. Keller
- Child and Family Research Institute, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada V5Z 4H4; and
| | | | | | | | | | - J. Leigh Hobbs
- Centre for Understanding and Preventing Infection in Children, Department of Pediatrics, and
| | - Frank St. Michael
- Vaccine Program, National Research Council, Ottawa, ON, Canada K1A 0R6
| | - Andrew D. Cox
- Vaccine Program, National Research Council, Ottawa, ON, Canada K1A 0R6
| | - Trevor F. Moraes
- Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | | |
Collapse
|
25
|
Bartley SN, Tzeng YL, Heel K, Lee CW, Mowlaboccus S, Seemann T, Lu W, Lin YH, Ryan CS, Peacock C, Stephens DS, Davies JK, Kahler CM. Attachment and invasion of Neisseria meningitidis to host cells is related to surface hydrophobicity, bacterial cell size and capsule. PLoS One 2013; 8:e55798. [PMID: 23405216 PMCID: PMC3566031 DOI: 10.1371/journal.pone.0055798] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 01/04/2013] [Indexed: 12/13/2022] Open
Abstract
We compared exemplar strains from two hypervirulent clonal complexes, strain NMB-CDC from ST-8/11 cc and strain MC58 from ST-32/269 cc, in host cell attachment and invasion. Strain NMB-CDC attached to and invaded host cells at a significantly greater frequency than strain MC58. Type IV pili retained the primary role for initial attachment to host cells for both isolates regardless of pilin class and glycosylation pattern. In strain MC58, the serogroup B capsule was the major inhibitory determinant affecting both bacterial attachment to and invasion of host cells. Removal of terminal sialylation of lipooligosaccharide (LOS) in the presence of capsule did not influence rates of attachment or invasion for strain MC58. However, removal of either serogroup B capsule or LOS sialylation in strain NMB-CDC increased bacterial attachment to host cells to the same extent. Although the level of inhibition of attachment by capsule was different between these strains, the regulation of the capsule synthesis locus by the two-component response regulator MisR, and the level of surface capsule determined by flow cytometry were not significantly different. However, the diplococci of strain NMB-CDC were shown to have a 1.89-fold greater surface area than strain MC58 by flow cytometry. It was proposed that the increase in surface area without changing the amount of anchored glycolipid capsule in the outer membrane would result in a sparser capsule and increase surface hydrophobicity. Strain NMB-CDC was shown to be more hydrophobic than strain MC58 using hydrophobicity interaction chromatography and microbial adhesion-to-solvents assays. In conclusion, improved levels of adherence of strain NMB-CDC to cell lines was associated with increased bacterial cell surface and surface hydrophobicity. This study shows that there is diversity in bacterial cell surface area and surface hydrophobicity within N. meningitidis which influence steps in meningococcal pathogenesis.
Collapse
Affiliation(s)
- Stephanie N. Bartley
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Yih-Ling Tzeng
- Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kathryn Heel
- Centre for Microscopy, Characterisation and Analysis, and Translational Cancer Pathology Laboratory, School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Chiang W. Lee
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Shakeel Mowlaboccus
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Torsten Seemann
- Victorian Bioinformatics Consortium, Monash University, Melbourne, Victoria, Australia
| | - Wei Lu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Ya-Hsun Lin
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Catherine S. Ryan
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Christopher Peacock
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - David S. Stephens
- Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - John K. Davies
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Charlene M. Kahler
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
26
|
Host defenses to extracellular bacteria. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Piek S, Kahler CM. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis. Front Cell Infect Microbiol 2012; 2:162. [PMID: 23267440 PMCID: PMC3526765 DOI: 10.3389/fcimb.2012.00162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/01/2012] [Indexed: 01/13/2023] Open
Abstract
The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism.
Collapse
Affiliation(s)
- Susannah Piek
- Department of Pathology and Laboratory Medicine, The University of Western Australia Perth, WA, Australia
| | | |
Collapse
|
28
|
Anandan A, Piek S, Kahler CM, Vrielink A. Cloning, expression, purification and crystallization of an endotoxin-biosynthesis enzyme from Neisseria meningitidis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1494-7. [PMID: 23192031 PMCID: PMC3509972 DOI: 10.1107/s1744309112042236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/09/2012] [Indexed: 08/11/2024]
Abstract
The enzyme phosphoethanolamine transferase A is involved in the addition of phosphoethanolamine moieties to lipid A in Neisseria meningitidis. The enzyme is composed of an N-terminal transmembrane domain and a C-terminal soluble domain that is present in the periplasm of the bacteria. A membrane-deletion construct of the enzyme was designed and expressed in Escherichia coli. Well ordered crystals that diffracted to 1.7 Å resolution were obtained by carrying out a limited trypsin digestion of the protein to remove a predicted N-terminal disordered portion. The crystals belonged to space group P2(1), with unit-cell parameters a=44.3, b=71.6, c=49.9 Å, β=109.2°, and contained one molecule in the asymmetric unit.
Collapse
Affiliation(s)
- Anandhi Anandan
- School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Susannah Piek
- School of Pathology and Laboratory Medicine, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Charlene M. Kahler
- School of Pathology and Laboratory Medicine, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
29
|
Oliver R, Staples KJ, Heckels J, Rossetti C, Molteni M, Christodoulides M. Coadministration of the cyanobacterial lipopolysaccharide antagonist CyP with antibiotic inhibits cytokine production by an in vitro meningitis model infected with Neisseria meningitidis. J Antimicrob Chemother 2012; 67:1145-54. [PMID: 22334603 DOI: 10.1093/jac/dks031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES In this study, the objective was to determine the anti-inflammatory properties of CyP, a cyanobacterial lipopolysaccharide (LPS) antagonist, used in combination with antibiotic chemotherapy during infection of an in vitro meningitis model infected with Neisseria meningitidis (meningococcus). METHODS Monocultures of human meningioma cells and meningioma-primary human macrophage co-cultures were infected with meningococci (10(2)-10(8) cfu/monolayer) or treated with isolated outer membranes or purified LPS (0.1-100 ng/monolayer) from N. meningitidis. CyP (1-20 μg/monolayer) was added at intervals from t = 0 to 4 h, with and without benzylpenicillin (1-20 μg/monolayer). The antagonistic effect of CyP and its adjunctive properties to benzylpenicillin administration was determined by measuring cytokine levels in culture supernatants after 24 h. RESULTS CyP significantly inhibited (P < 0.05) the secretion of interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP)-1 and RANTES ('regulated upon activation, normal T cell expressed and secreted') (overall reduction levels from 50% to >95%) by meningioma cell lines and meningioma-macrophage co-cultures challenged with either live meningococci or bacterial components. Inhibition was effective when CyP was added within 2 h of challenge (P < 0.05) and was still pronounced by 4 h. In the co-culture model, CyP alone partially inhibited IL-1β secretion, but did not prevent tumour necrosis factor (TNF)-α secretion, whereas penicillin alone inhibited IL-1β and TNF-α but conversely did not reduce MCP-1 and RANTES secretion. However, coadministration of CyP and penicillin in both models had an additive effect and restored the overall inhibitory profile. CONCLUSIONS CyP inhibits cytokine production in an in vitro meningitis model and augments the anti-inflammatory response when combined with benzylpenicillin. Administration of an LPS antagonist with antibiotic merits consideration in the emergency treatment of patients presenting with meningococcal infection.
Collapse
Affiliation(s)
- Rebecca Oliver
- Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton General Hospital, Southampton, UK
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Neisseria meningitidis (the meningococcus) causes significant morbidity and mortality in children and young adults worldwide through epidemic or sporadic meningitis and/or septicemia. In this review, we describe the biology, microbiology, and epidemiology of this exclusive human pathogen. N.meningitidis is a fastidious, encapsulated, aerobic gram-negative diplococcus. Colonies are positive by the oxidase test and most strains utilize maltose. The phenotypic classification of meningococci, based on structural differences in capsular polysaccharide, lipooligosaccharide (LOS) and outer membrane proteins, is now complemented by genome sequence typing (ST). The epidemiological profile of N. meningitidis is variable in different populations and over time and virulence of the meningococcus is based on a transformable/plastic genome and expression of certain capsular polysaccharides (serogroups A, B, C, W-135, Y and X) and non-capsular antigens. N. meningitidis colonizes mucosal surfaces using a multifactorial process involving pili, twitching motility, LOS, opacity associated, and other surface proteins. Certain clonal groups have an increased capacity to gain access to the blood, evade innate immune responses, multiply, and cause systemic disease. Although new vaccines hold great promise, meningococcal infection continues to be reported in both developed and developing countries, where universal vaccine coverage is absent and antibiotic resistance increasingly more common.
Collapse
Affiliation(s)
- Nadine G Rouphael
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
31
|
Abstract
The clinical symptoms induced by Neisseria meningitidis reflect compartmentalized intravascular and intracranial bacterial growth and inflammation. In this chapter, we describe a classification system for meningococcal disease based on the nature of the clinical symptoms. Meningococci invade the subarachnoid space and cause meningitis in as many as 50-70% of patients. The bacteremic phase is moderate in patients with meningitis and mild systemic meningococcemia but graded high in patients with septic shock. Three landmark studies using this classification system and comprising 862 patients showed that 37-49% developed meningitis without shock, 10-18% shock without meningitis, 7-12% shock and meningitis, and 18-33% had mild meningococcemia without shock or meningitis. N. meningitidis lipopolysaccharide (LPS) is the principal trigger of the innate immune system via activation of the Toll-like receptor 4-MD2 cell surface receptor complex on myeloid and nonmyeloid human cells. The intracellular signals are conveyed via MyD88-dependent and -independent pathways altering the expression of >4,600 genes in target cells such as monocytes. However, non-LPS molecules contribute to inflammation, but 10-100-fold higher concentrations are required to reach the same responses as induced by LPS. Activation of the complement and coagulation systems is related to the bacterial load in the circulation and contributes to the development of shock, organ dysfunction, thrombus formation, bleeding, and long-term complications in patients. Despite rapid intervention and advances in patient intensive care, why as many as 30% of patients with systemic meningococcal disease develop massive meningococcemia leading to shock and death is still not understood.
Collapse
Affiliation(s)
- Petter Brandtzaeg
- Departments of Pediatrics and Medical Biochemistry, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
32
|
Cheng H, Yang Z, Estabrook MM, John CM, Jarvis GA, McLaughlin S, Griffiss JM. Human lipooligosaccharide IGG that prevents endemic meningococcal disease recognizes an internal lacto-N-neotetraose structure. J Biol Chem 2011; 286:43622-43633. [PMID: 22027827 DOI: 10.1074/jbc.m111.291583] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibodies that initiate complement-mediated killing of Neisseria meningitidis as they enter the bloodstream from the oropharynx protect against disseminated disease. Human IgGs that bind the neisserial L7 lipooligosaccharide (LOS) are bactericidal for L3,7 and L2,4 meningococci in the presence of human complement. These strains share a lacto-N-neotetraose (nLc4) LOS α chain. We used a set of mutants that have successive saccharide deletions from the nLc4 α chain to characterize further the binding and bactericidal activity of nLc4 LOS IgG. We found that the nLc4 α chain conforms at least four different antigens. We separately purified IgG that required the nLc4 (non-reducing) terminal galactose (Gal) for binding and IgG that bound the truncated nLc3 α chain that lacks this Gal residue. IgG that bound the internal nLc3 α chain killed both L3,7 and L2,4 strains, whereas IgG that required the nLc4 terminal Gal residue for binding killed L2,4 stains but not L3,7 strains. These results show that the diversity of LOS antibodies in human serum is as much a function of the conformation of multiple antigens by a single glycoform as of the production of multiple glycoforms. Differences in sensitivity to killing by human nLc4 LOS IgG may account for the fact that fully two-thirds of endemic group B meningococcal disease in infants and children is caused by L3,7 strains, but only 20% is caused by L2,4 stains.
Collapse
Affiliation(s)
- Hui Cheng
- Department of Veterans Affairs Medical Center, San Francisco, California 94121
| | - Zhijie Yang
- Department of Veterans Affairs Medical Center, San Francisco, California 94121
| | - Michele M Estabrook
- Department of Veterans Affairs Medical Center, San Francisco, California 94121; Department of Pediatrics, University of California, San Francisco, California 94121
| | - Constance M John
- Department of Veterans Affairs Medical Center, San Francisco, California 94121
| | - Gary A Jarvis
- Department of Veterans Affairs Medical Center, San Francisco, California 94121; Department of Laboratory Medicine, University of California, San Francisco, California 94121
| | | | - J McLeod Griffiss
- Department of Veterans Affairs Medical Center, San Francisco, California 94121; Department of Laboratory Medicine, University of California, San Francisco, California 94121.
| |
Collapse
|
33
|
Importance of antibodies to lipopolysaccharide in natural and vaccine-induced serum bactericidal activity against Neisseria meningitidis group B. Infect Immun 2011; 79:4146-56. [PMID: 21768280 DOI: 10.1128/iai.05125-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of the specificity of bactericidal antibodies in normal, convalescent, and postvaccination human sera is important in understanding human immunity to meningococcal infections and can aid in the design of an effective group B vaccine. A collection of human sera, including group C and group B convalescent-phase sera, normal sera with naturally occurring cross-reactive bactericidal activity, and some postvaccination sera, was analyzed to determine the specificity of cross-reactive bactericidal antibodies. Analysis of human sera using a bactericidal antibody depletion assay demonstrated that a significant portion of the bactericidal activity could be removed by purified lipopolysaccharide (LPS). LPS homologous to that expressed on the bactericidal test strain was most effective, but partial depletion by heterologous LPS suggested the presence of antibodies with various degrees of cross-reactivity. Binding of anti-L3,7 LPS bactericidal antibodies was affected by modification of the core structure, suggesting that these functional antibodies recognized epitopes consisting of both core structures and lacto-N-neotetraose (LNnT). When the target strain was grown with 5'-cytidinemonophospho-N-acetylneuraminic acid (CMP-NANA) to increase LPS sialylation, convalescent-phase serum bactericidal titers were decreased by only 2- to 4-fold, and most remaining bactericidal activity was still depleted by LPS. Highly sialylated LPS was ineffective in depleting bactericidal antibodies. We conclude that natural infections caused by strains expressing L3,7 LPS induce persistent, protective bactericidal antibodies and appear to be directed against nonsialylated bacterial epitopes. Additionally, subsets of these bactericidal antibodies are cross-reactive, binding to several different LPS immunotypes, which is a useful characteristic for an effective group B meningococcal vaccine antigen.
Collapse
|
34
|
Liévin-Le Moal V, Beau I, Rougeaux C, Kansau I, Fabrega S, Brice C, Korotkova N, Moseley SL, Servin AL. Apical expression of human full-length hCEACAM1-4L protein renders the Madin Darby Canine Kidney cells responsive to lipopolysaccharide leading to TLR4-dependent Erk1/2 and p38 MAPK signalling. Cell Microbiol 2011; 13:764-85. [PMID: 21352462 DOI: 10.1111/j.1462-5822.2011.01575.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CEACAM1 expressed by granulocytes and epithelial cells is recognized as a membrane-associated receptor by some Gram-negative pathogens. Here we report a previously unsuspected role of human CEACAM1-4L (hCEACAM1-4L) in polarized epithelial cells. We find that in contrast with non-transfected cells, Madin Darby Canine Kidney strain II (MDCK) engineered for the apical expression of the long cytoplasmic chain protein hCEACAM1-4L showed a serum-independent increase in the phosphorylation of the extracellular signal-regulated kinase 1/2 (Erk1/2) and p38 mitogen-activated protein kinases (MAPKs) after treatment with lipopolysaccharide (LPS) of wild-type, diffusely adhering Afa/Dr Escherichia coli (Afa/Dr DAEC) strain IH11128. Aggregates of FITC-LPS bind the apical domain of MDCK-hCEACAM1-4L cells colocalizing with the apically expressed hCEACAM1-4L protein and do not bind MDCK-pCEP cells, and surface plasmon resonance analysis shows that LPS binds to the extracellular domain of the CEACAM1-4L protein. We showed that cell polarization and lipid rafts positively control the LPS-IH11128-induced phosphorylation of Erk1/2 in MDCK-hCEACAM1-4L cells. Structure-function analysis using mutated hCEACAM1-4L protein shows that the cytoplasmic domain of the protein is needed for LPS-induced MAPK signalling, and that phosphorylation of Tyr-residues is not increased in association with MAPK signalling. The hCEACAM1-4L-dependent Erk1/2 phosphorylation develops in the presence of lipid A and does not develop in the presence of penta-acylated LPS. Finally, small interfering RNA (siRNA) silencing of canine TLR4 abolishes the hCEACAM1-4L-dependent, LPS-induced phosphorylation of Erk1/2. Collectively, our results support the notion that the apically expressed, full-length hCEACAM1-4L protein functions as a novel LPS-conveying molecule at the mucosal surface of polarized epithelial cells for subsequent MD-2/TLR4 receptor-dependent MAPK Erk1/2 and p38 signalling.
Collapse
Affiliation(s)
- Vanessa Liévin-Le Moal
- INSERM, UMR756 «Signalisation et Physiopathologie des Cellules Epithéliales», Châtenay-Malabry, France Université Paris-Sud 11, Faculté de Pharmacie, Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tsai CM. Lipooligosaccharides of Neisseria Species: Similarity Between N. polysaccharea and N. meningitidis LOSs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:381-94. [DOI: 10.1007/978-1-4419-7877-6_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
The structure of Neisseria meningitidis lipid A determines outcome in experimental meningococcal disease. Infect Immun 2010; 78:3177-86. [PMID: 20439476 DOI: 10.1128/iai.01311-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Lipopolysaccharide (LPS), a major component of the meningococcal outer membrane, is sensed by the host through activation of Toll-like receptor 4 (TLR4). Recently, we demonstrated that a surprisingly large fraction of Neisseria meningitidis disease isolates are lipid A mutants, due to inactivating mutations in the lpxL1 gene. The lpxL1 mutants activate human TLR4 much less efficiently than wild-type bacteria, which may be advantageous by allowing them to escape from the innate immune system. Here we investigated the influence of lipid A structure on virulence in a mouse model of meningococcal sepsis. One limitation, however, is that murine TLR4 recognizes lpxL1 mutant bacteria much better than human TLR4. We show that an lpxL2 mutant, another lipid A mutant lacking an acyl chain at a different position, activates murine TLR4 less efficiently than the lpxL1 mutant. Therefore, the lpxL2 mutant in mice might be a better model for infections with lpxL1 mutants in humans. Interestingly, we found that the lpxL2 mutant is more virulent in mice than the wild-type strain, whereas the lpxL1 mutant is actually much less virulent than the wild-type strain. These results demonstrate the crucial role of N. meningitidis lipid A structure in virulence.
Collapse
|
37
|
Mistretta N, Seguin D, Thiébaud J, Vialle S, Blanc F, Brossaud M, Talaga P, Norheim G, Moreau M, Rokbi B. Genetic and structural characterization of L11 lipooligosaccharide from Neisseria meningitidis serogroup A strains. J Biol Chem 2010; 285:19874-83. [PMID: 20421293 DOI: 10.1074/jbc.m110.100636] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lipooligosaccharide (LOS) of immunotype L11 is unique within serogroup A meningococci. In order to resolve its molecular structure, we conducted LOS genotyping by PCR analysis of genes responsible for alpha-chain sugar addition (lgtA, -B, -C, -E, -H, and -F) and inner core substituents (lgtG, lpt-3, and lpt-6). For this study, we selected seven strains belonging to subgroup III, a major clonal complex responsible for meningococcal meningitis epidemics in Africa. In addition, we sequenced the homopolymeric tract regions of three phase-variable genes (lgtA, lgtG, and lot-3) to predict gene functionality. The fine structure of the L11 LOS of each strain was determined using composition and glycosyl linkage analyses, NMR, and mass spectrometry. The masses of the dephosphorylated oligosaccharides were consistent with an oligosaccharide composed of two hexoses, one N-acetyl-hexosamine, two heptoses, and one KDO, as proposed previously. The molar composition of LOS showed two glucose residues to be present, in agreement with lgtH sequence prediction. Despite phosphoethanolaminetransferase genes lpt-3 and lpt-6 being present in all seven Neisseria meningitidis strains, phosphoethanolamine (PEtn) was found at both O-3 and O-6 of HepII among the three ST-5 strains, whereas among the four ST-7 strains, only one PEtn was found and located at O-3 of the HepII. The L11 LOS was found to be O-acetylated, as was indicated by the presence of the lot-3 gene being in-frame in all of the seven N. meningitidis strains. To our knowledge, these studies represent the first full genetic and structural characterization of the L11 LOS of N. meningitidis. These investigations also suggest the presence of further regulatory mechanisms affecting LOS structure microheterogeneity in N. meningitidis related to PEtn decoration of the inner core.
Collapse
Affiliation(s)
- Noëlle Mistretta
- Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy l'Etoile, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The physical properties of most bacterial genomes are largely unexplored. We have previously demonstrated that the strict human pathogen Neisseria gonorrhoeae is polyploid, carrying an average of three chromosome copies per cell and only maintaining one pair of replication forks per chromosome (D. M. Tobiason and H. S. Seifert, PLos Biol. 4:1069-1078, 2006). We are following up this initial report to test several predictions of the polyploidy model of gonococcal chromosome organization. We demonstrate that the N. gonorrhoeae chromosomes exist solely as monomers and not covalently linked dimers, and in agreement with the monomer status, we show that distinct nucleoid regions can be detected by electron microscopy. Two different approaches to isolate heterozygous N. gonorrhoeae resulted in the formation of merodiploids, showing that even with more than one chromosome copy, these bacteria are genetically haploid. We show that the closely related bacterium Neisseria meningitidis is also polyploid, while the commensal organism Neisseria lactamica maintains chromosomes in single copy. We conclude that the pathogenic Neisseria strains are homozygous diploids.
Collapse
|
39
|
Abstract
The human species is the only natural host of Neisseria meningitidis, an important cause of bacterial meningitis globally, and, despite its association with devastating diseases, N. meningitidis is a commensal organism found frequently in the respiratory tract of healthy individuals. To date, antibiotic resistance is relatively uncommon in N. meningitidis isolates but, due to the rapid onset of disease in susceptible hosts, the mortality rate remains approx. 10%. Additionally, patients who survive meningococcal disease often endure numerous debilitating sequelae. N. meningitidis strains are classified primarily into serogroups based on the type of polysaccharide capsule expressed. In total, 13 serogroups have been described; however, the majority of disease is caused by strains belonging to one of only five serogroups. Although vaccines have been developed against some of these, a universal meningococcal vaccine remains a challenge due to successful immune evasion strategies of the organism, including mimicry of host structures as well as frequent antigenic variation. N. meningitidis express a range of virulence factors including capsular polysaccharide, lipopolysaccharide and a number of surface-expressed adhesive proteins. Variation of these surface structures is necessary for meningococci to evade killing by host defence mechanisms. Nonetheless, adhesion to host cells and tissues needs to be maintained to enable colonization and ensure bacterial survival in the niche. The aims of the present review are to provide a brief outline of meningococcal carriage, disease and burden to society. With this background, we discuss several bacterial strategies that may enable its survival in the human respiratory tract during colonization and in the blood during infection. We also examine several known meningococcal adhesion mechanisms and conclude with a section on the potential processes that may operate in vivo as meningococci progress from the respiratory niche through the blood to reach the central nervous system.
Collapse
|
40
|
Functional characterization of Lpt3 and Lpt6, the inner-core lipooligosaccharide phosphoethanolamine transferases from Neisseria meningitidis. J Bacteriol 2010; 192:208-16. [PMID: 19854897 DOI: 10.1128/jb.00558-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lipooligosaccharide (LOS) of Neisseria meningitidis contains heptose (Hep) residues that are modified with phosphoethanolamine (PEtn) at the 3 (3-PEtn) and/or 6 (6-PEtn) position. The lpt3 (NMB2010) and lpt6 (NMA0408) genes of N. meningitidis, which are proposed to encode the required HepII 3- and 6-PEtn transferases, respectively, were cloned and overexpressed as C-terminally polyhistidine-tagged fusion proteins in Escherichia coli and found to localize to the inner membrane, based on sucrose density gradient centrifugation. Lpt3-His(6) and Lpt6-His(6) were purified from Triton X-100-solubilized membranes by nickel chelation chromatography, and dot blot analysis of enzymatic reactions with 3-PEtn- and 6-PEtn-specific monoclonal antibodies demonstrated conclusively that Lpt3 and Lpt6 are phosphatidylethanolamine-dependent LOS HepII 3- and 6-PEtn transferases, respectively, and that both enzymes are capable of transferring PEtn to both fully acylated LOS and de-O-acylated (de-O-Ac) LOS. Further enzymatic studies using capillary electrophoresis-mass spectrometry (MS) demonstrated that both Lpt3 and Lpt6 are capable of transferring PEtn to de-O-Ac LOS molecules already containing PEtn at the 6 and 3 positions of HepII, respectively, demonstrating that there is no obligate order of PEtn addition in the generation of 3,6-di-PEtn LOS moieties in vitro.
Collapse
|
41
|
van Putten J, Tønjum T. Neisseria. Infect Dis (Lond) 2010. [DOI: 10.1016/b978-0-323-04579-7.00168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
42
|
Phosphoethanolamine is located at the 6-position and not at the 7-position of the distal heptose residue in the lipopolysaccharide from Neisseria meningitidis. Glycobiology 2009; 19:1436-45. [DOI: 10.1093/glycob/cwp117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Sialic acid catabolism confers a competitive advantage to pathogenic vibrio cholerae in the mouse intestine. Infect Immun 2009; 77:3807-16. [PMID: 19564383 DOI: 10.1128/iai.00279-09] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae DeltananA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment.
Collapse
|
44
|
Biology and pathogenesis of the evolutionarily successful, obligate human bacterium Neisseria meningitidis. Vaccine 2009; 27 Suppl 2:B71-7. [PMID: 19477055 DOI: 10.1016/j.vaccine.2009.04.070] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
For at least two hundred years, Neisseria meningitidis (the meningococcus), the cause of epidemic meningitis and sepsis, has inflicted rapid death, disability and fear on disparate human populations. The meningococcus is also recognized as a highly successful commensal organism exclusively found in humans. The evolution of N. meningitidis as an exclusive human commensal and sometimes a fulminant and fatal pathogen represents an important case study in microbial pathogenesis. We review the general status of our knowledge of pathogenesis of meningococcal carriage, transmission and virulence behavior with particular emphasis on the relevance of research on this topic to vaccine development.
Collapse
|
45
|
Endotoxin, capsule, and bacterial attachment contribute to Neisseria meningitidis resistance to the human antimicrobial peptide LL-37. J Bacteriol 2009; 191:3861-8. [PMID: 19376861 DOI: 10.1128/jb.01313-08] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathogenic bacteria have evolved numerous mechanisms to evade the human immune system and have developed widespread resistance to traditional antibiotics. We studied the human pathogen Neisseria meningitidis and present evidence of novel mechanisms of resistance to the human antimicrobial peptide LL-37. We found that bacteria attached to host epithelial cells are resistant to 10 microM LL-37 whereas bacteria in solution or attached to plastic are killed, indicating that the cell microenvironment protects bacteria. The bacterial endotoxin lipooligosaccharide and the polysaccharide capsule contribute to LL-37 resistance, probably by preventing LL-37 from reaching the bacterial membrane, as more LL-37 reaches the bacterial membrane on both lipooligosaccharide-deficient and capsule-deficient mutants whereas both mutants are also more susceptible to LL-37 killing than the wild-type strain. N. meningitidis bacteria respond to sublethal doses of LL-37 and upregulate two of their capsule genes, siaC and siaD, which further results in upregulation of capsule biosynthesis.
Collapse
|
46
|
Phosphoethanolamine substitution of lipid A and resistance of Neisseria gonorrhoeae to cationic antimicrobial peptides and complement-mediated killing by normal human serum. Infect Immun 2008; 77:1112-20. [PMID: 19114544 DOI: 10.1128/iai.01280-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capacity of Neisseria gonorrhoeae to cause disseminated gonococcal infection requires that such strains resist the bactericidal action of normal human serum. The bactericidal action of normal human serum against N. gonorrhoeae is mediated by the classical complement pathway through an antibody-dependent mechanism. The mechanism(s) by which certain strains of gonococci resist normal human serum is not fully understood, but alterations in lipooligosaccharide structure can affect such resistance. During an investigation of the biological significance of phosphoethanolamine extensions from lipooligosaccharide, we found that phosphoethanolamine substitutions from the heptose II group of the lipooligosaccharide beta-chain did not impact levels of gonococcal (strain FA19) resistance to normal human serum or polymyxin B. However, loss of phosphoethanolamine substitution from the lipid A component of lipooligosaccharide, due to insertional inactivation of lptA, resulted in increased gonococcal susceptibility to polymyxin B, as reported previously for Neisseria meningitidis. In contrast to previous reports with N. meningitidis, loss of phosphoethanolamine attached to lipid A rendered strain FA19 susceptible to complement killing. Serum killing of the lptA mutant occurred through the classical complement pathway. Both serum and polymyxin B resistance as well as phosphoethanolamine decoration of lipid A were restored in the lptA-null mutant by complementation with wild-type lptA. Our results support a role for lipid A phosphoethanolamine substitutions in resistance of this strict human pathogen to innate host defenses.
Collapse
|
47
|
Naturally-occurring human serum antibodies to inner core lipopolysaccharide epitopes of Neisseria meningitidis protect against invasive meningococcal disease caused by isolates displaying homologous inner core structures. Vaccine 2008; 26:6655-63. [DOI: 10.1016/j.vaccine.2008.09.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 08/04/2008] [Accepted: 09/04/2008] [Indexed: 11/18/2022]
|
48
|
John CM, Liu M, Jarvis GA. Profiles of structural heterogeneity in native lipooligosaccharides of Neisseria and cytokine induction. J Lipid Res 2008; 50:424-438. [PMID: 18832773 DOI: 10.1194/jlr.m800184-jlr200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fine differences in the phosphorylation and acylation of lipooligosaccharide (LOS) from Neisseria species are thought to profoundly influence the virulence of the organisms and the innate immune responses of the host, such as signaling through toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells (TREM). MALDI time-of-flight (TOF) mass spectrometry was used to characterize heterogeneity in the native LOS from Neisseria gonorrheae and N. meningitidis. A sample preparation methodology previously reported for Escherichia coli lipopolysaccharide (LPS) employing deposition of untreated LOS on a thin layer of a film composed of 2,4,6-trihydroxyacetophenone and nitrocellulose was used. Prominent peaks were observed corresponding to molecular ions and to fragment ions primarily formed by cleavage between the 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and the lipid A (LA). Analyses of these data and comparison with spectra of the corresponding O-deacylated or hydrogen fluoride-treated LOS enabled the detection of novel species that apparently differed by the expression of up to three phosphates with one or more phosphoethanolamine (PEA) groups on the LA. We found that the heterogeneity profile of acylation and phosphorylation correlates with the induction of proinflammatory cytokines in THP-1 monocytic cells. This methodology enabled us to rapidly profile components of structural variants of native LOS that are of importance biologically.
Collapse
Affiliation(s)
- Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121
| | - Mingfeng Liu
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121; Department of Laboratory Medicine, University of California, San Francisco, CA 94143.
| |
Collapse
|
49
|
Zughaier SM, Lindner B, Howe J, Garidel P, Koch MHJ, Brandenburg K, Stephens DS. Physicochemical characterization and biological activity of lipooligosaccharides and lipid A from Neisseria meningitidis. ACTA ACUST UNITED AC 2008; 13:343-57. [PMID: 18182462 DOI: 10.1177/0968051907084435] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Meningococcal endotoxin is the major contributor to the pathogenesis of fulminant sepsis and meningitis of meningococcal disease and is a potent activator of the MyD88-dependent and MyD88-independent pathways via the MD-2/TLR4 receptor. To understand better the biological properties of meningococcal endotoxin that initiates these events, the physicochemical structure of Neisseria meningitidis lipopoly(oligo)saccharide (LOS) of the serogroup B wild-type strain NMB (NeuNAc-Gal beta-GlcNAc-Gal beta-Glc beta-Hep2(GlcNAc,Glc alpha)PEA-Kdo2-lipid A, 1,4'-bisphosphorylated +/- PEA, PEtN) and the genetically-defined mutants (gmhB, Kdo2 -lipid A; kdtA, meningococcal lipid A; gmhB-lpxL1, Kdo2penta-acylated lipid A and NMB-lpx1, penta-acylated meningococcal LOS) were assessed in relation to bioactivity. Confirming previous work, Kdo2lipid A was the minimal structure required for optimal activation of the MD-2/TLR4 pathway of human macrophages. Meningococcal lipid A alone was a very weak agonist in stimulating human macrophages, even at high doses. Penta-acylated LOS structures demonstrated a moderate reduction in TLR4/MyD88-dependent signaling and a dramatic decrease in TLR4-TRIF-dependent signaling. For a better understanding of these results, we have performed an analysis of physicochemical parameters of the LOS structures such as the gel-to-liquid crystalline phase transition of the acyl chains, the inclination angle of the diglucosamine backbone with respect to the membrane surface, and the aggregate structure, and have found a very significant correlation of these parameters with biological activities extending our concept of endotoxicity.
Collapse
Affiliation(s)
- Susu M Zughaier
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30033, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Choudhury B, Kahler CM, Datta A, Stephens DS, Carlson RW. The structure of the L9 immunotype lipooligosaccharide from Neisseria meningitidis NMA Z2491. Carbohydr Res 2008; 343:2971-9. [PMID: 18804756 DOI: 10.1016/j.carres.2008.08.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 08/27/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
Abstract
The lipooligosaccharide (LOS) from the Neisseria meningitidis prototype serogroup A strain NMA Z2491, an L9 immunotype LOS, was isolated and structurally characterized using glycosyl composition and linkage determination, mass spectrometry, and both 1- and 2-D nuclear resonance spectroscopy. The results show that the L9 LOS has an identical structure to that of an L4 LOS structure with the exception that it does not contain a sialic acid residue linked to position 3 of the lactoneotetraose terminal galactosyl residue. Further, two oligosaccharides are present in the Z2491 LOS preparation, OS1 and OS2. They differ from one another only in that OS2 contains an added glycine moiety, presumably at O-7 on the inner core Hep II residue. The structures of these oligosaccharides are as follows: where R=H or Gly.
Collapse
Affiliation(s)
- Biswa Choudhury
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|