1
|
Bhale AS, Meilhac O, d'Hellencourt CL, Vijayalakshmi MA, Venkataraman K. Cholesterol transport and beyond: Illuminating the versatile functions of HDL apolipoproteins through structural insights and functional implications. Biofactors 2024; 50:922-956. [PMID: 38661230 DOI: 10.1002/biof.2057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
High-density lipoproteins (HDLs) play a vital role in lipid metabolism and cardiovascular health, as they are intricately involved in cholesterol transport and inflammation modulation. The proteome of HDL particles is indeed complex and distinct from other components in the bloodstream. Proteomics studies have identified nearly 285 different proteins associated with HDL; however, this review focuses more on the 15 or so traditionally named "apo" lipoproteins. Important lipid metabolizing enzymes closely working with the apolipoproteins are also discussed. Apolipoproteins stand out for their integral role in HDL stability, structure, function, and metabolism. The unique structure and functions of each apolipoprotein influence important processes such as inflammation regulation and lipid metabolism. These interactions also shape the stability and performance of HDL particles. HDLs apolipoproteins have multifaceted roles beyond cardiovascular diseases (CVDs) and are involved in various physiological processes and disease states. Therefore, a detailed exploration of these apolipoproteins can offer valuable insights into potential diagnostic markers and therapeutic targets. This comprehensive review article aims to provide an in-depth understanding of HDL apolipoproteins, highlighting their distinct structures, functions, and contributions to various physiological processes. Exploiting this knowledge holds great potential for improving HDL function, enhancing cholesterol efflux, and modulating inflammatory processes, ultimately benefiting individuals by limiting the risks associated with CVDs and other inflammation-based pathologies. Understanding the nature of all 15 apolipoproteins expands our knowledge of HDL metabolism, sheds light on their pathological implications, and paves the way for advancements in the diagnosis, prevention, and treatment of lipid and inflammatory-related disorders.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Olivier Meilhac
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | - Christian Lefebvre d'Hellencourt
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | | | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Yagi S, Miyamoto R, Tasaki M, Morino H, Otani R, Kadota M, Ise T, Yamazaki H, Kusunose K, Yamaguchi K, Yamada H, Soeki T, Wakatsuki T, Fukuda D, Ueda M, Sata M. The APOA1 p.Leu202Arg variant potentially causes autosomal recessive cardiac amyloidosis. Hum Genome Var 2024; 11:30. [PMID: 39152105 PMCID: PMC11329782 DOI: 10.1038/s41439-024-00288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/19/2024] Open
Abstract
ApoA-I amyloidosis is an extremely rare form of systemic amyloidosis that commonly involves the heart, kidneys, and liver. ApoA-I amyloidosis is caused by amyloidogenic variants of APOA1 that are inherited in an autosomal dominant manner. Here, we report a 69-year-old man with sporadic cardiac amyloidosis who was born to consanguineous parents and carried a homozygous variant of p.Leu202Arg in APOA1.
Collapse
Affiliation(s)
- Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
- Department of Community and Family Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
| | - Ryosuke Miyamoto
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masayoshi Tasaki
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Morino
- Department of Medical Genetics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Ryuji Otani
- Department of Cardiology, Tokushima Red Cross Hospital, Tokushima, Japan
| | - Muneyuki Kadota
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takayuki Ise
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hiroki Yamazaki
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kenya Kusunose
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koji Yamaguchi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hirotsugu Yamada
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takeshi Soeki
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tetsuzo Wakatsuki
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
3
|
Rashid MH, Sen P. Recent Advancements in Biosensors for the Detection and Characterization of Amyloids: A Review. Protein J 2024; 43:656-674. [PMID: 38824466 DOI: 10.1007/s10930-024-10205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Modern medicine has increased the human lifespan. However, with an increase in average lifespan risk of amyloidosis increases. Amyloidosis is a condition characterized by protein misfolding and aggregation. Early detection of amyloidosis is crucial, yet conventional diagnostic methods are costly and lack precision, necessitating innovative tools. This review explores recent advancements in diverse amyloid detection methodologies, highlighting the need for interdisciplinary research to develop a miniaturized electrochemical biosensor leveraging nanotechnology. However, the diagnostics industry faces obstacles such as skilled labor shortages, standardized selection processes, and concurrent multi-analyte identification challenges. Research efforts are focused on integrating electrochemical techniques into clinical applications and diagnostics, with the successful transition of miniaturized technologies from development to testing posing a significant hurdle. Label-free transduction techniques like voltammetry and electrochemical impedance spectroscopy (EIS) have gained traction due to their rapid, cost-effective, and user-friendly nature.
Collapse
Affiliation(s)
- Md Harun Rashid
- Centre for Bio Separation Technology (CBST), Technology Tower, Vellore Institute of Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Priyankar Sen
- Centre for Bio Separation Technology (CBST), Technology Tower, Vellore Institute of Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Namba N, Ohgita T, Tamagaki-Asahina H, Nishitsuji K, Shimanouchi T, Sato T, Saito H. Amyloidogenic 60-71 deletion/ValThr insertion mutation of apolipoprotein A-I generates a new aggregation-prone segment that promotes nucleation through entropic effects. Sci Rep 2023; 13:18514. [PMID: 37898709 PMCID: PMC10613298 DOI: 10.1038/s41598-023-45803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023] Open
Abstract
The N-terminal fragment of apolipoprotein A-I (apoA-I), comprising residues 1-83, contains three segments prone to aggregation: residues 14-22, 53-58, and 67-72. We previously demonstrated that residues 14-22 are critical in apoA-I fibril formation while residues 53-58 entropically drove the nucleation process. Here, we investigated the impact of amyloidogenic mutations (Δ60-71/VT, Δ70-72, and F71Y) located around residues 67-72 on fibril formation by the apoA-I 1-83 fragment. Thioflavin T fluorescence assay demonstrated that the Δ60-71/VT mutation significantly enhances both nucleation and fibril elongation rates, whereas the Δ70-72 and F71Y mutations had minimal effects. Circular dichroism measurements and microscopic observations revealed that all variant fragments formed straight fibrils, transitioning from random coils to β-sheet structures. Kinetic analysis demonstrated that primary nucleation is the dominant step in fibril formation, with fibril elongation reaching saturation at high protein concentrations. Thermodynamically, both nucleation and fibril elongation were enthalpically and entropically unfavorable in all apoA-I 1-83 variants, in which the entropic barrier of nucleation was almost eliminated for the Δ60-71/VT variant. Taken together, our results suggest the presence of new aggregation-prone segment in the Δ60-71/VT variant that promotes nucleation through entropic effects.
Collapse
Affiliation(s)
- Norihiro Namba
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Takashi Ohgita
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Hiroko Tamagaki-Asahina
- Division of Liberal Arts Sciences, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Toshinori Shimanouchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Takeshi Sato
- Division of Liberal Arts Sciences, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Hiroyuki Saito
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
5
|
Facondo P, Delbarba A, Pezzaioli LC, Ferlin A, Cappelli C. Osteoporosis in men with hypogonadism because of ApoA-I Leu75Pro amyloidosis under long-term testosterone therapy. Andrology 2023; 11:1077-1085. [PMID: 36624081 DOI: 10.1111/andr.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Apo A-I Leu75Pro amyloidosis is a rare systemic hereditary disease, whose hallmark and earliest involvement is testicular impairment, characterized by hypogonadism and macrorchidism; renal and hepatic involvement are the other characteristics. OBJECTIVE To evaluate for the first time the prevalence of osteopenia, osteoporosis and vertebral fractures (VFs) in men with this form of amyloidosis affected by hypogonadism and under long-term testosterone replacement therapy (TRT). MATERIALS AND METHODS Retrospective study on 50 men >50 years (median age 64.5) with dual-energy X-ray absorptiometry (DXA), hormonal, and biochemical data available at least 3 years after the start of TRT. Serum gonadal hormones and bone markers, lumbar and femoral DXA-scan with morphometric assay for evaluation of VFs were assessed. RESULTS At 7.5 years from start of TRT, lumbar and/or femoral osteopenia and osteoporosis were found in 54% and 10% of patients, respectively. Of the men who had the morphometric assay performed, five of 34 (14.7%) had VFs. Compared to patients with normal bone mineral density, men with osteopenia and osteoporosis were older, had lower body mass index, higher sex hormone binding globulin and showed more frequently renal involvement. Multiorgan involvement, without different TRT dosage, was associated with lower testosterone levels. DISCUSSION AND CONCLUSION Men with hypogonadism because of Apo A-I Leu75Pro amyloidosis under long-term TRT had a high burden of low bone mass (64%) and VFs (almost 15%). Osteopenia-osteoporosis was more frequently observed in older patients with multi-organ disease, which might contribute to impair bone health beyond hypogonadism.
Collapse
Affiliation(s)
- Paolo Facondo
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Andrea Delbarba
- Unit of Endocrinology and Metabolism, ASST Spedali Civili, Brescia, Italy
| | | | - Alberto Ferlin
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Brescia, Italy
| | - Carlo Cappelli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Unit of Endocrinology and Metabolism, ASST Spedali Civili, Brescia, Italy
| |
Collapse
|
6
|
Sud K, Narula N, Aikawa E, Arbustini E, Pibarot P, Merlini G, Rosenson RS, Seshan SV, Argulian E, Ahmadi A, Zhou F, Moreira AL, Côté N, Tsimikas S, Fuster V, Gandy S, Bonow RO, Gursky O, Narula J. The contribution of amyloid deposition in the aortic valve to calcification and aortic stenosis. Nat Rev Cardiol 2023; 20:418-428. [PMID: 36624274 PMCID: PMC10199673 DOI: 10.1038/s41569-022-00818-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 01/11/2023]
Abstract
Calcific aortic valve disease (CAVD) and stenosis have a complex pathogenesis, and no therapies are available that can halt or slow their progression. Several studies have shown the presence of apolipoprotein-related amyloid deposits in close proximity to calcified areas in diseased aortic valves. In this Perspective, we explore a possible relationship between amyloid deposits, calcification and the development of aortic valve stenosis. These amyloid deposits might contribute to the amplification of the inflammatory cycle in the aortic valve, including extracellular matrix remodelling and myofibroblast and osteoblast-like cell proliferation. Further investigation in this area is needed to characterize the amyloid deposits associated with CAVD, which could allow the use of antisense oligonucleotides and/or isotype gene therapies for the prevention and/or treatment of CAVD.
Collapse
Affiliation(s)
- Karan Sud
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Navneet Narula
- New York University Grossman School of Medicine, New York, NY, USA.
| | - Elena Aikawa
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Philippe Pibarot
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | | | | | | | - Edgar Argulian
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Ahmadi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fang Zhou
- New York University Grossman School of Medicine, New York, NY, USA
| | - Andre L Moreira
- New York University Grossman School of Medicine, New York, NY, USA
| | - Nancy Côté
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | | | | | - Sam Gandy
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Bonow
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Olga Gursky
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Pavanello C, Ossoli A. HDL and chronic kidney disease. ATHEROSCLEROSIS PLUS 2023; 52:9-17. [PMID: 37193017 PMCID: PMC10182177 DOI: 10.1016/j.athplu.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 05/18/2023]
Abstract
Low HDL-cholesterol (HDL-C) concentrations are a typical trait of the dyslipidemia associated with chronic kidney disease (CKD). In this condition, plasma HDLs are characterized by alterations in structure and function, and these particles can lose their atheroprotective functions, e.g., the ability to promote cholesterol efflux from peripheral cells, anti-oxidant and anti-inflammatory proprieties and they can even become dysfunctional, i.e., exactly damaging. The reduction in plasma HDL-C levels appears to be the only lipid alteration clearly linked to the progression of renal disease in CKD patients. The association between the HDL system and CKD development and progression is also supported by the presence of genetic kidney alterations linked to HDL metabolism, including mutations in the APOA1, APOE, APOL and LCAT genes. Among these, renal disease associated with LCAT deficiency is well characterized and lipid abnormalities detected in LCAT deficiency carriers mirror the ones observed in CKD patients, being present also in acquired LCAT deficiency. This review summarizes the major alterations in HDL structure and function in CKD and how genetic alterations in HDL metabolism can be linked to kidney dysfunction. Finally, the possibility of targeting the HDL system as possible strategy to slow CKD progression is reviewed.
Collapse
Affiliation(s)
| | - Alice Ossoli
- Corresponding author. Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti”, Università degli Studi di Milano, Via G. Balzaretti, 9, 20133, Milano, Italy.
| |
Collapse
|
8
|
Del Giudice R, Lindvall M, Nilsson O, Monti DM, Lagerstedt JO. The Apparent Organ-Specificity of Amyloidogenic ApoA-I Variants Is Linked to Tissue-Specific Extracellular Matrix Components. Int J Mol Sci 2022; 24:318. [PMID: 36613763 PMCID: PMC9820410 DOI: 10.3390/ijms24010318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Apolipoprotein A-I (ApoA-I) amyloidosis is a rare protein misfolding disease where fibrils of the N-terminal domain of the protein accumulate in several organs, leading to their failure. Although ApoA-I amyloidosis is systemic, the different amyloidogenic variants show a preferential tissue accumulation that appears to correlate with the location of the mutation in the protein sequence and with the local extracellular microenvironment. However, the factors leading to cell/tissues damage, as well as the mechanisms behind the observed organ specificity are mostly unknown. Therefore, we investigated the impact of ApoA-I variants on cell physiology and the mechanisms driving the observed tissue specificity. We focused on four ApoA-I amyloidogenic variants and analyzed their cytotoxicity as well as their ability to alter redox homeostasis in cell lines from different tissues (liver, kidney, heart, skin). Moreover, variant-specific interactions with extracellular matrix (ECM) components were measured by synchrotron radiation circular dichroism and enzyme-linked immunosorbent assay. Data indicated that ApoA-I variants exerted a cytotoxic effect in a time and cell-type-specific manner that seems to be due to protein accumulation in lysosomes. Interestingly, the ApoA-I variants exhibited specific preferential binding to the ECM components, reflecting their tissue accumulation pattern in vivo. While the binding did not to appear to affect protein conformations in solution, extended incubation of the amyloidogenic variants in the presence of different ECM components resulted in different aggregation propensity and aggregation patterns.
Collapse
Affiliation(s)
- Rita Del Giudice
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Mikaela Lindvall
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Oktawia Nilsson
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| | - Jens O. Lagerstedt
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, 20506 Malmö, Sweden
| |
Collapse
|
9
|
On the Aggregation of Apolipoprotein A-I. Int J Mol Sci 2022; 23:ijms23158780. [PMID: 35955915 PMCID: PMC9369196 DOI: 10.3390/ijms23158780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
In vivo, apolipoprotein A-I (ApoA-I) is commonly found together with lipids in so-called lipoprotein particles. The protein has also been associated with several diseases—such as atherosclerosis and amyloidosis—where insoluble aggregates containing ApoA-I are deposited in various organs or arteries. The deposited ApoA-I has been found in the form of amyloid fibrils, suggesting that amyloid formation may be involved in the development of these diseases. In the present study we investigated ApoA-I aggregation into amyloid fibrils and other aggregate morphologies. We studied the aggregation of wildtype ApoA-I as well as a disease-associated mutant, ApoA-I K107Δ, under different solution conditions. The aggregation was followed using thioflavin T fluorescence intensity. For selected samples the aggregates formed were characterized in terms of size, secondary structure content, and morphology using circular dichroism spectroscopy, dynamic light scattering, atomic force microscopy and cryo transmission electron microscopy. We find that ApoA-I may form globular protein-only condensates, in which the α-helical conformation of the protein is retained. The protein in its unmodified form appears resistant to amyloid formation; however, the conversion into amyloid fibrils rich in β-sheet is facilitated by oxidation or mutation. In particular, the K107Δ mutant shows higher amyloid formation propensity, and the end state appears to be a co-existence of β-sheet rich amyloid fibrils and α-helix-rich condensates.
Collapse
|
10
|
Del Giudice R, Imbimbo P, Pietrocola F, Martins I, De Palma FDE, Bravo-San Pedro JM, Kroemer G, Maiuri MC, Monti DM. Autophagy Alteration in ApoA-I Related Systemic Amyloidosis. Int J Mol Sci 2022; 23:ijms23073498. [PMID: 35408859 PMCID: PMC8998969 DOI: 10.3390/ijms23073498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
Amyloidoses are characterized by the accumulation and aggregation of misfolded proteins into fibrils in different organs, leading to cell death and consequent organ dysfunction. The specific substitution of Leu 75 for Pro in Apolipoprotein A-I protein sequence (ApoA-I; L75P-ApoA-I) results in late onset amyloidosis, where deposition of extracellular protein aggregates damages the normal functions of the liver. In this work, we describe that the autophagic process is inhibited in the presence of the L75P-ApoA-I amyloidogenic variant in stably transfected human hepatocyte carcinoma cells. The L75P-ApoA-I amyloidogenic variant alters the redox status of the cells, resulting into excessive mitochondrial stress and consequent cell death. Moreover, L75P-ApoA-I induces an impairment of the autophagic flux. Pharmacological induction of autophagy or transfection-enforced overexpression of the pro-autophagic transcription factor EB (TFEB) restores proficient proteostasis and reduces oxidative stress in these experimental settings, suggesting that pharmacological stimulation of autophagy could be a promising target to alleviate ApoA-I amyloidosis.
Collapse
Affiliation(s)
- Rita Del Giudice
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (R.D.G.); (P.I.)
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (R.D.G.); (P.I.)
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, 14157 Huddinge, Sweden;
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (I.M.); (F.D.E.D.P.); (G.K.); (M.C.M.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Fatima Domenica Elisa De Palma
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (I.M.); (F.D.E.D.P.); (G.K.); (M.C.M.)
- CEINGE-Biotecnologie Avanzate s.c.a.r.l., 80145 Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131 Napoli, Italy
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (I.M.); (F.D.E.D.P.); (G.K.); (M.C.M.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Institut Universitaire de France, 75005 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Ap-hp, 75015 Paris, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (I.M.); (F.D.E.D.P.); (G.K.); (M.C.M.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Pharmacy Department, University of Napoli Federico II, 80131 Napoli, Italy
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (R.D.G.); (P.I.)
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
- Correspondence:
| |
Collapse
|
11
|
Lewkowicz E, Gursky O. Dynamic protein structures in normal function and pathologic misfolding in systemic amyloidosis. Biophys Chem 2022; 280:106699. [PMID: 34773861 PMCID: PMC9416430 DOI: 10.1016/j.bpc.2021.106699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
Abstract
Dynamic and disordered regions in native proteins are often critical for their function, particularly in ligand binding and signaling. In certain proteins, however, such regions can contribute to misfolding and pathologic deposition as amyloid fibrils in vivo. For example, dynamic and disordered regions can promote amyloid formation by destabilizing the native structure, by directly triggering the aggregation, by promoting protein condensation, or by acting as sites of early proteolytic cleavage that favor a release of aggregation-prone fragments or facilitate fibril maturation. At the same time, enhanced dynamics in the native protein state accelerates proteolytic degradation that counteracts amyloid accumulation in vivo. Therefore, the functional need for dynamic protein regions must be balanced against their inherently labile nature. How exactly this balance is achieved and how is it shifted upon amyloidogenic mutations or post-translational modifications? To illustrate possible scenarios, here we review the beneficial and pathologic roles of dynamic and disordered regions in the native states of three families of human plasma proteins that form amyloid precursors in systemic amyloidoses: immunoglobulin light chain, apolipoproteins, and serum amyloid A. Analysis of structure, stability and local dynamics of these diverse proteins and their amyloidogenic variants exemplifies how disordered/dynamic regions can provide a functional advantage as well as an Achilles heel in pathologic amyloid formation.
Collapse
|
12
|
Gisonno RA, Masson T, Ramella NA, Barrera EE, Romanowski V, Tricerri MA. Evolutionary and structural constraints influencing apolipoprotein A-I amyloid behavior. Proteins 2021; 90:258-269. [PMID: 34414600 DOI: 10.1002/prot.26217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022]
Abstract
Apolipoprotein A-I (apoA-I) has a key function in the reverse cholesterol transport. However, aggregation of apoA-I single point mutants can lead to hereditary amyloid pathology. Although several studies have tackled the biophysical and structural consequences introduced by these mutations, there is little information addressing the relationship between the evolutionary and structural features that contribute to the amyloid behavior of apoA-I. We combined evolutionary studies, in silico mutagenesis and molecular dynamics (MD) simulations to provide a comprehensive analysis of the conservation and pathogenic role of the aggregation-prone regions (APRs) present in apoA-I. Sequence analysis demonstrated that among the four amyloidogenic regions described for human apoA-I, only two (APR1 and APR4) are evolutionary conserved across different species of Sarcopterygii. Moreover, stability analysis carried out with the FoldX engine showed that APR1 contributes to the marginal stability of apoA-I. Structural properties of full-length apoA-I models suggest that aggregation is avoided by placing APRs into highly packed and rigid portions of its native fold. Compared to silent variants extracted from the gnomAD database, the thermodynamic and pathogenic impact of amyloid mutations showed evidence of a higher destabilizing effect. MD simulations of the amyloid variant G26R evidenced the partial unfolding of the alpha-helix bundle with the concomitant exposure of APR1 to the solvent, suggesting an insight into the early steps involved in its aggregation. Our findings highlight APR1 as a relevant component for apoA-I structural integrity and emphasize a destabilizing effect of amyloid variants that leads to the exposure of this region.
Collapse
Affiliation(s)
- Romina A Gisonno
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP, CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| | - Tomas Masson
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM, CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| | - Nahuel A Ramella
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP, CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| | - Exequiel E Barrera
- Group of Biomolecular Simulations, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Víctor Romanowski
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM, CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| | - M Alejandra Tricerri
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP, CONICET-UNLP), Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
13
|
Frankel R, Bernfur K, Sparr E, Linse S. Purification and HDL-like particle formation of apolipoprotein A-I after co-expression with the EDDIE mutant of Npro autoprotease. Protein Expr Purif 2021; 187:105946. [PMID: 34298139 DOI: 10.1016/j.pep.2021.105946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 01/15/2023]
Abstract
Apolipoprotein A-I (ApoA-I) is the major protein constituent of high-density lipoprotein particles, and as such is involved in cholesterol transport and activation of LCAT (the lecithin:cholesterol acyltransferase). It may also form amyloidal deposits in the body, showing the multifaceted interactions of ApoA-I. In order to facilitate the study of ApoA-I in various systems, we have developed a protocol based on recombinant expression in E. coli. ApoA-I is protected from degradation by driving its expression to inclusion bodies using a tag: the EDDIE mutant of Npro autoprotease from classical swine fever virus. Upon refolding, EDDIE will cleave itself off from the target protein. The result is a tag-free ApoA-I, with its N-terminus intact. ApoA-I was then purified using a five-step procedure composed of anion exchange chromatography, immobilized metal ion affinity chromatography, hydrophobic interaction chromatography, boiling and size exclusion chromatography. This led to protein of high purity as confirmed with SDS-PAGE and mass spectrometry. The purified ApoA-I formed discoidal objects in the presence of zwitterionic phospholipid DMPC, showing its retained function of interacting with lipids. The protocol was also tested by expression and purification of two ApoA-I mutants, both of which could be purified in the same manner as the wildtype, showing the robustness of the protocol.
Collapse
Affiliation(s)
- Rebecca Frankel
- Department of Biochemistry and Structural Biology, Lund University, P O Box 124, SE22100, Lund, Sweden; Department of Physical Chemistry, Lund University, P O Box 124, SE22100, Lund, Sweden.
| | - Katja Bernfur
- Department of Biochemistry and Structural Biology, Lund University, P O Box 124, SE22100, Lund, Sweden
| | - Emma Sparr
- Department of Physical Chemistry, Lund University, P O Box 124, SE22100, Lund, Sweden
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, P O Box 124, SE22100, Lund, Sweden.
| |
Collapse
|
14
|
High-Density Lipoproteins and the Kidney. Cells 2021; 10:cells10040764. [PMID: 33807271 PMCID: PMC8065870 DOI: 10.3390/cells10040764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Dyslipidemia is a typical trait of patients with chronic kidney disease (CKD) and it is typically characterized by reduced high-density lipoprotein (HDL)-cholesterol(c) levels. The low HDL-c concentration is the only lipid alteration associated with the progression of renal disease in mild-to-moderate CKD patients. Plasma HDL levels are not only reduced but also characterized by alterations in composition and structure, which are responsible for the loss of atheroprotective functions, like the ability to promote cholesterol efflux from peripheral cells and antioxidant and anti-inflammatory proprieties. The interconnection between HDL and renal function is confirmed by the fact that genetic HDL defects can lead to kidney disease; in fact, mutations in apoA-I, apoE, apoL, and lecithin–cholesterol acyltransferase (LCAT) are associated with the development of renal damage. Genetic LCAT deficiency is the most emblematic case and represents a unique tool to evaluate the impact of alterations in the HDL system on the progression of renal disease. Lipid abnormalities detected in LCAT-deficient carriers mirror the ones observed in CKD patients, which indeed present an acquired LCAT deficiency. In this context, circulating LCAT levels predict CKD progression in individuals at early stages of renal dysfunction and in the general population. This review summarizes the main alterations of HDL in CKD, focusing on the latest update of acquired and genetic LCAT defects associated with the progression of renal disease.
Collapse
|
15
|
Ohgita T, Furutani Y, Nakano M, Hattori M, Suzuki A, Nakagawa M, Naniwa S, Morita I, Oyama H, Nishitsuji K, Kobayashi N, Saito H. Novel conformation‐selective monoclonal antibodies against apoA‐I amyloid fibrils. FEBS J 2021. [DOI: 10.1111/febs.15487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Takashi Ohgita
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Yuki Furutani
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Miyu Nakano
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Megumi Hattori
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Ayane Suzuki
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Miho Nakagawa
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Sera Naniwa
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | - Izumi Morita
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | - Hiroyuki Oyama
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | | | - Norihiro Kobayashi
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| |
Collapse
|
16
|
Yoshinaga T, Katoh N, Yazaki M, Sato M, Kametani F, Yasuda H, Watanabe K, Kawata K, Nakagawa M, Sekijima Y. Giant Hepatomegaly with Spleno-testicular Enlargement in a Patient with Apolipoprotein A-I Amyloidosis: An Uncommon Type of Amyloidosis in Japan. Intern Med 2021; 60:575-581. [PMID: 32999221 PMCID: PMC7946490 DOI: 10.2169/internalmedicine.5126-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hereditary systemic amyloidosis aside from transthyretin-related familial amyloid polyneuropathy is quite uncommon in Japan. We herein report a sporadic case of hereditary apolipoprotein A-I (apoAI) amyloidosis. The patient was a 43-year-old Japanese man who exhibited marked hepatomegaly with spleno-testicular enlargement. While he was initially thought to have primary AL amyloidosis, a proteomics analysis revealed that the amyloid was composed of variant apoAI with an E34K variant. To date, only one patient with apoAI amyloidosis has been reported in Japan. However, our study suggests that more patients may be present in Japan, and the majority may have been diagnosed with other types of amyloidosis due to its clinical similarity.
Collapse
Affiliation(s)
- Tsuneaki Yoshinaga
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Japan
- Institute for Biomedical Sciences, Shinshu University, Japan
| | - Nagaaki Katoh
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Japan
| | - Masahide Yazaki
- Institute for Biomedical Sciences, Shinshu University, Japan
- Clinical Laboratory Science Division, Shinshu University Graduate School of Medicine (Health Sciences), Japan
| | - Mitsuto Sato
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Japan
| | - Fuyuki Kametani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Hideo Yasuda
- First Depatment of Medicine, Hamamatsu University School of Medicine, Japan
| | | | - Kazuhito Kawata
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Japan
| | - Mayuko Nakagawa
- Institute for Biomedical Sciences, Shinshu University, Japan
- Clinical Laboratory Science Division, Shinshu University Graduate School of Medicine (Health Sciences), Japan
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Japan
- Institute for Biomedical Sciences, Shinshu University, Japan
| |
Collapse
|
17
|
Sagawa T, Kogiso T, Ito T, Yasuda H, Katoh N, Yoshinaga T, Yazaki M, Kato T, Omori A, Kotera Y, Egawa H, Yamamoto M, Tokushige K. Hereditary Apolipoprotein A-1 Amyloidosis With Glu34Lys Mutation Treated by Liver Transplantation: A Case Report. Transplant Proc 2021; 53:1327-1332. [PMID: 33573822 DOI: 10.1016/j.transproceed.2020.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Hereditary apolipoprotein A-1 (ApoA-1) amyloidosis is a rare disease characterized by progressive deposition of amyloid fibrils in the kidney, heart, and liver. We observed a 45-year-old male patient with liver failure. Liver dysfunction was detected at 30 years of age during an annual health check-up. At 35 years of age, renal dysfunction was also found. At 40 years of age, the pathologic findings of the liver revealed amyloid deposition. A testis biopsy specimen taken at 42 years of age to identify the cause of male infertility showed amyloid accumulation. At 43 years of age, the amyloid results and genetic profile led to a definitive diagnosis of hereditary ApoA-1 amyloidosis caused by Glu34Lys mutation. A family history was absent. Liver failure showed Budd-Chiari-like formation, including enlargement of the caudate lobe and liver congestion. Although the patient showed end-stage liver cirrhosis and renal failure, only liver transplant was performed considering the burden for a living donor. The enlarged liver (4.9 kg) showed amyloid deposition in parenchyma and the space of Disse. Amyloid also accumulated in the giant spleen. The APOA1 mutation Glu34Lys is extremely rare, and in this case hepatic failure was successfully treated by liver transplant to both replace organ function and reduce production of the amyloidogenic ApoA-1-variant protein. Careful observation for reaccumulation of amyloidosis in the organ is required.
Collapse
Affiliation(s)
- Takaomi Sagawa
- Department of Internal Medicine, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomomi Kogiso
- Department of Internal Medicine, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan.
| | - Taito Ito
- Department of Internal Medicine, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hideo Yasuda
- Hamamatsu University School of Medicine, Internal Medicine, Hamamatsu, Shizuoka, Japan
| | - Nagaaki Katoh
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Tsuneaki Yoshinaga
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Masahide Yazaki
- Department of Biomedical Laboratory Sciences, Shinshu University School of Health Sciences, Matsumoto, Nagano, Japan; Institute for Biomedical Sciences, Shinshu University, Matsumoto, Nagano, Japan
| | - Takaaki Kato
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Akiko Omori
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshihito Kotera
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroto Egawa
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masakazu Yamamoto
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Katsutoshi Tokushige
- Department of Internal Medicine, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
18
|
Zhang X, Ma X, Gan T, Shi Y, Wang Y, Liu Q. Secondary Chemical Bonding between Insoluble Calcium Oxalate and Carbonyl Oxygen Atoms of GLY and VAL Residues Triggers the Formation of Aβ Aggregates and Their Deposition in the Brain. ACS Chem Neurosci 2020; 11:4007-4011. [PMID: 33271013 DOI: 10.1021/acschemneuro.0c00662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite intense efforts, the cause of Alzheimer's disease is still not fully understood. A chemical and biochemical perspective could shed light on this disorder. Secondary chemical bonding between calcium and carbonyl oxygen atoms of glycine and valine might give rise to aggregates in the brain, which may later result in cell senescence. The decrease of solubility caused by amino acid substitutions in specific risk factors compounds insolubility issue and likely triggers early-onset Alzheimer's disease. Occasionally the enhancement of hydrogen bonding by amino acid replacements can reinforce the aggregates. Therefore, secondary chemical bonding to cations can generate cellular stresses in patients with Alzheimer's disease in addition to other chemical and biochemical interactions such as salt bridge. The distinction between early-onset and late-onset Alzheimer's disease risk factors may lie in the total capacity of a protein or local potency of a protein fragment to bind calcium or/and oxalate as calcium oxalate is highly insoluble and stressful.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Xiaoqian Ma
- The Third Xiang Ya Hospital of Central South University, Changsha 410006, China
| | - Tao Gan
- School of Basic Medicine, Gannan Medical University, Ganzhou 34100, Jiangxi, China
| | - Yunfan Shi
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuan Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qiuyun Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
19
|
Delbarba A, Facondo P, Fisogni S, Izzi C, Maffezzoni F, Pezzaioli LC, Di Lodovico E, Facchetti F, Cappelli C, Scolari F, Ferlin A. Testicular Involvement is a Hallmark of Apo A-I Leu75Pro Mutation Amyloidosis. J Clin Endocrinol Metab 2020; 105:5897040. [PMID: 32841328 DOI: 10.1210/clinem/dgaa587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/19/2020] [Indexed: 01/19/2023]
Abstract
CONTEXT Apo A-I Leu75Pro is a rare hereditary form of amyloidosis that mainly involves the kidney, the liver, and the testis. OBJECTIVE To define the characteristics of organ damage and testis impairment in the largest cohort collected to date of men with Apo A-I Leu75Pro amyloidosis. DESIGN, SETTING, AND PATIENTS Retrospective study from a prospectively collected database of 129 male subjects >18 years with Apo A-I Leu75Pro amyloidosis from a reference center at the University Hospital of Brescia, Italy. MAIN OUTCOME MEASURES We evaluated liver and renal function, scrotal ultrasound, reproductive hormone levels, testis biopsy, hypogonadal symptoms, and fertility. RESULTS Progressive involvement of testis, kidney, and liver was observed in 96/129 (74.4%) cases. Testis impairment was found in 88/129 patients (68.2%), liver in 59 (45.7%) and renal in 50 (38.8%). Testis damage was often the first manifestation of the disease and the only dysfunction in 30% of younger patients (<38 years). Testicular involvement was characterized mainly by primary (73/88 patients, 83.0%) and subclinical (8/88, 9.1%) hypogonadism. Almost all (85/88, 96.6%) also had high follicle-stimulating hormone, suggesting a primary global damage of endocrine and spermatogenic functions, and 30% of them did not conceive. Macroorchidism was found in 53/88 (60.2%) patients, especially in men <54 years (30/33, 90.9%). Apo A-I amyloid deposits were found in Sertoli cells, germinal epithelium, and vessel walls. CONCLUSION In men with Apo A-I Leu75Pro amyloidosis, testicular involvement is the hallmark of the disease, characterized by global primary testicular dysfunction and macroorchidism due to amyloid deposits.
Collapse
Affiliation(s)
- Andrea Delbarba
- Unit of Endocrinology and Metabolism, ASST Spedali Civili Brescia, Brescia, Italy
| | - Paolo Facondo
- Department of Clinical and Experimental Sciences, Unit of Endocrinology and Metabolism, University of Brescia and ASST Spedali Civili Brescia, Brescia, Italy
| | - Simona Fisogni
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia and ASST Spedali Civili Brescia, Brescia, Italy
| | - Claudia Izzi
- Prenatal Diagnosis Unit, Department of Obstetrics and Gynecology, ASST Spedali Civili, Brescia, Italy
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili Brescia, Brescia, Italy
| | - Filippo Maffezzoni
- Unit of Endocrinology and Metabolism, ASST Spedali Civili Brescia, Brescia, Italy
| | - Letizia Chiara Pezzaioli
- Department of Clinical and Experimental Sciences, Unit of Endocrinology and Metabolism, University of Brescia and ASST Spedali Civili Brescia, Brescia, Italy
| | - Elena Di Lodovico
- Department of Clinical and Experimental Sciences, Unit of Endocrinology and Metabolism, University of Brescia and ASST Spedali Civili Brescia, Brescia, Italy
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia and ASST Spedali Civili Brescia, Brescia, Italy
| | - Carlo Cappelli
- Department of Clinical and Experimental Sciences, Unit of Endocrinology and Metabolism, University of Brescia and ASST Spedali Civili Brescia, Brescia, Italy
| | - Francesco Scolari
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili Brescia, Brescia, Italy
| | - Alberto Ferlin
- Department of Clinical and Experimental Sciences, Unit of Endocrinology and Metabolism, University of Brescia and ASST Spedali Civili Brescia, Brescia, Italy
| |
Collapse
|
20
|
Nilsson O, Lindvall M, Obici L, Ekström S, Lagerstedt JO, Del Giudice R. Structure dynamics of ApoA-I amyloidogenic variants in small HDL increase their ability to mediate cholesterol efflux. J Lipid Res 2020; 62:100004. [PMID: 33410751 PMCID: PMC7890215 DOI: 10.1194/jlr.ra120000920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 01/17/2023] Open
Abstract
Apolipoprotein A-I (ApoA-I) of high density lipoproteins (HDLs) is essential for the transportation of cholesterol between peripheral tissues and the liver. However, specific mutations in ApoA-I of HDLs are responsible for a late-onset systemic amyloidosis, the pathological accumulation of protein fibrils in tissues and organs. Carriers of these mutations do not exhibit increased cardiovascular disease risk despite displaying reduced levels of ApoA-I/HDL cholesterol. To explain this paradox, we show that the HDL particle profiles of patients carrying either L75P or L174S ApoA-I amyloidogenic variants show a higher relative abundance of the 8.4-nm versus 9.6-nm particles and that serum from patients, as well as reconstituted 8.4- and 9.6-nm HDL particles (rHDL), possess increased capacity to catalyze cholesterol efflux from macrophages. Synchrotron radiation circular dichroism and hydrogen-deuterium exchange revealed that the variants in 8.4-nm rHDL have altered secondary structure composition and display a more flexible binding to lipids than their native counterpart. The reduced HDL cholesterol levels of patients carrying ApoA-I amyloidogenic variants are thus balanced by higher proportion of small, dense HDL particles, and better cholesterol efflux due to altered, region-specific protein structure dynamics.
Collapse
Affiliation(s)
- Oktawia Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mikaela Lindvall
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laura Obici
- Amyloidosis Research & Treatment Centre, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Simon Ekström
- BioMS - Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden
| | - Jens O Lagerstedt
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Lund Institute of Advanced Neutron and X-ray Science (LINXS), Lund, Sweden.
| | - Rita Del Giudice
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
21
|
Shi F, Zi Y, Lu Z, Li F, Yang M, Zhan F, Li Y, Li J, Zhao L, Lin L, Qin Z. Bacillus subtilis H2 modulates immune response, fat metabolism and bacterial flora in the gut of grass carp (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2020; 106:8-20. [PMID: 32717323 DOI: 10.1016/j.fsi.2020.06.061] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Functional ingredients such as Bacillus subtilis are used in aquaculture to improve fish condition, modulate microbiota and promote a healthy intestinal system. However, the underlying mechanisms of grass carp treated with B. subtilis are not fully characterized. This study investigated the gut microbes of grass carp after treated with B. subtilis H2 (106 CFU/mL) and Aeromonas hydrophila (106 CFU/mL). The intestinal flora was found that the dominant bacterial phyla identified in all samples were Proteobacteria, Actinobacteria, Fusobacteria, Bacteroidetes and Acidobacteria. Compared with the control group, the relative abundance of Proteobacteria and Bacteroidetes in B. subtilis group were significantly increased. In addition, the relative abundances of Aeromonas and Shewanella in A. hydrophila group were more than the control group. For the intestinal transcriptomic profiling of the grass carp treated with B. subtilis H2, 824 different expressed genes (DEGs) between the B. subtilis H2 treated and non-treated groups were detected, including 365 up-regulated and 459 down-regulated genes. Six DEGs were randomly selected for further validation by quantitative real-time RT-PCR (qRT-PCR) and the results were consistent with the RNA-seq data. Additionally, eight immunomodulatory genes (IL-4, IL-11, IFN-α, CSF, FOSB, MAPK12b, IGHV3-11 and IGHV3-21) were significantly up-regulated after treated with B. subtilis H2. Furthermore, almost all the lipid metabolism-associated genes were significantly up-regulated after treated with B. subtilis H2 according to the lipid metabolism pathways. Eleven lipid metabolism-associated genes were selected by qRT-PCR, which showed that the expressions of almost all the selected genes were increased, especially Apob-48, ABCG8 and DGAT. Taken together, our results support that B. subtilis could modulate the immune response, fat metabolism and bacterial assembly in the gut of grass carp.
Collapse
Affiliation(s)
- Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yingjuan Zi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Zhijie Lu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Fenglin Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Minxuan Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yanan Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jun Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA
| | - Lijuan Zhao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
22
|
Ma'arfi F, Chandra S, Fatima JE, Khan MY, Mir SS, Yusuf MA. Probing the Structure-Function relationship and amyloidogenic propensities in natural variants of apolipoprotein A-I. Biochem Biophys Rep 2020; 24:100815. [PMID: 33024841 PMCID: PMC7527581 DOI: 10.1016/j.bbrep.2020.100815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 11/25/2022] Open
Abstract
Background Apolipoprotein A-I (apoA-I) protects against atherosclerosis and participates in the removal of excess cellular cholesterol from peripheral organs. Several naturally occurring apoA-I mutations are associated with familial systemic amyloidosis, with deposition of amyloid aggregates in peripheral organs, resulting in multiple organ failure. Systematic studies on naturally occurring variants are needed to delineate their roles and involvement in pathogenesis. Methods We performed a comparative structure–function analysis of five naturally occurring apoA-I variants and the wild-type protein. Circular dichroism, Fourier-transform infrared spectroscopy, thioflavin T and congo red fluorescence assays, thermal, chemical, and proteolytic stability assays, and 1,2-Dimyristoyl-sn-glycero-3-phosphocholine clearance analyses were used to assess the effects of mutations on the structure, function, stability, aggregation, and proteolytic susceptibility of the proteins to explore the mechanisms underlying amyloidosis and hypercholesterolemia. Results We observed structural changes in the mutants independent of fibril formation, suggesting the influence of the surrounding environment. The mutants were involved in aggregate formation to varying degree; L170P, R173P, and V156E showed an increased propensity to aggregate under different physiological conditions. β sheet formation indicates that L170P and R173P participate in amyloid formation. Compared to WT, V156E and L170P exhibited higher capacity for lipid clearance. Conclusions The selected point mutations, including those outside the hot spot regions of apoA-I structure, perturb the physiochemical and conformational behavior of the protein, influencing its function. General significance The study provides insights into the structure–function relationships of naturally occurring apoA-I variants outside the hot spot mutation sites. Several apoA-I mutants are associated with systemic amyloidosis. Structure–function analysis of five apoA-I variants and wild-type protein was done. Point mutations alter the physicochemical behavior and conformation of the variants.
Collapse
Affiliation(s)
- Farah Ma'arfi
- Department of Bioengineering, Integral University, Kursi Road, Dasauli, Lucknow, 226026, India
| | - Subhash Chandra
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jamal e Fatima
- Department of Bioengineering, Integral University, Kursi Road, Dasauli, Lucknow, 226026, India
| | - Mohd Yasir Khan
- Department of Biosciences, Integral University, Kursi Road, Dasauli, Lucknow, 226026, India
| | - Snober S. Mir
- Department of Bioengineering, Integral University, Kursi Road, Dasauli, Lucknow, 226026, India
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Kursi Road, Dasauli, Lucknow, 226026, India
- Corresponding author. ;
| |
Collapse
|
23
|
Ciccone L, Shi C, di Lorenzo D, Van Baelen AC, Tonali N. The Positive Side of the Alzheimer's Disease Amyloid Cross-Interactions: The Case of the Aβ 1-42 Peptide with Tau, TTR, CysC, and ApoA1. Molecules 2020; 25:E2439. [PMID: 32456156 PMCID: PMC7288020 DOI: 10.3390/molecules25102439] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) represents a progressive amyloidogenic disorder whose advancement is widely recognized to be connected to amyloid-β peptides and Tau aggregation. However, several other processes likely contribute to the development of AD and some of them might be related to protein-protein interactions. Amyloid aggregates usually contain not only single type of amyloid protein, but also other type of proteins and this phenomenon can be rationally explained by the process of protein cross-seeding and co-assembly. Amyloid cross-interaction is ubiquitous in amyloid fibril formation and so a better knowledge of the amyloid interactome could help to further understand the mechanisms of amyloid related diseases. In this review, we discuss about the cross-interactions of amyloid-β peptides, and in particular Aβ1-42, with other amyloids, which have been presented either as integrated part of Aβ neurotoxicity process (such as Tau) or conversely with a preventive role in AD pathogenesis by directly binding to Aβ (such as transthyretin, cystatin C and apolipoprotein A1). Particularly, we will focus on all the possible therapeutic strategies aiming to rescue the Aβ toxicity by taking inspiration from these protein-protein interactions.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Chenghui Shi
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Davide di Lorenzo
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Anne-Cécile Van Baelen
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris Saclay, SIMoS, 91191 Gif-sur-Yvette, France;
| | - Nicolo Tonali
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| |
Collapse
|
24
|
Kurimitsu N, Mizuguchi C, Fujita K, Taguchi S, Ohgita T, Nishitsuji K, Shimanouchi T, Saito H. Phosphatidylethanolamine accelerates aggregation of the amyloidogenic N-terminal fragment of apoA-I. FEBS Lett 2020; 594:1443-1452. [PMID: 31968125 DOI: 10.1002/1873-3468.13737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022]
Abstract
Membrane lipid composition is known to influence aggregation and fibril formation of many amyloidogenic proteins. Here, we found that phosphatidylethanolamine (PE) accelerates aggregation of the N-terminal 1-83 fragment of an amyloidogenic G26R variant of apoA-I on lipid membranes. Circular dichroism and isothermal titration calorimetry measurements demonstrated that PE does not affect the α-helical structure and lipid binding property of apoA-I 1-83/G26R. Rather, fluorescence measurements indicated that PE induces more ordered lipid packing at the interfacial and acyl chain regions, providing more hydrophobic environments especially around the highly amyloidogenic regions in apoA-I on the membrane surface. These results suggest that PE promotes aggregation of the amyloidogenic N-terminal fragment of apoA-I on lipid membranes by inducing hydrophobic membrane environments.
Collapse
Affiliation(s)
- Naoko Kurimitsu
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Chiharu Mizuguchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kaho Fujita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Suzuno Taguchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | - Toshinori Shimanouchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
25
|
Li D, Liu D, Xu H, Yu XJ, Zhou FD, Zhao MH, Wang SX. Typing of hereditary renal amyloidosis presenting with isolated glomerular amyloid deposition. BMC Nephrol 2019; 20:476. [PMID: 31870425 PMCID: PMC6929319 DOI: 10.1186/s12882-019-1667-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 12/18/2019] [Indexed: 12/03/2022] Open
Abstract
Background The commonly used methods for amyloid typing include immunofluorescence or immunohistochemistry (IHC), which sometimes may come with diagnostic pitfalls. Mass spectrometry (MS)-based proteomics has been recognized as a reliable technique in amyloid typing. Case presentation We reported two middle-aged patients who presented with proteinuria, hypertension and normal renal function, and both had a family history of renal diseases. The renal biopsies of both patients revealed renal amyloidosis with the similar pattern by massive exclusively glomerular amyloid deposition. The IHC was performed by using a panel of antibodies against the common types of systemic amyloidosis, and demonstrated co-deposition of fibrinogen Aα chain and apolipoprotein A-I in the glomerular amyloid deposits of each patient. Then the MS on amyloid deposits captured by laser microdissection (LMD/MS) and genetic study of gene mutations were investigated. The large spectra corresponding to ApoA-I in case 1, and fibrinogen Aα chain in case 2 were identified by LMD/MS respectively. Further analysis of genomic DNA mutations demonstrated a heterozygous mutation of p. Trp74Arg in ApoA-I in case 1, and a heterozygous mutation of p. Arg547GlyfsTer21 in fibrinogen Aα chain in case 2. Conclusions The current study revealed that IHC was not reliable for accurate amyloid typing, and that MS-based proteomics and genetic analysis were essential for typing of hereditary amyloidosis.
Collapse
Affiliation(s)
- Danyang Li
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, 100191, People's Republic of China
| | - Hui Xu
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Xiao-Juan Yu
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, People's Republic of China
| | - Fu-de Zhou
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, People's Republic of China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, People's Republic of China
| | - Su-Xia Wang
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, 100034, People's Republic of China.
| |
Collapse
|
26
|
Varadi M, De Baets G, Vranken WF, Tompa P, Pancsa R. AmyPro: a database of proteins with validated amyloidogenic regions. Nucleic Acids Res 2019; 46:D387-D392. [PMID: 29040693 PMCID: PMC5753394 DOI: 10.1093/nar/gkx950] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/10/2017] [Indexed: 01/05/2023] Open
Abstract
Soluble functional proteins may transform into insoluble amyloid fibrils that deposit in a variety of tissues. Amyloid formation is a hallmark of age-related degenerative disorders. Perhaps surprisingly, amyloid fibrils can also be beneficial and are frequently exploited for diverse functional roles in organisms. Here we introduce AmyPro, an open-access database providing a comprehensive, carefully curated collection of validated amyloid fibril-forming proteins from all kingdoms of life classified into broad functional categories (http://amypro.net). In particular, AmyPro provides the boundaries of experimentally validated amyloidogenic sequence regions, short descriptions of the functional relevance of the proteins and their amyloid state, a list of the experimental techniques applied to study the amyloid state, important structural/functional/variation/mutation data transferred from UniProt, a list of relevant PDB structures categorized according to protein states, database cross-references and literature references. AmyPro greatly improves on similar currently available resources by incorporating both prions and functional amyloids in addition to pathogenic amyloids, and allows users to screen their sequences against the entire collection of validated amyloidogenic sequence fragments. By enabling further elucidation of the sequential determinants of amyloid fibril formation, we hope AmyPro will enhance the development of new methods for the precise prediction of amyloidogenic regions within proteins.
Collapse
Affiliation(s)
- Mihaly Varadi
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Greet De Baets
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Wim F Vranken
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, 1050, Belgium.,Interuniversity Institute of Bioinformatics in Brussels (IB) 2, ULB-VUB, Brussels, 1050, Belgium.,VIB Center for Structural Biology, Vrije Universiteit Brussel (VUB), Brussels, 1050, Belgium
| | - Peter Tompa
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, 1050, Belgium.,VIB Center for Structural Biology, Vrije Universiteit Brussel (VUB), Brussels, 1050, Belgium.,Institute of Enzymology, Research Centre for Natural Sciences of the HAS, Budapest, 1117, Hungary
| | - Rita Pancsa
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
27
|
Mizuguchi C, Nakagawa M, Namba N, Sakai M, Kurimitsu N, Suzuki A, Fujita K, Horiuchi S, Baba T, Ohgita T, Nishitsuji K, Saito H. Mechanisms of aggregation and fibril formation of the amyloidogenic N-terminal fragment of apolipoprotein A-I. J Biol Chem 2019; 294:13515-13524. [PMID: 31341020 DOI: 10.1074/jbc.ra119.008000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/20/2019] [Indexed: 01/26/2023] Open
Abstract
The N-terminal (1-83) fragment of the major constituent of plasma high-density lipoprotein, apolipoprotein A-I (apoA-I), strongly tends to form amyloid fibrils, leading to systemic amyloidosis. Here, using a series of deletion variants, we examined the roles of two major amyloidogenic segments (residues 14-22 and 50-58) in the aggregation and fibril formation of an amyloidogenic G26R variant of the apoA-I 1-83 fragment (apoA-I 1-83/G26R). Thioflavin T fluorescence assays and atomic force microscopy revealed that elimination of residues 14-22 completely inhibits fibril formation of apoA-I 1-83/G26R, whereas Δ32-40 and Δ50-58 variants formed fibrils with markedly reduced nucleation and fibril growth rates. CD measurements revealed structural transitions from random coil to β-sheet structures in all deletion variants except for the Δ14-22 variant, indicating that residues 14-22 are critical for the β-transition and fibril formation. Thermodynamic analysis of the kinetics of fibril formation by apoA-I 1-83/G26R indicated that both nucleation and fibril growth are enthalpically unfavorable, whereas entropically, nucleation is favorable, but fibril growth is unfavorable. Interestingly, the nucleation of the Δ50-58 variant was entropically unfavorable, indicating that residues 50-58 entropically promote the nucleation step in fibril formation of apoA-I 1-83/G26R. Moreover, a residue-level structural investigation of apoA-I 1-83/G26R fibrils with site-specific pyrene labeling indicated that the two amyloidogenic segments are in close proximity to form an amyloid core structure, whereas the N- and C-terminal tail regions are excluded from the amyloid core. These results provide critical insights into the aggregation mechanism and fibril structure of the amyloidogenic N-terminal fragment of apoA-I.
Collapse
Affiliation(s)
- Chiharu Mizuguchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Miho Nakagawa
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Norihiro Namba
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Misae Sakai
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Naoko Kurimitsu
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Ayane Suzuki
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kaho Fujita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Sayaka Horiuchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Teruhiko Baba
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
28
|
Howlett GJ, Ryan TM, Griffin MD. Lipid-apolipoprotein interactions in amyloid fibril formation and relevance to atherosclerosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:502-507. [DOI: 10.1016/j.bbapap.2018.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023]
|
29
|
Conservation of the Amyloid Interactome Across Diverse Fibrillar Structures. Sci Rep 2019; 9:3863. [PMID: 30846764 PMCID: PMC6405930 DOI: 10.1038/s41598-019-40483-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 11/23/2018] [Indexed: 12/30/2022] Open
Abstract
Several human proteins cause disease by misfolding and aggregating into amyloid fibril deposits affecting the surrounding tissues. Multiple other proteins co-associate with the diseased deposits but little is known about how this association is influenced by the nature of the amyloid aggregate and the properties of the amyloid-forming protein. In this study, we investigated the co-aggregation of plasma and cerebrospinal proteins in the presence of pre-formed amyloid fibrils. We evaluated the fibril-associated proteome across multiple amyloid fibril types that differ in their amino acid sequences, ultrastructural morphologies, and recognition by amyloid-binding dyes. The fibril types included aggregates formed by Amyloid β, α-synuclein, and FAS4 that are associated with pathological disorders, and aggregates formed by the glucagon and C-36 peptides, currently not linked to any human disease. Our results highlighted a highly similar response to the amyloid fold within the body fluid of interest. Fibrils with diverse primary sequences and ultrastructural morphologies only differed slightly in the composition of the co-aggregated proteins but were clearly distinct from less fibrillar and amorphous aggregates. The type of body fluid greatly affected the resulting amyloid interactome, underlining the role of the in vivo environment. We conclude that protein fibrils lead to a specific response in protein co-aggregation and discuss the effects hereof in the context of amyloid deposition.
Collapse
|
30
|
Moutafi M, Ziogas DC, Michopoulos S, Bagratuni T, Vasileiou V, Verga L, Merlini G, Palladini G, Matsouka C, Dimopoulos MA, Kastritis E. A new genetic variant of hereditary apolipoprotein A-I amyloidosis: a case-report followed by discussion of diagnostic challenges and therapeutic options. BMC MEDICAL GENETICS 2019; 20:23. [PMID: 30665372 PMCID: PMC6341640 DOI: 10.1186/s12881-019-0755-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/15/2019] [Indexed: 11/14/2022]
Abstract
Background Hereditary amyloidosis refers to a wide spectrum of rare diseases with different causative mutations in the genes of various proteins including transthyretin, apolipoprotein AI and AII, gelsolin, lysozyme, cystatin C, fibrinogen Aα-chain, β2-microglobulin, apolipoprotein CII and CIII. Case presentation Among hereditary amyloidosis subtypes, we describe here a specific case of Apolipoprotein AI amyloidosis (AApoAI), where the diagnosis began from an almost asymptomatic hepatomegaly followed by the development of primary hypogonadism. Baseline laboratory tests showed increased liver enzymes, while imaging tests revealed a suspected infiltrative liver disease. Patient underwent into liver biopsy and histological examination detected the presence of periodic acid-Schiff (−) and Congo-red (+) amorphous eosinophilic material within normal liver tissue. In the typing of amyloid by immunoelectron microscopy, the liver appeared heavily infiltrated by anti-apoAI (+) amyloid fibrils. Gene sequencing and mutational analysis revealed a single-base mutation at position c.251 T > C resulting in an amino acid substitution from leucine to proline in the mature ApoAI protein. This amino acid change led to lower cleavage and ApoAI deposition into the involved organs. Few years later, our patient remaining without treatment, came with symptoms consistent with primary hypogonadism but testicular involvement with ApoAI deposits could not be proven since the patient refused testicular biopsy. Based on this case, we recap the diagnostic challenges, the clinical manifestations, and the potential treatment options for this indolent hereditary amyloidosis subtype. Conclusions This case-report enlarges the clinical picture of ApoAI-driven disease and its complex genetic background and in parallel suggests for a more systematic approach in any case with strong suspicion of hereditary amyloidosis.
Collapse
Affiliation(s)
- Myrto Moutafi
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, 80 Vas Sofias Avenue, 11528, Athens, Greece
| | - Dimitrios C Ziogas
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, 80 Vas Sofias Avenue, 11528, Athens, Greece.
| | - Spyros Michopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, 80 Vas Sofias Avenue, 11528, Athens, Greece
| | - Tina Bagratuni
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, 80 Vas Sofias Avenue, 11528, Athens, Greece
| | - Vassiliki Vasileiou
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, 80 Vas Sofias Avenue, 11528, Athens, Greece
| | - Laura Verga
- Amyloidosis Research and Treatment Center, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Charis Matsouka
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, 80 Vas Sofias Avenue, 11528, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, 80 Vas Sofias Avenue, 11528, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, 80 Vas Sofias Avenue, 11528, Athens, Greece
| |
Collapse
|
31
|
Del Giudice R, Lagerstedt JO. High-efficient bacterial production of human ApoA-I amyloidogenic variants. Protein Sci 2018; 27:2101-2109. [PMID: 30291643 PMCID: PMC6237697 DOI: 10.1002/pro.3522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
Apolipoprotein A-I (ApoA-I)-related amyloidosis is a rare disease caused by missense mutations in the APOA1 gene. These mutations lead to protein aggregation and abnormal accumulation of ApoA-I amyloid fibrils in heart, liver, kidneys, skin, nerves, ovaries, or testes. Consequently, the carriers are at risk of single- or multi-organ failure and of need of organ transplantation. Understanding the basic molecular structure and function of ApoA-I amyloidogenic variants, as well as their biological effects, is, therefore, of great interest. However, the intrinsic low stability of this type of proteins makes their overexpression and purification difficult. To overcome this barrier, we here describe an optimized production and purification procedure for human ApoA-I amyloidogenic proteins that efficiently provides between 46 mg and 91 mg (depending on the protein variant) of pure protein per liter of Escherichia coli culture. Structural integrity of the amyloidogenic and native ApoA-I proteins were verified by circular dichroism spectroscopy and intrinsic fluorescence analysis, and preserved functionality was demonstrated by use of a lipid clearance assay as well as by reconstitution of high-density lipoprotein (HDL) particles. In conclusion, the use of the described high-yield protein production system to obtain amyloidogenic ApoA-I proteins, and their native counterpart, will enable molecular and cellular experimental studies aimed to explain the molecular basis for this rare disease.
Collapse
Affiliation(s)
- Rita Del Giudice
- Department of Experimental Medical ScienceLund UniversityS‐221 84LundSweden
| | - Jens O. Lagerstedt
- Department of Experimental Medical ScienceLund UniversityS‐221 84LundSweden
| |
Collapse
|
32
|
Morgado I, Panahi A, Burwash AG, Das M, Straub JE, Gursky O. Molecular Insights into Human Hereditary Apolipoprotein A-I Amyloidosis Caused by the Glu34Lys Mutation. Biochemistry 2018; 57:5738-5747. [PMID: 30184436 PMCID: PMC11259198 DOI: 10.1021/acs.biochem.8b00817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hereditary apolipoprotein A-I (apoA-I) amyloidosis is a life-threatening incurable genetic disorder whose molecular underpinnings are unclear. In this disease, variant apoA-I, the major structural and functional protein of high-density lipoprotein, is released in a free form, undergoes an α-helix to intermolecular cross-β-sheet conversion along with a proteolytic cleavage, and is deposited as amyloid fibrils in various organs, which can cause organ damage and death. Glu34Lys is the only known charge inversion mutation in apoA-I that causes human amyloidosis. To elucidate the structural underpinnings of the amyloidogenic behavior of Glu34Lys apoA-I, we generated its recombinant globular N-terminal domain (residues 1-184) and compared the conformation and dynamics of its lipid-free form with those of two other naturally occurring apoA-I variants, Phe71Tyr (amyloidogenic) and Leu159Arg (non-amyloidogenic). All variants showed reduced structural stability and altered aromatic residue packing. The greatest decrease in stability was observed in the non-amyloidogenic variant, suggesting that amyloid formation is driven by local structural perturbations at sensitive sites. Molecular dynamics simulations revealed local helical unfolding and suggested that transient opening of the Trp72 side chain induced mutation-dependent structural perturbations in a sensitive region, including the major amyloid hot spot residues Leu14-Leu22. We posit that a shift from the "closed" to the "open" orientation of the Trp72 side chain modulates structural protection of amyloid hot spots, suggesting a previously unknown early step in the protein misfolding pathway.
Collapse
Affiliation(s)
- Isabel Morgado
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2526, United States
| | - Afra Panahi
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, United States
| | - Andrew G. Burwash
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, United States
| | - Madhurima Das
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2526, United States
| | - John E. Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, United States
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2526, United States
- Amyloidosis Treatment and Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| |
Collapse
|
33
|
Gorbenko GP, Trusova V, Mizuguchi C, Saito H. Lipid Bilayer Interactions of Amyloidogenic N-Terminal Fragment of Apolipoprotein A-I Probed by Förster Resonance Energy Transfer and Molecular Dynamics Simulations. J Fluoresc 2018; 28:1037-1047. [DOI: 10.1007/s10895-018-2267-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/10/2018] [Indexed: 11/25/2022]
|
34
|
Wilson CJ, Das M, Jayaraman S, Gursky O, Engen JR. Effects of Disease-Causing Mutations on the Conformation of Human Apolipoprotein A-I in Model Lipoproteins. Biochemistry 2018; 57:4583-4596. [PMID: 30004693 DOI: 10.1021/acs.biochem.8b00538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasma high-density lipoproteins (HDLs) are protein-lipid nanoparticles that transport lipids and protect against atherosclerosis. Human apolipoprotein A-I (apoA-I) is the principal HDL protein whose mutations can cause either aberrant lipid metabolism or amyloid disease. Hydrogen-deuterium exchange (HDX) mass spectrometry (MS) was used to study the apoA-I conformation in model discoidal lipoproteins similar in size to large plasma HDL. We examined how point mutations associated with hereditary amyloidosis (F71Y and L170P) or atherosclerosis (L159R) influence the local apoA-I conformation in model lipoproteins. Unlike other apoA-I forms, the large particles showed minimal conformational heterogeneity, suggesting a fully extended protein conformation. Mutation-induced structural perturbations in lipid-bound protein were attenuated compared to the free protein and indicated close coupling between the two belt-forming apoA-I molecules. These perturbations propagated to distant lipoprotein sites, either increasing or decreasing their protection. This HDX MS study of large model HDL, compared with previous studies of smaller particles, ascertained that apoA-I's central region helps accommodate the protein conformation to lipoproteins of various sizes. This study also reveals that the effects of mutations on lipoprotein conformational dynamics are much weaker than those in a lipid-free protein. Interestingly, the mutation-induced perturbations propagate to distant sites nearly 10 nm away and alter their protection in ways that cannot be predicted from the lipoprotein structure and stability. We propose that long-range mutational effects are mediated by both protein and lipid and can influence lipoprotein functionality.
Collapse
Affiliation(s)
- Christopher J Wilson
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Madhurima Das
- Department of Physiology & Biophysics , Boston University School of Medicine , 700 Albany Street , Boston , Massachusetts 02118 , United States
| | - Shobini Jayaraman
- Department of Physiology & Biophysics , Boston University School of Medicine , 700 Albany Street , Boston , Massachusetts 02118 , United States
| | - Olga Gursky
- Department of Physiology & Biophysics , Boston University School of Medicine , 700 Albany Street , Boston , Massachusetts 02118 , United States.,Amyloidosis Research Center , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - John R Engen
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
35
|
Pané A, Ruiz S, Orois A, Martínez D, Squarcia M, Sastre L, Ruiz P, Caballería J, Mora M, Hanzu FA, Halperin I. Primary adrenal insufficiency due to hereditary apolipoprotein AI amyloidosis: endocrine involvement beyond hypogonadism. Amyloid 2018; 25:75-78. [PMID: 29446975 DOI: 10.1080/13506129.2018.1438390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Several mutations in the gene encoding apolipoprotein AI (apoAI) have been described as a cause of familial amyloidosis. Individuals with apoAI-derived (AApoAI) amyloidosis frequently manifest with liver, kidney, laryngeal, skin and myocardial involvement. Although primary hypogonadism (PH) is considered almost pathognomonic of this disease, until now, primary adrenal insufficiency (PAI) has not been described as a common clinical feature. Here, we report the first kindred with AApoAI amyloidosis in which PAI is well-documented. All family members with the Leu60_Phe71delins60Val_61Thr heterozygous mutation who were regularly followed-up at our centre were considered. Nineteen individuals had the confirmed APOA1 deletion/insertion mutation, with detailed medical records available in 11 cases. Of these, 6 had PAI and 3 (all males) had PH. Among them, one 47-year-old man, not previously diagnosed with PAI, developed adrenal crisis after liver transplantation, precipitated by an opportunistic infection. Transplantation due to organ failure, which necessitates use of immunosuppressive medication such as corticosteroids, is frequently required during the course of hereditary amyloidosis. Consequently, PAI can remain masked, being discovered only when an adrenal crisis develops. Therefore, according to the present evidence, patients with AApoAI amyloidosis should be submitted to regular testing of corticotrophin and cortisol levels in order to avoid delaying corticosteroid replacement.
Collapse
Affiliation(s)
- Adriana Pané
- a Department of Endocrinology and Nutrition , Hospital Clínic , Barcelona , Spain
| | - Sabina Ruiz
- a Department of Endocrinology and Nutrition , Hospital Clínic , Barcelona , Spain
| | - Aida Orois
- a Department of Endocrinology and Nutrition , Hospital Clínic , Barcelona , Spain
| | - Daniel Martínez
- b Department of Anatomic Pathology , Hospital Clínic , Barcelona , Spain
| | - Mattia Squarcia
- c Department of Radiology , Hospital Clínic , Barcelona , Spain
| | - Lydia Sastre
- d Department of Hepatology , Hospital Clínic , Barcelona , Spain
| | - Pablo Ruiz
- d Department of Hepatology , Hospital Clínic , Barcelona , Spain
| | - Joan Caballería
- d Department of Hepatology , Hospital Clínic , Barcelona , Spain.,e Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain.,f Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain
| | - Mireia Mora
- a Department of Endocrinology and Nutrition , Hospital Clínic , Barcelona , Spain
| | - Felicia A Hanzu
- a Department of Endocrinology and Nutrition , Hospital Clínic , Barcelona , Spain.,e Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain
| | - Irene Halperin
- a Department of Endocrinology and Nutrition , Hospital Clínic , Barcelona , Spain
| |
Collapse
|
36
|
Townsend D, Hughes E, Akien G, Stewart KL, Radford SE, Rochester D, Middleton DA. Epigallocatechin-3-gallate remodels apolipoprotein A-I amyloid fibrils into soluble oligomers in the presence of heparin. J Biol Chem 2018; 293:12877-12893. [PMID: 29853648 PMCID: PMC6102129 DOI: 10.1074/jbc.ra118.002038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/25/2018] [Indexed: 11/06/2022] Open
Abstract
Amyloid deposits of WT apolipoprotein A-I (apoA-I), the main protein component of high-density lipoprotein, accumulate in atherosclerotic plaques where they may contribute to coronary artery disease by increasing plaque burden and instability. Using CD analysis, solid-state NMR spectroscopy, and transmission EM, we report here a surprising cooperative effect of heparin and the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG), a known inhibitor and modulator of amyloid formation, on apoA-I fibrils. We found that heparin, a proxy for glycosaminoglycan (GAG) polysaccharides that co-localize ubiquitously with amyloid in vivo, accelerates the rate of apoA-I formation from monomeric protein and associates with insoluble fibrils. Mature, insoluble apoA-I fibrils bound EGCG (KD = 30 ± 3 μm; Bmax = 40 ± 3 μm), but EGCG did not alter the kinetics of apoA-I amyloid assembly from monomer in the presence or absence of heparin. EGCG selectively increased the mobility of specific backbone and side-chain sites of apoA-I fibrils formed in the absence of heparin, but the fibrils largely retained their original morphology and remained insoluble. By contrast, fibrils formed in the presence of heparin were mobilized extensively by the addition of equimolar EGCG, and the fibrils were remodeled into soluble 20-nm-diameter oligomers with a largely α-helical structure that were nontoxic to human umbilical artery endothelial cells. These results argue for a protective effect of EGCG on apoA-I amyloid associated with atherosclerosis and suggest that EGCG-induced remodeling of amyloid may be tightly regulated by GAGs and other amyloid co-factors in vivo, depending on EGCG bioavailability.
Collapse
Affiliation(s)
- David Townsend
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB
| | - Eleri Hughes
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB
| | - Geoffrey Akien
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB
| | - Katie L Stewart
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - David Rochester
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB
| | | |
Collapse
|
37
|
Dogan S, Paulus M, Forov Y, Weis C, Kampmann M, Cewe C, Kiesel I, Degen P, Salmen P, Rehage H, Tolan M. Human Apolipoprotein A1 at Solid/Liquid and Liquid/Gas Interfaces. J Phys Chem B 2018; 122:3953-3960. [PMID: 29488751 DOI: 10.1021/acs.jpcb.7b12481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An X-ray reflectivity study on the adsorption behavior of human apolipoprotein A1 (apoA1) at hydrophilic and hydrophobic interfaces is presented. It is shown that the protein interacts via electrostatic and hydrophobic interactions with the interfaces, resulting in the absorption of the protein. pH dependent measurements at the solid/liquid interface between silicon dioxide and aqueous protein solution show that in a small pH range between pH 4 and 6, adsorption is increased due to electrostatic attraction. Here, the native shape of the protein seems to be conserved. In contrast, the adsorption at the liquid/gas interface is mainly driven by hydrophobic effects, presumably by extending the hydrophobic regions of the amphipathic helices, and results in a conformational change of the protein during adsorption. However, the addition of differently charged membrane-forming lipids at the liquid/gas interface illustrates the ability of apoA1 to include lipids, resulting in a depletion of the lipids from the interface.
Collapse
|
38
|
Del Giudice R, Pesce A, Cozzolino F, Monti M, Relini A, Piccoli R, Arciello A, Monti DM. Effects of iron on the aggregation propensity of the N-terminal fibrillogenic polypeptide of human apolipoprotein A-I. Biometals 2018; 31:551-559. [DOI: 10.1007/s10534-018-0101-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/03/2018] [Indexed: 12/23/2022]
|
39
|
Effect of Phosphatidylserine and Cholesterol on Membrane-mediated Fibril Formation by the N-terminal Amyloidogenic Fragment of Apolipoprotein A-I. Sci Rep 2018; 8:5497. [PMID: 29615818 PMCID: PMC5882889 DOI: 10.1038/s41598-018-23920-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/22/2018] [Indexed: 01/31/2023] Open
Abstract
Here, we examined the effects of phosphatidylserine (PS) and cholesterol on the fibril-forming properties of the N-terminal 1‒83 fragment of an amyloidogenic G26R variant of apoA-I bound to small unilamellar vesicles. A thioflavin T fluorescence assay together with microscopic observations showed that PS significantly retards the nucleation step in fibril formation by apoA-I 1‒83/G26R, whereas cholesterol slightly enhances fibril formation. Circular dichroism analyses demonstrated that PS facilitates a structural transition from random coil to α-helix in apoA-I 1‒83/G26R with great stabilization of the α-helical structure upon lipid binding. Isothermal titration calorimetry measurements revealed that PS induces a marked increase in capacity for binding of apoA-I 1‒83/G26R to the membrane surface, perhaps due to electrostatic interactions of positively charged amino acids in apoA-I with PS. Such effects of PS to enhance lipid interactions and inhibit fibril formation of apoA-I were also observed for the amyloidogenic region-containing apoA-I 8‒33/G26R peptide. Fluorescence measurements using environment-sensitive probes indicated that PS induces a more solvent-exposed, membrane-bound conformation in the amyloidogenic region of apoA-I without affecting membrane fluidity. Since cell membranes have highly heterogeneous lipid compositions, our findings may provide a molecular basis for the preferential deposition of apoA-I amyloid fibrils in tissues and organs.
Collapse
|
40
|
Gaglione R, Smaldone G, Di Girolamo R, Piccoli R, Pedone E, Arciello A. Cell milieu significantly affects the fate of AApoAI amyloidogenic variants: predestination or serendipity? Biochim Biophys Acta Gen Subj 2017; 1862:377-384. [PMID: 29174954 DOI: 10.1016/j.bbagen.2017.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Specific apolipoprotein A-I variants are associated to severe hereditary amyloidoses. The organ distribution of AApoAI amyloidosis seems to depend on the position of the mutation, since mutations in residues from 1 to 75 are mainly associated to hepatic and renal amyloidosis, while mutations in residues from 173 to 178 are mostly responsible for cardiac, laryngeal, and cutaneous amyloidosis. Molecular bases of this tissue specificity are still poorly understood, but it is increasingly emerging that protein destabilization induced by amyloidogenic mutations is neither necessary nor sufficient for amyloidosis development. METHODS By using a multidisciplinary approach, including circular dichroism, dynamic light scattering, spectrofluorometric and atomic force microscopy analyses, the effect of target cells on the conformation and fibrillogenic pathway of the two AApoAI amyloidogenic variants AApoAIL75P and AApoAIL174S has been monitored. RESULTS Our data show that specific cell milieus selectively affect conformation, aggregation propensity and fibrillogenesis of the two AApoAI amyloidogenic variants. CONCLUSIONS An intriguing picture emerged indicating that defined cell contexts selectively induce fibrillogenesis of specific AApoAI variants. GENERAL SIGNIFICANCE An innovative methodological approach, based on the use of whole intact cells to monitor the effects of cell context on AApoAI variants fibrillogenic pathway, has been set up.
Collapse
Affiliation(s)
- Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | | | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Renata Piccoli
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Istituto Nazionale di Biostrutture e Biosistemi (INBB), Italy
| | - Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, CNR, Naples, Italy; Research Centre on Bioactive Peptides (CIRPeB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy.
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Istituto Nazionale di Biostrutture e Biosistemi (INBB), Italy.
| |
Collapse
|
41
|
Del Giudice R, Domingo-Espín J, Iacobucci I, Nilsson O, Monti M, Monti DM, Lagerstedt JO. Structural determinants in ApoA-I amyloidogenic variants explain improved cholesterol metabolism despite low HDL levels. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3038-3048. [PMID: 28887204 DOI: 10.1016/j.bbadis.2017.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 11/19/2022]
Abstract
Twenty Apolipoprotein A-I (ApoA-I) variants are responsible for a systemic hereditary amyloidosis in which protein fibrils can accumulate in different organs, leading to their failure. Several ApoA-I amyloidogenic mutations are also associated with hypoalphalipoproteinemia, low ApoA-I and high-density lipoprotein (HDL)-cholesterol plasma levels; however, subjects affected by ApoA-I-related amyloidosis do not show a higher risk of cardiovascular diseases (CVD). The structural features, the lipid binding properties and the functionality of four ApoA-I amyloidogenic variants were therefore inspected in order to clarify the paradox observed in the clinical phenotype of the affected subjects. Our results show that ApoA-I amyloidogenic variants are characterized by a different oligomerization pattern and that the position of the mutation in the ApoA-I sequence affects the molecular structure of the formed HDL particles. Although lipidation increases ApoA-I proteins stability, all the amyloidogenic variants analyzed show a lower affinity for lipids, both in vitro and in ex vivo mouse serum. Interestingly, the lower efficiency at forming HDL particles is compensated by a higher efficiency at catalysing cholesterol efflux from macrophages. The decreased affinity of ApoA-I amyloidogenic variants for lipids, together with the increased efficiency in the cholesterol efflux process, could explain why, despite the unfavourable lipid profile, patients affected by ApoA-I related amyloidosis do not show a higher CVD risk.
Collapse
Affiliation(s)
- Rita Del Giudice
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden.
| | - Joan Domingo-Espín
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Oktawia Nilsson
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Istituto Nazionale di Biostrutture e Biosistemi (INBB), Rome, Italy
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Istituto Nazionale di Biostrutture e Biosistemi (INBB), Rome, Italy
| | - Jens O Lagerstedt
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
42
|
Rudy SF, Jeffery CC, Damrose EJ. Clinical characteristics of laryngeal versus nonlaryngeal amyloidosis. Laryngoscope 2017; 128:670-674. [PMID: 28868800 DOI: 10.1002/lary.26846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/30/2017] [Accepted: 07/24/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVES/HYPOTHESIS Amyloidosis represents a heterogeneous group of disorders marked by abnormal protein formation and deposition. Laryngeal amyloidosis is rare and classically thought to remain isolated with little risk of systemic involvement or associated malignancy. This study sought to further characterize differences in clinical characteristics between patients with laryngeal and nonlaryngeal amyloidosis. STUDY DESIGN Retrospective case-control study. METHODS The Stanford Translational Research Integrated Database Environment was searched to identify patients with biopsy-confirmed laryngeal amyloidosis and patients with amyloidosis without laryngeal involvement on endoscopy. Mann-Whitney U and χ2 tests were used for statistical analysis. RESULTS Of 865 patients treated for amyloidosis between 1996 and 2016, 22 (2.5%) patients with biopsy-proven laryngeal amyloidosis were identified. An additional 22 patients with amyloidosis of a different organ and negative laryngoscopy-and therefore without laryngeal amyloidosis-were identified as controls. Compared to these controls with nonlaryngeal amyloidosis, patients with laryngeal amyloidosis were younger (mean age 52.8 years vs. 68.4 years, P < .0006), and 18% had additional organ involvement. Immunoglobulin light-chain amyloidosis was the most common subtype in both groups of patients. Eighty-six percent of patients with laryngeal amyloidosis required surgical excision, and of these patients, over 30% required multiple excisions. CONCLUSIONS There is a significant rate (18%) of multiorgan involvement in patients with laryngeal amyloidosis, which contradicts conventional concepts that this is an isolated disorder. This finding could have a significant impact on the evaluation and management of patients with laryngeal amyloidosis. LEVEL OF EVIDENCE 3b. Laryngoscope, 128:670-674, 2018.
Collapse
Affiliation(s)
- Shannon F Rudy
- Department of Otolaryngology-Head and Neck Surgery, Stanford School of Medicine, Stanford University, Stanford, California, U.S.A
| | - Caroline C Jeffery
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Edward J Damrose
- Department of Otolaryngology-Head and Neck Surgery, Stanford School of Medicine, Stanford University, Stanford, California, U.S.A
| |
Collapse
|
43
|
Rosú SA, Toledo L, Urbano BF, Sanchez SA, Calabrese GC, Tricerri MA. Learning from Synthetic Models of Extracellular Matrix; Differential Binding of Wild Type and Amyloidogenic Human Apolipoprotein A-I to Hydrogels Formed from Molecules Having Charges Similar to Those Found in Natural GAGs. Protein J 2017. [PMID: 28634774 DOI: 10.1007/s10930-017-9728-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Among other components of the extracellular matrix (ECM), glycoproteins and glycosaminoglycans (GAGs) have been strongly associated to the retention or misfolding of different proteins inducing the formation of deposits in amyloid diseases. The composition of these molecules is highly diverse and a key issue seems to be the equilibrium between physiological and pathological events. In order to have a model in which the composition of the matrix could be finely controlled, we designed and synthesized crosslinked hydrophilic polymers, the so-called hydrogels varying the amounts of negative charges and hydroxyl groups that are prevalent in GAGs. We checked and compared by fluorescence techniques the binding of human apolipoprotein A-I and a natural mutant involved in amyloidosis to the hydrogel scaffolds. Our results indicate that both proteins are highly retained as long as the negative charge increases, and in addition it was shown that the mutant is more retained than the Wt, indicating that the retention of specific proteins in the ECM could be part of the pathogenicity. These results show the importance of the use of these polymers as a model to get deep insight into the studies of proteins within macromolecules.
Collapse
Affiliation(s)
- Silvana A Rosú
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, La Plata, Buenos Aires, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120 S/N La Plata, 1900, La Plata, Buenos Aires, Argentina
| | - Leandro Toledo
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Bruno F Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Susana A Sanchez
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Graciela C Calabrese
- Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Primer Piso, C1113AAD, Buenos Aires, Argentina
| | - M Alejandra Tricerri
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, La Plata, Buenos Aires, Argentina. .,Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120 S/N La Plata, 1900, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
44
|
Townsend D, Hughes E, Hussain R, Siligardi G, Baldock S, Madine J, Middleton DA. Heparin and Methionine Oxidation Promote the Formation of Apolipoprotein A-I Amyloid Comprising α-Helical and β-Sheet Structures. Biochemistry 2017; 56:1632-1644. [DOI: 10.1021/acs.biochem.6b01120] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David Townsend
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Eleri Hughes
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Rohanah Hussain
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot OX11 0DE, Oxon, England
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot OX11 0DE, Oxon, England
| | - Sarah Baldock
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Jillian Madine
- Department of Biochemistry, Institute
of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - David A. Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
45
|
Oda MN. Lipid-free apoA-I structure - Origins of model diversity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:221-233. [PMID: 27890580 DOI: 10.1016/j.bbalip.2016.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 10/20/2016] [Accepted: 11/20/2016] [Indexed: 01/22/2023]
Abstract
Apolipoprotein A-I (apoA-I) is a prominent member of the exchangeable apolipoprotein class of proteins, capable of transitioning between lipid-bound and lipid-free states. It is the primary structural and functional protein of high density lipoprotein (HDL). Lipid-free apoA-I is critical to de novo HDL formation as it is the preferred substrate of the lipid transporter, ATP Binding Cassette Transporter A1 (ABCA1) Remaley et al. (2001) [1]. Lipid-free apoA-I is an important element in reverse cholesterol transport and comprehension of its structure is a core issue in our understanding of cholesterol metabolism. However, lipid-free apoA-I is highly conformationally dynamic making it a challenging subject for structural analysis. Over the past 20years there have been significant advances in overcoming the dynamic nature of lipid-free apoA-I, which have resulted in a multitude of proposed conformational models.
Collapse
Affiliation(s)
- Michael N Oda
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, United States.
| |
Collapse
|
46
|
Arciello A, Piccoli R, Monti DM. Apolipoprotein A-I: the dual face of a protein. FEBS Lett 2016; 590:4171-4179. [DOI: 10.1002/1873-3468.12468] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/12/2016] [Accepted: 10/24/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Angela Arciello
- Department of Chemical Sciences; University of Naples Federico II; Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB); Rome Italy
| | - Renata Piccoli
- Department of Chemical Sciences; University of Naples Federico II; Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB); Rome Italy
| | - Daria Maria Monti
- Department of Chemical Sciences; University of Naples Federico II; Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB); Rome Italy
| |
Collapse
|
47
|
Jayaraman S, Sánchez-Quesada JL, Gursky O. Triglyceride increase in the core of high-density lipoproteins augments apolipoprotein dissociation from the surface: Potential implications for treatment of apolipoprotein deposition diseases. Biochim Biophys Acta Mol Basis Dis 2016; 1863:200-210. [PMID: 27768903 DOI: 10.1016/j.bbadis.2016.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022]
Abstract
Lipids in the body are transported via lipoproteins that are nanoparticles comprised of lipids and amphipathic proteins termed apolipoproteins. This family of lipid surface-binding proteins is over-represented in human amyloid diseases. In particular, all major proteins of high-density lipoproteins (HDL), including apoA-I, apoA-II and serum amyloid A, can cause systemic amyloidoses in humans upon protein mutations, post-translational modifications or overproduction. Here, we begin to explore how the HDL lipid composition influences amyloid deposition by apoA-I and related proteins. First, we summarize the evidence that, in contrast to lipoproteins that are stabilized by kinetic barriers, free apolipoproteins are labile to misfolding and proteolysis. Next, we report original biochemical and biophysical studies showing that increase in triglyceride content in the core of plasma or reconstituted HDL destabilizes the lipoprotein assembly, making it more labile to various perturbations (oxidation, thermal and chemical denaturation and enzymatic hydrolysis), and promotes apoA-I release in a lipid-poor/free aggregation-prone form. Together, the results suggest that decreasing plasma levels of triglycerides will shift the dynamic equilibrium from the lipid-poor/free (labile) to the HDL-bound (protected) apolipoprotein state, thereby decreasing the generation of the protein precursor of amyloid. This prompts us to propose that triglyceride-lowering therapies may provide a promising strategy to alleviate amyloid diseases caused by the deposition of HDL proteins.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, USA
| | - Jose Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Biomedical Research Institute IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, USA.
| |
Collapse
|
48
|
Mikawa S, Mizuguchi C, Nishitsuji K, Baba T, Shigenaga A, Shimanouchi T, Sakashita N, Otaka A, Akaji K, Saito H. Heparin promotes fibril formation by the N-terminal fragment of amyloidogenic apolipoprotein A-I. FEBS Lett 2016; 590:3492-3500. [DOI: 10.1002/1873-3468.12426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/05/2016] [Accepted: 09/11/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Shiho Mikawa
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | - Chiharu Mizuguchi
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | - Kazuchika Nishitsuji
- Department of Molecular Pathology; Institute of Biomedical Sciences; Tokushima University Graduate School; Japan
| | - Teruhiko Baba
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
| | - Akira Shigenaga
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | | | - Naomi Sakashita
- Department of Molecular Pathology; Institute of Biomedical Sciences; Tokushima University Graduate School; Japan
| | - Akira Otaka
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | - Kenichi Akaji
- Department of Medicinal Chemistry; Kyoto Pharmaceutical University; Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
| |
Collapse
|
49
|
Tougaard BG, Pedersen KV, Krag SR, Gilbertson JA, Rowczenio D, Gillmore JD, Birn H. A case report of hereditary apolipoprotein A-I amyloidosis associated with a novel APOA1 mutation and variable phenotype. Eur J Med Genet 2016; 59:474-7. [DOI: 10.1016/j.ejmg.2016.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/19/2016] [Accepted: 05/25/2016] [Indexed: 11/26/2022]
|
50
|
Iowa Mutant Apolipoprotein A-I (ApoA-IIowa) Fibrils Target Lysosomes. Sci Rep 2016; 6:30391. [PMID: 27464946 PMCID: PMC4964564 DOI: 10.1038/srep30391] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/30/2016] [Indexed: 01/01/2023] Open
Abstract
The single amino acid mutation G26R in human apolipoprotein A-I (apoA-IIowa) is the first mutation that was associated with familial AApoA1 amyloidosis. The N-terminal fragments (amino acid residues 1–83) of apoA-I containing this mutation deposit as amyloid fibrils in patients’ tissues and organs, but the mechanisms of cellular degradation and cytotoxicity have not yet been clarified. In this study, we demonstrated degradation of apoA-IIowa fibrils via the autophagy-lysosomal pathway in human embryonic kidney 293 cells. ApoA-IIowa fibrils induced an increase in lysosomal pH and the cytosolic release of the toxic lysosomal protease cathepsin B. The mitochondrial dysfunction caused by apoA-IIowa fibrils depended on cathepsin B and was ameliorated by increasing the degradation of apoA-IIowa fibrils. Thus, although apoA-IIowa fibril transport to lysosomes and fibril degradation in lysosomes may have occurred, the presence of an excess number of apoA-IIowa fibrils, more than the lysosomes could degrade, may be detrimental to cells. Our results thus provide evidence that the target of apoA-IIowa fibrils is lysosomes, and we thereby gained a novel insight into the mechanism of AApoA1 amyloidosis.
Collapse
|