1
|
Pelleter M, Desaintjean C, Gyapay R, Massenavette B, Baudin F, Couque N, Tamisier R, Dudoignon B, Franco P, Mougenel-Chantereau A, Coutier L. A new nonsense pathogenic variant in exon 1 of PHOX2B leads to the diagnosis of congenital central hypoventilation syndrome with intra-familial variability. Arch Pediatr 2024; 31:470-472. [PMID: 39261201 DOI: 10.1016/j.arcped.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 09/13/2024]
Abstract
Congenital central hypoventilation syndrome (CCHS) is a rare genetic disorder of the autonomic nervous system resulting in decreased brain sensitivity to hypercapnia and hypoxia characterized by a genetic abnormality in the pair-like homeobox 2B (PHOX2B) gene. Most patients have a heterozygous expansion of the polyalanine repeat in exon 3 (PARM), while 10 % of patients have non-PARM (NPARM) mutations that can span the entire gene. The majority of pathogenic variants are de novo, but variants with incomplete penetrance can be identified in the heterozygous state. In the present report, CCHS was diagnosed in a symptomatic 3-month-old infant with neonatal respiratory distress. Genetic analysis revealed a new mutation in exon 1 of the PHOX2B gene - p.Ser28* (c.83C>G) - which was further identified in two family members, one minimally symptomatic and one asymptomatic. The identification of this new mutation supports the importance of sequencing the entire gene even when the classic PARM mutation is not found and highlights the phenotypic variability of CCHS.
Collapse
Affiliation(s)
- Morgane Pelleter
- Service de pneumologie, allergologie, mucoviscidose, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 69500 Bron, France
| | - Charlène Desaintjean
- Service de pneumologie, allergologie, mucoviscidose, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 69500 Bron, France
| | - Romane Gyapay
- Service de pneumologie, allergologie, mucoviscidose, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 69500 Bron, France
| | - Bruno Massenavette
- Service de pneumologie, allergologie, mucoviscidose, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 69500 Bron, France; Service d'Épileptologie Clinique, des Troubles du Sommeil et de Neurologie Fonctionnelle de l'Enfant, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 69500 Bron, France
| | - Florent Baudin
- Service de réanimation pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 69500 Bron, France; Agressions Pulmonaires et Circulatoires dans le Sepsis (APCSe), VetAgro Sup, Universités de Lyon, Marcy, l'Etoile, France
| | - Nathalie Couque
- Département de Génétique, Hôpital Robert Debré, Assistance Publique - Hôpitaux de Paris, 75000 Paris, France
| | - Renaud Tamisier
- Grenoble Alpes University, HP2 Laboratory, INSERM, 38043 Grenoble, France; Pôle Thorax et Vaisseaux, Grenoble Alpes University Hospital, 38043 Grenoble, France
| | - Benjamin Dudoignon
- Université de Paris, AP-HP, Hôpital Robert Debré, Service de Physiologie Pédiatrique Centre du Sommeil-CRMR Hypoventilations alvéolaires rares, INSERM NeuroDiderot, F-75019 Paris, France
| | - Patricia Franco
- Service d'Épileptologie Clinique, des Troubles du Sommeil et de Neurologie Fonctionnelle de l'Enfant, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 69500 Bron, France; Unité INSERM U1028 CNRS UMR 5292, Université Lyon 1, Lyon, France
| | - Antoine Mougenel-Chantereau
- Service de pneumologie, allergologie, mucoviscidose, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 69500 Bron, France
| | - Laurianne Coutier
- Service de pneumologie, allergologie, mucoviscidose, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 69500 Bron, France; Service d'Épileptologie Clinique, des Troubles du Sommeil et de Neurologie Fonctionnelle de l'Enfant, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 69500 Bron, France; Unité INSERM U1028 CNRS UMR 5292, Université Lyon 1, Lyon, France.
| |
Collapse
|
2
|
Soliman O, Acharya Y, Gilard M, Duffy G, Wijns W, Kannan V, Sultan S. Systematic review of cardiovascular neurocristopathy-contemporary insights and future perspectives. Front Cardiovasc Med 2024; 11:1333265. [PMID: 38660479 PMCID: PMC11040563 DOI: 10.3389/fcvm.2024.1333265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Neural crest cells (NCCs) are multipotent and are attributed to the combination of complex multimodal gene regulatory mechanisms. Cardiac neural crest (CNC) cells, originating from the dorsal neural tube, are pivotal architects of the cardio-neuro-vascular domain, which orchestrates the embryogenesis of critical cardiac and vascular structures. Remarkably, while the scientific community compiled a comprehensive inventory of neural crest derivatives by the early 1980s, our understanding of the CNC's role in various cardiovascular disease processes still needs to be explored. This review delves into the differentiation of NCC, specifically the CNC cells, and explores the diverse facets of non-syndromic cardiovascular neurocristopathies. Methods A systematic review was conducted as per the PRISMA Statement. Three prominent databases, PubMed, Scopus, and Embase, were searched, which yielded 1,840 studies. We excluded 1,796 studies, and the final selection of 44 studies formed the basis of this comprehensive review. Results Neurocristopathies are a group of genetic disorders that affect the development of cells derived from the NC. Cardiovascular neurocristopathy, i.e., cardiopathy and vasculopathy, associated with the NCC could occur in the form of (1) cardiac septation disorders, mainly the aortico-pulmonary septum; (2) great vessels and vascular disorders; (3) myocardial dysfunction; and (4) a combination of all three phenotypes. This could result from abnormalities in NCC migration, differentiation, or proliferation leading to structural abnormalities and are attributed to genetic, familial, sporadic or acquired causes. Discussion Phenotypic characteristics of cardiovascular neurocristopathies, such as bicuspid aortic valve and thoracic aortic aneurysm, share a common embryonic origin and are surprisingly prevalent in the general population, necessitating further research to identify the underlying pathogenic and genetic factors responsible for these cardiac anomalies. Such discoveries are essential for enhancing diagnostic screening and refining therapeutic interventions, ultimately improving the lives of individuals affected by these conditions.
Collapse
Affiliation(s)
- Osama Soliman
- Department of Cardiology, Galway University Hospital, Galway, Ireland
- CORRIB-CURAM-Vascular Group Collaborators, University of Galway, Galway, Ireland
| | - Yogesh Acharya
- CORRIB-CURAM-Vascular Group Collaborators, University of Galway, Galway, Ireland
- Western Vascular Institute, Department of Vascular and Endovascular Surgery, University Hospital Galway, University of Galway, Galway, Ireland
| | - Martine Gilard
- CORRIB-CURAM-Vascular Group Collaborators, University of Galway, Galway, Ireland
- Department of Cardiology, La Cavale Blanche Hospital, Brest, France
| | - Garry Duffy
- CORRIB-CURAM-Vascular Group Collaborators, University of Galway, Galway, Ireland
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - William Wijns
- Department of Cardiology, Galway University Hospital, Galway, Ireland
- CORRIB-CURAM-Vascular Group Collaborators, University of Galway, Galway, Ireland
| | - Venkatesh Kannan
- CORRIB-CURAM-Vascular Group Collaborators, University of Galway, Galway, Ireland
- Irish Centre for High-End Computing (ICHEC), University of Galway, Galway, Ireland
| | - Sherif Sultan
- CORRIB-CURAM-Vascular Group Collaborators, University of Galway, Galway, Ireland
- Western Vascular Institute, Department of Vascular and Endovascular Surgery, University Hospital Galway, University of Galway, Galway, Ireland
- Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Royal College of Surgeons in Ireland and University of Galway Affiliated Hospital, Galway, Ireland
| |
Collapse
|
3
|
Wen J, Song J, Chen J, Feng Z, Jing Q, Gong W, Kang X, Mei L, He C, Ma L, Feng Y. Modeling of pigmentation disorders associated with MITF mutation in Waardenburg syndrome revealed an impaired melanogenesis pathway in iPS-derived melanocytes. Pigment Cell Melanoma Res 2024; 37:21-35. [PMID: 37559350 DOI: 10.1111/pcmr.13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/18/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
Waardenburg Syndrome (WS) is a rare genetic disorder that leads to congenital hearing loss and pigmentation defects. Microphthalmia-associated transcription factor (MITF) is one of its significant pathogenic genes. Despite the comprehensive investigation in animal models, the pathogenic mechanism is still poorly described in humans due to difficulties accessing embryonic tissues. In this work, we used induced pluripotent stem cells derived from a WS patient carrying a heterozygous mutation in the MITF gene c.626A>T (p.His209Leu), and differentiated toward melanocyte lineage, which is the most affected cell type involved in WS. Compared with the wild-type cell line, the MITFmut cell line showed a reduced expression of the characteristic melanocyte-related genes and a lesser proportion of mature, fully pigmented melanosomes. The transcriptome analysis also revealed widespread gene expression changes at the melanocyte stage in the MITFmut cell line. The differentially expressed genes were enriched in melanogenesis and cell proliferation-related pathways. Interestingly, ion transport-related genes also showed a significant difference in MITFmut -induced melanocytes, indicating that the MITF mutant may lead to the dysfunction of potassium channels and transporters produced by intermediate cells in the cochlea, further causing the associated phenotype of deafness. Altogether, our study provides valuable insights into how MITF mutation affects WS patients, which might result in defective melanocyte development and the related phenotype based on the patient-derived iPSC model.
Collapse
Affiliation(s)
- Jie Wen
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Jian Song
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China
| | - Jiale Chen
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zhili Feng
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Qiancheng Jing
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Wei Gong
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Xiaoming Kang
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Lingyun Mei
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China
| | - Chufeng He
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China
| | - Lu Ma
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, China
| | - Yong Feng
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China
- Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Wang W, Li F, Wang J, Liu Z, Tian M, Wang Z, Li H, Qu J, Chen Y, Hou L. Disrupting Hedgehog signaling in melanocytes by SUFU knockout leads to ocular melanocytosis and anterior segment malformation. Dis Model Mech 2023; 16:dmm050210. [PMID: 37577930 PMCID: PMC10481947 DOI: 10.1242/dmm.050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Hedgehog (Hh) signaling is well known for its crucial role during development, but its specific role in individual cell lineages is less well characterized. Here, we disrupted Hh signaling specifically in melanocytes by using Cre-mediated cell-type-specific knockout of the Hh regulator suppressor of fused (Sufu). Interestingly, corresponding mice were fully pigmented and showed no developmental alterations in melanocyte numbers or distribution in skin and hair follicles. However, there were ectopic melanoblasts visible in the anterior chamber of the eye that eventually displayed severe malformation. Choroidal melanocytes remained unaltered. Surprisingly, the abnormal accumulation of anterior uveal melanoblasts was not the result of increased cell proliferation but of increased migration to ectopic locations such as the cornea. In melanoblasts in vitro, Sufu knockdown replicated the increase in cell migration without affecting proliferation and was mediated by an increased level of phosphorylated-ERK brought about by a reduction in the levels of the repressor form of GLI3. These results highlight the developmental divergence of distinct melanocyte subpopulations and may shed light on the pathogenesis of human ocular melanocytosis.
Collapse
Affiliation(s)
- Weizhuo Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Feiyang Li
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jing Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zuimeng Liu
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Meiyu Tian
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenhang Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Huirong Li
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jia Qu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yu Chen
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
5
|
Slattery SM, Perez IA, Ceccherini I, Chen ML, Kurek KC, Yap KL, Keens TG, Khaytin I, Ballard HA, Sokol EA, Mittal A, Rand CM, Weese-Mayer DE. Transitional care and clinical management of adolescents, young adults, and suspected new adult patients with congenital central hypoventilation syndrome. Clin Auton Res 2023; 33:231-249. [PMID: 36403185 DOI: 10.1007/s10286-022-00908-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE With contemporaneous advances in congenital central hypoventilation syndrome (CCHS), recognition, confirmatory diagnostics with PHOX2B genetic testing, and conservative management to reduce the risk of early morbidity and mortality, the prevalence of identified adolescents and young adults with CCHS and later-onset (LO-) CCHS has increased. Accordingly, there is heightened awareness and need for transitional care of these patients from pediatric medicine into a multidisciplinary adult medical team. Hence, this review summarizes key clinical and management considerations for patients with CCHS and LO-CCHS and emphasizes topics of particular importance for this demographic. METHODS We performed a systematic review of literature on diagnostics, pathophysiology, and clinical management in CCHS and LO-CCHS, and supplemented the review with anecdotal but extensive experiences from large academic pediatric centers with expertise in CCHS. RESULTS We summarized our findings topically for an overview of the medical care in CCHS and LO-CCHS specifically applicable to adolescents and adults. Care topics include genetic and embryologic basis of the disease, clinical presentation, management, variability in autonomic nervous system dysfunction, and clarity regarding transitional care with unique considerations such as living independently, family planning, exposure to anesthesia, and alcohol and drug use. CONCLUSIONS While a lack of experience and evidence exists in the care of adults with CCHS and LO-CCHS, a review of the relevant literature and expert consensus provides guidance for transitional care areas.
Collapse
Affiliation(s)
- Susan M Slattery
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA.
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Iris A Perez
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maida L Chen
- Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Kyle C Kurek
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Lee Yap
- Molecular Diagnostics Laboratory, Department of Pathology & Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Thomas G Keens
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Ilya Khaytin
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Heather A Ballard
- Department of Pediatric Anesthesiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Anesthesia, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth A Sokol
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Angeli Mittal
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
| | - Casey M Rand
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
| | - Debra E Weese-Mayer
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
6
|
Pio-Lopez L, Kuchling F, Tung A, Pezzulo G, Levin M. Active inference, morphogenesis, and computational psychiatry. Front Comput Neurosci 2022; 16:988977. [PMID: 36507307 PMCID: PMC9731232 DOI: 10.3389/fncom.2022.988977] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/17/2022] [Indexed: 11/26/2022] Open
Abstract
Active inference is a leading theory in neuroscience that provides a simple and neuro-biologically plausible account of how action and perception are coupled in producing (Bayes) optimal behavior; and has been recently used to explain a variety of psychopathological conditions. In parallel, morphogenesis has been described as the behavior of a (non-neural) cellular collective intelligence solving problems in anatomical morphospace. In this article, we establish a link between the domains of cell biology and neuroscience, by analyzing disorders of morphogenesis as disorders of (active) inference. The aim of this article is three-fold. We want to: (i) reveal a connection between disorders of morphogenesis and disorders of active inference as apparent in psychopathological conditions; (ii) show how disorders of morphogenesis can be simulated using active inference; (iii) suggest that active inference can shed light on developmental defects or aberrant morphogenetic processes, seen as disorders of information processing, and perhaps suggesting novel intervention and repair strategies. We present four simulations illustrating application of these ideas to cellular behavior during morphogenesis. Three of the simulations show that the same forms of aberrant active inference (e.g., deficits of sensory attenuation and low sensory precision) that have been used to explain psychopathological conditions (e.g., schizophrenia and autism) also produce familiar disorders of development and morphogenesis when implemented at the level of the collective behavior of a group of cells. The fourth simulation involves two cells with too high precision, in which we show that the reduction of concentration signaling and sensitivity to the signals of other cells treats the development defect. Finally, we present the results of an experimental test of one of the model's predictions in early Xenopus laevis embryos: thioridazine (a dopamine antagonist that may reduce sensory precision in biological systems) induced developmental (anatomical) defects as predicted. The use of conceptual and empirical tools from neuroscience to understand the morphogenetic behavior of pre-neural agents offers the possibility of new approaches in regenerative medicine and evolutionary developmental biology.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA, United States
| | - Franz Kuchling
- Allen Discovery Center, Tufts University, Medford, MA, United States
| | - Angela Tung
- Allen Discovery Center, Tufts University, Medford, MA, United States
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| |
Collapse
|
7
|
Wong J, Roy SF, Kokta V. Neurocristic Cutaneous Hamartoma With Perineuriomatous Differentiation: Can It Be Distinguished From Perineuriomatous Melanocytic Nevi? Am J Dermatopathol 2021; 43:757-758. [PMID: 33767071 DOI: 10.1097/dad.0000000000001934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jahg Wong
- Division of Pathology, University of Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
8
|
Wen J, Song J, Bai Y, Liu Y, Cai X, Mei L, Ma L, He C, Feng Y. A Model of Waardenburg Syndrome Using Patient-Derived iPSCs With a SOX10 Mutation Displays Compromised Maturation and Function of the Neural Crest That Involves Inner Ear Development. Front Cell Dev Biol 2021; 9:720858. [PMID: 34426786 PMCID: PMC8379019 DOI: 10.3389/fcell.2021.720858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022] Open
Abstract
Waardenburg syndrome (WS) is an autosomal dominant inherited disorder that is characterized by sensorineural hearing loss and abnormal pigmentation. SOX10 is one of its main pathogenicity genes. The generation of patient-specific induced pluripotent stem cells (iPSCs) is an efficient means to investigate the mechanisms of inherited human disease. In our work, we set up an iPSC line derived from a WS patient with SOX10 mutation and differentiated into neural crest cells (NCCs), a key cell type involved in inner ear development. Compared with control-derived iPSCs, the SOX10 mutant iPSCs showed significantly decreased efficiency of development and differentiation potential at the stage of NCCs. After that, we carried out high-throughput RNA-seq and evaluated the transcriptional misregulation at every stage. Transcriptome analysis of differentiated NCCs showed widespread gene expression alterations, and the differentially expressed genes (DEGs) were enriched in gene ontology terms of neuron migration, skeletal system development, and multicellular organism development, indicating that SOX10 has a pivotal part in the differentiation of NCCs. It's worth noting that, a significant enrichment among the nominal DEGs for genes implicated in inner ear development was found, as well as several genes connected to the inner ear morphogenesis. Based on the protein-protein interaction network, we chose four candidate genes that could be regulated by SOX10 in inner ear development, namely, BMP2, LGR5, GBX2, and GATA3. In conclusion, SOX10 deficiency in this WS subject had a significant impact on the gene expression patterns throughout NCC development in the iPSC model. The DEGs most significantly enriched in inner ear development and morphogenesis may assist in identifying the underlying basis for the inner ear malformation in subjects with WS.
Collapse
Affiliation(s)
- Jie Wen
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Song
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yijiang Bai
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yalan Liu
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinzhang Cai
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lingyun Mei
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Ma
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Chufeng He
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, China.,Department of Geriatrics, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Feng
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China.,Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
9
|
Sánchez N, Juárez-Balarezo J, Olhaberry M, González-Oneto H, Muzard A, Mardonez MJ, Franco P, Barrera F, Gaete M. Depression and Antidepressants During Pregnancy: Craniofacial Defects Due to Stem/Progenitor Cell Deregulation Mediated by Serotonin. Front Cell Dev Biol 2021; 9:632766. [PMID: 34476233 PMCID: PMC8406697 DOI: 10.3389/fcell.2021.632766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Depression is a common and debilitating mood disorder that increases in prevalence during pregnancy. Worldwide, 7 to 12% of pregnant women experience depression, in which the associated risk factors include socio-demographic, psychological, and socioeconomic variables. Maternal depression could have psychological, anatomical, and physiological consequences in the newborn. Depression has been related to a downregulation in serotonin levels in the brain. Accordingly, the most commonly prescribed pharmacotherapy is based on selective serotonin reuptake inhibitors (SSRIs), which increase local serotonin concentration. Even though the use of SSRIs has few adverse effects compared with other antidepressants, altering serotonin levels has been associated with the advent of anatomical and physiological changes in utero, leading to defects in craniofacial development, including craniosynostosis, cleft palate, and dental defects. Migration and proliferation of neural crest cells, which contribute to the formation of bone, cartilage, palate, teeth, and salivary glands in the craniofacial region, are regulated by serotonin. Specifically, craniofacial progenitor cells are affected by serotonin levels, producing a misbalance between their proliferation and differentiation. Thus, it is possible to hypothesize that craniofacial development will be affected by the changes in serotonin levels, happening during maternal depression or after the use of SSRIs, which cross the placental barrier, increasing the risk of craniofacial defects. In this review, we provide a synthesis of the current research on depression and the use of SSRI during pregnancy, and how this could be related to craniofacial defects using an interdisciplinary perspective integrating psychological, clinical, and developmental biology perspectives. We discuss the mechanisms by which serotonin could influence craniofacial development and stem/progenitor cells, proposing some transcription factors as mediators of serotonin signaling, and craniofacial stem/progenitor cell biology. We finally highlight the importance of non-pharmacological therapies for depression on fertile and pregnant women, and provide an individual analysis of the risk-benefit balance for the use of antidepressants during pregnancy.
Collapse
Affiliation(s)
- Natalia Sánchez
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jesús Juárez-Balarezo
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcia Olhaberry
- Department of Psychology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Research in Depression and Personality (MIDAP), Santiago, Chile
| | - Humberto González-Oneto
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonia Muzard
- Department of Psychology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Research in Depression and Personality (MIDAP), Santiago, Chile
| | - María Jesús Mardonez
- Department of Psychology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Research in Depression and Personality (MIDAP), Santiago, Chile
| | - Pamela Franco
- Department of Psychology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Research in Depression and Personality (MIDAP), Santiago, Chile
| | - Felipe Barrera
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcia Gaete
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Niu Z, Lai Y, Tan S, Tang F, Tang X, Su Y, Liu L, Xie L, Fang Q, Xie M, Tang A. A de novo mutation of the SOX10 gene associated with inner ear malformation in a Guangxi family with Waardenburg syndrome type II. Int J Pediatr Otorhinolaryngol 2021; 145:110711. [PMID: 33865100 DOI: 10.1016/j.ijporl.2021.110711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/21/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Waardenburg syndrome type 2 (WS2) is a rare neural-crest disorder, characterized by heterochromic irides or blue eyes and sensorineural hearing loss. The aim of this study was to analyze the clinical features and investigate the genetic cause of WS2 in a small family from Guangxi Zhuang Autonomous region. METHODS Whole-exome sequencing and mutational analysis were used to identify disease-causing genes in this family. RESULTS A de novo missense mutation, C.355C > T (p. Arg119Cys), in exon 2 of SOX10 was related to inner ear malformation in the proband and identified by whole exon sequencing, but this mutation was absent in normal controls and any public databases. According to nucleic acid sequence and protein bioinformatic analysis, this mutation is considered the cause of WS2 without neurologic involvement in the proband. CONCLUSIONS Our findings provide an accurate genetic diagnosis, counseling, and rehabilitation for family members and may contribute to further genotype-phenotype correlation studies of the SOX10 gene.
Collapse
Affiliation(s)
- Zhijie Niu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Yongjing Lai
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Songhua Tan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Fen Tang
- The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xianglong Tang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yupei Su
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Lei Liu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Lihong Xie
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qin Fang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Mao Xie
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Anzhou Tang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Regional Key Laboratory of Early Prevention and Treatment of High-Rise Tumors, Nanning, 530021, China.
| |
Collapse
|
11
|
Pilon N. Treatment and Prevention of Neurocristopathies. Trends Mol Med 2021; 27:451-468. [PMID: 33627291 DOI: 10.1016/j.molmed.2021.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Neurocristopathies form a heterogeneous group of rare diseases caused by abnormal development of neural crest cells. Heterogeneity of neurocristopathies directly relates to the nature of these migratory and multipotent cells, which generate dozens of specialized cell types throughout the body. Neurocristopathies are thus characterized by congenital malformations of tissues/organs that otherwise appear to have very little in common, such as the craniofacial skeleton and enteric nervous system. Treatment options are currently very limited, mainly consisting of corrective surgeries. Yet, as reviewed here, analyses of normal and pathological neural crest development in model organisms have opened up the possibility for better treatment options involving cellular and molecular approaches. These approaches provide hope that some neurocristopathies might soon be curable or preventable.
Collapse
Affiliation(s)
- Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal H3C 3P8, Québec, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Québec, Canada; Département de Pédiatrie, Université de Montréal, Montréal H3T 1C5, Québec, Canada.
| |
Collapse
|
12
|
Howard AGA, Baker PA, Ibarra-García-Padilla R, Moore JA, Rivas LJ, Tallman JJ, Singleton EW, Westheimer JL, Corteguera JA, Uribe RA. An atlas of neural crest lineages along the posterior developing zebrafish at single-cell resolution. eLife 2021; 10:e60005. [PMID: 33591267 PMCID: PMC7886338 DOI: 10.7554/elife.60005] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Neural crest cells (NCCs) are vertebrate stem cells that give rise to various cell types throughout the developing body in early life. Here, we utilized single-cell transcriptomic analyses to delineate NCC-derivatives along the posterior developing vertebrate, zebrafish, during the late embryonic to early larval stage, a period when NCCs are actively differentiating into distinct cellular lineages. We identified several major NCC/NCC-derived cell-types including mesenchyme, neural crest, neural, neuronal, glial, and pigment, from which we resolved over three dozen cellular subtypes. We dissected gene expression signatures of pigment progenitors delineating into chromatophore lineages, mesenchyme cells, and enteric NCCs transforming into enteric neurons. Global analysis of NCC derivatives revealed they were demarcated by combinatorial hox gene codes, with distinct profiles within neuronal cells. From these analyses, we present a comprehensive cell-type atlas that can be utilized as a valuable resource for further mechanistic and evolutionary investigations of NCC differentiation.
Collapse
Affiliation(s)
| | - Phillip A Baker
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | - Joshua A Moore
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - Lucia J Rivas
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - James J Tallman
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | | | | | - Rosa A Uribe
- Department of BioSciences, Rice UniversityHoustonUnited States
| |
Collapse
|
13
|
Schwenty-Lara J, Pauli S, Borchers A. Using Xenopus to analyze neurocristopathies like Kabuki syndrome. Genesis 2020; 59:e23404. [PMID: 33351273 DOI: 10.1002/dvg.23404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/08/2022]
Abstract
Neurocristopathies are human congenital syndromes that arise from defects in neural crest (NC) development and are typically associated with malformations of the craniofacial skeleton. Genetic analyses have been very successful in identifying pathogenic mutations, however, model organisms are required to characterize how these mutations affect embryonic development thereby leading to complex clinical conditions. The African clawed frog Xenopus laevis provides a broad range of in vivo and in vitro tools allowing for a detailed characterization of NC development. Due to the conserved nature of craniofacial morphogenesis in vertebrates, Xenopus is an efficient and versatile system to dissect the morphological and cellular phenotypes as well as the signaling events leading to NC defects. Here, we review a set of techniques and resources how Xenopus can be used as a disease model to investigate the pathogenesis of Kabuki syndrome and neurocristopathies in a wider sense.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
14
|
Introduction to phacomatoses (neurocutaneous disorders) in childhood. Childs Nerv Syst 2020; 36:2229-2268. [PMID: 32940773 DOI: 10.1007/s00381-020-04758-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
The Dutch ophthalmologist, Jan van der Hoeve, first introduced the terms phakoma/phakomata (from the old Greek word "ϕαχοσ" = lentil, spot, lens-shaped) to define similar retinal lesions recorded in tuberous sclerosis (1920) and in neurofibromatosis (1923). He later applied this concept: (a) to similar lesions in other organs (e.g. brain, heart and kidneys) (1932) and (b) to other disorders (i.e. von Hippel-Lindau disease and Sturge-Weber syndrome) (1933), and coined the term phakomatoses. At the same time, the American neurologist Paul Ivan Yakovlev and psychiatrist Riley H. Guthrie (1931) established the key role of nervous systems and skin manifestations in these conditions and proposed to name them neurocutaneous syndromes (or ectodermoses, to explain the pathogenesis). The Belgian pathologist, Ludo van Bogaert, came to similar conclusions (1935), but used the term neuro-ectodermal dysplasias. In the 1980s, the American paediatric neurologist Manuel R. Gomez introduced the concept of "hamartia/hamartoma" instead of phakoma/phakomata. "Genodermatoses" and "neurocristopathies" were alternative terms still used to define these conditions. Nowadays, however, the most acclaimed terms are "phacomatoses" and "neurocutaneous disorders", which are used interchangeably. Phacomatoses are a heterogeneous group of conditions (mainly) affecting the skin (with congenital pigmentary/vascular abnormalities and/or tumours), the central and peripheral nervous system (with congenital abnormalities and/or tumours) and the eye (with variable abnormalities). Manifestations may involve many other organs or systems including the heart, vessels, lungs, kidneys and bones. Pathogenically, they are explained by interplays between intra- and extra-neuronal signalling pathways encompassing receptor-to-protein and protein-to-protein cascades involving RAS, MAPK/MEK, ERK, mTOR, RHOA, PI3K/AKT, PTEN, GNAQ and GNA11 pathways, which shed light also to phenotypic variability and overlapping. We hereby review the history, classification, genomics, clinical manifestations, diagnostic criteria, surveillance protocols and therapies, in phacomatoses: (1) predisposing to development of tumours (i.e. the neurofibromatoses and allelic/similar disorders and schwannomatosis; tuberous sclerosis complex; Gorlin-Goltz and Lhermitte-Duclos-Cowden syndromes); (2) with vascular malformations (i.e. Sturge-Weber and Klippel-Trenaunay syndromes; megalencephaly/microcephaly-capillary malformation syndromes; CLOVES, Wyburn-Mason and mixed vascular nevus syndromes; blue rubber bleb nevus syndrome; hereditary haemorrhagic telangiectasia); (3) with vascular tumours (von Hippel-Lindau disease; PHACE(S)); (4) with pigmentary/connective tissue mosaicism (incontinentia pigmenti; pigmentary/Ito mosaicism; mTOR-related megalencephaly/focal cortical dysplasia/pigmentary mosaicism; RHOA-related ectodermal dysplasia; neurocutaneous melanocytosis; epidermal/papular spilus/Becker nevi syndromes; PENS and LEOPARD syndromes; encephalocraniocutaneous lipomatosis; lipoid proteinosis); (5) with dermal dysplasia (cerebellotrigeminal dermal dysplasia); and (6) with twin spotting or similar phenomena (phacomatosis pigmentovascularis and pigmentokeratotica; and cutis tricolor).
Collapse
|
15
|
Ruggieri M, Polizzi A, Catanzaro S, Bianco ML, Praticò AD, Di Rocco C. Neurocutaneous melanocytosis (melanosis). Childs Nerv Syst 2020; 36:2571-2596. [PMID: 33048248 DOI: 10.1007/s00381-020-04770-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2020] [Indexed: 02/03/2023]
Abstract
Neurocutaneous melanosis (NCM; MIM # 249400; ORPHA: 2481], first reported by the Bohemian pathologist Rokitansky in 1861, and now more precisely defined as neurocutaneous melanocytosis, is a rare, congenital syndrome characterised by the association of (1) congenital melanocytic nevi (CMN) of the skin with overlying hypertrichosis, presenting as (a) large (LCMN) or giant and/or multiple (MCMN) melanocytic lesions (or both; sometimes associated with smaller "satellite" nevi) or (b) as proliferative melanocytic nodules; and (2) melanocytosis (with infiltration) of the brain parenchyma and/or leptomeninges. CMN of the skin and leptomeningeal/nervous system infiltration are usually benign, more rarely may progress to melanoma or non-malignant melanosis of the brain. Approximately 12% of individuals with LCMN will develop NCM: wide extension and/or dorsal axial distribution of LCMN increases the risk of NCM. The CMN are recognised at birth and are distributed over the skin according to 6 or more patterns (6B patterns) in line with the archetypical patterns of distribution of mosaic skin disorders. Neurological manifestations can appear acutely in infancy, or more frequently later in childhood or adult life, and include signs/symptoms of intracranial hypertension, seizures/epilepsy, cranial nerve palsies, motor/sensory deficits, cognitive/behavioural abnormalities, sleep cycle anomalies, and eventually neurological deterioration. NMC patients may be symptomatic or asymptomatic, with or without evidence of the typical nervous system changes at MRI. Associated brain and spinal cord malformations include the Dandy-Walker malformation (DWM) complex, hemimegalencephaly, cortical dysplasia, arachnoid cysts, Chiari I and II malformations, syringomyelia, meningoceles, occult spinal dysraphism, and CNS lipoma/lipomatosis. There is no systemic involvement, or only rarely. Pathogenically, single postzygotic mutations in the NRAS (neuroblastoma RAS viral oncogene homologue; MIM # 164790; at 1p13.2) proto-oncogene explain the occurrence of single/multiple CMNs and melanocytic and non-melanocytic nervous system lesions in NCM: these disrupt the RAS/ERK/mTOR/PI3K/akt pathways. Diagnostic/surveillance work-ups require physical examination, ophthalmoscopy, brain/spinal cord magnetic resonance imaging (MRI) and angiography (MRA), positron emission tomography (PET), and video-EEG and IQ testing. Treatment strategies include laser therapy, chemical peeling, dermabrasion, and surgical removal/grafting for CMNs and shunt surgery and surgical removal/chemo/radiotherapy for CNS lesions. Biologically targeted therapies tailored (a) BRAF/MEK in NCM mice (MEK162) and GCMN (trametinib); (b) PI3K/mTOR (omipalisib/GSK2126458) in NMC cells; (c) RAS/MEK (vemurafenib and trametinib) in LCMNs cells; or created experimental NMC cells (YP-MEL).
Collapse
Affiliation(s)
- Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy.
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Stefano Catanzaro
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
- Unit of Neonatology and Neonatal Intensive Care Unit (NICU), AOU "Policlinico", PO "San Marco", University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Postgraduate Programme in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Andrea D Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Concezio Di Rocco
- Pediatric Neurosurgery, International Neuroscience Institute (INI), Hannover, Germany
| |
Collapse
|
16
|
Cramer SF, Salgado CM, Reyes-Múgica M. A study of dermal melanophages in childhood nevi. Reassessing so-called "pigment incontinence". J Cutan Pathol 2020; 47:809-814. [PMID: 32314421 DOI: 10.1111/cup.13718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 01/15/2023]
Abstract
In inflammatory dermatoses, dermal melanophages (MLP) are ascribed to "pigment incontinence," with melanin "dropping down" from the epidermis. Although this is analogous to the "dropping down" of melanocytic nevus cells (Abtropfung), MLP in ordinary nevi have not been systematically studied-so "pigment incontinence" may not apply to MLP in nevi. A total of 31 childhood nevi identified by pediatricians and family practitioners were evaluated for the distribution of MLP. We tested the hypothesis that a dermal origin of the melanin in MLP is more likely than dropping down from the epidermis. In our cohort, 90.3% (28/31) of childhood nevi had dermal MLP, a significantly higher frequency, compared to 31/60 ordinary adult nevi (P < 0.0001). Superficial dermis was the most common location (P < 0.001). However, only six specimens had MLP restricted to the superficial dermis, significantly less than predicted by the theory that melanin drops down from the epidermis (P < 0.00001). We also evaluated perivascular MLP, since nerves run together with vessels in neurovascular bundles (NVB), and it has been showed that precursors of melanocytes migrate from the neural crest to the skin as nerve sheath stem cells. Superficial NVB MLP correlated with deep NVB bundle MLP (P < 0.05), suggesting that NVB MLP represent "tombstones" for superficial and deep dermal nevus cells. Deep dermal, deep NVB, and deep periadnexal MLP may be valid biological criteria for diagnosis of congenital type (prenatal) nevi. Viewing prenatal nevi in children as a neurocristopathy fits a major principle of pediatric pathology: childhood diseases should be studied and understood based on what happens during tissue development.
Collapse
Affiliation(s)
- Stewart F Cramer
- Department of Pathology, Rochester General Hospital, University of Rochester School of Medicine, Rochester, New York, USA
| | - Cláudia M Salgado
- Department of Pathology, University of Pittsburgh School of Medicine, Division of Pediatric Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Miguel Reyes-Múgica
- Department of Pathology, University of Pittsburgh School of Medicine, Division of Pediatric Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Hamano T, Mutoh T, Naiki H, Shirafuji N, Ikawa M, Yamamura O, Dickson DW, Aiki S, Kuriyama M, Nakamoto Y. Subventricular glial nodules in neurofibromatosis 1 with craniofacial dysmorphism and occipital meningoencephalocele. eNeurologicalSci 2019; 17:100213. [PMID: 31799455 PMCID: PMC6881603 DOI: 10.1016/j.ensci.2019.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/18/2019] [Accepted: 11/17/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Neurofibromatosis 1 (NF1) is autosomally inherited disorder, characterized by café au lait spots and multiple neurofibromas. Subventricular glial nodules (SVGN) are multiple gliosis bulging into the ventricular lumen, and histologically consist of astrocytes and their processes. Damage to ependymal cells induces SVGN formation. CASE REPORT This case report describes a 50-year-old man with NF1, craniofacial dysmorphism, including sphenoid dysplasia, bone defects at the middle posterior fossa, with disconnection of the parieto-occipital sutures, and the left orbital bone, and occipital meningoencephalocele. He died of status epileptics. Pathologically, many SVGN were found around the ventricular wall. Many ependymal cells were stripped during ventricular dilatation. Therefore, to prevent brain tissue insult from direct exposure to CSF, the proliferation of astrocytes and their processes was speculated to have substitute for ependymal cells and induced SVGN formation.
Collapse
Affiliation(s)
- Tadanori Hamano
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Department of Aging and Dementia (DAD), Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Life Science Innovation Center, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tatsuro Mutoh
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Department of Neurology, Fujita Health University, Toyoake, Japan
| | - Hironobu Naiki
- Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Norimichi Shirafuji
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Department of Aging and Dementia (DAD), Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masamichi Ikawa
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Osamu Yamamura
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Dennis W. Dickson
- Department of Neuropathology, Mayo Clinic College of Medicine, FL, USA
| | | | - Masaru Kuriyama
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Department of Neurology, Ota Memorial Hospital, Fukuyama, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
18
|
Etchevers HC, Dupin E, Le Douarin NM. The diverse neural crest: from embryology to human pathology. Development 2019; 146:146/5/dev169821. [PMID: 30858200 DOI: 10.1242/dev.169821] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 02/07/2019] [Indexed: 01/13/2023]
Abstract
We review here some of the historical highlights in exploratory studies of the vertebrate embryonic structure known as the neural crest. The study of the molecular properties of the cells that it produces, their migratory capacities and plasticity, and the still-growing list of tissues that depend on their presence for form and function, continue to enrich our understanding of congenital malformations, paediatric cancers and evolutionary biology. Developmental biology has been key to our understanding of the neural crest, starting with the early days of experimental embryology and through to today, when increasingly powerful technologies contribute to further insight into this fascinating vertebrate cell population.
Collapse
Affiliation(s)
- Heather C Etchevers
- Aix-Marseille Université, INSERM, MMG, U1251, 27 boulevard Jean Moulin 13005 Marseille, France
| | - Elisabeth Dupin
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Nicole M Le Douarin
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| |
Collapse
|
19
|
Saito-Diaz K, Zeltner N. Induced pluripotent stem cells for disease modeling, cell therapy and drug discovery in genetic autonomic disorders: a review. Clin Auton Res 2019; 29:367-384. [PMID: 30631982 DOI: 10.1007/s10286-018-00587-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022]
Abstract
The autonomic nervous system (ANS) regulates all organs in the body independent of consciousness, and is thus essential for maintaining homeostasis of the entire organism. Diseases of the ANS can arise due to environmental insults such as injury, toxins/drugs and infections or due to genetic lesions. Human studies and animal models have been instrumental to understanding connectivity and regulation of the ANS and its disorders. However, research into cellular pathologies and molecular mechanisms of ANS disorders has been hampered by the difficulties in accessing human patient-derived ANS cells in large numbers to conduct meaningful research, mainly because patient neurons cannot be easily biopsied and primary human neuronal cultures cannot be expanded.Human-induced pluripotent stem cell (hiPSC) technology can elegantly bridge these issues, allowing unlimited access of patient-derived ANS cell types for cellular, molecular and biochemical analysis, facilitating the discovery of novel therapeutic targets, and eventually leading to drug discovery. Additionally, such cells may provide a source for cell replacement therapy to replenish lost or injured ANS tissue in patients.Here, we first review the anatomy and embryonic development of the ANS, as this knowledge is crucial for understanding disease modeling approaches. We then review the current advances in human stem cell technology for modeling diseases of the ANS, recent strides toward cell replacement therapy and drug discovery initiatives.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA. .,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA. .,Department of Cellular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
20
|
Prasad MS, Charney RM, García-Castro MI. Specification and formation of the neural crest: Perspectives on lineage segregation. Genesis 2019; 57:e23276. [PMID: 30576078 PMCID: PMC6570420 DOI: 10.1002/dvg.23276] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
Abstract
The neural crest is a fascinating embryonic population unique to vertebrates that is endowed with remarkable differentiation capacity. Thought to originate from ectodermal tissue, neural crest cells generate neurons and glia of the peripheral nervous system, and melanocytes throughout the body. However, the neural crest also generates many ectomesenchymal derivatives in the cranial region, including cell types considered to be of mesodermal origin such as cartilage, bone, and adipose tissue. These ectomesenchymal derivatives play a critical role in the formation of the vertebrate head, and are thought to be a key attribute at the center of vertebrate evolution and diversity. Further, aberrant neural crest cell development and differentiation is the root cause of many human pathologies, including cancers, rare syndromes, and birth malformations. In this review, we discuss the current findings of neural crest cell ontogeny, and consider tissue, cell, and molecular contributions toward neural crest formation. We further provide current perspectives into the molecular network involved during the segregation of the neural crest lineage.
Collapse
Affiliation(s)
- Maneeshi S Prasad
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| | - Rebekah M Charney
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| | - Martín I García-Castro
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| |
Collapse
|
21
|
Replogle MR, Sreevidya VS, Lee VM, Laiosa MD, Svoboda KR, Udvadia AJ. Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation. Dis Model Mech 2018; 11:dmm.035097. [PMID: 30409814 PMCID: PMC6307900 DOI: 10.1242/dmm.035097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
The neural crest (NC) is a transient population of embryonic progenitors that are implicated in a diverse range of congenital birth defects and pediatric syndromes. The broad spectrum of NC-related disorders can be attributed to the wide variety of differentiated cell types arising from the NC. In vitro models of NC development provide a powerful platform for testing the relative contributions of intrinsic and extrinsic factors mediating NC differentiation under normal and pathogenic conditions. Although differentiation is a dynamic process that unfolds over time, currently, there is no well-defined chronology that characterizes the in vitro progression of NC differentiation towards specific cell fates. In this study, we have optimized culture conditions for expansion of primary murine NC cells that give rise to both ectodermal and mesoectodermal derivatives, even after multiple passages. Significantly, we have delineated highly reproducible timelines that include distinct intermediate stages for lineage-specific NC differentiation in vitro. In addition, isolating both cranial and trunk NC cells from the same embryos enabled us to make direct comparisons between the two cell populations over the course of differentiation. Our results define characteristic changes in cell morphology and behavior that track the temporal progression of NC cells as they differentiate along the neuronal, glial and chondrogenic lineages in vitro. These benchmarks constitute a chronological baseline for assessing how genetic or environmental disruptions may facilitate or impede NC differentiation. Introducing a temporal dimension substantially increases the power of this platform for screening drugs or chemicals for developmental toxicity or therapeutic potential.
This article has an associated First Person interview with the first author of the paper. Summary: A novel method for isolating and expanding primary neural crest cells, and establishment of reproducible temporal benchmarks of differentiation, provides a potential screening platform for developmental toxicity or therapeutic capacity.
Collapse
Affiliation(s)
- Maria R Replogle
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Virinchipuram S Sreevidya
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Vivian M Lee
- STEMCELL Technologies, Vancouver, BC V6A 1BC, Canada
| | - Michael D Laiosa
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Kurt R Svoboda
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Ava J Udvadia
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| |
Collapse
|
22
|
Betters E, Charney RM, Garcia-Castro MI. Early specification and development of rabbit neural crest cells. Dev Biol 2018; 444 Suppl 1:S181-S192. [PMID: 29932896 PMCID: PMC6685428 DOI: 10.1016/j.ydbio.2018.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/01/2018] [Accepted: 06/18/2018] [Indexed: 11/19/2022]
Abstract
The phenomenal migratory and differentiation capacity of neural crest cells has been well established across model organisms. While the earliest stages of neural crest development have been investigated in non-mammalian model systems such as Xenopus and Aves, the early specification of this cell population has not been evaluated in mammalian embryos, of which the murine model is the most prevalent. Towards a more comprehensive understanding of mammalian neural crest formation and human comparative studies, we have used the rabbit as a mammalian system for the study of early neural crest specification and development. We examine the expression profile of well-characterized neural crest markers in rabbit embryos across developmental time from early gastrula to later neurula stages, and provide a comparison to markers of migratory neural crest in the chick. Importantly, we apply explant specification assays to address the pivotal question of mammalian neural crest ontogeny, and provide the first evidence that a specified population of neural crest cells exists in the rabbit gastrula prior to the overt expression of neural crest markers. Finally, we demonstrate that FGF signaling is necessary for early rabbit neural crest formation, as SU5402 treatment strongly represses neural crest marker expression in explant assays. This study pioneers the rabbit as a model for neural crest development, and provides the first demonstration of mammalian neural crest specification and the requirement of FGF signaling in this process.
Collapse
Affiliation(s)
- Erin Betters
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Rebekah M Charney
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Martín I Garcia-Castro
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
23
|
Dinsmore CJ, Soriano P. MAPK and PI3K signaling: At the crossroads of neural crest development. Dev Biol 2018; 444 Suppl 1:S79-S97. [PMID: 29453943 PMCID: PMC6092260 DOI: 10.1016/j.ydbio.2018.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 02/08/2023]
Abstract
Receptor tyrosine kinase-mediated growth factor signaling is essential for proper formation and development of the neural crest. The many ligands and receptors implicated in these processes signal through relatively few downstream pathways, frequently converging on the MAPK and PI3K pathways. Despite decades of study, there is still considerable uncertainty about where and when these signaling pathways are required and how they elicit particular responses. This review summarizes our current understanding of growth factor-induced MAPK and PI3K signaling in the neural crest.
Collapse
Affiliation(s)
- Colin J Dinsmore
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA.
| |
Collapse
|
24
|
Sen R, Pezoa SA, Carpio Shull L, Hernandez-Lagunas L, Niswander LA, Artinger KB. Kat2a and Kat2b Acetyltransferase Activity Regulates Craniofacial Cartilage and Bone Differentiation in Zebrafish and Mice. J Dev Biol 2018; 6:jdb6040027. [PMID: 30424580 PMCID: PMC6315545 DOI: 10.3390/jdb6040027] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/26/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Abstract
Cranial neural crest cells undergo cellular growth, patterning, and differentiation within the branchial arches to form cartilage and bone, resulting in a precise pattern of skeletal elements forming the craniofacial skeleton. However, it is unclear how cranial neural crest cells are regulated to give rise to the different shapes and sizes of the bone and cartilage. Epigenetic regulators are good candidates to be involved in this regulation, since they can exert both broad as well as precise control on pattern formation. Here, we investigated the role of the histone acetyltransferases Kat2a and Kat2b in craniofacial development using TALEN/CRISPR/Cas9 mutagenesis in zebrafish and the Kat2ahat/hat (also called Gcn5) allele in mice. kat2a and kat2b are broadly expressed during embryogenesis within the central nervous system and craniofacial region. Single and double kat2a and kat2b zebrafish mutants have an overall shortening and hypoplastic nature of the cartilage elements and disruption of the posterior ceratobranchial cartilages, likely due to smaller domains of expression of both cartilage- and bone-specific markers, including sox9a and col2a1, and runx2a and runx2b, respectively. Similarly, in mice we observe defects in the craniofacial skeleton, including hypoplastic bone and cartilage and altered expression of Runx2 and cartilage markers (Sox9, Col2a1). In addition, we determined that following the loss of Kat2a activity, overall histone 3 lysine 9 (H3K9) acetylation, the main epigenetic target of Kat2a/Kat2b, was decreased. These results suggest that Kat2a and Kat2b are required for growth and differentiation of craniofacial cartilage and bone in both zebrafish and mice by regulating H3K9 acetylation.
Collapse
Affiliation(s)
- Rwik Sen
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Sofia A Pezoa
- Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Lomeli Carpio Shull
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Laura Hernandez-Lagunas
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Lee A Niswander
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
25
|
New insights into neurocutaneous melanosis. Pediatr Radiol 2018; 48:1786-1796. [PMID: 30074086 PMCID: PMC7469866 DOI: 10.1007/s00247-018-4205-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/04/2018] [Accepted: 07/04/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neurocutaneous melanosis is a rare disorder in which children with large cutaneous melanotic nevi have associated melanosis in the brain. Although many affected children have structurally normal brains, some have associated developmental disorders or brain anomalies. OBJECTIVES To determine the range of extent of brain melanosis as assessed by magnetic resonance imaging (MRI) and to investigate the frequency and types of associated brain anomalies. MATERIALS AND METHODS We retrospectively reviewed brain and spine MRIs of 80 patients with congenital melanocytic nevi (range: 1 day to 22 years of age) affiliated with Nevus Outreach Inc. from 1998 to 2017. Central nervous system (CNS) melanosis was diagnosed when a mass with abnormal parenchymal T1 hyperintensity was seen. The locations of abnormal signal, associated malformations, the presence of contrast enhancement and, in patients with more than one MRI, changes over time were recorded. Associations among findings were analyzed using chi-square test or Fisher exact test. RESULTS Brain abnormalities were identified in 33 patients. The most common finding was melanosis in the amygdala, which was found in 31 patients (an isolated finding in 14 patients). Nineteen patients had melanosis in the brainstem, cerebellum, cerebral cortex or thalamus. Cerebral and/or spinal leptomeningeal enhancement was uncommon (five patients). Hindbrain melanosis was associated with cerebellar and pontine hypoplasia (P=0.012). Brain melanosis was most easily seen on T1 images prior to myelination; reduced/loss of visibility was noted as the CNS matured. CONCLUSION Brain melanosis is a common manifestation in children with large cutaneous melanotic nevi, most commonly found in the anterior temporal lobes (amygdala), brainstem, cerebellum and cerebral cortex. Hindbrain melanosis is associated with hypoplasia of the affected structures. Early imaging is optimal to provide the greatest sensitivity for diagnosis and to guide proper management.
Collapse
|
26
|
Bérubé-Simard FA, Pilon N. Molecular dissection of CHARGE syndrome highlights the vulnerability of neural crest cells to problems with alternative splicing and other transcription-related processes. Transcription 2018; 10:21-28. [PMID: 30205741 DOI: 10.1080/21541264.2018.1521213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CHARGE syndrome is characterized by co-occurrence of multiple malformations due to abnormal development of neural crest cells. Here, we review the phenotypic and molecular overlap between CHARGE syndrome and similar pathologies, and further discuss the observation that neural crest cells appear especially sensitive to malfunction of the chromatin-transcription-splicing molecular hub.
Collapse
Affiliation(s)
- Félix-Antoine Bérubé-Simard
- a Laboratoire de génétique moléculaire du développement, Département des sciences biologiques , Université du Québec à Montréal (UQAM) , Montréal , QC , Canada.,b Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC) , Université du Québec à Montréal (UQAM) , Montréal , QC , Canada
| | - Nicolas Pilon
- a Laboratoire de génétique moléculaire du développement, Département des sciences biologiques , Université du Québec à Montréal (UQAM) , Montréal , QC , Canada.,b Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC) , Université du Québec à Montréal (UQAM) , Montréal , QC , Canada.,c Département de pédiatrie , Université de Montréal , Montréal , QC , Canada
| |
Collapse
|
27
|
Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 2018; 444 Suppl 1:S110-S143. [PMID: 29802835 DOI: 10.1016/j.ydbio.2018.05.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.
Collapse
|
28
|
Abstract
The acquired melanocytic nevus is the most common lesion encountered by pediatric pathologists and dermatopathologists in their daily practice. In most cases, there are few difficulties in histopathologic diagnosis. However, it is the acquired melanocytic lesion known as the Spitz nevus, with its intrinsic atypical features which becomes the challenge since it exists along a histopathologic and biologic continuum from the atypical Spitz tumor to spitzoid melanoma. The frustration with some of these spitzoid lesions is that even the "experts" cannot agree as to the differentiation of one from the other even at the level of molecular genetics. Other melanocytic lesions are discussed including the congenital melanocytic nevus with its proliferative nodule(s) and melanoma as the ultimate complication. Although uncommon, cutaneous melanoma in the first 2 decades is emerging as a clinical problem especially in young women in the second decade of life. These are ultraviolet-associated neoplasms whose histopathologic and prognostic features are identical to the adult experience. Considerable progress has been made over the past 15 to 20 years in our understanding of cutaneous melanocytic lesions, but gaps still exist in the important group of spitzoid lesions. It can also be anticipated that more cutaneous melanomas in children will be seen in the future based upon epidemiologic studies.
Collapse
Affiliation(s)
- Chen Yang
- 1 Lauren V. Ackerman Laboratory of Surgical Pathology, St. Louis Children's Hospital, Washington University Medical Center, St. Louis, Missouri
| | - Alejandro A Gru
- 2 Department of Pathology, University of Virginia, Charlottesville, Virginia
| | - Louis P Dehner
- 1 Lauren V. Ackerman Laboratory of Surgical Pathology, St. Louis Children's Hospital, Washington University Medical Center, St. Louis, Missouri
| |
Collapse
|
29
|
Shi Y, Li J, Chen C, Xia Y, Li Y, Zhang P, Xu Y, Li T, Zhou W, Song W. Ketamine Modulates Zic5 Expression via the Notch Signaling Pathway in Neural Crest Induction. Front Mol Neurosci 2018; 11:9. [PMID: 29472839 PMCID: PMC5810301 DOI: 10.3389/fnmol.2018.00009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
Ketamine is a potent dissociative anesthetic and the most commonly used illicit drug. Many addicts are women at childbearing age. Although ketamine has been extensively studied as a clinical anesthetic, its effects on embryonic development are poorly understood. Here, we applied the Xenopus model to study the effects of ketamine on development. We found that exposure to ketamine from pre-gastrulation (stage 7) to early neural plate (stage 13.5) resulted in disruption of neural crest (NC) derivatives. Ketamine exposure did not affect mesoderm development as indicated by the normal expression of Chordin, Xbra, Wnt8, and Fgf8. However, ketamine treatment significantly inhibited Zic5 and Slug expression at early neural plate stage. Overexpression of Zic5 rescued ketamine-induced Slug inhibition, suggesting the blockage of NC induction was mediated by Zic5. Furthermore, we found Notch signaling was altered by ketamine. Ketamine inhibited the expression of Notch targeted genes including Hes5.2a, Hes5.2b, and ESR1 and ketamine-treated embryos exhibited Notch-deficient somite phenotypes. A 15 bp core binding element upstream of Zic5 was induced by Notch signaling and caused transcriptional activation. These results demonstrated that Zic5 works as a downstream target gene of Notch signaling in Xenopus NC induction. Our study provides a novel teratogenic mechanism whereby ketamine disrupts NC induction via targeting a Notch-Zic5 signaling pathway.
Collapse
Affiliation(s)
- Yu Shi
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiejing Li
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Chunjiang Chen
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yongwu Xia
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanxi Li
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Pan Zhang
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Xu
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tingyu Li
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Komiyama M. Cardio-cephalic neural crest syndrome: A novel hypothesis of vascular neurocristopathy. Interv Neuroradiol 2017; 23:572-576. [PMID: 28814167 PMCID: PMC5814071 DOI: 10.1177/1591019917726093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 07/21/2017] [Indexed: 01/15/2023] Open
Abstract
A novel hypothesis proposes that "cardio-cephalic neural crest (NC) syndrome," i.e. cephalic NC including cardiac NC, contributes to the concurrent occurrence of vascular diseases in the cardio- and cerebrovascular regions. NC is a transient structure present in early embryogenesis. Cephalic NC provides mesenchymal cells to the vascular media in these regions. Concurrent cardio- and cerebrovascular lesions have been reported in PHACE syndrome, ACTA2 mutation syndrome, and less frequently in the spontaneous occlusion of the circle of Willis (so-called moyamoya disease). Cardiovascular lesions in these syndromes include coarctation of the aorta, persistent truncus arteriosus, patent ductus arteriosus, and coronary artery disease, and cerebrovascular lesions include agenesis and stenosis/occlusion of the internal carotid arteries, and moyamoya phenomenon. These concurrent vascular lesions both in the cardio- and cerebrovascular regions might be related to cephalic NC. This hypothesis, although not proven, may facilitate a better understanding of the above-mentioned NC-related vascular pathologies and lead to appropriate diagnostic and therapeutic approaches for clinicians and chart future direction for researchers.
Collapse
Affiliation(s)
- M Komiyama
- Department of Neuro-Intervention, Osaka City General
Hospital, Osaka, Japan
| |
Collapse
|
31
|
Marathe HG, Watkins-Chow DE, Weider M, Hoffmann A, Mehta G, Trivedi A, Aras S, Basuroy T, Mehrotra A, Bennett DC, Wegner M, Pavan WJ, de la Serna IL. BRG1 interacts with SOX10 to establish the melanocyte lineage and to promote differentiation. Nucleic Acids Res 2017; 45:6442-6458. [PMID: 28431046 PMCID: PMC5499657 DOI: 10.1093/nar/gkx259] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/04/2017] [Indexed: 12/30/2022] Open
Abstract
Mutations in SOX10 cause neurocristopathies which display varying degrees of hypopigmentation. Using a sensitized mutagenesis screen, we identified Smarca4 as a modifier gene that exacerbates the phenotypic severity of Sox10 haplo-insufficient mice. Conditional deletion of Smarca4 in SOX10 expressing cells resulted in reduced numbers of cranial and ventral trunk melanoblasts. To define the requirement for the Smarca4 -encoded BRG1 subunit of the SWI/SNF chromatin remodeling complex, we employed in vitro models of melanocyte differentiation in which induction of melanocyte-specific gene expression is closely linked to chromatin alterations. We found that BRG1 was required for expression of Dct, Tyrp1 and Tyr, genes that are regulated by SOX10 and MITF and for chromatin remodeling at distal and proximal regulatory sites. SOX10 was found to physically interact with BRG1 in differentiating melanocytes and binding of SOX10 to the Tyrp1 distal enhancer temporally coincided with recruitment of BRG1. Our data show that SOX10 cooperates with MITF to facilitate BRG1 binding to distal enhancers of melanocyte-specific genes. Thus, BRG1 is a SOX10 co-activator, required to establish the melanocyte lineage and promote expression of genes important for melanocyte function.
Collapse
Affiliation(s)
- Himangi G Marathe
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Dawn E Watkins-Chow
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4472, USA
| | - Matthias Weider
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Alana Hoffmann
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Gaurav Mehta
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Archit Trivedi
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Shweta Aras
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Tupa Basuroy
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Aanchal Mehrotra
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Dorothy C Bennett
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - William J Pavan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4472, USA
| | - Ivana L de la Serna
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| |
Collapse
|
32
|
Gfroerer S, Theilen TM, Fiegel H, Harter PN, Mittelbronn M, Rolle U. Identification of intestinal ganglioneuromatosis leads to early diagnosis of MEN2B: role of rectal biopsy. J Pediatr Surg 2017; 52:1161-1165. [PMID: 27899172 DOI: 10.1016/j.jpedsurg.2016.10.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND/PURPOSE Gastrointestinal symptoms are very common in patients with multiple endocrine neoplasia type 2B (MEN2B) syndrome. Herein, we present a case of intestinal ganglioneuromatosis (IGN) in MEN2B syndrome and a systematic literature review with a special focus on gastrointestinal symptoms prior to the diagnosis of MEN2B. METHODS Literature search was performed (years 1966-2015) using the "Pubmed" and "Scopus" databases. Search terms used were gastrointestinal, intestinal and MEN2B. RESULTS Literature search revealed 188 publications on MEN2B patients with gastrointestinal symptoms, providing a total of 55 patients including our own case. The far most common gastrointestinal symptom was constipation (72.7%). The onset of gastrointestinal symptoms occurred in 29 out of 55 cases (52.3%) below the age of 1year. However, MEN2B diagnosis was established at a median age of 13.0years (range 0-46years). The histological finding of IGN led to the diagnosis of MEN2B In 15 of 55 patients (27.3%) at a median age of 3years (range 0-31years). CONCLUSION Paying close attention to gastrointestinal problems in early childhood and taking a rectal biopsy that precisely screens for IGN offers the chance of diagnosing MEN2B syndrome early in infancy.
Collapse
Affiliation(s)
- Stefan Gfroerer
- Department of Pediatric Surgery and Pediatric Urology, Goethe University Hospital, Frankfurt, Germany
| | - Till-Martin Theilen
- Department of Pediatric Surgery and Pediatric Urology, Goethe University Hospital, Frankfurt, Germany
| | - Henning Fiegel
- Department of Pediatric Surgery and Pediatric Urology, Goethe University Hospital, Frankfurt, Germany
| | - Patrick N Harter
- Edinger Institute, Neurological Institute, Goethe University Hospital, Frankfurt, Germany
| | - Michel Mittelbronn
- Edinger Institute, Neurological Institute, Goethe University Hospital, Frankfurt, Germany
| | - Udo Rolle
- Department of Pediatric Surgery and Pediatric Urology, Goethe University Hospital, Frankfurt, Germany.
| |
Collapse
|
33
|
Tolbert VP, Coggins GE, Maris JM. Genetic susceptibility to neuroblastoma. Curr Opin Genet Dev 2017; 42:81-90. [PMID: 28458126 DOI: 10.1016/j.gde.2017.03.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
Until recently, the genetic basis of neuroblastoma, a heterogeneous neoplasm arising from the developing sympathetic nervous system, remained undefined. The discovery of gain-of-function mutations in the ALK receptor tyrosine kinase gene as the major cause of familial neuroblastoma led to the discovery of identical somatic mutations and rapid advancement of ALK as a tractable therapeutic target. Inactivating mutations in a master regulator of neural crest development, PHOX2B, have also been identified in a subset of familial neuroblastomas. Other high penetrance susceptibility alleles likely exist, but together these heritable mutations account for less than 10% of neuroblastoma cases. A genome-wide association study of a large neuroblastoma cohort identified common and rare polymorphisms highly associated with the disease. Ongoing resequencing efforts aim to further define the genetic landscape of neuroblastoma.
Collapse
Affiliation(s)
- Vanessa P Tolbert
- University of California San Francisco School of Medicine, United States
| | | | - John M Maris
- University of Pennsylvania, United States; Children's Hospital of Philadelphia, United States.
| |
Collapse
|
34
|
Moyamoya disease is a vascular form of neurocristopathy: disease of the embryologic cephalic neural crest. Childs Nerv Syst 2017; 33:567-568. [PMID: 28299436 DOI: 10.1007/s00381-017-3369-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
|
35
|
Melo FR, Bressan RB, Costa-Silva B, Trentin AG. Effects of Folic Acid and Homocysteine on the Morphogenesis of Mouse Cephalic Neural Crest Cells In Vitro. Cell Mol Neurobiol 2017; 37:371-376. [PMID: 27236697 DOI: 10.1007/s10571-016-0383-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022]
Abstract
Folate deficiency and hyperhomocysteinemia have long been associated with developmental anomalies, particularly neural tube defects and neurocristopathies-a group of diverse disorders that result from defective growth, differentiation, and migration of neural crest (NC) cells. However, the exact mechanisms by which homocysteine (Hcys) and/or folate deficiencies disrupt NC development are still poorly understood in mammals. In this work, we employed a well-defined culture system to investigate the effects of Hcys and folic acid (FA) supplementation on the morphogenetic processes of murine NC cells in vitro. We demonstrated that Hcys increases outgrowth and proliferation of cephalic NC cells and impairs their differentiation into smooth muscle cells. In addition, we showed that FA alone does not directly affect the developmental dynamics of the cephalic NC cells but is able to prevent the Hcys-induced effects. Our results, therefore, suggest that elevated Hcys levels per se cause dysmorphogenesis of the cephalic NC and might contribute to neurocristopathies in mammalian embryos.
Collapse
Affiliation(s)
- Fernanda Rosene Melo
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | | | - Bruno Costa-Silva
- Department of Pediatrics, Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, United States
| | - Andrea Gonçalves Trentin
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
36
|
Bergeron KF, Nguyen CMA, Cardinal T, Charrier B, Silversides DW, Pilon N. Upregulation of the Nr2f1-A830082K12Rik gene pair in murine neural crest cells results in a complex phenotype reminiscent of Waardenburg syndrome type 4. Dis Model Mech 2016; 9:1283-1293. [PMID: 27585883 PMCID: PMC5117235 DOI: 10.1242/dmm.026773] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/16/2016] [Indexed: 01/01/2023] Open
Abstract
Waardenburg syndrome is a neurocristopathy characterized by a combination of skin and hair depigmentation, and inner ear defects. In the type 4 form, these defects show comorbidity with Hirschsprung disease, a disorder marked by an absence of neural ganglia in the distal colon, triggering functional intestinal obstruction. Here, we report that the Spot mouse line - obtained through an insertional mutagenesis screen for genes involved in neural crest cell (NCC) development - is a model for Waardenburg syndrome type 4. We found that the Spot insertional mutation causes overexpression of an overlapping gene pair composed of the transcription-factor-encoding Nr2f1 and the antisense long non-coding RNA A830082K12Rik in NCCs through a mechanism involving relief of repression of these genes. Consistent with the previously described role of Nr2f1 in promoting gliogenesis in the central nervous system, we further found that NCC-derived progenitors of the enteric nervous system fail to fully colonize Spot embryonic guts owing to their premature differentiation in glial cells. Taken together, our data thus identify silencer elements of the Nr2f1-A830082K12Rik gene pair as new candidate loci for Waardenburg syndrome type 4.
Collapse
Affiliation(s)
- Karl-F Bergeron
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - Chloé M A Nguyen
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - Tatiana Cardinal
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - Baptiste Charrier
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - David W Silversides
- Veterinary Genetics Laboratory, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, J2S 7C6, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| |
Collapse
|
37
|
Yuan G, Singh G, Chen S, Perez KC, Wu Y, Liu B, Helms JA. Cleft Palate and Aglossia Result From Perturbations in Wnt and Hedgehog Signaling. Cleft Palate Craniofac J 2016; 54:269-280. [PMID: 27259005 DOI: 10.1597/15-178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The objective of this study was to explore the molecular basis for cleft secondary palate and arrested tongue development caused by the loss of the intraflagellar transport protein, Kif3a. DESIGN Kif3a mutant embryos and their littermate controls were analyzed for defects in facial development at multiple stages of embryonic development. Histology was employed to understand the effects of Kif3a deletion on palate and tongue development. Various transgenic reporter strains were used to understand how deletion of Kif3a affected Hedgehog and Wnt signaling. Immunostaining for structural elements of the tongue and for components of the Wnt pathway were performed. BrdU activity analyses were carried out to examine how the loss of Kif3a affected cell proliferation and led to palate and tongue malformations. RESULTS Kif3a deletion causes cranial neural crest cells to become unresponsive to Hedgehog signals and hyper-responsive to Wnt signals. This aberrant molecular signaling causes abnormally high cell proliferation, but paradoxically outgrowths of the tongue and the palatal processes are reduced. The basis for this enigmatic effect can be traced back to a disruption in epithelial/mesenchymal signaling that governs facial development. CONCLUSION The primary cilium is a cell surface organelle that integrates Hh and Wnt signaling, and disruptions in the function of the primary cilium cause one of the most common-of the rarest-craniofacial birth defects observed in humans. The shared molecular basis for these dysmorphologies is an abnormally high Wnt signal simultaneous with an abnormally low Hedgehog signal. These pathways are integrated in the primary cilium.
Collapse
|
38
|
Pilon N. Pigmentation-based insertional mutagenesis is a simple and potent screening approach for identifying neurocristopathy-associated genes in mice. Rare Dis 2016; 4:e1156287. [PMID: 27141416 PMCID: PMC4838316 DOI: 10.1080/21675511.2016.1156287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/12/2016] [Indexed: 01/28/2023] Open
Abstract
Neurocristopathies form a specific group of rare genetic diseases in which a defect in neural crest cell development is causal. Because of the large number of neural crest cell derivatives, distinct structures/cell types (isolated or in combination) are affected in each neurocristopathy. The most important issues in this research field is that the underlying genetic cause and associated pathogenic mechanism of most cases of neurocristopathy are poorly understood. This article describes how a relatively simple insertional mutagenesis approach in the mouse has proved useful for identifying new candidate genes and pathogenic mechanisms for diverse neurocristopathies.
Collapse
Affiliation(s)
- Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Montreal, Quebec, Canada; UQAM Research Chair on Rare Genetic Diseases, Montreal, Canada
| |
Collapse
|
39
|
Wilson NR, Olm-Shipman AJ, Acevedo DS, Palaniyandi K, Hall EG, Kosa E, Stumpff KM, Smith GJ, Pitstick L, Liao EC, Bjork BC, Czirok A, Saadi I. SPECC1L deficiency results in increased adherens junction stability and reduced cranial neural crest cell delamination. Sci Rep 2016; 6:17735. [PMID: 26787558 PMCID: PMC4726231 DOI: 10.1038/srep17735] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/05/2015] [Indexed: 11/16/2022] Open
Abstract
Cranial neural crest cells (CNCCs) delaminate from embryonic neural folds and migrate to pharyngeal arches, which give rise to most mid-facial structures. CNCC dysfunction plays a prominent role in the etiology of orofacial clefts, a frequent birth malformation. Heterozygous mutations in SPECC1L have been identified in patients with atypical and syndromic clefts. Here, we report that in SPECC1L-knockdown cultured cells, staining of canonical adherens junction (AJ) components, β-catenin and E-cadherin, was increased, and electron micrographs revealed an apico-basal diffusion of AJs. To understand the role of SPECC1L in craniofacial morphogenesis, we generated a mouse model of Specc1l deficiency. Homozygous mutants were embryonic lethal and showed impaired neural tube closure and CNCC delamination. Staining of AJ proteins was increased in the mutant neural folds. This AJ defect is consistent with impaired CNCC delamination, which requires AJ dissolution. Further, PI3K-AKT signaling was reduced and apoptosis was increased in Specc1l mutants. In vitro, moderate inhibition of PI3K-AKT signaling in wildtype cells was sufficient to cause AJ alterations. Importantly, AJ changes induced by SPECC1L-knockdown were rescued by activating the PI3K-AKT pathway. Together, these data indicate SPECC1L as a novel modulator of PI3K-AKT signaling and AJ biology, required for neural tube closure and CNCC delamination.
Collapse
Affiliation(s)
- Nathan R Wilson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Adam J Olm-Shipman
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Diana S Acevedo
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kanagaraj Palaniyandi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Everett G Hall
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Edina Kosa
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kelly M Stumpff
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Guerin J Smith
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lenore Pitstick
- Department of Biochemistry, Midwestern University, Downers Grove, IL, USA
| | - Eric C Liao
- Center for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bryan C Bjork
- Department of Biochemistry, Midwestern University, Downers Grove, IL, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Irfan Saadi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
40
|
The coexistence of peripheral nerve sheath tumors and vitiligo: more than coincidence? Acta Neurochir (Wien) 2016; 158:95-9; discussion 99. [PMID: 26607956 DOI: 10.1007/s00701-015-2629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
Neurocristopathies arise from abnormal migration, differentiation, or proliferation of neural crest derivatives, leading to diverse clinical and pathological features. They are classified into dysgenetic or neoplastic, and can affect single or multiple sites (simple versus complex). Examples include congenital melanocytic nevi, neuroblastoma, Hirshsprung's disease, Waardenburg's syndrome, neurofibromatosis (NF) 1 and multiple endocrine neoplasia (MEN) 2A and 2B. We report two cases of peripheral nerve sheath tumors associated with vitiligo and discuss the possible implicated embryologic, genetic and molecular mechanisms. To our knowledge, we also report the first case of de novo malignant peripheral nerve sheath tumor (MPNST) associated with vitiligo.
Collapse
|
41
|
Abstract
Primary CNS tumors consist of a diverse group of neoplasms originating from various cell types in the CNS. Brain tumors are the most common solid malignancy in children under the age of 15 years and the second leading cause of cancer death after leukemia. The most common brain neoplasms in children differ consistently from those in older age groups. Pediatric brain tumors demonstrate distinct patterns of occurrence and biologic behavior according to sex, age, and race. This chapter highlights the imaging features of the most common tumors that affect the child's CNS (brain and spinal cord).
Collapse
Affiliation(s)
- Andre D Furtado
- Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| | - Ashok Panigrahy
- Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Charles R Fitz
- Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
42
|
Podleschny M, Grund A, Berger H, Rollwitz E, Borchers A. A PTK7/Ror2 Co-Receptor Complex Affects Xenopus Neural Crest Migration. PLoS One 2015; 10:e0145169. [PMID: 26680417 PMCID: PMC4683079 DOI: 10.1371/journal.pone.0145169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 11/30/2015] [Indexed: 12/15/2022] Open
Abstract
Neural crest cells are a highly migratory pluripotent cell population that generates a wide array of different cell types and failure in their migration can result in severe birth defects and malformation syndromes. Neural crest migration is controlled by various means including chemotaxis, repellent guidance cues and cell-cell interaction. Non-canonical Wnt PCP (planar cell polarity) signaling has previously been shown to control cell-contact mediated neural crest cell guidance. PTK7 (protein tyrosine kinase 7) is a transmembrane pseudokinase and a known regulator of Wnt/PCP signaling, which is expressed in Xenopus neural crest cells and required for their migration. PTK7 functions as a Wnt co-receptor; however, it remains unclear by which means PTK7 affects neural crest migration. Expressing fluorescently labeled proteins in Xenopus neural crest cells we find that PTK7 co-localizes with the Ror2 Wnt-receptor. Further, co-immunoprecipitation experiments demonstrate that PTK7 interacts with Ror2. The PTK7/Ror2 interaction is likely relevant for neural crest migration, because Ror2 expression can rescue the PTK7 loss of function migration defect. Live cell imaging of explanted neural crest cells shows that PTK7 loss of function affects the formation of cell protrusions as well as cell motility. Co-expression of Ror2 can rescue these defects. In vivo analysis demonstrates that a kinase dead Ror2 mutant cannot rescue PTK7 loss of function. Thus, our data suggest that Ror2 can substitute for PTK7 and that the signaling function of its kinase domain is required for this effect.
Collapse
Affiliation(s)
- Martina Podleschny
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Anita Grund
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Hanna Berger
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Erik Rollwitz
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Annette Borchers
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
- * E-mail:
| |
Collapse
|
43
|
Chance A, Liu JJ, Raskin JS, Zherebitskiy V, Gultekin SH, Raslan AM. Thoracic primary central nervous system melanoma and lumbar schwannoma of complex neurocristopathy: case report. J Neurosurg Spine 2015; 23:780-3. [DOI: 10.3171/2015.3.spine141265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Complex neurocristopathy, a disorder resulting from the aberrant proliferation of tissues derived from neural crest cells, has been previously reported in 2 patients, both involving ophthalmic melanoma and other tumors. One patient had a periorbital neurofibroma, sphenoid wing meningioma, and choroid juxtapapillary meningioma. The other patient had a choroidal melanoma and an optic nerve sheath meningioma. The authors describe clinical and pathological findings in a patient who underwent resection of 2 distinct lesions: primary CNS melanoma at T-12 and an L-5 schwannoma. Clinical and histopathological findings of the case are reviewed. To the authors’ knowledge, this is the first patient to present with complex neurocristopathy involving both a spinal melanoma and schwannoma.
Collapse
Affiliation(s)
- Aaron Chance
- 1University of Texas Medical School, Houston, Texas; and
- Departments of 2Neurological Surgery and
| | | | | | | | | | | |
Collapse
|
44
|
Saldana-Caboverde A, Perera EM, Watkins-Chow DE, Hansen NF, Vemulapalli M, Mullikin JC, Pavan WJ, Kos L. The transcription factors Ets1 and Sox10 interact during murine melanocyte development. Dev Biol 2015; 407:300-12. [PMID: 25912689 PMCID: PMC4618791 DOI: 10.1016/j.ydbio.2015.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 11/19/2022]
Abstract
Melanocytes, the pigment-producing cells, arise from multipotent neural crest (NC) cells during embryogenesis. Many genes required for melanocyte development were identified using mouse pigmentation mutants. The variable spotting mouse pigmentation mutant arose spontaneously at the Jackson Laboratory. We identified a G-to-A nucleotide transition in exon 3 of the Ets1 gene in variable spotting, which results in a missense G102E mutation. Homozygous variable spotting mice exhibit sporadic white spotting. Similarly, mice carrying a targeted deletion of Ets1 exhibit hypopigmentation; nevertheless, the function of Ets1 in melanocyte development is unknown. The transcription factor Ets1 is widely expressed in developing organs and tissues, including the NC. In the chick, Ets1 is required for the expression of Sox10, a transcription factor critical for the development of various NC derivatives, including melanocytes. We show that Ets1 is required early for murine NC cell and melanocyte precursor survival in vivo. Given the importance of Ets1 for Sox10 expression in the chick, we investigated a potential genetic interaction between these genes by comparing the hypopigmentation phenotypes of single and double heterozygous mice. The incidence of hypopigmentation in double heterozygotes was significantly greater than in single heterozygotes. The area of hypopigmentation in double heterozygotes was significantly larger than would be expected from the addition of the areas of hypopigmentation of single heterozygotes, suggesting that Ets1 and Sox10 interact synergistically in melanocyte development. Since Sox10 is also essential for enteric ganglia development, we examined the distal colons of Ets1 null mutants and found a significant decrease in enteric innervation, which was exacerbated by Sox10 heterozygosity. At the molecular level, Ets1 was found to activate an enhancer critical for Sox10 expression in NC-derived structures. Furthermore, enhancer activation was significantly inhibited by the variable spotting mutation. Together, these results suggest that Ets1 and Sox10 interact to promote proper melanocyte and enteric ganglia development from the NC.
Collapse
Affiliation(s)
| | - Erasmo M Perera
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nancy F Hansen
- Comparative Genomics Analysis Unit, CGCGB, National Human Genome Research Institute, Bethesda, MD, USA
| | - Meghana Vemulapalli
- NIH Intramural Sequencing Center, National Human Genome Research Institute, Rockville, MD, USA
| | - James C Mullikin
- Comparative Genomics Analysis Unit, CGCGB, National Human Genome Research Institute, Bethesda, MD, USA; NIH Intramural Sequencing Center, National Human Genome Research Institute, Rockville, MD, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lidia Kos
- Department of Biological Sciences, Florida International University, Miami, FL, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL.
| |
Collapse
|
45
|
Armstrong AE, Weese-Mayer DE, Mian A, Maris JM, Batra V, Gosiengfiao Y, Reichek J, Madonna MB, Bush JW, Shore RM, Walterhouse DO. Treatment of neuroblastoma in congenital central hypoventilation syndrome with a PHOX2B polyalanine repeat expansion mutation: New twist on a neurocristopathy syndrome. Pediatr Blood Cancer 2015; 62:2007-10. [PMID: 26011159 DOI: 10.1002/pbc.25572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/31/2015] [Indexed: 11/08/2022]
Abstract
Neuroblastoma in patients with congenital central hypoventilation syndrome (CCHS) as part of a neurocristopathy syndrome is a rare finding and has only been associated with paired-like homeobox 2b (PHOX2B) non-polyalanine-repeat-expansion mutations. To the best of our knowledge, we report the first case of a child with CCHS and Hirschsprung disease who had a PHOX2B polyalanine-repeat-expansion mutation (PARM) (genotype 20/33) and developed high-risk neuroblastoma. We further describe his treatment including chemotherapy and therapeutic I(131) -metaiodobenzylguanidine. This case highlights the need to consider neuroblastoma in patients with CCHS and the longest PHOX2B PARMs and to individualize treatment based on co-morbidities.
Collapse
Affiliation(s)
- Amy E Armstrong
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Debra E Weese-Mayer
- Ann & Robert H. Lurie Children's Hospital of Chicago, Center for Autonomic Medicine in Pediatrics (CAMP), Northwestern University of Feinberg School of Medicine and Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Amir Mian
- Department of Pediatric Hematology-Oncology, College of Medicine, Arkansas Children's Hospital, University of Arkansas Medical Sciences, Little Rock, Arkansas
| | - John M Maris
- Division of Hematology, Oncology & Transplantation, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine and Abramson Family Center Research Institute, Philadelphia, Pennsylvania
| | - Vandana Batra
- Division of Hematology, Oncology & Transplantation, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine and Abramson Family Center Research Institute, Philadelphia, Pennsylvania
| | - Yasmin Gosiengfiao
- Division of Hematology, Oncology & Transplantation, Robert Lurie Comprehensive Cancer Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jennifer Reichek
- Division of Hematology, Oncology & Transplantation, Robert Lurie Comprehensive Cancer Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mary Beth Madonna
- Department of Pediatric Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jonathan W Bush
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard M Shore
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David O Walterhouse
- Division of Hematology, Oncology & Transplantation, Robert Lurie Comprehensive Cancer Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
46
|
Abstract
Intraventricular schwannoma in either infra or supratentorial location is an extremely rare tumor with less than 20 cases described in the literature to date. There is no consensus regarding the origin of this tumor. This paper describes an excised supratentorial schwannoma located on the wall of the left lateral ventricle. The relevant literature is reviewed. A 34-year-old man with no significant medical history presented with a recent episode of right focal motor seizures and weakness of the right lower extremity. Magnetic resonance imaging of the brain demonstrated a heterogeneous enhancing mass in the body of left lateral ventricle mass lesion with vasogenic edema in the adjacent brain parenchyma. The patient underwent a left frontoparietal parasagittal craniotomy with neuronavigational guidance to avoid damage to the primary motor cortex. The tumor originated from the ependymal layer and extended to the body of lateral ventricle. Complete surgical excision of the tumor was achieved. Intraventricular schwannomas are rare tumors amenable to complete surgical excision, having a good prognosis without the need for adjuvant therapy. The recognition of this benign and potentially curable neoplasm and its differentiation from other less favorable tumors is of obvious importance.
Collapse
Affiliation(s)
- Rafael Glikstein
- Department of Neuroradiology, The Ottawa Hospital; Ottawa, Canada
| | - Arundhati Biswas
- Department of Neuroradiology, The Ottawa Hospital; Ottawa, Canada
| | - Gerard Mohr
- Department of Neuroradiology, The Ottawa Hospital; Ottawa, Canada
| | - Steffen Albrecht
- Department of Neuroradiology, The Ottawa Hospital; Ottawa, Canada
| |
Collapse
|
47
|
Sag E, Sen HS, Haliloglu G, Yalcin B, Kutluk T. Neuroblastoma in a Patient With Spinal Muscular Atrophy Type I: Is It Just a Coincidence? J Child Neurol 2015; 30:1075-8. [PMID: 25123529 DOI: 10.1177/0883073814542950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/02/2014] [Indexed: 11/16/2022]
Abstract
Spinal muscular atrophy is an autosomal recessive disorder characterized by progressive degeneration of anterior horn cells of the spinal cord resulting in hypotonia, skeletal muscle atrophy, and weakness. Herein, we report a 4-month-old male infant who presented to our hospital with an abdominal mass that was diagnosed as neuroblastoma and spinal muscular atrophy type I. We would like to discuss the course and differential diagnosis with an algorithm leading to the diagnosis in this peculiar patient. To our knowledge, coexistence of spinal muscular atrophy type I and neuroblastoma is defined for the first time in the literature.
Collapse
Affiliation(s)
- Erdal Sag
- Department of Pediatrics, Hacettepe University, Ihsan Doğramaci Children's Hospital, Ankara, Turkey
| | - Hilal Susam Sen
- Division of Pediatric Oncology, Hacettepe University, Ihsan Doğramaci Children's Hospital, Ankara, Turkey
| | - Goknur Haliloglu
- Division of Pediatric Neurology, Hacettepe University, Ihsan Doğramaci Children's Hospital, Ankara, Turkey
| | - Bilgehan Yalcin
- Division of Pediatric Oncology, Hacettepe University, Ihsan Doğramaci Children's Hospital, Ankara, Turkey
| | - Tezer Kutluk
- Division of Pediatric Oncology, Hacettepe University, Ihsan Doğramaci Children's Hospital, Ankara, Turkey
| |
Collapse
|
48
|
Fantauzzo KA, Soriano P. Receptor tyrosine kinase signaling: regulating neural crest development one phosphate at a time. Curr Top Dev Biol 2015; 111:135-82. [PMID: 25662260 PMCID: PMC4363133 DOI: 10.1016/bs.ctdb.2014.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Receptor tyrosine kinases (RTKs) bind to a subset of growth factors on the surface of cells and elicit responses with broad roles in developmental and postnatal cellular processes. Receptors in this subclass consist of an extracellular ligand-binding domain, a single transmembrane domain, and an intracellular domain harboring a catalytic tyrosine kinase and regulatory sequences that are phosphorylated either by the receptor itself or by various interacting proteins. Once activated, RTKs bind signaling molecules and recruit effector proteins to mediate downstream cellular responses through various intracellular signaling pathways. In this chapter, we highlight the role of a subset of RTK families in regulating the activity of neural crest cells (NCCs) and the development of their derivatives in mammalian systems. NCCs are migratory, multipotent cells that can be subdivided into four axial populations, cranial, cardiac, vagal, and trunk. These cells migrate throughout the vertebrate embryo along defined pathways and give rise to unique cell types and structures. Interestingly, individual RTK families often have specific functions in a subpopulation of NCCs that contribute to the diversity of these cells and their derivatives in the mammalian embryo. We additionally discuss current methods used to investigate RTK signaling, including genetic, biochemical, large-scale proteomic, and biosensor approaches, which can be applied to study intracellular signaling pathways active downstream of this receptor subclass during NCC development.
Collapse
Affiliation(s)
- Katherine A Fantauzzo
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Philippe Soriano
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
49
|
Vadasz S, Marquez J, Tulloch M, Shylo NA, García-Castro MI. Pax7 is regulated by cMyb during early neural crest development through a novel enhancer. Development 2013; 140:3691-702. [PMID: 23942518 DOI: 10.1242/dev.088328] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The neural crest (NC) is a migratory population of cells unique to vertebrates that generates many diverse derivatives. NC cells arise during gastrulation at the neural plate border (NPB), which is later elevated as the neural folds (NFs) form and fuse in the dorsal region of the closed neural tube, from where NC cells emigrate. In chick embryos, Pax7 is an early marker, and necessary component of NC development. Unlike other early NPB markers, which are co-expressed in lateral ectoderm, medial neural plate or posterior-lateral mesoderm, Pax7 early expression seems more restricted to the NPB. However, the molecular mechanisms controlling early Pax7 expression remain poorly understood. Here, we identify a novel enhancer of Pax7 in avian embryos that replicates the expression of Pax7 associated with early NC development. Expression from this enhancer is found in early NPB, NFs and early emigrating NC, but unlike Pax7, which is also expressed in mesodermal derivatives, this enhancer is not active in somites. Further analysis demonstrates that cMyb is able to interact with this enhancer and modulates reporter and endogenous early Pax7 expression; thus, cMyb is identified as a novel regulator of Pax7 in early NC development.
Collapse
Affiliation(s)
- Stephanie Vadasz
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | | | | | | | |
Collapse
|
50
|
Mayanil CS. Transcriptional and epigenetic regulation of neural crest induction during neurulation. Dev Neurosci 2013; 35:361-72. [PMID: 24051984 DOI: 10.1159/000354749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/30/2013] [Indexed: 11/19/2022] Open
Abstract
Neurulation is one of the many important events in mammalian development. It is the stage of organogenesis in vertebrate embryos during which the neural tube is transformed into the primitive structures that will later develop into the central nervous system. Recent transcriptome analysis during neurulation and early organogenesis in humans and mice has identified the global dynamics of gene expression changes across developmental time. This has revealed a richer understanding of gene regulation and provides hints at the transcriptional regulatory networks that underlie these processes. Similarly, epigenome analysis, which collectively constitutes histone modifications, transcription factor binding, and other structural features associated with gene regulation, has given a renewed appreciation to the subtle mechanisms involving the process of neurulation. More specifically, the histone demethylases KDM4A and KDM6B have recently been shown to be key histone H3K4 and H3K27 modifiers that regulate neural crest specification and neural tube closure. Additionally, miRNAs have recently been shown to influence transcription of genes directly or by altering the levels of epigenetic modifiers and thus regulate gene expression. This mini review briefly summarizes the literature, highlighting the transcriptional and epigenetic regulation of key genes involved in neural crest induction and neural crest specification by transcription factors and miRNAs. Understanding how these mechanisms work individually and in clusters will shed light on pathways in the context of diseases associated with neural crest cell derivatives such as melanoma, cardiovascular defects and neuronal craniofacial defects.
Collapse
Affiliation(s)
- Chandra S Mayanil
- Developmental Biology Program, Lurie Children's Hospital of Chicago Research Center, Division of Pediatric Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Ill., USA
| |
Collapse
|