1
|
Yang Y, Qian Z, Wu C, Cheng Y, Yang B, Shao J, Zhao J, Zhu X, Jia X, Feng L. Differential absorption and metabolic characteristics of organic acid components in pudilan xiaoyan oral liquid between young rats and adult rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118528. [PMID: 38972526 DOI: 10.1016/j.jep.2024.118528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pudilan Xiaoyan Oral Liquid (PDL) is a proprietary Chinese medicinal preparation approved by the State for treating acute pharyngitis in both adults and children (Approval No. Z20030095). It is worth noting that children exhibit unique physiopathological characteristics compared to adults. However, the in vivo regulatory characteristics of PDL in treating acute pharyngitis in children remain incompletely understood. AIM OF THE STUDY The differential absorption and metabolism characteristics of the main pharmacological components in PDL in young and adult rats were investigated with a view to providing a reference for preclinical data of PDL in medication for children. MATERIALS AND METHODS This study utilized UPLC-Q-TOF-MS to investigate the pharmacodynamic material basis of PDL. The focus was on the gastrointestinal digestion and absorption characteristics of organic acid components in PDL (PDL-OAC), known as the primary pharmacodynamic components in this formulation. The research combined in vitro dynamic simulation and a Quadruple single-pass intestinal perfusion model to examine these characteristics. The permeability properties of PDL-OAC were evaluated using an artificial parallel membrane model. Additionally, an acute pharyngitis model was established to evaluate the histopathological condition of the pharynx in young rats using H&E staining. The levels of IL-1β, TNF-α, IL-6, and IL-10 in blood and pharyngeal tissue homogenates of young rats were quantified using ELISA kits. RESULTS A total of 91 components were identified in PDL, including 33 organic acids, 24 flavonoids, 14 alkaloids, 5 terpenoids and coumarins, 3 sugars, and 12 amino acids. The PDL-OAC exhibited a significant reduction in IL-1β, TNF-α, IL-6, and IL-10 levels in the pharyngeal tissues of young rats with acute pharyngitis. Results from dynamic simulation studies of gastrointestinal fluids revealed that the PDL-OAC (Specifically chlorogenic acid (CGA), gallic acid (GA), chicoric acid (CRA), and caffeic acid (CA)) were effectively stabilized in the gastrointestinal fluids of both children and adults in vitro. Young rats, characterized by thinner intestinal walls and higher permeability, efficiently absorbed the four organic acids across the entire intestinal segment. The absorption of CGA, GA, and CRA followed a concentration-dependent pattern, with CGA and GA absorption being influenced by exocytosis. CONCLUSION The efficacy of the PDL-OAC in treating acute pharyngitis was demonstrated in young rats. The absorption rate of these components was observed to be faster in young rats compared to adult rats, underscoring the need for dedicated studies on the drug's usage in children. This research provides valuable insights for the appropriate clinical use of PDL in pediatric patients.
Collapse
Affiliation(s)
- Yanjun Yang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Zhouyang Qian
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Chenhui Wu
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Yue Cheng
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Bing Yang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Jianguo Shao
- Jiangsu Key Laboratory of Chinese Medicine and Characteristic Preparations for Paediatrics, Jumpcan Pharmaceutical Co., Ltd., Taixing, 225400, PR China.
| | - Jing Zhao
- Jiangsu Key Laboratory of Chinese Medicine and Characteristic Preparations for Paediatrics, Jumpcan Pharmaceutical Co., Ltd., Taixing, 225400, PR China.
| | - Xiangjun Zhu
- Jiangsu Health Development Research Center, National Health and Family Planning Commission Contraceptives Adverse Reaction Surveillance Center, Nanjing, 210036, PR China.
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
2
|
Sun W, Xu Y, Liu Z, Liu W, Wang H, Chang G, Yang Z, Dong Z, Zeng J. Studies on pharmacokinetic properties and intestinal absorption mechanism of sanguinarine chloride: in vivo and in situ. Toxicol Mech Methods 2024:1-10. [PMID: 39087424 DOI: 10.1080/15376516.2024.2383366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Sanguinarine (SAN) is an alkaloid with multiple biological activities, mainly extracted from Sanguinaria canadensis or Macleaya cordata. The low bioavailability of SAN limits its utilization. At present, the nature and mechanism of SAN intestinal absorption are still unclear. The pharmacokinetics, single-pass intestinal perfusion test (SPIP), and equilibrium solubility test of SAN in rats were studied. The absorption of SAN at 20, 40, and 80 mg/L in different intestinal segments was investigated, and verapamil hydrochloride (P-gp inhibitor), celecoxib (MPR2 inhibitor), and ko143 (BCRP inhibitor) were further used to determine the effect of efflux transporter proteins on SAN absorption. The equilibrium solubility of SAN in three buffer solutions (pH 1.2, 4.5 and 6.8) was investigated. The oral pharmacokinetic results in rats showed that SAN was rapidly absorbed (Tmax=0.5 h), widely distributed (Vz/F = 134 L/kg), rapidly metabolized (CL = 30 L/h/kg), and had bimodal phenomena. SPIP experiments showed that P-gp protein could significantly affect the effective permeability coefficient (Peff) and apparent absorption rate constant (Ka) of SAN. Equilibrium solubility test results show that SAN has the best solubility at pH 4.5. In conclusion, SAN is a substrate of P-gp, and its transport modes include efflux protein transport, passive transport and active transport.
Collapse
Affiliation(s)
- Wenqing Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yufeng Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Zhiqin Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Wei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Hongting Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Guanyu Chang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Zihui Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Zhen Dong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
3
|
Mattingly GW, Carbray JA, Roy P, López FA. Are all ADHD medications created equal? Exploring the differences that enable evening dosing. Postgrad Med 2024; 136:475-486. [PMID: 38904469 DOI: 10.1080/00325481.2024.2370230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
With more than 30 available stimulant medications, choosing among therapeutic options for attention-deficit/hyperactivity disorder (ADHD) has become increasingly complex and patient specific. All ADHD stimulants owe their action to variants of either amphetamine or methylphenidate, yet formulation and delivery system differences create unique pharmacokinetic and clinical profiles for each medication. A benefit of the diversity within ADHD pharmacotherapy is that it facilitates tailoring treatment to meet patient needs. Historically, there has been a constant among long-acting stimulant options, regardless of formulation, which was morning dosing. The introduction of delayed-release and extended-release methylphenidate (DR/ER-MPH) is the first long-acting stimulant that patients take in the evening, with the clinical effect delayed until awakening in the morning. This paradigm shift has generated questions among clinicians and continued interest in real-world experience and data. This review used available clinical data, real-world evidence, emerging analyses, and clinical experience to evaluate the characteristics of DR/ER-MPH and its clinical utility within the greater context of ADHD medications and to provide clinicians with practical guidance on the use of DR/ER-MPH in children, adolescents, and adults with ADHD.
Collapse
Affiliation(s)
- Gregory W Mattingly
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Midwest Research Group, St. Charles, MO, USA
- St. Charles Psychiatric Associates, St. Charles, MO, USA
| | - Julie A Carbray
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Perry Roy
- Carolina Attention Specialists, Charlotte, NC, USA
| | - Frank A López
- Pediatrix Neurology and Epilepsy Center, Winter Park, FL, USA
| |
Collapse
|
4
|
Peng Y, Yang Z, Li J, Liu S. Research progress on nanotechnology of traditional Chinese medicine to enhance the therapeutic effect of osteoarthritis. Drug Deliv Transl Res 2024; 14:1517-1534. [PMID: 38225521 DOI: 10.1007/s13346-024-01517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2023] [Indexed: 01/17/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic condition that primarily impacts the articular cartilage and surrounding bone tissue, resulting in joint inflammation and structural deterioration. The etiology of OA is multifaceted and intricately linked to the oxidative stress response of joint tissue. Oxidative stress (OS) in OA leads to the creation of reactive oxygen species (ROS) and other oxidizing agents, resulting in detrimental effects on chondrocytes. This oxidative damage diminishes the flexibility and robustness of cartilage, thereby expediting the progression of joint deterioration. Therefore, the antioxidant effect is crucial in the treatment of OA. Currently, a considerable number of components found in traditional Chinese medicine (TCM) have been scientifically demonstrated to exhibit remarkable antioxidant and anti-inflammatory properties. Nevertheless, the utilization of this program is considerably constrained as a result of intrinsic deficiencies, notably stability concerns. The successful amalgamation of TCM components with nanotechnology has properly tackled these concerns and enhanced the efficacy of therapeutic results. The objective of this study is to delineate the antioxidant characteristics of nano-TCM and assess the current inventory of literature pertaining to the application of nano-TCM in the treatment of OA. In conclusion, this paper will now turn to the constraints and potential avenues for the advancement of nano-TCM within the realm of OA therapy.
Collapse
Affiliation(s)
- Yue Peng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
| | - Zhengshuang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
| | - Jinling Li
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
- Laboratory of Basic Medicine Center, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
5
|
Wood L, Hughes J, Trussell M, Bishop AL, Griffin R. Fasting before Intra-Gastric Dosing with Antigen Improves Intestinal Humoral Responses in Syrian Hamsters. Vaccines (Basel) 2024; 12:572. [PMID: 38932302 PMCID: PMC11209237 DOI: 10.3390/vaccines12060572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Oral vaccines, unlike injected, induce intestinal secretory immunoglobulin A (sIgA) mimicking our natural defense against gut pathogens. We previously observed sIgA responses after administering the Clostridioides difficile colonisation factor CD0873 orally in enteric capsules to hamsters. Enteric-coated capsules are designed to resist dissolution in the stomach and disintegrate only at the higher pH of the small intestine. However, the variable responses between animals led us to speculate suboptimal transit of antigens to the small intestine. The rate of gastric emptying is a controlling factor in the passage of oral drugs for subsequent availability in the small intestine for absorption. Whilst in humans, food delays gastric emptying, in rats, capsules can empty quicker from fed stomachs than from fasted. To test in hamsters if fasting improves the delivery of antigens to the small intestine, as inferred from the immune responses generated, 24 animals were dosed intragastrically with enteric capsules containing recombinant CD0873. Twelve hamsters were fasted for 12 h prior to each dose and the other 12 fed. Significantly higher sIgA titres, with significantly greater bacterial-adherence-blocking activity, were detected in small intestinal lavages in the fasted group. We conclude that fasting in hamsters improves intestinal delivery leading to more robust responses.
Collapse
Affiliation(s)
- Liam Wood
- Vaccines and Therapeutics Group, School of Life Sciences, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
- Clostridia Research Group, Synthetic Biology Research Centre (SBRC), The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Jaime Hughes
- School of Life Sciences, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Mark Trussell
- Bio Support Unit, The University of Nottingham Medical School, Nottingham NG7 2UH, UK
| | - Anne L. Bishop
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ruth Griffin
- Vaccines and Therapeutics Group, School of Life Sciences, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
- Clostridia Research Group, Synthetic Biology Research Centre (SBRC), The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, The University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
6
|
Großmann L, Springub K, Krüger L, Winter F, Rump A, Kromrey ML, Bülow R, Hosten N, Dressman J, Weitschies W, Grimm M. Is there a fast track ("Darmstrasse") for fluids in the small intestine? Evidence from magnetic resonance imaging. Eur J Pharm Biopharm 2024; 198:114277. [PMID: 38582180 DOI: 10.1016/j.ejpb.2024.114277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND The transit and distribution pattern of fluids in the small intestine is a key parameter for the dissolution and absorption of drugs. Although some information is known about the small intestinal water content after administration of fluid volumes and meals, the intestinal transit of orally ingested fluids and solutions has been barely investigated. The aim of this three-arm, cross-over, 9-subject human study was to investigate the transit of orally ingested water in the small intestine under fasting and postprandial conditions using MRI. To identify the ingested water, manganese gluconate, which can be identified with T1-weighted MRI sequences, was added as a marker. Using Horos (DICOM software), quantification of the distribution of Mn2+ ions in the gastrointestinal tract in fasted versus fed state (standard meal by FDA guidance and a light meal) was possible. The distribution and approximate wetted intestinal length was very similar in the fasting and postprandial states, suggesting rapid transport of water ingested after a meal through the chyme-filled small intestine in continuation of the "Magenstrasse" (stomach road). In some subjects, manganese gluconate reached deeper parts of the small intestine even more quickly in the postprandial state than in the fasting arm of the study. A deeper understanding of the behaviour of solutes in the gastrointestinal tract is fundamental to a mechanistic explanation for the kinetic interaction between food and drug intake (food effects).
Collapse
Affiliation(s)
- Linus Großmann
- University of Greifswald, Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Straße 3, 17491 Greifswald, Germany
| | - Katharina Springub
- University of Greifswald, Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Straße 3, 17491 Greifswald, Germany
| | - Linda Krüger
- University of Greifswald, Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Straße 3, 17491 Greifswald, Germany
| | - Fabian Winter
- University of Greifswald, Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Straße 3, 17491 Greifswald, Germany
| | - Adrian Rump
- University of Greifswald, Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Straße 3, 17491 Greifswald, Germany
| | - Marie-Luise Kromrey
- University Medicine Greifswald, Institute for Diagnostic Radiology and Neuroradiology, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Robin Bülow
- University Medicine Greifswald, Institute for Diagnostic Radiology and Neuroradiology, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Norbert Hosten
- University Medicine Greifswald, Institute for Diagnostic Radiology and Neuroradiology, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Werner Weitschies
- University of Greifswald, Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Straße 3, 17491 Greifswald, Germany
| | - Michael Grimm
- University of Greifswald, Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Straße 3, 17491 Greifswald, Germany.
| |
Collapse
|
7
|
Jimonet P, Druart C, Blanquet-Diot S, Boucinha L, Kourula S, Le Vacon F, Maubant S, Rabot S, Van de Wiele T, Schuren F, Thomas V, Walther B, Zimmermann M. Gut Microbiome Integration in Drug Discovery and Development of Small Molecules. Drug Metab Dispos 2024; 52:274-287. [PMID: 38307852 DOI: 10.1124/dmd.123.001605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
Human microbiomes, particularly in the gut, could have a major impact on the efficacy and toxicity of drugs. However, gut microbial metabolism is often neglected in the drug discovery and development process. Medicen, a Paris-based human health innovation cluster, has gathered more than 30 international leading experts from pharma, academia, biotech, clinical research organizations, and regulatory science to develop proposals to facilitate the integration of microbiome science into drug discovery and development. Seven subteams were formed to cover the complementary expertise areas of 1) pharma experience and case studies, 2) in silico microbiome-drug interaction, 3) in vitro microbial stability screening, 4) gut fermentation models, 5) animal models, 6) microbiome integration in clinical and regulatory aspects, and 7) microbiome ecosystems and models. Each expert team produced a state-of-the-art report of their respective field highlighting existing microbiome-related tools at every stage of drug discovery and development. The most critical limitations are the growing, but still limited, drug-microbiome interaction data to produce predictive models and the lack of agreed-upon standards despite recent progress. In this paper we will report on and share proposals covering 1) how microbiome tools can support moving a compound from drug discovery to clinical proof-of-concept studies and alert early on potential undesired properties stemming from microbiome-induced drug metabolism and 2) how microbiome data can be generated and integrated in pharmacokinetic models that are predictive of the human situation. Examples of drugs metabolized by the microbiome will be discussed in detail to support recommendations from the working group. SIGNIFICANCE STATEMENT: Gut microbial metabolism is often neglected in the drug discovery and development process despite growing evidence of drugs' efficacy and safety impacted by their interaction with the microbiome. This paper will detail existing microbiome-related tools covering every stage of drug discovery and development, current progress, and limitations, as well as recommendations to integrate them into the drug discovery and development process.
Collapse
Affiliation(s)
- Patrick Jimonet
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Céline Druart
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Stéphanie Blanquet-Diot
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Lilia Boucinha
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Stephanie Kourula
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Françoise Le Vacon
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Sylvie Maubant
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Sylvie Rabot
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Tom Van de Wiele
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Frank Schuren
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Vincent Thomas
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Bernard Walther
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| | - Michael Zimmermann
- Medicen Paris Région, Paris, France (P.J.); Pharmabiotic Research Institute, Narbonne, France (C.D.); UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France (S.B.D.); Global Bioinformatics, Evotec ID, Lyon, France (L.B.); Preclinical Sciences & Translational Safety, JNJ Innovative Medicine, Beerse, Belgium (S.K.); Biofortis, Saint-Herblain, France (F.L.V.); Translational Pharmacology Department, Oncodesign Services, Dijon, France (S.M.); Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France (S.R.); Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium (T.V.W.); TNO, Leiden, The Netherlands (F.S.); Lallemand Health Solutions, Blagnac, France (V.T.); Servier, Saclay, France (B.W.); and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (M.Z.)
| |
Collapse
|
8
|
Phogole CM, de Jong J, Lalla U, Decloedt E, Kellermann T. In vitro optimization of crushed drug-sensitive antituberculosis medication when administered via a nasogastric tube. Microbiol Spectr 2024; 12:e0287623. [PMID: 37991379 PMCID: PMC10871698 DOI: 10.1128/spectrum.02876-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/22/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE The incidence of tuberculosis (TB) in intensive care units (ICUs) can be as high as 3% in high-burden settings, translating to more than 7,500 patients admitted to the ICU annually. In resource-limited settings, the lack or absence of intravenous formulations of drug-sensitive antituberculosis medications necessitates healthcare practitioners to crush, dissolve, and administer the drugs to critically ill patients via a nasogastric tube (NGT). This off-label practice has been linked to plasma concentrations below the recommended target concentrations, particularly of rifampicin and isoniazid, leading to clinical failure and the development of drug resistance. Optimizing the delivery of crushed drug-sensitive antituberculosis medication via the NGT to critically ill patients is of utmost importance.
Collapse
Affiliation(s)
- Cassius M. Phogole
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jocelyn de Jong
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Usha Lalla
- Division of Pulmonology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eric Decloedt
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tracy Kellermann
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
9
|
Milián-Guimerá C, De Vittorio L, McCabe R, Göncü N, Krishnan S, Thamdrup LHE, Boisen A, Ghavami M. Flexible Coatings Facilitate pH-Targeted Drug Release via Self-Unfolding Foils: Applications for Oral Drug Delivery. Pharmaceutics 2024; 16:81. [PMID: 38258092 PMCID: PMC10819044 DOI: 10.3390/pharmaceutics16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Ingestible self-configurable proximity-enabling devices have been developed as a non-invasive platform to improve the bioavailability of drug compounds via swellable or self-unfolding devices. Self-unfolding foils support unidirectional drug release in close proximity to the intestinal epithelium, the main drug absorption site following oral administration. The foils are loaded with a solid-state formulation containing the active pharmaceutical ingredient and then coated and rolled into enteric capsules. The coated lid must remain intact to ensure drug protection in the rolled state until targeted release in the small intestine after capsule disintegration. Despite promising results in previous studies, the deposition of an enteric top coating that remains intact after rolling is still challenging. In this study, we compare different mixtures of enteric polymers and a plasticizer, PEG 6000, as potential coating materials. We evaluate mechanical properties as well as drug protection and targeted release in gastric and intestinal media, respectively. Commercially available Eudragit® FL30D-55 appears to be the most suitable material due to its high strain at failure and integrity after capsule fitting. In vitro studies of coated foils in gastric and intestinal media confirm successful pH-triggered drug release. This indicates the potential advantage of the selected material in the development of self-unfolding foils for oral drug delivery.
Collapse
|
10
|
Chen M, Yang J, Tang C, Lu X, Wei Z, Liu Y, Yu P, Li H. Improving ADMET Prediction Accuracy for Candidate Drugs: Factors to Consider in QSPR Modeling Approaches. Curr Top Med Chem 2024; 24:222-242. [PMID: 38083894 DOI: 10.2174/0115680266280005231207105900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 05/04/2024]
Abstract
Quantitative Structure-Property Relationship (QSPR) employs mathematical and statistical methods to reveal quantitative correlations between the pharmacokinetics of compounds and their molecular structures, as well as their physical and chemical properties. QSPR models have been widely applied in the prediction of drug absorption, distribution, metabolism, excretion, and toxicity (ADMET). However, the accuracy of QSPR models for predicting drug ADMET properties still needs improvement. Therefore, this paper comprehensively reviews the tools employed in various stages of QSPR predictions for drug ADMET. It summarizes commonly used approaches to building QSPR models, systematically analyzing the advantages and limitations of each modeling method to ensure their judicious application. We provide an overview of recent advancements in the application of QSPR models for predicting drug ADMET properties. Furthermore, this review explores the inherent challenges in QSPR modeling while also proposing a range of considerations aimed at enhancing model prediction accuracy. The objective is to enhance the predictive capabilities of QSPR models in the field of drug development and provide valuable reference and guidance for researchers in this domain.
Collapse
Affiliation(s)
- Meilun Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jie Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan, 410013, China
| | - Chunhua Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan, 410013, China
| | - Xiaoling Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan, 410013, China
| | - Zheng Wei
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan, 410013, China
| | - Yijie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan, 410013, China
| | - Peng Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan, 410013, China
| | - HuanHuan Li
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan, 410013, China
| |
Collapse
|
11
|
Chen C, Beloqui A, Xu Y. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease. Adv Drug Deliv Rev 2023; 203:115117. [PMID: 37898337 DOI: 10.1016/j.addr.2023.115117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Oral administration is the preferred route of administration based on the convenience for and compliance of the patient. Oral nanomedicines have been developed to overcome the limitations of free drugs and overcome gastrointestinal (GI) barriers, which are heterogeneous across healthy and diseased populations. This review aims to provide a comprehensive overview and comparison of the oral nanomedicine biointeractions in the gastrointestinal tract (GIT) in health and disease (GI and extra-GI diseases) and highlight emerging strategies that exploit these differences for oral nanomedicine-based treatment. We introduce the key GI barriers related to oral delivery and summarize their pathological changes in various diseases. We discuss nanomedicine biointeractions in the GIT in health by describing the general biointeractions based on the type of oral nanomedicine and advanced biointeractions facilitated by advanced strategies applied in this field. We then discuss nanomedicine biointeractions in different diseases and explore how pathological characteristics have been harnessed to advance the development of oral nanomedicine.
Collapse
Affiliation(s)
- Cheng Chen
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium.
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Kus M, Ibragimow I, Piotrowska-Kempisty H. Caco-2 Cell Line Standardization with Pharmaceutical Requirements and In Vitro Model Suitability for Permeability Assays. Pharmaceutics 2023; 15:2523. [PMID: 38004503 PMCID: PMC10674574 DOI: 10.3390/pharmaceutics15112523] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
The Caco-2 cell line derived from human colon carcinoma is commonly used to assess the permeability of compounds in in vitro conditions. Due to the significant increase in permeability studies using the Caco-2 cell line in recent years, the need to standardize this biological model seems necessary. The pharmaceutical requirements define only the acceptance criteria for the validation of the Caco-2 cell line and do not specify the protocol for its implementation. Therefore, the aim of this study is to review the conditions for permeability studies across the Caco-2 monolayer reported in the available literature concerning validation guidelines. We summarized the main aspects affecting the validation process of the Caco-2 cell line, including the culture conditions, cytotoxicity, cell differentiation process, and monolayer transport conditions, and the main conclusions may be useful in developing individual methods for preparing the cell line for validation purposes and further permeability research.
Collapse
Affiliation(s)
- Marta Kus
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznan, Poland;
- Research and Development Department of Ethifarm, Ethifarm Manufacturing Plant, 9 Stefana Zeromskiego St., 60-544 Poznan, Poland;
| | - Izabela Ibragimow
- Research and Development Department of Ethifarm, Ethifarm Manufacturing Plant, 9 Stefana Zeromskiego St., 60-544 Poznan, Poland;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznan, Poland;
- Department of Basic and Preclinical Science, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 7 Gagarina St., 87-100 Torun, Poland
| |
Collapse
|
13
|
Cai J, Auster A, Cho S, Lai Z. Dissecting the human gut microbiome to better decipher drug liability: A once-forgotten organ takes center stage. J Adv Res 2023; 52:171-201. [PMID: 37419381 PMCID: PMC10555929 DOI: 10.1016/j.jare.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND The gut microbiome is a diverse system within the gastrointestinal tract composed of trillions of microorganisms (gut microbiota), along with their genomes. Accumulated evidence has revealed the significance of the gut microbiome in human health and disease. Due to its ability to alter drug/xenobiotic pharmacokinetics and therapeutic outcomes, this once-forgotten "metabolic organ" is receiving increasing attention. In parallel with the growing microbiome-driven studies, traditional analytical techniques and technologies have also evolved, allowing researchers to gain a deeper understanding of the functional and mechanistic effects of gut microbiome. AIM OF REVIEW From a drug development perspective, microbial drug metabolism is becoming increasingly critical as new modalities (e.g., degradation peptides) with potential microbial metabolism implications emerge. The pharmaceutical industry thus has a pressing need to stay up-to-date with, and continue pursuing, research efforts investigating clinical impact of the gut microbiome on drug actions whilst integrating advances in analytical technology and gut microbiome models. Our review aims to practically address this need by comprehensively introducing the latest innovations in microbial drug metabolism research- including strengths and limitations, to aid in mechanistically dissecting the impact of the gut microbiome on drug metabolism and therapeutic impact, and to develop informed strategies to address microbiome-related drug liability and minimize clinical risk. KEY SCIENTIFIC CONCEPTS OF REVIEW We present comprehensive mechanisms and co-contributing factors by which the gut microbiome influences drug therapeutic outcomes. We highlight in vitro, in vivo, and in silico models for elucidating the mechanistic role and clinical impact of the gut microbiome on drugs in combination with high-throughput, functionally oriented, and physiologically relevant techniques. Integrating pharmaceutical knowledge and insight, we provide practical suggestions to pharmaceutical scientists for when, why, how, and what is next in microbial studies for improved drug efficacy and safety, and ultimately, support precision medicine formulation for personalized and efficacious therapies.
Collapse
Affiliation(s)
- Jingwei Cai
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA.
| | - Alexis Auster
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Sungjoon Cho
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Zijuan Lai
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
14
|
Arav Y, Zohar A. Model-based optimization of controlled release formulation of levodopa for Parkinson's disease. Sci Rep 2023; 13:15869. [PMID: 37739971 PMCID: PMC10517026 DOI: 10.1038/s41598-023-42878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023] Open
Abstract
Levodopa is currently the standard of care treatment for Parkinson's disease, but chronic therapy has been linked to motor complications. Designing a controlled release formulation (CRF) that maintains sustained and constant blood concentrations may reduce these complications. Still, it is challenging due to levodopa's pharmacokinetic properties and the notion that it is absorbed only in the upper small intestine (i.e., exhibits an "absorption window"). We created and validated a physiologically based mathematical model to aid the development of such a formulation. Analysis of experimental results using the model revealed that levodopa is well absorbed throughout the entire small intestine (i.e., no "absorption window") and that levodopa in the stomach causes fluctuations during the first 3 h after administration. Based on these insights, we developed guidelines for an improved CRF for various stages of Parkinson's disease. Such a formulation is expected to produce steady concentrations and prolong therapeutic duration compared to a common CRF with a smaller dose per day and a lower overall dose of levodopa, thereby improving patient compliance with the dosage regime.
Collapse
Affiliation(s)
- Yehuda Arav
- Department of Applied Mathematics, Israeli Institute for Biological Research, PO Box 19, 7410001, Ness-Ziona, Israel.
| | | |
Collapse
|
15
|
Choi YJ, Park J, Choi H, Oh SJ, Park JH, Park M, Kim JW, Kim YG, Kim YC, Kim MJ, Kang KW. PLM-101 is a novel and potent FLT3/RET inhibitor with less adverse effects in the treatment of acute myeloid leukemia. Biomed Pharmacother 2023; 165:115066. [PMID: 37392657 DOI: 10.1016/j.biopha.2023.115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Acute myeloid leukemia (AML) is a prevalent form of leukemia in adults. As its survival rate is low, there is an urgent need for new therapeutic options. In AML, FMS-like tyrosine kinase 3 (FLT3) mutations are common and have negative outcomes. However, current FLT3-targeting agents, Midostaurin and Gilteritinib, face two significant issues, specifically the emergence of acquired resistance and drug-related adverse events leading to treatment failure. Rearranged during transfection (RET), meanwhile, is a proto-oncogene linked to various types of cancer, but its role in AML has been limited. A previous study showed that activation of RET kinase enhances FLT3 protein stability, leading to the promotion of AML cell proliferation. However, no drugs are currently available that target both FLT3 and RET. This study introduces PLM-101, a new therapeutic option derived from the traditional Chinese medicine indigo naturalis with potent in vitro and in vivo anti-leukemic activities. PLM-101 potently inhibits FLT3 kinase and induces its autophagic degradation via RET inhibition, providing a superior mechanism to that of FLT3 single-targeting agents. Single- and repeated-dose toxicity tests conducted in the present study showed no significant drug-related adverse effects. This study is the first to present a new FLT3/RET dual-targeting inhibitor, PLM-101, that shows potent anti-leukemic activity and fewer adverse effects. PLM-101, therefore, should be considered for use as a potential therapeutic agent for AML.
Collapse
Affiliation(s)
- Yong June Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaewoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoyi Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Su-Jin Oh
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea
| | - Jin-Hee Park
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea
| | - Miso Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Won Kim
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Yoon-Gyoon Kim
- College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Yong-Chul Kim
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea; School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Myung Jin Kim
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea.
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
16
|
Colletti A, Pellizzato M, Cicero AF. The Possible Role of Probiotic Supplementation in Inflammation: A Narrative Review. Microorganisms 2023; 11:2160. [PMID: 37764004 PMCID: PMC10535592 DOI: 10.3390/microorganisms11092160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
The fine balance between symbiotic and potentially opportunistic and/or pathogenic microorganisms can undergo quantitative alterations, which, when associated with low intestinal biodiversity, could be responsible for the development of gut inflammation and the so-called "intestinal dysbiosis". This condition is characterized by the disbalance of a fine synergistic mechanism involving the mucosal barrier, the intestinal neuroendocrine system, and the immune system that results in an acute inflammatory response induced by different causes, including viral or bacterial infections of the digestive tract. More frequently, however, dysbiosis is induced slowly and subtly by subliminal causal factors, resulting in a chronic condition related to different diseases affecting the digestive tract and other organs and apparatuses. Studies on animal models, together with studies on humans, highlight the significant role of the gut microbiota and microbiome in the occurrence of inflammatory conditions such as metabolic syndrome and cardiovascular diseases (CVDs); neurodegenerative, urologic, skin, liver, and kidney pathologies; and premature aging. The blood translocation of bacterial fragments has been found to be one of the processes linked to gut dysbiosis and responsible for the possible occurrence of "metabolic endotoxemia" and systemic inflammation, associated with an increased risk of oxidative stress and related diseases. In this context, supplementation with different probiotic strains has been shown to restore gut eubiosis, especially if administered in long-term treatments. The aim of this review is to describe the anti-inflammatory effects of specific probiotic strains observed in clinical trials and the respective indications, highlighting the differences in efficacy depending on strain, formulation, time and duration of treatment, and dosage used.
Collapse
Affiliation(s)
- Alessandro Colletti
- Department of Science and Drug Technology, University of Turin, 10124 Turin, Italy
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
| | - Marzia Pellizzato
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
| | - Arrigo Francesco Cicero
- Medical and Surgical Sciences Department, University of Bologna, 40126 Bologna, Italy;
- IRCCS AOUBO, 40138 Bologna, Italy
| |
Collapse
|
17
|
Jia Y, Sun C, Chen T, Zhu H, Wang T, Ye Y, Luo X, Zeng X, Yang Y, Zeng H, Zou Q, Liu E, Li J, Sun H. Recent advance in phytonanomedicine and mineral nanomedicine delivery system of the treatment for acute myeloid leukemia. J Nanobiotechnology 2023; 21:240. [PMID: 37491290 PMCID: PMC10369765 DOI: 10.1186/s12951-023-01968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/25/2023] [Indexed: 07/27/2023] Open
Abstract
Acute myeloid leukemia (AML) is an invasive hematopoietic malignancy caused by excessive proliferation of myeloblasts. Classical chemotherapies and cell transplantation therapies have remarkable efficacy in AML treatment; however, 30-40% of patients relapsed or had refractory disease. The resistance of AML is closely related to its inherent cytogenetics or various gene mutations. Recently, phytonanomedicine are found to be effective against resistant AML cells and have become a research focus for nanotechnology development to improve their properties, such as increasing solubility, improving absorption, enhancing bioavailability, and maintaining sustained release and targeting. These novel phytonanomedicine and mineral nanomedicine, including nanocrystals, nanoemulsion, nanoparticles, nanoliposome, and nanomicelles, offer many advantages, such as flexible dosages or forms, multiple routes of administration, and curative effects. Therefore, we reviewed the application and progress of phytomedicine in AML treatment and discussed the limitations and future prospects. This review may provide a solid reference to guide future research on AML treatment.
Collapse
Affiliation(s)
- Yimin Jia
- Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Cun Sun
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Ting Chen
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Hui Zhu
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Tianrui Wang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yan Ye
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xing Luo
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xiaoqiang Zeng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yun Yang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Hao Zeng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Enqiang Liu
- Department of Hematology and Oncology, Qianjiang Central Hospital of Chongqing Municipality, Qian Jiang, Chonqing, 409000, China.
| | - Jieping Li
- Chongqing University Cancer Hospital, Chongqing, 400030, China.
- Department of Hematology and Oncology, Qianjiang Central Hospital of Chongqing Municipality, Qian Jiang, Chonqing, 409000, China.
| | - Hongwu Sun
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
18
|
Huang B, Lin Z, Chen Z, Chen J, Shi B, Jia J, Li Y, Pan Y, Liang Y, Cai Z. Strain differences in the drug transport capacity of intestinal glucose transporters in Sprague-Dawley versus Wistar rats, C57BL/6J versus Kunming mice. Int J Pharm 2023; 640:123000. [PMID: 37254285 DOI: 10.1016/j.ijpharm.2023.123000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Designing oral drug delivery systems using intestinal glucose transporters (IGTs) may be one of the strategies for improving oral bioavailability of drugs. However, little is known about the biological factors affecting the drug transport capacity of IGTs. Gastrodin is a sedative drug with a structure very similar to glucose. It is a highly water-soluble phenolic glucoside. It can hardly enter the intestine through simple diffusion but exhibits good oral bioavailability of over 80%. We confirmed that gastrodin is absorbed via the intestinal glucose transport pathway. It has the highest oral bioavailability among the reported glycosides' active ingredients through this pathway. Thus, gastrodin is the most selective drug substrate of IGTs and can be used to evaluate the drug transport capacity of IGTs. Obviously, strain is one of the main biological factors affecting drug absorption. This study firstly compared the drug transport capacity of IGTs between SD rats and Wistar rats and between C57 mice and KM mice by pharmacokinetic experiments and single-pass intestinal perfusion experiments of gastrodin. Then, the sodium-dependent glucose transporter type 1 (SGLT1) and sodium-independent glucose transporters type 2 (GLUT2) in the duodenum, jejunum, ileum and colon of these animals were quantified using RT-qPCR and Western blot. The results showed that the oral bioavailability of gastrodin in Wistar rats was significantly higher than in SD rats and significantly higher in KM mice than in C57 mice. Gastrodin absorption significantly differed among different intestinal segments in SD rats, C57 mice and KM mice, except Wistar rats. RT-qPCR and Western blot demonstrated that the intestinal expression distribution of SGLT1 and GLUT2 in SD rats and C57 mice was duodenum ≈ jejunum > ileum > colon. SGLT1 expression did not differ among different intestinal segments in KM mice, whereas the intestinal expression distribution of GLUT2 was duodenum ≈ jejunum ≈ ileum > colon. However, the expression of SGLT1 and GLUT2 did not differ among different intestinal segments in Wistar rats. It was reported that the intestinal expression distribution of SGLT1 and GLUT2 in humans is duodenum > jejunum > ileum > colon. Hence, the intestinal expression distribution of SGLT1 and GLUT2 of SD rats and C57 mice was more similar to that in humans. In conclusion, the drug transport capacity of IGTs differs in different strains of rats and mice. SD rats and C57 mice are more suitable for evaluating the pharmacokinetics of glycosides' active ingredients absorbed via the intestinal glucose transport pathway.
Collapse
Affiliation(s)
- Baolin Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Zimin Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Zhenzhen Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Jiasheng Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Birui Shi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Jingjing Jia
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Yuan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yueqing Pan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yuntao Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Zheng Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China.
| |
Collapse
|
19
|
Lei Z, Tian Q, Teng Q, Wurpel JND, Zeng L, Pan Y, Chen Z. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 PMCID: PMC10203373 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
20
|
Popović-Nikolić MR, Nikolić KM, Popović GV. Protolytic equilibria of ACE inhibitors in micellar solution of nonionic surfactant Brij 35. MONATSHEFTE FUR CHEMIE 2023; 154:615-624. [PMID: 37193115 PMCID: PMC10111327 DOI: 10.1007/s00706-023-03059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/21/2023] [Indexed: 05/18/2023]
Abstract
The acid-base equilibria of six ACE inhibitors (ACEIs), captopril, cilazapril, enalapril, lisinopril, quinapril, and ramipril, were investigated in the presence of micelles of nonionic surfactant Brij 35. The pKa values were potentiometrically determined at 25 °C and at a constant ionic strength (0.1 M NaCl). The obtained potentiometric data were evaluated in the computer program Hyperquad. On the basis of the shift in the pKa values (ΔpKa) determined in micellar media in relation to the pKa values previously determined in "pure" water, the effect of Brij 35 micelles on ACEIs ionization was estimated. The presence of nonionic Brij 35 micelles caused a shift in the pKa values of all ionizable groups of the investigated ACEIs (ΔpKa from - 3.44 to + 1.9) while shifting the protolytic equilibria of both acidic and basic groups toward the molecular form. The Brij 35 micelles expressed the most pronounced effect on the ionization of captopril among the investigated ACEIs and stronger effect on the ionization of amino than on the ionization of carboxyl groups. The obtained results suggest that ionizable functional groups of ACEIs are involved in interactions with palisade layer of nonionic Brij 35 micelles, which potentially can be considered in physiological conditions. Distribution diagrams of the investigated ACEIs equilibrium forms as a function of pH indicate that the change in distribution is most strongly expressed in pH range 4-8, which includes biopharmaceutically important pH values. Graphical abstract
Collapse
Affiliation(s)
- Marija R. Popović-Nikolić
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Katarina M. Nikolić
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Gordana V. Popović
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| |
Collapse
|
21
|
Murakami T, Bodor E, Bodor N. Approaching strategy to increase the oral bioavailability of berberine, a quaternary ammonium isoquinoline alkaloid: Part 2. Development of oral dosage formulations. Expert Opin Drug Metab Toxicol 2023; 19:139-148. [PMID: 37060323 DOI: 10.1080/17425255.2023.2203858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
INTRODUCTION Berberine (BBR) possesses a wide variety of pharmacological activities. However, the oral bioavailability of BBR is low due to extensive intestinal first-pass metabolism by cytochrome P450s (CYPs), insufficient absorption due to low solubility and P-glycoprotein (P-gp)-mediated efflux transport, and hepatic first-pass metabolism in rats. AREAS COVERED Various dosage formulations were developed to increase the oral bioavailability of BBR by overcoming the reducing factors. This article provides the developing strategy of oral dosage formulations of BBR based on the physicochemical (low solubility, formation of salts/ion-pair complex) and pharmacokinetic properties (substrate of P-gp/CYPs, extensive intestinal first-pass metabolism). Literature was searched by using PubMed. EXPERT OPINION Here, formulations increasing the dissolution rates/solubility; formulations containing a P-gp inhibitor; formulations containing solubilizer exhibiting P-gp and/or CYPs inhibitors; formulations containing absorption enhancers; gastro/duodenal retentive formulations; lipid-based formulations; formulations targeting lymphatic transport; and physicochemical modifications increasing lipophilicity were reviewed. Among these formulations, formulations that can reduce intestinal first-pass metabolisms such as formulations containing CYPs inhibitor(s) and formulations containing absorption enhancer(s) significantly increased the oral bioavailability of BBR. Further studies on other dosing routes that can avoid first-pass metabolism such as the rectal route would also be important to increase the bioavailability of BBR.
Collapse
Affiliation(s)
| | - Erik Bodor
- Bodor Laboratories Inc, Miami, Florida33137, USA
| | - Nicholas Bodor
- Bodor Laboratories Inc, Miami, Florida33137, USA
- College of Pharmacy, University of Florida, Gainesville, Florida32611, USA
| |
Collapse
|
22
|
Sardou HS, Vosough PR, Abbaspour M, Akhgari A, Sathyapalan T, Sahebkar A. A review on curcumin colon-targeted oral drug delivery systems for the treatment of inflammatory bowel disease. Inflammopharmacology 2023; 31:1095-1105. [PMID: 36757584 DOI: 10.1007/s10787-023-01140-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Synthetic drugs and monoclonal antibodies are the typical treatments to combat inflammatory bowel disease (IBD). However, side effects are present when these treatments are used, and their continued application could be restricted by the high relapse rate of the disease. One potential alternative to these treatments is the use of plant-derived products. The use curcumin is one such treatment option that has seen an increase in usage in treating IBD. Curcumin is derived from a rhizome of turmeric (Curcuma longa), and the results of studies on the use of curcumin to treat IBD are promising. These studies suggest that curcumin interacts with cellular targets such as NF-κB, JAKs/STATs, MAPKs, TNF-α, IL-6, PPAR, and TRPV1 and may reduce the progression of IBD. Potentially, curcumin can be used as a therapeutic agent for patients with IBD when it reduces the incidence of clinical relapse. This review discusses the strategies utilized in designing and developing an oral colonic delivery dosage form of curcumin.
Collapse
Affiliation(s)
- Hossein Shahdadi Sardou
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paria Rahnama Vosough
- Food Science and Technology Department, Agriculture Faculty, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Mohammadreza Abbaspour
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Maeda Y, Murakami T. Diagnosis by Microbial Culture, Breath Tests and Urinary Excretion Tests, and Treatments of Small Intestinal Bacterial Overgrowth. Antibiotics (Basel) 2023; 12:antibiotics12020263. [PMID: 36830173 PMCID: PMC9952535 DOI: 10.3390/antibiotics12020263] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is characterized as the increase in the number and/or alteration in the type of bacteria in the upper gastrointestinal tract and accompanies various bowel symptoms such as abdominal pain, bloating, gases, diarrhea, and so on. Clinically, SIBO is diagnosed by microbial culture in duodenum/jejunum fluid aspirates and/or the breath tests (BT) of hydrogen/methane gases after ingestion of carbohydrates such as glucose. The cultural analysis of aspirates is regarded as the golden standard for the diagnosis of SIBO; however, this is invasive and is not without risk to the patients. BT is an inexpensive and safe diagnostic test but lacks diagnostic sensitivity and specificity depending on the disease states of patients. Additionally, the urinary excretion tests are used for the SIBO diagnosis using chemically synthesized bile acid conjugates such as cholic acid (CA) conjugated with para-aminobenzoic acid (PABA-CA), ursodeoxycholic acid (UDCA) conjugated with PABA (PABA-UDCA) or conjugated with 5-aminosalicylic acid (5-ASA-UDCA). These conjugates are split by bacterial bile acid (cholylglycine) hydrolase. In the tests, the time courses of the urinary excretion rates of PABA or 5-ASA, including their metabolites, are determined as the measure of hydrolytic activity of intestinal bacteria. Although the number of clinical trials with this urinary excretion tests is small, results demonstrated the usefulness of bile acid conjugates as SIBO diagnostic substrates. PABA-UDCA disulfate, a single-pass type unabsorbable compound without the hydrolysis of conjugates, was likely to offer a simple and rapid method for the evaluation of SIBO without the use of radioisotopes or expensive special apparatus. Treatments of SIBO with antibiotics, probiotics, therapeutic diets, herbal medicines, and/or fecal microbiota transplantation are also reviewed.
Collapse
Affiliation(s)
- Yorinobu Maeda
- Laboratory of Drug Information Analytics, Faculty of Pharmacy & Pharmaceutical Sciences, Fukuyama University, Sanzou, Gakuen-cho, Fukuyama 729-0292, Hiroshima, Japan
| | - Teruo Murakami
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure 737-0112, Hiroshima, Japan
- Correspondence: ; Tel.: +81-82-872-4310
| |
Collapse
|
24
|
Lv W, Ma Y, Zhang Y, Wang T, Huang J, He S, Du H, Guo S. Effects of Lactobacillus plantarum fermented Shenling Baizhu San on gut microbiota, antioxidant capacity, and intestinal barrier function of yellow-plumed broilers. Front Vet Sci 2023; 10:1103023. [PMID: 36908522 PMCID: PMC9992544 DOI: 10.3389/fvets.2023.1103023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
The current study focused on the effects of Shenling Baizhu San (SLBZS) fermented by Lactobacillus plantarum (L. plantarum) on gut microbiota, antioxidant capacity, and intestinal barrier function of yellow-plumed broilers. Our results showed that the content of ginsenoside Rb1 was the highest when SLBZS were inoculated with 3% L. plantarum and fermented at 28°C for 24 h. One-day-old male broilers were divided into five treatment groups. Treatment consisted of a basal diet as a control (Con), 0.1% unfermented SLBZS (U-SLBZS), 0.05% fermented SLBZS (F-SLBZS-L), 0.1% fermented SLBZS (F-SLBZS-M), and 0.2% fermented SLBZS (F-SLBZS-H). On days 14, 28, and 42, six chickens from each group were randomly selected for blood collection and tissue sampling. The results showed that the addition of 0.1% fermented SLBZS could significantly increase average daily feed intake (ADFI) and average daily gain (ADG), and decrease feed conversion ratio (FCR) of broilers. The addition of 0.1 and 0.2% fermented SLBZS significantly increased the lymphoid organ index of broilers on day 28 and 42. The addition of 0.1 and 0.2% fermented SLBZS could improve the antioxidant capacity of broilers. Moreover, the addition of 0.1 and 0.2% fermented SLBZS could significantly increase the villus height/crypt depth of the ileum, and significantly increase the expression of tight junction. In addition, fermentation of SLBZS increase the abundance of Coprococcus, Bifidobacterium and Bilophila in the gut of broilers. These results indicate that the supplementation of fermented SLBZS in the diet could improve the growth performance, lymphoid organ index, antioxidant capacity, and positively affect the intestinal health of broilers.
Collapse
Affiliation(s)
- Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, China
| | - Yimu Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yingwen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tianze Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jieyi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shiqi He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongliang Du
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, China
| |
Collapse
|
25
|
Tian D, Yang Y, Zhang H, Du H, Zhou H, Wang T. Comparison of Ussing Chamber and Caco-2 Model in Evaluation of Intestinal Absorption Mechanism of Compounds from Different BCS Classifications. DRUG METABOLISM AND BIOANALYSIS LETTERS 2023; 16:105-112. [PMID: 37711012 DOI: 10.2174/2949681016666230913105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/06/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Oral bioavailability (F), which is evaluated by permeability and solubility, is one of the key parameters in drug discovery. Currently, Caco-2 and Ussing chamber are both used in the study of intestinal permeability of drugs at different stages of drug development. However, comparative research between the Ussing chamber and Caco-2 for predicting the intestinal availability data (Fa×Fg) in humans has not been reported. METHODS In the present study, we evaluated the permeability of 22 drugs in rat intestines by Ussing chamber and compared them with the reported permeability data from Caco-2. In addition, the active transport of gabapentin was evaluated by Ussing Chamber. RESULTS Intestine segments were selected by corresponding absorption site for Ussing chamber analysis. BCS Class I and II compounds were more absorbed in the duodenum and jejunum, and Class III and IV compounds were more absorbed in the ileum. Papp values in the Caco-2 model were moderately correlated with human Fa×Fg (R2=0.722), and the Papp of the rat in the Ussing chamber revealed a better correlation with human Fa×Fg (R2=0.952). In addition, we also used the Ussing chamber to identify the transporter of gabapentin, and the results showed that the active absorption of gabapentin was related to LAT1. CONCLUSION Ussing chamber combined with rat intestinal tissue would be a significant tool for predicting the intestinal absorption and metabolism of compounds with diverse physiochemical characteristics.
Collapse
Affiliation(s)
- Dong Tian
- Department of Drug Metabolism and Pharmacokinetics (DMPK), Pharmaron Beijing Co., Ltd., Beijing, 100176, China
| | - Yingxin Yang
- Department of Drug Metabolism and Pharmacokinetics (DMPK), Pharmaron Beijing Co., Ltd., Beijing, 100176, China
| | - Huiying Zhang
- Department of Drug Metabolism and Pharmacokinetics (DMPK), Pharmaron Beijing Co., Ltd., Beijing, 100176, China
| | - Hongwen Du
- Department of Drug Metabolism and Pharmacokinetics (DMPK), Pharmaron Beijing Co., Ltd., Beijing, 100176, China
| | - Hongyu Zhou
- Department of Drug Metabolism and Pharmacokinetics (DMPK), Pharmaron Beijing Co., Ltd., Beijing, 100176, China
| | - Tao Wang
- Department of Drug Metabolism and Pharmacokinetics (DMPK), Pharmaron Beijing Co., Ltd., Beijing, 100176, China
| |
Collapse
|
26
|
Borwornpiyawat P, Juntasaro E, Aueviriyavit S, Juntasaro V, Sripumkhai W, Pattamang P, Meananeatra R, Kulthong K, Wongwanakul R, Khemthongcharoen N, Atthi N, Jeamsaksiri W. Effects of Porous Size and Membrane Pattern on Shear Stress Characteristic in Gut-on-a-Chip with Peristalsis Motion. MICROMACHINES 2022; 14:22. [PMID: 36677084 PMCID: PMC9865814 DOI: 10.3390/mi14010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Dynamic gut-on-a-chip platform allows better recreation of the intestinal environment in vitro compared to the traditional static cell culture. However, the underlying mechanism is still not fully discovered. In this study, the shear stress behavior in a gut-on-a-chip device with porous membrane subjected to peristalsis motion is numerically investigated using CFD simulation for three different pore sizes and two pattern layouts. The results reveal that, in the stationary microchannel, the average shear stress on the porous membrane is approximately 15% greater than that of the flat membrane, regardless of the pore size. However, when subjected to cyclic deformation, the porous membrane with smaller pore size experiences stronger variation of shear stress which is ±5.61%, ±10.12% and ±34.45% from its average for the pore diameters of 10 μm, 5 μm and 1 μm, respectively. The shear stress distribution is more consistent in case of the staggered pattern layout while the in-line pattern layout allows for a 32% wider range of shear stress at the identical pore size during a cyclic deformation. These changes in the shear stress caused by peristalsis motion, porous size and membrane pattern could be the key factors that promote cell differentiation in the deforming gut-on-a-chip model.
Collapse
Affiliation(s)
- Pannasit Borwornpiyawat
- Mechanical Engineering Simulation and Design Group, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| | - Ekachai Juntasaro
- Mechanical Engineering Simulation and Design Group, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| | - Sasitorn Aueviriyavit
- Nano Safety and Bioactivity Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Varangrat Juntasaro
- Department of Mechanical Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Witsaroot Sripumkhai
- Thai Microelectronics Center (TMEC), National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Chacheongsao 24000, Thailand
| | - Pattaraluck Pattamang
- Thai Microelectronics Center (TMEC), National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Chacheongsao 24000, Thailand
| | - Rattanawan Meananeatra
- Thai Microelectronics Center (TMEC), National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Chacheongsao 24000, Thailand
| | - Kornphimol Kulthong
- Nano Safety and Bioactivity Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Ratjika Wongwanakul
- Nano Safety and Bioactivity Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Numfon Khemthongcharoen
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Nithi Atthi
- Thai Microelectronics Center (TMEC), National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Chacheongsao 24000, Thailand
| | - Wutthinan Jeamsaksiri
- Thai Microelectronics Center (TMEC), National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Chacheongsao 24000, Thailand
| |
Collapse
|
27
|
Serebrova S, Kurguzova D, Krasnykh L, Vasilenko G, Drozdov V, Lazareva N, Shikh E, Zhuravleva M, Rykova S, Eremenko N, Kareva E, Mirzaev K, Sychev D, Prokofiev A. Potential factors of Helicobacter pylori resistance to clarithromycin. Drug Metab Pers Ther 2022; 37:383-391. [PMID: 36027921 DOI: 10.1515/dmpt-2021-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES A comparative dissolution kinetics test (CDKT) and bioequivalence studies of generic proton pump inhibitors (PPIs) do not model pharmacological acid suppression (PAS) and pathological duodenogastric reflux (PDGR). This study aimed to model them in CDKT to assess drugs stability and potential pantoprazole-clarithromycin interactions. METHODS In CDKT, PDGR (dissolution medium pH 7.00 ± 0.05, preexposure at pH 1.20 ± 0.05) and PAS (pH 4.00 ± 0.05) were modelled for original pantoprazole (OP) and its generics (GP1-4). In CDKT with high-performance liquid chromatography, dissolution gastric medium in adequate (pH 4.00 ± 0.05) and inadequate (pH 1.20 ± 0.05) PAS were modelled for original clarithromycin (OC) and its generics (GC1-4). RESULTS After exposure in pH 7.00 ± 0.05, pantoprazole was released from GP1 within 10 min in the amount of 68.8%. In рН 4.00 ± 0.05, 83.0% and 81.5% of pantoprazole were released from GP1 and GP4. When OP, GP2 and GP3 were placed in pH 7.00 ± 0.05, pantoprazole was released in amount: 99.4%, 88.0% and 98.2%. Clarithromycin releasing from OC, GC1, GC2, GC3, GC4 in pH 4.00 ± 0.05 was 93.5%, 91.6%, 92.9%, 79.4% and 83.0%. In pH 1.20 ± 0.05: 9.7%, 6.7%, 8.5%, 33.3%, 28.8%. CONCLUSIONS Destruction of enteric coats of some local pantoprazole generics in CDKT-models might be a potential factor for inadequate therapy.
Collapse
Affiliation(s)
- Svetlana Serebrova
- Scientific Centre for Expert Evaluation of Medicinal Products, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Daria Kurguzova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Lyudmila Krasnykh
- Scientific Centre for Expert Evaluation of Medicinal Products, Moscow, Russian Federation
| | - Galina Vasilenko
- Scientific Centre for Expert Evaluation of Medicinal Products, Moscow, Russian Federation
| | - Vladimir Drozdov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Natalia Lazareva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Eugenia Shikh
- Scientific Centre for Expert Evaluation of Medicinal Products, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Marina Zhuravleva
- Scientific Centre for Expert Evaluation of Medicinal Products, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Svetlana Rykova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Natalia Eremenko
- Scientific Centre for Expert Evaluation of Medicinal Products, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Elena Kareva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Karin Mirzaev
- Federal State Budgetary Educational Institution of Further Professional Education "Russian Medical Academy of Continuous Professional Education" of The Ministry of Healthcare of The Russian Federation, Moscow, Russian Federation
| | - Dmitriy Sychev
- Federal State Budgetary Educational Institution of Further Professional Education "Russian Medical Academy of Continuous Professional Education" of The Ministry of Healthcare of The Russian Federation, Moscow, Russian Federation
| | - Alexey Prokofiev
- Scientific Centre for Expert Evaluation of Medicinal Products, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
28
|
Dourado D, Oliveira MCD, Araujo GRSD, Amaral-Machado L, Porto DL, Aragão CFS, Alencar EDN, Egito ESTD. Low-surfactant microemulsion, a smart strategy intended for curcumin oral delivery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Hong X, Cai Z, Zhou F, Jin X, Wang G, Ouyang B, Zhang J. Improved pharmacokinetics of tenofovir ester prodrugs strengthened the inhibition of HBV replication and the rebalance of hepatocellular metabolism in preclinical models. Front Pharmacol 2022; 13:932934. [PMID: 36105197 PMCID: PMC9465247 DOI: 10.3389/fphar.2022.932934] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Tenofovir (TFV) ester prodrugs, a class of nucleotide analogs (NAs), are the first-line clinical anti-hepatitis B virus (HBV) drugs with potent antiviral efficacy, low resistance rate and high safety. In this work, three marketed TFV ester drugs, tenofovir disoproxil fumarate (TDF), tenofovir alafenamide fumarate (TAF) and tenofovir amibufenamide fumarate (TMF), were used as probes to investigate the relationships among prodrug structures, pharmacokinetic characteristics, metabolic activations, pharmacological responses and to reveal the key factors of TFV ester prodrug design. The results indicated that TMF and TAF exhibited significantly stronger inhibition of HBV DNA replication than did TDF in HBV-positive HepG2.2.15 cells. The anti-HBV activity of TMF was slightly stronger than TAF after 9 days of treatment (EC50 7.29 ± 0.71 nM vs. 12.17 ± 0.56 nM). Similar results were observed in the HBV decline period post drug administration to the HBV transgenic mouse model, although these three TFV prodrugs finally achieved the same anti-HBV effect after 42 days treatments. Furthermore, TFV ester prodrugs showed a correcting effect on disordered host hepatic biochemical metabolism, including TCA cycle, glycolysis, pentose phosphate pathway, purine/pyrimidine metabolism, amino acid metabolism, ketone body metabolism and phospholipid metabolism. The callback effects of the three TFV ester prodrugs were ranked as TMF > TAF > TDF. These advantages of TMF were believed to be attributed to its greater bioavailability in preclinical animals (SD rats, C57BL/6 mice and beagle dogs) and better target loading, especially in terms of the higher hepatic level of the pharmacologically active metabolite TFV-DP, which was tightly related to anti-HBV efficacy. Further analysis indicated that stability in intestinal fluid determined the actual amount of TFV prodrug at the absorption site, and hepatic/intestinal stability determined the maintenance amount of prodrug in circulation, both of which influenced the oral bioavailability of TFV prodrugs. In conclusion, our research revealed that improved pharmacokinetics of TFV ester prodrugs (especially intestinal stability) strengthened the inhibition of HBV replication and the rebalance of hepatocellular metabolism, which provides new insights and a basis for the design, modification and evaluation of new TFV prodrugs in the future.
Collapse
Affiliation(s)
- Xiaodan Hong
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zuhuan Cai
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoliang Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- *Correspondence: Guangji Wang, ; Bingchen Ouyang, ; Jingwei Zhang,
| | - Bingchen Ouyang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- *Correspondence: Guangji Wang, ; Bingchen Ouyang, ; Jingwei Zhang,
| | - Jingwei Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- *Correspondence: Guangji Wang, ; Bingchen Ouyang, ; Jingwei Zhang,
| |
Collapse
|
30
|
Khuroo T, Mohamed EM, Dharani S, Immadi S, Nutan MTH, Lu D, Ali HI, Khan MA, Rahman Z. In-Situ Implant Formulation of Laurate and Myristate Prodrugs of Dolutegravir for Ultra-Long Delivery. J Pharm Sci 2022; 111:2312-2321. [PMID: 35296412 DOI: 10.1016/j.xphs.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/23/2023]
Abstract
The focus of present work was to synthesize prodrugs of dolutegravir (DTG) for ultra-long delivery purpose. The prodrug was synthesized by esterification of hydroxyl group with carboxyl group of fatty acid (lauric or myristic acid). The prodrugs were characterized by differential scanning calorimetry, X-ray powder diffraction, nuclear magnetic resonance, Fourier transformed infrared, near infrared-chemical imaging, pH-solubility, partition coefficient, and stability (solid and liquid). Stability studies were performed by exposing the powder drugs to 40°C/75% RH for three months and buffer solutions at room temperature for 72 h. The prodrugs and drug were formulated into in-situ implant using biodegradable polymer. Thermal, spectral, and diffractometric data indicated formation of new chemical and solid forms. Formation of prodrugs resulted in lowering of melting point of DTG from 191.1°C to 163.7 and 140.7°C for DTG-Laurate and DTG-Myristate prodrugs, respectively. A decrease in solubility of 18.2-115.9 and 124.5-1594.9 folds was observed for DTG-Laurate and DTG-Myristate, respectively compared to DTG. Similarly, the prodrugs were highly lipophilic compared to DTG. Solid-state and pH-stability profiles of DTG and prodrugs were comparable. Implant formulation released 60.1% in 77 days compared to 95.6% in 35 days in the case of DTG-Myristate and DTG, respectively. In summary, combining prodrug and drug delivery approaches can be utilized for delivering drug for ultra-long period.
Collapse
Affiliation(s)
- Tahir Khuroo
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Eman M Mohamed
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA; Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Egypt
| | - Sathish Dharani
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Sujana Immadi
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Kingsville, TX 78363, USA
| | - Mohammad T H Nutan
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Kingsville, TX 78363, USA
| | - Dai Lu
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Kingsville, TX 78363, USA
| | - Hamed I Ali
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Mansoor A Khan
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Ziyaur Rahman
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
31
|
Zhang J, Hu K, Di L, Wang P, Liu Z, Zhang J, Yue P, Song W, Zhang J, Chen T, Wang Z, Zhang Y, Wang X, Zhan C, Cheng YC, Li X, Li Q, Fan JY, Shen Y, Han JY, Qiao H. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliv Rev 2021; 178:113964. [PMID: 34499982 DOI: 10.1016/j.addr.2021.113964] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Traditional herbal medicine (THM), an ancient science, is a gift from nature. For thousands of years, it has helped humans fight diseases and protect life, health, and reproduction. Nanomedicine, a newer discipline has evolved from exploitation of the unique nanoscale morphology and is widely used in diagnosis, imaging, drug delivery, and other biomedical fields. Although THM and nanomedicine differ greatly in time span and discipline dimensions, they are closely related and are even evolving toward integration and convergence. This review begins with the history and latest research progress of THM and nanomedicine, expounding their respective developmental trajectory. It then discusses the overlapping connectivity and relevance of the two fields, including nanoaggregates generated in herbal medicine decoctions, the application of nanotechnology in the delivery and treatment of natural active ingredients, and the influence of physiological regulatory capability of THM on the in vivo fate of nanoparticles. Finally, future development trends, challenges, and research directions are discussed.
Collapse
|
32
|
Ren S, Liu J, Xue Y, Zhang M, Liu Q, Xu J, Zhang Z, Song R. Comparative permeability of three saikosaponins and corresponding saikogenins in Caco-2 model by a validated UHPLC-MS/MS method. J Pharm Anal 2021; 11:435-443. [PMID: 34513119 PMCID: PMC8424369 DOI: 10.1016/j.jpha.2020.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 01/19/2023] Open
Abstract
Saikosaponins (SSs) are the main active components extracted from Bupleuri Radix (BR) which has been used as an important herbal drug in Asian countries for thousands of years. It has been reported that the intestinal bacteria plays an important role in the in vivo disposal of oral SSs. Although the deglycosylated derivatives (saikogenins, SGs) of SSs metabolized by the intestinal bacteria are speculated to be the main components absorbed into the blood after oral administration of SSs, no studies have been reported on the characteristics of SGs for their intestinal absorption, and those for SSs are also limited. Therefore, a rapid UHPLC-MS/MS method was developed to investigate and compare the apparent permeability of three common SSs (SSa, SSd, SSb2) and their corresponding SGs (SGF, SGG, SGD) through a bidirectional transport experiment on Caco-2 cell monolayer model. The method was validated according to the latest FDA guidelines and applied to quantify the six analytes in transport medium samples extracted via liquid-liquid extraction (LLE). The apparent permeability coefficient (P app ) determined in this study indicated that the permeability of SGs improved to the moderate class compared to the corresponding parent compounds, predicting a higher in vivo absorption. Moreover, the efflux ratio (ER) value demonstrated an active uptake of SSd and the three SGs, while a passive diffusion of SSa and SSb2.
Collapse
Affiliation(s)
- Siqi Ren
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingjing Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China
| | - Yunwen Xue
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China
| | - Mei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiwei Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China
| | - Jie Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China
| | - Rui Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
33
|
Malik PRV, Yeung CHT, Ismaeil S, Advani U, Djie S, Edginton AN. A Physiological Approach to Pharmacokinetics in Chronic Kidney Disease. J Clin Pharmacol 2021; 60 Suppl 1:S52-S62. [PMID: 33205424 DOI: 10.1002/jcph.1713] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/20/2020] [Indexed: 12/27/2022]
Abstract
The conventional approach to approximating the pharmacokinetics of drugs in patients with chronic kidney disease (CKD) only accounts for changes in the estimated glomerular filtration rate. However, CKD is a systemic and multifaceted disease that alters many body systems. Therefore, the objective of this exercise was to develop and evaluate a whole-body mechanistic approach to predicting pharmacokinetics in patients with CKD. Physiologically based pharmacokinetic models were developed in PK-Sim v8.0 (www.open-systems-pharmacology.org) to mechanistically represent the disposition of 7 compounds in healthy human adults. The 7 compounds selected were eliminated by glomerular filtration and active tubular secretion by the organic cation transport system to varying degrees. After a literature search, the healthy adult models were adapted to patients with CKD by numerically accounting for changes in glomerular filtration rate, kidney volume, renal perfusion, hematocrit, plasma protein concentrations, and gastrointestinal transit. Literature-informed interindividual variability was applied to the physiological parameters to facilitate a population approach. Model performance in CKD was evaluated against pharmacokinetic data from 8 clinical trials in the literature. Overall, integration of the CKD parameterization enabled exposure predictions that were within 1.5-fold error across all compounds and patients with varying stages of renal impairment. Notable improvement was observed over the conventional approach to scaling exposure, which failed in all but 1 scenario in patients with advanced CKD. Further research is required to qualify its use for first-in-CKD dose selection and clinical trial planning for a wider selection of renally eliminated compounds, including those subject to anion transport.
Collapse
Affiliation(s)
- Paul R V Malik
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - Cindy H T Yeung
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - Shams Ismaeil
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - Urooj Advani
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - Sebastian Djie
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - Andrea N Edginton
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| |
Collapse
|
34
|
Xiong Y, Liu YH, Li JS, Zhang YY, Zhang J, Gong T, Jiang XH. Establishment of an HPLC Method for Determination of Coumarin-3-Carboxylic Acid Analogues in Rat Plasma and a Preliminary Study on Their Pharmacokinetics. J Chromatogr Sci 2021; 60:642-647. [PMID: 34491317 DOI: 10.1093/chromsci/bmab103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/06/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022]
Abstract
A simple high performance liquid chromatography (HPLC) method was developed and validated for the determination of coumarin-3-carboxylic acid analogues (C3AA) in rat plasma and a preliminary study on pharmacokinetics. Ferulic acid (FA) was used as the internal standard substance, and coumarin-3-carboxylic acid (C3A) was used as a substitute for quantitative C3AA. After protein precipitation with methanol, the satisfactory separation was achieved on an ODS2 column when the temperature was maintained at 30 ± 2°C. The correlation coefficient r in the C3A linear equation is equal to 0.9990. Pharmacokinetic parameters for t1/2, Tmax, Cmax, area under the curve (AUC)0-t, average residence time (MRT), apparent volume of distribution (V z/F) and clearance (Cl/F) were 1.89 ± 0.03 h, 0.39 ± 0.14 h, 1.81 ± 0.10 g· mL-1 ·h, 7.88 ± 0.24 g·mL-1·h, 3.23 ± 0.14 h, 0.43 ± 0.03 (mg·kg-1)·(g·mL-1)-1·h-1, respectively. The high performance liquid chromatography-photo diode array detector (HPLC-PDA) method established in this study can be used to separate and determine the content of C3AA in plasma of rats after 60% ethanol extraction by gavage. The plasma concentration-time curve and pharmacokinetic parameters reflect the absorption of C3AA in rat blood after oral administration to some extent.
Collapse
Affiliation(s)
- Yan Xiong
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yong-Hong Liu
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jian-Sha Li
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yu-Ying Zhang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tao Gong
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xin-Hui Jiang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
35
|
Zhang RX, Dong K, Wang Z, Miao R, Lu W, Wu XY. Nanoparticulate Drug Delivery Strategies to Address Intestinal Cytochrome P450 CYP3A4 Metabolism towards Personalized Medicine. Pharmaceutics 2021; 13:1261. [PMID: 34452222 PMCID: PMC8399842 DOI: 10.3390/pharmaceutics13081261] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023] Open
Abstract
Drug dosing in clinical practice, which determines optimal efficacy, toxicity or ineffectiveness, is critical to patients' outcomes. However, many orally administered therapeutic drugs are susceptible to biotransformation by a group of important oxidative enzymes, known as cytochrome P450s (CYPs). In particular, CYP3A4 is a low specificity isoenzyme of the CYPs family, which contributes to the metabolism of approximately 50% of all marketed drugs. Induction or inhibition of CYP3A4 activity results in the varied oral bioavailability and unwanted drug-drug, drug-food, and drug-herb interactions. This review explores the need for addressing intestinal CYP3A4 metabolism and investigates the opportunities to incorporate lipid-based oral drug delivery to enable precise dosing. A variety of lipid- and lipid-polymer hybrid-nanoparticles are highlighted to improve drug bioavailability. These drug carriers are designed to target different intestinal regions, including (1) local saturation or inhibition of CYP3A4 activity at duodenum and proximal jejunum; (2) CYP3A4 bypass via lymphatic absorption; (3) pH-responsive drug release or vitamin-B12 targeted cellular uptake in the distal intestine. Exploitation of lipidic nanosystems not only revives drugs removed from clinical practice due to serious drug-drug interactions, but also provide alternative approaches to reduce pharmacokinetic variability.
Collapse
Affiliation(s)
- Rui Xue Zhang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (R.X.Z.); (R.M.); (W.L.)
| | - Ken Dong
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada;
| | - Zhigao Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210003, China;
| | - Ruimin Miao
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (R.X.Z.); (R.M.); (W.L.)
| | - Weijia Lu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (R.X.Z.); (R.M.); (W.L.)
| | - Xiao Yu Wu
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada;
| |
Collapse
|
36
|
Youngblood B, Li K, Gehlert DR, Medina JC, Schwartz N. A Novel Maintenance Therapeutic for Opioid Use Disorder. J Pharmacol Exp Ther 2021; 378:133-145. [PMID: 34011529 PMCID: PMC8407529 DOI: 10.1124/jpet.120.000214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
Opioid use disorder (OUD) is a major socioeconomic burden. An ideal OUD pharmacotherapy will mitigate the suffering associated with opioid-withdrawal, inhibit the effects of high efficacy opioids, and minimize opioid-cravings while being safe and accessible to a diverse patient population. Although current OUD pharmacotherapies inhibit the euphoric effects of opioids of abuse, the extent to which they safely alleviate withdrawal and opioid-cravings corresponds with their intrinsic µ opioid receptor (MOR) efficacy. In addition to inhibiting the euphoric effects of opioids of abuse, the medium efficacy MOR agonist buprenorphine alleviates withdrawal and opioid-cravings, but its intrinsic MOR efficacy is sufficient such that its utility is limited by abuse and safety liabilities. Although the MOR antagonist naltrexone minimizes euphoria and has no abuse liability, it exacerbates suffering associated with withdrawal and opioid cravings. Therefore, a therapeutic with intrinsic MOR activity between the partial agonist (buprenorphine) and the antagonist (naltrexone) would strike a balance between the benefits and liabilities of these two therapeutics. To address this need, we derived RM1490, an MOR agonist based on a nonmorphinan scaffold that exhibits approximately half the intrinsic MOR efficacy of buprenorphine. In a series of preclinical assays, we compared RM1490 with buprenorphine and naltrexone at doses that achieve therapeutic levels of central nervous system MOR occupancy. RM1490 exhibited a behavioral profile consistent with reduced reward, dependence, and precipitated withdrawal liabilities. RM1490 was also more effective than buprenorphine at reversing the respiratory depressant effects of fentanyl and did not suppress respiration when combined with diazepam. SIGNIFICANCE STATEMENT: In preclinical studies, RM1490 has a physiological and behavioral profile suitable for opioid use disorder maintenance therapy.
Collapse
Affiliation(s)
- Beth Youngblood
- Epiodyne Inc., San Francisco, California (B.Y., D.R.G., J.C.M., N.S.) and R2M Pharma Inc., South San Francisco, California (K.L., J.C.M.)
| | - Kevin Li
- Epiodyne Inc., San Francisco, California (B.Y., D.R.G., J.C.M., N.S.) and R2M Pharma Inc., South San Francisco, California (K.L., J.C.M.)
| | - Donald R Gehlert
- Epiodyne Inc., San Francisco, California (B.Y., D.R.G., J.C.M., N.S.) and R2M Pharma Inc., South San Francisco, California (K.L., J.C.M.)
| | - Julio C Medina
- Epiodyne Inc., San Francisco, California (B.Y., D.R.G., J.C.M., N.S.) and R2M Pharma Inc., South San Francisco, California (K.L., J.C.M.)
| | - Neil Schwartz
- Epiodyne Inc., San Francisco, California (B.Y., D.R.G., J.C.M., N.S.) and R2M Pharma Inc., South San Francisco, California (K.L., J.C.M.)
| |
Collapse
|
37
|
Martinec O, Biel C, de Graaf IAM, Huliciak M, de Jong KP, Staud F, Cecka F, Olinga P, Vokral I, Cerveny L. Rifampicin Induces Gene, Protein, and Activity of P-Glycoprotein (ABCB1) in Human Precision-Cut Intestinal Slices. Front Pharmacol 2021; 12:684156. [PMID: 34177592 PMCID: PMC8220149 DOI: 10.3389/fphar.2021.684156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
P-glycoprotein (ABCB1), an ATP-binding cassette efflux transporter, limits intestinal absorption of its substrates and is a common site of drug–drug interactions. Drug-mediated induction of intestinal ABCB1 is a clinically relevant phenomenon associated with significantly decreased drug bioavailability. Currently, there are no well-established human models for evaluating its induction, so drug regulatory authorities provide no recommendations for in vitro/ex vivo testing drugs’ ABCB1-inducing activity. Human precision-cut intestinal slices (hPCISs) contain cells in their natural environment and express physiological levels of nuclear factors required for ABCB1 induction. We found that hPCISs incubated in William’s Medium E for 48 h maintained intact morphology, ATP content, and ABCB1 efflux activity. Here, we asked whether rifampicin (a model ligand of pregnane X receptor, PXR), at 30 μM, induces functional expression of ABCB1 in hPCISs over 24- and 48-h incubation (the time to allow complete induction to occur). Rifampicin significantly increased gene expression, protein levels, and efflux activity of ABCB1. Moreover, we described dynamic changes in ABCB1 transcript levels in hPCISs over 48 h incubation. We also observed that peaks of induction are achieved among donors at different times, and the extent of ABCB1 gene induction is proportional to PXR mRNA levels in the intestine. In conclusion, we showed that hPCISs incubated in conditions comparable to those used for inhibition studies can be used to evaluate drugs’ ABCB1-inducing potency in the human intestine. Thus, hPCISs may be valuable experimental tools that can be prospectively used in complex experimental evaluation of drug–drug interactions.
Collapse
Affiliation(s)
- Ondrej Martinec
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia.,Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Carin Biel
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Groningen, Netherlands
| | - Inge A M de Graaf
- Graduate School of Science, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Martin Huliciak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Koert P de Jong
- Department of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Filip Cecka
- Department of Surgery, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Groningen, Netherlands
| | - Ivan Vokral
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Lukas Cerveny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| |
Collapse
|
38
|
Functionalized carbon nano onion as a novel drug delivery system for brain targeting. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Yin X, Wang M, Xia Z. In vitro evaluation of intestinal absorption of tiliroside from Edgeworthia gardneri (Wall.) Meisn. Xenobiotica 2021; 51:728-736. [PMID: 33874851 DOI: 10.1080/00498254.2021.1904304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although Edgeworthia gardneri (Wall.) Meisn and its main component tiliroside (TIL) show good bioactivity, its intestinal absorption data supporting its low bioavailability have not been reported.The evaluation results of three absorption models in vitro and in vivo indicated that the results of the Ussing chamber model were basically consistent with the results of in vivo experiments. It was thus applied to investigate the characteristics of TIL across various intestinal regions and the interaction between TIL and adenosine triphosphate (ATP)-binding cassette family proteins (ABC) including, P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP).The data of the bi-directional transport showed that the ileum had the higher apparent permeability coefficient (Papp) of TIL than duodenum and jejunum, suggesting the best absorption of TIL in the ileum.In the presence of the MRP2 inhibitor, the absorption of TIL from water extracts of E. gardneri (Wall.) Meisn (WAE) was improved, indicating that MRP2 other than P-gp and BCRP affected the absorption of TIL and might be responsible for its low bioavailability. This study laid the foundation for enhancing the bioavailability of TIL and highlighted the influences of efflux transporters on bioavailability.
Collapse
Affiliation(s)
- Xiongwei Yin
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
40
|
Murakami T, Bodor E, Bodor N. Factors and dosage formulations affecting the solubility and bioavailability of P-glycoprotein substrate drugs. Expert Opin Drug Metab Toxicol 2021; 17:555-580. [PMID: 33703995 DOI: 10.1080/17425255.2021.1902986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Expression of P-glycoprotein (P-gp) increases toward the distal small intestine, implying that the duodenum is the preferential absorption site for P-gp substrate drugs. Oral bioavailability of poorly soluble P-gp substrate drugs is low and varied but increases with high-fat meals that supply lipoidal components and bile in the duodenum.Areas covered: Absorption properties of P-gp substrate drugs along with factors and oral dosage formulations affecting their solubility and bioavailability were reviewed with PubMed literature searches. An overview is provided from the viewpoint of the 'spring-and-parachute approach' that generates supersaturation of poorly soluble P-gp substrate drugs.Expert opinion: The oral bioavailability of P-gp substrate drugs is difficult to predict because of their low solubility, preferential absorption sites, and overlapping substrate specificities with CYP3A4, along with the scattered intestinal P-gp expression/function. To attain high and steady oral bioavailability of poorly soluble P-gp substrate drugs, physicochemical modification of drugs to improve solubility, or oral dosage formulations that generate long-lasting supersaturation in the duodenum, is preferred. In particular, supersaturable lipid-based drug delivery systems that can increase passive diffusion and/or lymphatic absorption are effective and applicable to many poorly soluble P-gp substrate drugs.
Collapse
Affiliation(s)
| | | | - Nicholas Bodor
- Bodor Laboratories, Miami, Florida, USA.,College of Pharmacy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
41
|
Kratochwil NA, Stillhart C, Diack C, Nagel S, Al Kotbi N, Frey N. Population pharmacokinetic analysis of RO5459072, a low water-soluble drug exhibiting complex food-drug interactions. Br J Clin Pharmacol 2021; 87:3550-3560. [PMID: 33576513 PMCID: PMC8451882 DOI: 10.1111/bcp.14771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/03/2021] [Accepted: 02/02/2021] [Indexed: 11/28/2022] Open
Abstract
Aims RO5459072, a cathepsin‐S inhibitor, Biopharmaceutics Classification System class 2 and P‐glycoprotein substrate, exhibited complex, nonlinear pharmacokinetics (PK) while fasted that seemed to impact both the absorption and the disposition phases. When given with food, all nonlinearities disappeared. Physiologically based PK (PBPK) modelling attributed those nonlinearities to dose‐dependent solubilisation and colonic absorption. The objective of this population PK analysis was to complement the PBPK analysis. Methods PK profiles in 39 healthy volunteers after first oral dosing (1–600 mg) while fasted or fed in single and multiple ascending dose studies were analysed using population compartmental modelling. Results The PK of RO5459072 while fed was characterized by a 1‐compartmental PK model with linear absorption and elimination. The nonlinearities while fasted were captured using dose dependent bioavailability and 2 sequential first‐order absorption phases: one following drug administration and one occurring 11 hours later and only for doses >10 mg. The bioavailability in the first absorption phase increased between 1 and 10 mg and then decreased with dose, in agreement with in vitro dissolution and solubility studies. The remaining fraction of doses to be absorbed by the second absorption phase was found to have a bioavailability similar to that in the first absorption phase. Conclusion The population PK model supported that dissolution‐ and solubility‐limited absorption from the proximal and distal intestine alone explains the nonlinear PK of RO5459072 in fasted state and the linear PK in fed state. This work, together with the PBPK analysis, raised our confidence in the understanding of this complex PK.
Collapse
Affiliation(s)
- Nicole A Kratochwil
- Clinical Pharmacology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Roche Holding AG, Switzerland
| | - Cordula Stillhart
- Clinical Pharmacology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Roche Holding AG, Switzerland
| | - Cheikh Diack
- Clinical Pharmacology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Roche Holding AG, Switzerland
| | - Sandra Nagel
- Clinical Pharmacology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Roche Holding AG, Switzerland
| | | | - Nicolas Frey
- Clinical Pharmacology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Roche Holding AG, Switzerland
| |
Collapse
|
42
|
Abstract
The field of nanomedicine continues to grow with new technologies and formulations in development for several disease states. Much research focuses on the use of injectable nanomedicines for treatment of neoplasms; however, there are several formulations in development that use nanotechnology that can be administered enterally for noncancer indications. These nanomedicine treatments have been developed for systemic drug delivery or local drug delivery along the gastrointestinal tract. This Review gives a brief overview of the alimentary canal and highlights new research in nanomedicine in noncancer disease states delivered via enteral routes of administration. Relevant recent research is summarized on the basis of the targeted site of action or absorption, including the buccal, sublingual, stomach, small intestine, and large intestine areas of the alimentary canal. The benefits of nanodrug delivery are discussed as well as barriers and challenges for future development in the field.
Collapse
Affiliation(s)
- Brianna Cote
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States
| | - Deepa Rao
- School of Pharmacy, Pacific University, 222 SE 8th Avenue, Suite 451, Hillsboro, Oregon 97123, United States
| | - Adam W G Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States.,Biomedical Engineering Department, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States.,Knight Cancer Institute, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States
| |
Collapse
|
43
|
Wu S, Gong Y, Liu S, Pei Y, Luo X. Functionalized phosphorylated cellulose microspheres: Design, characterization and ciprofloxacin loading and releasing properties. Carbohydr Polym 2021; 254:117421. [DOI: 10.1016/j.carbpol.2020.117421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/24/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
|
44
|
|
45
|
Triplett J, Ellis D, Braddock A, Roberts E, Ingram K, Perez E, Short A, Brown D, Hutzley V, Webb C, Soto A, Chan V. Temporal and region-specific effects of sleep fragmentation on gut microbiota and intestinal morphology in Sprague Dawley rats. Gut Microbes 2020; 11:706-720. [PMID: 31924109 PMCID: PMC7524289 DOI: 10.1080/19490976.2019.1701352] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sleep is a fundamental biological process, that when repeatedly disrupted, can result in severe health consequences. Recent studies suggest that both sleep fragmentation (SF) and dysbiosis of the gut microbiome can lead to metabolic disorders, though the underlying mechanisms are largely unclear. To better understand the consequences of SF, we investigated the effects of acute (6 days) and chronic (6 weeks) SF on rats by examining taxonomic profiles of microbiota in the distal ileum, cecum and proximal colon, as well as assessing structural and functional integrity of the gastrointestinal barrier. We further assayed the impact of SF on a host function by evaluating inflammation and immune response. Both acute and chronic SF induced microbial dysbiosis, more dramatically in the distal ileum (compared to other two regions studied), as noted by significant perturbations in alpha- and beta-diversity; though, specific microbial populations were significantly altered throughout each of the three regions. Furthermore, chronic SF resulted in increased crypt depth in the distal ileum and an increase in the number of villi lining both the cecum and proximal colon. Additional changes were noted with chronic SF, including: decreased microbial adhesion and penetration in the distal ileum and cecum, elevation in serum levels of the cytokine KC/GRO, and depressed levels of corticotropin. Importantly, our data show that perturbations to microbial ecology and intestinal morphology intensify in response to prolonged SF and these changes are habitat specific. Together, these results reveal consequences to gut microbiota homeostasis and host response following acute and chronic SF in rats.
Collapse
Affiliation(s)
- Judy Triplett
- Air Force Research Laboratory, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - David Ellis
- Air Force Research Laboratory, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Amber Braddock
- Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Wright-Patterson AFB, OH, USA
| | - Erin Roberts
- Air Force Research Laboratory, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Katherine Ingram
- Air Force Research Laboratory, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Eric Perez
- Air Force Research Laboratory, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Amanda Short
- Air Force Research Laboratory, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Dominique Brown
- Molecular Mechanisms Branch, Human Centered ISR Division, Airman Systems Directorate, 711 Human Performance Wing, Air Force Research Laboratory (711 HPW/RHXJ), Wright-Patterson AFB, OH, USA
| | - Victoria Hutzley
- Molecular Mechanisms Branch, Human Centered ISR Division, Airman Systems Directorate, 711 Human Performance Wing, Air Force Research Laboratory (711 HPW/RHXJ), Wright-Patterson AFB, OH, USA
| | - Chelsey Webb
- Molecular Mechanisms Branch, Human Centered ISR Division, Airman Systems Directorate, 711 Human Performance Wing, Air Force Research Laboratory (711 HPW/RHXJ), Wright-Patterson AFB, OH, USA
| | - Armando Soto
- Molecular Mechanisms Branch, Human Centered ISR Division, Airman Systems Directorate, 711 Human Performance Wing, Air Force Research Laboratory (711 HPW/RHXJ), Wright-Patterson AFB, OH, USA
| | - Victor Chan
- Molecular Mechanisms Branch, Human Centered ISR Division, Airman Systems Directorate, 711 Human Performance Wing, Air Force Research Laboratory (711 HPW/RHXJ), Wright-Patterson AFB, OH, USA,CONTACT Victor Chan Molecular Mechanisms Branch, Human Centered ISR Division, Airman Systems Directorate, 711 Human Performance Wing, Air Force Research Laboratory (711 HPW/RHXJ), Wright-Patterson AFB, OH, USA
| |
Collapse
|
46
|
Hua S. Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract - Influence of Physiological, Pathophysiological and Pharmaceutical Factors. Front Pharmacol 2020; 11:524. [PMID: 32425781 PMCID: PMC7212533 DOI: 10.3389/fphar.2020.00524] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022] Open
Abstract
The oral route is by far the most common route of drug administration in the gastrointestinal tract and can be used for both systemic drug delivery and for treating local gastrointestinal diseases. It is the most preferred route by patients, due to its advantages, such as ease of use, non-invasiveness, and convenience for self-administration. Formulations can also be designed to enhance drug delivery to specific regions in the upper or lower gastrointestinal tract. Despite the clear advantages offered by the oral route, drug delivery can be challenging as the human gastrointestinal tract is complex and displays a number of physiological barriers that affect drug delivery. Among these challenges are poor drug stability, poor drug solubility, and low drug permeability across the mucosal barriers. Attempts to overcome these issues have focused on improved understanding of the physiology of the gastrointestinal tract in both healthy and diseased states. Innovative pharmaceutical approaches have also been explored to improve regional drug targeting in the gastrointestinal tract, including nanoparticulate formulations. This review will discuss the physiological, pathophysiological, and pharmaceutical considerations influencing drug delivery for the oral route of administration, as well as the conventional and novel drug delivery approaches. The translational challenges and development aspects of novel formulations will also be addressed.
Collapse
Affiliation(s)
- Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
47
|
Celik S, Albayrak AT, Akyuz S, Ozel AE, Sigirci BD. Synthesis, antimicrobial activity, molecular docking and ADMET study of a caprolactam-glycine cluster. J Biomol Struct Dyn 2020; 39:2376-2386. [PMID: 32216608 DOI: 10.1080/07391102.2020.1748112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Density functional theory calculations were performed with DFT method using both b3lyp/6-311++G(d,p) and wb97xd/6-311++G(d,p) levels of theory to predict the molecular geometry, to evaluate the molecular electrostatic potential and frontier molecular orbitals of synthesized a new compound: caprolactam-glysine cluster (CL-Gly). Molecular docking study of the CL-Gly was carried out to clarify the interaction and the probable binding modes, between the title compound and DNA. The antibacterial activities of CL-Gly cluster against Gram-positive and Gram-negative bacteria was determined. In silico ADMET study was also performed for predicting pharmacokinetic and toxicity profile of the synthesized cluster which expressed good drug-like behavior and non-toxic nature. It was revealed that the compound has importance in drug discovery process.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sefa Celik
- Physics Department, Science Faculty, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Ali Tugrul Albayrak
- Chemical Engineering Department, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sevim Akyuz
- Physics Department, Science and Letters Faculty, Istanbul Kultur University, Istanbul, Turkey
| | - Aysen E Ozel
- Physics Department, Science Faculty, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Belgi Diren Sigirci
- Department of Microbiology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
48
|
Murakami T, Bodor E, Bodor N. Modulation of expression/function of intestinal P-glycoprotein under disease states. Expert Opin Drug Metab Toxicol 2019; 16:59-78. [DOI: 10.1080/17425255.2020.1701653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Nicholas Bodor
- Bodor Laboratories, Miami, FL, USA
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
49
|
Krause J, Bogdahn M, Schneider F, Koziolek M, Weitschies W. Design and characterization of a novel 3D printed pressure-controlled drug delivery system. Eur J Pharm Sci 2019; 140:105060. [DOI: 10.1016/j.ejps.2019.105060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 07/17/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
|
50
|
Design and Synthesis of Benzimidazole-Chalcone Derivatives as Potential Anticancer Agents. Molecules 2019; 24:molecules24183259. [PMID: 31500191 PMCID: PMC6767017 DOI: 10.3390/molecules24183259] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 11/17/2022] Open
Abstract
Numerous reports have shown that conjugated benzimidazole derivatives possess various kinds of biological activities, including anticancer properties. In this report, we designed and synthesized 24 new molecules comprising a benzimidazole ring, arene, and alkyl chain-bearing cyclic moieties. The results showed that the N-substituted benzimidazole derivatives bearing an alkyl chain and a nitrogen-containing 5- or 6-membered ring enhanced the cytotoxic effects on human breast adenocarcinoma (MCF-7) and human ovarian carcinoma (OVCAR-3) cell lines. Among the 24 synthesized compounds, (2E)-1-(1-(3-morpholinopropyl)-1H-benzimidazol-2 -yl)-3-phenyl-2-propen-1-one) (23a) reduced the proliferation of MCF-7 and OVCAR-3 cell lines demonstrating superior outcomes to those of cisplatin.
Collapse
|