1
|
Zhang L, Woltering I, Holzner M, Brandhofer M, Schaefer CC, Bushati G, Ebert S, Yang B, Muenchhoff M, Hellmuth JC, Scherer C, Wichmann C, Effinger D, Hübner M, El Bounkari O, Scheiermann P, Bernhagen J, Hoffmann A. CD74 is a functional MIF receptor on activated CD4 + T cells. Cell Mol Life Sci 2024; 81:296. [PMID: 38992165 PMCID: PMC11335222 DOI: 10.1007/s00018-024-05338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Abstract
Next to its classical role in MHC II-mediated antigen presentation, CD74 was identified as a high-affinity receptor for macrophage migration inhibitory factor (MIF), a pleiotropic cytokine and major determinant of various acute and chronic inflammatory conditions, cardiovascular diseases and cancer. Recent evidence suggests that CD74 is expressed in T cells, but the functional relevance of this observation is poorly understood. Here, we characterized the regulation of CD74 expression and that of the MIF chemokine receptors during activation of human CD4+ T cells and studied links to MIF-induced T-cell migration, function, and COVID-19 disease stage. MIF receptor profiling of resting primary human CD4+ T cells via flow cytometry revealed high surface expression of CXCR4, while CD74, CXCR2 and ACKR3/CXCR7 were not measurably expressed. However, CD4+ T cells constitutively expressed CD74 intracellularly, which upon T-cell activation was significantly upregulated, post-translationally modified by chondroitin sulfate and could be detected on the cell surface, as determined by flow cytometry, Western blot, immunohistochemistry, and re-analysis of available RNA-sequencing and proteomic data sets. Applying 3D-matrix-based live cell-imaging and receptor pathway-specific inhibitors, we determined a causal involvement of CD74 and CXCR4 in MIF-induced CD4+ T-cell migration. Mechanistically, proximity ligation assay visualized CD74/CXCR4 heterocomplexes on activated CD4+ T cells, which were significantly diminished after MIF treatment, pointing towards a MIF-mediated internalization process. Lastly, in a cohort of 30 COVID-19 patients, CD74 surface expression was found to be significantly upregulated on CD4+ and CD8+ T cells in patients with severe compared to patients with only mild disease course. Together, our study characterizes the MIF receptor network in the course of T-cell activation and reveals CD74 as a novel functional MIF receptor and MHC II-independent activation marker of primary human CD4+ T cells.
Collapse
Affiliation(s)
- Lin Zhang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Iris Woltering
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Mathias Holzner
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Carl-Christian Schaefer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Genta Bushati
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Simon Ebert
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Bishan Yang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Johannes C Hellmuth
- COVID-19 Registry of the LMU Munich (CORKUM), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Department of Medicine III, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Clemens Scherer
- COVID-19 Registry of the LMU Munich (CORKUM), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Department of Medicine I, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - David Effinger
- Department of Anaesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistraße 15, 81377, Munich, Germany
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Max Hübner
- Department of Anaesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistraße 15, 81377, Munich, Germany
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Patrick Scheiermann
- Department of Anaesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
- German Centre of Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
- Department of Anaesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistraße 15, 81377, Munich, Germany.
- German Centre of Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
2
|
Margiotta A, Frei DM, Sendstad IH, Janssen L, Neefjes J, Bakke O. Invariant chain regulates endosomal fusion and maturation through an interaction with the SNARE Vti1b. J Cell Sci 2020; 133:jcs244624. [PMID: 32907852 DOI: 10.1242/jcs.244624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/25/2020] [Indexed: 01/01/2023] Open
Abstract
The invariant chain (Ii, also known as CD74) is a multifunctional regulator of adaptive immune responses and is responsible for sorting major histocompatibility complex class I and class II (MHCI and MHCII, respectively) molecules, as well as other Ii-associated molecules, to a specific endosomal pathway. When Ii is expressed, endosomal maturation and proteolytic degradation of proteins are delayed and, in non-antigen presenting cells, the endosomal size increases, but the molecular mechanisms underlying this are not known. We identified that a SNARE, Vti1b, is essential for regulating these Ii-induced effects. Vti1b binds to Ii and is localized at the contact sites of fusing Ii-positive endosomes. Furthermore, truncated Ii lacking the cytoplasmic tail, which is not internalized from the plasma membrane, relocates Vti1b to the plasma membrane. Knockout of Ii in an antigen-presenting cell line was found to speed up endosomal maturation, whereas silencing of Vti1b inhibits the Ii-induced maturation delay. Our results suggest that Ii, by interacting with the SNARE Vti1b in antigen-presenting cells, directs specific Ii-associated SNARE-mediated fusion in the early part of the endosomal pathway that leads to a slower endosomal maturation for efficient antigen processing and MHC antigen loading.
Collapse
Affiliation(s)
- Azzurra Margiotta
- Department of Molecular Biosciences, University of Oslo, PB 1066, 0316 Oslo, Norway
| | - Dominik M Frei
- Department of Molecular Biosciences, University of Oslo, PB 1066, 0316 Oslo, Norway
| | | | - Lennert Janssen
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden, The Netherlands
| | - Oddmund Bakke
- Department of Molecular Biosciences, University of Oslo, PB 1066, 0316 Oslo, Norway
| |
Collapse
|
3
|
Schröder B. The multifaceted roles of the invariant chain CD74--More than just a chaperone. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1269-81. [PMID: 27033518 DOI: 10.1016/j.bbamcr.2016.03.026] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/13/2023]
Abstract
The invariant chain (CD74) is well known for its essential role in antigen presentation by mediating assembly and subcellular trafficking of the MHCII complex. Beyond this, CD74 has also been implicated in a number of processes independent of MHCII. These include the regulation of endosomal trafficking, cell migration and cellular signalling as surface receptor of the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF). In several forms of cancer, CD74 is up-regulated and associated with enhanced proliferation and metastatic potential. In this review, an overview of the diverse biological functions of the CD74 protein is provided with a particular focus on how these may be regulated. In particular, proteolysis of CD74 will be discussed as a central mechanism to control the actions of this important protein at different levels.
Collapse
Affiliation(s)
- Bernd Schröder
- Biochemical Institute, Christian Albrechts University of Kiel, Otto-Hahn-Platz 9, D-24118 Kiel, Germany.
| |
Collapse
|
4
|
Zavašnik-Bergant T, Bergant Marušič M. Exogenous Thyropin from p41 Invariant Chain Diminishes Cysteine Protease Activity and Affects IL-12 Secretion during Maturation of Human Dendritic Cells. PLoS One 2016; 11:e0150815. [PMID: 26960148 PMCID: PMC4784741 DOI: 10.1371/journal.pone.0150815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 02/19/2016] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DC) play a pivotal role as antigen presenting cells (APC) and their maturation is crucial for effectively eliciting an antigen-specific immune response. The p41 splice variant of MHC class II-associated chaperone, called invariant chain p41 Ii, contains an amino acid sequence, the p41 fragment, which is a thyropin-type inhibitor of proteolytic enzymes. The effects of exogenous p41 fragment and related thyropin inhibitors acting on human immune cells have not been reported yet. In this study we demonstrate that exogenous p41 fragment can enter the endocytic pathway of targeted human immature DC. Internalized p41 fragment has contributed to the total amount of the immunogold labelled p41 Ii-specific epitope, as quantified by transmission electron microscopy, in particular in late endocytic compartments with multivesicular morphology where antigen processing and binding to MHC II take place. In cell lysates of treated immature DC, diminished enzymatic activity of cysteine proteases has been confirmed. Internalized exogenous p41 fragment did not affect the perinuclear clustering of acidic cathepsin S-positive vesicles typical of mature DC. p41 fragment is shown to interfere with the nuclear translocation of NF-κB p65 subunit in LPS-stimulated DC. p41 fragment is also shown to reduce the secretion of interleukin-12 (IL-12/p70) during the subsequent maturation of treated DC. The inhibition of proteolytic activity of lysosomal cysteine proteases in immature DC and the diminished capability of DC to produce IL-12 upon their subsequent maturation support the immunomodulatory potential of the examined thyropin from p41 Ii.
Collapse
Affiliation(s)
- Tina Zavašnik-Bergant
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- * E-mail:
| | | |
Collapse
|
5
|
Liu X, BoseDasgupta S, Jayachandran R, Studer V, Rühl S, Stiess M, Pieters J. Activation of the cAMP/protein kinase A signalling pathway by coronin 1 is regulated by cyclin-dependent kinase 5 activity. FEBS Lett 2016; 590:279-87. [PMID: 26823173 DOI: 10.1002/1873-3468.12046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 01/31/2023]
Abstract
Coronins constitute a family of conserved proteins expressed in all eukaryotes that have been implicated in the regulation of a wide variety of cellular activities. Recent work showed an essential role for coronin 1 in the modulation of the cAMP/PKA pathway in neurons through the interaction of coronin 1 with the G protein subtype Gαs in a stimulus-dependent manner, but the molecular mechanism regulating coronin 1-Gαs interaction remains unclear. We here show that phosphorylation of coronin 1 on Thr(418/424) by cyclin-dependent kinase (CDK) 5 activity was responsible for coronin 1-Gαs association and the modulation of cAMP production. Together these results show an essential role for CDK5 activity in promoting the coronin 1-dependent cAMP/PKA pathway.
Collapse
Affiliation(s)
| | | | | | - Vera Studer
- Biozentrum, University of Basel, Switzerland
| | | | | | | |
Collapse
|
6
|
Small Amounts of Sub-Visible Aggregates Enhance the Immunogenic Potential of Monoclonal Antibody Therapeutics. Pharm Res 2014; 32:1383-94. [DOI: 10.1007/s11095-014-1541-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Fortin JS, Cloutier M, Thibodeau J. Exposing the Specific Roles of the Invariant Chain Isoforms in Shaping the MHC Class II Peptidome. Front Immunol 2013; 4:443. [PMID: 24379812 PMCID: PMC3861868 DOI: 10.3389/fimmu.2013.00443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022] Open
Abstract
The peptide repertoire (peptidome) associated with MHC class II molecules (MHCIIs) is influenced by the polymorphic nature of the peptide binding groove but also by cell-intrinsic factors. The invariant chain (Ii) chaperones MHCIIs, affecting their folding and trafficking. Recent discoveries relating to Ii functions have provided insights as to how it edits the MHCII peptidome. In humans, the Ii gene encodes four different isoforms for which structure-function analyses have highlighted common properties but also some non-redundant roles. Another layer of complexity arises from the fact that Ii heterotrimerizes, a characteristic that has the potential to affect the maturation of associated MHCIIs in many different ways, depending on the isoform combinations. Here, we emphasize the peptide editing properties of Ii and discuss the impact of the various isoforms on the MHCII peptidome.
Collapse
Affiliation(s)
- Jean-Simon Fortin
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montréal, QC , Canada
| | - Maryse Cloutier
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montréal, QC , Canada
| | - Jacques Thibodeau
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montréal, QC , Canada
| |
Collapse
|
8
|
ten Broeke T, Wubbolts R, Stoorvogel W. MHC class II antigen presentation by dendritic cells regulated through endosomal sorting. Cold Spring Harb Perspect Biol 2013; 5:a016873. [PMID: 24296169 DOI: 10.1101/cshperspect.a016873] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For the initiation of adaptive immune responses, dendritic cells present antigenic peptides in association with major histocompatibility complex class II (MHCII) to naïve CD4(+) T lymphocytes. In this review, we discuss how antigen presentation is regulated through intracellular processing and trafficking of MHCII. Newly synthesized MHCII is chaperoned by the invariant chain to endosomes, where peptides from endocytosed pathogens can bind. In nonactivated dendritic cells, peptide-loaded MHCII is ubiquitinated and consequently sorted by the ESCRT machinery to intraluminal vesicles of multivesicular bodies, ultimately leading to lysosomal degradation. Ubiquitination of newly synthesized MHCII is blocked when dendritic cells are activated, now allowing its transfer to the cell surface. This mode of regulation for MHCII is a prime example of how molecular processing and sorting at multivesicular bodies can determine the expression of signaling receptors at the plasma membrane.
Collapse
Affiliation(s)
- Toine ten Broeke
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | | | | |
Collapse
|
9
|
Majera D, Kristan KČ, Neefjes J, Turk D, Mihelič M. Expression, purification and assembly of soluble multimeric MHC class II-invariant chain complexes. FEBS Lett 2012; 586:1318-24. [PMID: 22465664 DOI: 10.1016/j.febslet.2012.03.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 03/14/2012] [Indexed: 11/15/2022]
Abstract
Major histocompatibility class (MHC) II molecules are essential for running adaptive immune response. They are produced in the ER and targeted to late endosomes with the help of invariant chain (Ii) trimers. Ii trimerization may be induced by the Ii TM domain. To enable mechanistic and structural studies of MHC class II-Ii assembly, soluble forms of the complexes were expressed. We show that Ii trimerizes in the absence of the transmembrane part, prior to binding of α/β chains. The biochemical analysis supports the suggestion that the MHC class II-Ii complexes are not necessarily trimers of trimers, but that the Ii trimer can also be occupied by one or two MHC class II complexes.
Collapse
Affiliation(s)
- Dušana Majera
- Department of Biochemistry, Molecular and Structural Biology and Centre for Protein and Structure Production, Jozef Stefan Institute, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
10
|
Zwart W, Peperzak V, de Vries E, Keller AM, van der Horst G, Veraar EAM, Geumann U, Janssen H, Janssen L, Naik SH, Neefjes J, Borst J. The invariant chain transports TNF family member CD70 to MHC class II compartments in dendritic cells. J Cell Sci 2010; 123:3817-27. [DOI: 10.1242/jcs.068510] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CD70 is a TNF-related transmembrane molecule expressed by mature dendritic cells (DCs), which present antigens to T cells via major histocompatibility complex (MHC) molecules. In DCs, CD70 localizes with MHC class II molecules in late endosomal vesicles, known as MHC class II compartments (MIICs). MIICs are transported to the immune synapse when a DC contacts an antigen-specific CD4+ T cell. Consequently, MHC class II and CD70 are simultaneously exposed to the T cell. Thereby, T-cell activation via the antigen receptor and CD70-mediated co-stimulation are synchronized, apparently to optimize the proliferative response. We report here that the invariant chain (Ii), a chaperone known to transport MHC class II to MIICs, performs a similar function for CD70. CD70 was found to travel by default to the plasma membrane, whereas Ii coexpression directed it to late endosomes and/or lysosomes. In cells containing the MHC class II presentation pathway, CD70 localized to MIICs. This localization relied on Ii, since transport of CD70 from the Golgi to MIICs was impeded in Ii-deficient DCs. Biophysical and biochemical studies revealed that CD70 and Ii participate in an MHC-class-II-independent complex. Thus, Ii supports transport of both MHC class II and CD70 to MIICs and thereby coordinates their delivery to CD4+ T cells.
Collapse
Affiliation(s)
- Wilbert Zwart
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Victor Peperzak
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Evert de Vries
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Anna M. Keller
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Gerda van der Horst
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Elise A. M. Veraar
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ulf Geumann
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Hans Janssen
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Lennert Janssen
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Shalin H. Naik
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Jacques Neefjes
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Jannie Borst
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
11
|
Mueller P, Massner J, Jayachandran R, Combaluzier B, Albrecht I, Gatfield J, Blum C, Ceredig R, Rodewald HR, Rolink AG, Pieters J. Regulation of T cell survival through coronin-1-mediated generation of inositol-1,4,5-trisphosphate and calcium mobilization after T cell receptor triggering. Nat Immunol 2008; 9:424-31. [PMID: 18345003 DOI: 10.1038/ni1570] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 01/28/2008] [Indexed: 11/09/2022]
Abstract
T cell homeostasis is essential for the functioning of the vertebrate immune system, but the intracellular signals required for T cell homeostasis are largely unknown. We here report that the WD-repeat protein family member coronin-1, encoded by the gene Coro1a, is essential in the mouse for T cell survival through its promotion of Ca2+ mobilization from intracellular stores. Upon T cell receptor triggering, coronin-1 was essential for the generation of inositol-1,4,5-trisphosphate from phosphatidylinositol-4,5-bisphosphate. The absence of coronin-1, although it did not affect T cell development, resulted in a profound defect in Ca2+ mobilization, interleukin-2 production, T cell proliferation and T cell survival. We conclude that coronin-1, through activation of Ca2+ release from intracellular stores, is an essential regulator of peripheral lymphocyte survival.
Collapse
Affiliation(s)
- Philipp Mueller
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH 4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Scherr N, Honnappa S, Kunz G, Mueller P, Jayachandran R, Winkler F, Pieters J, Steinmetz MO. Structural basis for the specific inhibition of protein kinase G, a virulence factor of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2007; 104:12151-6. [PMID: 17616581 PMCID: PMC1924570 DOI: 10.1073/pnas.0702842104] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pathogenicity of mycobacteria such as Mycobacterium tuberculosis is closely associated with their capacity to survive within host macrophages. A crucial virulence factor for intracellular mycobacterial survival is protein kinase G (PknG), a eukaryotic-like serine/threonine protein kinase expressed by pathogenic mycobacteria that blocks the intracellular degradation of mycobacteria in lysosomes. Inhibition of PknG with the highly selective low-molecular-weight inhibitor AX20017 results in mycobacterial transfer to lysosomes and killing of the mycobacteria. Here, we report the 2.4 A x-ray crystal structure of PknG in complex with AX20017. The unique multidomain topology of PknG reveals a central kinase domain that is flanked by N- and C-terminal rubredoxin and tetratrico-peptide repeat domains, respectively. Directed mutagenesis suggests that the rubredoxin domain functions as a regulator of PknG kinase activity. The structure of PknG-AX20017 further reveals that the inhibitor is buried deep within the adenosine-binding site, targeting an active conformation of the kinase domain. Remarkably, although the topology of the kinase domain is reminiscent of eukaryotic kinases, the AX20017-binding pocket is shaped by a unique set of amino acid side chains that are not found in any human kinase. Directed mutagenesis of the unique set of residues resulted in a drastic loss of the compound's inhibitory potency. Our results explain the specific mode of action of AX20017 and demonstrate that virulence factors highly homologous to host molecules can be successfully targeted to block the proliferation of M. tuberculosis.
Collapse
Affiliation(s)
- Nicole Scherr
- *Biozentrum, University of Basel, CH-4056 Basel, Switzerland; and
| | - Srinivas Honnappa
- Biomolecular Research, Structural Biology, Paul Scherrer Insititut, CH-5232 Villigen PSI, Switzerland
| | - Gabriele Kunz
- *Biozentrum, University of Basel, CH-4056 Basel, Switzerland; and
| | - Philipp Mueller
- *Biozentrum, University of Basel, CH-4056 Basel, Switzerland; and
| | | | - Fritz Winkler
- Biomolecular Research, Structural Biology, Paul Scherrer Insititut, CH-5232 Villigen PSI, Switzerland
| | - Jean Pieters
- *Biozentrum, University of Basel, CH-4056 Basel, Switzerland; and
- To whom correspondence should be addressed at:
Klingelbergstrasse 50, CH-4056 Basel, Switzerland. E-mail:
| | - Michel O. Steinmetz
- Biomolecular Research, Structural Biology, Paul Scherrer Insititut, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
13
|
Keller AM, Groothuis TA, Veraar EAM, Marsman M, de Buy Wenniger LM, Janssen H, Neefjes J, Borst J. Costimulatory ligand CD70 is delivered to the immunological synapse by shared intracellular trafficking with MHC class II molecules. Proc Natl Acad Sci U S A 2007; 104:5989-94. [PMID: 17389361 PMCID: PMC1851604 DOI: 10.1073/pnas.0700946104] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
TNF family member CD70 is the ligand of CD27, a costimulatory receptor that shapes effector and memory T cell pools. Tight control of CD70 expression is required to prevent lethal immunodeficiency. By selective transcription, CD70 is largely confined to activated lymphocytes and dendritic cells (DC). We show here that, in addition, specific intracellular routing controls its plasma membrane deposition. In professional antigen-presenting cells, such as DC, CD70 is sorted to late endocytic vesicles, defined as MHC class II compartments (MIIC). In cells lacking the machinery for antigen presentation by MHC class II, CD70 travels by default to the plasma membrane. Introduction of class II transactivator sufficed to reroute CD70 to MIIC. Vesicular trafficking of CD70 and MHC class II is coordinately regulated by the microtubule-associated dynein motor complex. We show that when maturing DC make contact with T cells in a cognate fashion, newly synthesized CD70 is specifically delivered via MIIC to the immunological synapse. Therefore, we propose that routing of CD70 to MIIC serves to coordinate delivery of the T cell costimulatory signal in time and space with antigen recognition.
Collapse
Affiliation(s)
| | - Tom A. Groothuis
- Tumor Biology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | | | - Marije Marsman
- Tumor Biology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | | | - Hans Janssen
- Tumor Biology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Jacques Neefjes
- Tumor Biology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Jannie Borst
- Divisions of *Immunology and
- To whom correspondence should be addressed at:
Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. E-mail:
| |
Collapse
|
14
|
Mueller P, Pieters J. Modulation of macrophage antimicrobial mechanisms by pathogenic mycobacteria. Immunobiology 2006; 211:549-56. [PMID: 16920493 DOI: 10.1016/j.imbio.2006.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Accepted: 06/06/2006] [Indexed: 01/13/2023]
Abstract
Tuberculosis remained a mysterious disease until Koch was able to demonstrate in the late 1800s that it was caused by a bacterium spread by aerosols, Mycobacterium tuberculosis. Today, tuberculosis still is a major health problem causing approximately 2 million deaths annually with about one third of the world's population being latently infected with M. tuberculosis. The secret of success for M. tuberculosis lies in its ability to persist inside host cells, the macrophages. Whereas macrophages are designed to destroy any incoming microbe, pathogenic mycobacteria have evolved strategies to survive within macrophages by preventing phagosome-lysosome fusion, thereby creating a niche that allows them to persist within an otherwise hostile environment. In this contribution, we discuss recent advances in our understanding of the interplay between the host and this pathogen that lead to survival of mycobacteria within macrophages.
Collapse
Affiliation(s)
- Philipp Mueller
- Biozentrum, Klingelbergstrasse 50, University of Basel, CH 4056 Basel, Switzerland
| | | |
Collapse
|
15
|
Thankappan A, Fuller JR, Godwin UB, Kearse KP, McConnell TJ. Characterization of glycans on major histocompatibility complex class II molecules in channel catfish, Ictalurus punctatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:772-82. [PMID: 16364438 DOI: 10.1016/j.dci.2005.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 10/05/2005] [Accepted: 10/10/2005] [Indexed: 05/05/2023]
Abstract
The glycans associated with mammalian major histocompatibility complex (MHC) class II molecules have been studied extensively. Co-translational and post-translational addition of sugar molecules to proteins confers many structural and modulatory functions. In the present study we characterized the glycans associated with MHC class II molecules in the channel catfish to compare glycosylation patterns in a teleost to those known to occur in mammals. This study made use of enzymatic methods and two-dimensional (2D) gel electrophoresis to characterize the N-linked sugars. Unlike mammalian T cells which expressed complex N-linked sugars, channel catfish derived 28S T cells were found to express high-mannose/hybrid N-glycans on class II molecules. However studies with Endoglycosidase H in conjunction with cell surface labeling on peripheral blood leukocytes revealed that catfish possess the machinery to modify the intermediate high-mannose sugars to complex type sugars. Nonetheless, the majority of the class II cell surface glycoproteins were of the high-mannose type. Resolution of catfish MHC class II molecules by 2D gel analyses revealed multiple bands for class II beta chains whereas class II alpha chains focused as a single spot. Glycosylation in the channel catfish, a premier model system for studying the immune system of teleosts, has significant differences from the glycosylation patterns characterized in mammalian systems, likely with functional implications.
Collapse
Affiliation(s)
- Anil Thankappan
- Department of Biology, East Carolina University, Greenville 27858, USA
| | | | | | | | | |
Collapse
|
16
|
Stern LJ, Potolicchio I, Santambrogio L. MHC class II compartment subtypes: structure and function. Curr Opin Immunol 2005; 18:64-9. [PMID: 16337363 DOI: 10.1016/j.coi.2005.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 11/24/2005] [Indexed: 11/24/2022]
Abstract
Reports from the past couple of years point to an emerging association of the biogenesis, composition and ultrastructural morphology of MHC class II compartments (MIICs) with their functions in antigen processing and loading. Growth factors and cytokines involved in dendritic cell maturation have been shown to regulate MIIC biogenesis, and the MHC-class-II-associated invariant chain chaperone has been reported to regulate endosomal morphology and vacuolation. Differences among ultrastructurally distinct MIICs have begun to be appreciated with regard to variation in antigen loading capacity and to polarization of MHC class II conformational variants among different compartments. Finally, the MIIC ultrastructure organizes the mechanism of MHC class II surface trafficking. Together, these findings begin to shed light on the connection between MIIC protein content, MIIC morphology and MHC class II-related antigen processing.
Collapse
Affiliation(s)
- Lawrence J Stern
- Department of Pathology University of Massachusetts Medical School Worcester, MA 01655, USA
| | | | | |
Collapse
|
17
|
McCormick PJ, Martina JA, Bonifacino JS. Involvement of clathrin and AP-2 in the trafficking of MHC class II molecules to antigen-processing compartments. Proc Natl Acad Sci U S A 2005; 102:7910-5. [PMID: 15911768 PMCID: PMC1138261 DOI: 10.1073/pnas.0502206102] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Indexed: 11/18/2022] Open
Abstract
Major histocompatibility complex class II (MHC-II) molecules are composed of two polymorphic chains, alpha and beta, which assemble with an invariant chain, Ii, in the endoplasmic reticulum. The assembled MHC-II complexes are transported to the Golgi complex and then to late endosomes/lysosomes, where Ii is degraded and alphabeta dimers bind peptides derived from exogenous antigens. Targeting of MHC-II molecules to these compartments is mediated by two dileucine-based signals in the cytoplasmic domain of Ii. These signals bind in vitro to two adaptor protein (AP) complexes, AP-1 and AP-2, which are components of clathrin coats involved in vesicle formation and cargo sorting. The physiological roles of these proteins in MHC-II molecule trafficking, however, remain to be addressed. Here, we report the use of RNA interference to examine the involvement of clathrin and four AP complexes (AP-1, AP-2, AP-3, and AP-4) in MHC-II molecule trafficking in vivo. We found that depletion of clathrin or AP-2 caused >10-fold increases in Ii expression on the cell surface and a concomitant decrease in Ii localization to endosomal/lysosomal vesicles. In addition, depletion of clathrin or AP-2 delayed the degradation of Ii and reduced the surface expression of peptide-loaded alphabeta dimers. In contrast, depletion of AP-1, AP-3, or AP-4 had little or no effect. These findings demonstrate that clathrin and AP-2 participate in MHC-II molecule trafficking in vivo. Because AP-2 is only associated with the plasma membrane, these results also indicate that a significant pool of MHC-II molecules traffic to the endosomal-lysosomal system by means of the cell surface.
Collapse
Affiliation(s)
- Peter J McCormick
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
18
|
Gatfield J, Albrecht I, Zanolari B, Steinmetz MO, Pieters J. Association of the leukocyte plasma membrane with the actin cytoskeleton through coiled coil-mediated trimeric coronin 1 molecules. Mol Biol Cell 2005; 16:2786-98. [PMID: 15800061 PMCID: PMC1142424 DOI: 10.1091/mbc.e05-01-0042] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Coronin 1 is a member of the coronin protein family specifically expressed in leukocytes and accumulates at sites of rearrangements of the F-actin cytoskeleton. Here, we describe that coronin 1 molecules are coiled coil-mediated homotrimeric complexes, which associate with the plasma membrane and with the cytoskeleton via two distinct domains. Association with the cytoskeleton was mediated by trimerization of a stretch of positively charged residues within a linker region between the N-terminal, WD repeat-containing domain and the C-terminal coiled coil. In contrast, neither the coiled coil nor the positively charged residues within the linker domain were required for plasma membrane binding, suggesting that the N-terminal, WD repeat-containing domain mediates membrane interaction. The capacity of coronin 1 to link the leukocyte cytoskeleton to the plasma membrane may serve to integrate outside-inside signaling with modulation of the cytoskeleton.
Collapse
Affiliation(s)
- John Gatfield
- Biozentrum, University of Basel, CH 4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
19
|
Lautwein A, Kraus M, Reich M, Burster T, Brandenburg J, Overkleeft HS, Schwarz G, Kammer W, Weber E, Kalbacher H, Nordheim A, Driessen C. Human B lymphoblastoid cells contain distinct patterns of cathepsin activity in endocytic compartments and regulate MHC class II transport in a cathepsin S-independent manner. J Leukoc Biol 2004; 75:844-55. [PMID: 14966190 DOI: 10.1189/jlb.0803367] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endocytic proteolysis represents a major functional component of the major histocompatibility complex class II antigen-presentation machinery. Although transport and assembly of class II molecules in the endocytic compartment are well characterized, we lack information about the pattern of endocytic protease activity along this pathway. Here, we used chemical tools that visualize endocytic proteases in an activity-dependent manner in combination with subcellular fractionation to dissect the subcellular distribution of the major cathepsins (Cat) CatS, CatB, CatH, CatD, CatC, and CatZ as well as the asparagine-specific endoprotease (AEP) in human B-lymphoblastoid cells (BLC). Endocytic proteases were distributed in two distinct patterns: CatB and CatZ were most prominent in early and late endosomes but absent from lysosomes, and CatH, CatS, CatD, CatC, and AEP distributed between late endosomes and lysosomes, suggesting that CatB and CatZ might be involved in the initial proteolytic attack on a given antigen. The entire spectrum of protease activity colocalized with human leukocyte antigen-DM and the C-terminal and N-terminal processing of invariant chain (Ii) in late endosomes. CatS was active in all endocytic compartments. Surprisingly and in contrast with results from dendritic cells, inhibition of CatS activity by leucine-homophenylalanine-vinylsulfone-phenol prevented N-terminal processing of Ii but did not alter the subcellular trafficking or surface delivery of class II complexes, as deferred from pulse-chase analysis in combination with subcellular fractionation and biotinylation of cell-surface protein. Thus, BLC contain distinct activity patterns of proteases in endocytic compartments and regulate the intracellular transport and surface-delivery of class II in a CatS-independent manner.
Collapse
Affiliation(s)
- Alfred Lautwein
- Department of Medicine II, Medical and Natural Sciences Research Centre, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Engering A, Kuhn L, Fluitsma D, Hoefsmit E, Pieters J. Differential post-translational modification of CD63 molecules during maturation of human dendritic cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2412-20. [PMID: 12755696 DOI: 10.1046/j.1432-1033.2003.03609.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The capacity of dendritic cells to initiate T cell responses is related to their ability to redistribute MHC class II molecules from the intracellular MHC class II compartments to the cell surface. This redistribution occurs during dendritic cell development as they are converted from an antigen capturing, immature dendritic cell into an MHC class II-peptide presenting mature dendritic cell. During this maturation, antigen uptake and processing are down-regulated and peptide-loaded class II complexes become expressed in a stable manner on the cell surface. Here we report that the tetraspanin CD63, that associates with intracellularly localized MHC class II molecules in immature dendritic cells, was modified post-translationally by poly N-acetyl lactosamine addition during maturation. This modification of CD63 was accompanied by a change in morphology of MHC class II compartments from typical multivesicular organelles to structures containing densely packed lipid moieties. Post-translational modification of CD63 may be involved in the functional and morphological changes of MHC class II compartments that occur during dendritic cell maturation.
Collapse
|
21
|
Manoury B, Mazzeo D, Li DN, Billson J, Loak K, Benaroch P, Watts C. Asparagine endopeptidase can initiate the removal of the MHC class II invariant chain chaperone. Immunity 2003; 18:489-98. [PMID: 12705852 DOI: 10.1016/s1074-7613(03)00085-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The invariant chain (Ii) chaperone for MHC class II molecules is crucial for their effective function. Equally important is its removal. Cathepsins S or L are known to be required for the final stages of Ii removal in different APCs, but the enzymes which initiate Ii processing have not been identified. Here we show that this step can be performed in B lymphocytes by asparagine endopeptidase (AEP), which targets different asparagine residues in the lumenal domain of human and mouse invariant chain. Inhibition of AEP activity slows invariant chain processing and hinders the expression of an antigenic peptide engineered to replace the groove binding region of Ii (CLIP). However, the initiation of Ii removal can also be performed by other proteases, reflecting the importance of this step.
Collapse
Affiliation(s)
- Bénédicte Manoury
- Division of Cell Biology and Immunology, School of Life Sciences, University of Dundee, Dow Street, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
22
|
Gatfield J, Pieters J. Molecular Mechanisms of Host–Pathogen Interaction: Entry and Survival of Mycobacteria in Macrophages. Adv Immunol 2003; 81:45-96. [PMID: 14711053 DOI: 10.1016/s0065-2776(03)81002-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- John Gatfield
- Biozentrum der Universitaet Basel, Department of Biochemistry, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | | |
Collapse
|
23
|
Stumptner-Cuvelette P, Benaroch P. Multiple roles of the invariant chain in MHC class II function. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1542:1-13. [PMID: 11853874 DOI: 10.1016/s0167-4889(01)00166-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Sevilla LM, Richter SS, Miller J. Intracellular transport of MHC class II and associated invariant chain in antigen presenting cells from AP-3-deficient mocha mice. Cell Immunol 2001; 210:143-53. [PMID: 11520080 DOI: 10.1006/cimm.2001.1817] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MHC class II-restricted antigen presentation requires trafficking of newly synthesized class II-invariant chain complexes from the trans-Golgi network to endosomal, peptide-loading compartments. This transport is mediated by dileucine-like motifs within the cytosolic tail of the invariant chain. Although these signals have been well characterized, the cytosolic proteins that interact with these dileucine signals and mediate Golgi sorting and endosomal transport have not been identified. Recently, an adaptor complex, AP-3, has been identified that interacts with dileucine motifs and mediates endosomal/lysosomal transport in yeast, Drosophila, and mammals. In this report, we have assessed class II-invariant chain trafficking in a strain of mice (mocha) which lacks expression of AP-3. Our studies demonstrate that the lack of AP-3 does not affect the kinetics of invariant chain degradation, the route of class II-invariant chain transport, or the rate and extent of class II-peptide binding as assessed by the generation of SDS-stable dimers. The possible role of other known or unknown adaptor complexes in class II-invariant chain transport is discussed.
Collapse
Affiliation(s)
- L M Sevilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
25
|
Affiliation(s)
- J Pieters
- Basel Institute for Immunology, Switzerland
| |
Collapse
|
26
|
Engering A, Pieters J. Association of distinct tetraspanins with MHC class II molecules at different subcellular locations in human immature dendritic cells. Int Immunol 2001; 13:127-34. [PMID: 11157846 DOI: 10.1093/intimm/13.2.127] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dendritic cells have the capacity to trigger T cell responses in lymphoid organs against antigens captured in the periphery. T cell stimulation depends on the ability of MHC class II molecules to present peptides at the cell surface that are acquired in MHC class II compartments. The high capacity of dendritic cells to stimulate T lymphocytes is related to their ability to regulate the distribution of MHC class II molecules intracellularly. To analyze the molecular components involved in the generation of MHC class II-peptide complexes in human immature dendritic cells, mAb were raised against purified MHC class II compartments. One of the antigens turned out to be CD63, a member of the tetraspanin superfamily. CD63 localized exclusively intracellularly where it associated with peptide-loaded class II molecules. In contrast, the tetraspanins CD9, CD53 and CD81 associated with class II molecules at the plasma membrane. Selective association of distinct tetraspanins may be involved in the regulation of MHC class II distribution in human dendritic cells.
Collapse
Affiliation(s)
- A Engering
- Basel Institute for Immunology, Grenzacherstrasse 487, CH-4005 Basel, Switzerland
| | | |
Collapse
|
27
|
Beatty WL, Ullrich HJ, Russell DG. Mycobacterial surface moieties are released from infected macrophages by a constitutive exocytic event. Eur J Cell Biol 2001; 80:31-40. [PMID: 11211933 DOI: 10.1078/0171-9335-00131] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacterial cell wall constituents are released from mycobacterial phagosomes and actively traffic within infected macrophages. Colocalization of fluorescently tagged bacterial moieties with endocytic tracers revealed the dynamic movement of released mycobacterial constituents into the endocytic network with accumulation in tubular lysosomal-like compartments. The released bacterial constituents not only penetrated the infected host cell but were also present in an extracellular microvesicular fraction. To identify the intracellular source of these exocytic compartments, released vesicular material was isolated from culture supernatants by differential ultracentrifugation and characterized by Western blot and electron microscopy analyses. The presence of lysosomal membrane proteins and lysosomal proteases suggested that labeled mycobacterial cell wall constituents access a constitutive lysosomal exocytic pathway. An abundance of multilamellar extracellular compartments morphologically reminiscent of MHC class II-enriched compartments (MIIC) implicated a MHC class II transport pathway in the extracellular release of bacterial constituents. Increases in intracellular free calcium have previously been shown to trigger lysosomal exocytosis by inducing fusion of lysosomes with the plasma membrane. To test if an increase in calcium would stimulate exocytosis with release of mycobacterial constituents, infected macrophages were exposed to the calcium ionophore A23187. The ionophore triggered the release of a microvesicular fraction containing labeled bacterial moieties, implicating calcium-regulated lysosomal exocytosis as a trafficking pathway by which mycobacterial products are released from infected macrophages.
Collapse
Affiliation(s)
- W L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO/USA.
| | | | | |
Collapse
|
28
|
Kasai M, Kropshofer H, Vogt AB, Kominami E, Mizuochi T. CLIP-derived self peptides bound to MHC class II molecules of medullary thymic epithelial cells differ from those of cortical thymic epithelial cells in their diversity, length, and C-terminal processing. Eur J Immunol 2000; 30:3542-51. [PMID: 11169395 DOI: 10.1002/1521-4141(200012)30:12<3542::aid-immu3542>3.0.co;2-n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Medullary thymic epithelial cells (mTEC) are able to present soluble antigens to CD4+ helper T cell lines, whereas cortical thymic epithelial cells (cTEC) are not (Mizuochi, T., et al., J. Exp. Med. 1992. 175: 1601-1605). In addition, class II heterodimers from mTEC migrated with apparently less relative molecular mass in SDS-PAGE than those from cTEC (Kasai, M., et al., Eur. J. Immunol. 1998. 28:1867-1876). To investigate the cause of the distinct migration profiles of class II heterodimers in both TEC types, class II heterodimer-associated peptides were analyzed by matrix-assisted laser desorption ionization mass spectrometry. Self peptides from cTEC were shown to vary moderately in length and to be highly diverse, including low amounts of CLIP (class II-associated invariant chain peptide) variants. On the other hand, self peptides from two mTEC consisted predominantly of two CLIP variants with exceptional C-terminal extensions. C-terminally overhanging residues of CLIP in mTEC may be responsible for the distinct migration of class II heterodimers in SDS-PAGE. Differences in migration of class II heterodimers on SDS gels was also observed in H2-DM+ vesicles isolated from both TEC. The possible contribution of self peptides bound to class II heterodimers in TEC to positive or negative selection of T cells in the thymus is discussed.
Collapse
Affiliation(s)
- M Kasai
- Department of Bacterial and Blood Products, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
29
|
Lang T, Avé P, Huerre M, Milon G, Antoine JC. Macrophage subsets harbouring Leishmania donovani in spleens of infected BALB/c mice: localization and characterization. Cell Microbiol 2000; 2:415-30. [PMID: 11207597 DOI: 10.1046/j.1462-5822.2000.00070.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of the current study was to characterize parasite-containing cells located in spleens of BALB/c mice infected with Leishmania donovani. In particular, expression of MHC class II molecules by these cells was examined to determine whether they could potentially act as cells capable of immunostimulating Leishmania-reactive CD4+ T lymphocytes. To this end, an immunohistological analysis of spleens taken at various time points after infection was undertaken. Using this approach, we observed, in the red pulp, the formation of small cellular infliltrates containing heavily infected macrophages that could be stained with the monoclonal antibodies MOMA-2 and FA/11. All of them expressed high levels of MHC class II molecules. Parasites were also detected in the white pulp, especially in MOMA-2+, FA/11+ and MHC class II+ macrophages of the periarteriolar lymphocyte sheath and in MOMA-2+ marginal zone macrophages. Infected cells were further characterized by fluorescence microscopy after their enrichment by adherence. All infected mononuclear cells recovered by this procedure could be stained with MOMA-2 and FA/11 and thus very probably belonged to the mononuclear phagocyte lineage. Furthermore, all of them strongly expressed both MHC class II as well as H-2M molecules, regardless of the time points after infection. Analysis of the parasitophorous vacuoles (PV) by confocal microscopy showed that these compartments were surrounded by a membrane enriched in lysosomal glycoproteins lamp-1 and lamp-2, in macrosialin (a membrane protein of prelysosomes recognized by FA/11) and in MOMA-2 antigen. About 80% of the PV also had MHC class II and H-2M molecules on their membrane. Altogether, these data indicate that in the spleens of L. donovani-infected mice, a high percentage of amastigotes are located in macrophages expressing MHC class II molecules and that they live in PV exhibiting properties similar to those of PV detected in mouse bone marrow-derived macrophages exposed to a low dose of interferon gamma (IFN-gamma) and infected in vitro.
Collapse
Affiliation(s)
- T Lang
- Département de Physiopathologie, Institut Pasteur, Paris, France.
| | | | | | | | | |
Collapse
|
30
|
Abstract
Major histocompatibility complex (MHC) class II molecules are cell surface proteins that present peptides to CD4(+) T cells. In addition to these wellcharacterized molecules, two other class II-like proteins are produced from the class II region of the MHC, HLA-DM (DM) and HLA-DO (DO) (called H2-M, or H2-DM and H2-O in the mouse). The function of DM is well established; it promotes peptide loading of class II molecules in the endosomal/lysosomal system by catalyzing the release of CLIP peptides (derived from the class II-associated invariant chain) in exchange for more stably binding peptides. While DM is present in all class II- expressing antigen presenting cells, DO is expressed mainly in B cells. In this cell type the majority of DM molecules are not present as free heterodimers but are instead associated with DO in tight heterotetrameric complexes. The association with DM is essential for the intracellular transport of DO, and the two molecules remain associated in the endosomal system. DO can clearly modify the peptide exchange activity of DM both in vitro and in vivo, but the physiological relevance of this interaction is still only partly understood.
Collapse
Affiliation(s)
- C Alfonso
- The R.W. Johnson Pharmaceutical Research Institute, San Diego, California 92121, USA
| | | |
Collapse
|
31
|
Abstract
Mycobacteria are intracellular pathogens that can invade and survive within host macrophages, thereby creating a major health problem worldwide. The molecular mechanisms involved in mycobacterial entry are still poorly characterized. Here we report that cholesterol is essential for uptake of mycobacteria by macrophages. Cholesterol accumulated at the site of mycobacterial entry, and depleting plasma membrane cholesterol specifically inhibited mycobacterial uptake. Cholesterol also mediated the phagosomal association of TACO, a coat protein that prevents degradation of mycobacteria in lysosomes. Thus, by entering host cells at cholesterol-rich domains of the plasma membrane, mycobacteria may ensure their subsequent intracellular survival in TACO-coated phagosomes.
Collapse
Affiliation(s)
- J Gatfield
- Basel Institute for Immunology, Grenzacherstrasse 487, CH-4005 Basel, Switzerland
| | | |
Collapse
|
32
|
van Ham M, van Lith M, Lillemeier B, Tjin E, Grüneberg U, Rahman D, Pastoors L, van Meijgaarden K, Roucard C, Trowsdale J, Ottenhoff T, Pappin D, Neefjes J. Modulation of the major histocompatibility complex class II-associated peptide repertoire by human histocompatibility leukocyte antigen (HLA)-DO. J Exp Med 2000; 191:1127-36. [PMID: 10748231 PMCID: PMC2193174 DOI: 10.1084/jem.191.7.1127] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/1999] [Accepted: 01/21/2000] [Indexed: 11/24/2022] Open
Abstract
Antigen presentation by major histocompatibility complex class II molecules is essential for antibody production and T cell activation. For most class II alleles, peptide binding depends on the catalytic action of human histocompatibility leukocyte antigens (HLA)-DM. HLA-DO is selectively expressed in B cells and impedes the activity of DM, yet its physiological role remains unclear. Cell surface iodination assays and mass spectrometry of major histocompatibility complex class II-eluted peptides show that DO affects the antigenic peptide repertoire of class II. DO generates both quantitative and qualitative differences, and inhibits presentation of large-sized peptides. DO function was investigated under various pH conditions in in vitro peptide exchange assays and in antigen presentation assays using DO(-) and DO(+) transfectant cell lines as antigen-presenting cells, in which effective acidification of the endocytic pathway was prevented with bafilomycin A(1), an inhibitor of vacuolar ATPases. DO effectively inhibits antigen presentation of peptides that are loaded onto class II in endosomal compartments that are not very acidic. Thus, DO appears to be a unique, cell type-specific modulator mastering the class II-mediated immune response induced by B cells. DO may serve to increase the threshold for nonspecific B cell activation, restricting class II-peptide binding to late endosomal compartments, thereby affecting the peptide repertoire.
Collapse
Affiliation(s)
- M van Ham
- Division of Tumor Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Arndt SO, Vogt AB, Markovic-Plese S, Martin R, Moldenhauer G, Wölpl A, Sun Y, Schadendorf D, Hämmerling GJ, Kropshofer H. Functional HLA-DM on the surface of B cells and immature dendritic cells. EMBO J 2000; 19:1241-51. [PMID: 10716924 PMCID: PMC305665 DOI: 10.1093/emboj/19.6.1241] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HLA-DM (DM) plays a critical role in antigen presentation through major histocompatibility complex (MHC) class II molecules. DM functions as a molecular chaperone by keeping class II molecules competent for antigenic peptide loading and serves as an editor by favoring presentation of high-stability peptides. Until now, DM has been thought to exert these activities only in late endosomal/lysosomal compartments of antigen-presenting cells. Here we show that a subset of DM resides at the cell surface of B cells and immature dendritic cells. Surface DM engages in complexes with putatively empty class II molecules and controls presentation of those antigens that rely on loading on the cell surface or in early endosomal recycling compartments. For example, epitopes derived from myelin basic protein that are implicated in the autoimmune disease multiple sclerosis are down-modulated by DM, but are presented in the absence of DM. Thus, this novel concept of functional DM on the surface may be relevant to both protective immune responses and autoimmunity.
Collapse
Affiliation(s)
- S O Arndt
- Department of Molecular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ramm G, Pond L, Watts C, Stoorvogel W. Clathrin-coated lattices and buds on MHC class II compartments do not selectively recruit mature MHC-II. J Cell Sci 2000; 113 Pt 2:303-13. [PMID: 10633081 DOI: 10.1242/jcs.113.2.303] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Newly synthesized major histocompatibility complex class II molecules (MHC-II) are transported to MHC-II-containing endosomal and lysosomal compartments (MIICs) for the degradation of associated invariant chain and peptide loading. Subsequently MHC-II is transported to the plasma membrane, in part through direct fusion of MIICs with the plasma membrane. In search of potential alternative pathway(s) we studied the 3-dimensional structure of MIICs and the subcellular distribution of MHC-II by immuno electronmicroscopy on whole-mount preparations and cryosections of Mel JuSo cells. Intracellular MHC-II and invariant chain mainly localized to lamp-1 positive compartments suggesting that the majority of MHC-II exits the endocytic tract at lysosomes. Clathrin-coated lattices and buds were found to be associated with these organelles, but MHC-II was not found to be enriched in the clathrin-coated domains. Moreover, leupeptin, a drug that interferes with Ii-processing and delays delivery of newly synthesized MHC-II to the plasma membrane, was not found to decrease the relative amount of MHC-II in clathrin-coated areas. Together these data indicate clathrin-mediated exit site(s) from lysosomes but suggest that they do not selectively recruit mature MHC-II, consistent with the notion that transport to the plasma membrane occurs independently of the cytoplasmic domains of the MHC-II (α) and (beta) chains.
Collapse
Affiliation(s)
- G Ramm
- Department of Cell Biology, University Medical Center and Institute for Biomembranes, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
35
|
Bakke O, Nordeng TW. Intracellular traffic to compartments for MHC class II peptide loading: signals for endosomal and polarized sorting. Immunol Rev 1999; 172:171-87. [PMID: 10631946 DOI: 10.1111/j.1600-065x.1999.tb01365.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this review we focus on the traffic of MHC class II and endocytosed antigens to intracellular compartments where antigenic peptides are loaded. We also discuss briefly the nature of the peptide loading compartment and the sorting signals known to direct antigen receptors and MHC class II and associated molecules to this location. MHC class II molecules are expressed on a variety of polarized epithelial and endothelial cells, and polarized cells are thus potentially important for antigen presentation. Here we review some cell biological aspects of polarized sorting of MHC class II and the associated invariant chain and the signals that are involved in the sorting process to the basolateral domain. The molecules involved in sorting and loading of peptide may modulate antigen presentation, and in particular we discuss how invariant chain may change the cellular phenotype and the kinetics of the endosomal pathway.
Collapse
Affiliation(s)
- O Bakke
- Department of Biology, University of Oslo, Norway.
| | | |
Collapse
|
36
|
Wubbolts R, Neefjes J. Intracellular transport and peptide loading of MHC class II molecules: regulation by chaperones and motors. Immunol Rev 1999; 172:189-208. [PMID: 10631947 DOI: 10.1111/j.1600-065x.1999.tb01366.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
MHC class II molecules are important in the onset and modulation of cellular immune responses. Studies on the intracellular transport of these molecules has provided insight into the way pathogens are processed and presented at the cell surface and may result in future immunological intervention strategies. Recent reviews have extensively described structural properties and early events in the biosynthesis of MHC class II (1-3). In this review, the focus will be on the function of the dedicated chaperone proteins Ii, DM and DO in the class II assembly, transport and peptide loading as well on proteins involved in transport steps late in the intracellular transport of MHC class II.
Collapse
Affiliation(s)
- R Wubbolts
- Netherlands Cancer Institute, Division of Tumor Biology, Amsterdam, The Netherlands
| | | |
Collapse
|
37
|
Ramachandra L, Noss E, Boom WH, Harding CV. Phagocytic processing of antigens for presentation by class II major histocompatibility complex molecules. Cell Microbiol 1999; 1:205-14. [PMID: 11207553 DOI: 10.1046/j.1462-5822.1999.00026.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microbes and other particulate antigens (Ags) are internalized by phagocytosis and then reside in plasma membrane-derived phagosomes. The contribution of phagosomes to the degradation of Ags has long been appreciated. It has been unclear, however, whether peptides derived from these degraded antigens bind class II major histocompatibility complex (MHC-II) molecules within phagosomes or within endocytic compartments that receive Ag fragments from phagosomes. Recent experiments have demonstrated that phagosomes containing Ag-conjugated latex beads express a full complement of Ag-processing molecules, e.g. MHC-II molecules, invariant chain, H2-DM and proteases sufficient to degrade bead- associated Ag. These phagosomes mediate the formation of peptide-MHC-II complexes, which are transported to the cell surface and presented to T cells. Phagosomes acquire both newly synthesized and plasma membrane-derived MHC-II molecules, but the formation of peptide-MHC-II complexes in phagosomes primarily involves newly synthesized MHC-II molecules. The content and traffic of phagosomal proteins vary considerably with the type of Ag ingested. Pathogenic microbes can alter phagosome composition and function to reduce Ag processing. For example, Mycobacterium tuberculosis blocks the maturation of phagosomes and reduces the ability of infected cells to present exogenous soluble protein Ags.
Collapse
Affiliation(s)
- L Ramachandra
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106-4943, USA
| | | | | | | |
Collapse
|
38
|
Ong GL, Goldenberg DM, Hansen HJ, Mattes MJ. Cell surface expression and metabolism of major histocompatibility complex class II invariant chain (CD74) by diverse cell lines. Immunology 1999; 98:296-302. [PMID: 10540230 PMCID: PMC2326920 DOI: 10.1046/j.1365-2567.1999.00868.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We previously described the processing of antibodies to CD74 (the major histocompatibility complex class II-associated invariant chain, Ii), by B-cell lymphoma cell lines. These cells expressed relatively low levels of Ii on the surface, but the molecules were rapidly internalized and replaced by new molecules, so that approximately 8 x 10(6) antibody molecules per cell were taken up per day. We herein report the results of similar studies with other cell types, namely a melanoma, a colon carcinoma, a T-cell lymphoma and B-lymphoblastoid cell lines. The melanoma and the carcinoma were treated with interferon-gamma to induce high levels of the antigen. The T-cell lymphoma, HUT 78, was selected specifically because it was previously reported to lack cell surface Ii, while expressing the molecule intracellularly. However, HUT 78 displayed Ii on the cell surface, as did the other cell lines tested, and catabolism of the antibody was very fast on all of the cell lines. The capacity of four of the cell lines for cumulative antibody uptake was evaluated, using 'residualizing' radiolabels, which are trapped within the cell after catabolism of the antibody to which they were conjugated. A high level of uptake was observed in all cases, although there was significant variation between the cell lines. With melanoma SK-MEL-37, the total LL1 uptake in 24 hr was nearly 10(7) molecules per cell and the average turnover time for Ii on the cell surface was 4 min; with carcinoma HT-29, the total LL1 uptake in 24 hr was approximately 10(6) molecules per cell, and the average turnover time for Ii on the cell surface was 27 min. Based on the cell content of mature class II antigens (alphabeta), these data suggest that a large fraction, or all, of immature class II molecules (alphabetaIi) reach the cell surface before entering the peptide-loading compartment, independent of the particular cell type.
Collapse
Affiliation(s)
- G L Ong
- Garden State Cancer Center at the Center for Molecular Medicine and Immunology, Belleville, NJ 07109, USA
| | | | | | | |
Collapse
|
39
|
Eynon EE, Schlax C, Pieters J. A secreted form of the major histocompatibility complex class II-associated invariant chain inhibiting T cell activation. J Biol Chem 1999; 274:26266-71. [PMID: 10473581 DOI: 10.1074/jbc.274.37.26266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Major histocompatibility complex (MHC) class II molecules function at the cell surface to present antigenic peptides to T helper cells. Intracellularly, MHC class II molecules are associated with the invariant chain (Ii). Ii can modulate MHC class II-dependent T cell activation through (i) assistance in the export of MHC class II molecules from the endoplasmic reticulum, (ii) providing a targeting signal for endosomal/lysosomal compartments, and (iii) preventing peptides from associating prematurely with MHC class II molecules. Here we describe the generation and subsequent secretion of a lumenal form of Ii, IiP25. IiP25 lacked the targeting sequences for transport to MHC class II compartments but contained part of the CLIP region that is known to compete with antigenic peptides for binding to MHC class II molecules. When added to an antigenic peptide presentation model system, IiP25 inhibited T cell activation by competing for the CLIP binding site at the plasma membrane. Secretion of a lumenal Ii fragment may represent an additional mechanism to modulate T cell activation by MHC class II molecules.
Collapse
Affiliation(s)
- E E Eynon
- Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | |
Collapse
|
40
|
Brachet V, Péhau-Arnaudet G, Desaymard C, Raposo G, Amigorena S. Early endosomes are required for major histocompatiblity complex class II transport to peptide-loading compartments. Mol Biol Cell 1999; 10:2891-904. [PMID: 10473634 PMCID: PMC25528 DOI: 10.1091/mbc.10.9.2891] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antigen presentation to CD4(+) T lymphocytes requires transport of newly synthesized major histocompatibility complex (MHC) class II molecules to the endocytic pathway, where peptide loading occurs. This step is mediated by a signal located in the cytoplasmic tail of the MHC class II-associated Ii chain, which directs the MHC class II-Ii complexes from the trans-Golgi network (TGN) to endosomes. The subcellular machinery responsible for the specific targeting of MHC class II molecules to the endocytic pathway, as well as the first compartments these molecules enter after exit from the TGN, remain unclear. We have designed an original experimental approach to selectively analyze this step of MHC class II transport. Newly synthesized MHC class II molecules were caused to accumulate in the Golgi apparatus and TGN by incubating the cells at 19 degrees C, and early endosomes were functionally inactivated by in vivo cross-linking of transferrin (Tf) receptor-containing endosomes using Tf-HRP complexes and the HRP-insoluble substrate diaminobenzidine. Inactivation of Tf-containing endosomes caused a marked delay in Ii chain degradation, peptide loading, and MHC class II transport to the cell surface. Thus, early endosomes appear to be required for delivery of MHC class II molecules to the endocytic pathway. Under cross-linking conditions, most alphabetaIi complexes accumulated in tubules and vesicles devoid of gamma-adaptin and/or mannose-6-phosphate receptor, suggesting an AP1-independent pathway for the delivery of newly synthesized MHC class II molecules from the TGN to endosomes.
Collapse
Affiliation(s)
- V Brachet
- Institut National de la Santé et de la Recherche Médicale U520, Institut Curie, Section Recherche, 75005 Paris, France
| | | | | | | | | |
Collapse
|
41
|
Uebel S, Wiesmüller KH, Jung G, Tampé R. Peptide libraries in cellular immune recognition. Curr Top Microbiol Immunol 1999; 243:1-21. [PMID: 10453635 DOI: 10.1007/978-3-642-60142-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- S Uebel
- Department of Cellular Biochemistry and Biophysics, Philipps-University Marburg, Medical School, Germany
| | | | | | | |
Collapse
|
42
|
Ferrari G, Langen H, Naito M, Pieters J. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 1999; 97:435-47. [PMID: 10338208 DOI: 10.1016/s0092-8674(00)80754-0] [Citation(s) in RCA: 407] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mycobacteria are intracellular pathogens that can survive within macrophage phagosomes, thereby evading host defense strategies by largely unknown mechanisms. We have identified a WD repeat host protein that was recruited to and actively retained on phagosomes by living, but not dead, mycobacteria. This protein, termed TACO, represents a component of the phagosome coat that is normally released prior to phagosome fusion with or maturation into lysosomes. In macrophages lacking TACO, mycobacteria were readily transported to lysosomes followed by their degradation. Expression of TACO in nonmacrophages prevented lysosomal delivery of mycobacteria and prolonged their intracellular survival. Active retention of TACO on phagosomes by living mycobacteria thus represents a mechanism preventing cargo delivery to lysosomes, allowing mycobacteria to survive within macrophages.
Collapse
Affiliation(s)
- G Ferrari
- Basel Institute for Immunology, Switzerland
| | | | | | | |
Collapse
|
43
|
Andrei C, Dazzi C, Lotti L, Torrisi MR, Chimini G, Rubartelli A. The secretory route of the leaderless protein interleukin 1beta involves exocytosis of endolysosome-related vesicles. Mol Biol Cell 1999; 10:1463-75. [PMID: 10233156 PMCID: PMC25302 DOI: 10.1091/mbc.10.5.1463] [Citation(s) in RCA: 374] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/1998] [Accepted: 03/01/1999] [Indexed: 01/02/2023] Open
Abstract
Interleukin 1beta (IL-1beta), a secretory protein lacking a signal peptide, does not follow the classical endoplasmic reticulum-to-Golgi pathway of secretion. Here we provide the evidence for a "leaderless" secretory route that uses regulated exocytosis of preterminal endocytic vesicles to transport cytosolic IL-1beta out of the cell. Indeed, although most of the IL-1beta precursor (proIL-1beta) localizes in the cytosol of activated human monocytes, a fraction is contained within vesicles that cofractionate with late endosomes and early lysosomes on Percoll density gradients and display ultrastructural features and markers typical of these organelles. The observation of organelles positive for both IL-1beta and the endolysosomal hydrolase cathepsin D or for both IL-1beta and the lysosomal marker Lamp-1 further suggests that they belong to the preterminal endocytic compartment. In addition, similarly to lysosomal hydrolases, secretion of IL-1beta is induced by acidotropic drugs. Treatment of monocytes with the sulfonylurea glibenclamide inhibits both IL-1beta secretion and vesicular accumulation, suggesting that this drug prevents the translocation of proIL-1beta from the cytosol into the vesicles. A high concentration of extracellular ATP and hypotonic medium increase secretion of IL-1beta but deplete the vesicular proIL-1beta content, indicating that exocytosis of proIL-1beta-containing vesicles is regulated by ATP and osmotic conditions.
Collapse
Affiliation(s)
- C Andrei
- National Cancer Institute, 16132 Genova, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Ramachandra L, Chu RS, Askew D, Noss EH, Canaday DH, Potter NS, Johnsen A, Krieg AM, Nedrud JG, Boom WH, Harding CV. Phagocytic antigen processing and effects of microbial products on antigen processing and T-cell responses. Immunol Rev 1999; 168:217-39. [PMID: 10399077 DOI: 10.1111/j.1600-065x.1999.tb01295.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Processing of exogenous antigens and microbes involves contributions by multiple different endocytic and phagocytic compartments. During the processing of soluble antigens, different endocytic compartments have been demonstrated to use distinct antigen-processing mechanisms and to process distinct sets of antigenic epitopes. Processing of particulate and microbial antigens involves phagocytosis and functions contributed by phagocytic compartments. Recent data from our laboratory demonstrate that phagosomes containing antigen-conjugated latex beads are fully competent class II MHC (MHC-II) antigen-processing organelles, which generate peptide:MHC-II complexes. In addition, phagocytosed antigen enters an alternate class I MHC (MHC-I) processing pathway that results in loading of peptides derived from exogenous antigens onto MHC-I molecules, in contrast to the cytosolic antigen source utilized by the conventional MHC-I antigen-processing pathway. Antigen processing and other immune response mechanisms may be activated or inhibited by microbial components to the benefit of either the host or the pathogen. For example, antigen processing and T-cell responses (e.g. Th1 vs Th2 differentiation) are modulated by multiple distinct microbial components, including lipopolysaccharide, cholera toxin, heat labile enterotoxin of Escherichia coli, DNA containing CpG motifs (found in prokaryotic and invertebrate DNA but not mammalian DNA) and components of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- L Ramachandra
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wubbolts R, Fernandez-Borja M, Jordens I, Reits E, Dusseljee S, Echeverri C, Vallee RB, Neefjes J. Opposing motor activities of dynein and kinesin determine retention and transport of MHC class II-containing compartments. J Cell Sci 1999; 112 ( Pt 6):785-95. [PMID: 10036229 DOI: 10.1242/jcs.112.6.785] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
MHC class II molecules exert their function at the cell surface by presenting to T cells antigenic fragments that are generated in the endosomal pathway. The class II molecules are targetted to early lysosomal structures, termed MIIC, where they interact with antigenic fragments and are subsequently transported to the cell surface. We previously visualised vesicular transport of MHC class II-containing early lysosomes from the microtubule organising centre (MTOC) region towards the cell surface in living cells. Here we show that the MIIC move bidirectionally in a ‘stop-and-go’ fashion. Overexpression of a motor head-deleted kinesin inhibited MIIC motility, showing that kinesin is the motor that drives its plus end transport towards the cell periphery. Cytoplasmic dynein mediates the return of vesicles to the MTOC area and effectively retains the vesicles at this location, as assessed by inactivation of dynein by overexpression of dynamitin. Our data suggest a retention mechanism that determines the perinuclear accumulation of MIIC, which is the result of dynein activity being superior over kinesin activity. The bidirectional nature of MIIC movement is the result of both kinesin and dynein acting reciprocally on the MIIC during its transport. The motors may be the ultimate targets of regulatory kinases since the protein kinase inhibitor staurosporine induces a massive release of lysosomal vesicles from the MTOC region that is morphologically similar to that observed after inactivation of the dynein motor.
Collapse
Affiliation(s)
- R Wubbolts
- Netherlands Cancer Institute, Department of Tumor Biology, Plesmanlaan 121, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Rodionov DG, Nordeng TW, Pedersen K, Balk SP, Bakke O. A Critical Tyrosine Residue in the Cytoplasmic Tail Is Important for CD1d Internalization But Not for Its Basolateral Sorting in MDCK Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The CD1 family of polypeptides is divided into two groups, the CD1b and CD1d group. Both groups are involved in stimulation of T cell response. Molecules of the CD1b group can present Ag derived from bacterial cell walls to T cells; the process of Ag acquisition is thought to take place in endosomes. Little is known about Ag presentation by CD1d. We therefore studied the intracellular trafficking of human CD1d in Madin-Darby canine kidney (MDCK) and COS cells. CD1d was found in endosomal compartments after its internalization from the plasma membrane. It is therefore possible that CD1d acquires its yet unidentified exogenous ligand in the same compartments as the MHC class II and CD1b molecules. CD1d contains a tyrosine-based sorting signal in its cytoplasmic tail that is necessary for internalization. Furthermore, the cytoplasmic tail of CD1d also contains a signal for basolateral sorting that is, however, different from the internalization signal.
Collapse
Affiliation(s)
- Dmitrii G. Rodionov
- *Division of Molecular Cell Biology, Department of Biology, University of Oslo, Oslo, Norway; and
| | - Tommy W. Nordeng
- *Division of Molecular Cell Biology, Department of Biology, University of Oslo, Oslo, Norway; and
| | - Ketil Pedersen
- *Division of Molecular Cell Biology, Department of Biology, University of Oslo, Oslo, Norway; and
| | - Steven P. Balk
- †Division of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| | - Oddmund Bakke
- *Division of Molecular Cell Biology, Department of Biology, University of Oslo, Oslo, Norway; and
| |
Collapse
|
47
|
Kang S, Liang L, Parker CD, Collawn JF. Structural requirements for major histocompatibility complex class II invariant chain endocytosis and lysosomal targeting. J Biol Chem 1998; 273:20644-52. [PMID: 9685423 DOI: 10.1074/jbc.273.32.20644] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The invariant chain (Ii) targets newly synthesized major histocompatibility complex class II complexes to a lysosome-like compartment. Previously, we demonstrated that both the cytoplasmic tail (CT) and transmembrane (TM) domains of Ii were sufficient for this targeting and that the CT contains two di-leucine signals, 3DQRDLI8 and 12EQLPML17 (Odorizzi, C. G., Trowbridge, I. S., Xue, L., Hopkins, C. R., Davis, C. D., and Collawn, J. F. (1994) J. Cell Biol. 126, 317-330). In the present study, we examined the relationship between signals required for endocytosis and those required for lysosomal targeting by analyzing Ii-transferrin receptor chimeras in quantitative transport assays. Analysis of the Ii CT signals indicates that although 3DQRDLI8 is necessary and sufficient for endocytosis, either di-leucine signal is sufficient for lysosomal targeting. Deletions between the two signals reduced endocytosis without affecting lysosomal targeting. Transplantation of the DQRDLI sequence in place of the EQLPML signal produced a chimera that trafficked normally, suggesting that this di-leucine sequence coded for an independent structural motif. Structure-function analysis of the Ii TM region showed that when Ii TM residues 11-19 and 20-29 were individually substituted for the corresponding regions in the wild-type transferrin receptor, lysosomal targeting was dramatically enhanced, whereas endocytosis remained unchanged. Our results therefore demonstrate that the structural requirements for Ii endocytosis and lysosomal targeting are different.
Collapse
Affiliation(s)
- S Kang
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | |
Collapse
|
48
|
Affiliation(s)
- H J Geuze
- Utrecht University, Dept of Cell Biology, The Netherlands.
| |
Collapse
|
49
|
Faigle W, Raposo G, Tenza D, Pinet V, Vogt AB, Kropshofer H, Fischer A, de Saint-Basile G, Amigorena S. Deficient peptide loading and MHC class II endosomal sorting in a human genetic immunodeficiency disease: the Chediak-Higashi syndrome. J Cell Biol 1998; 141:1121-34. [PMID: 9606205 PMCID: PMC2137185 DOI: 10.1083/jcb.141.5.1121] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Chediak-Higashi syndrome (CHS) is a human recessive autosomal disease caused by mutations in a single gene encoding a protein of unknown function, called lysosomal-trafficking regulator. All cells in CHS patients bear enlarged lysosomes. In addition, T- and natural killer cell cytotoxicity is defective in these patients, causing severe immunodeficiencies. We have analyzed major histocompatibility complex class II functions and intracellular transport in Epstein Barr Virus-transformed B cells from CHS patients. Peptide loading onto major histocompatibility complex class II molecules and antigen presentation are strongly delayed these cells. A detailed electron microscopy analysis of endocytic compartments revealed that only lysosomal multilaminar compartments are enlarged (reaching 1-2 micron), whereas late multivesicular endosomes have normal size and morphology. In contrast to giant multilaminar compartments that bear most of the usual lysosomal markers in these cells (HLA-DR, HLA-DM, Lamp-1, CD63, etc.), multivesicular late endosomes displayed reduced levels of all these molecules, suggesting a defect in transport from the trans-Golgi network and/or early endosomes into late multivesicular endosomes. Further insight into a possible mechanism of this transport defect came from immunolocalizing the lysosomal trafficking regulator protein, as antibodies directed to a peptide from its COOH terminal domain decorated punctated structures partially aligned along microtubules. These results suggest that the product of the Lyst gene is required for sorting endosomal resident proteins into late multivesicular endosomes by a mechanism involving microtubules.
Collapse
Affiliation(s)
- W Faigle
- CJF 95-01 INSERM, Institut Curie, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Stang E, Guerra CB, Amaya M, Paterson Y, Bakke O, Mellins ED. DR/CLIP (Class II-Associated Invariant Chain Peptides) and DR/Peptide Complexes Colocalize in Prelysosomes in Human B Lymphoblastoid Cells. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.10.4696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
In APCs, MHC class II molecules (MHC class II) bind antigenic peptides after HLA-DM mediated removal of CLIP. To characterize intracellular sites of peptide loading in human B lymphoblastoid cell lines, we conducted immunoelectron microscopy studies with Abs recognizing MHC class II associated with CLIP or bound peptide, respectively, together with Abs to HLA-DM and endocytic markers. The distribution of these molecules indicates that peptide binding occurs in compartments with characteristics of normal late endosomes, and in compartments that show characteristics of late endosomes, but are not detectably accessed by endocytosed BSA-gold. The latter compartments may represent or give rise to recycling vesicles that deliver peptide-loaded class II molecules to the cell surface. In addition, we have compared cells in which HLA-DM and HLA-DR interaction is defective with cells in which this interaction is intact, and find that DM/DR interaction is not required for the proper localization of either molecule to peptide-loading compartments.
Collapse
Affiliation(s)
- Espen Stang
- *Department of Biology, University of Oslo, Oslo, Norway
| | | | - Miguel Amaya
- †Department of Pediatrics, School of Medicine, and
| | - Yvonne Paterson
- ‡Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Oddmund Bakke
- *Department of Biology, University of Oslo, Oslo, Norway
| | - Elizabeth D. Mellins
- §Department of Pediatrics, Stanford University Medical Center, Stanford, CA 94305
| |
Collapse
|