1
|
Anderton E, Chamoli M, Bhaumik D, King CD, Xie X, Foulger A, Andersen JK, Schilling B, Lithgow GJ. Amyloid β accelerates age-related proteome-wide protein insolubility. GeroScience 2024; 46:4585-4602. [PMID: 38753231 PMCID: PMC11335993 DOI: 10.1007/s11357-024-01169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Loss of proteostasis is a highly conserved feature of aging across model organisms and results in the accumulation of insoluble protein aggregates. Protein insolubility is also a unifying feature of major age-related neurodegenerative diseases, including Alzheimer's Disease (AD), in which hundreds of insoluble proteins associate with aggregated amyloid beta (Aβ) in senile plaques. Despite the connection between aging and AD risk, therapeutic approaches to date have overlooked aging-driven generalized protein insolubility as a contributing factor. However, proteins that become insoluble during aging in model organisms are capable of accelerating Aβ aggregation in vitro and lifespan in vivo. Here, using an unbiased proteomics approach, we questioned the relationship between Aβ and age-related protein insolubility. Specifically, we uncovered that Aβ expression drives proteome-wide protein insolubility in C. elegans, even in young animals, and this insoluble proteome is highly similar to the insoluble proteome driven by normal aging, this vulnerable sub-proteome we term the core insoluble proteome (CIP). We show that the CIP is enriched with proteins that modify Aβ toxicity in vivo, suggesting the possibility of a vicious feedforward cycle in the context of AD. Importantly, using human genome-wide association studies (GWAS), we show that the CIP is replete with biological processes implicated not only in neurodegenerative diseases but also across a broad array of chronic, age-related diseases (CARDs). This provides suggestive evidence that age-related loss of proteostasis could play a role in general CARD risk. Finally, we show that the geroprotective, gut-derived metabolite, Urolithin A, relieves Aβ toxicity, supporting its use in clinical trials for dementia and age-related diseases.
Collapse
Affiliation(s)
- Edward Anderton
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
- USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90191, USA.
| | - Manish Chamoli
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | - Dipa Bhaumik
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Christina D King
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Xueshu Xie
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Anna Foulger
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Julie K Andersen
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Birgit Schilling
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | - Gordon J Lithgow
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
2
|
Tian D, Zhang Z, Huang B, Han B, Li X, Zhao K. Genome-Wide Association Analyses and Population Verification Highlight the Potential Genetic Basis of Horned Morphology during Polled Selection in Tibetan Sheep. Animals (Basel) 2024; 14:2152. [PMID: 39123678 PMCID: PMC11311095 DOI: 10.3390/ani14152152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The types and morphology of sheep horns have been extensively researched, yet the genetic foundation underlying the emergence of diverse horn characteristics during the breeding of polled Tibetan sheep has remained elusive. Genome-wide association analysis (GWAS) was performed on 103 subtypes (normal large horn, scurs, and polled) differentiated from G2 (offspring (G2) of parent (G1) of polled) of the polled core herd. Six single nucleotide polymorphisms (SNPs) located on chromosome 10 of the relaxin family peptide receptor 2 (RXFP2) gene exhibited positive correlations with horn length, horn base circumference, and horn base interval. Furthermore, in genotyping 382 G2 individuals, significant variations were observed for each specific horn type. Three additional mutations were identified near the target SNP upstream of the amplification product. Finally, the RXFP2-specific haplotype associated with the horned trait effectively maintained horn length, horn base circumference, and horn base interval in Tibetan sheep, as confirmed by population validation of nine loci in a sample size of 1125 individuals. The present study offers novel insights into the genetic differentiation of the horned type during improvement breeding and evolution, thereby establishing a robust theoretical foundation for polled Tibetan sheep breeding and providing valuable guidance for practical production.
Collapse
Affiliation(s)
- Dehong Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zian Zhang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, China
| | - Bin Huang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, China
| | - Buying Han
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Li
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| |
Collapse
|
3
|
Zhang M, Zha X, Ma X, La Y, Guo X, Chu M, Bao P, Yan P, Wu X, Liang C. Polymorphisms of ITGA9 Gene and Their Correlation with Milk Quality Traits in Yak ( Bos grunniens). Foods 2024; 13:1613. [PMID: 38890842 PMCID: PMC11172211 DOI: 10.3390/foods13111613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
A single-nucleotide polymorphism (SNP) is a genome-level trait that arises from a variation in a single nucleotide, leading to diversity in DNA sequences. SNP screening is commonly used to provide candidate genes for yak breeding efforts. Integrin Subunit Alpha 9 (ITGA9) is an integrin protein. It plays an important role in cell adhesion, signalling, and other processes. The aim of this study was to discuss the association between genetic polymorphisms in the ITGA9 gene and milk quality traits and to identify potential molecular marker loci for yak breeding quality. We genotyped 162 yaks using an Illumina Yak cGPS 7K liquid chip and identified the presence of polymorphisms at nine SNP loci in the ITGA9 gene of yaks. The results showed that the mutant genotypes in the loci g.285,808T>A, g.306,600T>C, and g.315,413C>T were positively correlated with the contents of casein, protein, total solids (TS), and solid nonfat (SNF) in yak milk. In other loci, heterozygous genotypes had a positive correlation with nutrient content in yak milk. Then, two ITGA9 haplotype blocks were constructed based on linkage disequilibrium, which facilitated a more accurate screening of ITGA9 as a candidate gene for yak milk quality improvement. In conclusion, we identified SNPs and haplotype blocks related to yak milk quality traits and provided genetic resources for marker-assisted selection in yak breeding.
Collapse
Affiliation(s)
- Mengfan Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xita Zha
- Qinghai Province Qilian County Animal Husbandry and Veterinary Workstation, Qilian 810400, China;
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
4
|
Majidian P, Ghorbani HR, Farajpour M. Achieving agricultural sustainability through soybean production in Iran: Potential and challenges. Heliyon 2024; 10:e26389. [PMID: 38404839 PMCID: PMC10884498 DOI: 10.1016/j.heliyon.2024.e26389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/17/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
The utilization of soybean as a key oil crop to enhance sustainable agriculture has garnered significant attention from researchers. Its lower water requirements compared to rice, along with its reduced environmental impact, including greenhouse gas emissions, improved water quality, enhanced biodiversity, and efficient resource utilization, make it an attractive option. Unfortunately, Iran, like many other developing countries, heavily relies on soybean imports (over 90%) to meet the demand for oil and protein in human and livestock food rations. The decline in soybean production, coupled with diminishing cultivation areas, yield rates, and increasing import needs, underscores the urgent need to address the challenges faced in Iran. The decline in soybean production in the country can be attributed to various factors, including environmental stresses (both biotic and abiotic), limited variation in soybean cultivars, inadequate mechanization for cultivation, and economic policies. Hence, this review provides a comprehensive overview of the current status of soybean production in Iran and highlights its potential to enhance sustainable agriculture. Additionally, it examines the challenges and constraints associated with soybean cultivation, such as environmental changes and unbalanced marketing, and explores potential solutions and management strategies to bridge the gap between small-scale and large-scale production. Given the increasing global demand for plant-based protein and the significance of the feed industry, studying the limitations faced by countries with slower soybean production growth can shed light on the issues and present opportunities to capitalize on novel soybean advancements in the future. By addressing these challenges and unlocking the potential of soybean cultivation, Iran can contribute to sustainable agricultural practices and attain a more resilient food system.
Collapse
Affiliation(s)
- Parastoo Majidian
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran
| | - Hamid Reza Ghorbani
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran
| | - Mostafa Farajpour
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran
| |
Collapse
|
5
|
Ficiarà E, Stura I, Vernone A, Silvagno F, Cavalli R, Guiot C. Iron Overload in Brain: Transport Mismatches, Microbleeding Events, and How Nanochelating Therapies May Counteract Their Effects. Int J Mol Sci 2024; 25:2337. [PMID: 38397013 PMCID: PMC10889007 DOI: 10.3390/ijms25042337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Iron overload in many brain regions is a common feature of aging and most neurodegenerative diseases. In this review, the causes, mechanisms, mathematical models, and possible therapies are summarized. Indeed, physiological and pathological conditions can be investigated using compartmental models mimicking iron trafficking across the blood-brain barrier and the Cerebrospinal Fluid-Brain exchange membranes located in the choroid plexus. In silico models can investigate the alteration of iron homeostasis and simulate iron concentration in the brain environment, as well as the effects of intracerebral iron chelation, determining potential doses and timing to recover the physiological state. Novel formulations of non-toxic nanovectors with chelating capacity are already tested in organotypic brain models and could be available to move from in silico to in vivo experiments.
Collapse
Affiliation(s)
- Eleonora Ficiarà
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy;
| | - Ilaria Stura
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| | - Annamaria Vernone
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| | - Francesca Silvagno
- Department of Oncology, Università degli Studi di Torino, 10126 Torino, TO, Italy;
| | - Roberta Cavalli
- Department of Drug Science and Technology, Università degli Studi di Torino, 10125 Torino, TO, Italy;
| | - Caterina Guiot
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| |
Collapse
|
6
|
Anderton E, Chamoli M, Bhaumik D, King CD, Xie X, Foulger A, Andersen JK, Schilling B, Lithgow GJ. Amyloid β accelerates age-related proteome-wide protein insolubility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548937. [PMID: 37503138 PMCID: PMC10369951 DOI: 10.1101/2023.07.13.548937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Loss of proteostasis is a highly conserved feature of aging across model organisms and typically results in the accumulation of insoluble protein aggregates. Protein insolubility is a central feature of major age-related neurodegenerative diseases, including Alzheimer's Disease (AD), where hundreds of insoluble proteins associate with aggregated amyloid beta (Aβ) in senile plaques. Moreover, proteins that become insoluble during aging in model organisms are capable of accelerating Aβ aggregation in vitro. Despite the connection between aging and AD risk, therapeutic approaches to date have overlooked aging-driven protein insolubility as a contributory factor. Here, using an unbiased proteomics approach, we questioned the relationship between Aβ and age-related protein insolubility. We demonstrate that Aβ expression drives proteome-wide protein insolubility in C. elegans and this insoluble proteome closely resembles the insoluble proteome driven by normal aging, suggesting the possibility of a vicious feedforward cycle of aggregation in the context of AD. Importantly, using human genome-wide association studies (GWAS), we show that the CIP is replete with biological processes implicated not only in neurodegenerative diseases but also across a broad array of chronic, age-related diseases (CARDs). This provides suggestive evidence that age-related loss of proteostasis could play a role in general CARD risk. Finally, we show that the CIP is enriched with proteins that modulate the toxic effects of Aβ and that the gut-derived metabolite, Urolithin A, relieves Aβ toxicity, supporting its use in clinical trials for dementia and other age-related diseases.
Collapse
Affiliation(s)
- Edward Anderton
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
- USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA 90191
| | - Manish Chamoli
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Dipa Bhaumik
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Christina D. King
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Xueshu Xie
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Anna Foulger
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Julie K. Andersen
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Birgit Schilling
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Gordon J. Lithgow
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| |
Collapse
|
7
|
Genetic Polymorphisms of IGF1 and IGF1R Genes and Their Effects on Growth Traits in Hulun Buir Sheep. Genes (Basel) 2022; 13:genes13040666. [PMID: 35456472 PMCID: PMC9031115 DOI: 10.3390/genes13040666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 01/08/2023] Open
Abstract
The identification of candidate genes and genetic variations associated with growth traits is important for sheep breeding. Insulin like growth factor 1 (IGF1) and insulin like growth factor 1 receptor (IGF1R) are well-accepted candidate genes that affect animal growth and development. The current study attempted to assess the association between IGF1 and IGF1R genetic polymorphisms and growth traits in Hulun Buir sheep. To achieve this goal, we first identified three and ten single nucleotide polymorphisms (SNPs) in exons of IGF1 and IGF1R in Hulun Buir sheep and then constructed six haplotypes of IGF1R based on linkage disequilibrium, respectively. Association studies were performed between SNPs and haplotypes of IGF1 and IGF1R with twelve growth traits in a population encompassing 229 Hulun Buir sheep using a general linear model. Our result indicated three SNPs in IGF1 were significantly associated with four growth traits (p < 0.05). In IGF1R, three SNPs and two haplotype blocks were significantly associated with twelve growth traits (p < 0.05). The combined haplotype H5H5 and H5H6 in IGF1R showed the strong association with 12 superior growth traits in Hulun Buir sheep (p < 0.05). In conclusion, we identified SNPs and haplotype combinations associated with the growth traits, which provided genetic resources for marker-assisted selection (MAS) in Hulun Buir sheep breeding.
Collapse
|
8
|
Factors Influencing Alzheimer's Disease Risk: Whether and How They are Related to the APOE Genotype. Neurosci Bull 2022; 38:809-819. [PMID: 35149974 PMCID: PMC9276873 DOI: 10.1007/s12264-021-00814-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease featuring progressive cognitive impairment. Although the etiology of late-onset AD remains unclear, the close association of AD with apolipoprotein E (APOE), a gene that mainly regulates lipid metabolism, has been firmly established and may shed light on the exploration of AD pathogenesis and therapy. However, various confounding factors interfere with the APOE-related AD risk, raising questions about our comprehension of the clinical findings concerning APOE. In this review, we summarize the most debated factors interacting with the APOE genotype and AD pathogenesis, depict the extent to which these factors relate to APOE-dependent AD risk, and discuss the possible underlying mechanisms.
Collapse
|
9
|
Araujo AC, Carneiro PLS, Alvarenga AB, Oliveira HR, Miller SP, Retallick K, Brito LF. Haplotype-Based Single-Step GWAS for Yearling Temperament in American Angus Cattle. Genes (Basel) 2021; 13:17. [PMID: 35052358 PMCID: PMC8775055 DOI: 10.3390/genes13010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 01/23/2023] Open
Abstract
Behavior is a complex trait and, therefore, understanding its genetic architecture is paramount for the development of effective breeding strategies. The objective of this study was to perform traditional and weighted single-step genome-wide association studies (ssGWAS and WssGWAS, respectively) for yearling temperament (YT) in North American Angus cattle using haplotypes. Approximately 266 K YT records and 70 K animals genotyped using a 50 K single nucleotide polymorphisms (SNP) panel were used. Linkage disequilibrium thresholds (LD) of 0.15, 0.50, and 0.80 were used to create the haploblocks, and the inclusion of non-LD-clustered SNPs (NCSNP) with the haplotypes in the genomic models was also evaluated. WssGWAS did not perform better than ssGWAS. Cattle YT was found to be a highly polygenic trait, with genes and quantitative trait loci (QTL) broadly distributed across the whole genome. Association studies using LD-based haplotypes should include NCSNPs and different LD thresholds to increase the likelihood of finding the relevant genomic regions affecting the trait of interest. The main candidate genes identified, i.e., ATXN10, ADAM10, VAX2, ATP6V1B1, CRISPLD1, CAPRIN1, FA2H, SPEF2, PLXNA1, and CACNA2D3, are involved in important biological processes and metabolic pathways related to behavioral traits, social interactions, and aggressiveness in cattle. Future studies should further investigate the role of these candidate genes.
Collapse
Affiliation(s)
- Andre C. Araujo
- Graduate Program in Animal Sciences, State University of Southwestern Bahia, Itapetinga 45700-000, Brazil;
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.)
| | - Paulo L. S. Carneiro
- Department of Biology, State University of Southwest Bahia, Jequié 45205-490, Brazil;
| | - Amanda B. Alvarenga
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.)
| | - Hinayah R. Oliveira
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.)
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Stephen P. Miller
- American Angus Association, Angus Genetics Inc., 3201 Frederick Ave, St. Joseph, MO 64506, USA; (S.P.M.); (K.R.)
| | - Kelli Retallick
- American Angus Association, Angus Genetics Inc., 3201 Frederick Ave, St. Joseph, MO 64506, USA; (S.P.M.); (K.R.)
| | - Luiz F. Brito
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.)
| |
Collapse
|
10
|
TOMM40 RNA Transcription in Alzheimer's Disease Brain and Its Implication in Mitochondrial Dysfunction. Genes (Basel) 2021; 12:genes12060871. [PMID: 34204109 PMCID: PMC8226536 DOI: 10.3390/genes12060871] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/24/2022] Open
Abstract
Increasing evidence suggests that the Translocase of Outer Mitochondria Membrane 40 (TOMM40) gene may contribute to the risk of Alzheimer’s disease (AD). Currently, there is no consensus as to whether TOMM40 expression is up- or down-regulated in AD brains, hindering a clear interpretation of TOMM40’s role in this disease. The aim of this study was to determine if TOMM40 RNA levels differ between AD and control brains. We applied RT-qPCR to study TOMM40 transcription in human postmortem brain (PMB) and assessed associations of these RNA levels with genetic variants in APOE and TOMM40. We also compared TOMM40 RNA levels with mitochondrial functions in human cell lines. Initially, we found that the human genome carries multiple TOMM40 pseudogenes capable of producing highly homologous RNAs that can obscure precise TOMM40 RNA measurements. To circumvent this obstacle, we developed a novel RNA expression assay targeting the primary transcript of TOMM40. Using this assay, we showed that TOMM40 RNA was upregulated in AD PMB. Additionally, elevated TOMM40 RNA levels were associated with decreases in mitochondrial DNA copy number and mitochondrial membrane potential in oxidative stress-challenged cells. Overall, differential transcription of TOMM40 RNA in the brain is associated with AD and could be an indicator of mitochondrial dysfunction.
Collapse
|
11
|
Cardoso R, Lemos C, Oliveiros B, Almeida MR, Baldeiras I, Pereira CF, Santos A, Duro D, Vieira D, Santana I, Oliveira CR. APOEɛ4-TOMM40L Haplotype Increases the Risk of Mild Cognitive Impairment Conversion to Alzheimer's Disease. J Alzheimers Dis 2020; 78:587-601. [PMID: 33016906 DOI: 10.3233/jad-200556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI) has been considered as a pre-dementia stage, although the factors leading to Alzheimer's disease (AD) conversion remain controversial. OBJECTIVE Evaluate whether TOMM40 poly-T (TOMM40' 523) polymorphism is associated with the risk and conversion time from MCI to AD and secondly with AD cerebrospinal fluid (CSF) biomarkers, disentangling the APOE genotype. METHODS 147 AD patients, 102 MCI patients, and 105 cognitively normal controls were genotyped for poly-T polymorphism. MCI patients were subdivided into two groups, the group of patients that converted to AD (MCI-AD) and the group of those that remained stable (MCI-S). RESULTS TOMM40' 523 L allele was significantly more frequent in the MCI-AD group and having at least one L allele significantly increased the risk of conversion from MCI to AD (OR = 8.346, p < 0.001, 95% CI: 2.830 to 24.617). However, when adjusted for the presence of APOEɛ4 allele, both the L allele and ɛ4 allele lost significance in the model (p > 0.05). We then analyzed the APOEɛ4-TOMM40' 523 L haplotype and observed that patients carrying this haplotype had significantly higher risk (OR = 5.83; 95% CI = 2.30-14.83) and mean lower times of conversion to AD (p = 0.003). This haplotype was also significantly associated with a biomarker profile compatible with AD (p = 0.007). CONCLUSION This study shows that the APOEɛ4-TOMM40' 523 L haplotype is associated with a higher risk and shorter times of conversion from MCI to AD, possibly driven by CSF biomarkers and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Remy Cardoso
- Center for Neuroscience and Cell Biology, CNC-CIBB, University of Coimbra, Coimbra, Portugal
| | - Carolina Lemos
- UnIGENe, IBMC -Institute for Molecular and Cell Biology, Porto, Portugal.,i3S -Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Bárbara Oliveiros
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maria Rosário Almeida
- Center for Neuroscience and Cell Biology, CNC-CIBB, University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- Center for Neuroscience and Cell Biology, CNC-CIBB, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Neurochemistry Laboratory, Neurology Department, Coimbra University Hospital (CHUC), Coimbra, Portugal
| | - Cláudia Fragão Pereira
- Center for Neuroscience and Cell Biology, CNC-CIBB, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Santos
- Center for Neuroscience and Cell Biology, CNC-CIBB, University of Coimbra, Coimbra, Portugal
| | - Diana Duro
- Neurology Department, Coimbra University Hospital (CHUC), Coimbra, Portugal
| | - Daniela Vieira
- Neurology Department, Coimbra University Hospital (CHUC), Coimbra, Portugal
| | - Isabel Santana
- Center for Neuroscience and Cell Biology, CNC-CIBB, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Neurology Department, Coimbra University Hospital (CHUC), Coimbra, Portugal
| | - Catarina Resende Oliveira
- Center for Neuroscience and Cell Biology, CNC-CIBB, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Li C, Cai W, Liu S, Zhou C, Yin H, Sun D, Zhang S. SERPINA1 gene identified in RNA-Seq showed strong association with milk protein concentration in Chinese Holstein cows. PeerJ 2020; 8:e8460. [PMID: 32140298 PMCID: PMC7045893 DOI: 10.7717/peerj.8460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/26/2019] [Indexed: 12/03/2022] Open
Abstract
The detection of candidate genes and mutations associated with phenotypic traits is important for livestock animals. A previous RNA-Seq study revealed that SERPINA1 gene was a functional candidate that may affect milk protein concentration in dairy cows. To further confirm the genetic effect of SERPINA1 on milk protein traits, genetic polymorphisms were identified and genotype-phenotype associations were performed in a large Chinese Holstein cattle population. The entire coding region and the 5′-regulatory region (5′-UTR) of SERPINA1 was sequenced using pooled DNA of 17 unrelated sires. Association studies for five milk production traits were performed using a mixed model with a population encompassing 1,027 Chinese Holstein cows. A total of four SNPs were identified in SERPINA1, among which rs210222822 and rs41257068 presented in exons, rs207601878 presented in an intron, and rs208607693 was in the 5′-UTR. Analyses of pairwise D′ measures of linkage disequilibrium (LD) showed strong linkage among these four SNPs (D′ = 0.99–1.00), and a 9 Kb haplotype block involving three main haplotypes with GTGT, CCCC and CCGT was inferred. An association study revealed that all four single SNPs and their haplotypes had significant genetic effects on milk protein percentage, milk protein yield and milk yield (P = 0.0458 − < 0.0001). The phenotypic variance ratio for all 11 significant SNP-trait pairs ranged from 1.01% to 7.54%. The candidate gene of SERPINA1 revealed by our previous RNA-Seq study was confirmed to have pronounced effect on milk protein traits on a genome level. Two SNPs (rs208607693 and rs210222822) presented phenotypic variances of approximately 7% and may be used as key or potential markers to assist selection for new lines of cows with high protein concentration.
Collapse
Affiliation(s)
- Cong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wentao Cai
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuli Liu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chenghao Zhou
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongwei Yin
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongxiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Li C, Cai W, Liu S, Zhou C, Cao M, Yin H, Sun D, Zhang S, Loor JJ. Association of UDP-galactose-4-epimerase with milk protein concentration in the Chinese Holstein population. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1725-1731. [PMID: 32106650 PMCID: PMC7649079 DOI: 10.5713/ajas.19.0549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/14/2020] [Indexed: 01/20/2023]
Abstract
Objective An initial RNA-Sequencing study revealed that UDP-galactose-4-epimerase (GALE) was one of the most promising candidates for milk protein concentration in Chinese Holstein cattle. This enzyme catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. To further validate the genetic effect of GALE on milk protein traits, genetic variations were identified, and genotypes-phenotypes associations were performed. Methods The entire coding region and the 5′-regulatory region (5′-UTR) of GALE were re-sequenced using pooled DNA of 17 unrelated sires. Association studies for five milk production traits were performed using a mixed linear animal model with a population encompassing 1,027 Chinese Holstein cows. Results A total of three variants in GALE were identified, including two novel variants (g.2114 A>G and g.2037 G>A) in the 5′-UTR and one previously reported variant (g.3836 G>C) in an intron. All three single nucleotide polymorphisms (SNPs) were associated with milk yield (p<0.0001), fat yield (p = 0.0006 to <0.0001), protein yield (p = 0.0232 to <0.0001) and protein percentage (p<0.0001), while no significant associations were detected between the SNPs and fat percentage. A strong linkage disequilibrium (D’ = 0.96 to 1.00) was observed among all three SNPs, and a 5 Kb haplotype block involving three main haplotypes with GAG, AGC, and AGG was formed. The results of haplotype association analyses were consistent with the results of single locus association analysis (p<0.0001). The phenotypic variance ratio above 3.00% was observed for milk protein yield that was explained by SNP-g.3836G >C. Conclusion Overall, our findings provided new insights into the polymorphic variations in bovine GALE gene and their associations with milk protein concentration. The data indicate their potential uses for marker-assisted breeding or genetic selection schemes.
Collapse
Affiliation(s)
- Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wentao Cai
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Shuli Liu
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Chenghao Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Mingyue Cao
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Hongwei Yin
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Dongxiao Sun
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Shengli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Hu Y, Tan C, Lin X, Lai Z, Zhang X, Lu Q, Feng N, Yang D, Weng L. Exonuclease III-Regulated Target Cyclic Amplification-Based Single Nucleotide Polymorphism Detection Using Ultrathin Ternary Chalcogenide Nanosheets. Front Chem 2020; 7:844. [PMID: 31921768 PMCID: PMC6913186 DOI: 10.3389/fchem.2019.00844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022] Open
Abstract
Herein, we report that the ternary chalcogenide nanosheet exhibits different affinity toward oligonucleotides with different lengths and efficiently quenches the fluorescence of dye-labeled DNA probes. Based on these findings, as a proof-of-concept application, the ternary chalcogenide nanosheet is used as a target cyclic amplification biosensor, showing high specificity in discriminating single-base mismatch. This simple strategy is fast and sensitive for the single nucleotide polymorphism detection. Ultralow detection limit of unlabeled target (250 fM) and high discrimination ratio (5%) in the mixture of perfect match (mutant-type) and single-base mismatch (wild-type) target are achieved. This sensing method is extensively compatible for the single nucleotide polymorphism detection in clinical samples, making it a promising tool for the mutation-based clinical diagnostic and genomic research.
Collapse
Affiliation(s)
- Yanling Hu
- School of Electrical and Control Engineering, Nanjing Polytechnic Institute, Nanjing, China.,Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Chaoliang Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xin Lin
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhuangchai Lai
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xiao Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Qipeng Lu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ning Feng
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Dongliang Yang
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China.,School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
| | - Lixing Weng
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| |
Collapse
|
15
|
Polymorphisms of the Chicken Mx Gene Promoter and Association with Chicken Embryos' Susceptibility to Virulent Newcastle Disease Virus Challenge. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1486072. [PMID: 31687378 PMCID: PMC6794983 DOI: 10.1155/2019/1486072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 12/22/2022]
Abstract
Newcastle disease is a devastating viral disease of chicken in low- and middle-income countries where the backyard production system is predominant. Marker-assisted selection of chickens that are resistant to Newcastle disease virus (NDV) is the promising strategy that needs to be explored. The aim of the present study was to investigate polymorphisms of the promoter region of the chicken Mx gene and association with Kuroiler, Sasso, and local Tanzanian chicken embryos' survival variability to virulent NDV infection. Chicken embryos were initially challenged with a minimum lethal dose of virulent NDV suspension and then were followed over time to gather information on their survival variability. Using the survival data, high and less susceptible cohorts were established, and a total of 88 DNA samples from high and less susceptible groups were genotypes by sequencing. Five single-nucleotide polymorphisms (SNPs), which were previously reported, were detected. Interestingly, for the first time, the findings demonstrated the association of the promoter region of chicken myxovirus-resistance (Mx) gene polymorphisms with chicken embryos' susceptibility to the virulent NDV challenge. At the genotypic level, the SNP4 G > A mutation that was located within the IFN-stimulating response element was associated (LR: 6.97, P=0.03) with chicken embryos' susceptibility to the virulent NDV challenge. An allele G frequency was higher in the less susceptible cohort, whereas an allele A frequency was higher in the high susceptible cohort. At the haplotype level, the haplotype group ACGC was associated (OR: 9.8, 95% CI: 1.06–79.43, P=0.042) with the same trait and had a resistant effect. In conclusion, the results have demonstrated the association of chicken Mx gene promoter polymorphisms and chicken embryos' survival variability to the virulent NDV challenge, and the information is useful for breeding programs designed to develop chicken genotypes that are resistant to Newcastle disease virus.
Collapse
|
16
|
Cenini G, Voos W. Mitochondria as Potential Targets in Alzheimer Disease Therapy: An Update. Front Pharmacol 2019; 10:902. [PMID: 31507410 PMCID: PMC6716473 DOI: 10.3389/fphar.2019.00902] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer disease (AD) is a progressive and deleterious neurodegenerative disorder that affects mostly the elderly population. At the moment, no effective treatments are available in the market, making the whole situation a compelling challenge for societies worldwide. Recently, novel mechanisms have been proposed to explain the etiology of this disease leading to the new concept that AD is a multifactor pathology. Among others, the function of mitochondria has been considered as one of the intracellular processes severely compromised in AD since the early stages and likely represents a common feature of many neurodegenerative diseases. Many mitochondrial parameters decline already during the aging, reaching an extensive functional failure concomitant with the onset of neurodegenerative conditions, although the exact timeline of these events is still unclear. Thereby, it is not surprising that mitochondria have been already considered as therapeutic targets in neurodegenerative diseases including AD. Together with an overview of the role of mitochondrial dysfunction, this review examines the pros and cons of the tested therapeutic approaches targeting mitochondria in the context of AD. Since mitochondrial therapies in AD have shown different degrees of progress, it is imperative to perform a detailed analysis of the significance of mitochondrial deterioration in AD and of a pharmacological treatment at this level. This step would be very important for the field, as an effective drug treatment in AD is still missing and new therapeutic concepts are urgently needed.
Collapse
Affiliation(s)
- Giovanna Cenini
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wolfgang Voos
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
17
|
Braz CU, Taylor JF, Bresolin T, Espigolan R, Feitosa FLB, Carvalheiro R, Baldi F, de Albuquerque LG, de Oliveira HN. Sliding window haplotype approaches overcome single SNP analysis limitations in identifying genes for meat tenderness in Nelore cattle. BMC Genet 2019; 20:8. [PMID: 30642245 PMCID: PMC6332854 DOI: 10.1186/s12863-019-0713-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/02/2019] [Indexed: 12/30/2022] Open
Abstract
Background Traditional single nucleotide polymorphism (SNP) genome-wide association analysis (GWAA) can be inefficient because single SNPs provide limited genetic information about genomic regions. On the other hand, using haplotypes in the statistical analysis may increase the extent of linkage disequilibrium (LD) between haplotypes and causal variants and may also potentially capture epistastic interactions between variants within a haplotyped locus, providing an increase in the power and robustness of the association studies. We performed GWAA (413,355 SNP markers) using haplotypes based on variable-sized sliding windows and compared the results to a single-SNP GWAA using Warner-Bratzler shear force measured in the longissimus thorasis muscle of 3161 Nelore bulls to ascertain the optimal window size for identifying the genomic regions that influence meat tenderness. Results The GWAA using single SNPs identified eight variants influencing meat tenderness on BTA 3, 4, 9, 10 and 11. However, thirty-three putative meat tenderness QTL were detected on BTA 1, 3, 4, 5, 8, 9, 10, 11, 15, 17, 18, 24, 25, 26 and 29 using variable-sized sliding haplotype windows. Analyses using sliding window haplotypes of 3, 5, 7, 9 and 11 SNPs identified 57, 61, 42, 39, and 21% of all thirty-three putative QTL regions, respectively; however, the analyses using the 3 and 5 SNP haplotypes, cumulatively detected 88% of the putative QTL. The genes associated with variation in meat tenderness participate in myogenesis, neurogenesis, lipid and fatty acid metabolism and skeletal muscle structure or composition processes. Conclusions GWAA using haplotypes based on variable-sized sliding windows allowed the detection of more QTL than traditional single-SNP GWAA. Analyses using smaller haplotypes (3 and 5 SNPs) detected a higher proportion of the putative QTL. Electronic supplementary material The online version of this article (10.1186/s12863-019-0713-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camila U Braz
- Animal Science Department, São Paulo State University (Unesp), Jaboticabal, SP, 144884-900, Brazil.
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Tiago Bresolin
- Animal Science Department, São Paulo State University (Unesp), Jaboticabal, SP, 144884-900, Brazil
| | - Rafael Espigolan
- Animal Science Department, São Paulo State University (Unesp), Jaboticabal, SP, 144884-900, Brazil
| | - Fabieli L B Feitosa
- Animal Science Department, São Paulo State University (Unesp), Jaboticabal, SP, 144884-900, Brazil
| | - Roberto Carvalheiro
- Animal Science Department, São Paulo State University (Unesp), Jaboticabal, SP, 144884-900, Brazil
| | - Fernando Baldi
- Animal Science Department, São Paulo State University (Unesp), Jaboticabal, SP, 144884-900, Brazil
| | - Lucia G de Albuquerque
- Animal Science Department, São Paulo State University (Unesp), Jaboticabal, SP, 144884-900, Brazil
| | - Henrique N de Oliveira
- Animal Science Department, São Paulo State University (Unesp), Jaboticabal, SP, 144884-900, Brazil.
| |
Collapse
|
18
|
Zhong Z, Wu H, Wu H, Zhao P. Analysis of apolipoprotein E genetic polymorphism in a large ethnic Hakka population in southern China. Genet Mol Biol 2018; 41:742-749. [PMID: 30508003 PMCID: PMC6415608 DOI: 10.1590/1678-4685-gmb-2017-0301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/18/2018] [Indexed: 11/21/2022] Open
Abstract
There is currently no data about the genetic variations of APOE in Hakka population in China. The aim of this study was to analyze the allelic and genotypic frequencies of APOE gene polymorphisms in a large ethnic Hakka population in southern China. The APOE genes of 6,907 subjects were genotyped by the gene chip platform. The allele and genotype frequencies were analyzed. Results showed that the ∊3 allele had the greatest frequency (0.804) followed by ∊2 (0.102), and ∊4 (0.094), while genotype ∊3/∊3 accounted for 65.43% followed by ∊2/∊3 (15.85%), ∊3/∊4 (14.13%), ∊2/∊4 (3.01%), ∊4/∊4 (0.84%), and ∊2/∊2 (0.74%) in all subjects. The frequencies of the ∊4 allele in Chinese populations were lower than Mongolian and Javanese, while the frequencies of the ∊2 allele were higher and ∊4 allele lower than Japanese, Koreans, and Iranian compared with the geographically neighboring countries. The frequencies of ∊2 and ∊4 alleles in Hakka population were similar to the Vietnamese, Chinese-Shanghai, Chinese-Kunming Han and Chinese-Northeast, and French. The frequency of ∊2 in Hakka population was higher than Chinese-Dehong Dai and Chinese-Jinangsu Han. The low frequency of the APOE ∊4 allele may suggest a low genetic risk of Hakka population for cardiovascular disease, Alzheimer's disease, and other diseases.
Collapse
Affiliation(s)
- Zhixiong Zhong
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P.R. China
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P.R. China
| | - Heming Wu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P.R. China
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P.R. China
| | - Hesen Wu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P.R. China
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P.R. China
| | - Pingsen Zhao
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P.R. China
- Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P.R. China
| |
Collapse
|
19
|
Wang CC, Chen CA, Jong YJ, Kou HS. Specific Gene Capture Combined with Restriction-Fragment Release for Directly Fluorescent Genotyping of Single-Nucleotide Polymorphisms in Diagnosing Spinal Muscular Atrophy. Anal Chem 2018; 90:11599-11606. [PMID: 30203652 DOI: 10.1021/acs.analchem.8b02996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, a fast and simple fluorescent genotyping strategy, streptavidin magnetic beads combined with biotin-coupled PCR and restriction-fragment release, was developed for determination of nucleotide variants. This method was further applied for analyzing SMN1 gene in diagnosis of spinal muscular atrophy (SMA). After biotin-coupled PCR, the streptavidin magnetic beads would capture the biotin-labeled SMN genetic fragments, and then the restriction enzyme of HPY188I could only digest and release the fluorescent end of SMN1 genetic fragment into the supernatant. Therefore, the SMN1 gene could be easily fluorescently quantified, and SMN2 would not, for diagnosis of SMA. The copy number of the SMN1 gene could be regressed using the relative fluorescent unit versus the known copy number, and the coefficient of correlation is equal to 0.9617 ( r = 0.9617). In this research, a total of 16 blind DNA samples were analyzed, including 6 wild types, 5 carriers, and 5 SMA patients. Importantly, this fast, simple, and highly efficient method is universal for detection of all nucleotides variants by replacing the specific restriction enzyme. This technique has the potency to be served as a tool for fast and accurate diagnosis of genotypes in clinical medicine.
Collapse
Affiliation(s)
| | - Chung-An Chen
- Institute of Applied Mechanics , National Taiwan University , Taipei , Taiwan
| | | | | |
Collapse
|
20
|
Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genet 2018; 19:491-504. [PMID: 29844615 PMCID: PMC6050137 DOI: 10.1038/s41576-018-0016-z] [Citation(s) in RCA: 490] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advancing from statistical associations of complex traits with genetic markers to understanding the functional genetic variants that influence traits is often a complex process. Fine-mapping can select and prioritize genetic variants for further study, yet the multitude of analytical strategies and study designs makes it challenging to choose an optimal approach. We review the strengths and weaknesses of different fine-mapping approaches, emphasizing the main factors that affect performance. Topics include interpreting results from genome-wide association studies (GWAS), the role of linkage disequilibrium, statistical fine-mapping approaches, trans-ethnic studies, genomic annotation and data integration, and other analysis and design issues.
Collapse
Affiliation(s)
- Daniel J Schaid
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA.
| | - Wenan Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicholas B Larson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
21
|
Liu W, Duan X, Fang X, Shang W, Tong C. Mitochondrial protein import regulates cytosolic protein homeostasis and neuronal integrity. Autophagy 2018; 14:1293-1309. [PMID: 29909722 DOI: 10.1080/15548627.2018.1474991] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neurodegeneration is characterized by protein aggregate deposits and mitochondrial malfunction. Reduction in Tom40 (translocase of outer membrane 40) expression, a key subunit of the translocase of the outer mitochondrial membrane complex, led to accumulation of ubiquitin (Ub)-positive protein aggregates engulfed by Atg8a-positive membranes. Other macroautophagy markers were also abnormally accumulated. Autophagy was induced but the majority of autophagosomes failed to fuse with lysosomes when Tom40 was downregulated. In Tom40 RNAi tissues, autophagosome-like (AL) structures, often not sealed, were 10 times larger than starvation induced autophagosomes. Atg5 downregulation abolished Tom40 RNAi induced AL structure formation, but the Ub-positive aggregates remained, whereas knock down of Syx17, a gene required for autophagosome-lysosome fusion, led to the disappearance of giant AL structures and accumulation of small autophagosomes and phagophores near the Ub-positive aggregates. The protein aggregates contained many mitochondrial preproteins, cytosolic proteins, and proteasome subunits. Proteasome activity and ATP levels were reduced and the ROS levels was increased in Tom40 RNAi tissues. The simultaneous inhibition of proteasome activity, reduction in ATP production, and increase in ROS, but none of these conditions alone, can mimic the imbalanced proteostasis phenotypes observed in Tom40 RNAi cells. Knockdown of ref(2)P or ectopic expression of Pink1 and park greatly reduced aggregate formation in Tom40 RNAi tissues. In nerve tissues, reduction in Tom40 activity leads to aggregate formation and neurodegeneration. Rather than diminishing the neurodegenerative phenotypes, overexpression of Pink1 enhanced them. We proposed that defects in mitochondrial protein import may be the key to linking imbalanced proteostasis and mitochondrial defects. ABBREVIATIONS AL: autophagosome-like; Atg12: Autophagy-related 12; Atg14: Autophagy-related 14; Atg16: Autophagy-related 16; Atg5: Autophagy-related 5; Atg6: Autophagy-related 6; Atg8a: Autophagy-related 8a; Atg9: Autophagy-related 9; ATP: adenosine triphosphate; Cas9: CRISPR associated protein 9; cDNA: complementary DNA; COX4: Cytochrome c oxidase subunit 4; CRISPR: clustered regularly interspaced short palindromic repeats; Cyt-c1: Cytochrome c1; DAPI: 4,6-diamidino-2-phenylindole dihydrochloride; Dcr-2: Dicer-2; FLP: Flippase recombination enzyme; FRT: FLP recombination target; GFP: green fluorescent protein; GO: gene ontology; gRNA: guide RNA; Hsp60: Heat shock protein 60A; HDAC6: Histone deacetylase 6; htt: huntingtin; Idh: Isocitrate dehydrogenase; IFA: immunofluorescence assay; Irp-1A: Iron regulatory protein 1A; kdn: knockdown; Marf: Mitochondrial assembly regulatory factor; MitoGFP: Mitochondrial-GFP; MS: mass spectrometry; MTPAP: mitochondrial poly(A) polymerase; Nmnat: Nicotinamide mononucleotide adenylyltransferase; OE: overexpression; Pink1/PINK1: PTEN-induced putative kinase 1; polyQ: polyglutamine; PRKN: parkin RBR E3 ubiquitin protein ligase; Prosα4: proteasome α4 subunit; Prosβ1: proteasome β1 subunit; Prosβ5: proteasome β5 subunit; Prosβ7: proteasome β7 subunit; ref(2)P: refractory to sigma P; RFP: red fluorescent protein; RNAi: RNA interference; ROS: reactive oxygen species; Rpn11: Regulatory particle non-ATPase 11; Rpt2: Regulatory particle triple-A ATPase 2; scu: scully; sicily: severe impairment of CI with lengthened youth; sesB: stress-sensitive B; Syx17: Syntaxin17; TEM: transmission electron microscopy; ttm50: tiny tim 50; Tom: translocase of the outer membrane; Tom20: translocase of outer membrane 20; Tom40: translocase of outer membrane 40; Tom70: translocase of outer membrane 70; UAS: upstream active sequence; Ub: ubiquitin; VNC: ventral nerve cord; ZFYVE1: zinc finger FYVE-type containing 1.
Collapse
Affiliation(s)
- Wei Liu
- a Life Sciences Institute and Innovation Center for Cell Signaling Network , Zhejiang University , Hangzhou , China
| | - Xiuying Duan
- a Life Sciences Institute and Innovation Center for Cell Signaling Network , Zhejiang University , Hangzhou , China
| | - Xuefei Fang
- a Life Sciences Institute and Innovation Center for Cell Signaling Network , Zhejiang University , Hangzhou , China
| | - Weina Shang
- a Life Sciences Institute and Innovation Center for Cell Signaling Network , Zhejiang University , Hangzhou , China
| | - Chao Tong
- a Life Sciences Institute and Innovation Center for Cell Signaling Network , Zhejiang University , Hangzhou , China
| |
Collapse
|
22
|
Saeed M. Locus and gene-based GWAS meta-analysis identifies new diabetic nephropathy genes. Immunogenetics 2018; 70:347-353. [PMID: 29147756 DOI: 10.1007/s00251-017-1044-0/tables/2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/02/2017] [Indexed: 05/22/2023]
Abstract
Objective Assimilation of SNPs Interacting in Synchrony (OASIS) is a locus-based clustering algorithm recently described that can potentially address false positives and negatives in genome-wide association studies (GWAS) of complex disorders. Diabetic nephropathy (DN) is incompletely understood due to a paucity of genes identified despite several GWAS. OASIS was applied to three DN dbGAP GWAS datasets (4725 subjects; 1.06 million SNPs). OASIS identified 19 DN genes which were verified using single variant replication in a standard association study and gene-based analysis using GATES. CARS and FRMD3 were confirmed as DN genes, and five known diabetes-associated genes, viz. NLRP3, INPPL1, PIK3C2G, NRXN3, and TBC1D4, not previously identified using these datasets were discovered. Furthermore, three additional novel DN genes were found which replicated in two sets of analysis, viz. NTN1, EBF2, and DNAH11. Hence, composite analysis with OASIS, gene-based, and single variant association testing can be universally applied to existing GWAS datasets for the identification of new genes.
Collapse
Affiliation(s)
- Mohammad Saeed
- Department of Genomics, Arkana Laboratories, 10810 Executive Center Drive, Suite 100, Little Rock, AR, 72211, USA.
| |
Collapse
|
23
|
Zhong Z, Wu H, Ye M, Yang Y, Luo W, Wu Y, Wu H, Zhong M, Zhao P. Association of APOE Gene Polymorphisms with Cerebral Infarction in the Chinese Population. Med Sci Monit 2018; 24:1171-1177. [PMID: 29479056 PMCID: PMC5841926 DOI: 10.12659/msm.905979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Apolipoprotein E (ApoE) is a multifunctional protein that plays an important role in lipoprotein metabolism. However, the relationship between APOE gene polymorphisms and cerebral infarction in the Chinese population remains unclear. Therefore, we studied the role of APOE gene polymorphisms in patients with cerebral infarction in a Chinese population. Material/Methods This study involved 906 patients with cerebral infarction and 1,141 individuals without cerebral infarction who served as controls. APOE genotypes were identified in all participants who participated in the study. Factors influencing cerebral infarction were also analyzed. Results Statistically significant variances in the distribution and frequencies of the APOE genotypes in the patients were observed (ɛ2/ɛ3 versus ɛ2/ɛ4 versus ɛ3/ɛ3=22.85% versus 7.62% versus 56.95%) and controls (ɛ2/ɛ3 versus ɛ2/ɛ4 versus ɛ3/ɛ3=17.27% versus 2.72% versus 66.87%; p<0.001). Univariate analysis showed that the APOE ɛ3/ɛ3 genotype [OR, 0.393 (95% CI, 0.237–0.653); p<0.001] and ɛ3/ɛ4 genotype [OR, 0.376 (95% CI 0.221–0.637); p<0.001] played a protective role against cerebral infarction in Chinese men. Conclusions Statistically significant variances in the distribution and frequencies of the APOE genotypes of the patients and controls were observed. The study demonstrated that the APOE ɛ3/ɛ3 and ɛ3/ɛ4 genotypes played a protective role against cerebral infarction in Chinese men, but not women. Additionally, the ɛ2/ɛ4 genotype may be a potential risk factor in men, whereas ɛ3/ɛ4 genotype may play a potential protective role against this disease in women.
Collapse
Affiliation(s)
- Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland).,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland)
| | - Heming Wu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland).,Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland)
| | - Min Ye
- Department of Neurosurgery, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland)
| | - Yuxian Yang
- Department of Neurology, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland)
| | - Weixiong Luo
- Surgical Intensive Care Unit, Meizhou People's Hospital, Huangtang Hospital, Meizhou Hospital Affiliated to Sun Yat-sen University, , China (mainland)
| | - Yanli Wu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland).,Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland)
| | - Hesen Wu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland).,Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland)
| | - Miaocai Zhong
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland).,Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland)
| | - Pingsen Zhao
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland).,Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, Guangdong, China (mainland)
| |
Collapse
|
24
|
Saeed M. Locus and gene-based GWAS meta-analysis identifies new diabetic nephropathy genes. Immunogenetics 2017; 70:347-353. [PMID: 29147756 DOI: 10.1007/s00251-017-1044-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Abstract
Objective Assimilation of SNPs Interacting in Synchrony (OASIS) is a locus-based clustering algorithm recently described that can potentially address false positives and negatives in genome-wide association studies (GWAS) of complex disorders. Diabetic nephropathy (DN) is incompletely understood due to a paucity of genes identified despite several GWAS. OASIS was applied to three DN dbGAP GWAS datasets (4725 subjects; 1.06 million SNPs). OASIS identified 19 DN genes which were verified using single variant replication in a standard association study and gene-based analysis using GATES. CARS and FRMD3 were confirmed as DN genes, and five known diabetes-associated genes, viz. NLRP3, INPPL1, PIK3C2G, NRXN3, and TBC1D4, not previously identified using these datasets were discovered. Furthermore, three additional novel DN genes were found which replicated in two sets of analysis, viz. NTN1, EBF2, and DNAH11. Hence, composite analysis with OASIS, gene-based, and single variant association testing can be universally applied to existing GWAS datasets for the identification of new genes.
Collapse
Affiliation(s)
- Mohammad Saeed
- Department of Genomics, Arkana Laboratories, 10810 Executive Center Drive, Suite 100, Little Rock, AR, 72211, USA.
| |
Collapse
|
25
|
Arpawong TE, Pendleton N, Mekli K, McArdle JJ, Gatz M, Armoskus C, Knowles JA, Prescott CA. Genetic variants specific to aging-related verbal memory: Insights from GWASs in a population-based cohort. PLoS One 2017; 12:e0182448. [PMID: 28800603 PMCID: PMC5553750 DOI: 10.1371/journal.pone.0182448] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/18/2017] [Indexed: 11/30/2022] Open
Abstract
Verbal memory is typically studied using immediate recall (IR) and delayed recall (DR) scores, although DR is dependent on IR capability. Separating these components may be useful for deciphering the genetic variation in age-related memory abilities. This study was conducted to (a) construct individual trajectories in IR and independent aspects of delayed recall, or residualized-DR (rDR), across older adulthood; and (b) identify genetic markers that contribute to four estimated phenotypes: IR and rDR levels and changes after age 60. A cognitively intact sample (N = 20,650 with 125,164 observations) was drawn from the U.S. Health and Retirement Study, a nationally representative study of adults aged 50 and older. Mixed effects regression models were constructed using repeated measures from data collected every two years (1996–2012) to estimate level at age 60 and change in memory post-60 in IR and rDR. Genome-wide association scans (GWAS) were conducted in the genotypic subsample (N = 7,486) using ~1.2 million single nucleotide polymorphisms (SNPs). One SNP (rs2075650) in TOMM40 associated with rDR level at the genome-wide level (p = 5.0x10-08), an effect that replicated in an independent sample from the English Longitudinal Study on Ageing (N = 6,898 with 41,328 observations). Meta-analysis of rDR level confirmed the association (p = 5.0x10-11) and identified two others in TOMM40 (rs71352238 p = 1.0x10-10; rs157582 p = 7.0x10-09), and one in APOE (rs769449 p = 3.1 x10-12). Meta-analysis of IR change identified associations with three of the same SNPs in TOMM40 (rs157582 p = 8.3x10-10; rs71352238 p = 1.9x10-09) and APOE (rs769449 p = 2.2x10-08). Conditional analyses indicate GWAS signals on rDR level were driven by APOE, whereas signals on IR change were driven by TOMM40. Additionally, we found that TOMM40 had effects independent of APOE e4 on both phenotypes. Findings from this first U.S. population-based GWAS study conducted on both age-related immediate and delayed verbal memory merit continued examination in other samples and additional measures of verbal memory.
Collapse
Affiliation(s)
- Thalida E. Arpawong
- Department of Psychology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| | - Neil Pendleton
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Krisztina Mekli
- Cathie Marsh Institute for Social Research, The University of Manchester, Manchester, United Kingdom
| | - John J. McArdle
- Department of Psychology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, United States of America
- Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Margaret Gatz
- Department of Psychology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, United States of America
- Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Chris Armoskus
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - James A. Knowles
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Carol A. Prescott
- Department of Psychology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, United States of America
- Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
26
|
Kou HS, Wang CC. Molecular inversion probes equipped with discontinuous rolling cycle amplification for targeting nucleotide variants: Determining SMN1 and SMN2 genes in diagnosis of spinal muscular atrophy. Anal Chim Acta 2017; 977:65-73. [PMID: 28577599 DOI: 10.1016/j.aca.2017.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/07/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
The novel techniques of molecular inversion probes (MIPs) combined with discontinuous rolling cycle amplification (DRCA) was developed for determination of the multi-nucleotide variants at single base. The different-length MIPs, a padlock-probe based technology, are designed to simultaneously recognize the identical nucleotide variants. After ligation and DRCA, the different-length genetic products representing the certain genotypes could be simply determined by the short-end capillary electrophoresis (CE) method. By using MIPs-DRCA method, the various gene dosages of SMN1 and SMN2 genes in homologous or heterologous subjects were successfully quantified for diagnosis of spinal muscular atrophy (SMA). The length of the MIP for SMN1 gene was 106 bp, and for SMN2 gene was 86 bp. After method optimization, the MIP products of SMN1 and SMN2 were well separated with the resolution of 1.13 ± 0.17 (n = 3) within 10 min. There were total of 56 DNA blind samples analyzed by this strategy, including 38 wild types, 12 carriers and 6 SMA patients, and the data of gene dosages was corresponding to those analyzed by conformation sensitive CE and denatured high performance liquid chromatography (DHPLC) methods. This MIPs-DRCA method which could be applied to simultaneously genotype multi nucleotide variants at single base, such as K-ras gene, was very feasible for determination of genetic diseases in clinical.
Collapse
Affiliation(s)
- Hwang-Shang Kou
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
27
|
Wilkins HM, Koppel SJ, Bothwell R, Mahnken J, Burns JM, Swerdlow RH. Platelet cytochrome oxidase and citrate synthase activities in APOE ε4 carrier and non-carrier Alzheimer's disease patients. Redox Biol 2017; 12:828-832. [PMID: 28448944 PMCID: PMC5406545 DOI: 10.1016/j.redox.2017.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 11/12/2022] Open
Abstract
A degradation product of APOE ε4-encoded apolipoprotein E protein targets mitochondria and inhibits cytochrome oxidase (COX), and autopsy brains from young adult APOE ε4 carriers show reduced COX activity. To further explore relationships between APOE alleles and COX, we measured platelet mitochondria COX activity in AD subjects with (n=8) and without (n=7) an APOE ε4 allele and found the mean COX activity, when normalized to sample total protein, was lower in the APOE ε4 carriers (p<0.05). Normalizing COX activity to citrate synthase (CS) activity eliminated this difference, but notably the mean CS activity was itself lower in the APOE ε4 carriers (p<0.05). COX and CS protein levels did not appear to cause the lower APOE ε4 carrier COX and CS Vmax activities. If confirmed in larger studies, these data could suggest mitochondria at least partly mediate the well-recognized association between APOE alleles and AD risk. Platelet mitochondria from APOE ε4 carrier AD subjects have lower COX activity. Platelet mitochondria from APOE ε4 carrier AD subjects have lower CS activity. CS and COX protein expression were equivalent between groups.
Collapse
Affiliation(s)
- Heather M Wilkins
- Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA; University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Scott J Koppel
- Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA; University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Rebecca Bothwell
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Jonathan Mahnken
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Jeffrey M Burns
- Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA; University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Russell H Swerdlow
- Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA; University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
28
|
Saeed M. Novel linkage disequilibrium clustering algorithm identifies new lupus genes on meta-analysis of GWAS datasets. Immunogenetics 2017; 69:295-302. [PMID: 28246883 PMCID: PMC5400794 DOI: 10.1007/s00251-017-0976-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/13/2017] [Indexed: 11/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex disorder. Genetic association studies of complex disorders suffer from the following three major issues: phenotypic heterogeneity, false positive (type I error), and false negative (type II error) results. Hence, genes with low to moderate effects are missed in standard analyses, especially after statistical corrections. OASIS is a novel linkage disequilibrium clustering algorithm that can potentially address false positives and negatives in genome-wide association studies (GWAS) of complex disorders such as SLE. OASIS was applied to two SLE dbGAP GWAS datasets (6077 subjects; ∼0.75 million single-nucleotide polymorphisms). OASIS identified three known SLE genes viz. IFIH1, TNIP1, and CD44, not previously reported using these GWAS datasets. In addition, 22 novel loci for SLE were identified and the 5 SLE genes previously reported using these datasets were verified. OASIS methodology was validated using single-variant replication and gene-based analysis with GATES. This led to the verification of 60% of OASIS loci. New SLE genes that OASIS identified and were further verified include TNFAIP6, DNAJB3, TTF1, GRIN2B, MON2, LATS2, SNX6, RBFOX1, NCOA3, and CHAF1B. This study presents the OASIS algorithm, software, and the meta-analyses of two publicly available SLE GWAS datasets along with the novel SLE genes. Hence, OASIS is a novel linkage disequilibrium clustering method that can be universally applied to existing GWAS datasets for the identification of new genes.
Collapse
Affiliation(s)
- Mohammad Saeed
- Department of Genomics, Arkana Laboratories, 10810 Executive Center Drive, Suite 100, Little Rock, AR, 72211, USA.
| |
Collapse
|
29
|
Burggren AC, Mahmood Z, Harrison TM, Siddarth P, Miller KJ, Small GW, Merrill DA, Bookheimer SY. Hippocampal thinning linked to longer TOMM40 poly-T variant lengths in the absence of the APOE ε4 variant. Alzheimers Dement 2017; 13:739-748. [PMID: 28183529 DOI: 10.1016/j.jalz.2016.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/06/2016] [Accepted: 12/11/2016] [Indexed: 01/30/2023]
Abstract
INTRODUCTION The translocase of outer mitochondrial membrane 40 (TOMM40), which lies in linkage disequilibrium with apolipoprotein E (APOE), has received attention more recently as a promising gene in Alzheimer's disease (AD) risk. TOMM40 influences AD pathology through mitochondrial neurotoxicity, and the medial temporal lobe (MTL) is the most likely brain region for identifying early manifestations of AD-related morphology changes. METHODS In this study, we examined the effects of TOMM40 using high-resolution magnetic resonance imaging in 65 healthy, older subjects with and without the APOE ε4 AD-risk variant. RESULTS Examining individual subregions within the MTL, we found a significant relationship between increasing poly-T lengths of the TOMM40 variant and thickness of the entorhinal cortex only in subjects who did not carry the APOE ε4 allele. DISCUSSION Our data provide support for TOMM40 variant repeat length as an important contributor to AD-like MTL pathology in the absence of APOE ε4.
Collapse
Affiliation(s)
- Alison C Burggren
- Center for Cognitive Neurosciences, University of California, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Zanjbeel Mahmood
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Theresa M Harrison
- Center for Cognitive Neurosciences, University of California, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA; Interdepartmental Graduate Program in Neuroscience, University of California, Los Angeles, CA, USA
| | - Prabha Siddarth
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Division of Geriatric Psychiatry, Longevity Center, University of California, Los Angeles, CA, USA
| | - Karen J Miller
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Division of Geriatric Psychiatry, Longevity Center, University of California, Los Angeles, CA, USA
| | - Gary W Small
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Division of Geriatric Psychiatry, Longevity Center, University of California, Los Angeles, CA, USA
| | - David A Merrill
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Division of Geriatric Psychiatry, Longevity Center, University of California, Los Angeles, CA, USA
| | - Susan Y Bookheimer
- Center for Cognitive Neurosciences, University of California, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
30
|
N’Diaye A, Haile JK, Cory AT, Clarke FR, Clarke JM, Knox RE, Pozniak CJ. Single Marker and Haplotype-Based Association Analysis of Semolina and Pasta Colour in Elite Durum Wheat Breeding Lines Using a High-Density Consensus Map. PLoS One 2017; 12:e0170941. [PMID: 28135299 PMCID: PMC5279799 DOI: 10.1371/journal.pone.0170941] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/12/2017] [Indexed: 12/30/2022] Open
Abstract
Association mapping is usually performed by testing the correlation between a single marker and phenotypes. However, because patterns of variation within genomes are inherited as blocks, clustering markers into haplotypes for genome-wide scans could be a worthwhile approach to improve statistical power to detect associations. The availability of high-density molecular data allows the possibility to assess the potential of both approaches to identify marker-trait associations in durum wheat. In the present study, we used single marker- and haplotype-based approaches to identify loci associated with semolina and pasta colour in durum wheat, the main objective being to evaluate the potential benefits of haplotype-based analysis for identifying quantitative trait loci. One hundred sixty-nine durum lines were genotyped using the Illumina 90K Infinium iSelect assay, and 12,234 polymorphic single nucleotide polymorphism (SNP) markers were generated and used to assess the population structure and the linkage disequilibrium (LD) patterns. A total of 8,581 SNPs previously localized to a high-density consensus map were clustered into 406 haplotype blocks based on the average LD distance of 5.3 cM. Combining multiple SNPs into haplotype blocks increased the average polymorphism information content (PIC) from 0.27 per SNP to 0.50 per haplotype. The haplotype-based analysis identified 12 loci associated with grain pigment colour traits, including the five loci identified by the single marker-based analysis. Furthermore, the haplotype-based analysis resulted in an increase of the phenotypic variance explained (50.4% on average) and the allelic effect (33.7% on average) when compared to single marker analysis. The presence of multiple allelic combinations within each haplotype locus offers potential for screening the most favorable haplotype series and may facilitate marker-assisted selection of grain pigment colour in durum wheat. These results suggest a benefit of haplotype-based analysis over single marker analysis to detect loci associated with colour traits in durum wheat.
Collapse
Affiliation(s)
- Amidou N’Diaye
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jemanesh K. Haile
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Aron T. Cory
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Fran R. Clarke
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - John M. Clarke
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ron E. Knox
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Curtis J. Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
31
|
Naj AC, Schellenberg GD. Genomic variants, genes, and pathways of Alzheimer's disease: An overview. Am J Med Genet B Neuropsychiatr Genet 2017; 174:5-26. [PMID: 27943641 PMCID: PMC6179157 DOI: 10.1002/ajmg.b.32499] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) (MIM: 104300) is a highly heritable disease with great complexity in its genetic contributors, and represents the most common form of dementia. With the gradual aging of the world's population, leading to increased prevalence of AD, and the substantial cost of care for those afflicted, identifying the genetic causes of disease represents a critical effort in identifying therapeutic targets. Here we provide a comprehensive review of genomic studies of AD, from the earliest linkage studies identifying monogenic contributors to early-onset forms of AD to the genome-wide and rare variant association studies of recent years that are being used to characterize the mosaic of genetic contributors to late-onset AD (LOAD), and which have identified approximately ∼20 genes with common variants contributing to LOAD risk. In addition, we explore studies employing alternative approaches to identify genetic contributors to AD, including studies of AD-related phenotypes and multi-variant association studies such as pathway analyses. Finally, we introduce studies of next-generation sequencing, which have recently helped identify multiple low-frequency and rare variant contributors to AD, and discuss on-going efforts with next-generation sequencing studies to develop statistically well- powered and comprehensive genomic studies of AD. Through this review, we help uncover the many insights the genetics of AD have provided into the pathways and pathophysiology of AD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adam C Naj
- Department of Biostatistics and Epidemiology/Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Toivonen S, Romppanen EL, Hiltunen M, Helisalmi S, Keski-Nisula L, Punnonen K, Heinonen S. Low-Activity Haplotype of the Microsomal Epoxide Hydrolase Gene Is Protective Against Placental Abruption. ACTA ACUST UNITED AC 2016; 11:540-4. [PMID: 15582499 DOI: 10.1016/j.jsgi.2004.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE We wanted to determine whether genetic variability in the gene encoding microsomal epoxide hydrolase (EPHX) contributes to individual differences in susceptibility to the occurrence of placental abruption. METHODS The study involved 117 women with placental abruption and 115 healthy control pregnant women who were genotyped for two single nucleotide polymorphisms (SNPs), T-->C (Tyr113His) in exon 3 and A-->G (His139Arg) in exon 4, in the EPHX gene. Chi-square analysis was used to assess genotype and allele frequency differences between the women with placental abruption and the control group. In addition, single-point analysis was expanded to pair of loci haplotype analysis to examine the estimated haplotype frequencies of the two SNPs, of unknown phase, among the women with placental abruption and the control group. Estimated haplotype frequencies were assessed using the maximum-likelihood method, employing an expectation-maximization algorithm. RESULTS Single-point allele and genotype distributions in exons 3 and 4 of the EPHX gene were not statistically different between the groups. However, in the haplotype estimation analysis we observed a significantly decreased frequency of haplotype C-A (His113-His139) among the placental abruption group compared with the control group (P = .007). The odds ratio for placental abruption associated with the low-activity haplotype C-A (His113-His139) was 0.552 (95% confidence interval, 0.358 to 0.851). CONCLUSIONS The use of two intragenic SNPs jointly in haplotype analysis of association demonstrated that the genetically determined low-activity haplotype C-A (His113-His139) was significantly less frequent in women with placental abruption.
Collapse
Affiliation(s)
- Sari Toivonen
- Department of Obstetrics and Gynaecology, Kuopio University and University Hospital, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
33
|
Huang H, Zhao J, Xu B, Ma X, Dai Q, Li T, Xue F, Chen B. The TOMM40 gene rs2075650 polymorphism contributes to Alzheimer's disease in Caucasian, and Asian populations. Neurosci Lett 2016; 628:142-6. [PMID: 27328316 DOI: 10.1016/j.neulet.2016.05.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
Abstract
Largescale genome-wide association studies (GWAS) showed that the TOMM40 rs2075650 polymorphism is significantly associated with Alzheimer's disease (AD) in Caucasian ancestry and Asian population. Here, we evaluated this association with large-scale samples from selected 12 studies (N=28,515; 10,358 cases and 18,157 controls) through the PubMed, AlzGene, and Google Scholar. We identified a significant association between rs2075650 and AD with P=0.000, OR=4.178 and 95% CI 1.891-9.228. In subgroup analysis, we identified significant association between rs2075650 polymorphism and AD in both Asian and Caucasians but not mixed populations. Collectively, our analysis shows TOMM40 rs2075650 polymorphism is associated with AD susceptibility in Asian, Caucasian, and mixed populations. We believe that our analysis will be helpful for future genetic researches on AD.
Collapse
Affiliation(s)
- Hao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China.
| | - Jun Zhao
- National Research Institute for Family Planning, Beijing, China.
| | - Biyun Xu
- Drum Tower Hospital, Medical School of Nanjing University, China.
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China.
| | - Qiaoyun Dai
- National Research Institute for Family Planning, Beijing, China.
| | - Taishun Li
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China.
| | - Fangjing Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China.
| | - Bingwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
34
|
Roses A, Sundseth S, Saunders A, Gottschalk W, Burns D, Lutz M. Understanding the genetics of APOE and TOMM40 and role of mitochondrial structure and function in clinical pharmacology of Alzheimer's disease. Alzheimers Dement 2016; 12:687-94. [PMID: 27154058 DOI: 10.1016/j.jalz.2016.03.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/05/2016] [Indexed: 01/08/2023]
Abstract
The methodology of Genome-Wide Association Screening (GWAS) has been applied for more than a decade. Translation to clinical utility has been limited, especially in Alzheimer's Disease (AD). It has become standard practice in the analyses of more than two dozen AD GWAS studies to exclude the apolipoprotein E (APOE) region because of its extraordinary statistical support, unique thus far in complex human diseases. New genes associated with AD are proposed frequently based on SNPs associated with odds ratio (OR) < 1.2. Most of these SNPs are not located within the associated gene exons or introns but are located variable distances away. Often pathologic hypotheses for these genes are presented, with little or no experimental support. By eliminating the analyses of the APOE-TOMM40 linkage disequilibrium region, the relationship and data of several genes that are co-located in that LD region have been largely ignored. Early negative interpretations limited the interest of understanding the genetic data derived from GWAS, particularly regarding the TOMM40 gene. This commentary describes the history and problem(s) in interpretation of the genetic interrogation of the "APOE" region and provides insight into a metabolic mitochondrial basis for the etiology of AD using both APOE and TOMM40 genetics.
Collapse
Affiliation(s)
- Allen Roses
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA; Semillon Pharmaceuticals, Inc., Chapel Hill, NC, USA.
| | - Scott Sundseth
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA; Semillon Pharmaceuticals, Inc., Chapel Hill, NC, USA
| | - Ann Saunders
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA; Semillon Pharmaceuticals, Inc., Chapel Hill, NC, USA
| | - William Gottschalk
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA; Semillon Pharmaceuticals, Inc., Chapel Hill, NC, USA
| | - Dan Burns
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA; Semillon Pharmaceuticals, Inc., Chapel Hill, NC, USA
| | - Michael Lutz
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA; Semillon Pharmaceuticals, Inc., Chapel Hill, NC, USA
| |
Collapse
|
35
|
Mohammadpour Lashkari F, Mohseni Meybodi A, Mansouri Z, Kalantari H, Farahmand K, Vaziri H. The association between (8390G>A) single nucleotide polymorphism in APOE gene with Alzheimer’s and Parkinson disease. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2016. [DOI: 10.1016/j.ejmhg.2015.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
MyD88 Polymorphisms and Association with Susceptibility to Salmonella Pullorum. BIOMED RESEARCH INTERNATIONAL 2015; 2015:692973. [PMID: 26881204 PMCID: PMC4735975 DOI: 10.1155/2015/692973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/09/2015] [Accepted: 12/20/2015] [Indexed: 02/02/2023]
Abstract
Myeloid differentiation primary response gene 88 (MYD88), a universal adapter protein, plays an important role in activating the nuclear factor-κB (NF-κB) and regulating the expression of proinflammatory genes like tumor necrosis factor (TNF) and interleukin-1 (IL-1), which were highly involved in Salmonella Pullorum infection. To detect the relationship between polymorphisms of the MyD88 gene and Salmonella Pullorum disease, we screened the coding region (CDS) of the MYD88 gene by DNA pool construction and sequencing based on case-control study. Eight single nucleotide polymorphisms (SNPs) in the sequenced fragment (5 exons), 7 known loci and one novel mutation named G4810372T (SNP8), were found in the fifth exon. In addition, we found 7 nonsynonymous substitutions. The allele frequency of only one SNP, g.4810191C > T (SNP1), was significantly different (P < 0.05) between case and control groups. The genotype frequencies of SNP1 (g.4810191C > T) and SNP3 (g.4810257G > T) were of significant difference between the case and the control groups (P < 0.05). Collectively, SNPs of the MyD88 gene were significantly associated with susceptibility to Salmonella Pullorum infection, which can be used as a disease-resistant marker in chicken. These results provided a theoretical basis for future research on chicken breeding by marker-assisted selection.
Collapse
|
37
|
Park SM, Kim HJ, Jeong BH. WITHDRAWN: Apolipoprotein E gene polymorphism may increase susceptibility to sporadic Creutzfeldt-Jakob disease in a Korean population. Neurobiol Aging 2015:S0197-4580(15)00592-8. [PMID: 26724961 DOI: 10.1016/j.neurobiolaging.2015.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/03/2015] [Accepted: 11/26/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Seon-Mi Park
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Hae-Jung Kim
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk, Republic of Korea; Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| |
Collapse
|
38
|
Roses AD. Polyallelic structural variants can provide accurate, highly informative genetic markers focused on diagnosis and therapeutic targets: Accuracy vs. Precision. Clin Pharmacol Ther 2015; 99:169-71. [PMID: 26517180 PMCID: PMC4737274 DOI: 10.1002/cpt.288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Structural variants (SVs) include all insertions, deletions, and rearrangements in the genome, with several common types of nucleotide repeats including single sequence repeats, short tandem repeats, and insertion‐deletion length variants. Polyallelic SVs provide highly informative markers for association studies with well‐phenotyped cohorts. SVs can influence gene regulation by affecting epigenetics, transcription, splicing, and/or translation.1 Accurate assays of polyallelic SV loci are required to define the range and allele frequency of variable length alleles.2
Collapse
Affiliation(s)
- AD Roses
- Joseph & Kathleen Bryan Alzheimer's Disease Research Center, Department of NeurologyDuke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
39
|
Yang SH, Bi XJ, Xie Y, Li C, Zhang SL, Zhang Q, Sun DX. Validation of PDE9A Gene Identified in GWAS Showing Strong Association with Milk Production Traits in Chinese Holstein. Int J Mol Sci 2015; 16:26530-42. [PMID: 26556348 PMCID: PMC4661835 DOI: 10.3390/ijms161125976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/24/2015] [Accepted: 08/18/2015] [Indexed: 12/24/2022] Open
Abstract
Phosphodiesterase9A (PDE9A) is a cyclic guanosine monophosphate (cGMP)-specific enzyme widely expressed among the tissues, which is important in activating cGMP-dependent signaling pathways. In our previous genome-wide association study, a single nucleotide polymorphism (SNP) (BTA-55340-no-rs(b)) located in the intron 14 of PDE9A, was found to be significantly associated with protein yield. In addition, we found that PDE9A was highly expressed in mammary gland by analyzing its mRNA expression in different tissues. The objectives of this study were to identify genetic polymorphisms of PDE9A and to determine the effects of these variants on milk production traits in dairy cattle. DNA sequencing identified 11 single nucleotide polymorphisms (SNPs) and six SNPs in 5' regulatory region were genotyped to test for the subsequent association analyses. After Bonferroni correction for multiple testing, all these identified SNPs were statistically significant for one or more milk production traits (p < 0.0001~0.0077). Interestingly, haplotype-based association analysis revealed similar effects on milk production traits (p < 0.01). In follow-up RNA expression analyses, two SNPs (c.-1376 G>A, c.-724 A>G) were involved in the regulation of gene expression. Consequently, our findings provide confirmatory evidences for associations of PDE9A variants with milk production traits and these identified SNPs may serve as genetic markers to accelerate Chinese Holstein breeding program.
Collapse
Affiliation(s)
- Shao-Hua Yang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Xiao-Jun Bi
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Yan Xie
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Cong Li
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Sheng-Li Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Qin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Dong-Xiao Sun
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
40
|
Chaudhary R, Singh B, Kumar M, Gakhar SK, Saini AK, Parmar VS, Chhillar AK. Role of single nucleotide polymorphisms in pharmacogenomics and their association with human diseases. Drug Metab Rev 2015; 47:281-90. [PMID: 25996670 DOI: 10.3109/03602532.2015.1047027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Global statistical data shed light on an alarming trend that every year thousands of people die due to adverse drug reactions as each individual responds in a different way to the same drug. Pharmacogenomics has come up as a promising field in drug development and clinical medication in the past few decades. It has emerged as a ray of hope in preventing patients from developing potentially fatal complications due to adverse drug reactions. Pharmacogenomics also minimizes the exposure to drugs that are less/non-effective and sometimes even found toxic for patients. It is well reported that drugs elicit different responses in different individuals due to variations in the nucleotide sequences of genes encoding for biologically important molecules (drug-metabolizing enzymes, drug targets and drug transporters). Single nucleotide polymorphisms (SNPs), the most common type of polymorphism found in the human genome is believed to be the main reason behind 90% of all types of genetic variations among the individuals. Therefore, pharmacogenomics may be helpful in answering the question as to how inherited differences in a single gene have a profound effect on the mobilization and biological action of a drug. In the present review, we have discussed clinically relevant examples of SNP in associated diseases that can be utilized as markers for "better management of complex diseases" and attempted to correlate the drug response with genetic variations. Attention is also given towards the therapeutic consequences of inherited differences at the chromosomal level and how associated drug disposition and/or drug targets differ in various diseases as well as among the individuals.
Collapse
Affiliation(s)
| | | | | | - Surendra K Gakhar
- b Centre for Medical Biotechnology, Maharshi Dayanand University , Rohtak , Haryana , India
| | - Adesh K Saini
- c Department of Biotechnology , Shoolini University of Biotechnology and Management Sciences , Solan , Himachal Pradesh , India , and
| | - Virinder S Parmar
- d Bioorganic Laboratory, Department of Chemistry , University of Delhi , Delhi , India
| | | |
Collapse
|
41
|
Single-nucleotide polymorphisms in CD8A and their associations with T lymphocyte subpopulations in pig. Mol Genet Genomics 2015; 290:1447-56. [PMID: 25690570 DOI: 10.1007/s00438-015-1008-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
Abstract
Findings from previous studies suggested that the cluster of the differentiation 8 alpha (CD8A) gene plays a prominent role in human T lymphocyte subpopulations. However, the evidence from pig population is still rare. To determine whether the important role of the CD8A gene is conserved in pig, a candidate gene analysis was performed herein through genotype-phenotype associations. Five single-nucleotide polymorphisms (SNPs) locating in the regulatory region of porcine CD8A gene were detected and tested for association analysis with seven T lymphocyte subpopulations (proportion of CD4(-)CD8(-), CD4(+)CD8(+), CD4(+)CD8(-), CD4(-)CD8(+), CD4(+), CD8(+), and the ratio of CD4(+) to CD8(+) T cells in peripheral blood) in 382 Large White piglets. After Bonferroni correction for multiple testing, four SNPs were significantly associated with some or all of the seven T lymphocyte subpopulations. Analyses of pairwise D' measures of linkage disequilibrium between all SNPs were also explored. Two haplotype blocks was inferred and the association study on haplotype level revealed similar effects on T lymphocyte subpopulations. In addition, the tissue-specific RNA expression pattern and electrophoretic mobility shift assay offered further explanation of the link between the CD8A gene with porcine T lymphocyte subpopulations. The findings presented here provide strong evidence for associations of CD8A variants with T lymphocyte subpopulations and may be applied in porcine breeding programs.
Collapse
|
42
|
Saunders G, Fu G, Stevens JR. A graphical weighted power improving multiplicity correction approach for SNP selections. Curr Genomics 2014; 15:380-9. [PMID: 25435800 PMCID: PMC4245697 DOI: 10.2174/138920291505141106103959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/08/2014] [Accepted: 09/08/2014] [Indexed: 11/22/2022] Open
Abstract
Controlling for the multiplicity effect is an essential part of determining statistical significance in large-scale single-locus association genome scans on Single Nucleotide Polymorphisms (SNPs). Bonferroni adjustment is a commonly used approach due to its simplicity, but is conservative and has low power for large-scale tests. The permutation test, which is a powerful and popular tool, is computationally expensive and may mislead in the presence of family structure. We propose a computationally efficient and powerful multiple testing correction approach for Linkage Disequilibrium (LD) based Quantitative Trait Loci (QTL) mapping on the basis of graphical weighted-Bonferroni methods. The proposed multiplicity adjustment method synthesizes weighted Bonferroni-based closed testing procedures into a powerful and versatile graphical approach. By tailoring different priorities for the two hypothesis tests involved in LD based QTL mapping, we are able to increase power and maintain computational efficiency and conceptual simplicity. The proposed approach enables strong control of the familywise error rate (FWER). The performance of the proposed approach as compared to the standard Bonferroni correction is illustrated by simulation and real data. We observe a consistent and moderate increase in power under all simulated circumstances, among different sample sizes, heritabilities, and number of SNPs. We also applied the proposed method to a real outbred mouse HDL cholesterol QTL mapping project where we detected the significant QTLs that were highlighted in the literature, while still ensuring strong control of the FWER.
Collapse
Affiliation(s)
- Garrett Saunders
- Department of Mathematics and Statistics, Utah State University, Logan, UT 84322, USA
| | - Guifang Fu
- Department of Mathematics and Statistics, Utah State University, Logan, UT 84322, USA
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
43
|
Associations between variants of the HAL gene and milk production traits in Chinese Holstein cows. BMC Genet 2014; 15:125. [PMID: 25421803 PMCID: PMC4253992 DOI: 10.1186/s12863-014-0125-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/05/2014] [Indexed: 11/17/2022] Open
Abstract
Background The histidine ammonia-lyse gene (HAL) encodes the histidine ammonia-lyase, which catalyzes the first reaction of histidine catabolism. In our previous genome-wide association study in Chinese Holstein cows to identify genetic variants affecting milk production traits, a SNP (rs41647754) located 357 bp upstream of HAL, was found to be significantly associated with milk yield and milk protein yield. In addition, the HAL gene resides within the reported QTLs for milk production traits. The aims of this study were to identify genetic variants in HAL and to test the association between these variants and milk production traits. Results Fifteen SNPs were identified within the regions under study of the HAL gene, including three coding mutations, seven intronic mutations, one promoter region mutation, and four 3′UTR mutations. Nine of these identified SNPs were chosen for subsequent genotyping and association analyses. Our results showed that five SNP markers (ss974768522, ss974768525, ss974768531, ss974768533 and ss974768534) were significantly associated with one or more milk production traits. Haplotype analysis showed that two haplotype blocks were significantly associated with milk yield and milk protein yield, providing additional support for the association between HAL variants and milk production traits in dairy cows (P < 0.05). Conclusion Our study shows evidence of significant associations between SNPs within the HAL gene and milk production traits in Chinese Holstein cows, indicating the potential role of HAL variants in these traits. These identified SNPs may serve as genetic markers used in genomic selection schemes to accelerate the genetic gains of milk production traits in dairy cattle. Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0125-4) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Xu Y, Han S, Huang X, Zhuo S, Dai H, Wang K, Li Z, Liu J. An effective method based on real time fluorescence quenching for single nucleotide polymorphism detection. J Biotechnol 2014; 186:156-61. [PMID: 24998766 DOI: 10.1016/j.jbiotec.2014.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/12/2014] [Accepted: 06/25/2014] [Indexed: 12/11/2022]
Abstract
In the Human Genome Project, the most common type of these variations is single nucleotide polymorphisms (SNPs). A large number of different SNP typing technologies have been developed in recent years. Enhancement and innovation for genotyping technologies are currently in progress. We described a rapid and effective method based on real time fluorescence quenching for SNP detection. The new method, Quenching-PCR, offering a single base extension method fully integrated with PCR which used a probe with quencher to eliminate fluorophor of the terminal base according to dideoxy sequencing method. In this platform, dideoxy sequencing reaction and obtaining values of real-time fluorescence occur simultaneously. The assay was validated by 106 DNA templates comparing with Sanger's sequencing and TaqMan assay. Compared with the results of DNA sequencing, the results of Quenching-PCR showed a high concordance rate of 93.40%, while the results of TaqMan platform showed a concordance rate of 92.45%, indicating that Quenching PCR and TaqMan assay were similar in accuracy. Therefore, Quenching PCR will be easily applicable and greatly accelerate the role of SNP detection in physiological processes of human health.
Collapse
Affiliation(s)
- Yichun Xu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shuai Han
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xinhua Huang
- Shanghai Aoyin Biotechnology Research and Development Limited Corporation, Shanghai 201203, China
| | - Shichao Zhuo
- Department of Pathology, Central Hospital of Xuzhou, Xuzhou 221009, China
| | - Huiqing Dai
- Shanghai Aoyin Biotechnology Research and Development Limited Corporation, Shanghai 201203, China
| | - Ke Wang
- Laboratory of Integrative Medicine Surgery, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China.
| | - Zhou Li
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
45
|
Genre F, López-Mejías R, García-Bermúdez M, Castañeda S, González-Juanatey C, Llorca J, Corrales A, Ubilla B, Miranda-Filloy JA, Pina T, Gómez-Vaquero C, Rodríguez-Rodríguez L, Fernández-Gutiérrez B, Balsa A, Pascual-Salcedo D, López-Longo FJ, Carreira P, Blanco R, González-Álvaro I, Martín J, González-Gay MA. Osteoprotegerin CGA haplotype protection against cerebrovascular complications in anti-CCP negative patients with rheumatoid arthritis. PLoS One 2014; 9:e106823. [PMID: 25184828 PMCID: PMC4153690 DOI: 10.1371/journal.pone.0106823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/01/2014] [Indexed: 12/03/2022] Open
Abstract
Introduction Rheumatoid arthritis is an inflammatory disease with high incidence of cardiovascular disease due to accelerated atherosclerosis. Osteoprotegerin (OPG) has been associated with increased risk of atherosclerotic disease in the general population. Several polymorphisms in the OPG gene with functional effects on cardiovascular disease in non-rheumatic individuals have been described. Therefore, we aimed to analyze the effect of three of these functional OPG polymorphisms on the risk of cardiovascular disease in a large and well-characterized cohort of Spanish patients with rheumatoid arthritis. Methods Three OPG gene variants (rs3134063, rs2073618 and rs3134069) were genotyped by TaqMan assays in 2027 Spanish patients with rheumatoid arthritis. Anti-cyclic citrullinated peptide (anti-CCP) antibody testing was positive in 997 of 1714 tested. Also, 18.3% of the whole series had experienced cardiovascular events, including 5.4% with cerebrovascular accidents. The relationship between OPG variants and cardiovascular events was assessed using Cox regression. Results No association between OPG gene variants and cardiovascular disease was observed in the whole group of rheumatoid arthritis patients or in anti-CCP positive patients. Nevertheless, a protective effect of CGA haplotype on the risk of cardiovascular disease in general, and specifically in the risk of cerebrovascular complications after adjusting for sex, age at disease diagnosis and traditional cardiovascular risk factors was disclosed in anti-CCP negative patients (HR = 0.54; 95%CI: 0.31–0.95; p = 0.032 and HR = 0.17; 95%CI: 0.04–0.78; p = 0.022, respectively). Conclusion Our results indicate a protective effect of the OPG CGA haplotype on cardiovascular risk, mainly due to a protective effect against cerebrovascular events in anti-CCP negative rheumatoid arthritis patients.
Collapse
Affiliation(s)
- Fernanda Genre
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Division, IDIVAL, Santander, Spain
| | - Raquel López-Mejías
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Division, IDIVAL, Santander, Spain
| | | | - Santos Castañeda
- Department of Rheumatology, Hospital Universitario la Princesa, IIS-Princesa, Madrid, Spain
| | | | - Javier Llorca
- Department of Epidemiology and Computational Biology, School of Medicine, University of Cantabria, and CIBER Epidemiología y Salud Pública (CIBERESP), IDIVAL, Santander, Spain
| | - Alfonso Corrales
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Division, IDIVAL, Santander, Spain
| | - Begoña Ubilla
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Division, IDIVAL, Santander, Spain
| | | | - Trinitario Pina
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Division, IDIVAL, Santander, Spain
| | | | | | | | - Alejandro Balsa
- Department of Rheumatology, Hospital Universitario La Paz, Madrid, Spain
| | | | | | - Patricia Carreira
- Department of Rheumatology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ricardo Blanco
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Division, IDIVAL, Santander, Spain
| | | | - Javier Martín
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Granada, Spain
| | - Miguel A González-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Division, IDIVAL, Santander, Spain
| |
Collapse
|
46
|
Tsai CT, Chang SN, Chang SH, Lee JK, Lin LY, Wu CK, Yu CC, Wang YC, Tseng CD, Lai LP, Hwang JJ, Chiang FT, Lin JL. Renin–angiotensin system gene polymorphisms predict the risk of stroke in patients with atrial fibrillation: A 10-year prospective follow-up study. Heart Rhythm 2014; 11:1384-90. [DOI: 10.1016/j.hrthm.2014.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Indexed: 10/25/2022]
|
47
|
Afruza R, Suzuki F, Nabi A. PHARMACOGENETICS AND PHARMACOGENOMICS IN PERSONALIZED MEDICINE: ROLE OF GENE POLYMORPHISM IN DRUG RESPONSE. BIOTECHNOLOGY AND BIOINFORMATICS 2014:35-71. [DOI: 10.1201/b17104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
|
48
|
Fu G, Saunders G, Stevens J. Holm multiple correction for large-scale gene-shape association mapping. BMC Genet 2014; 15 Suppl 1:S5. [PMID: 25079623 PMCID: PMC4118635 DOI: 10.1186/1471-2156-15-s1-s5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Linkage Disequilibrium (LD) is a powerful approach for the identification and characterization of morphological shape, which usually involves multiple genetic markers. However, multiple testing corrections substantially reduce the power of the associated tests. In addition, the principle component analysis (PCA), used to quantify the shape variations into several principal phenotypes, further increases the number of tests. As a result, a powerful multiple testing correction for simultaneous large-scale gene-shape association tests is an essential part of determining statistical significance. Bonferroni adjustments and permutation tests are the most popular approaches to correcting for multiple tests within LD based Quantitative Trait Loci (QTL) models. However, permutations are extremely computationally expensive and may mislead in the presence of family structure. The Bonferroni correction, though simple and fast, is conservative and has low power for large-scale testing. Results We propose a new multiple testing approach, constructed by combining an Intersection Union Test (IUT) with the Holm correction, which strongly controls the family-wise error rate (FWER) without any additional assumptions on the joint distribution of the test statistics or dependence structure of the markers. The power improvement for the Holm correction, as compared to the standard Bonferroni correction, is examined through a simulation study. A consistent and moderate increase in power is found under the majority of simulated circumstances, including various sample sizes, Heritabilities, and numbers of markers. The power gains are further demonstrated on real leaf shape data from a natural population of poplar, Populus szechuanica var tietica, where more significant QTL associated with morphological shape are detected than under the previously applied Bonferroni adjustment. Conclusion The Holm correction is a valid and powerful method for assessing gene-shape association involving multiple markers, which not only controls the FWER in the strong sense but also improves statistical power.
Collapse
|
49
|
Universal fluorescent tri-probe ligation equipped with capillary electrophoresis for targeting SMN1 and SMN2 genes in diagnosis of spinal muscular atrophy. Anal Chim Acta 2014; 833:40-7. [PMID: 24909772 DOI: 10.1016/j.aca.2014.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 01/02/2023]
Abstract
This is the first ligase chain reaction used for diagnosis of spinal muscular atrophy (SMA). Universal fluorescent tri-probe ligation (UFTPL), a novel strategy used for distinguishing the multi-nucleotide alternations at single base, is developed to quantitatively analyze the SMN1/SMN2 genes in diagnosis of SMA. Ligase chain reaction was performed by adding three probes including universal fluorescent probe, connecting probe and recognizing probe to differentiate single nucleotide polymorphisms in UFTPL. Our approach was based on the two UFTPL products of survival motor neuron 1 (SMN1) and SMN2 genes (the difference of 9 mer) and analyzed by capillary electrophoresis (CE). We successfully determined various gene dosages of SMN1 and SMN2 genes in homologous or heterologous subjects. By using the UFTPL-CE method, the SMN1 and SMN2 genes were fully resolved with the resolution of 2.16±0.37 (n=3). The r values of SMN1 and SMN2 regression curves over a range of 1-4 copies were above 0.9944. Of the 48 DNA samples, the data of gene dosages were corresponding to that analyzed by conformation sensitive CE and denatured high-performance liquid chromatography (DHPLC). This technique was found to be a good methodology for quantification or determination of the relative genes having multi-nucleotide variants at single base.
Collapse
|
50
|
Abstract
Human prion diseases are fatal neurodegenerative disorders that are characterized by spongiform changes, astrogliosis, and the accumulation of an abnormal prion protein (PrP(Sc)). Approximately 10%-15% of human prion diseases are familial variants that are caused by pathogenic mutations in the prion protein gene (PRNP). Point mutations or the insertions of one or more copies of a 24 bp repeat are associated with familial human prion diseases including familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome, and fatal familial insomnia. These mutations vary significantly in frequency between countries. Here, we compare the frequency of PRNP mutations between European countries and East Asians. Associations between single nucleotide polymorphisms (SNPs) of several candidate genes including PRNP and CJD have been reported. The SNP of PRNP at codon 129 has been shown to be associated with sporadic, iatrogenic, and variant CJD. The SNPs of several genes other than PRNP have been showed contradictory results. Case-control studies and genome-wide association studies have also been performed to identify candidate genes correlated with variant and/or sporadic CJD. This review provides a general overview of the genetic mutations and polymorphisms that have been analyzed in association with human prion diseases to date.
Collapse
Affiliation(s)
- Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Chonbuk National University, Jeonju, Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Korea
| |
Collapse
|