1
|
Guest JD, Santamaria AJ, Solano JP, de Rivero Vaccari JP, Dietrich WD, Pearse DD, Khan A, Levi AD. Challenges in advancing Schwann cell transplantation for spinal cord injury repair. Cytotherapy 2024:S1465-3249(24)00827-2. [PMID: 39387736 DOI: 10.1016/j.jcyt.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND AIMS In this article we aimed to provide an expert synthesis of the current status of Schwann cell (SC)therapeutics and potential steps to increase their clinical utility. METHODS We provide an expert synthesis based on preclinical, clinical and manufacturing experience. RESULTS Schwann cells (SCs) are essential for peripheral nerve regeneration and are of interest in supporting axonal repair after spinal cord injury (SCI). SCs can be isolated and cultivated in tissue culture from adult nerve biopsies or generated from precursors and neural progenitors using specific differentiation protocols leading to expanded quantities. In culture, they undergo dedifferentiation to a state similar to "repair" SCs. The known repertoire of SC functions is increasing beyond axon maintenance, myelination, and axonal regeneration to include immunologic regulation and the release of potentially therapeutic extracellular vesicles. Recently, autologous human SC cultures purified under cGMP conditions have been tested in both nerve repair and subacute and chronic SCI clinical trials. Although the effects of SCs to support nerve regeneration are indisputable, their efficacy for clinical SCI has been limited according to the outcomes examined. CONCLUSIONS This review discusses the current limitations of transplanted SCs within the damaged spinal cord environment. Limitations include limited post-transplant cell survival, the inability of SCs to migrate within astrocytic parenchyma, and restricted axonal regeneration out of SC-rich graft regions. We describe steps to amplify the survival and integration of transplanted SCs and to expand the repertoire of uses of SCs, including SC-derived extracellular vesicles. The relative merits of transplanting autologous versus allogeneic SCs and the role that endogenous SCs play in spinal cord repair are described. Finally, we briefly describe the issues requiring solutions to scale up SC manufacturing for commercial use.
Collapse
Affiliation(s)
- James D Guest
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Andrea J Santamaria
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan P Solano
- Pediatric Critical Care, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan P de Rivero Vaccari
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - William D Dietrich
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Aisha Khan
- The Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Allan D Levi
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
2
|
Alvi MA, Pedro KM, Quddusi AI, Fehlings MG. Advances and Challenges in Spinal Cord Injury Treatments. J Clin Med 2024; 13:4101. [PMID: 39064141 PMCID: PMC11278467 DOI: 10.3390/jcm13144101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition that is associated with long-term physical and functional disability. Our understanding of the pathogenesis of SCI has evolved significantly over the past three decades. In parallel, significant advances have been made in optimizing the management of patients with SCI. Early surgical decompression, adequate bony decompression and expansile duraplasty are surgical strategies that may improve neurological and functional outcomes in patients with SCI. Furthermore, advances in the non-surgical management of SCI have been made, including optimization of hemodynamic management in the critical care setting. Several promising therapies have also been investigated in pre-clinical studies, with some being translated into clinical trials. Given the recent interest in advancing precision medicine, several investigations have been performed to delineate the role of imaging, cerebral spinal fluid (CSF) and serum biomarkers in predicting outcomes and curating individualized treatment plans for SCI patients. Finally, technological advancements in biomechanics and bioengineering have also found a role in SCI management in the form of neuromodulation and brain-computer interfaces.
Collapse
Affiliation(s)
- Mohammed Ali Alvi
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
| | - Karlo M. Pedro
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
- Department of Surgery and Spine Program, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Ayesha I. Quddusi
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
| | - Michael G. Fehlings
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
- Department of Surgery and Spine Program, University of Toronto, Toronto, ON M5T 1P5, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
3
|
Dekamin S, Ghasemi M, Dehpour AR, Ghazi-Khansari M, Shafaroodi H. Protective Effects of Glatiramer Acetate Against Paclitaxel-Induced Peripheral Neuropathy in Rats: A Role for Inflammatory Cytokines and Oxidative Stress. Neurochem Res 2024; 49:1049-1060. [PMID: 38252396 DOI: 10.1007/s11064-023-04088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major challenge for cancer patients who undergo chemotherapy with paclitaxel. Therefore, finding effective therapies for CIPN is crucial. Glatiramer acetate is used to treat multiple sclerosis that exerts neuroprotective properties in various studies. We hypothesized that glatiramer acetate could also improve the paclitaxel-induced peripheral neuropathy. We used a rat model of paclitaxel (2 mg/kg/every other day for 7 doses)-induced peripheral neuropathy. Rats were treated with either different doses of glatiramer acetate (1, 2, 4 mg/kg/day) or its vehicle for 14 days in separate groups. The mechanical and thermal sensitivity of the rats by using the Von Frey test and the Hot Plate test, respectively, were assessed during the study. The levels of oxidative stress (malondialdehyde and superoxide dismutase), inflammatory markers (TNF-α, IL-10, NF-kB), and nerve damage (H&E and S100B staining) in the sciatic nerves of the rats were also measured at the end of study. Glatiramer acetate (2 and 4 mg/kg) exerted beneficial effects on thermal and mechanical allodynia tests. It also modulated the inflammatory response by reducing TNF-α and NF-κB levels, enhancing IL-10 production, and improving the oxidative stress status by lowering malondialdehyde and increasing superoxide dismutase activity in the sciatic nerve of the rats. Furthermore, glatiramer acetate enhanced nerve conduction velocity in all treatment groups. Histological analysis revealed that glatiramer acetate (2 and 4 mg/kg) prevented paclitaxel-induced damage to the nerve structure. These results suggest that glatiramer acetate can alleviate the peripheral neuropathy induced by paclitaxel.
Collapse
Affiliation(s)
- Sajad Dekamin
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, Lahey Hospital and Medical Center, Burlington, MA, 01803, USA
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Ghosh M, Pearse DD. Schwann Cell-Derived Exosomal Vesicles: A Promising Therapy for the Injured Spinal Cord. Int J Mol Sci 2023; 24:17317. [PMID: 38139147 PMCID: PMC10743801 DOI: 10.3390/ijms242417317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Exosomes are nanoscale-sized membrane vesicles released by cells into their extracellular milieu. Within these nanovesicles reside a multitude of bioactive molecules, which orchestrate essential biological processes, including cell differentiation, proliferation, and survival, in the recipient cells. These bioactive properties of exosomes render them a promising choice for therapeutic use in the realm of tissue regeneration and repair. Exosomes possess notable positive attributes, including a high bioavailability, inherent safety, and stability, as well as the capacity to be functionalized so that drugs or biological agents can be encapsulated within them or to have their surface modified with ligands and receptors to imbue them with selective cell or tissue targeting. Remarkably, their small size and capacity for receptor-mediated transcytosis enable exosomes to cross the blood-brain barrier (BBB) and access the central nervous system (CNS). Unlike cell-based therapies, exosomes present fewer ethical constraints in their collection and direct use as a therapeutic approach in the human body. These advantageous qualities underscore the vast potential of exosomes as a treatment option for neurological injuries and diseases, setting them apart from other cell-based biological agents. Considering the therapeutic potential of exosomes, the current review seeks to specifically examine an area of investigation that encompasses the development of Schwann cell (SC)-derived exosomal vesicles (SCEVs) as an approach to spinal cord injury (SCI) protection and repair. SCs, the myelinating glia of the peripheral nervous system, have a long history of demonstrated benefit in repair of the injured spinal cord and peripheral nerves when transplanted, including their recent advancement to clinical investigations for feasibility and safety in humans. This review delves into the potential of utilizing SCEVs as a therapy for SCI, explores promising engineering strategies to customize SCEVs for specific actions, and examines how SCEVs may offer unique clinical advantages over SC transplantation for repair of the injured spinal cord.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Srikandarajah N, Alvi MA, Fehlings MG. Current insights into the management of spinal cord injury. J Orthop 2023; 41:8-13. [PMID: 37251726 PMCID: PMC10220467 DOI: 10.1016/j.jor.2023.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Background Traumatic spinal cord injury (SCI) is a serious disorder that results in severe impairment of neurological function as well as disability, ultimately reducing a patient's quality of life. The pathophysiology of SCI involves a primary and secondary phase, which causes neurological injury. Methods Narrative review on current clinical management of spinal cord injury and emerging therapies. Results This review explores the management of SCI through early decompressive surgery, optimizing mean arterial pressure, steroid therapy and focused rehabilitation. These management strategies reduce secondary injury mechanisms to prevent the propagation of further neurological damage. The literature regarding emerging research is also explored in cell-based, gene, pharmacological and neuromodulation therapies, which aim to repair the spinal cord following the primary injury mechanism. Conclusions Outcomes for patients with SCI can be enhanced and improved if primary and secondary phases of SCI can be addressed.
Collapse
Affiliation(s)
- Nisaharan Srikandarajah
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mohammed Ali Alvi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
6
|
Yang L, Ren Z, Song P, Liu Z, Peng Z, Zhou J, Dong Q. Effects of Curcumin on Axon Growth and Myelin Sheath Formation in an In Vitro Model. Neurochem Res 2023:10.1007/s11064-023-03946-4. [PMID: 37148458 DOI: 10.1007/s11064-023-03946-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Although the beneficial effects of curcumin, extracted from rhizomes of the ginger family genus Curcuma, on the repair and regeneration of nerves have been evaluated in vitro, there are few studies concerning its effects on axon myelination. Here, we used pheochromocytoma cells as an in vitro model of peripheral nerves. Pheochromocytoma cells were cultured alone or cocultured with Schwann cells and treated with increasing concentrations of curcumin. Cell growth was observed, and the expression levels of growth-associated protein 43 (GAP-43), microtubule-associated protein 2 (MAP-2), myelin basic protein (MBP), myelin protein zero (MPZ), Krox-20, and octamer binding factor 6 (Oct-6) were quantified. We found a significant increase in expression of all six proteins following curcumin treatment, with a corresponding increase in the levels of MBP, MPZ, Krox-20, and Oct-6 mRNA. Upregulation was greater with increasing curcumin concentration, showing a concentration-dependent effect. The results suggested that curcumin can promote the growth of axons by upregulating the expression of GAP-43 and MAP-2, stimulate synthesis and secretion of myelin-related proteins, and facilitate formation of the myelin sheath in axons by upregulating the expression of Krox-20 and Oct-6. Therefore, curcumin could be widely applied in future strategies for the treatment of nerve injuries.
Collapse
Affiliation(s)
- Luchen Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Zhengju Ren
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Department of Urology, the Second affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Pan Song
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Zhenghuan Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Zhufeng Peng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jing Zhou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
7
|
Huang JH, Chen YN, He H, Fu CH, Xu ZY, Lin FY. Schwann cells-derived exosomes promote functional recovery after spinal cord injury by promoting angiogenesis. Front Cell Neurosci 2023; 16:1077071. [PMID: 36687521 PMCID: PMC9846210 DOI: 10.3389/fncel.2022.1077071] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/01/2022] [Indexed: 01/06/2023] Open
Abstract
Exosomes are small vesicles that contain diverse miRNA, mRNA, and proteins that are secreted by multiple cells, and play a vital function in cell-cell communication. Numerous exosomes produced by cells have been demonstrated to be protective against spinal cord injury (SCI). This study aims to investigate the neuroprotective effect of Schwann cells-derived exosomes (SCs-Exos) on spinal cord injury. We found that SCs-Exos can be taken directly by brain-derived endothelial cells.3 (bEnd.3 cells) and promoted to proliferate, migrate, and form bEnd.3 tube. Additionally, our results showed that the pro-angiogenesis molecules, Integrin-β1, were highly expressed in SCs-Exos. Moreover, we used special shRNA technology to investigate the role of Integrin-β1 in mediating the effect of SCs-Exos-induced angiogenesis on bEnd.3 cells. We observed that the pro-angiogenic effect of SCs-Exos on bEnd.3 cells was suppressed by inhibiting the expression of integrin-β1 in SCs-Exos. In the SCI model, we found that SCs-Exos attenuated tissue damage and improved functional recovery after SCI. Using immunofluorescence staining, we observed that SCs-Exos treatment promoted angiogenesis in SCI, and integrin-β1 was required to promote angiogenesis. In conclusion, our results indicate that SCs-Exos promote angiogenesis by delivering integrin-β1 and may serve as a promising novel therapeutic agent for enhancing neurological functional recovery after SCI.
Collapse
Affiliation(s)
- Jiang-Hu Huang
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Yong-Neng Chen
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Hang He
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Chun-Hui Fu
- Fuzhou Maixin Biotech. Co., Ltd., Fuzhou, China
| | - Zhao-Yi Xu
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Fei-Yue Lin
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China,*Correspondence: Fei-Yue Lin,
| |
Collapse
|
8
|
Au KM, Tisch R, Wang AZ. Immune Checkpoint Ligand Bioengineered Schwann Cells as Antigen-Specific Therapy for Experimental Autoimmune Encephalomyelitis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107392. [PMID: 34775659 PMCID: PMC8813901 DOI: 10.1002/adma.202107392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Indexed: 05/05/2023]
Abstract
Failure to establish immune tolerance leads to the development of autoimmune disease. The ability to regulate autoreactive T cells without inducing systemic immunosuppression represents a major challenge in the development of new strategies to treat autoimmune disease. Here, a translational method for bioengineering programmed death-ligand 1 (PD-L1)- and cluster of differentiation 86 (CD86)-functionalized mouse Schwann cells (SCs) to prevent and ameliorate multiple sclerosis (MS) in established mouse models of chronic and relapsing-remitting experimental autoimmune encephalomyelitis (EAE) is described. It is shown that the intravenous (i.v.) administration of immune checkpoint ligand functionalized mouse SCs modifies the course of disease and ameliorates EAE. Further, it is found that such bioengineered mouse SCs inhibit the differentiation of myelin-specific helper T cells into pathogenic T helper type-1 (Th 1) and type-17 (Th 17) cells, promote the development of tolerogenic myelin-specific regulatory T (Treg ) cells, and resolve inflammatory central nervous system microenvironments without inducing systemic immunosuppression.
Collapse
Affiliation(s)
- Kin Man Au
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75230, USA
| | - Roland Tisch
- Department of Microbiology and Immunology School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andrew Z Wang
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75230, USA
| |
Collapse
|
9
|
Basu S, Choudhury IN, Nazareth L, Chacko A, Shelper T, Vial ML, Ekberg JAK, St John JA. In vitro modulation of Schwann cell behavior by VEGF and PDGF in an inflammatory environment. Sci Rep 2022; 12:662. [PMID: 35027585 PMCID: PMC8758747 DOI: 10.1038/s41598-021-04222-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/17/2021] [Indexed: 01/19/2023] Open
Abstract
Peripheral glial cell transplantation with Schwann cells (SCs) is a promising approach for treating spinal cord injury (SCI). However, improvements are needed and one avenue to enhance regenerative functional outcomes is to combine growth factors with cell transplantation. Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) are neuroprotective, and a combination of these factors has improved outcomes in rat SCI models. Thus, transplantation of SCs combined with VEGF and PDGF may further improve regenerative outcomes. First, however, we must understand how the two factors modulate SCs. In this in vitro study, we show that an inflammatory environment decreased the rate of SC-mediated phagocytosis of myelin debris but the addition of VEGF and PDGF (alone and combined) improved phagocytosis. Cytokine expression by SCs in the inflammatory environment revealed that addition of PDGF led to significantly lower level of pro-inflammatory cytokine, TNF-α, but IL-6 and anti-inflammatory cytokines (TGF-β and IL-10), remained unaltered. Further, PDGF was able to decrease the expression of myelination associated gene Oct6 in the presence of inflammatory environment. Overall, these results suggest that the use of VEGF and/or PDGF combined with SC transplantation may be beneficial in SCI therapy.
Collapse
Affiliation(s)
- Souptik Basu
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Indra N Choudhury
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Lynn Nazareth
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Anu Chacko
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Todd Shelper
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Marie-Laure Vial
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jenny A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia. .,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
10
|
A review of emerging neuroprotective and neuroregenerative therapies in traumatic spinal cord injury. Curr Opin Pharmacol 2021; 60:331-340. [PMID: 34520943 DOI: 10.1016/j.coph.2021.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
Traumatic spinal cord injuries (SCIs) have far-reaching physical, social, and financial consequences. While medical advancements have improved supportive therapeutic measures for SCI patients, no effective neuroregenerative therapeutic options exist to date. Instead, the paradigm of SCI therapy is inevitably directed towards damage control rather than the restoration of a state of functional independence. Facing a continuous increase in the prevalence of spinal cord injured patients, neuroprotective and neuroregenerative strategies have earned tremendous scientific interest. This review intends to provide a robust summary of the most promising neuroprotective and neuroregenerative therapies currently under investigation. While we highlight encouraging neuroprotective strategies as well, the focus of this review lies on neuroregenerative therapies, including neuropharmacological and cell-based approaches. We finally point to the exciting investigational areas of biomaterial scaffolds and neuromodulation therapies.
Collapse
|
11
|
Oraee-Yazdani S, Akhlaghpasand M, Golmohammadi M, Hafizi M, Zomorrod MS, Kabir NM, Oraee-Yazdani M, Ashrafi F, Zali A, Soleimani M. Combining cell therapy with human autologous Schwann cell and bone marrow-derived mesenchymal stem cell in patients with subacute complete spinal cord injury: safety considerations and possible outcomes. Stem Cell Res Ther 2021; 12:445. [PMID: 34372939 PMCID: PMC8351425 DOI: 10.1186/s13287-021-02515-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/12/2021] [Indexed: 11/22/2022] Open
Abstract
Background Cellular transplantations have promising effects on treating spinal cord injury (SCI) patients. Mesenchymal stem cells (MSCs) and Schwann cells (SCs), which have safety alongside their complementary characteristics, are suggested to be the two of the best candidates in SCI treatment. In this study, we assessed the safety and possible outcomes of intrathecal co-transplantation of autologous bone marrow MSC and SC in patients with subacute traumatic complete SCI. Methods Eleven patients with complete SCI (American Spinal Injury Association Impairment Scale (AIS); grade A) were enrolled in this study during the subacute period of injury. The patients received an intrathecal autologous combination of MSC and SC and were followed up for 12 months. We assessed the neurological changes by the American Spinal Injury Association’s (ASIA) sensory-motor scale, functional recovery by spinal cord independence measure (SCIM-III), and subjective changes along with adverse events (AE) with our checklist. Furthermore, electromyography (EMG), nerve conduction velocity (NCV), magnetic resonance imaging (MRI), and urodynamic study (UDS) were conducted for all the patients at the baseline, 6 months, and 1 year after the intervention. Results Light touch AIS score alterations were approximately the same as the pinprick changes (11.6 ± 13.1 and 12 ± 13, respectively) in 50% of the cervical and 63% of the lumbar-thoracic patients, and both were more than the motor score alterations (9.5 ± 3.3 in 75% of the cervical and 14% of the lumbar-thoracic patients). SCIM III total scores (21.2 ± 13.3) and all its sub-scores (“respiration and sphincter management” (15 ± 9.9), “mobility” (9.5 ± 13.3), and “self-care” (6 ± 1.4)) had statistically significant changes after cell injection. Our findings support that the most remarkable positive, subjective improvements were in trunk movement, equilibrium in standing/sitting position, the sensation of the bladder and rectal filling, and the ability of voluntary voiding. Our safety evaluation revealed no systemic complications, and radiological images showed no neoplastic overgrowth, syringomyelia, or pseudo-meningocele. Conclusion The present study showed that autologous SC and bone marrow-derived MSC transplantation at the subacute stage of SCI could reveal statistically significant improvement in sensory and neurological functions among the patients. It appears that using this combination of cells is safe and effective for clinical application to spinal cord regeneration during the subacute period.
Collapse
Affiliation(s)
- Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran.
| | - Mohammadhosein Akhlaghpasand
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | - Maryam Golmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | - Maryam Hafizi
- Stem Cell Technology Research Centre, Tehran, Iran.,Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Mina Soufi Zomorrod
- Applied cell Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nima Mohseni Kabir
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | - Farzad Ashrafi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran.
| | - Masoud Soleimani
- Department of Hematology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
12
|
Tan C, Yang C, Liu H, Tang C, Huang S. Effect of Schwann cell transplantation combined with electroacupuncture on axonal regeneration and remyelination in rats with spinal cord injury. Anat Rec (Hoboken) 2021; 304:2506-2520. [PMID: 34319000 DOI: 10.1002/ar.24721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/26/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022]
Abstract
Axonal impairment and demyelination after compressed spinal cord injury lead to serious neurological dysfunction. Increasing studies have suggested that Schwann cells (SCs) transplantation is a reliable, effective, and promising method for treating spinal cord injury. However, single SCs transplantation is insufficient to promote the full recovery of neurological function. Additional approaches are required to support SCs transplantation as a treatment for spinal cord injury. In the study, we investigated whether the combination of electroacupuncture (EA) and SCs transplantation was a reliable intervention for spinal cord injury. We found that rats in the combination group had significantly higher functional locomotor scores than those received single treatment. By immunostaining, we found EA can not only improve survival and proliferation of transplanted SCs but also inhibit SC apoptosis and block the formation of an astrocytic scar. Additionally, EA promoted regenerated axons extending "bullet-shaped" growth cones into the lesion. Remarkably, EA can modify astrogliosis to promote axonal regeneration following SCs transplantation through inducing extension of astrocytic processes in the SCs graft interface. More importantly, the combination of SCs engraftment and EA can enhance corticospinal-tract axonal regeneration and remyelination after spinal cord injury through up-regulating neuregulin 1 type III in SCs and its downstream signaling mediators. Thus, it is concluded that SCs effectively promote axonal recovery after spinal cord injury when combined with EA stimulation. The experimental results have reinforced the theoretical basis of EA for its clinical efficacy in patients with spinal cord injury and merited further investigation for potential clinical application.
Collapse
Affiliation(s)
- Chengfang Tan
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| | - Cheng Yang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Chenglin Tang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| | - Siqin Huang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Zhang P, Zhang X, Zhang J, Song Y, Liu T, Zeng Z, Fu X, Fu H, Zhang H, Qin Q, Fu N, Guo Z. Novel Nanoliposomes Alleviate Contrast-Induced Nephropathy by Mediating Apoptosis Response in New Zealand Rabbits. Front Mol Biosci 2021; 8:681849. [PMID: 34295921 PMCID: PMC8290201 DOI: 10.3389/fmolb.2021.681849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to test the preventive effects of nano liposomes against contrast-induced nephropathy (CIN) in New Zealand rabbits. Sixty New Zealand rabbits were randomly divided into four groups, with 15 rabbits in each group: control group, contrast group, hydration group and nano liposome group. Serum creatinine (Scr) and Blood Urea Nitrogen (BUN) were measured before and after injection of the contrast agent iopromide. Oxidative stress markers, such as superoxide dismutase (SOD) and malondialdehyde (MDA), and apoptosis markers, such as Bcl2-Associated X (Bax) and B-cell lymphoma-2 (Bcl-2), were measured by enzyme-linked immunosorbent assay (ELISA). Rabbits were killed 24 h after injection of the contrast medium and both kidneys were removed. Real-time Polymerase Chain Reaction (RT-PCR) and Western blot assays were performed in kidney tissue. Pathological changes were analyzed under the optical and electron microscope. Compared with the hydration group, the nano liposome group showed improved protection of renal function, with significantly different Scr and BUN levels, incidence of CIN, apoptosis index, RT-PCR and Western blot protein expression patterns. Under the optical and electron microscope, the renal injury in the nano liposome group was less than in the hydration group. However, based on SOD and MDA, there was no significant difference in oxidative stress when compared with the hydration group. Apoptosis is an important mechanism in CIN. Nano liposomes can prevent the occurrence of CIN by decreasing apoptosis, reducing damage to the kidney by the contrast agent.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Xue Zhang
- Department of Cardiology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Jing Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Yanqiu Song
- Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Ting Liu
- Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Zhican Zeng
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Xiaofeng Fu
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Han Fu
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Hong Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Qin Qin
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Naikuan Fu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Zhigang Guo
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
14
|
Monje PV, Deng L, Xu XM. Human Schwann Cell Transplantation for Spinal Cord Injury: Prospects and Challenges in Translational Medicine. Front Cell Neurosci 2021; 15:690894. [PMID: 34220455 PMCID: PMC8249939 DOI: 10.3389/fncel.2021.690894] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023] Open
Abstract
The benefits of transplanting cultured Schwann cells (SCs) for the treatment of spinal cord injury (SCI) have been systematically investigated in experimental animals since the early 1990s. Importantly, human SC (hSC) transplantation for SCI has advanced to clinical testing and safety has been established via clinical trials conducted in the USA and abroad. However, multiple barriers must be overcome to enable accessible and effective treatments for SCI patients. This review presents available information on hSC transplantation for SCI with the intention to uncover gaps in our knowledge and discuss areas for future development. To this end, we introduce the historical progression of the work that supports existing and prospective clinical initiatives and explain the reasons for the choice of hSCs while also addressing their limitations as cell therapy products. A search of the relevant literature revealed that rat SCs have served as a preclinical model of reference since the onset of investigations, and that hSC transplants are relatively understudied, possibly due to the sophisticated resources and expertise needed for the traditional processing of hSC cultures from human nerves. In turn, we reason that additional experimentation and a reexamination of the available data are needed to understand the therapeutic value of hSC transplants taking into consideration that the manufacturing of the hSCs themselves may require further development for extended uses in basic research and clinical settings.
Collapse
Affiliation(s)
- Paula V. Monje
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lingxiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
15
|
Siddiqui AM, Oswald D, Papamichalopoulos S, Kelly D, Summer P, Polzin M, Hakim J, Schmeichel AM, Chen B, Yaszemski MJ, Windebank AJ, Madigan NN. Defining Spatial Relationships Between Spinal Cord Axons and Blood Vessels in Hydrogel Scaffolds. Tissue Eng Part A 2021; 27:648-664. [PMID: 33764164 DOI: 10.1089/ten.tea.2020.0316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Positively charged oligo(poly(ethylene glycol) fumarate) (OPF+) hydrogel scaffolds, implanted into a complete transection spinal cord injury (SCI), facilitate a permissive regenerative environment and provide a platform for controlled observation of repair mechanisms. Axonal regeneration after SCI is critically dependent upon nutrients and oxygen from a newly formed blood supply. Our objective was to investigate fundamental characteristics of revascularization in association with the ingrowth of axons into hydrogel scaffolds, thereby defining spatial relationships between axons and the neovasculature. A novel combination of stereologic estimates and precision image analysis techniques quantitate neurovascular regeneration in rats. Multichannel hydrogel scaffolds containing Matrigel-only (MG), Schwann cells (SCs), or SCs with rapamycin-eluting poly(lactic co-glycolic acid) microspheres (RAPA) were implanted for 6 weeks following complete spinal cord transection. Image analysis of 72 scaffold channels identified a total of 2494 myelinated and 4173 unmyelinated axons at 10 μm circumferential intervals centered around 708 individual blood vessel profiles. Blood vessel number, density, volume, diameter, intervessel distances, total vessel surface and cross-sectional areas, and radial diffusion distances were compared. Axon number and density, blood vessel surface area, and vessel cross-sectional areas in the SC group exceeded that in the MG and RAPA groups. Individual axons were concentrated within a concentric radius of 200-250 μm from blood vessel walls, in Gaussian distributions, which identified a peak axonal number (Mean Peak Amplitude) corresponding to defined distances (Mean Peak Distance) from each vessel, the highest concentrations of axons were relatively excluded from a 25-30 μm zone immediately adjacent to the vessel, and from vessel distances >150 μm. Higher axonal densities correlated with smaller vessel cross-sectional areas. A statistical spatial algorithm was used to generate cumulative distribution F- and G-functions of axonal distribution in the reference channel space. Axons located around blood vessels were definitively organized as clusters and were not randomly distributed. A scoring system stratifies 5 direct measurements and 12 derivative parameters influencing regeneration outcomes. By providing methods to quantify the axonal-vessel relationships, these results may refine spinal cord tissue engineering strategies to optimize the regeneration of complete neurovascular bundles in their relevant spatial relationships after SCI. Impact statement Vascular disruption and impaired neovascularization contribute critically to the poor regenerative capacity of the spinal cord after injury. In this study, hydrogel scaffolds provide a detailed model system to investigate the regeneration of spinal cord axons as they directly associate with individual blood vessels, using novel methods to define their spatial relationships and the physiologic implications of that organization. These results refine future tissue engineering strategies for spinal cord repair to optimize the re-development of complete neurovascular bundles in their relevant spatial architectures.
Collapse
Affiliation(s)
- Ahad M Siddiqui
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| | - David Oswald
- Program in Human Medicine, Paracelsus Medical University, Salzburg, Austria
| | | | - Domnhall Kelly
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Priska Summer
- Program in Human Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Michael Polzin
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| | - Jeffrey Hakim
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| | - Ann M Schmeichel
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| | - Bingkun Chen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael J Yaszemski
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, Unites States
| | | | - Nicolas N Madigan
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
16
|
Atiq Hassan, Nasir N, Muzammil K. Treatment Strategies to Promote Regeneration in Experimental Spinal Cord Injury Models. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Ma T, Wu J, Mu J, Gao J. Biomaterials reinforced MSCs transplantation for spinal cord injury repair. Asian J Pharm Sci 2021; 17:4-19. [PMID: 35261642 PMCID: PMC8888140 DOI: 10.1016/j.ajps.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Due to the complex pathophysiological mechanism, spinal cord injury (SCI) has become one of the most intractable central nervous system (CNS) diseases to therapy. Stem cell transplantation, mesenchymal stem cells (MSCs) particularly, appeals to more and more attention along with the encouraging therapeutic results for the functional regeneration of SCI. However, traditional cell transplantation strategies have some limitations, including the unsatisfying survival rate of MSCs and their random diffusion from the injection site to ambient tissues. The application of biomaterials in tissue engineering provides a new horizon. Biomaterials can not only confine MSCs in the injured lesions with higher cell viability, but also promote their therapeutic efficacy. This review summarizes the strategies and advantages of biomaterials reinforced MSCs transplantation to treat SCI in recent years, which are clarified in the light of various therapeutic effects in pathophysiological aspects of SCI.
Collapse
Affiliation(s)
- Teng Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahe Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jiafu Mu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Corresponding author.
| |
Collapse
|
18
|
Pearse DD, Rao SNR, Morales AA, Wakarchuk W, Rutishauser U, El-Maarouf A, Ghosh M. Engineering polysialic acid on Schwann cells using polysialyltransferase gene transfer or purified enzyme exposure for spinal cord injury transplantation. Neurosci Lett 2021; 748:135690. [PMID: 33540059 DOI: 10.1016/j.neulet.2021.135690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/23/2020] [Accepted: 01/25/2021] [Indexed: 11/29/2022]
Abstract
Polysialic acid (PolySia) is a critical post-translational modification on the neural cell adhesion molecule (NCAM, a.k.a., CD56), important for cell migration and axon growth during nervous system development, plasticity and repair. PolySia induction on Schwann cells (SCs) enhances their migration, axon growth support and ability to improve functional recovery after spinal cord injury (SCI) transplantation. In the current investigation two methods of PolySia induction on SCs, lentiviral vector transduction of the mouse polysialytransferase gene ST8SIA4 (LV-PST) or enzymatic engineering with a recombinant bacterial PST (PSTNm), were examined comparatively for their effects on PolySia induction, SC migration, the innate immune response and axon growth after acute SCI. PSTNm produced significant PolySia induction and a greater diversity of surface molecule polysialylation on SCs as evidenced by immunoblot. In the scratch wound assay, PSTNm was superior to LV-PST in the promotion of SC migration and gap closure. At 24 h after SCI transplantation, PolySia induction on SCs was most pronounced with LV-PST. Co-delivery of PSTNm with SCs, but not transient cell exposure, led to broader induction of PolySia within the injured spinal cord due to polysialylation upon both host cells and transplanted SCs. The innate immune response after SCI, measured by CD68 immunoreactivity, was similar among PolySia induction methods. LV-PST or PSTNm co-delivery with SCs provided a similar enhancement of SC migration and axon growth support above that of unmodified SCs. These studies demonstrate that LV-PST and PSTNm provide comparable acute effects on SC polysialation, the immune response and neurorepair after SCI.
Collapse
Affiliation(s)
- Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL, 33136, USA.
| | - Sudheendra N R Rao
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Alejo A Morales
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Warren Wakarchuk
- Department of Biological Sciences, University of Alberta, Edmonton, AB, TG6 2E9, Canada
| | - Urs Rutishauser
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, USA
| | | | - Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL, 33136, USA.
| |
Collapse
|
19
|
Chen CZ, Neumann B, Förster S, Franklin RJM. Schwann cell remyelination of the central nervous system: why does it happen and what are the benefits? Open Biol 2021; 11:200352. [PMID: 33497588 PMCID: PMC7881176 DOI: 10.1098/rsob.200352] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Myelin sheaths, by supporting axonal integrity and allowing rapid saltatory impulse conduction, are of fundamental importance for neuronal function. In response to demyelinating injuries in the central nervous system (CNS), oligodendrocyte progenitor cells (OPCs) migrate to the lesion area, proliferate and differentiate into new oligodendrocytes that make new myelin sheaths. This process is termed remyelination. Under specific conditions, demyelinated axons in the CNS can also be remyelinated by Schwann cells (SCs), the myelinating cell of the peripheral nervous system. OPCs can be a major source of these CNS-resident SCs-a surprising finding given the distinct embryonic origins, and physiological compartmentalization of the peripheral and central nervous system. Although the mechanisms and cues governing OPC-to-SC differentiation remain largely undiscovered, it might nevertheless be an attractive target for promoting endogenous remyelination. This article will (i) review current knowledge on the origins of SCs in the CNS, with a particular focus on OPC to SC differentiation, (ii) discuss the necessary criteria for SC myelination in the CNS and (iii) highlight the potential of using SCs for myelin regeneration in the CNS.
Collapse
Affiliation(s)
| | | | | | - Robin J. M. Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| |
Collapse
|
20
|
Li J, Du Q, Li N, Du S, Sun Z. Alpiniae oxyphyllae Fructus and Alzheimer's disease: An update and current perspective on this traditional Chinese medicine. Biomed Pharmacother 2020; 135:111167. [PMID: 33383373 DOI: 10.1016/j.biopha.2020.111167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 02/01/2023] Open
Abstract
Alzheimer's disease (AD) is a common progressive neuro-degenerative disease, and the morbidity and mortality are still on the rise. In spite of recent advances in AD treatment, their clinical efficacy has been limited, non-curative and easy to drug resistance. Alpiniae oxyphyllae Fructus (AOF), derived from the dried and mature fruits of the Zingiberaceae plant Alpinia oxyphylla Miq, is a choice in traditional Chinese medicine to treat AD, which has a good effect and has been used for a long time. Recent studies have demonstrated its potent activities in modulating multiple signaling pathways associated with β-amyloid deposition, tau protein phosphorylation, chronic inflammation, oxidative stress. The neuropharmacological mechanism of AOF in AD have been fully illustrated in numerous studies. In this review, we first briefly described the active components of AOF and related mechanism for treating AD. And we also provide a systematic overview of recent progress on the pharmacokinetic characteristics of the active ingredients of AOF and analyzed their bioavailability differences in the development of AD. Thus, AOF hold a great therapeutic potential in the treatment of AD and is worthy of further research and promotion.
Collapse
Affiliation(s)
- Jia Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuzheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Na Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuzhang Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
21
|
Sever-Bahcekapili M, Yilmaz C, Demirel A, Kilinc MC, Dogan I, Caglar YS, Guler MO, Tekinay AB. Neuroactive Peptide Nanofibers for Regeneration of Spinal Cord after Injury. Macromol Biosci 2020; 21:e2000234. [PMID: 33043585 DOI: 10.1002/mabi.202000234] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/23/2020] [Indexed: 12/27/2022]
Abstract
The highly complex nature of spinal cord injuries (SCIs) requires design of novel biomaterials that can stimulate cellular regeneration and functional recovery. Promising SCI treatments use biomaterial scaffolds, which provide bioactive cues to the cells in order to trigger neural regeneration in the spinal cord. In this work, the use of peptide nanofibers is demonstrated, presenting protein binding and cellular adhesion epitopes in a rat model of SCI. The self-assembling peptide molecules are designed to form nanofibers, which display heparan sulfate mimetic and laminin mimetic epitopes to the cells in the spinal cord. These neuroactive nanofibers are found to support adhesion and viability of dorsal root ganglion neurons as well as neurite outgrowth in vitro and enhance tissue integrity after 6 weeks of injury in vivo. Treatment with the peptide nanofiber scaffolds also show significant behavioral improvement. These results demonstrate that it is possible to facilitate regeneration especially in the white matter of the spinal cord, which is usually damaged during the accidents using bioactive 3D nanostructures displaying high densities of laminin and heparan sulfate-mimetic epitopes on their surfaces.
Collapse
Affiliation(s)
- Melike Sever-Bahcekapili
- Institute of Materials Science and NanotechnologyNational Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey
| | - Canelif Yilmaz
- Neuroscience Graduate Program, Bilkent University, Ankara, 06800, Turkey
| | - Altan Demirel
- Department of Neurosurgery, Aksaray State Hospital, Aksaray, 68200, Turkey
| | - Mustafa Cemil Kilinc
- Faculty of Medicine, Department of Neurosurgery, Ankara University, Ankara, 06100, Turkey
| | - Ihsan Dogan
- Faculty of Medicine, Department of Neurosurgery, Ankara University, Ankara, 06100, Turkey
| | - Yusuf Sukru Caglar
- Faculty of Medicine, Department of Neurosurgery, Ankara University, Ankara, 06100, Turkey
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Ayse B Tekinay
- Institute of Materials Science and NanotechnologyNational Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.,The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.,Eryigit Research and Development Center, Ankara, 06380, Turkey
| |
Collapse
|
22
|
Repair strategies for traumatic spinal cord injury, with special emphasis on novel biomaterial-based approaches. Rev Neurol (Paris) 2020; 176:252-260. [PMID: 31982183 DOI: 10.1016/j.neurol.2019.07.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022]
Abstract
As a part of the central nervous system (CNS), the adult mammalian spinal cord displays only very poor ability for self-repair in response to traumatic lesions, which mostly lead to more or less severe, life-long disability. While even adult CNS neurons have a certain plastic potential, their intrinsic regenerative capacity highly varies among different neuronal populations and in the end, regeneration is almost completely inhibited due to extrinsic factors such as glial scar and cystic cavity formation, excessive and persistent inflammation, presence of various inhibitory molecules, and absence of trophic support and of a growth-supportive extracellular matrix structure. In recent years, a number of experimental animal models have been developed to overcome these obstacles. Since all those studies based on a single approach have yielded only relatively modest functional recovery, it is now consensus that different therapeutic approaches will have to be combined to synergistically overcome the multiple barriers to CNS regeneration, especially in humans. In this review, we particularly emphasize the hope raised by the development of novel, implantable biomaterials that should favor the reconstruction of the damaged nervous tissue, and ultimately allow for functional recovery of sensorimotor functions. Since human spinal cord injury pathology depends on the vertebral level and the severity of the traumatic impact, and since the timing of application of the different therapeutic approaches appears very important, we argue that every case will necessitate individual evaluation, and specific adaptation of therapeutic strategies.
Collapse
|
23
|
Hwang K, Jung K, Kim IS, Kim M, Han J, Lim J, Shin JE, Jang JH, Park KI. Glial Cell Line-derived Neurotrophic Factor-overexpressing Human Neural Stem/Progenitor Cells Enhance Therapeutic Efficiency in Rat with Traumatic Spinal Cord Injury. Exp Neurobiol 2019; 28:679-696. [PMID: 31902156 PMCID: PMC6946112 DOI: 10.5607/en.2019.28.6.679] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) causes axonal damage and demyelination, neural cell death, and comprehensive tissue loss, resulting in devastating neurological dysfunction. Neural stem/progenitor cell (NSPCs) transplantation provides therapeutic benefits for neural repair in SCI, and glial cell linederived neurotrophic factor (GDNF) has been uncovered to have capability of stimulating axonal regeneration and remyelination after SCI. In this study, to evaluate whether GDNF would augment therapeutic effects of NSPCs for SCI, GDNF-encoding or mock adenoviral vector-transduced human NSPCs (GDNF-or Mock-hNSPCs) were transplanted into the injured thoracic spinal cords of rats at 7 days after SCI. Grafted GDNFhNSPCs showed robust engraftment, long-term survival, an extensive distribution, and increased differentiation into neurons and oligodendroglial cells. Compared with Mock-hNSPC- and vehicle-injected groups, transplantation of GDNF-hNSPCs significantly reduced lesion volume and glial scar formation, promoted neurite outgrowth, axonal regeneration and myelination, increased Schwann cell migration that contributed to the myelin repair, and improved locomotor recovery. In addition, tract tracing demonstrated that transplantation of GDNF-hNSPCs reduced significantly axonal dieback of the dorsal corticospinal tract (dCST), and increased the levels of dCST collaterals, propriospinal neurons (PSNs), and contacts between dCST collaterals and PSNs in the cervical enlargement over that of the controls. Finally grafted GDNF-hNSPCs substantially reversed the increased expression of voltage-gated sodium channels and neuropeptide Y, and elevated expression of GABA in the injured spinal cord, which are involved in the attenuation of neuropathic pain after SCI. These findings suggest that implantation of GDNF-hNSPCs enhances therapeutic efficiency of hNSPCs-based cell therapy for SCI.
Collapse
Affiliation(s)
- Kyujin Hwang
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.,Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Kwangsoo Jung
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Il-Sun Kim
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Miri Kim
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jungho Han
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Joohee Lim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeong Eun Shin
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea
| | - Kook In Park
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.,Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea.,Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
24
|
Kim YM, Ji ES, Ko IG, Jin JJ, Cho YH, Seo TB. Combination of treadmill exercise with bone marrow stromal cells transplantation activates protein synthesis-related molecules in soleus muscle of the spinal cord injured rats. J Exerc Rehabil 2019; 15:377-382. [PMID: 31316929 PMCID: PMC6614772 DOI: 10.12965/jer.1938284.142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
The present study investigated whether treadmill exercise with bone marrow stromal cells (BMSCs) transplantation increase expression level of protein synthesis-related molecules in the soleus muscle after spinal cord injury (SCI). The spinal cord contusion injury was performed at the T9-10 level using the impactor (10 g×25 mm). BMSCs were cultured from femur and tibia of 4-week-old rats and then transplanted directly into the lesion 1-week post injury. The rats in exercise group were walking on treadmill device for 6 days per a week during 6 weeks. Prepared soleus muscles were used for examining mechanisms of protein synthesis after SCI. Myostatin induction level was increased by SCI, but BMSCs engrafting after SCI decreased compared to SCI group. Combination of treadmill exercise with BMSCs showed more potent decrement on myostatin expression. Protein kinase B (Akt) and mammalian target of rapamycin (mTOR) levels were significantly increased in SCI and BMSCs transplantation group compared to SCI group. Combination of treadmill exercise with BMSCs further facilitated expression levels of Akt and mTOR. Insulin-like growth factor-I (IGF-I) and phosphorylated cyclic adenosine monophosphate response element-binding protein (p-CREB) induction levels were more increased in SCI and BMSC transplantation group compared to SCI group. Combination of treadmill exercise with BMSCs further increased expression levels of IGF-I and p-CREB, although statistical significance was not appeared. Combining treadmill exercise with BMSCs transplantation might accelerate protein synthesis and hypertrophy in the soleus muscle after SCI through activation of IGF-I/mTOR signaling pathway.
Collapse
Affiliation(s)
- You-Mi Kim
- Sports Science Research Institution, Korea National Sport University, Seoul, Korea
| | - Eun-Sang Ji
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jun-Jang Jin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Yeong-Hyun Cho
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Tae-Beom Seo
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| |
Collapse
|
25
|
Improvement of motor function induced by skeletal muscle contraction in spinal cord-injured rats. Spine J 2019; 19:1094-1105. [PMID: 30583107 DOI: 10.1016/j.spinee.2018.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND The involvement of neurotrophic factors such as brain-derived neurotrophic factor (BDNF) in functional recovery after spinal cord injury (SCI) by treadmill training has been suggested. The precise mechanism is poorly understood. However, muscle-derived bioactive molecules (myokines) are known to be produced by muscle contraction. Although BDNF is a myokine and is considered to be a potential mediator of neuroplasticity following exercise, its contribution to motor function recovery after SCI has not yet been described in detail. PURPOSE To investigate the role of muscle contraction in motor function recovery after SCI, with a focus on BDNF. STUDY DESIGN Male Sprague-Dawley rats (aged 8-9 weeks) were used to establish the SCI model. Percutaneous electrical muscle stimulation (10 mA, 2 Hz, 10 minutes) was applied to both hindlimbs of the rats immediately after SCI. The stimulation was performed once per day for 4 weeks. The sham, SCI only (SCI), and SCI with electrical muscle stimulation (SCI+ES) groups were compared. METHODS Spinal cord injury was induced by dropping a 20 g rod with an apex diameter of 2 mm from a height of 25 mm onto the spine of an anesthetized rat at the T9 level. Motor function was assessed using the Basso-Beattie-Bresnahan Locomotor Scale, inclined plane test, and rotarod test. One week after injury, terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells were counted at the injury epicenter, and the level of BDNF was measured in both the spinal cord and the anterior tibial muscle. Four weeks after injury, the cavity volume of the epicenter and the level of phosphorylated growth-associated protein 43 in the spinal cord were measured. RESULTS Significantly improved Basso-Beattie-Bresnahan scores and inclined plane test results were observed in the SCI+ES group compared with those in the SCI group at 4 weeks post-SCI. We also observed a decrease in the cavity volume and an increase in phosphorylated growth-associated protein 43 levels in the SCI+ES group. Electrical muscle stimulation decreased the numbers of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells in the epicenter and increased the levels of BDNF in the spinal cord and lower limb muscles at 1 week post-SCI. CONCLUSIONS Electrical muscle stimulation improved motor function and increased BDNF levels in both the muscles and the spinal cords of rats subjected to SCI. Muscle contraction-induced BDNF expression might be involved in motor recovery during rehabilitation. CLINICAL RELEVANCE Our study provides experimental evidence for a possible therapeutic role of peripheral electrical muscle stimulation to enhance motor recovery after SCI.
Collapse
|
26
|
Spinal cord injury: pathophysiology, treatment strategies, associated challenges, and future implications. Cell Tissue Res 2019; 377:125-151. [PMID: 31065801 DOI: 10.1007/s00441-019-03039-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 04/01/2019] [Indexed: 12/16/2022]
Abstract
Axonal regeneration and formation of tripartite (axo-glial) junctions at damaged sites is a prerequisite for early repair of injured spinal cord. Transplantation of stem cells at such sites of damage which can generate both neuronal and glial population has gained impact in terms of recuperation upon infliction with spinal cord injury. In spite of the fact that a copious number of pre-clinical studies using different stem/progenitor cells have shown promising results at acute and subacute stages, at the chronic stages of injury their recovery rates have shown a drastic decline. Therefore, developing novel therapeutic strategies are the need of the hour in order to assuage secondary morbidity and effectuate improvement of the spinal cord injury (SCI)-afflicted patients' quality of life. The present review aims at providing an overview of the current treatment strategies and also gives an insight into the potential cell-based therapies for the treatment of SCI.
Collapse
|
27
|
Oligodendrogliogenesis and Axon Remyelination after Traumatic Spinal Cord Injuries in Animal Studies: A Systematic Review. Neuroscience 2019; 402:37-50. [PMID: 30685542 DOI: 10.1016/j.neuroscience.2019.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
Extensive oligodendrocyte death after acute traumatic spinal cord injuries (TSCI) leads to axon demyelination and subsequently may leave axons vulnerable to degeneration. Despite the present evidence showing spontaneous remyelination after TSCI the cellular origin of new myelin and the time course of the axon ensheathment/remyelination remained controversial issue. In this systematic review the trend of oligodendrocyte death after injury as well as the extent and the cellular origin of oligodendrogliogenesis were comprehensively evaluated. The study design was based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)-guided systematic review. PubMed and EMBASE were searched with no temporal or linguistic restrictions. Also, hand-search was performed in the bibliographies of relevant articles. Non-interventional animal studies discussing different types of myelinating cells including oligodendrocytes, Schwann cells and oligodendrocyte progenitor cells (OPCs) were evaluated. The extent of oligodendrocyte death, oligodendrocyte differentiation and remyelination were the pathophysiological outcome measures. We found 12,359 studies, 34 of which met the inclusion criteria. The cumulative evidence shows extensive oligodendrocytes cell death during the first week post-injury (pi). OPCs and peripheral invading Schwann cells are the dominant cells contributing in myelin formation. The maximum OPC proliferation was observed at around 2 weeks pi and oligodendrogliogenesis continues at later stages until the number of oligodendrocytes return to normal tissue by one month pi. Taken together, the evidence in animals reveals the potential role for endogenous myelinating cells in the axon ensheathment/remyelination after TSCI and this can be the target of pharmacotherapy to induce oligodendrocyte differentiation and myelin formation post-injury.
Collapse
|
28
|
Abstract
Biomaterials can be utilized to assist in the transplantation of Schwann cells to the central and peripheral nervous system. The biomaterials can be natural or man-made, and can have preformed shapes or injectable formats. Biomaterials can play multiple roles in cellular transplantation; for example, they can assist with cellular integration and protect Schwann cells from cell death initiated by the lack of a substrate, an occurrence known as "anoikis." In addition, biomaterials can be engineered to increase cell proliferation and differentiation by the addition of ligands bound to the substrate. Here, we describe the incorporation of Schwann cells to both man-made and natural matrices for in vitro and in vivo measures relevant to Schwann cell transplantation strategies.
Collapse
|
29
|
Babaloo H, Ebrahimi-Barough S, Derakhshan MA, Yazdankhah M, Lotfibakhshaiesh N, Soleimani M, Joghataei MT, Ai J. PCL/gelatin nanofibrous scaffolds with human endometrial stem cells/Schwann cells facilitate axon regeneration in spinal cord injury. J Cell Physiol 2018; 234:11060-11069. [PMID: 30584656 DOI: 10.1002/jcp.27936] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/25/2018] [Indexed: 12/28/2022]
Abstract
The significant consequences of spinal cord injury (SCI) include sensory and motor disability resulting from the death of neuronal cells and axon degeneration. In this respect, overcoming the consequences of SCI including the recovery of sensory and motor functions is considered to be a difficult tasks that requires attention to multiple aspects of treatment. The breakthrough in tissue engineering through the integration of biomaterial scaffolds and stem cells has brought a new hope for the treatment of SCI. In the present study, human endometrial stem cells (hEnSCs) were cultured with human Schwann cells (hSC) in transwells, their differentiation into nerve-like cells was confirmed by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and immunocytochemistry techniques. The differentiated cells (co-hEnSC) were then seeded on the poly ε-caprolactone (PCL)/gelatin scaffolds. The SEM images displayed the favorable seeding and survival of the cells on the scaffolds. The seeded scaffolds were then transplanted into hemisected SCI rats. The growth of neuronal cells was confirmed with immunohistochemical study using NF-H as a neuronal marker. Finally, the Basso, Beattie, and Bresnahan (BBB) test confirmed the recovery of sensory and motor functions. The results suggested that combination therapy using the differentiated hEnSC seeded on PCL/gelatin scaffolds has the potential to heal the injured spinal cord and to limit the secondary damage.
Collapse
Affiliation(s)
- Hamideh Babaloo
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Derakhshan
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Meysam Yazdankhah
- Department of Ophthalmology, Glia Research Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mohammad-Taghi Joghataei
- Department of Anatomical Sciences, Neuroscience Research Center & Cellular and Molecular Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Hu J, Tu Y, Ding Z, Chen Z, Dellon AL, Lineaweaver WC, Zhang F. Alteration of Sciatic Nerve Histology and Electrical Function After Compression and After Neurolysis in a Diabetic Rat Model. Ann Plast Surg 2018; 81:682-687. [PMID: 30285992 DOI: 10.1097/sap.0000000000001646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Diabetic rats are more sensitive to nerve entrapment. This study was conducted to evaluate nerve function and histological changes in diabetic rats after nerve compression and subsequent decompression. METHODS A total of 35 Wistar rats were included. The experimental group was divided into diabetic sciatic nerve compression group (DSNC, n = 5) and diabetic sciatic nerve decompression group (DSND, n = 20). The DSNC model was created by wrapping a silicone tube circumferentially around the nerve for 4 weeks, and then the DSND group accepted nerve decompression and was followed up to 12 weeks. The DSND group was equally divided into DSND 3 weeks (DSND3), 6 weeks (DSND6), 9 weeks (DSND9), and 12 weeks (DSND12) groups. Five rats were taken as normoglycemic control group (CR, n = 5), and another 5 rats as diabetic control group (DM, n = 5). The mechanical hyperalgesia of rats was detected by Semmes-Weinstein nylon monofilaments (SWMs) and by motor nerve conduction velocity (MNCV). These 2 physiological indicators and histology of sciatic nerves were compared among different groups. RESULTS The SWM measurements improved toward normal values after decompression. The SWM value was significantly lower (more normal) in the DSNC groups than in the DSND group (P < 0.05). The MNCV was 53.7 ± 0.8 m/s in the CR group, whereas it was 28.4 ± 1.0 m/s in the DSNC group (P < 0.001). Six weeks after decompression, the MNCV was significantly faster than that in the DSNC group (P < 0.001). Histological examination demonstrated chronic nerve compression, which responded toward normal after decompression, but with degree of myelination never recovering to normal. CONCLUSIONS Chronic compression of the diabetic sciatic nerve has measureable negative effects on sciatic nerve motor nerve function, associated with a decline of touch/pressure threshold and degeneration of myelin sheath and axon. Nerve decompression surgery can reverse these effects and partially restore nerve function.
Collapse
Affiliation(s)
- Junda Hu
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiji Tu
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zuoyou Ding
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zenggan Chen
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - A Lee Dellon
- Department of Plastic Surgery, Johns Hopkins University, Baltimore, MD
| | | | - Feng Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
- The Joseph M. Still Burn and Reconstructive Center, Jackson, MS
| |
Collapse
|
31
|
Namjoo Z, Moradi F, Aryanpour R, Piryaei A, Joghataei MT, Abbasi Y, Hosseini A, Hassanzadeh S, Taklimie FR, Beyer C, Zendedel A. Combined effects of rat Schwann cells and 17β-estradiol in a spinal cord injury model. Metab Brain Dis 2018; 33:1229-1242. [PMID: 29658057 DOI: 10.1007/s11011-018-0220-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/15/2018] [Indexed: 12/31/2022]
Abstract
Spinal cord injury (SCI) is a devastating traumatic event which burdens the affected individuals and the health system. Schwann cell (SC) transplantation is a promising repair strategy after SCI. However, a large number of SCs do not survive following transplantation. Previous studies demonstrated that 17β-estradiol (E2) protects different cell types and reduces tissue damage in SCI experimental animal model. In the current study, we evaluated the protective potential of E2 on SCs in vitro and investigated whether the combination of hormonal and SC therapeutic strategy has a better effect on the outcome after SCI. Primary SC cultures were incubated with E2 for 72 h. In a subsequent experiment, thoracic contusion SCI was induced in male rats followed by sustained administration of E2 or vehicle. Eight days after SCI, DiI-labeled SCs were transplanted into the injury epicenter in vehicle and E2-treated animals. The combinatory regimen decreased neurological and behavioral deficits and protected neurons and oligodendrocytes in comparison to vehicle rats. Moreover, E2 and SC significantly decreased the number of Iba-1+ (microglia) and GFAP+ cells (astrocyte) in the SCI group. In addition, we found a significant reduction of mitochondrial fission-markers (Fis1) and an increase of fusion-markers (Mfn1 and Mfn2) in the injured spinal cord after E2 and SC treatment. These data demonstrated that E2 protects SCs against hypoxia-induced SCI and improves the survival of transplanted SCs.
Collapse
Affiliation(s)
- Zeinab Namjoo
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Hemmat Campus, Tehran, Iran
| | - Fateme Moradi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Hemmat Campus, Tehran, Iran
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Aryanpour
- Department of Anatomy, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Hemmat Campus, Tehran, Iran.
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Yusef Abbasi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Hemmat Campus, Tehran, Iran
| | - Amir Hosseini
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Hemmat Campus, Tehran, Iran
| | - Sajad Hassanzadeh
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Hemmat Campus, Tehran, Iran
| | | | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
May Z, Kumar R, Fuehrmann T, Tam R, Vulic K, Forero J, Lucas Osma A, Fenrich K, Assinck P, Lee MJ, Moulson A, Shoichet MS, Tetzlaff W, Biernaskie J, Fouad K. Adult skin-derived precursor Schwann cell grafts form growths in the injured spinal cord of Fischer rats. ACTA ACUST UNITED AC 2018; 13:034101. [PMID: 29068322 DOI: 10.1088/1748-605x/aa95f8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, GFP+ skin-derived precursor Schwann cells (SKP-SCs) from adult rats were grafted into the injured spinal cord of immunosuppressed rats. Our goal was to improve grafted cell survival in the injured spinal cord, which is typically low. Cells were grafted in hyaluronan-methylcellulose hydrogel (HAMC) or hyaluronan-methylcellulose modified with laminin- and fibronectin-derived peptide sequences (eHAMC). The criteria for selection of hyaluronan was for its shear-thinning properties, making the hydrogel easy to inject, methylcellulose for its inverse thermal gelation, helping to keep grafted cells in situ, and fibronectin and laminin to improve cell attachment and, thus, prevent cell death due to dissociation from substrate molecules (i.e., anoikis). Post-mortem examination revealed large masses of GFP+ SKP-SCs in the spinal cords of rats that received cells in HAMC (5 out of n = 8) and eHAMC (6 out of n = 8). Cell transplantation in eHAMC caused significantly greater spinal lesions compared to lesion and eHAMC only control groups. A parallel study showed similar masses in the contused spinal cord of rats after transplantation of adult GFP+ SKP-SCs without a hydrogel or immunosuppression. These findings suggest that adult GFP+ SKP-SCs, cultured/transplanted under the conditions described here, have a capacity for uncontrolled proliferation. Growth-formation in pre-clinical research has also been documented after transplantation of: human induced pluripotent stem cell-derived neural stem cells (Itakura et al 2015 PLoS One 10 e0116413), embryonic stem cells and embryonic stem cell-derived neurons (Brederlau et al 2006 Stem Cells 24 1433-40; Dressel et al 2008 PLoS One 3 e2622), bone marrow derived mesenchymal stem cells (Jeong et al 2011 Circ. Res. 108 1340-47) and rat nerve-derived SCs following in vitro expansion for >11 passages (Funk et al 2007 Eur. J. Cell Biol. 86 207-19; Langford et al 1988 J. Neurocytology 17 521-9; Morrissey et al 1991 J. Neurosci. 11 2433-42). It is of upmost importance to define the precise culture/transplantation parameters for maintenance of normal cell function and safe and effective use of cell therapy.
Collapse
Affiliation(s)
- Zacnicte May
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gómez RM, Sánchez MY, Portela-Lomba M, Ghotme K, Barreto GE, Sierra J, Moreno-Flores MT. Cell therapy for spinal cord injury with olfactory ensheathing glia cells (OECs). Glia 2018; 66:1267-1301. [PMID: 29330870 DOI: 10.1002/glia.23282] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 01/18/2023]
Abstract
The prospects of achieving regeneration in the central nervous system (CNS) have changed, as most recent findings indicate that several species, including humans, can produce neurons in adulthood. Studies targeting this property may be considered as potential therapeutic strategies to respond to injury or the effects of demyelinating diseases in the CNS. While CNS trauma may interrupt the axonal tracts that connect neurons with their targets, some neurons remain alive, as seen in optic nerve and spinal cord (SC) injuries (SCIs). The devastating consequences of SCIs are due to the immediate and significant disruption of the ascending and descending spinal pathways, which result in varying degrees of motor and sensory impairment. Recent therapeutic studies for SCI have focused on cell transplantation in animal models, using cells capable of inducing axon regeneration like Schwann cells (SchCs), astrocytes, genetically modified fibroblasts and olfactory ensheathing glia cells (OECs). Nevertheless, and despite the improvements in such cell-based therapeutic strategies, there is still little information regarding the mechanisms underlying the success of transplantation and regarding any secondary effects. Therefore, further studies are needed to clarify these issues. In this review, we highlight the properties of OECs that make them suitable to achieve neuroplasticity/neuroregeneration in SCI. OECs can interact with the glial scar, stimulate angiogenesis, axon outgrowth and remyelination, improving functional outcomes following lesion. Furthermore, we present evidence of the utility of cell therapy with OECs to treat SCI, both from animal models and clinical studies performed on SCI patients, providing promising results for future treatments.
Collapse
Affiliation(s)
- Rosa M Gómez
- Fundación de Neuroregeneración en Colombia, Grupo de investigación NeuroRec, Bogota D.C, Colombia
| | - Magdy Y Sánchez
- Fundación de Neuroregeneración en Colombia, Grupo de investigación NeuroRec, Bogota D.C, Colombia.,Maestría en Neurociencias, Universidad Nacional de Colombia, Bogota D.C, Colombia
| | - Maria Portela-Lomba
- Facultad de CC Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Kemel Ghotme
- Facultad de Medicina, Universidad de la Sabana, Chía, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Javier Sierra
- Facultad de CC Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | | |
Collapse
|
34
|
Cerqueira SR, Lee YS, Bunge MB. A Culture Model to Study Neuron-Schwann Cell-Astrocyte Interactions. Methods Mol Biol 2018; 1739:269-279. [PMID: 29546713 DOI: 10.1007/978-1-4939-7649-2_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In vitro models using Schwann cell and astrocyte co-cultures have been used to understand the mechanisms underlying the formation of boundaries between these cells in vivo. Schwann cell/astrocyte co-cultures also mimic the in vivo scenario of a transplant in a spinal cord injury site, thereby allowing testing of therapeutic approaches. In this chapter, we describe a triple cell culture system with Schwann cells, astrocytes, and neurons that replicates axon growth from a Schwann cell graft into an astrocyte-rich region. In vitro studies using this model can accelerate the discovery of more effective therapeutic combinations to be used along with Schwann cell transplantation after spinal cord injuries.
Collapse
Affiliation(s)
- Susana R Cerqueira
- The Miami Project to Cure Paralysis, Lois Pope LIFE Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yee-Shuan Lee
- The Miami Project to Cure Paralysis, Lois Pope LIFE Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis, Lois Pope LIFE Center, University of Miami Miller School of Medicine, Miami, FL, USA. .,Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA. .,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
35
|
Brooks AE, Athauda G, Bunge MB, Khan A. Culture and Expansion of Rodent and Porcine Schwann Cells for Preclinical Animal Studies. Methods Mol Biol 2018; 1739:111-126. [PMID: 29546703 DOI: 10.1007/978-1-4939-7649-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell-based therapies have become a major focus in preclinical research that leads to clinical application of a therapeutic product. Since 1990, scientists at the Miami Project to Cure Paralysis have generated extensive data demonstrating that Schwann cell (SC) transplantation supports spinal cord repair in animals with spinal cord injury. After preclinical efforts in SC transplantation strategies, efficient methods for procuring large, essentially pure populations of SCs from the adult peripheral nerve were developed for rodent and pig studies. This chapter describes a series of simple procedures to obtain and cryopreserve large cultures of highly purified adult nerve-derived SCs without the need for additional purification steps. This protocol permits the derivation of ≥90% pure rodent and porcine SCs within 2-4 weeks of culture.
Collapse
Affiliation(s)
- Adriana E Brooks
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gagani Athauda
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aisha Khan
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
36
|
Alrehaili AA, Lee JY, Bakhuraysah MM, Kim MJ, Aui PM, Magee KA, Petratos S. Nogo receptor expression in microglia/macrophages during experimental autoimmune encephalomyelitis progression. Neural Regen Res 2018; 13:896-907. [PMID: 29863021 PMCID: PMC5998626 DOI: 10.4103/1673-5374.232488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myelin-associated inhibitory factors within the central nervous system (CNS) are considered to be one of the main obstacles for axonal regeneration following disease or injury. The nogo receptor 1 (NgR1) has been well documented to play a key role in limiting axonal regrowth in the injured and diseased mammalian CNS. However, the role of nogo receptor in immune cell activation during CNS inflammation is yet to be mechanistically elucidated. Microglia/macrophages are immune cells that are regarded as pathogenic contributors to inflammatory demyelinating lesions in multiple sclerosis (MS). In this study, the animal model of MS, experimental autoimmune encephalomyelitis (EAE) was induced in ngr1+/+ and ngr1–/– female mice following injection with the myelin oligodendrocyte glycoprotein (MOG35–55) peptide. A fate-map analysis of microglia/macrophages was performed throughout spinal cord sections of EAE-induced mice at clinical scores of 0, 1, 2 and 3, respectively (increasing locomotor disability) from both genotypes, using the CD11b and Iba1 cell markers. Western immunoblotting using lysates from isolated spinal cord microglia/macrophages, along with immunohistochemistry and flow cytometric analysis, was performed to demonstrate the expression of nogo receptor and its two homologs during EAE progression. Myelin protein engulfment during EAE progression in ngr1+/+ and ngr1–/– mice was demonstrated by western immunblotting of lysates from isolated spinal cord microglia/macrophages, detecting levels of Nogo-A and MOG. The numbers of M1 and M2 microglia/macrophage phenotypes present in the spinal cords of EAE-induced ngr1+/+ and ngr1–/– mice, were assessed by flow cytometric analysis using CD38 and Erg-2 markers. A significant difference in microglia/macrophage numbers between ngr1+/+ and ngr1–/– mice was identified during the progression of the clinical symptoms of EAE, in the white versus gray matter regions of the spinal cord. This difference was unrelated to the expression of NgR on these macrophage/microglial cells. We have identified that as EAE progresses, the phagocytic activity of microglia/macrophages with myelin debris, in ngr1–/– mice, was enhanced. Moreover, we show a modulation from a predominant M1-pathogenic to the M2-neurotrophic cell phenotype in the ngr1–/– mice during EAE progression. These findings suggest that CNS-specific macrophages and microglia of ngr1–/– mice may exhibit an enhanced capacity to clear inhibitory molecules that are sequestered in inflammatory lesions.
Collapse
Affiliation(s)
- Amani A Alrehaili
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia; Department of Clinical Laboratories, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - Jae Young Lee
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia; Toolgen Inc., Gasan Digital-Ro, Geumcheon, Seoul, Korea
| | - Maha M Bakhuraysah
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia; Department of Clinical Laboratories, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - Min Joung Kim
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia
| | - Pei-Mun Aui
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia
| | - Kylie A Magee
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia
| |
Collapse
|
37
|
Rosich K, Hanna BF, Ibrahim RK, Hellenbrand DJ, Hanna A. The Effects of Glial Cell Line-Derived Neurotrophic Factor after Spinal Cord Injury. J Neurotrauma 2017; 34:3311-3325. [DOI: 10.1089/neu.2017.5175] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Konstantin Rosich
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Bishoy F. Hanna
- Department of Neurological Surgery, Ross University School of Medicine, Dominica, West Indies
| | - Rami K. Ibrahim
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Daniel J. Hellenbrand
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Amgad Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
38
|
Belin S, Zuloaga KL, Poitelon Y. Influence of Mechanical Stimuli on Schwann Cell Biology. Front Cell Neurosci 2017; 11:347. [PMID: 29209171 PMCID: PMC5701625 DOI: 10.3389/fncel.2017.00347] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/19/2017] [Indexed: 12/05/2022] Open
Abstract
Schwann cells are the glial cells of the peripheral nervous system (PNS). They insulate axons by forming a specialized extension of plasma membrane called the myelin sheath. The formation of myelin is essential for the rapid saltatory propagation of action potentials and to maintain the integrity of axons. Although both axonal and extracellular matrix (ECM) signals are necessary for myelination to occur, the cellular and molecular mechanisms regulating myelination continue to be elucidated. Schwann cells in peripheral nerves are physiologically exposed to mechanical stresses (i.e., tensile, compressive and shear strains), occurring during development, adulthood and injuries. In addition, there is a growing body of evidences that Schwann cells are sensitive to the stiffness of their environment. In this review, we detail the mechanical constraints of Schwann cells and peripheral nerves. We explore the regulation of Schwann cell signaling pathways in response to mechanical stimulation. Finally, we provide a comprehensive overview of the experimental studies addressing the mechanobiology of Schwann cells. Understanding which mechanical properties can interfere with the cellular and molecular biology of Schwann cell during development, myelination and following injuries opens new insights in the regulation of PNS development and treatment approaches in peripheral neuropathies.
Collapse
Affiliation(s)
- Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Kristen L. Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| |
Collapse
|
39
|
Pellitteri R, Cova L, Zaccheo D, Silani V, Bossolasco P. Phenotypic Modulation and Neuroprotective Effects of Olfactory Ensheathing Cells: a Promising Tool for Cell Therapy. Stem Cell Rev Rep 2017; 12:224-34. [PMID: 26553037 DOI: 10.1007/s12015-015-9635-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Olfactory Ensheathing Cells (OECs), exhibiting phenotypic characteristics of both astrocytes and Schwann Cells, show peculiar plasticity. In vitro, OECs promote axonal growth, while in vivo they promote remyelination of damaged axons. We decided to further investigate OEC potential for regeneration and functional recovery of the damaged Central Nervous System (CNS). To study OEC antigen modulation, OECs prepared from postnatal mouse olfactory bulbs were grown in different culture conditions: standard or serum-free media with/without Growth Factors (GFs) and analyzed for different neural specific markers. OEC functional characterizations were also achieved. Resistance of OECs to the neurotoxin 6-hydroxydopamine (6-OHDA) was analyzed by evaluating apoptosis and death. OEC neuroprotective properties were investigated by in vitro co-cultures or by addition of OEC conditioned medium to the neuroblastoma SH-SY5Y cells exposed to 6-OHDA. We observed: 1) modification of OEC morphology, reduced cell survival and marker expression in serum-free medium; 2) GF addition to serum-free medium condition influenced positively survival and restored basal marker expression; 3) no OEC apoptosis after a prolonged exposition to 6-OHDA; 4) a clear OEC neuroprotective tendency, albeit non statistically significant, on 6-OHDA treated SH-SY5Y cells. These peculiar properties of OECs might render them potential clinical agents able to support injured CNS.
Collapse
Affiliation(s)
- Rosalia Pellitteri
- Institute of Neurological Sciences, CNR, Section of Catania, via Paolo Gaifami 18, 95126, Catania, Italy.
| | - Lidia Cova
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, via Zucchi 18, 20095, Cusano Milanino, Milan, Italy
| | - Damiano Zaccheo
- Department of Experimental Medicine, Section of Human Anatomy, University of Genoa, via De Toni 14, 16132, Genoa, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, via Zucchi 18, 20095, Cusano Milanino, Milan, Italy.,Department of Pathophysiology and Transplantation - "Dino Ferrari" Center, Università degli Studi di Milano, via Francesco Sforza 35, 20122, Milan, Italy
| | - Patrizia Bossolasco
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, via Zucchi 18, 20095, Cusano Milanino, Milan, Italy
| |
Collapse
|
40
|
Chedly J, Soares S, Montembault A, von Boxberg Y, Veron-Ravaille M, Mouffle C, Benassy MN, Taxi J, David L, Nothias F. Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration. Biomaterials 2017; 138:91-107. [DOI: 10.1016/j.biomaterials.2017.05.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 01/04/2023]
|
41
|
The Proliferation Enhancing Effects of Salidroside on Schwann Cells In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4673289. [PMID: 28680451 PMCID: PMC5478829 DOI: 10.1155/2017/4673289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 01/26/2023]
Abstract
Derived from Rhodiola rosea L., which is a popular plant in Eastern Europe and Asia, salidroside has pharmacological properties including antiviral, anticancer, hepatoprotective, antidiabetic, and antioxidative effects. Recent studies show that salidroside has neurotrophic and neuroprotective effects. However, the effect of salidroside on Schwann cells (SCs) and the underlying mechanisms of the salidroside-induced neurotrophin secretion have seldom been studied. In this study, the effect of salidroside on the survival, proliferation, and gene expression of Schwann cells lineage (RSC96) was studied through the examinations of the cell viability, proliferation, morphology, and expression of neurotrophic factor related genes including BDNF, GDNF, and CDNF at 2, 4, and 6 days, respectively. These results showed that salidroside significantly enhanced survival and proliferation of SCs. The underlying mechanism might involve that salidroside affected SCs growth through the modulation of several neurotrophic factors including BDNF, GDNF, and CDNF. As for the concentration, 0.4 mM, 0.2 mM, and 0.1 mM of salidroside were recommended, especially 0.2 mM. This investigation indicates that salidroside is capable of enhancing SCs survival and function in vitro, which highlights the possibility that salidroside as a drug agent to promote nerve regeneration in cellular nerve scaffold through salidroside-induced neurotrophin secretion in SCs.
Collapse
|
42
|
Salarinia R, Sadeghnia HR, Alamdari DH, Hoseini SJ, Mafinezhad A, Hosseini M. Platelet rich plasma: Effective treatment for repairing of spinal cord injury in rat. ACTA ORTHOPAEDICA ET TRAUMATOLOGICA TURCICA 2017; 51:254-257. [PMID: 28462801 PMCID: PMC6197298 DOI: 10.1016/j.aott.2017.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/29/2016] [Accepted: 07/09/2016] [Indexed: 12/27/2022]
Abstract
Objective The aim of the present study was to evaluate the effect of PRP on the repair of spinal cord injury in rat model. Material and methods Rats were randomly divided into three groups with six rats in each group. Then, spinal cord injury was performed under general anesthesia using “weight dropping” method. Control group included rats receiving normal saline, group two received PRP 1 week after injury; group three received PRP 24 h after injury. The motor function was assessed weekly using the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale. Anterograde tracing was performed for evaluation of axon regeneration. Result Motor recovery was significantly better in the rats treated with PRP 24 h after injury than the control group. In the rats treated with PRP 1 week after injury and rats treated with PRP 24 h after injury, the average numbers of BDA-labeled axons were statistically different from the control group. Conclusion Our experimental study demonstrated positive effects of platelet rich plasma on nerve regeneration after spinal cord injury.
Collapse
Affiliation(s)
- Reza Salarinia
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Daryoush Hamidi Alamdari
- Biochemistry and Nutrition Research Center, Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Iran
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asghar Mafinezhad
- Pathology Department of Shahid Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
43
|
Multichannel polymer scaffold seeded with activated Schwann cells and bone mesenchymal stem cells improves axonal regeneration and functional recovery after rat spinal cord injury. Acta Pharmacol Sin 2017; 38:623-637. [PMID: 28392569 DOI: 10.1038/aps.2017.11] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/23/2017] [Indexed: 12/17/2022] Open
Abstract
The adult mammalian CNS has a limited capacity to regenerate after traumatic injury. In this study, a combinatorial strategy to promote axonal regeneration and functional recovery after spinal cord injury (SCI) was evaluated in adult rats. The rats were subjected to a complete transection in the thoracic spinal cord, and multichannel scaffolds seeded with activated Schwann cells (ASCs) and/or rat bone marrow-derived mesenchymal stem cells (MSCs) were acutely grafted into the 3-mm-wide transection gap. At 4 weeks post-transplantation and thereafter, the rats receiving scaffolds seeded with ASCs and MSCs exhibited significant recovery of nerve function as shown by the Basso, Beattie and Bresnahan (BBB) score and electrophysiological test results. Immunohistochemical analyses at 4 and 8 weeks after transplantation revealed that the implanted MSCs at the lesion/graft site survived and differentiated into neuron-like cells and co-localized with host neurons. Robust bundles of regenerated fibers were identified in the lesion/graft site in the ASC and MSC co-transplantation rats, and neurofilament 200 (NF) staining confirmed that these fibers were axons. Furthermore, myelin basic protein (MBP)-positive myelin sheaths were also identified at the lesion/graft site and confirmed via electron microscopy. In addition to expressing mature neuronal markers, sparse MSC-derived neuron-like cells expressed choline acetyltransferase (ChAT) at the injury site of the ASC and MSC co-transplantation rats. These findings suggest that co-transplantation of ASCs and MSCs in a multichannel polymer scaffold may represent a novel combinatorial strategy for the treatment of spinal cord injury.
Collapse
|
44
|
Xia Y, Chen D, Xia H, Liao Z, Tang W, Yan Y. Serotonergic projections to lumbar levels and its plasticity following spinal cord injury. Neurosci Lett 2017; 649:70-77. [PMID: 28396282 DOI: 10.1016/j.neulet.2017.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/26/2017] [Accepted: 04/06/2017] [Indexed: 01/25/2023]
Abstract
The descending serotonergic pathway, which originates in various populations of brainstem neurons, plays an important role in generating the rhythmic motor pattern associated with locomotor movement. Although the development of its innervation has been studied in rodent spinal cord, it has not been clearly identified how the projection of serotonergic pathway is related to its function. Here, we evaluated the pattern of serotonergic innervation on the lumbar spinal cord from embryonic day 14.5 (E14.5) to adulthood. Before birth, we found that 5-hydroxytryptamine (5-HT) fibers invade the lumbar cord as early as E14.5, penetrate into the gray matter from lateral funiculus by E16.5, and then mainly occupied the ventral horn by E18.5 before localizing in the dorsal horn. After birth, we found that 5-HT invasion of both dorsal horn and ventral horn were present by the 7th postnatal day (P7). Additionally, the 5-HT innervation of these two areas evolved progressively from a diffuse network to a more restricted pattern, particularly at the ventral horn within the motoneuron area from P21 to adulthood. This 5-HT innervation pattern in the lumbar cord provides anatomical evidence that serotonergic fibers establish direct connections with lumbar motoneurons, which offers us a solid foundation that enhancing the plasticity of serotonergic pathway following SCI may facilitate locomotor functional recovery. Therefore, we employed treadmill training to activate serotonergic plasticity after SCI. We found that mice which underwent treadmill training exhibited a better locomotor functional recovery. Meanwhile, the density of 5-HT fibers in the ventral horn was significantly increased and the synaptic formation of 5-HT fibers with lumbar motoneurons was also significantly rescued in the training group mice after SCI. These findings demonstrate that the descending serotonergic projection is a robust and flexible parallel pathway for modulating spinal locomotor function.
Collapse
Affiliation(s)
- Yongzhi Xia
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dan Chen
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haijian Xia
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhengbu Liao
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenyuan Tang
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi Yan
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
45
|
Chang YM, Chang HH, Tsai CC, Lin HJ, Ho TJ, Ye CX, Chiu PL, Chen YS, Chen RJ, Huang CY, Lin CC. Alpinia oxyphylla Miq. fruit extract activates IGFR-PI3K/Akt signaling to induce Schwann cell proliferation and sciatic nerve regeneration. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:184. [PMID: 28359314 PMCID: PMC5374583 DOI: 10.1186/s12906-017-1695-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 03/17/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND It is known that the medicinal herb Alpinia oxyphylla Miq. is widely used as a remedy for diarrhea as well as the symptoms accompanying hypertension and cerebrovascular disorders. Moreover, it has also been reported that Alpinia oxyphylla Miq. has beneficial effects on anti-senescence and neuro-protection. This study focuses on the molecular mechanisms by which the Alpinia oxyphylla Miq. fruits promote neuron regeneration. METHODS A piece of silicone rubber was guided across a 15 mm gap in the sciatic nerve of a rat. This nerve gap was then filled with various doses of Alpinia oxyphylla Miq. fruits to assess their regenerative effect on damaged nerves. Further, we investigated the role of Alpinia oxyphylla Miq. fruits in RSC96 Schwann cell proliferation. RESULTS Our current results showed that treatment with the extract of Alpinia oxyphylla Miq. fruits triggers the phosphorylated insulin-like growth factor-1 receptor- phosphatidylinositol 3-kinase/serine-threonine kinase pathway, and up-regulated the proliferating cell nuclear antigen in a dose-dependent manner. Cell cycle analysis on RSC96 Schwann cells showed that, after exposure to Alpinia oxyphylla Miq. fruit extract, the transition from the first gap phase to the synthesis phase occurs in 12-18 h. The expression of the cell cycle regulatory proteins cyclin D1, cyclin E and cyclin A increased in a dose-dependent manner. Transfection with a small interfering RNA blocked the expression of phosphatidylinositol 3-kinase and induced down-regulation both on the mRNA and protein levels, which resulted in a reduction of the expression of the survival factor B-cell lymphoma 2. CONCLUSION We provide positive results that demonstrate that Alpinia oxyphylla Miq. fruits facilitate the survival and proliferation of RSC96 cells via insulin-like growth factor-1 signaling.
Collapse
|
46
|
Yao ZF, Wang Y, Lin YH, Wu Y, Zhu AY, Wang R, Shen L, Xi J, Qi Q, Jiang ZQ, Lü HZ, Hu JG. Transplantation of PDGF-AA-Overexpressing Oligodendrocyte Precursor Cells Promotes Recovery in Rat Following Spinal Cord Injury. Front Cell Neurosci 2017; 11:79. [PMID: 28377695 PMCID: PMC5359281 DOI: 10.3389/fncel.2017.00079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/08/2017] [Indexed: 12/18/2022] Open
Abstract
Our previous study showed that Schwann cells (SCs) promote survival, proliferation and migration of co-transplanted oligodendrocyte progenitor cells (OPCs) and neurological recovery in rats with spinal cord injury (SCI). A subsequent in vitro study confirmed that SCs modulated OPC proliferation and migration by secreting platelet-derived growth factor (PDGF)-AA and fibroblast growth factor-2 (FGF)-2. We also found that PDGF-AA stimulated OPC proliferation and their differentiation into oligodendrocytes (OLs) at later stages. We therefore speculated that PDGF-AA administration can exert the same effect as SC co-transplantation in SCI repair. To test this hypothesis, in this study we investigated the effect of transplanting PDGF-AA-overexpressing OPCs in a rat model of SCI. We found that PDGF-AA overexpression in OPCs promoted their survival, proliferation, and migration and differentiation into OLs in vivo. OPCs overexpressing PDGF-AA were also associated with increased myelination and tissue repair after SCI, leading to the recovery of neurological function. These results indicate that PDGF-AA-overexpressing OPCs may be an effective treatment for SCI.
Collapse
Affiliation(s)
- Zong-Feng Yao
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical CollegeBengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical CollegeBengbu, China
| | - Ying Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical CollegeBengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical CollegeBengbu, China
| | - Yu-Hong Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical CollegeBengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical CollegeBengbu, China
| | - Yan Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical CollegeBengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical CollegeBengbu, China
| | - An-You Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College Bengbu, China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College Bengbu, China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College Bengbu, China
| | - Jin Xi
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College Bengbu, China
| | - Qi Qi
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College Bengbu, China
| | - Zhi-Quan Jiang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College Bengbu, China
| | - He-Zuo Lü
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical CollegeBengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical CollegeBengbu, China
| | - Jian-Guo Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical CollegeBengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical CollegeBengbu, China
| |
Collapse
|
47
|
Bonfanti R, Musumeci T, Russo C, Pellitteri R. The protective effect of curcumin in Olfactory Ensheathing Cells exposed to hypoxia. Eur J Pharmacol 2016; 796:62-68. [PMID: 27889433 DOI: 10.1016/j.ejphar.2016.11.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 01/21/2023]
Abstract
Curcumin, a phytochemical component derived from the rhizomes of Curcuma longa, has shown a great variety of pharmacological activities, such as anti-inflammatory, anti-tumor, anti-depression and anti-oxidant activity. Therefore, in the last years it has been used as a therapeutic agent since it confers protection in different neurodegenerative diseases, cerebral ischemia and excitotoxicity. Olfactory Ensheathing Cells (OECs) are glial cells of the olfactory system. They are able to secrete several neurotrophic growth factors, promote axonal growth and support the remyelination of damaged axons. OEC transplantation has emerged as a possible experimental therapy to induce repair of spinal cord injury, even if the functional recovery is still limited. Since hypoxia is a secondary effect in spinal cord injury, this in vitro study investigates the protective effect of curcumin in OECs exposed to hypoxia. Primary OECs were obtained from neonatal rat olfactory bulbs and placed both in normal and hypoxic conditions. Furthermore, some cells were grown with basic Fibroblast Growth Factor (bFGF) and/or curcumin at different concentration and times. The results obtained through immunocytochemical procedures and MTT test show that curcumin stimulates cell viability in OECs grown in normal and hypoxic conditions. Furthermore, the synergistic effect of curcumin and bFGF is the most effective exerting protection on OECs. Since spinal cord injury is often accompanied by secondary insults, such as ischemia or hypoxia, our results suggest that curcumin in combination with bFGF might be considered a possible approach for restoration in injuries.
Collapse
Affiliation(s)
- Roberta Bonfanti
- Institute of Neurological Sciences, CNR, Section of Catania, Via P. Gaifami 18, 95126 Catania, Italy.
| | - Teresa Musumeci
- Department of Drug Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Cristina Russo
- Department of Biomedical and Biotechnological Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Rosalia Pellitteri
- Institute of Neurological Sciences, CNR, Section of Catania, Via P. Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
48
|
Gupta T, Kumar A, Cattenoz PB, VijayRaghavan K, Giangrande A. The Glide/Gcm fate determinant controls initiation of collective cell migration by regulating Frazzled. eLife 2016; 5. [PMID: 27740455 PMCID: PMC5114015 DOI: 10.7554/elife.15983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/12/2016] [Indexed: 12/16/2022] Open
Abstract
Collective migration is a complex process that contributes to build precise tissue and organ architecture. Several molecules implicated in cell interactions also control collective migration, but their precise role and the finely tuned expression that orchestrates this complex developmental process are poorly understood. Here, we show that the timely and threshold expression of the Netrin receptor Frazzled triggers the initiation of glia migration in the developing Drosophila wing. Frazzled expression is induced by the transcription factor Glide/Gcm in a dose-dependent manner. Thus, the glial determinant also regulates the efficiency of collective migration. NetrinB but not NetrinA serves as a chemoattractant and Unc5 contributes as a repellant Netrin receptor for glia migration. Our model includes strict spatial localization of a ligand, a cell autonomously acting receptor and a fate determinant that act coordinately to direct glia toward their final destination. DOI:http://dx.doi.org/10.7554/eLife.15983.001
Collapse
Affiliation(s)
- Tripti Gupta
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Arun Kumar
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Pierre B Cattenoz
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - K VijayRaghavan
- Department of Developmental Biology and Genetics, Tata Institute for Fundamental Research, Bangalore, India.,National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Angela Giangrande
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
49
|
Xie XM, Shi LL, Shen L, Wang R, Qi Q, Wang QY, Zhang LJ, Lü HZ, Hu JG. Co-transplantation of MRF-overexpressing oligodendrocyte precursor cells and Schwann cells promotes recovery in rat after spinal cord injury. Neurobiol Dis 2016; 94:196-204. [DOI: 10.1016/j.nbd.2016.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 06/14/2016] [Accepted: 06/27/2016] [Indexed: 12/01/2022] Open
|
50
|
Jung SY, Seo TB, Kim DY. Treadmill exercise facilitates recovery of locomotor function through axonal regeneration following spinal cord injury in rats. J Exerc Rehabil 2016; 12:284-92. [PMID: 27656624 PMCID: PMC5031384 DOI: 10.12965/jer.1632698.349] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/31/2016] [Indexed: 11/29/2022] Open
Abstract
Spinal cord injury (SCI) disrupts both axonal pathways and segmental spinal cord circuity, resulting in permanent neurological deficits. Physical exercise is known to increase the expression of neurotrophins for improving the injured spinal cord. In the present study, we investigated the effects of treadmill exercise on locomotor function in relation with brain-derived neurotrophic factor (BDNF) expression after SCI. The rats were divided into five groups: control group, sham operation group, sham operation and exercise group, SCI group, and SCI and exercise group. The laminectomy was performed at the T9–T10 level. The exposed dorsal surface of the spinal cord received contusion injury (10 g × 25 mm) using the impactor. Treadmill exercise was performed 6 days per a week for 6 weeks. In order to evaluate the locomotor function of animals, Basso-Beattie-Bresnahan (BBB) locomotor scale was conducted once a week for 6 weeks. We examined BDNF expression and axonal sprouting in the injury site of the spinal cord using Western blot analysis and immunofluorescence staining. SCI induced loss of locomotor function with decreased BDNF expression in the injury site. Treadmill exercise increased the score of BBB locomotor scale and reduced cavity formation in the injury site. BDNF expression and axonal sprouting within the trabecula were further facilitated by treadmill exercise in SCI-exposed rats. The present study provides the evidence that treadmill exercise may facilitate recovery of locomotor function through axonal regeneration via BDNF expression following SCI.
Collapse
Affiliation(s)
- Sun-Young Jung
- Department of Physical Therapy, Hosan University, Gyeongsan, Korea
| | - Tae-Beom Seo
- Division of Sports Science and Engineering, Korea Institute of Sports Science, Seoul, Korea
| | - Dae-Young Kim
- Department of Sports Health Care, College of Humanities & Social Sciences, Inje University, Gimhae, Korea
| |
Collapse
|