1
|
Chung N, Yang C, Yang H, Shin J, Song CY, Min H, Kim JH, Lee K, Lee JR. Local delivery of platelet-derived factors mitigates ischemia and preserves ovarian function through angiogenic modulation: A personalized regenerative strategy for fertility preservation. Biomaterials 2025; 313:122768. [PMID: 39232332 DOI: 10.1016/j.biomaterials.2024.122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
As the most prominent and ideal modality in female fertility preservation, ovarian tissue cryopreservation, and transplantation often confront the challenge of ischemic damage and follicular loss from avascular transplantation. To surmount this impediment, we engineered a novel platelet-derived factors-encapsulated fibrin hydrogel (PFH), a paradigmatic biomaterial. PFH encapsulates autologous platelet-derived factors, utilizing the physiological blood coagulation cascade for precise local delivery of bioactive molecules. In our study, PFH markedly bolstered the success of avascular ovarian tissue transplantation. Notably, the quantity and quality of follicles were preserved with improved neovascularization, accompanied by decreased DNA damage, increased ovulation, and superior embryonic development rates under a Low-concentration Platelet-rich plasma-derived factors encapsulated fibrin hydrogel (L-PFH) regimen. At a stabilized point of tissue engraftment, gene expression analysis mirrored normal ovarian tissue profiles, underscoring the effectiveness of L-PFH in mitigating the initial ischemic insult. This autologous blood-derived biomaterial, inspired by nature, capitalizes on the blood coagulation cascade, and combines biodegradability, biocompatibility, safety, and cost-effectiveness. The adjustable properties of this biomaterial, even in injectable form, extend its potential applications into the broader realm of personalized regenerative medicine. PFH emerges as a promising strategy to counter ischemic damage in tissue transplantation, signifying a broader therapeutic prospect. (197 words).
Collapse
Affiliation(s)
- Nanum Chung
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Chungmo Yang
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea; Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heeseon Yang
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Jungwoo Shin
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Chae Young Song
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyewon Min
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, 13496, Republic of Korea.
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jung Ryeol Lee
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
2
|
Mercier A, Johnson J, Kallen AN. Prospective solutions to ovarian reserve damage during the ovarian tissue cryopreservation and transplantation procedure. Fertil Steril 2024; 122:565-573. [PMID: 39181229 DOI: 10.1016/j.fertnstert.2024.08.330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Birth rates continue to decline as more women experience fertility issues. Assisted reproductive technologies are available for patients seeking fertility treatment, including cryopreservation techniques. Cryopreservation can be performed on gametes, embryos, or gonadal tissue and can be used for patients who desire to delay in vitro fertilization treatment. This review focuses on ovarian tissue cryopreservation, the freezing of ovarian cortex containing immature follicles. Ovarian tissue cryopreservation is the only available treatment for the restoration of ovarian function in patients who undergo gonadotoxic treatments, and its wide adoption has led to its recent designation as "no longer experimental" by the American Society for Reproductive Medicine. Ovarian tissue cryopreservation and subsequent transplantation can restore native endocrine function and can support the possibility of pregnancy and live birth for the patient. Importantly, there are multiple steps in the procedure that put the ovarian reserve at risk of damage. The graft is highly susceptible to ischemic reperfusion injury and mass primordial follicle growth activation, resulting in a "burnout" phenomenon. In this review, we summarize current efforts to combat the loss of primordial follicles in grafts through improvements in freeze and thaw protocols, transplantation techniques, and pharmacologic adjuvant treatments. We conducted a review of the literature, with emphasis on emergent research in the last 5 years. Regarding freeze and thaw protocols, we discuss the widely accepted slow freezing approach and newer vitrification protocols. Discussion of improved transplantation techniques includes consideration of the transplantation location of the ovarian tissue and the importance of graft sites in promoting neovascularization. Finally, we discuss pharmacologic treatments being studied to improve tissue performance postgraft. Of note, there is significant research into the efficacy of adjuvants used to reduce ischemic injury, improve neovascularization, and inhibit hyperactivation of primordial follicle growth activations. Although the "experimental" label has been removed from ovarian tissue cryopreservation and subsequent transplantation, there is a significant need for further research to better understand sources of ovarian reserve damage to improve outcomes. Future research directions are provided as we consider how to reach the most hopeful results for women globally.
Collapse
Affiliation(s)
- Abigail Mercier
- Divisions of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Joshua Johnson
- Divisions of Reproductive Endocrinology and Infertility and Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Amanda N Kallen
- Divisions of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Vermont Larner College of Medicine, Burlington, Vermont.
| |
Collapse
|
3
|
Sirayapiwat P, Amorim CA, Sereepapong W, Tuntiviriyapun P, Suebthawinkul C, Thuwanut P. Application of fibrin-based biomaterial for human ovarian tissue encapsulation and cryopreservation as alternative approach for fertility preservation. Cryobiology 2024; 117:104955. [PMID: 39236797 DOI: 10.1016/j.cryobiol.2024.104955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
This study aimed to investigate the effects of fibrin-based hydrogel encapsulation, with or without vascular endothelial growth factor (VEGF), on follicle quality and cell survival signaling pathways after ovarian tissue cryopreservation. Ovarian cortex donated by seven patients (ages 44-47 years old) was divided into four groups: I) fresh control, II) ovarian tissue without encapsulation (non-FT), III) fibrin (10 mg/mL fibrinogen plus 50 IU/mL thrombin; 10FT) encapsulated tissue without VEGF, and IV) encapsulated tissue with 0.1 μg/mL VEGF (10FT-VEGF), followed by a slow freezing process. Evaluation criteria included normal follicle morphology, density, cell proliferation, apoptosis, and metabolism signaling pathways (BAX/BCL-2 ratio, CASPASE-3 and 9, ATP-6 genes, VEGF-A, and ERK-1/2 protein expression levels). Major outcomes revealed that the percentages of morphologically normal follicles and density were significantly decreased by cryopreservation. Ovarian tissue encapsulation using the 10FT formulation (with or without VEGF) could maintain the ERK-signaling cascade, which was comparable to the fresh control. Among the frozen-thawed cohorts, the BAX/BCL-2 ratio, CASPASE-3, CASPASE-9, and ATP-6 expression levels were unfavorable in the non-FT group. However, statistically different results, including VEGF-A expression levels, were not detected. Collectively, our present data demonstrated the first applicable biomaterial matrix for human ovarian tissue encapsulation which might create an optimal intra-ovarian cortex environment during cryopreservation. Further studies to optimize hydrogel polymerization should be expanded, given the potential benefits for cancer patients who wish to preserve fertility through ovarian tissue cryopreservation.
Collapse
Affiliation(s)
- Porntip Sirayapiwat
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de La Reproduction (REPR), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Wisan Sereepapong
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Punkavee Tuntiviriyapun
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chanakarn Suebthawinkul
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Paweena Thuwanut
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Ruhliada NN. Ovarian tissue autotransplantation improves longevity in mice. Front Physiol 2024; 15:1443494. [PMID: 39268190 PMCID: PMC11390517 DOI: 10.3389/fphys.2024.1443494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
In this study, we show the improvement in life longevity in an experimental mouse model after step-by-step autologous ovarian transplantation and compare its effects with exogenic transdermal estradiol usage. This has proven to be more efficient than "traditional" hormonal replacement therapy. Despite the high speed and effectiveness of estradiol replacement deficiency in blood by its oral or transdermal use, no significant increase in the life longevity of animals and possibly in women was noted. The function of the transplanted fragment is usually limited to 6-12 months. This is enough for oncofertility purposes, sometimes, but not for longevity improvement. We performed periodical tissue return (autologous transplantation), containing both the cortex and medulla in the experimental mouse model, which resulted in a statistically reliable improvement in longevity. Our experience indicates the important role of medullary ovarian factors in slowing the aging process in the body and increasing the life expectancy in the experiment. As shown, the transdermal estrogen supportive therapy for ovarian deficiency improves estrogen levels but causes much slower decreases in the follicle stimulating hormone (FSH) and luteinizing hormone (LH). Moreover, we attained the best longevity with step-by-step periodic ovarian autotransplantation, thus making "prosthetics" of ovarian function longer than it is preplanned physiologically [direct correlation between the levels of FSH and lifespan (r = 0.98)]. The experimental model we suggested could be projected to other mammals or humans as cortical transplantation provides the same results for reproduction restoration in mice and humans and even for hormone level normalization, but there is still a lack of information about anti-aging factors in the ovarian medulla and cortex. Hence, we consider that the most important factor for the anti-aging ovarian transplantation technology is to preserve and transfer both the medulla and cortex as parts of the whole ovary.
Collapse
Affiliation(s)
- Nikolai N Ruhliada
- Russian State Pediatric University, St.Petersburg, Russia
- St.Petersburg Emergency Medicine Institute by Djanelidze I.I, St.Petersburg, Russia
| |
Collapse
|
5
|
McDowell HB, McElhinney KL, Tsui EL, Laronda MM. Generation of Tailored Extracellular Matrix Hydrogels for the Study of In Vitro Folliculogenesis in Response to Matrisome-Dependent Biochemical Cues. Bioengineering (Basel) 2024; 11:543. [PMID: 38927779 PMCID: PMC11200611 DOI: 10.3390/bioengineering11060543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
While ovarian tissue cryopreservation (OTC) is an important fertility preservation option, it has its limitations. Improving OTC and ovarian tissue transplantation (OTT) must include extending the function of reimplanted tissue by reducing the extensive activation of primordial follicles (PMFs) and eliminating the risk of reimplanting malignant cells. To develop a more effective OTT, we must understand the effects of the ovarian microenvironment on folliculogenesis. Here, we describe a method for producing decellularized extracellular matrix (dECM) hydrogels that reflect the protein composition of the ovary. These ovarian dECM hydrogels were engineered to assess the effects of ECM on in vitro follicle growth, and we developed a novel method for selectively removing proteins of interest from dECM hydrogels. Finally, we validated the depletion of these proteins and successfully cultured murine follicles encapsulated in the compartment-specific ovarian dECM hydrogels and these same hydrogels depleted of EMILIN1. These are the first, optically clear, tailored tissue-specific hydrogels that support follicle survival and growth comparable to the "gold standard" alginate hydrogels. Furthermore, depleted hydrogels can serve as a novel tool for many tissue types to evaluate the impact of specific ECM proteins on cellular and molecular behavior.
Collapse
Affiliation(s)
- Hannah B. McDowell
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.B.M.)
- Department of Pediatrics, Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathryn L. McElhinney
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.B.M.)
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth L. Tsui
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.B.M.)
- Department of Pediatrics, Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Monica M. Laronda
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.B.M.)
- Department of Pediatrics, Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
6
|
Kanamori R, Takae S, Ito K, Mukae A, Shimura M, Suzuki N. Significance and Influence of Suturing for Ovarian Tissue Transplantation. Reprod Sci 2024; 31:162-172. [PMID: 37674005 DOI: 10.1007/s43032-023-01320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/01/2023] [Indexed: 09/08/2023]
Abstract
The purpose of this animal study was to verify the effect of suturing on graft function in ovarian tissue transplantation. Ovaries from 2-week-old rats were transplanted orthotopically into the ovaries of 8-week-old female Wistar rats. The various transplantation methods used were insertion into the ovarian bursa without suturing (group A: control), suturing with a single 6-0 Vicryl stitch (group B: 6-0*1), suturing with a single 10-0 Vicryl stitch (group C: 10-0*1), and suturing with three 10-0 Vicryl stitches (group D: 10-0*3). Two weeks after transplantation, the transplanted ovaries were evaluated histologically and for gene expression. Engraftment rates of the donor ovaries 14 days after transplantation were 62.5%, 100%, 91.7%, and 100% in groups A, B, C, and D, respectively, significantly lower in group A than in the other groups. In terms of gene expression, TNFα levels were significantly higher in group D, and GDF9 and follicle-stimulating hormone receptor (FSHR) levels were significantly lower in group D than in groups A and B. The number of primordial follicles evaluated by HE staining was significantly lower in groups B, C, and D than in group A. Compared to orthotopic transplantation without sutures, direct suturing to the host improved the engraftment rate, although increasing the number of sutures increased inflammatory marker levels and decreased the number of primordial follicles. We believe that it is important to perform ovarian tissue transplantation using optimal suture diameter for good adhesion, but with a minimum number of sutures to preserve ovarian function.
Collapse
Affiliation(s)
- Ryo Kanamori
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Seido Takae
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Kaoru Ito
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Azusa Mukae
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Miyuki Shimura
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Nao Suzuki
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.
| |
Collapse
|
7
|
Najafi A, Asadi E, Benson JD. Ovarian tissue cryopreservation and transplantation: a review on reactive oxygen species generation and antioxidant therapy. Cell Tissue Res 2023; 393:401-423. [PMID: 37328708 DOI: 10.1007/s00441-023-03794-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Cancer is the leading cause of death worldwide. Fortunately, the survival rate of cancer continues to rise, owing to advances in cancer treatments. However, these treatments are gonadotoxic and cause infertility. Ovarian tissue cryopreservation and transplantation (OTCT) is the most flexible option to preserve fertility in women and children with cancer. However, OTCT is associated with significant follicle loss and an accompanying short lifespan of the grafts. There has been a decade of research in cryopreservation-induced oxidative stress in single cells with significant successes in mitigating this major source of loss of viability. However, despite its success elsewhere and beyond a few promising experiments, little attention has been paid to this key aspect of OTCT-induced damage. As more and more clinical practices adopt OTCT for fertility preservation, it is a critical time to review oxidative stress as a cause of damage and to outline potential ameliorative interventions. Here we give an overview of the application of OTCT for female fertility preservation and existing challenges; clarify the potential contribution of oxidative stress in ovarian follicle loss; and highlight potential ability of antioxidant treatments to mitigate the OTCT-induced injuries that might be of interest to cryobiologists and reproductive clinicians.
Collapse
Affiliation(s)
- Atefeh Najafi
- Department of Biology, University of Saskatchewan, S7N 5E2, Saskatoon, SK, Canada
| | - Ebrahim Asadi
- Department of Biology, University of Saskatchewan, S7N 5E2, Saskatoon, SK, Canada
| | - James D Benson
- Department of Biology, University of Saskatchewan, S7N 5E2, Saskatoon, SK, Canada.
| |
Collapse
|
8
|
Hu B, Wang R, Wu D, Long R, Ruan J, Jin L, Ma D, Sun C, Liao S. Prospects for fertility preservation: the ovarian organ function reconstruction techniques for oogenesis, growth and maturation in vitro. Front Physiol 2023; 14:1177443. [PMID: 37250136 PMCID: PMC10213246 DOI: 10.3389/fphys.2023.1177443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Today, fertility preservation is receiving more attention than ever. Cryopreservation, which preserves ovarian tissue to preserve fertility in young women and reduce the risk of infertility, is currently the most widely practiced. Transplantation, however, is less feasible for women with blood-borne leukemia or cancers with a high risk of ovarian metastasis because of the risk of cancer recurrence. In addition to cryopreservation and re-implantation of embryos, in vitro ovarian organ reconstruction techniques have been considered as an alternative strategy for fertility preservation. In vitro culture of oocytes in vitro Culture, female germ cells induction from pluripotent stem cells (PSC) in vitro, artificial ovary construction, and ovaria-related organoids construction have provided new solutions for fertility preservation, which will therefore maximize the potential for all patients undergoing fertility preservation. In this review, we discussed and thought about the latest ovarian organ function reconstruction techniques in vitro to provide new ideas for future ovarian disease research and fertility preservation of patients with cancer and premature ovarian failure.
Collapse
Affiliation(s)
- Bai Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Long
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinghan Ruan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyang Sun
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujie Liao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Izadpanah M, Rahbarghazi R, Seghinsara AM, Abedelahi A. Novel Approaches Used in Ovarian Tissue Transplantation for Fertility Preservation: Focus on Tissue Engineering Approaches and Angiogenesis Capacity. Reprod Sci 2023; 30:1082-1093. [PMID: 35962303 DOI: 10.1007/s43032-022-01048-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
Abstract
Due to the impact of the modern lifestyle, female infertility has been reduced because of different reasons. For example, in combined chemotherapeutic therapies, a small fraction of cancer survivors has faced different post-complications and side effects such as infertility. Besides, in modern society, delayed age of childbearing has also affected fertility. Nowadays, ovarian tissue cryopreservation and transplantation (OTC/T) is considered one of the appropriate strategies for the restoration of ovarian tissue and bioactivity in patients with the loss of reproductive function. In this regard, several procedures have been considered to improve the efficacy and safety of OTT. Among them, a surgical approach is used to transplant ovaries into the optimal sites, but the existence of ischemic changes and lack of appropriate revascularization can lead to bulk follicular atresia. Besides, the role of OTC/T is limited in women of advanced maternal age undergoing lifesaving chemo-radiation. As a correlate, the development of de novo approaches with efficacious regenerative outcomes is highly welcomed. Tissue engineering shows high therapeutic potentialities to restore fertility in males and females using the combination of biomaterials, cells, and growth factors. Unfortunately, most synthetic and natural materials are at the experimental stage and only the efficacy has been properly evaluated in limited cases. Along with these descriptions, strategies associated with the induction of angiogenesis in transplanted ovaries can diminish the injuries associated with ischemic changes. In this review, the authors tried to summarize recent techniques, especially tissue engineering approaches for improving ovarian function and fertility by focusing on angiogenesis and neovascularization.
Collapse
Affiliation(s)
- Melika Izadpanah
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166714766, Iran
| | - Reza Rahbarghazi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Majdi Seghinsara
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166714766, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166714766, Iran.
| |
Collapse
|
10
|
Almeida GHDR, Iglesia RP, Rinaldi JDC, Murai MK, Calomeno CVAQ, da Silva Junior LN, Horvath-Pereira BDO, Pinho LBM, Miglino MA, Carreira ACO. Current Trends on Bioengineering Approaches for Ovarian Microenvironment Reconstruction. TISSUE ENGINEERING. PART B, REVIEWS 2023. [PMID: 36355603 DOI: 10.1089/ten.teb.2022.0171] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ovarian tissue has a unique microarchitecture and a complex cellular and molecular dynamics that are essential for follicular survival and development. Due to this great complexity, several factors may lead to ovarian insufficiency, and therefore to systemic metabolic disorders and female infertility. Techniques currently used in the reproductive clinic such as oocyte cryopreservation or even ovarian tissue transplant, although effective, have several limitations, which impair their wide application. In this scenario, mimetic ovarian tissue reconstruction comes as an innovative alternative to develop new methodologies for germ cells preservation and ovarian functions restoration. The ovarian extracellular matrix (ECM) is crucial for oocyte viability maintenance, once it acts actively in folliculogenesis. One of the key components of ovarian bioengineering is biomaterials application that mimics ECM and provides conditions for cell anchorage, proliferation, and differentiation. Therefore, this review aims at describing ovarian tissue engineering approaches and listing the main limitations of current methods for preservation and reestablishment of ovarian fertility. In addition, we describe the main elements that structure this study field, highlighting the main advances and the challenges to overcome to develop innovative methodologies to be applied in reproductive medicine. Impact Statement This review presents the main advances in the application of tissue bioengineering in the ovarian tissue reconstruction to develop innovative solutions for ovarian fertility reestablishment.
Collapse
Affiliation(s)
| | - Rebeca Piatniczka Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Mikaelly Kiemy Murai
- Department of Morphological Sciences, State University of Maringa, Maringá, Brazil
| | | | | | | | - Letícia Beatriz Mazo Pinho
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,Center of Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| |
Collapse
|
11
|
Hossay C, Tramacere F, Cacciottola L, Camboni A, Squifflet JL, Donnez J, Dolmans MM. Follicle outcomes in human ovarian tissue: effect of freezing, culture, and grafting. Fertil Steril 2023; 119:135-145. [PMID: 36481098 DOI: 10.1016/j.fertnstert.2022.09.360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To study the effect of freezing, in vitro culture (IVC) and grafting to chorioallantoic membrane (CAM) on follicle outcomes in human ovarian tissue. DESIGN An experimental study. SETTING University-based research laboratory. PATIENTS Fresh and cryopreserved ovarian tissue from 10 patients was donated to research with their consent and institutional review board approval. INTERVENTIONS Fresh and frozen-thawed ovarian cortical pieces were in vitro-cultured and compared (fresh-IVC vs FT-IVC). The FT-IVC fragments were then examined against fragments grafted to CAM (FT-CAM). After both IVC and CAM grafting, ovarian cortical pieces (4×2×1 mm3) were analyzed on days 0, 1, and 6. MAIN OUTCOME MEASURES Follicle analyses included histology (count and classification) and immunohistochemistry (Ki67 [proliferation], caspase-3 [apoptosis], 1A and 1B light chain 3B [autophagy], p-Akt, FOXO1, and p-rpS6 [PI3K activation]). Droplet digital polymerase chain reaction further explored expression of PI3K pathway- and oocyte-related genes in tissue sections. RESULTS No major differences were detected between fresh-IVC and FT-IVC tissues in any conducted analyses. Although a significant drop was observed in primordial follicle (PF) proportions in the fresh-IVC and FT-IVC groups (d0 vs. d6, P<.002), they held steady in the FT-CAM group (d0 vs. d6, P>.05). The PF rates were also significantly higher in the FT-CAM group than the FT-IVC group on d6 (P=.02). Importantly, avian erythrocytes were already present in 30% of implants from d1. Apoptotic and autophagic follicle rates increased during IVC (P<.008), but remained significantly lower in the FT-CAM group (P<.01), confirming superior follicle preservation in CAM-grafted tissue. Upregulation of the PI3K/FOXO pathway was established in the IVC groups, demonstrating PF activation, whereas significant pathway downregulation was detected in the FT-CAM group (P<.03). The droplet digital polymerase chain reaction tests confirmed oocyte growth during IVC and follicle autophagy in all groups; however, the PI3K pathway appeared to be differentially modulated in tissues and follicles. CONCLUSIONS In vitro culture induces PF depletion with no additional impact of freezing. Grafting to CAM preserves the PF pool by curbing follicle activation, apoptosis, and autophagy, probably thanks to rapid graft revascularization and/or the circulating embryonic antimüllerian hormone. These findings highlight the importance of enhancing neoangiogenesis in ovarian grafts and investigating the potential benefits of administering antimüllerian hormone to prevent PF burnout.
Collapse
Affiliation(s)
- Camille Hossay
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Francesca Tramacere
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Luciana Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Alessandra Camboni
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Anatomopathology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Luc Squifflet
- Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jacques Donnez
- Society for Research into Infertility, Brussels, Belgium; Professor Emeritus, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
12
|
Buckenmeyer MJ, Sukhwani M, Iftikhar A, Nolfi AL, Xian Z, Dadi S, Case ZW, Steimer SR, D’Amore A, Orwig KE, Brown BN. A bioengineered in situ ovary (ISO) supports follicle engraftment and live-births post-chemotherapy. J Tissue Eng 2023; 14:20417314231197282. [PMID: 38029018 PMCID: PMC10656812 DOI: 10.1177/20417314231197282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/10/2023] [Indexed: 12/01/2023] Open
Abstract
Female cancer patients who have undergone chemotherapy have an elevated risk of developing ovarian dysfunction and failure. Experimental approaches to treat iatrogenic infertility are evolving rapidly; however, challenges and risks remain that hinder clinical translation. Biomaterials have improved in vitro follicle maturation and in vivo transplantation in mice, but there has only been marginal success for early-stage human follicles. Here, we developed methods to obtain an ovarian-specific extracellular matrix hydrogel to facilitate follicle delivery and establish an in situ ovary (ISO), which offers a permissive environment to enhance follicle survival. We demonstrate sustainable follicle engraftment, natural pregnancy, and the birth of healthy pups after intraovarian microinjection of isolated exogenous follicles into chemotherapy-treated (CTx) mice. Our results confirm that hydrogel-based follicle microinjection could offer a minimally invasive delivery platform to enhance follicle integration for patients post-chemotherapy.
Collapse
Affiliation(s)
- Michael J Buckenmeyer
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aimon Iftikhar
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexis L Nolfi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ziyu Xian
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Srujan Dadi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary W Case
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah R Steimer
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Antonio D’Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Fondazione RiMED, Palermo, Italy
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bryan N Brown
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Einenkel R, Schallmoser A, Sänger N. Metabolic and secretory recovery of slow frozen-thawed human ovarian tissue in vitro. Mol Hum Reprod 2022; 28:6808636. [PMID: 36342218 DOI: 10.1093/molehr/gaac037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Within the options available for fertility preservation, cryopreservation of ovarian cortical tissue has become an important technique. Freezing and thawing procedures have been optimized to preserve tissue integrity and viability. However, the improvement of the tissue retransplantation is currently of great interest. Rapid angiogenesis is needed at the retransplantation site to accomplish sufficient blood supply to provide oxygen and nutrients. Many studies address this issue. However, we need to understand the physiology of the thawed tissue to gain further understanding of the complexities of the procedure. As freezing and thawing generally impairs cellular metabolism, we aimed to characterize the changes in metabolic activity and secretion of the angiogenic factor vascular endothelial growth factor-A (VEGF-A) of frozen-thawed ovarian cortical tissue over time. Biopsy punches of ovarian cortical tissue from patients undergoing fertility preservation were maintained in culture without freezing or after a slow-freezing and thawing procedure. VEGF-A secretion was measured after 48 h by ELISA. To examine temporary changes, metabolic activity was assessed for both fresh and frozen-thawed tissue of the same patient. Metabolic activity and VEGF-A secretion were measured at 0, 24 and 48 h in culture. Thawed ovarian cortical tissue secreted significantly less VEGF-A compared to fresh ovarian cortical tissue within 48 h of culture. After thawing, metabolic activity was significantly reduced compared to fresh ovarian cortex but over the course of 48 h, the metabolic activity recovered. Similarly, VEGF-A secretion of thawed tissue increased significantly over 48 h. Here, we have shown that it takes 48 h for ovarian cortical tissue to recover metabolically after thawing, including VEGF-A secretion.
Collapse
Affiliation(s)
- Rebekka Einenkel
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Bonn, Bonn, Germany
| | - Andreas Schallmoser
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Bonn, Bonn, Germany
| | - Nicole Sänger
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
14
|
Arapaki A, Christopoulos P, Kalampokas E, Triantafyllidou O, Matsas A, Vlahos NF. Ovarian Tissue Cryopreservation in Children and Adolescents. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1256. [PMID: 36010146 PMCID: PMC9406615 DOI: 10.3390/children9081256] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
Cancer during childhood and adolescence remains a major public health issue, affecting a significant portion of this age group. Although newer anti-cancer treatments have improved survival rates, this comes at a cost in terms of gonadotoxic effects. As a result, the preservation of fertility is important. Ovarian tissue cryopreservation, one of the newest methods, has some advantages, especially for prepubertal patients: no need for ovarian stimulation, thus, no further risk for estrogen-sensitive cancer types, and preservation of more and better-quality primordial follicles of the ovarian cortex. The most frequent indications include treatment with alkylating agents, ovarian-focused radiotherapy, leukemias, lymphomas, brain and neurological tumors, as well as Turner syndrome and benign hemoglobinopathies. An expected survival exceeding 5 years, the absence of systematic disease and an overall risk of premature ovarian insufficiency over 50% are among the criteria that need to be fulfilled in order for a patient to undertake this method. Orthotopic transplantation is more frequently used, since it can allow both live birth and the recovery of endocrine function. Reimplantation of malignant cells is always a major risk and should always be taken into consideration. Histological analysis, as well as immunohistochemical and molecular methods, are needed in order to improve the search for malignant cells before transplantation. Ovarian tissue cryopreservation appears to be a method with specific benefits, indications and risks which can be an important tool in terms of preserving fertility in younger women.
Collapse
Affiliation(s)
| | - Panagiotis Christopoulos
- Second Department of Obstetrics and Gynecology, “Aretaieion” Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | | | | | | | - Nikolaos F. Vlahos
- Second Department of Obstetrics and Gynecology, “Aretaieion” Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
15
|
Da LC, Sun Y, Lin YH, Chen SZ, Chen GX, Zheng BH, Du SR. Emerging Bioactive Agent Delivery-Based Regenerative Therapies for Lower Genitourinary Tissues. Pharmaceutics 2022; 14:1718. [PMID: 36015344 PMCID: PMC9414065 DOI: 10.3390/pharmaceutics14081718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022] Open
Abstract
Injury to lower genitourinary (GU) tissues, which may result in either infertility and/or organ dysfunctions, threatens the overall health of humans. Bioactive agent-based regenerative therapy is a promising therapeutic method. However, strategies for spatiotemporal delivery of bioactive agents with optimal stability, activity, and tunable delivery for effective sustained disease management are still in need and present challenges. In this review, we present the advancements of the pivotal components in delivery systems, including biomedical innovations, system fabrication methods, and loading strategies, which may improve the performance of delivery systems for better regenerative effects. We also review the most recent developments in the application of these technologies, and the potential for delivery-based regenerative therapies to treat lower GU injuries. Recent progress suggests that the use of advanced strategies have not only made it possible to develop better and more diverse functionalities, but also more precise, and smarter bioactive agent delivery systems for regenerative therapy. Their application in lower GU injury treatment has achieved certain effects in both patients with lower genitourinary injuries and/or in model animals. The continuous evolution of biomaterials and therapeutic agents, advances in three-dimensional printing, as well as emerging techniques all show a promising future for the treatment of lower GU-related disorders and dysfunctions.
Collapse
Affiliation(s)
- Lin-Cui Da
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Yun-Hong Lin
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Su-Zhu Chen
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Gang-Xin Chen
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Bei-Hong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Sheng-Rong Du
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
16
|
Wu M, Guo Y, Wei S, Xue L, Tang W, Chen D, Xiong J, Huang Y, Fu F, Wu C, Chen Y, Zhou S, Zhang J, Li Y, Wang W, Dai J, Wang S. Biomaterials and advanced technologies for the evaluation and treatment of ovarian aging. J Nanobiotechnology 2022; 20:374. [PMID: 35953871 PMCID: PMC9367160 DOI: 10.1186/s12951-022-01566-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/17/2022] [Indexed: 12/26/2022] Open
Abstract
Ovarian aging is characterized by a progressive decline in ovarian function. With the increase in life expectancy worldwide, ovarian aging has gradually become a key health problem among women. Over the years, various strategies have been developed to preserve fertility in women, while there are currently no clinical treatments to delay ovarian aging. Recently, advances in biomaterials and technologies, such as three-dimensional (3D) printing and microfluidics for the encapsulation of follicles and nanoparticles as delivery systems for drugs, have shown potential to be translational strategies for ovarian aging. This review introduces the research progress on the mechanisms underlying ovarian aging, and summarizes the current state of biomaterials in the evaluation and treatment of ovarian aging, including safety, potential applications, future directions and difficulties in translation.
Collapse
Affiliation(s)
- Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yibao Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
17
|
Liu X, Wu K, Gao L, Wang L, Shi X. Biomaterial strategies for the application of reproductive tissue engineering. Bioact Mater 2022; 14:86-96. [PMID: 35310354 PMCID: PMC8892081 DOI: 10.1016/j.bioactmat.2021.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Human reproductive organs are of vital importance to the life of an individual and the reproduction of human populations. So far, traditional methods have a limited effect in recovering the function and fertility of reproductive organs and tissues. Thus, aim to replace and facilitate the regrowth of damaged or diseased tissue, various biomaterials are developed to offer hope to overcome these difficulties and help gain further research progress in reproductive tissue engineering. In this review, we focus on the biomaterials and their four main applications in reproductive tissue engineering: in vitro generation and culture of reproductive cells; development of reproductive organoids and models; in vivo transplantation of reproductive cells or tissues; and regeneration of reproductive tissue. In reproductive tissue engineering, designing biomaterials for different applications with different mechanical properties, structure, function, and microenvironment is challenging and important, and deserves more attention. Various biomaterials have been developed and used in reproductive tissue engineering. 3D culture systems can lead to better cell-cell interactions for in vitro production of reproductive cells. Reproductive organoids and models are formed by biomaterials to simulate the environment of natural reproductive organs. Biomaterials should promote vascular regeneration and resist inflammation for in-situ reproductive tissue regeneration.
Collapse
|
18
|
Di Berardino C, Liverani L, Peserico A, Capacchietti G, Russo V, Bernabò N, Tosi U, Boccaccini AR, Barboni B. When Electrospun Fiber Support Matters: In Vitro Ovine Long-Term Folliculogenesis on Poly (Epsilon Caprolactone) (PCL)-Patterned Fibers. Cells 2022; 11:cells11121968. [PMID: 35741097 PMCID: PMC9222101 DOI: 10.3390/cells11121968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022] Open
Abstract
Current assisted reproduction technologies (ART) are insufficient to cover the slice of the population needing to restore fertility, as well as to amplify the reproductive performance of domestic animals or endangered species. The design of dedicated reproductive scaffolds has opened the possibility to better recapitulate the reproductive 3D ovarian environment, thus potentially innovating in vitro folliculogenesis (ivF) techniques. To this aim, the present research has been designed to compare ovine preantral follicles in vitro culture on poly(epsilon-caprolactone) (PCL)-based electrospun scaffolds designed with different topology (Random vs. Patterned fibers) with a previously validated system. The ivF performances were assessed after 14 days under 3D-oil, Two-Step (7 days in 3D-oil and on scaffold), or One-Step PCL protocols (14 days on PCL-scaffold) by assessing morphological and functional outcomes. The results show that Two- and One-Step PCL ivF protocols, when performed on patterned scaffolds, were both able to support follicle growth, antrum formation, and the upregulation of follicle marker genes leading to a greater oocyte meiotic competence than in the 3D-oil system. In conclusion, the One-Step approach could be proposed as a practical and valid strategy to support a synergic follicle-oocyte in vitro development, providing an innovative tool to enhance the availability of matured gametes on an individual basis for ART purposes.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
- Correspondence:
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Umberto Tosi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Aldo Roberto Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| |
Collapse
|
19
|
Brunette MA, Kinnear HM, Hashim PH, Flanagan CL, Day JR, Cascalho M, Padmanabhan V, Shikanov A. Human Ovarian Follicles Xenografted in Immunoisolating Capsules Survive Long Term Implantation in Mice. Front Endocrinol (Lausanne) 2022; 13:886678. [PMID: 35721740 PMCID: PMC9205207 DOI: 10.3389/fendo.2022.886678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023] Open
Abstract
Female pediatric cancer survivors often develop Premature Ovarian Insufficiency (POI) owing to gonadotoxic effects of anticancer treatments. Here we investigate the use of a cell-based therapy consisting of human ovarian cortex encapsulated in a poly-ethylene glycol (PEG)-based hydrogel that replicates the physiological cyclic and pulsatile hormonal patterns of healthy reproductive-aged women. Human ovarian tissue from four donors was analyzed for follicle density, with averages ranging between 360 and 4414 follicles/mm3. Follicles in the encapsulated and implanted cryopreserved human ovarian tissues survived up to three months, with average follicle densities ranging between 2 and 89 follicles/mm3 at retrieval. We conclude that encapsulation of human ovarian cortex in PEG-based hydrogels did not decrease follicle survival after implantation in mice and was similar to non-encapsulated grafts. Furthermore, this approach offers the means to replace the endocrine function of the ovary tissue in patients with POI.
Collapse
Affiliation(s)
- Margaret A. Brunette
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Hadrian M. Kinnear
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States
| | - Prianka H. Hashim
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
| | - Colleen L. Flanagan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - James R. Day
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Marilia Cascalho
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Pediatrics & Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
20
|
Chen J, Torres-de la Roche LA, Kahlert UD, Isachenko V, Huang H, Hennefründ J, Yan X, Chen Q, Shi W, Li Y. Artificial Ovary for Young Female Breast Cancer Patients. Front Med (Lausanne) 2022; 9:837022. [PMID: 35372399 PMCID: PMC8969104 DOI: 10.3389/fmed.2022.837022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
In recent decades, there has been increasing attention toward the quality of life of breast cancer (BC) survivors. Meeting the growing expectations of fertility preservation and the generation of biological offspring remains a great challenge for these patients. Conventional strategies for fertility preservation such as oocyte and embryo cryopreservation are not suitable for prepubertal cancer patients or in patients who need immediate cancer therapy. Ovarian tissue cryopreservation (OTC) before anticancer therapy and autotransplantation is an alternative option for these specific indications but has a risk of retransplantation malignant cells. An emerging strategy to resolve these issues is by constructing an artificial ovary combined with stem cells, which can support follicle proliferation and ensure sex hormone secretion. This promising technique can meet both demands of improving the quality of life and meanwhile fulfilling their expectation of biological offspring without the risk of cancer recurrence.
Collapse
Affiliation(s)
- Jing Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | | | - Ulf D. Kahlert
- Molecular and Experimental Surgery, University Clinic for General, Visceral and Vascular Surgery, University Medicine Magdeburg and Otto-von Guericke University, Magdeburg, Germany
| | - Vladimir Isachenko
- Research Group for Reproductive Medicine and IVF Laboratory, Department of Obstetrics and Gynecology, Cologne University, Cologne, Germany
| | - Hui Huang
- Reproductive Medicine Center, Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Jörg Hennefründ
- University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg, Germany
| | - Xiaohong Yan
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qionghua Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- *Correspondence: Qionghua Chen
| | - Wenjie Shi
- University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg, Germany
- Wenjie Shi
| | - Youzhu Li
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Youzhu Li
| |
Collapse
|
21
|
Francés-Herrero E, Lopez R, Hellström M, de Miguel-Gómez L, Herraiz S, Brännström M, Pellicer A, Cervelló I. OUP accepted manuscript. Hum Reprod Update 2022; 28:798-837. [PMID: 35652272 PMCID: PMC9629485 DOI: 10.1093/humupd/dmac025] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To provide the optimal milieu for implantation and fetal development, the female reproductive system must orchestrate uterine dynamics with the appropriate hormones produced by the ovaries. Mature oocytes may be fertilized in the fallopian tubes, and the resulting zygote is transported toward the uterus, where it can implant and continue developing. The cervix acts as a physical barrier to protect the fetus throughout pregnancy, and the vagina acts as a birth canal (involving uterine and cervix mechanisms) and facilitates copulation. Fertility can be compromised by pathologies that affect any of these organs or processes, and therefore, being able to accurately model them or restore their function is of paramount importance in applied and translational research. However, innate differences in human and animal model reproductive tracts, and the static nature of 2D cell/tissue culture techniques, necessitate continued research and development of dynamic and more complex in vitro platforms, ex vivo approaches and in vivo therapies to study and support reproductive biology. To meet this need, bioengineering is propelling the research on female reproduction into a new dimension through a wide range of potential applications and preclinical models, and the burgeoning number and variety of studies makes for a rapidly changing state of the field. OBJECTIVE AND RATIONALE This review aims to summarize the mounting evidence on bioengineering strategies, platforms and therapies currently available and under development in the context of female reproductive medicine, in order to further understand female reproductive biology and provide new options for fertility restoration. Specifically, techniques used in, or for, the uterus (endometrium and myometrium), ovary, fallopian tubes, cervix and vagina will be discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase databases was conducted to identify relevant studies published between January 2000 and September 2021. The search terms included: bioengineering, reproduction, artificial, biomaterial, microfluidic, bioprinting, organoid, hydrogel, scaffold, uterus, endometrium, ovary, fallopian tubes, oviduct, cervix, vagina, endometriosis, adenomyosis, uterine fibroids, chlamydia, Asherman’s syndrome, intrauterine adhesions, uterine polyps, polycystic ovary syndrome and primary ovarian insufficiency. Additional studies were identified by manually searching the references of the selected articles and of complementary reviews. Eligibility criteria included original, rigorous and accessible peer-reviewed work, published in English, on female reproductive bioengineering techniques in preclinical (in vitro/in vivo/ex vivo) and/or clinical testing phases. OUTCOMES Out of the 10 390 records identified, 312 studies were included for systematic review. Owing to inconsistencies in the study measurements and designs, the findings were assessed qualitatively rather than by meta-analysis. Hydrogels and scaffolds were commonly applied in various bioengineering-related studies of the female reproductive tract. Emerging technologies, such as organoids and bioprinting, offered personalized diagnoses and alternative treatment options, respectively. Promising microfluidic systems combining various bioengineering approaches have also shown translational value. WIDER IMPLICATIONS The complexity of the molecular, endocrine and tissue-level interactions regulating female reproduction present challenges for bioengineering approaches to replace female reproductive organs. However, interdisciplinary work is providing valuable insight into the physicochemical properties necessary for reproductive biological processes to occur. Defining the landscape of reproductive bioengineering technologies currently available and under development for women can provide alternative models for toxicology/drug testing, ex vivo fertility options, clinical therapies and a basis for future organ regeneration studies.
Collapse
Affiliation(s)
| | | | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lucía de Miguel-Gómez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- Fundación IVI, IVI-RMA Global, Valencia, Spain
| | - Sonia Herraiz
- Fundación IVI, IVI-RMA Global, Valencia, Spain
- Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- IVI Roma Parioli, IVI-RMA Global, Rome, Italy
| | | |
Collapse
|
22
|
Yang C, Chung N, Song C, Youm HW, Lee K, Lee JR. Promotion of angiogenesis toward transplanted ovaries using nitric oxide releasing nanoparticles in fibrin hydrogel. Biofabrication 2021; 14. [PMID: 34852328 DOI: 10.1088/1758-5090/ac3f28] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
Transplantation of ovary is one method of facilitating fertility preservation to increase the quality of life of cancer survivors. Immediately after transplantation, ovaries are under ischemic conditions owing to a lack of vascular anastomosis between the graft and host tissues. The transplanted ovaries can suffer damage because of lack of oxygen and nutrients, resulting in necrosis and dysfunction. In the technique proposed in this paper, the ovary is encapsulated with nitric oxide-releasing nanoparticles (NO-NPs) in fibrin hydrogels, which form a carrying matrix to prevent ischemic damage and accelerate angiogenesis. The low concentration of NO released from mPEG-PLGA nanoparticles elicits blood vessel formation, which allows transplanted ovaries in the subcutis to recover from the ischemic period. In experiments with mice, the NO-NPs/fibrin hydrogel improved the total number and quality of ovarian follicles after transplantation. The intra-ovarian vascular density was 4.78 folds higher for the NO-NPs/fibrin hydrogel groups compared to that for the nontreated groups. Finally,in vitrofertilization revealed a successful blastocyst formation rate for NO-NPs/fibrin hydrogel coated ovaries. Thus, NO-NPs/fibrin hydrogels can provide an appropriate milieu to promote angiogenesis and be considered as adjuvant surgery materials for fertility preservation.
Collapse
Affiliation(s)
- Chungmo Yang
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.,Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nanum Chung
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chaeyoung Song
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hye Won Youm
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Ryeol Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
23
|
Hormonal Characteristics of Women Receiving Ovarian Tissue Transplantation with or without Endogenous Ovarian Activity. J Clin Med 2021; 10:jcm10225217. [PMID: 34830499 PMCID: PMC8618308 DOI: 10.3390/jcm10225217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/01/2022] Open
Abstract
Ovarian tissue cryopreservation (OTC) and transplantation of frozen/thawed ovarian tissue (OTT) are used for fertility preservation in girls and women. Here, we evaluated the hormonal characteristics of women with or without postmenopausal levels of FSH at the time of OTT to study differences and conditions that best support the initiation of ovarian function. A total of 74 women undergoing OTT (n = 51 with menopausal levels of FSH; n = 23 with premenopausal levels) were followed by measurements of FSH, LH, AMH, and oestradiol. Concentrations of FSH and LH returned to premenopausal levels after 20 weeks on average, with a concomitant increase in oestradiol. Despite resumption of ovarian activity, AMH concentrations were in most instances below the detection limit in the menopausal group, suggesting a low ovarian reserve. Despite a higher age in the premenopausal group, they more often experienced an AMH increase than the menopausal group, suggesting that conditions in the premenopausal ovary better sustain follicle survival, perhaps due to the higher concentrations of oestradiol. Collectively, this study highlights the need for improving follicle survival after OTT. Age and the amount of tissue transplanted are important factors that influence the ability to regain ovarian activity and levels of FSH may need to be downregulated and oestradiol increased prior to OTT.
Collapse
|
24
|
Tomaszewski CE, DiLillo KM, Baker BM, Arnold KB, Shikanov A. Sequestered cell-secreted extracellular matrix proteins improve murine folliculogenesis and oocyte maturation for fertility preservation. Acta Biomater 2021; 132:313-324. [PMID: 33766798 DOI: 10.1016/j.actbio.2021.03.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Synthetic matrices offer a high degree of control and tunability for mimicking extracellular matrix functions of native tissue, allowing the study of disease and development in vitro. In this study, we functionalized degradable poly(ethylene glycol) hydrogels with extracellular matrix (ECM)-sequestering peptides aiming to recapitulate the native ECM composition for culture and maturation of ovarian follicular organoids. We hypothesized that ECM-sequestering peptides would facilitate deposition and retention of cell-secreted ECM molecules, thereby recreating cell-matrix interactions in otherwise bioinert PEG hydrogels. Specifically, heparin-binding peptide from antithrombin III (HBP), heparan sulfate binding peptide derived from laminin (AG73), basement membrane binder peptide (BMB), and heparan sulfate binding region of placental growth factor 2 (RRR) tethered to a PEG hydrogel significantly improved follicle survival, growth and maturation compared to PEG-Cys, a mechanically similar but biologically inert control. Immunohistochemical analysis of the hydrogel surrounding cultured follicles confirmed sequestration and retention of laminin, collagen I, perlecan, and fibronectin in ECM-sequestering hydrogels but not in bioinert PEG-Cys hydrogels. The media from follicles cultured in PEG-AG73, PEG-BMB, and PEG-RRR also had significantly higher concentrations of factors known to regulate follicle development compared to PEG-Cys. PEG-AG73 and PEG-BMB were the most beneficial for promoting follicle maturation, likely because AG73 and BMB mimic basement membrane interactions which are crucial for follicle development. Here we have shown that functionalizing PEG with ECM-sequestering peptides allows cell-secreted ECM to be retained within the hydrogels, restoring critical cell-matrix interactions and promoting healthy organoid development in a fully synthetic culture system. STATEMENT OF SIGNIFICANCE: Here we present a novel approach for sequestering and retaining cell-secreted extracellular matrix in a fully synthetic material for organoid culture. We have engineered a biomimetic poly(ethylene glycol) hydrogel functionalized with extracellular matrix-binding peptides to recapitulate the ovarian microenvironment. Incorporation of these peptides allows ovarian follicles to recreate their native matrix with the sequestered ECM that subsequently binds growth factors, facilitating follicle maturation. The novel design resulted in improved outcomes of folliculogenesis, potentially developing a fertility preservation option for young women undergoing sterilizing treatments for cancer. The fully synthetic and modular nature of this biomimetic material holds promise for other tissue engineering applications as it allows encapsulated cells to rebuild their native microenvironments in vitro.
Collapse
Affiliation(s)
- Claire E Tomaszewski
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Katarina M DiLillo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA; Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
25
|
Shin EY, Kim DS, Lee MJ, Lee AR, Shim SH, Baek SW, Han DK, Lee DR. Prevention of chemotherapy-induced premature ovarian insufficiency in mice by scaffold-based local delivery of human embryonic stem cell-derived mesenchymal progenitor cells. Stem Cell Res Ther 2021; 12:431. [PMID: 34332643 PMCID: PMC8325282 DOI: 10.1186/s13287-021-02479-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/27/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is one of the most serious side effects of chemotherapy in young cancer survivors. It may not only reduce fecundity but also affect lifelong health. There is no standard therapy for preserving ovarian health after chemotherapy. Recently, administration of embryonic stem cell-derived mesenchymal progenitor cells (ESC-MPCs) has been considered a new therapeutic option for preventing POI. However, the previous method of directly injecting cells into the veins of patients exhibits low efficacy and safety. This study aimed to develop safe and effective local delivery methods for the prevention of POI using two types of bioinspired scaffolds. METHODS Female mice received intraperitoneal cisplatin for 10 days. On day 11, human ESC-MPCs were delivered through systemic administration using intravenous injection or local administration using intradermal injection and intradermal transplantation with a PLGA/MH sponge or hyaluronic acid (HA) gel (GEL) type of scaffold. PBS was injected intravenously as a negative control. Ovarian function and fertility were evaluated 4 weeks after transplantation. Follicle development was observed using hematoxylin and eosin staining. The plasma levels of sex hormones were measured using ELISA. Expression levels of anti-Müllerian hormone (AMH) and ki-67 were detected using immunostaining, and the quality of oocytes and embryos was evaluated after in vitro fertilization. The estrous cycles were observed at 2 months after transplantation. RESULTS The local administration of human ESC-MPCs using the bioinspired scaffold to the backs of mice effectively prolonged the cell survival rate in vivo. The HA GEL group exhibited the best recovered ovarian functions, including a significantly increased number of ovarian reserves, estrogen levels, and AMH levels and decreased apoptotic levels. Furthermore, the HA GEL group showed improved quality of oocytes and embryos and estrous cycle regularity. CONCLUSIONS HA GEL scaffolds can be used as new delivery platforms for ESC-MPC therapy, and this method may provide a novel option for the clinical treatment of chemotherapy-induced POI.
Collapse
Affiliation(s)
- Eun-Young Shin
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea
| | - Da-Seul Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Min Ji Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea
| | - Ah Reum Lee
- CHA Advanced Research Institute, CHA Medical Center, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea
| | - Sung Han Shim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea
| | - Seung Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea.
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea.
| |
Collapse
|
26
|
Cacciottola L, Donnez J, Dolmans MM. Ovarian tissue damage after grafting: systematic review of strategies to improve follicle outcomes. Reprod Biomed Online 2021; 43:351-369. [PMID: 34384692 DOI: 10.1016/j.rbmo.2021.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/14/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022]
Abstract
Frozen-thawed human ovarian tissue endures large-scale follicle loss in the early post-grafting period, characterized by hypoxia lasting around 7 days. Tissue revascularization occurs progressively through new vessel invasion from the host and neoangiogenesis from the graft. Such reoxygenation kinetics lead to further potential damage caused by oxidative stress. The aim of the present manuscript is to provide a systematic review of proangiogenic growth factors, hormones and various antioxidants administered in the event of ovarian tissue transplantation to protect the follicle pool from depletion by boosting revascularization or decreasing oxidative stress. Although almost all investigated studies revealed an advantage in terms of revascularization and reduction in oxidative stress, far fewer demonstrated a positive impact on follicle survival. As the cascade of events driven by ischaemia after transplantation is a complex process involving numerous players, it appears that acting on specific molecular mechanisms, such as concentrations of proangiogenic growth factors, is not enough to significantly mitigate tissue damage. Strategies exploiting the activated tissue response to ischaemia for tissue healing and remodelling purposes, such as the use of antiapoptotic drugs and adult stem cells, are also discussed in the present review, since they yielded promising results in terms of follicle pool protection.
Collapse
Affiliation(s)
- Luciana Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jacques Donnez
- Prof. Emeritus, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Department of Gynecology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
27
|
Jones A, Bernabé BP, Padmanabhan V, Li J, Shikanov A. Capitalizing on transcriptome profiling to optimize and identify targets for promoting early murine folliculogenesis in vitro. Sci Rep 2021; 11:12517. [PMID: 34131220 PMCID: PMC8206164 DOI: 10.1038/s41598-021-92036-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
In vitro ovarian follicle culture is an active area of research towards providing fertility options for survivors of childhood cancer. Late-stage murine follicles (multilayer secondary and onwards) can be cultured successfully to maturity to obtain a meiotically competent oocyte for fertilization, but primordial and primary follicles usually die in culture because many key components of early follicle development are still unknown and difficult to mimic in vitro. To engineer a biomimetic three-dimensional culture system with high efficacy and reproducibility for the clinic, detailed mechanisms of early folliculogenesis must be uncovered. Previous studies have shown that primary murine follicles co-cultured in groups, in contrast to single follicles cultured in isolation, can reach preovulatory size and produce competent oocytes, but the factors accounting for the synergy of follicle co-culture are still unknown. To probe the underlying mechanisms of successful follicle co-culture, we conducted a time-course experiment for murine follicles encapsulated in 0.3% alginate hydrogels and compared between two conditions: groups of 5 (5X) versus groups of 10 (10X). For every 2 days during the course of 12 days, follicles were dissociated and somatic cells were isolated for microarray-based gene expression analysis (n = 380 follicles for 5X and n = 430 follicles for 10X). Gene activities in follicles co-cultured in larger groups (10X) had a distinct transcriptomic profile of key genes and pathways such as prolactin signaling and angiogenesis-related genes when compared to cells from follicles co-cultured in the smaller cohort (5X). To benchmark the results for follicles grown in culture, we compared our microarray data to data from murine follicles freshly isolated from the ovary at comparable stages of development previously published by Bernabé et al. Comparison of these datasets identified similarities and differences between folliculogenesis in the native microenvironment and the engineered in vitro system. A more detailed understanding of follicle growth in vitro will not only allow for better culture methods but also advance the field towards providing improved fertility options for survivors of childhood cancer.
Collapse
Affiliation(s)
- Andrea Jones
- Department of Biomedical Engineering, University of Michigan, 2126 Lurie Biomedical Engineering, 1101 Beal Avenue, Ann Arbor, MI, 48109, USA
| | - Beatriz Peñalver Bernabé
- Department of Bioengineering, College of Medicine, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, 2126 Lurie Biomedical Engineering, 1101 Beal Avenue, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jun Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, 2126 Lurie Biomedical Engineering, 1101 Beal Avenue, Ann Arbor, MI, 48109, USA.
- Department of Obstetrics and Gynecology, University of Michigan, 2126 Lurie Biomedical Engineering, 1101 Beal Avenue, Ann Arbor, MI, 48109, USA.
- Department of Macromolecular Science and Engineering, University of Michigan, 2126 Lurie Biomedical Engineering, 1101 Beal Avenue, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
28
|
Thuwanut P, Comizzoli P, Pimpin A, Srituravanich W, Sereepapong W, Pruksananonda K, Taweepolcharoen C, Tuntiviriyapun P, Suebthawinkul C, Sirayapiwat P. Influence of hydrogel encapsulation during cryopreservation of ovarian tissues and impact of post-thawing in vitro culture systems in a research animal model. Clin Exp Reprod Med 2021; 48:111-123. [PMID: 34024082 PMCID: PMC8176157 DOI: 10.5653/cerm.2020.04056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/31/2021] [Indexed: 12/02/2022] Open
Abstract
Objective Using domestic cats as a biomedical research model for fertility preservation, the present study aimed to characterize the influences of ovarian tissue encapsulation in biodegradable hydrogel matrix (fibrinogen/thrombin) on resilience to cryopreservation, and static versus non-static culture systems following ovarian tissue encapsulation and cryopreservation on follicle quality. Methods In experiment I, ovarian tissues (n=21 animals; 567 ovarian fragments) were assigned to controls or hydrogel encapsulation with 5 or 10 mg/mL fibrinogen (5 or 10 FG). Following cryopreservation (slow freezing or vitrification), follicle viability, morphology, density, and key protein phosphorylation were assessed. In experiment II (based on the findings from experiment I), ovarian tissues (n=10 animals; 270 ovarian fragments) were encapsulated with 10 FG, cryopreserved, and in vitro cultured under static or non-static systems for 7 days followed by similar follicle quality assessments. Results In experiment I, the combination of 10 FG encapsulation/slow freezing led to greater post-thawed follicle quality than in the control group, as shown by follicle viability (66.9%±2.2% vs. 61.5%±3.1%), normal follicle morphology (62.2%±2.1% vs. 55.2%±3.5%), and the relative band intensity of vascular endothelial growth factor protein phosphorylation (0.58±0.06 vs. 0.42±0.09). Experiment II demonstrated that hydrogel encapsulation promoted follicle survival and maintenance of follicle development regardless of the culture system when compared to fresh controls. Conclusion These results provide a better understanding of the role of hydrogel encapsulation and culture systems in ovarian tissue cryopreservation and follicle quality outcomes using an animal model, paving the way for optimized approaches to human fertility preservation.
Collapse
Affiliation(s)
- Paweena Thuwanut
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Research Unit of Reproductive Medicine and Fertility Preservation, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Alongkorn Pimpin
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Weerayut Srituravanich
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Wisan Sereepapong
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Research Unit of Reproductive Medicine and Fertility Preservation, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kamthorn Pruksananonda
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Research Unit of Reproductive Medicine and Fertility Preservation, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Charoen Taweepolcharoen
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Research Unit of Reproductive Medicine and Fertility Preservation, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Punkavee Tuntiviriyapun
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Research Unit of Reproductive Medicine and Fertility Preservation, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chanakarn Suebthawinkul
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Research Unit of Reproductive Medicine and Fertility Preservation, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Porntip Sirayapiwat
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Research Unit of Reproductive Medicine and Fertility Preservation, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
29
|
Kim SW, Kim YY, Kim H, Ku SY. Recent Advancements in Engineered Biomaterials for the Regeneration of Female Reproductive Organs. Reprod Sci 2021; 28:1612-1625. [PMID: 33797052 DOI: 10.1007/s43032-021-00553-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Various gynecologic diseases and chemoradiation or surgery for the management of gynecologic malignancies may damage the uterus and ovaries, leading to clinical problems such as infertility or early menopause. Embryo or oocyte cryopreservation-the standard method for fertility preservation-is not a feasible option for patients who require urgent treatment because the procedure requires ovarian stimulation for at least several days. Hormone replacement therapy (HRT) for patients diagnosed with premature menopause is contraindicated for patients with estrogen-dependent tumors or a history of thrombosis. Furthermore, these methods cannot restore the function of the uterus and ovaries. Although autologous transplantation of cryopreserved ovarian tissue is being attempted, it may re-introduce malignant cells after cancer treatment. With the recent development in regenerative medicine, research on engineered biomaterials for the restoration of female reproductive organs is being actively conducted. The use of engineered biomaterials is a promising option in the field of reproductive medicine because it can overcome the limitations of current therapies. Here, we review the ideal properties of biomaterials for reproductive tissue engineering and the recent advancements in engineered biomaterials for the regeneration of female reproductive organs.
Collapse
Affiliation(s)
- Sung Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea. .,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea.
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea. .,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea. .,Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, 2024 E. Monument St, Baltimore, MD, 21205, USA.
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
30
|
Delaying Reproductive Aging by Ovarian Tissue Cryopreservation and Transplantation: Is it Prime Time? Trends Mol Med 2021; 27:753-761. [PMID: 33549473 DOI: 10.1016/j.molmed.2021.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Ovarian tissue cryopreservation and autotransplantation can restore ovarian endocrine function and fertility and recently were changed from experimental to fertility preservation procedures for medical indications by the American Society of Reproductive Medicine. Such advances have resulted in discussions around the utility of ovarian cryopreservation in healthy women to preserve fertility and delay menopause or as a hormone replacement approach. Such 'elective' use of ovarian tissue cryopreservation requires a risk-benefit assessment. Here, we review evidence for and against the utility of ovarian tissue harvesting in healthy women, scrutinize recent and needed advances to enhance the feasibility of such an approach, and provide practice and future research guidelines.
Collapse
|
31
|
Shirazi Tehrani A, Mazoochi T, Akhavan Taheri M, Aghadavood E, Salehnia M. The Effects of Ovarian Encapsulation on Morphology and Expression of Apoptosis-Related Genes in Vitrified Mouse Ovary. J Reprod Infertil 2021; 22:23-31. [PMID: 33680882 PMCID: PMC7903669 DOI: 10.18502/jri.v22i1.4992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/17/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The purpose of this study was to determine the effects of alginate hydrogel as a capsule to protect the ovary against possible detrimental effects of vitrification and warming on morphology and expression of apoptosis-related genes in the mouse ovary. METHODS In this experimental study, the ovaries from twenty-five female 8-week-old mice were divided into five groups of non-vitrified ovaries, vitrified ovaries, ovaries that were encapsulated with concentrations of 0.5, 0.75 and 1% of alginate hydrogel. The morphological study was performed using hematoxylin and eosin staining. Expression levels of apoptosis-associated genes were quantified in each group by real-time RT-PCR. The one-way ANOVA and post hoc test were used to analyze the data and values of p<0.05 were considered statistically significant. RESULTS The results of follicle count showed that the mean of total follicles in all groups was not significantly different. The average number of atretic follicles in vitrified and experimental groups significantly increased in comparison with the nonvitrified group (p=0.001). The results of the evaluation of apoptosis-related genes showed that the ratio of BAX/BCL-2 in experimental groups 1 and 2 was significantly higher than the vitrified group and experimental group 3 (p=0.000). The expression level of caspase 3 gene was not significantly different among all groups. CONCLUSION Ovarian encapsulation with used concentrations of alginate hydrogel failed to improve the morphology and molecular aspects of follicles and it was not able to better preserve the intact follicles of vitrified ovaries. However, morphological and molecular findings appear to improve with increasing alginate hydrogel concentration.
Collapse
Affiliation(s)
| | - Tahereh Mazoochi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Akhavan Taheri
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavood
- Department of Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mojdeh Salehnia
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
32
|
Zhang S, Zhu D, Mei X, Li Z, Li J, Xie M, Xie HJW, Wang S, Cheng K. Advances in biomaterials and regenerative medicine for primary ovarian insufficiency therapy. Bioact Mater 2020; 6:1957-1972. [PMID: 33426370 PMCID: PMC7773538 DOI: 10.1016/j.bioactmat.2020.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Primary ovarian insufficiency (POI) is an ovarian dysfunction that affects more than 1 % of women and is characterized by hormone imbalances that afflict women before the age of 40. The typical perimenopausal symptoms result from abnormal levels of sex hormones, especially estrogen. The most prevalent treatment is hormone replacement therapy (HRT), which can relieve symptoms and improve quality of life. However, HRT cannot restore ovarian functions, including secretion, ovulation, and fertility. Recently, as part of a developing field of regenerative medicine, stem cell therapy has been proposed for the treatment of POI. Thus, we recapitulate the literature focusing on the use of stem cells and biomaterials for POI treatment, and sum up the underlying mechanisms of action. A thorough understanding of the work already done can aid in the development of guidelines for future translational applications and clinical trials that aim to cure POI by using regenerative medicine and biomedical engineering strategies. This paper illustrates the in-vivo, in-vitro, and cell-free treatments for POI using stem cells and biomaterials. We provide basic theories and suggestions for future research and clinical therapy translation. This review can help researcher to develop guidelines on stem cells treating POI.
Collapse
Affiliation(s)
- Sichen Zhang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Xuan Mei
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Junlang Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Mengjie Xie
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Halle Jiang Williams Xie
- Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
33
|
Dolmans MM, Donnez J, Cacciottola L. Fertility Preservation: The Challenge of Freezing and Transplanting Ovarian Tissue. Trends Mol Med 2020; 27:777-791. [PMID: 33309205 DOI: 10.1016/j.molmed.2020.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/06/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Cancer treatments are increasingly effective, but can result in iatrogenic premature ovarian insufficiency. Ovarian tissue cryopreservation is the only option available to preserve fertility in prepubertal girls and young women who require immediate chemotherapy. Ovarian tissue transplantation has been shown to restore hormonal cycles and fertility, but a large proportion of the follicle reserve is lost as a consequence of exposure to hypoxia. Another crucial concern is the risk of reimplanting malignant cells together with the grafted tissue. In this review, the authors advance some challenging propositions, from prevention of chemotherapy-related gonadotoxicity to ovarian tissue cryopreservation and transplantation, including the artificial ovary approach.
Collapse
Affiliation(s)
- Marie-Madeleine Dolmans
- Gynecology Department, Cliniques universitaires St-Luc, Brussels, Belgium; Pôle de Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| | - Jacques Donnez
- Prof. Em. Catholic University of Louvain, Brussels, Belgium; Société de Recherche pour l'Infertilité (SRI), Brussels, Belgium
| | - Luciana Cacciottola
- Pôle de Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
34
|
Biofunctionalized fibrin gel co-embedded with BMSCs and VEGF for accelerating skin injury repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111749. [PMID: 33579437 DOI: 10.1016/j.msec.2020.111749] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/07/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
Rapid and effective repair of epithelial tissue is desirable for improving the success rate of operation and reducing postoperative complications. Hydrogel is a widely studied wound repair material, especially as a wound dressing for damaged epithelial tissue. Based on the catalytic effect of thrombin on fibrinogen, in this study, a three-dimensional fibrin gel which of adequate epithelial cell compatibility was constructed by using thrombin and fibrinogen under the cross-linking action of calcium ion. Immunofluorescence staining and hematoxylin-eosin (H&E) staining showed that bone marrow mesenchymal stem cell (BMSC) was embedded in fibrin gel. Furthermore, vascular endothelial growth factor (VEGF) was used to induce BMSC to differentiate into CD31+ and vWF+ endothelial cell (EC) in fibrin gel. The results showed that the fibrin gel surface may effectively promote the adhesion and proliferation of EC and smooth muscle cell (SMC). After 15 days of culture, it was found that the BMSC embedded in the hydrogel had differentiated into EC. The results of in vivo skin wound experiment in rats further proved that the fibrin gel containing BMSC could promote wound healing and repair, and showed the potential to promote neovascularization at the injured site. The construction method of hydrogel materials proposed in this study has potential application value in the field of regenerative medicine.
Collapse
|
35
|
Souza SS, Alves BG, Alves KA, Brandão FAS, Brito DCC, Gastal MO, Rodrigues APR, Figueireod JR, Teixeira DIA, Gastal EL. Heterotopic autotransplantation of ovarian tissue in a large animal model: Effects of cooling and VEGF. PLoS One 2020; 15:e0241442. [PMID: 33147235 PMCID: PMC7641372 DOI: 10.1371/journal.pone.0241442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Heterotopic and orthotopic ovarian tissue autotransplantation techniques, currently used in humans, will become promising alternative methods for fertility preservation in domestic and wild animals. Thus, this study describes for the first time the efficiency of a heterotopic ovarian tissue autotransplantation technique in a large livestock species (i.e., horses) after ovarian fragments were exposed or not to a cooling process (4°C/24 h) and/or VEGF before grafting. Ovarian fragments were collected in vivo via an ultrasound-guided biopsy pick-up method and surgically autografted in a subcutaneous site in both sides of the neck in each mare. The blood flow perfusion at the transplantation site was monitored at days 2, 4, 6, and 7 post-grafting using color-Doppler ultrasonography. Ovarian grafts were recovered 7 days post-transplantation and subjected to histological analyses. The exposure of the ovarian fragments to VEGF before grafting was not beneficial to the quality of the tissue; however, the cooling process of the fragments reduced the acute hyperemia post-grafting. Cooled grafts compared with non-cooled grafts contained similar values for normal and developing preantral follicles, vessel density, and stromal cell apoptosis; lower collagen type III fibers and follicular density; and higher stromal cell density, AgNOR, and collagen type I fibers. In conclusion, VEGF exposure before autotransplantation did not improve the quality of grafted tissues. However, cooling ovarian tissue for at least 24 h before grafting can be beneficial because satisfactory rates of follicle survival and development, stromal cell survival and proliferation, as well as vessel density, were obtained.
Collapse
Affiliation(s)
- Samara S. Souza
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Benner G. Alves
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Kele A. Alves
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Fabiana A. S. Brandão
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Danielle C. C. Brito
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Melba O. Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Ana P. R. Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - José R. Figueireod
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Dárcio I. A. Teixeira
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Eduardo L. Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, United States of America
| |
Collapse
|
36
|
Rajabzadeh A, Jahanpeyma F, Talebi A, Moradi F, Hamidieh AA, Eimani H. Fibrin Scaffold Incorporating Platelet Lysate Enhance Follicle Survival and Angiogenesis in Cryopreserved Preantral Follicle Transplantation. Galen Med J 2020; 9:e1558. [PMID: 34466553 PMCID: PMC8344035 DOI: 10.31661/gmj.v9i0.1558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/10/2019] [Accepted: 06/15/2019] [Indexed: 01/22/2023] Open
Abstract
Background: Transplantation of cryopreserved follicles can be regarded as a promising strategy for preserving fertility in cancer patients under chemotherapy and radiotherapy by reducing the risk of cancer recurrence. The present study aimed to evaluate whether fibrin hydrogel supplemented with platelet lysate (PL) could be applied to enhance follicular survival, growth, and angiogenesis in cryopreserved preantral follicle grafts. Materials and Methods: Preantral follicles were extracted from 15 four-week-old NMRI mice, cryopreserved by cryotop method, and encapsulated in fibrin-platelet lysate for subsequent heterotopic (subcutaneous) auto-transplantation into the neck. Transplants were assessed in three groups including fresh follicles in fibrin-15%PL, cryopreserved follicles in fibrin-15%PL, and cryopreserved follicles in fibrin-0% PL. Two weeks after transplantation, histological, and immunohistochemistry (CD31) analysis were applied to evaluate follicle morphology, survival rate, and vascular formation, respectively. Results: Based on the results, fibrin-15% PL significantly increased neovascularization and survival rate (SR) both in cryopreserved (SR=66.96%) and fresh follicle (SR=90.8%) grafts, compared to PL-less fibrin cryopreserved transplants (SR=28.46%). The grafts supplemented with PL included a significantly higher percentage of preantral and antral follicles. Also, no significant difference was observed in the percentage of preantral follicles between cryopreserved and fresh grafts of fibrin-15% PL. However, a significantly lower (P=0.03) percentage of follicles (23.37%) increased to the antral stage in cryopreserved grafts of fibrin-15%PL, compared to fresh grafts (35.01%). Conclusion: The findings demonstrated that fibrin-PL matrix could be a promising strategy to improve cryopreserved follicle transplantation and preserve fertility in cancer patients at the risk of ovarian failure.
Collapse
Affiliation(s)
- Alireza Rajabzadeh
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jahanpeyma
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Talebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Faezeh Moradi
- Department of Tissue Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Stem Cell Transplant Department, Children’s Medical center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hussein Eimani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Correspondence to: Hussein Eimani, Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran Telephone Number: +989123063192 Email Address:
| |
Collapse
|
37
|
Woodruff TK. Lessons from bioengineering the ovarian follicle: a personal perspective. Reproduction 2020; 158:F113-F126. [PMID: 31846436 DOI: 10.1530/rep-19-0190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
The ovarian follicle and its maturation captivated my imagination and inspired my scientific journey - what we know now about this remarkable structure is captured in this invited review. In the past decade, our knowledge of the ovarian follicle expanded dramatically as cross-disciplinary collaborations brought new perspectives to bear, ultimately leading to the development of extragonadal follicles as model systems with significant clinical implications. Follicle maturation in vitro in an 'artificial' ovary became possible by learning what the follicle is fundamentally and autonomously capable of - which turns out to be quite a lot. Progress in understanding and harnessing follicle biology has been aided by engineers and materials scientists who created hardware that enables tissue function for extended periods of time. The EVATAR system supports extracorporeal ovarian function in an engineered environment that mimics the endocrine environment of the reproductive tract. Finally, applying the tools of inorganic chemistry, we discovered that oocytes require zinc to mature over time - a truly new aspect of follicle biology with no antecedent other than the presence of zinc in sperm. Drawing on the tools and ideas from the fields of bioengineering, materials science and chemistry unlocked follicle biology in ways that we could not have known or even predicted. Similarly, how today's basic science discoveries regarding ovarian follicle maturation are translated to improve the experience of tomorrow's patients is yet to be determined.
Collapse
Affiliation(s)
- Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
38
|
Restoration of estrous cycles by co-transplantation of mouse ovarian tissue with MSCs. Cell Tissue Res 2020; 381:509-525. [PMID: 32424509 DOI: 10.1007/s00441-020-03204-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
This study investigates the effect of bone marrow (BM-MSCs) and visceral peritoneum (VP-MSCs)-derived mesenchymal stem cells on the transplanted ovary. VP-MSCs and BM-MSCs were obtained from green fluorescent protein-expressing mice (GFP+). Six- to eight-week-old female NMRI mice were divided into four experimental groups, autograft ovarian tissue fragments (AO), autograft ovarian tissue fragments encapsulated in fibrin-collagen hydrogel (AO-H), autograft ovarian tissue fragments encapsulated in fibrin-collagen hydrogel containing BM-MSCs (AO-HB) and autograft ovarian tissue fragments encapsulated in fibrin-collagen hydrogel containing VP-MSCs (AO-HP). Intact ovary (IO) was the control group. The estrous cycles resumption time was monitored and at the third estrous cycle, the blood samples and grafted ovaries were evaluated using hormonal, histological and gene expression analysis. Onset of estrous cycles, especially at the second cycle, was earlier in AO-HB and AO-HP groups than in the AO-H group (P < 0.05). Moreover, E2 and FSH levels in AO-HB and AO-HP groups were returned to those of the intact group. However, folliculogenesis was still retarded as compared with the IO group. The gene expression of theca (Lhcgr, Cyp17a1, Gli2, Gli3 and Ptch1), granulosa (Amh and Fshr), oocyte (Zp3 and Gdf9), germ cells (Stella and Prdm1), angiogenesis (VEGF and bFGF) and apoptosis (Bax/Bcl2 and Caspase3) markers was similar in both AO-HB and AO-HP groups. Expression of Amh, Fshr, Gdf9 and VEGF increased only in the AO-HP group whereas expression of Ptch1 increased only in the AO-HB group, as compared with the AO group (P < 0.05). In conclusion, BM-MSCs or VP-MSCs can improve ovarian autotransplantation in mice with no superiority over each other.
Collapse
|
39
|
Gargus ES, Rogers HB, McKinnon KE, Edmonds ME, Woodruff TK. Engineered reproductive tissues. Nat Biomed Eng 2020; 4:381-393. [PMID: 32251392 PMCID: PMC7416444 DOI: 10.1038/s41551-020-0525-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
Engineered male and female biomimetic reproductive tissues are being developed as autonomous in vitro units or as integrated multi-organ in vitro systems to support germ cell and embryo function, and to display characteristic endocrine phenotypic patterns, such as the 28-day human ovulatory cycle. In this Review, we summarize how engineered reproductive tissues facilitate research in reproductive biology, and overview strategies for making engineered reproductive tissues that might eventually allow the restoration of reproductive capacity in patients.
Collapse
Affiliation(s)
- Emma S Gargus
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hunter B Rogers
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kelly E McKinnon
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maxwell E Edmonds
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
40
|
Laronda MM. Engineering a bioprosthetic ovary for fertility and hormone restoration. Theriogenology 2020; 150:8-14. [PMID: 31973967 DOI: 10.1016/j.theriogenology.2020.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/14/2022]
Abstract
There has been an increase in childhood cancer survivors over the past few decades, and with this, an increased awareness of the co-morbidities of the treatment or disease that affect the survivor's quality-of-life. The increased rate of infertility among this patient group and the desire to have biological children voiced by childhood cancer survivors underscores the urgent need for fertility preservation and development of techniques to restore fertility and gonadal hormone function for this population. The ovarian tissue contains a finite source of female gametes that can be transplanted to restore ovarian function and has resulted in over one hundred reported live births. However, the success of biological offspring per ovarian tissue transplant, the reduced lifespan of these transplants, and the potential for these tissues to contain cancer cells from patients with metastatic diseases supports the need for improved options. One innovation that could improve ovarian transplantation is the development of a bioprosthetic ovary comprised of a 3D printed scaffold with isolated ovarian follicles. A murine bioprosthetic ovary restored ovarian hormones in ovariectomized mice, which also gave birth to healthy offspring. Research is ongoing to create the next iteration of the scaffold that would support ovarian follicles from large animal models and humans with the hopes of translating this technology for patients.
Collapse
Affiliation(s)
- Monica M Laronda
- Department of Endocrinology, Department of Surgery and Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, USA.
| |
Collapse
|
41
|
Lautz TB, Harris CJ, Laronda MM, Erickson LL, Rowell EE. A fertility preservation toolkit for pediatric surgeons caring for children with cancer. Semin Pediatr Surg 2019; 28:150861. [PMID: 31931969 DOI: 10.1016/j.sempedsurg.2019.150861] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Survival for children with cancer has improved significantly in recent decades, prompting an increasing emphasis on minimizing late effects of therapy, including infertility and premature gonadal insufficiency. The time interval after diagnosis and before therapy initiation can be stressful and overwhelming for patients and their families coming to terms with the implications of the diagnosis, but is also the optimal time to address oncofertility options. Pediatric surgeons are often an integral part of the care team for these patients during this vulnerable time period and play a key role in advocating for and performing oncofertility procedures. Children with cancer have both non-experimental and experimental fertility preservation options available depending on their pubertal status and a risk assessment performed based on their anticipated therapy. This review provides an oncofertility toolkit for pediatric surgeons to perform a risk assessment, counsel families on fertility preservation options, and establish an oncofertility program tailored to the resources available at their institutions.
Collapse
Affiliation(s)
- Timothy B Lautz
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Division of Pediatric Surgery, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue Box 63, Chicago, IL, United States.
| | - Courtney J Harris
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Division of Pediatric Surgery, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue Box 63, Chicago, IL, United States
| | - Monica M Laronda
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Laura L Erickson
- Division of Pediatric Surgery, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue Box 63, Chicago, IL, United States
| | - Erin E Rowell
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Division of Pediatric Surgery, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue Box 63, Chicago, IL, United States
| |
Collapse
|
42
|
Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Acta Biomater 2019; 99:121-132. [PMID: 31539655 DOI: 10.1016/j.actbio.2019.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/26/2019] [Accepted: 09/07/2019] [Indexed: 12/20/2022]
Abstract
The field of 3D bioprinting has rapidly grown, yet the fundamental ability to manipulate material properties has been challenging with current bioink methods. Here, we change bioink properties using our PEG cross-linking (PEGX) bioink method with the objective of optimizing cell viability while retaining control of mechanical properties of the final bioprinted construct. First, we investigate cytocompatible, covalent cross-linking chemistries for bioink synthesis (e.g. Thiol Michael type addition and bioorthogonal inverse electron demand Diels-Alder reaction). We demonstrate these reactions are compatible with the bioink method, which results in high cell viability. The PEGX method is then exploited to optimize extruded cell viability by manipulating bioink gel robustness, characterized by mass flow rate. Below a critical point, cell viability linearly decreases with decreasing flow rates, but above this point, high viability is achieved. This work underscores the importance of building a foundational understanding of the relationships between extrudable bioink properties and cell health post-printing to more efficiently tune material properties for a variety of tissue and organ engineering applications. Finally, we also develop a post-printing, cell-friendly cross-linking strategy utilizing the same reactions used for synthesis. This secondary cross-linking leads to a range of mechanical properties relevant to soft tissue engineering as well as highly viable cell-laden gels stable for over one month in culture. STATEMENT OF SIGNIFICANCE: We demonstrate that a PEG crosslinking bioink method can be used with various cytocompatible, covalent cross-linking reactions: Thiol Michael type addition and tetrazine-norbornene click. The ability to vary bioink chemistry expands candidate polymers, and therefore can expedite development of new bioinks from unique polymers. We confirm post-printed cell viability and are the first to probe, in covalently cross-linked inks, how cell viability is impacted by different flow properties (mass flow rate). Finally, we also present PEG cross-linking as a new method of post-printing cross-linking that improves mechanical properties and stability while maintaining cell viability. By varying the cross-linking reaction, this method can be applicable to many types of polymers/inks for easy adoption by others investigating bioinks and hydrogels.
Collapse
|
43
|
Effect of recombinant human vascular endothelial growth factor on testis tissue xenotransplants from prepubertal boys: a three-case study. Reprod Biomed Online 2019; 39:119-133. [DOI: 10.1016/j.rbmo.2019.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 11/23/2022]
|
44
|
Takae S, Suzuki N. Current state and future possibilities of ovarian tissue transplantation. Reprod Med Biol 2019; 18:217-224. [PMID: 31312099 PMCID: PMC6613018 DOI: 10.1002/rmb2.12268] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/25/2019] [Accepted: 03/08/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND As a result of recent developments in cancer treatment, cancer survivorship and survivors' quality of life have been emphasized. Although ovarian tissue cryopreservation (OTC) is an experimental technique, it would be the sole technique for fertility preservation treatment for girls with malignant disease. Indeed, OTC requires ovarian tissue transplantation (OTT) for conception. As for OTC, there is room to investigate OTT. The present review focused on the current state and progress of OTT. METHOD The literature regarding OTT, which is currently under development, was reviewed. MAIN FINDINGS To improve the outcome of OTT, both efficacy and safety are important. Good surgical technique and the optimal site are important surgical factors, with orthotopic transplantation increasing. Treatment of growth factors, gonadotropins, antioxidants, apoptosis suppression factors, and cell therapy may improve the efficacy of OTT by inducing neo-angiogenesis and preventing damage. Artificial ovaries, complete in vitro primordial follicle culture technique, and non-invasive ovarian imaging techniques, such as optical coherence tomography, to select the best ovarian tissue are future possibilities. CONCLUSION Improving neo-angiogenesis and preventing damage with optimization, as well as investigation of future techniques, may bring us to the next stage of a fertility preservation strategy.
Collapse
Affiliation(s)
- Seido Takae
- Department of Obstetrics and GynecologySt. Marianna University School of MedicineKawasaki CityJapan
| | - Nao Suzuki
- Department of Obstetrics and GynecologySt. Marianna University School of MedicineKawasaki CityJapan
| |
Collapse
|
45
|
Tan X, David A, Day J, Tang H, Dixon ER, Zhu H, Chen YC, Khaing Oo MK, Shikanov A, Fan X. Rapid Mouse Follicle Stimulating Hormone Quantification and Estrus Cycle Analysis Using an Automated Microfluidic Chemiluminescent ELISA System. ACS Sens 2018; 3:2327-2334. [PMID: 30335974 DOI: 10.1021/acssensors.8b00641] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Follicle stimulating hormone (FSH) plays a critical role in female reproductive development and homeostasis. The blood/serum concentration of FSH is an important marker for reporting multiple endocrinal functions. The standardized method for mouse FSH (mFSH) quantification based on radioimmunoassay (RIA) suffers from long assay time (∼2 days), relatively low sensitivity, larger sample volume (60 μL), and small dynamic range (2-60 ng/mL); thus, it is insufficient for monitoring fast developing events with relatively small mFSH fluctuations (e.g., estrous cycles of mammals). Here, we developed an automated microfluidic chemiluminescent ELISA device along with the disposal sensor array and the corresponding detection protocol for rapid and quantitative analysis of mFSH from mouse tail serum samples. With this technology, highly sensitive quantification of mFSH can be accomplished within 30 min using only 8 μL of the serum sample. It is further shown that our technique is able to generate results comparable to RIA but has a significantly improved dynamic range that covers 0.5-250 ng/mL. The performance of this technology was evaluated with blood samples collected from ovariectomized animals and animals with reimplanted ovarian tissues, which restored ovarian endocrine function and correlated with estrus cycle analysis study.
Collapse
Affiliation(s)
- Xiaotian Tan
- Department of Biomedical Engineering, University of Michigan 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Anu David
- Department of Biomedical Engineering, University of Michigan 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - James Day
- Department of Biomedical Engineering, University of Michigan 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Haoyue Tang
- Optofluidic Bioassay, LLC 600 South Wagner Street, Suite 131, Ann Arbor, Michigan 48103, United States
| | - Emily Rose Dixon
- Optofluidic Bioassay, LLC 600 South Wagner Street, Suite 131, Ann Arbor, Michigan 48103, United States
| | - Hongbo Zhu
- Department of Biomedical Engineering, University of Michigan 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Yu-Cheng Chen
- Department of Biomedical Engineering, University of Michigan 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Maung Kyaw Khaing Oo
- Optofluidic Bioassay, LLC 600 South Wagner Street, Suite 131, Ann Arbor, Michigan 48103, United States
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
46
|
Evaluation of Z-VAD-FMK as an anti-apoptotic drug to prevent granulosa cell apoptosis and follicular death after human ovarian tissue transplantation. J Assist Reprod Genet 2018; 36:349-359. [PMID: 30390176 DOI: 10.1007/s10815-018-1353-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/19/2018] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To evaluate the efficiency of ovarian tissue treatment with Z-VAD-FMK, a broad-spectrum caspase inhibitor, to prevent follicle loss induced by ischemia/reperfusion injury after transplantation. METHODS In vitro, granulosa cells were exposed to hypoxic conditions, reproducing early ischemia after ovarian tissue transplantation, and treated with Z-VAD-FMK (50 μM). In vivo, cryopreserved human ovarian fragments (n = 39) were embedded in a collagen matrix containing or not Z-VAD-FMK (50 μM) and xenotransplanted on SCID mice ovaries for 3 days or 3 weeks. RESULTS In vitro, Z-VAD-FMK maintained the metabolic activity of granulosa cells, reduced HGL5 cell death, and decreased PARP cleavage. In vivo, no improvement of follicular pool and global tissue preservation was observed with Z-VAD-FMK in ovarian tissue recovered 3-days post-grafting. Conversely, after 3 weeks of transplantation, the primary follicular density was higher in fragments treated with Z-VAD-FMK. This improvement was associated with a decreased percentage of apoptosis in the tissue. CONCLUSIONS In situ administration of Z-VAD-FMK slightly improves primary follicular preservation and reduces global apoptosis after 3 weeks of transplantation. Data presented herein will help to guide further researches towards a combined approach targeting multiple cell death pathways, angiogenesis stimulation, and follicular recruitment inhibition.
Collapse
|
47
|
Hormone Replacement Therapy: Would it be Possible to Replicate a Functional Ovary? Int J Mol Sci 2018; 19:ijms19103160. [PMID: 30322209 PMCID: PMC6214095 DOI: 10.3390/ijms19103160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 01/05/2023] Open
Abstract
Background: Throughout history, menopause has been regarded as a transition in a woman’s life. With the increase in life expectancy, women now spend more than a third of their lives in menopause. During these years, women may experience intolerable symptoms both physically and mentally, leading them to seek clinical advice. It is imperative for healthcare providers to improve the quality of life by reducing bothersome menopausal symptoms and preventing disorders such as osteoporosis and atherosclerosis. The current treatment in the form of hormone replacement therapy (HRT) is sometimes inadequate with several limitations and adverse effects. Objective and rationale: The current review aims to discuss the need, efficacy, and limitations of current HRT; the role of other ovarian hormones, and where we stand in comparison with ovary-in situ; and finally, explore towards the preparation of an HRT model by regeneration of ovaries tissues through stem cells which can replicate a functional ovary. Search methods: Four electronic databases (MEDLINE, Embase, Web of Science and CINAHL) were searched from database inception until 26 April 2018, using a combination of relevant controlled vocabulary terms and free-text terms related to ‘menopause’, ‘hormone replacement therapy’, ‘ovary regeneration’, ‘stem cells’ and ‘ovarian transplantation’. Outcomes: We present a synthesis of the existing data on the efficacy and limitations of HRT. HRT is far from adequate in postmenopausal women with symptoms of hormone deprivation as it fails to deliver all hormones secreted by naïve ovarian tissue. Moreover, the pharmacokinetics of synthetic hormones makes them substantially different from natural ones. Not only does the number and type of hormones given in HRT matter, but the route of delivering and their release in circulation are also imperative. The hormones are delivered either orally or topically in a non-physiological uniform manner, which brings along with it several side effects. These identify the need for a hormone delivery system which replicates, integrates and reacts as per the requirement of the female body. Wider implications: The review outlines the strengths and weaknesses of HRT and highlights the potential areas for future research. There is a tremendous potential for research in this field to understand the collective roles of the various ovarian hormones and to devise an auto-regulated hormone delivery system which replicates the normal physiology. Its clinical applications can prove to be transformative for postmenopausal women helping them to lead a healthy and productive life.
Collapse
|
48
|
Takai Y. Recent advances in oncofertility care worldwide and in Japan. Reprod Med Biol 2018; 17:356-368. [PMID: 30377391 PMCID: PMC6194250 DOI: 10.1002/rmb2.12214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Oncofertility is a crucial facet of cancer supportive care. The publication of guidelines for the cryopreservation of oocytes and ovarian tissue is becoming increasingly prevalent in Japan and an updated overview is necessary. METHODS In order to provide an updated overview of oncofertility care, original research and review articles were searched from the PubMed database and compared in order to present clinical care in Japan. RESULTS In Western countries, various methods for ovarian stimulation, such as the combined use of aromatase inhibitors and random-start protocols, have been reported. Although ovarian tissue cryopreservation, mainly performed via the slow-freezing method, also has yielded >100 live births, the optimal indications and procedures for the auto-transplantation of cryopreserved tissue have been under investigation. In Japan, however, vitrification is prevalent for ovarian tissue cryopreservation, although its efficacy has not yet been established. The quality of network systems for providing oncofertility care in Japan varies greatly, based on the region. CONCLUSION There remain many issues in the optimization of oncofertility care in Japan. Along with the regional oncofertility networks, the creation of "oncofertility navigators" from healthcare providers who are familiar with oncofertility, such as nurses, psychologists, and embryologists, could be useful for supplementing oncofertility care coordination, overcoming the issues in individual regions.
Collapse
Affiliation(s)
- Yasushi Takai
- Department of Obstetrics and GynecologySaitama Medical CenterSaitama Medical UniversityKawagoeJapan
| |
Collapse
|
49
|
Rios PD, Kniazeva E, Lee HC, Xiao S, Oakes RS, Saito E, Jeruss JS, Shikanov A, Woodruff TK, Shea LD. Retrievable hydrogels for ovarian follicle transplantation and oocyte collection. Biotechnol Bioeng 2018; 115:2075-2086. [PMID: 29704433 PMCID: PMC6045426 DOI: 10.1002/bit.26721] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 04/25/2018] [Indexed: 01/17/2023]
Abstract
Cancer survivorship rates have drastically increased due to improved efficacy of oncologic treatments. Consequently, clinical concerns have shifted from solely focusing on survival to quality of life, with fertility preservation as an important consideration. Among fertility preservation strategies for female patients, ovarian tissue cryopreservation and subsequent reimplantation has been the only clinical option available to cancer survivors with cryopreserved tissue. However, follicle atresia after transplantation and risk of reintroducing malignant cells have prevented this procedure from becoming widely adopted in clinics. Herein, we investigated the encapsulation of ovarian follicles in alginate hydrogels that isolate the graft from the host, yet allows for maturation after transplantation at a heterotopic (i.e., subcutaneous) site, a process we termed in vivo follicle maturation. Survival of multiple follicle populations was confirmed via histology, with the notable development of the antral follicles. Collected oocytes (63%) exhibited polar body extrusion and were fertilized by intracytoplasmic sperm injection and standard in vitro fertilization procedures. Successfully fertilized oocytes developed to the pronucleus (14%), two-cell (36%), and four-cell (7%) stages. Furthermore, ovarian follicles cotransplanted with metastatic breast cancer cells within the hydrogels allowed for retrieval of the follicles, and no mice developed tumors after removal of the implant, confirming that the hydrogel prevented seeding of disease within the host. Collectively, these findings demonstrate a viable option for safe use of potentially cancer-laden ovarian donor tissue for in vivo follicle maturation within a retrievable hydrogel and subsequent oocyte collection. Ultimately, this technology may provide novel options to preserve fertility for young female patients with cancer.
Collapse
Affiliation(s)
- Peter D. Rios
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611
| | - Ekaterina Kniazeva
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611
| | - Hoi Chang Lee
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611
| | - Shuo Xiao
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611
| | - Robert S. Oakes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Eiji Saito
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Jacqueline S. Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Department of Surgery, University of Michigan, Ann Arbor, MI 48105
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - Teresa K. Woodruff
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
50
|
Tanaka A, Nakamura H, Tabata Y, Fujimori Y, Kumasawa K, Kimura T. Effect of sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogels on frozen-thawed human ovarian tissue in a xenograft model. J Obstet Gynaecol Res 2018; 44:1947-1955. [PMID: 29998469 DOI: 10.1111/jog.13726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/07/2018] [Indexed: 01/08/2023]
Abstract
AIM Ovarian tissue cryopreservation before cancer treatment is the only option to preserve fertility under some circumstances. However, tissue ischemia after transplantation while awaiting angiogenesis induces dysfunctional folliculogenesis and reduces ovarian reserve and is one of the disadvantages of frozen-thawed ovarian tissue transplantation. Basic fibroblast growth factor (bFGF) is a major regulator of angiogenesis. However, bFGF rapidly loses biological activity when its free form is injected in vivo. This study investigated whether administration of active bFGF helps establish a nurturing environment for follicular survival. METHODS A sheet form of a sustained release drug delivery system for bFGF was developed using biodegradable acidic gelatin hydrogel (bFGF sheet). The bFGF sheets or phosphate-buffered saline sheets, as a negative control, were transplanted with frozen-thawed human ovarian tissues subcutaneously into the backs of severe combined immunodeficient mice. Neovascularization, cell proliferation, fibrosis and follicular survival of ovarian grafts were analyzed at 6 weeks after xenografting. RESULTS The bFGF sheets were optimized to release bFGF for at least 10 days. The transplantation of bFGF sheets with frozen-thawed ovarian tissues significantly increased human and mouse CD31-positive areas and stromal and endothelial cell proliferations. The administration of bFGF also significantly decreased the percentage of the fibrotic area in the graft, resulting in a significant increase in primordial and primary follicular density. CONCLUSION Local administration of a sustained release of biologically active bFGF induced neovascularization in frozen-thawed ovarian tissue grafts, which could establish the nurturing environment required for follicular survival in heterotopic xenografts.
Collapse
Affiliation(s)
- Ayaka Tanaka
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hitomi Nakamura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yuka Fujimori
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiichi Kumasawa
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|