1
|
Zhang J, Zhu G, Liang Y, Wan L, Liu X, Yan H, Liu G, Zhang B, Yang G. Enhancing the utility of tuberous sclerosis complex-associated neuropsychiatric disorders checklist in China. Pediatr Investig 2024; 8:171-176. [PMID: 39347520 PMCID: PMC11427900 DOI: 10.1002/ped4.12447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/08/2024] [Indexed: 10/01/2024] Open
Abstract
The tuberous sclerosis complex (TSC)-associated neuropsychiatric disorders (TAND) Checklist is a reliable global screening tool for TAND in clinical settings, with six dimensions and 12 sections. For Chinese individuals with TSC, the implementation of the TAND Checklist provides a comprehensive approach to evaluating potential manifestations across various domains.
Collapse
Affiliation(s)
- Jing Zhang
- Senior Department of Pediatrics the Seventh Medical Center of Chinese PLA General Hospital Beijing China
- Department of Pediatrics the First Medical Center of Chinese PLA General Hospital Beijing China
- Medical School of Chinese PLA Beijing China
| | - Gang Zhu
- Senior Department of Pediatrics the Seventh Medical Center of Chinese PLA General Hospital Beijing China
- Department of Pediatrics the First Medical Center of Chinese PLA General Hospital Beijing China
- Medical School of Chinese PLA Beijing China
| | - Yan Liang
- Senior Department of Pediatrics the Seventh Medical Center of Chinese PLA General Hospital Beijing China
- Department of Pediatrics the First Medical Center of Chinese PLA General Hospital Beijing China
- Medical School of Chinese PLA Beijing China
| | - Lin Wan
- Senior Department of Pediatrics the Seventh Medical Center of Chinese PLA General Hospital Beijing China
- Department of Pediatrics the First Medical Center of Chinese PLA General Hospital Beijing China
- Medical School of Chinese PLA Beijing China
| | - Xinting Liu
- Senior Department of Pediatrics the Seventh Medical Center of Chinese PLA General Hospital Beijing China
- Department of Pediatrics the First Medical Center of Chinese PLA General Hospital Beijing China
- Medical School of Chinese PLA Beijing China
| | - Huimin Yan
- Senior Department of Pediatrics the Seventh Medical Center of Chinese PLA General Hospital Beijing China
- Department of Pediatrics the First Medical Center of Chinese PLA General Hospital Beijing China
- Medical School of Chinese PLA Beijing China
| | - Guoyin Liu
- Senior Department of Pediatrics the Seventh Medical Center of Chinese PLA General Hospital Beijing China
- Department of Pediatrics the First Medical Center of Chinese PLA General Hospital Beijing China
- Medical School of Chinese PLA Beijing China
| | - Bo Zhang
- Department of Neurology Boston Children's Hospital Harvard Medical School Boston Massachusetts USA
- Biostatistics and Research Design Center Institutional Centers for Clinical and Translational Research Boston Children's Hospital Harvard Medical School Boston Massachusetts USA
| | - Guang Yang
- Senior Department of Pediatrics the Seventh Medical Center of Chinese PLA General Hospital Beijing China
- Department of Pediatrics the First Medical Center of Chinese PLA General Hospital Beijing China
- Medical School of Chinese PLA Beijing China
| |
Collapse
|
2
|
Cardozo LFM, Schwind MR, Pereira APAD, Dufner-Almeida LG, Haddad LA, Bruck I, Antoniuk SA. Neuropsychological profile in tuberous sclerosis complex: a study of clinical and cognitive variables in a cohort from Brazil. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-8. [PMID: 38955213 DOI: 10.1055/s-0044-1787797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder with a wide clinical, cognitive, and behavioral expressivity. OBJECTIVE To assess the neuropsychological profile of individuals clinically diagnosed with TSC and the factors that could significantly impact their cognitive development. METHODS A total of 62 individuals with ages ranging from 3 to 38 years were followed up in a tertiary attention hospital in Southern Brazil, and they were assessed using a standard battery and the Vineland Adaptive Behavior Scales, when intellectual disability was observed. RESULTS History of epilepsy was found in 56 participants (90.3%), and 31 (50%) presented an intellectual disability. Among the other half of TSC individuals without intellectual disability, 8 (12.9%) presented borderline classification, 20 (32.2%) presented average scores, and 3 (4.8%) were above average. In total, 17 participants (27.4%) fulfilled the diagnostic criteria for autism spectrum disorder. The results of the multiple linear regression analysis suggested that seizures, age at diagnosis, visual perception, and general attention significantly impact cognitive performance indexes. CONCLUSION The present study suggests that the occurrence of epileptic seizures and older age at diagnosis contribute to higher impairment in the domains of cognitive development, underlining the importance of early diagnosis and the prevention of epileptic seizures or their rapid control. The development of attentional skills, visual perception, and executive functions must be followed up.
Collapse
Affiliation(s)
- Laís Faria Masulk Cardozo
- Universidade Federal do Paraná, Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Curitiba PR, Brazil
| | - Mariana Richartz Schwind
- Universidade Federal do Paraná, Hospital de Clínicas, Centro de Neurologia Pedriátrica, Curitiba PR, Brazil
| | - Ana Paula Almeida de Pereira
- Universidade Federal do Paraná, Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Curitiba PR, Brazil
| | - Luiz Gustavo Dufner-Almeida
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Centro de Pesquisa em Genoma Humano e Células-Tronco, São Paulo SP, Brazil
| | - Luciana Amaral Haddad
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Centro de Pesquisa em Genoma Humano e Células-Tronco, São Paulo SP, Brazil
| | - Isac Bruck
- Universidade Federal do Paraná, Hospital de Clínicas, Centro de Neurologia Pedriátrica, Curitiba PR, Brazil
| | - Sérgio Antonio Antoniuk
- Universidade Federal do Paraná, Hospital de Clínicas, Centro de Neurologia Pedriátrica, Curitiba PR, Brazil
| |
Collapse
|
3
|
Feybesse C, Chokron S, Tordjman S. Melatonin in Neurodevelopmental Disorders: A Critical Literature Review. Antioxidants (Basel) 2023; 12:2017. [PMID: 38001870 PMCID: PMC10669594 DOI: 10.3390/antiox12112017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The article presents a review of the relationships between melatonin and neurodevelopmental disorders. First, the antioxidant properties of melatonin and its physiological effects are considered to understand better the role of melatonin in typical and atypical neurodevelopment. Then, several neurodevelopmental disorders occurring during infancy, such as autism spectrum disorder or neurogenetic disorders associated with autism (including Smith-Magenis syndrome, Angelman syndrome, Rett's syndrome, Tuberous sclerosis, or Williams-Beuren syndrome) and neurodevelopmental disorders occurring later in adulthood like bipolar disorder and schizophrenia, are discussed with regard to impaired melatonin production and circadian rhythms, in particular, sleep-wake rhythms. This article addresses the issue of overlapping symptoms that are commonly observed within these different mental conditions and debates the role of abnormal melatonin production and altered circadian rhythms in the pathophysiology and behavioral expression of these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cyrille Feybesse
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Regnier, 154 rue de Châtillon, 35000 Rennes, France
| | - Sylvie Chokron
- Integrative Neuroscience and Cognition Center (INCC), CNRS UMR 8002, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France;
| | - Sylvie Tordjman
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Regnier, 154 rue de Châtillon, 35000 Rennes, France
- Integrative Neuroscience and Cognition Center (INCC), CNRS UMR 8002, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France;
- Faculté de Médecine, Université de Rennes, 2 Avenue du Professeur Léon Bernard, 35000 Rennes, France
| |
Collapse
|
4
|
Cohen AL, Kroeck MR, Wall J, McManus P, Ovchinnikova A, Sahin M, Krueger DA, Bebin EM, Northrup H, Wu JY, Warfield SK, Peters JM, Fox MD. Tubers Affecting the Fusiform Face Area Are Associated with Autism Diagnosis. Ann Neurol 2023; 93:577-590. [PMID: 36394118 PMCID: PMC9974824 DOI: 10.1002/ana.26551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Tuberous sclerosis complex (TSC) is associated with focal brain "tubers" and a high incidence of autism spectrum disorder (ASD). The location of brain tubers associated with autism may provide insight into the neuroanatomical substrate of ASD symptoms. METHODS We delineated tuber locations for 115 TSC participants with ASD (n = 31) and without ASD (n = 84) from the Tuberous Sclerosis Complex Autism Center of Excellence Research Network. We tested for associations between ASD diagnosis and tuber burden within the whole brain, specific lobes, and at 8 regions of interest derived from the ASD neuroimaging literature, including the anterior cingulate, orbitofrontal and posterior parietal cortices, inferior frontal and fusiform gyri, superior temporal sulcus, amygdala, and supplemental motor area. Next, we performed an unbiased data-driven voxelwise lesion symptom mapping (VLSM) analysis. Finally, we calculated the risk of ASD associated with positive findings from the above analyses. RESULTS There were no significant ASD-related differences in tuber burden across the whole brain, within specific lobes, or within a priori regions derived from the ASD literature. However, using VLSM analysis, we found that tubers involving the right fusiform face area (FFA) were associated with a 3.7-fold increased risk of developing ASD. INTERPRETATION Although TSC is a rare cause of ASD, there is a strong association between tuber involvement of the right FFA and ASD diagnosis. This highlights a potentially causative mechanism for developing autism in TSC that may guide research into ASD symptoms more generally. ANN NEUROL 2023;93:577-590.
Collapse
Affiliation(s)
- Alexander L Cohen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mallory R Kroeck
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Juliana Wall
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter McManus
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Arina Ovchinnikova
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Darcy A Krueger
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Joyce Y Wu
- Division of Neurology & Epilepsy, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jurriaan M Peters
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
5
|
Singh A, Hadjinicolaou A, Peters JM, Salussolia CL. Treatment-Resistant Epilepsy and Tuberous Sclerosis Complex: Treatment, Maintenance, and Future Directions. Neuropsychiatr Dis Treat 2023; 19:733-748. [PMID: 37041855 PMCID: PMC10083014 DOI: 10.2147/ndt.s347327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/22/2023] [Indexed: 04/13/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a neurogenetic disorder that affects multiple organ systems, including the heart, kidneys, eyes, skin, and central nervous system. The neurologic manifestations have the highest morbidity and mortality, in particular in children. Clinically, patients with TSC often present with new-onset seizures within the first year of life. TSC-associated epilepsy is often difficult to treat and refractory to multiple antiseizure medications. Refractory TSC-associated epilepsy is associated with increased risk of neurodevelopmental comorbidities, including developmental delay, intellectual disability, autism spectrum disorder, and attention hyperactivity disorder. An increasing body of research suggests that early, effective treatment of TSC-associated epilepsy during critical neurodevelopmental periods can potentially improve cognitive outcomes. Therefore, it is important to treat TSC-associated epilepsy aggressively, whether it be with pharmacological therapy, surgical intervention, and/or neuromodulation. This review discusses current and future pharmacological treatments for TSC-associated epilepsy, as well as the importance of early surgical evaluation for refractory epilepsy in children with TSC and consideration of neuromodulatory interventions in young adults.
Collapse
Affiliation(s)
- Avantika Singh
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Aristides Hadjinicolaou
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jurriaan M Peters
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Catherine L Salussolia
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Correspondence: Catherine L Salussolia, 3 Blackfan Circle, Center for Life Sciences 14060, Boston, MA, 02115, USA, Tel +617-355-7970, Email
| |
Collapse
|
6
|
Melikyan AG, Kozlova AB, Vlasov PA, Dorofeeva MY, Shishkina LV, Agrba SB. [Epilepsy surgery in children with tuberous sclerosis]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2023; 87:5-16. [PMID: 37011323 DOI: 10.17116/neiro2023870215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Most children with tuberous sclerosis (TS) present with intractable seizures. Various factors including demography, clinical data and surgery option are mentioned to affect the outcome after epilepsy surgery in these cases. OBJECTIVE To evaluate some demographic and clinical variables probably related to seizure outcome. MATERIAL AND METHODS Thirty-three children, median age 4.2 ys (7.5 mths-16 ys), with TS and DR-epilepsy underwent surgery. Within overall 38 procedures (redo surgery was needed in 5 cases), tuberectomy (with or without perituberal cortectomy) was performed in 21 cases, lobectomy - 8, callosotomy - 3, various disconnections (anterior frontal, TPO and hemispherotomy) - 6 patients. Standard preoperative evaluation included MRI and video-EEG. Invasive recordings were used in 8 cases, coupled by MEG and SISCOM SPECT in some cases. ECOG and neuronavigation were used routinely during tuberectomies, and stimulation and mapping were employed in cases with lesions overlapping or near to eloquent cortex. Surgical complications: wound CSF leak (n=1) and hydrocephalus (n=2) were noted in 7.5% of cases. Postoperative neurological deficit (most frequently hemiparesis) developed in 12 patients, being temporary in majority of them. At the last FU (med 5.4 ys) favorable outcome (Engel I) has been achieved in 18 cases (54%), while 7 patients (15%) with persisting seizures reported less common attacks and their milder form (Engel Ib-III). Six patients were able to discontinue AED-treatment and 15 children resumed development and markedly improved in cognition and behavior. RESULTS AND CONCLUSION Among different variables potentially influencing the outcome after epilepsy surgery in cases with TS, the most important one is seizure type. If prevalent, focal type may be a biomarker of favorable outcomes and probability to become free of seizures.
Collapse
Affiliation(s)
| | - A B Kozlova
- Burdenko Neurosurgical Center, Moscow, Russia
| | - P A Vlasov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - M Yu Dorofeeva
- Veltishchev Research and Clinical Institute for Pediatrics and Pediatric Surgery, Moscow, Russia
| | | | - S B Agrba
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
7
|
Yogi A, Hirata Y, Linetsky M, Ellingson BM, Salamon N. Cerebellar Tubers in Tuberous Sclerosis Complex Patients: New Imaging Characteristics and the Relationship with Cerebral Tubers. JOURNAL OF PEDIATRIC EPILEPSY 2022. [DOI: 10.1055/s-0042-1756717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Objective The imaging characteristics, evolution, and clinical features of cerebellar tubers in tuberous sclerosis complex (TSC) patients have not been well described. The purpose of this study is to investigate the imaging characteristics of cerebellar tubers, including their dynamic changes, and to evaluate the relationship with cerebral tubers in TSC patients.
Materials and Methods Two observers retrospectively reviewed 75 consecutive TSC patients to identify cerebellar tubers and to evaluate their imaging characteristics, including location, presence of retraction change, calcification, contrast enhancement, and the presence of an associated vascular anomaly, as well as dynamic changes in these characteristics. The number of cerebral tubers was compared between TSC patients with and without cerebellar tubers.
Results Twenty-five TSC patients with 28 cerebellar tubers were identified. All cerebellar tubers occurred within the lateral portions of the cerebellar hemispheres. Thirteen cerebellar tubers demonstrated calcification. Ten cerebellar tubers showed contrast enhancement, half of which demonstrated a zebra-like appearance. A vascular anomaly was associated with 12 tubers, one of which subsequently developed parenchymal hemorrhage. Fifteen cerebellar tubers demonstrated complex dynamic changes in size and contrast enhancement. Patients with cerebellar tubers had more cerebral tubers (p = 0.001).
Conclusion Cerebellar tubers demonstrate a specific distribution, suggesting a possible influence on higher brain function. The presence of an associated vascular anomaly may be an important imaging characteristic. Cerebellar tubers may be associated with a more severe manifestation of TSC, given their association with increased numbers of cerebral tubers. These findings may provide insights into the pathogenesis and clinical manifestations of cerebellar tubers in TSC patients.
Collapse
Affiliation(s)
- Akira Yogi
- Department of Radiology, University of the Ryukyus Hospital, Okinawa, Japan
- Department of Radiological Science, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Yoko Hirata
- Department of Radiological Science, David Geffen School of Medicine, University of California, Los Angeles, California, United States
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Michael Linetsky
- Department of Radiological Science, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Benjamin M Ellingson
- Department of Radiological Science, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Noriko Salamon
- Department of Radiological Science, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| |
Collapse
|
8
|
Zhang AXD, Liang H, McEwen FS, Tye C, Woodhouse E, Underwood L, Shephard E, Sheerin F, Bolton PF. Perinatal adversities in tuberous sclerosis complex: Determinants and neurodevelopmental outcomes. Dev Med Child Neurol 2022; 64:1237-1245. [PMID: 35366331 DOI: 10.1111/dmcn.15224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/14/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Abstract
AIM To examine the association between perinatal adversities and neurodevelopmental outcome in tuberous sclerosis complex (TSC). METHOD The Tuberous Sclerosis 2000 study is a prospective, longitudinal UK study of TSC. In phase 1, mutation type, TSC family history, tuber characteristics, presence of cardiac rhabdomyomas, seizure characteristics, and intellectual ability were assessed in 125 children affected with TSC (64 females, 61 males; median age 39mo, range 4-254). In phase 2, 88 participants (49 females, 39 males; median age 148mo, range 93-323) were assessed for neurodevelopmental outcomes including intellectual ability, autism spectrum disorder, and attention-deficit/hyperactivity disorder. Perinatal histories of 88 participants with TSC and 80 unaffected siblings were collected retrospectively using the Obstetric Enquiry Schedule and coded with a modified Gillberg Optimality Scale to measure levels of perinatal adversity. Data were analysed using Mann-Whitney U tests, Spearman's rank correlation, and linear regression with robust standard errors. RESULTS Children with familial TSC experienced significantly greater perinatal adversity than unaffected siblings. Perinatal adversity was higher in children with TSC-affected mothers than those with unaffected mothers. There was no significant association between perinatal adversities and neurodevelopmental outcomes after controlling for confounders. INTERPRETATION Maternal TSC is a significant marker of elevated perinatal risk in addition to risks incurred by fetal genotype. Pregnancies complicated by maternal or fetal TSC require higher vigilance, and mechanisms underlying increased perinatal adversity require further research. WHAT THIS PAPER ADDS Higher perinatal adversity is associated with familial tuberous sclerosis complex (TSC). Maternal TSC was associated with higher frequencies of several perinatal risk markers. Paternal TSC was not associated with higher levels of perinatal adversity. Perinatal adversity levels in TSC1 and TSC2 subgroups did not differ significantly. Perinatal adversities were not associated with neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Alexa X D Zhang
- Institute of Child Health, University College London, London, UK
| | - Holan Liang
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Great Ormond Street Hospital NHS Trust, London, UK
| | - Fiona S McEwen
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Department of Biological and Experimental Psychology, Queen Mary University of London, London, UK
| | - Charlotte Tye
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Emma Woodhouse
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,South London and Maudsley NHS Trust, London, UK
| | - Lisa Underwood
- Department of Population Health, University of Auckland, Auckland, New Zealand
| | - Elizabeth Shephard
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Fintan Sheerin
- Department of Neuroradiology, Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | | | - Patrick F Bolton
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,NIHR Biomedical Research Centre in Mental Health at the Maudsley, London, UK
| |
Collapse
|
9
|
The longitudinal evolution of cerebral blood flow in children with tuberous sclerosis assessed by arterial spin labeling magnetic resonance imaging may be related to cognitive performance. Eur Radiol 2022; 33:196-206. [PMID: 36066730 DOI: 10.1007/s00330-022-09036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To study longitudinal changes in tuber and whole-brain perfusion in children with tuberous sclerosis complex (TSC) using arterial spin labeling (ASL) perfusion MRI and correlate them with pathological EEG slow wave activity and neurodevelopmental outcomes. METHODS Retrospective longitudinal cohort study of 13 children with TSC, 3 to 6 serial ASL-MRI scans between 2 months and 7 years of age (53 scans in total), and an EEG examination performed within 2 months of the last MRI. Tuber cerebral blood flow (CBF) values were calculated in tuber segmentation masks, and tuber:cortical CBF ratios were used to study tuber perfusion. Logistic regression analysis was performed to identify which initial tuber characteristics (CBF value, volume, location) in the first MRI predicted tubers subsequently associated with EEG slow waves. Whole-brain and lobar CBF values were extracted for all patient scans and age-matched controls. CBF ratios were compared in patients and controls to study longitudinal changes in whole-brain CBF. RESULTS Perfusion was reduced in tubers associated with EEG slow waves compared with other tubers. Low tuber CBF values around 6 months of age and large tuber volumes were predictive of tubers subsequently associated with EEG slow waves. Patients with severe developmental delay had more severe whole-brain hypoperfusion than those with no/mild delay, which became apparent after 2 years of age and were not associated with a higher tuber load. CONCLUSIONS Dynamic changes in tuber and brain perfusion occur over time. Perfusion is significantly reduced in tubers associated with EEG slow waves. Whole-brain perfusion is significantly reduced in patients with severe delay. KEY POINTS • Tubers associated with EEG slow wave activity were significantly more hypoperfused than other tubers, especially after 1 year of age. • Larger and more hypoperfused tubers at 6 months of age were more likely to subsequently be associated with pathological EEG slow wave activity. • Patients with severe developmental delay had more extensive and severe global hypoperfusion than those without developmental delay.
Collapse
|
10
|
Kwon CS, Wirrell EC, Jetté N. Autism Spectrum Disorder and Epilepsy. Neurol Clin 2022; 40:831-847. [DOI: 10.1016/j.ncl.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Vanes LD, Tye C, Tournier JD, Combes AJE, Shephard E, Liang H, Barker GJ, Nosarti C, Bolton P. White matter disruptions related to inattention and autism spectrum symptoms in tuberous sclerosis complex. Neuroimage Clin 2022; 36:103163. [PMID: 36037661 PMCID: PMC9434133 DOI: 10.1016/j.nicl.2022.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
Tuberous sclerosis complex is a rare genetic multisystem condition that is associated with a high prevalence of neurodevelopmental disorders such as autism and attention-deficit/hyperactivity disorder. The underlying neural mechanisms of the emergence of these symptom domains in tuberous sclerosis complex remain unclear. Here, we use fixel-based analysis of diffusion-weighted imaging, which allows for the differentiation between multiple fibre populations within a voxel, to compare white matter properties in 16 participants with tuberous sclerosis complex (aged 11-19) and 12 age and sex matched control participants. We further tested associations between white matter alterations and autism and inattention symptoms as well as cognitive ability in participants with tuberous sclerosis complex. Compared to controls, participants with tuberous sclerosis complex showed reduced fibre density cross-section (FDC) in the dorsal branch of right superior longitudinal fasciculus and bilateral inferior longitudinal fasciculus, reduced fibre density (FD) in bilateral tapetum, and reduced fibre cross-section (FC) in the ventral branch of right superior longitudinal fasciculus. In participants with tuberous sclerosis complex, the extent of FDC reductions in right superior longitudinal fasciculus was significantly associated with autism traits (social communication difficulties and restricted, repetitive behaviours), whereas FDC reductions in right inferior longitudinal fasciculus were associated with inattention. The observed white matter alterations were unrelated to cognitive ability. Our findings shed light on the fibre-specific biophysical properties of white matter alterations in tuberous sclerosis complex and suggest that these regional changes are selectively associated with the severity of neurodevelopmental symptoms.
Collapse
Affiliation(s)
- Lucy D Vanes
- Department of Neuroimaging, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, UK; Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging Sciences, King's College London, UK.
| | - Charlotte Tye
- Department of Psychology, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, UK
| | - Jacques-Donald Tournier
- Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging Sciences, King's College London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Anna J E Combes
- Department of Neuroimaging, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, UK; Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, UK
| | - Elizabeth Shephard
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, UK; Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | - Holan Liang
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, UK
| | - Chiara Nosarti
- Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging Sciences, King's College London, UK; Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, UK
| | - Patrick Bolton
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, UK
| |
Collapse
|
12
|
Scheper M, Romagnolo A, Besharat ZM, Iyer AM, Moavero R, Hertzberg C, Weschke B, Riney K, Feucht M, Scholl T, Petrak B, Maulisova A, Nabbout R, Jansen AC, Jansen FE, Lagae L, Urbanska M, Ferretti E, Tempes A, Blazejczyk M, Jaworski J, Kwiatkowski DJ, Jozwiak S, Kotulska K, Sadowski K, Borkowska J, Curatolo P, Mills JD, Aronica E. miRNAs and isomiRs: Serum-Based Biomarkers for the Development of Intellectual Disability and Autism Spectrum Disorder in Tuberous Sclerosis Complex. Biomedicines 2022; 10:biomedicines10081838. [PMID: 36009385 PMCID: PMC9405248 DOI: 10.3390/biomedicines10081838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare multi-system genetic disorder characterized by a high incidence of epilepsy and neuropsychiatric manifestations known as tuberous-sclerosis-associated neuropsychiatric disorders (TANDs), including autism spectrum disorder (ASD) and intellectual disability (ID). MicroRNAs (miRNAs) are small regulatory non-coding RNAs that regulate the expression of more than 60% of all protein-coding genes in humans and have been reported to be dysregulated in several diseases, including TSC. In the current study, RNA sequencing analysis was performed to define the miRNA and isoform (isomiR) expression patterns in serum. A Receiver Operating Characteristic (ROC) curve analysis was used to identify circulating molecular biomarkers, miRNAs, and isomiRs, able to discriminate the development of neuropsychiatric comorbidity, either ASD, ID, or ASD + ID, in patients with TSC. Part of our bioinformatics predictions was verified with RT-qPCR performed on RNA isolated from patients’ serum. Our results support the notion that circulating miRNAs and isomiRs have the potential to aid standard clinical testing in the early risk assessment of ASD and ID development in TSC patients.
Collapse
Affiliation(s)
- Mirte Scheper
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
| | - Alessia Romagnolo
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
| | - Zein Mersini Besharat
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (Z.M.B.); (E.F.)
| | - Anand M. Iyer
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
- Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, 00133 Rome, Italy; (R.M.); (P.C.)
- Child Neurology Unit, Neuroscience Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Christoph Hertzberg
- Diagnose-und Behandlungszentrum für Kinder, Vivantes-Klinikum Neukölln, 12351 Berlin, Germany;
| | - Bernhard Weschke
- Department of Neuropediatrics, Charité University Medicine Berlin, 13353 Berlin, Germany;
| | - Kate Riney
- Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia;
- Neurosciences Unit, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
| | - Martha Feucht
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, “Member of ERN EpiCARE”, 1090 Vienna, Austria; (M.F.); (T.S.)
| | - Theresa Scholl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, “Member of ERN EpiCARE”, 1090 Vienna, Austria; (M.F.); (T.S.)
| | - Borivoj Petrak
- Motol University Hospital, Charles University, 15000 Prague, Czech Republic; (B.P.); (A.M.)
| | - Alice Maulisova
- Motol University Hospital, Charles University, 15000 Prague, Czech Republic; (B.P.); (A.M.)
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, APHP, Member of ERN EpiCARE, Université de Paris, 149 Rue de Sèvres, 75015 Paris, France;
| | - Anna C. Jansen
- Department of Translational Neurosciences, University of Antwerp, 2000 Antwerp, Belgium;
| | - Floor E. Jansen
- Department of Child Neurology, Brain Center University Medical Center, Member of ERN EpiCare, 3584 BA Utrecht, The Netherlands;
| | - Lieven Lagae
- Department of Development and Regeneration Section Pediatric Neurology, University Hospitals KU Leuven, 3000 Leuven, Belgium;
| | - Malgorzata Urbanska
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (Z.M.B.); (E.F.)
| | - Aleksandra Tempes
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; (A.T.); (M.B.); (J.J.)
| | - Magdalena Blazejczyk
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; (A.T.); (M.B.); (J.J.)
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; (A.T.); (M.B.); (J.J.)
| | | | - Sergiusz Jozwiak
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
- Department of Child Neurology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Krzysztof Sadowski
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Julita Borkowska
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, 00133 Rome, Italy; (R.M.); (P.C.)
| | - James D. Mills
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1E 6BT, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
- Correspondence: (J.D.M.); (E.A.)
| | - Eleonora Aronica
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
- Correspondence: (J.D.M.); (E.A.)
| | | |
Collapse
|
13
|
Cohen AL. Using causal methods to map symptoms to brain circuits in neurodevelopment disorders: moving from identifying correlates to developing treatments. J Neurodev Disord 2022; 14:19. [PMID: 35279095 PMCID: PMC8918299 DOI: 10.1186/s11689-022-09433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/03/2022] [Indexed: 11/20/2022] Open
Abstract
A wide variety of model systems and experimental techniques can provide insight into the structure and function of the human brain in typical development and in neurodevelopmental disorders. Unfortunately, this work, whether based on manipulation of animal models or observational and correlational methods in humans, has a high attrition rate in translating scientific discovery into practicable treatments and therapies for neurodevelopmental disorders.With new computational and neuromodulatory approaches to interrogating brain networks, opportunities exist for "bedside-to bedside-translation" with a potentially shorter path to therapeutic options. Specifically, methods like lesion network mapping can identify brain networks involved in the generation of complex symptomatology, both from acute onset lesion-related symptoms and from focal developmental anomalies. Traditional neuroimaging can examine the generalizability of these findings to idiopathic populations, while non-invasive neuromodulation techniques such as transcranial magnetic stimulation provide the ability to do targeted activation or inhibition of these specific brain regions and networks. In parallel, real-time functional MRI neurofeedback also allow for endogenous neuromodulation of specific targets that may be out of reach for transcranial exogenous methods.Discovery of novel neuroanatomical circuits for transdiagnostic symptoms and neuroimaging-based endophenotypes may now be feasible for neurodevelopmental disorders using data from cohorts with focal brain anomalies. These novel circuits, after validation in large-scale highly characterized research cohorts and tested prospectively using noninvasive neuromodulation and neurofeedback techniques, may represent a new pathway for symptom-based targeted therapy.
Collapse
Affiliation(s)
- Alexander Li Cohen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,Laboratory for Brain Network Imaging and Modulation, Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Shephard E, McEwen FS, Earnest T, Friedrich N, Mörtl I, Liang H, Woodhouse E, Tye C, Bolton PF. Oscillatory neural network alterations in young people with tuberous sclerosis complex and associations with co-occurring symptoms of autism spectrum disorder and attention-deficit/hyperactivity disorder. Cortex 2021; 146:50-65. [PMID: 34839218 DOI: 10.1016/j.cortex.2021.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Tuberous sclerosis complex (TSC) is a genetic disorder caused by mutations on the TSC1/TSC2 genes, which result in alterations in molecular signalling pathways involved in neurogenesis and hamartomas in the brain and other organs. TSC carries a high risk for autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), although the reasons for this are unclear. One proposal is that TSC-related alterations in molecular signalling during neurogenesis lead to atypical development of neural networks, which are involved in the occurrence of ASD and ADHD in TSC. We investigated this proposal in young people with TSC who have been studied longitudinally since their diagnosis in childhood. Electroencephalography (EEG) was used to examine oscillatory connectivity in functional neural networks and local and global network organisation during three tasks (resting-state, attentional and inhibitory control Go/Nogo task, upright and inverted face processing task) in participants with TSC (n = 48) compared to an age- and sex-matched group of typically developing Controls (n = 20). Compared to Controls, the TSC group showed hypoconnected neural networks in the alpha frequency during the resting-state and in the theta and alpha frequencies during the Go/Nogo task (P ≤ .008), as well as reduced local network organisation in the theta and alpha frequencies during the Go/Nogo task (F = 3.95, P = .010). There were no significant group differences in network metrics during the face processing task. Increased connectivity in the hypoconnected alpha-range resting-state network was associated with greater ASD and inattentive ADHD symptoms (rho≥.40, P ≤ .036). Reduced local network organisation in the theta-range during the Go/Nogo task was significantly associated with higher hyperactive/impulsive ADHD symptoms (rho = -.43, P = .041). These findings suggest that TSC is associated with widespread hypoconnectivity in neural networks and support the proposal that altered network function may be involved in the co-occurrence of ASD and ADHD in TSC.
Collapse
Affiliation(s)
- Elizabeth Shephard
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, UK; Department of Psychiatry, University of São Paulo, Brazil.
| | - Fiona S McEwen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, UK; Department of Psychology, Queen Mary University of London, UK
| | - Thomas Earnest
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, UK
| | - Nina Friedrich
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, UK
| | - Isabelle Mörtl
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, UK
| | - Holan Liang
- Population, Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Emma Woodhouse
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, UK
| | | | - Charlotte Tye
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, UK; Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, UK
| | - Patrick F Bolton
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, UK; The Maudsley NIHR Biomedical Research Centre in Mental Health, King's College London and South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
15
|
de Vries PJ, Leclezio L, Gardner-Lubbe S, Krueger D, Sahin M, Sparagana S, De Waele L, Jansen A. Multivariate data analysis identifies natural clusters of Tuberous Sclerosis Complex Associated Neuropsychiatric Disorders (TAND). Orphanet J Rare Dis 2021; 16:447. [PMID: 34689816 PMCID: PMC8543869 DOI: 10.1186/s13023-021-02076-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/10/2021] [Indexed: 12/04/2022] Open
Abstract
Background Tuberous Sclerosis Complex (TSC), a multi-system genetic disorder, is associated with a wide range of TSC-Associated Neuropsychiatric Disorders (TAND). Individuals have apparently unique TAND profiles, challenging diagnosis, psycho-education, and intervention planning. We proposed that identification of natural TAND clusters could lead to personalized identification and treatment of TAND. Two small-scale studies showed cluster and factor analysis could identify clinically meaningful natural TAND clusters. Here we set out to identify definitive natural TAND clusters in a large, international dataset. Method Cross-sectional, anonymized TAND Checklist data of 453 individuals with TSC were collected from six international sites. Data-driven methods were used to identify natural TAND clusters. Mean squared contingency coefficients were calculated to produce a correlation matrix, and various cluster analyses and exploratory factor analysis were examined. Statistical robustness of clusters was evaluated with 1000-fold bootstrapping, and internal consistency calculated with Cronbach’s alpha. Results Ward’s method rendered seven natural TAND clusters with good robustness on bootstrapping. Cluster analysis showed significant convergence with an exploratory factor analysis solution, and, with the exception of one cluster, internal consistency of the emerging clusters was good to excellent. Clusters showed good clinical face validity. Conclusions Our findings identified a data-driven set of natural TAND clusters from within highly variable TAND Checklist data. The seven natural TAND clusters could be used to train families and professionals and to develop tailored approaches to identification and treatment of TAND. Natural TAND clusters may also have differential aetiological underpinnings and responses to molecular and other treatments.
Collapse
Affiliation(s)
- Petrus J de Vries
- Division of Child and Adolescent Psychiatry, University of Cape Town, 46 Sawkins Road, Rondebosch, Cape Town, 7700, South Africa.
| | - Loren Leclezio
- Division of Child and Adolescent Psychiatry, University of Cape Town, 46 Sawkins Road, Rondebosch, Cape Town, 7700, South Africa
| | - Sugnet Gardner-Lubbe
- Department of Statistics and Actuarial Science, Stellenbosch University, Stellenbosch, South Africa
| | - Darcy Krueger
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, USA
| | - Steven Sparagana
- Department of Neurology, Scottish Rite for Children, The University of Texas Southwestern Medical Center, Dallas, USA
| | - Liesbeth De Waele
- Department of Pediatric Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Anna Jansen
- Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
16
|
Nabbout R, Belousova E, Benedik MP, Carter T, Cottin V, Curatolo P, Dahlin M, D'Amato L, Beaure d'Augères G, de Vries PJ, Ferreira JC, Feucht M, Fladrowski C, Hertzberg C, Jozwiak S, Lawson JA, Macaya A, Marques R, O'Callaghan F, Qin J, Sauter M, Shah S, Takahashi Y, Touraine R, Youroukos S, Zonnenberg B, Jansen AC, Kingswood JC. Historical Patterns of Diagnosis, Treatments, and Outcome of Epilepsy Associated With Tuberous Sclerosis Complex: Results From TOSCA Registry. Front Neurol 2021; 12:697467. [PMID: 34566842 PMCID: PMC8455825 DOI: 10.3389/fneur.2021.697467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/02/2021] [Indexed: 12/01/2022] Open
Abstract
Background: Epilepsy is the most common neurological manifestation in individuals with tuberous sclerosis complex (TSC). However, real-world evidence on diagnosis and treatment patterns is limited. Here, we present data from TuberOus Sclerosis registry to increase disease Awareness (TOSCA) on changes in patterns of epilepsy diagnosis, treatments, and outcomes over time, and detailed epilepsy characteristics from the epilepsy substudy. Methods: TuberOus Sclerosis registry to increase disease Awareness (TOSCA) was a multicentre, international disease registry, consisting of a main study that collected data on overall diagnostic characteristics and associated clinical features, and six substudies focusing on specific TSC manifestations. The epilepsy substudy investigated detailed epilepsy characteristics and their correlation to genotype and intelligence quotient (IQ). Results: Epilepsy was reported in 85% of participants, more commonly in younger individuals (67.8% in 1970s to 91.8% in last decade), while rate of treatments was similar across ages (>93% for both infantile spasms and focal seizures, except prior to 1960). Vigabatrin (VGB) was the most commonly used antiepileptic drugs (AEDs). Individuals with infantile spasms showed a higher treatment response over time with lower usage of steroids. Individuals with focal seizures reported similar rates of drug resistance (32.5–43.3%). Use of vagus nerve stimulation (VNS), ketogenic diet, and surgery remained low. Discussion: The epilepsy substudy included 162 individuals from nine countries. At epilepsy onset, most individuals with infantile spasms (73.2%) and focal seizures (74.5%) received monotherapies. Vigabatrin was first-line treatment in 45% of individuals with infantile spasms. Changes in initial AEDs were commonly reported due to inadequate efficacy. TSC1 mutations were associated with less severe epilepsy phenotypes and more individuals with normal IQ. In individuals with TSC diagnosis before seizure onset, electroencephalogram (EEG) was performed prior to seizures in only 12.5 and 25% of subsequent infantile spasms and focal seizures, respectively. Conclusions: Our study confirms the high prevalence of epilepsy in TSC individuals and less severe phenotypes with TSC1 mutations. Vigabatrin improved the outcome of infantile spasms and should be used as first-line treatment. There is, however, still a need for improving therapies in focal seizures. Electroencephalogram follow-up prior to seizure-onset should be promoted for all infants with TSC in order to facilitate preventive or early treatment.
Collapse
Affiliation(s)
- Rima Nabbout
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Member of EPICARE Network, Necker Enfants Malades Hospital, Université de Paris, Institut Imagine (Inserm U1163), Paris, France
| | - Elena Belousova
- Department of Pediatrics, Research and Clinical Institute of Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Mirjana P Benedik
- Department of Pediatric Neurology, SPS Paediatric Clinic, Ljubljana, Slovenia
| | - Tom Carter
- Tuberous Sclerosis Association, Nottingham, United Kingdom
| | - Vincent Cottin
- Department of Respiratory Medicine, Hôpital Louis Pradel, Claude Bernard University Lyon 1, Lyon, France
| | - Paolo Curatolo
- Department of Neurology, Tor Vergata University Hospital, Rome, Italy
| | - Maria Dahlin
- Neuropediatric Unit, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Petrus J de Vries
- Division of Child and Adolescent Psychiatry, University of Cape Town, Cape Town, South Africa
| | - José C Ferreira
- Neurologia Pediátrica, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Martha Feucht
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna (Affiliated Partner of the ERN EpiCARE), Vienna, Austria
| | - Carla Fladrowski
- Tuberous Sclerosis Association ONLUS, Milan, Italy.,European Tuberous Sclerosis Complex Association, Dattein, Germany
| | - Christoph Hertzberg
- Zentrum für Sozialpädiatrie und Neuropädiatrie (DBZ), Vivantes Hospital Neukoelln, Berlin, Germany
| | - Sergiusz Jozwiak
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland.,Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - John A Lawson
- Department of Neurology, The Tuberous Sclerosis Multidisciplinary Management Clinic, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Alfons Macaya
- Department of Pediatric Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Ruben Marques
- Novartis Farma S.p.A., Origgio, Italy.,Institute of Biomedicine, University of Leon, León, Spain
| | - Finbar O'Callaghan
- Paediatric Neuroscience, Institute of Child Health, University College London, London, United Kingdom
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | | | - Seema Shah
- Novartis Healthcare Pvt. Ltd., Hyderabad, India
| | - Yukitoshi Takahashi
- National Epilepsy Center, National Hospital Organization (NHO), Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Renaud Touraine
- Department of Genetics, Centre Hospitalier Universitaire (CHU)-Hôpital Nord, Saint Etienne, France
| | - Sotiris Youroukos
- First Department of Paediatrics, Athens University Medical School, St. Sophia Children's Hospital, Athens, Greece
| | - Bernard Zonnenberg
- Department of Internal Medicine, University Medical Center, Utrecht, Netherlands
| | - Anna C Jansen
- Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - J Chris Kingswood
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Centre, St Georges University of London, London, United Kingdom
| |
Collapse
|
17
|
Synaptic Alterations in a Transgenic Model of Tuberous Sclerosis Complex: Relevance to Autism Spectrum Disorders. Int J Mol Sci 2021; 22:ijms221810058. [PMID: 34576223 PMCID: PMC8466868 DOI: 10.3390/ijms221810058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 01/02/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare, multi-system genetic disease with serious neurological and mental symptoms, including autism. Mutations in the TSC1/TSC2 genes lead to the overactivation of mTOR signalling, which is also linked to nonsyndromic autism. Our aim was to analyse synaptic pathology in a transgenic model of TSC: two-month-old male B6;129S4-Tsc2tm1Djk/J mice with Tsc2 haploinsufficiency. Significant brain-region-dependent alterations in the expression of several synaptic proteins were identified. The most prominent changes were observed in the immunoreactivity of presynaptic VAMP1/2 (ca. 50% increase) and phospho-synapsin-1 (Ser62/67) (ca. 80% increase). Transmission electron microscopy demonstrated serious ultrastructural abnormalities in synapses such as a blurred structure of synaptic density and a significantly increased number of synaptic vesicles. The impairment of synaptic mitochondrial ultrastructure was represented by excessive elongation, swelling, and blurred crista contours. Polyribosomes in the cytoplasm and swollen Golgi apparatus suggest possible impairment of protein metabolism. Moreover, the delamination of myelin and the presence of vacuolar structures in the cell nucleus were observed. We also report that Tsc2+/- mice displayed increased brain weights and sizes. The behavioural analysis demonstrated the impairment of memory function, as established in the novel object recognition test. To summarise, our data indicate serious synaptic impairment in the brains of male Tsc2+/- mice.
Collapse
|
18
|
Scherrer B, Prohl AK, Taquet M, Kapur K, Peters JM, Tomas-Fernandez X, Davis PE, M Bebin E, Krueger DA, Northrup H, Y Wu J, Sahin M, Warfield SK. The Connectivity Fingerprint of the Fusiform Gyrus Captures the Risk of Developing Autism in Infants with Tuberous Sclerosis Complex. Cereb Cortex 2021; 30:2199-2214. [PMID: 31812987 DOI: 10.1093/cercor/bhz233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disorder characterized by benign tumors throughout the body; it is generally diagnosed early in life and has a high prevalence of autism spectrum disorder (ASD), making it uniquely valuable in studying the early development of autism, before neuropsychiatric symptoms become apparent. One well-documented deficit in ASD is an impairment in face processing. In this work, we assessed whether anatomical connectivity patterns of the fusiform gyrus, a central structure in face processing, capture the risk of developing autism early in life. We longitudinally imaged TSC patients at 1, 2, and 3 years of age with diffusion compartment imaging. We evaluated whether the anatomical connectivity fingerprint of the fusiform gyrus was associated with the risk of developing autism measured by the Autism Observation Scale for Infants (AOSI). Our findings suggest that the fusiform gyrus connectivity captures the risk of developing autism as early as 1 year of age and provides evidence that abnormal fusiform gyrus connectivity increases with age. Moreover, the identified connections that best capture the risk of developing autism involved the fusiform gyrus and limbic and paralimbic regions that were consistent with the ASD phenotype, involving an increased number of left-lateralized structures with increasing age.
Collapse
Affiliation(s)
- Benoit Scherrer
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Anna K Prohl
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Maxime Taquet
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Kush Kapur
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Jurriaan M Peters
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Xavier Tomas-Fernandez
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Peter E Davis
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Elizabeth M Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35233 USA
| | - Darcy A Krueger
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229 USA
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030 USA
| | - Joyce Y Wu
- Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095 USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| |
Collapse
|
19
|
Mitchell RA, Barton SM, Harvey AS, Ure AM, Williams K. Factors associated with autism spectrum disorder in children with tuberous sclerosis complex: a systematic review and meta-analysis. Dev Med Child Neurol 2021; 63:791-801. [PMID: 33432576 DOI: 10.1111/dmcn.14787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2020] [Indexed: 12/21/2022]
Abstract
AIM To investigate associations between clinical factors and the development of autism spectrum disorder (ASD) in children with tuberous sclerosis complex (TSC), specifically seizures, electroencephalogram abnormalities, tubers and other neurostructural abnormalities, and genetic factors. METHOD MEDLINE, Embase, PubMed, the Cochrane Library, and Web of Science were searched until January 2019. Studies that considered the predefined factors for development of ASD in children with TSC were included, following PRISMA-P guidelines. Two authors independently reviewed titles, abstracts, and full texts, extracted data, and assessed risk of bias. RESULTS Forty-two studies with 3542 children with TSC were included. ASD was associated with a history of seizures (odds ratio [OR] 3.79, 95% confidence interval [CI] 1.77-8.14), infantile spasms compared with other seizure types (OR 3.04, 95% CI 2.17-4.27), onset of any seizure type during infancy (OR 2.65, 95% CI 1.08-6.54), and male sex (OR 1.62, 95% CI 1.23-2.14). There was no association with tuber number, tuber location, or genotype. INTERPRETATION While a causal link between seizures and ASD in children with TSC cannot be inferred, a strong association between seizures and ASD in children with TSC, particularly with seizure onset during infancy and specifically infantile spasms, is present. Children with TSC and infant-onset seizures should be monitored for emerging features of ASD. What this paper adds Seizures and autism spectrum disorder (ASD) strongly associate in children with tuberous sclerosis complex (TSC). Infant-onset seizures and infantile spasms are particularly strongly associated with ASD in TSC.
Collapse
Affiliation(s)
- Rebecca A Mitchell
- Department of Neurodevelopment and Disability, The Royal Children's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Sarah M Barton
- Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Neurology, The Royal Children's Hospital, Parkville, VIC, Australia
| | - A Simon Harvey
- Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Neurology, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Alexandra M Ure
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Murdoch Children's Research Institute, Parkville, VIC, Australia.,Mental Health, The Royal Children's Hospital, Parkville, VIC, Australia.,Paediatrics and Education Research, Monash University, Clayton, VIC, Australia
| | - Katrina Williams
- Department of Neurodevelopment and Disability, The Royal Children's Hospital, Parkville, VIC, Australia.,Paediatrics and Education Research, Monash University, Clayton, VIC, Australia.,Monash Health, Monash Children's Hospital, Clayton, VIC, Australia
| |
Collapse
|
20
|
Petrasek T, Vojtechova I, Klovrza O, Tuckova K, Vejmola C, Rak J, Sulakova A, Kaping D, Bernhardt N, de Vries PJ, Otahal J, Waltereit R. mTOR inhibitor improves autistic-like behaviors related to Tsc2 haploinsufficiency but not following developmental status epilepticus. J Neurodev Disord 2021; 13:14. [PMID: 33863288 PMCID: PMC8052752 DOI: 10.1186/s11689-021-09357-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Background Tuberous sclerosis complex (TSC), a multi-system genetic disorder often associated with autism spectrum disorder (ASD), is caused by mutations of TSC1 or TSC2, which lead to constitutive overactivation of mammalian target of rapamycin (mTOR). In several Tsc1+/- and Tsc2+/- animal models, cognitive and social behavior deficits were reversed by mTOR inhibitors. However, phase II studies have not shown amelioration of ASD and cognitive deficits in individuals with TSC during mTOR inhibitor therapy. We asked here if developmental epilepsy, common in the majority of individuals with TSC but absent in most animal models, could explain the discrepancy. Methods At postnatal day P12, developmental status epilepticus (DSE) was induced in male Tsc2+/- (Eker) and wild-type rats, establishing four experimental groups including controls. In adult animals (n = 36), the behavior was assessed in the paradigms of social interaction test, elevated plus-maze, light-dark test, Y-maze, and novel object recognition. The testing was carried out before medication (T1), during a 2-week treatment with the mTOR inhibitor everolimus (T2) and after an 8-week washing-out (T3). Electroencephalographic (EEG) activity was recorded in a separate set of animals (n = 18). Results Both Tsc2+/- mutation and DSE caused social behavior deficits and epileptiform EEG abnormalities (T1). Everolimus led to a persistent improvement of the social deficit induced by Tsc2+/-, while deficits related to DSE did not respond to everolimus (T2, T3). Conclusions These findings may contribute to an explanation why ASD symptoms in individuals with TSC, where comorbid early-onset epilepsy is common, were not reliably ameliorated by mTOR inhibitors in clinical studies. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-021-09357-2.
Collapse
Affiliation(s)
- Tomas Petrasek
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.
| | - Iveta Vojtechova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.,First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondrej Klovrza
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Klara Tuckova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Cestmir Vejmola
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Jakub Rak
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Anna Sulakova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Daniel Kaping
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Nadine Bernhardt
- Department of Psychiatry, University Hospital and Medical Faculty Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Petrus J de Vries
- Division of Child & Adolescent Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Jakub Otahal
- Department of Developmental Epileptology, Institute of Physiology CAS, Prague, Czech Republic
| | - Robert Waltereit
- Department of Child and Adolescent Psychiatry, University Hospital and Medical Faculty Carl Gustav Carus, Technical University of Dresden, Dresden, Germany. .,Department of Child and Adolescent Psychiatry, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany.
| |
Collapse
|
21
|
Cohen AL, Mulder BPF, Prohl AK, Soussand L, Davis P, Kroeck MR, McManus P, Gholipour A, Scherrer B, Bebin EM, Wu JY, Northrup H, Krueger DA, Sahin M, Warfield SK, Fox MD, Peters JM. Tuber Locations Associated with Infantile Spasms Map to a Common Brain Network. Ann Neurol 2021; 89:726-739. [PMID: 33410532 PMCID: PMC7969435 DOI: 10.1002/ana.26015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Approximately 50% of patients with tuberous sclerosis complex develop infantile spasms, a sudden onset epilepsy syndrome associated with poor neurological outcomes. An increased burden of tubers confers an elevated risk of infantile spasms, but it remains unknown whether some tuber locations confer higher risk than others. Here, we test whether tuber location and connectivity are associated with infantile spasms. METHODS We segmented tubers from 123 children with (n = 74) and without (n = 49) infantile spasms from a prospective observational cohort. We used voxelwise lesion symptom mapping to test for an association between spasms and tuber location. We then used lesion network mapping to test for an association between spasms and connectivity with tuber locations. Finally, we tested the discriminability of identified associations with logistic regression and cross-validation as well as statistical mediation. RESULTS Tuber locations associated with infantile spasms were heterogenous, and no single location was significantly associated with spasms. However, >95% of tuber locations associated with spasms were functionally connected to the globi pallidi and cerebellar vermis. These connections were specific compared to tubers in patients without spasms. Logistic regression found that globus pallidus connectivity was a stronger predictor of spasms (odds ratio [OR] = 1.96, 95% confidence interval [CI] = 1.10-3.50, p = 0.02) than tuber burden (OR = 1.65, 95% CI = 0.90-3.04, p = 0.11), with a mean receiver operating characteristic area under the curve of 0.73 (±0.1) during repeated cross-validation. INTERPRETATION Connectivity between tuber locations and the bilateral globi pallidi is associated with infantile spasms. Our findings lend insight into spasm pathophysiology and may identify patients at risk. ANN NEUROL 2021;89:726-739.
Collapse
Affiliation(s)
- Alexander L Cohen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Laboratory for Brain Network Imaging and Modulation, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Brechtje P F Mulder
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- VUmc School of Medical Sciences, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Anna K Prohl
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Louis Soussand
- Laboratory for Brain Network Imaging and Modulation, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Peter Davis
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Mallory R Kroeck
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Laboratory for Brain Network Imaging and Modulation, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Peter McManus
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Laboratory for Brain Network Imaging and Modulation, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Ali Gholipour
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Benoit Scherrer
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Joyce Y Wu
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Hope Northrup
- Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Darcy A Krueger
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Michael D Fox
- Laboratory for Brain Network Imaging and Modulation, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jurriaan M Peters
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
22
|
Abstract
Epilepsy and autism frequently co-occur. Epilepsy confers an increased risk of autism and autism confers an increased risk of epilepsy. Specific epilepsy syndromes, intellectual disability, and female gender present a particular risk of autism in individuals with epilepsy. Epilepsy and autism are likely to share common etiologies, which predispose individuals to either or both conditions. Genetic factors, metabolic disorders, mitochondrial disorders, and immune dysfunction all can be implicated.
Collapse
Affiliation(s)
- Frank M C Besag
- East London NHS Foundation Trust, 5-7 Rush Court, Bedford MK40 3JT, UK; University College London, London, UK; King's College London, London, UK.
| | - Michael J Vasey
- East London NHS Foundation Trust, 5-7 Rush Court, Bedford MK40 3JT, UK
| |
Collapse
|
23
|
Milovanovic M, Grujicic R. Electroencephalography in Assessment of Autism Spectrum Disorders: A Review. Front Psychiatry 2021; 12:686021. [PMID: 34658944 PMCID: PMC8511396 DOI: 10.3389/fpsyt.2021.686021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/30/2021] [Indexed: 01/01/2023] Open
Abstract
Electroencephalography (EEG) can further out our understanding of autistic spectrum disorders (ASD) neurophysiology. Epilepsy and ASD comorbidity range between 5 and 46%, but its temporal relationship, causal mechanisms and interplay with intellectual disability are still unknown. Epileptiform discharges with or without seizures go as high as 60%, and associate with epileptic encephalopathies, conceptual term suggesting that epileptic activity can lead to cognitive and behavioral impairment beyond the underlying pathology. Seizures and ASD may be the result of similar mechanisms, such as abnormalities in GABAergic fibers or GABA receptor function. Epilepsy and ASD are caused by a number of genetic disorders and variations that induce such dysregulation. Similarly, initial epilepsy may influence synaptic plasticity and cortical connection, predisposing a growing brain to cognitive delays and behavioral abnormalities. The quantitative EEG techniques could be a useful tool in detecting and possibly measuring dysfunctions in specific brain regions and neuronal regulation in ASD. Power spectra analysis reveals a U-shaped pattern of power abnormalities, with excess power in the low and high frequency bands. These might be the consequence of a complicated network of neurochemical changes affecting the inhibitory GABAergic interneurons and their regulation of excitatory activity in pyramidal cells. EEG coherence studies of functional connectivity found general local over-connectivity and long-range under-connectivity between different brain areas. GABAergic interneuron growth and connections are presumably impaired in the prefrontal and temporal cortices in ASD, which is important for excitatory/inhibitory balance. Recent advances in quantitative EEG data analysis and well-known epilepsy ASD co-morbidity consistently indicate a role of aberrant GABAergic transmission that has consequences on neuronal organization and connectivity especially in the frontal cortex.
Collapse
Affiliation(s)
- Maja Milovanovic
- Department for Epilepsy and Clinical Neurophysiology, Institute of Mental Health, Belgrade, Serbia.,Faculty for Special Education and Rehabilitation, University of Belgrade, Belgrade, Serbia
| | - Roberto Grujicic
- Clinical Department for Children and Adolescents, Institute of Mental Health, Belgrade, Serbia
| |
Collapse
|
24
|
Sudarshan S, Kumar A, Gupta A, Bhari N, Sethuraman G, Kaushal T, Pradhan A, Sapra S, Gupta N, Kaur P, Gulati S, Chakrawarty B, Danda S, Bhatt M, Kapoor S, Girisha KM, Sankhyan N, Kabra M, Chowdhury MR. Mutation Spectrum of Tuberous Sclerosis Complex Patients in Indian Population. J Pediatr Genet 2020; 10:274-283. [PMID: 34849272 DOI: 10.1055/s-0040-1716495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022]
Abstract
Tuberous sclerosis complex (TSC) is a multiorgan disorder characterized by formation of hamartomas and broad phenotypic spectrum including seizures, mental retardation, renal dysfunction, skin manifestations and brain tubers. It is inherited in an autosomal dominant pattern, caused due to mutation in either TSC1 or TSC2 genes. Seizures are one of the major presenting symptoms of TSC that helps in early diagnosis. The present study describes the mutation spectrum in TSC1 and TSC2 genes in TSC patients and their association with neurocognitive-behavioral phenotypes. Ninety-eight TSC patients were enrolled for TSC genetic testing after detailed clinical and neurobehavioral assessment. Large genomic rearrangement testing was performed by multiplex ligation-dependent probe amplification (MLPA) technique for all cases and Sanger sequencing was performed for MLPA negative cases. Large rearrangements were identified in approximately 1% in TSC1 and 14.3% in TSC2 genes. The present study observed the presence of duplications in two (2%) cases, both involving TSC2/PKD1 contiguous genes which to the best of our knowledge is reported for the first time. 8.1% of small variants were identified in the TSC1 gene and 85.7% in TSC2 gene, out of which 23 were novel variations and no variants were found in six (6.1%) cases. This study provides a representative picture of the distribution of variants in the TSC1 and TSC2 genes in Indian population along with the detailed assessment of neurological symptoms. This is the largest cohort study from India providing an overview of comprehensive clinical and molecular spectrum.
Collapse
Affiliation(s)
- Shruthi Sudarshan
- Department of Pediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Atin Kumar
- Department of Radio Diagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Arun Gupta
- Department of Radio Diagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Neetu Bhari
- Department of Dermatology & Venerology, All India Institute of Medical Sciences, New Delhi, India
| | - Gomathy Sethuraman
- Department of Dermatology & Venerology, All India Institute of Medical Sciences, New Delhi, India
| | - Tanuja Kaushal
- Department of Pediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Ankita Pradhan
- Department of Pediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Savita Sapra
- Department of Pediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Gupta
- Department of Pediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sheffali Gulati
- Department of Pediatrics, Division of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Biswaroop Chakrawarty
- Department of Radio Diagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Sumita Danda
- Department of Medical Genetics, Christian Medical College, Vellore, India
| | | | - Seema Kapoor
- Department of Pediatrics, Division of Genetics, Maulana Azad Medical College, New Delhi, India
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, India
| | - Naveen Sankhyan
- Department of Pediatrics, Advanced Pediatric Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhulika Kabra
- Department of Pediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhumita Roy Chowdhury
- Department of Pediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
25
|
Hooshmandi M, Wong C, Khoutorsky A. Dysregulation of translational control signaling in autism spectrum disorders. Cell Signal 2020; 75:109746. [PMID: 32858122 DOI: 10.1016/j.cellsig.2020.109746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/27/2022]
Abstract
Deviations from the optimal level of mRNA translation are linked to disorders with high rates of autism. Loss of function mutations in genes encoding translational repressors such as PTEN, TSC1, TSC2, and FMRP are associated with autism spectrum disorders (ASDs) in humans and their deletion in animals recapitulates many ASD-like phenotypes. Importantly, the activity of key translational control signaling pathways such as PI3K-mTORC1 and ERK is frequently dysregulated in autistic patients and animal models and their normalization rescues many abnormal phenotypes, suggesting a causal relationship. Mutations in several genes encoding proteins not directly involved in translational control have also been shown to mediate ASD phenotypes via altered signaling upstream of translation. This raises the possibility that the dysregulation of translational control signaling is a converging mechanism not only in familiar but also in sporadic forms of autism. Here, we overview the current knowledge on translational signaling in ASD and highlight how correcting the activity of key pathways upstream of translation reverses distinct ASD-like phenotypes.
Collapse
Affiliation(s)
- Mehdi Hooshmandi
- Department of Anesthesia, Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Calvin Wong
- Department of Anesthesia, Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Arkady Khoutorsky
- Department of Anesthesia, Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
26
|
Earnest T, Shephard E, Tye C, McEwen F, Woodhouse E, Liang H, Sheerin F, Bolton PF. Actigraph-Measured Movement Correlates of Attention-Deficit/Hyperactivity Disorder (ADHD) Symptoms in Young People with Tuberous Sclerosis Complex (TSC) with and without Intellectual Disability and Autism Spectrum Disorder (ASD). Brain Sci 2020; 10:brainsci10080491. [PMID: 32731531 PMCID: PMC7465488 DOI: 10.3390/brainsci10080491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 02/02/2023] Open
Abstract
Actigraphy, an objective measure of motor activity, reliably indexes increased movement levels in attention-deficit/hyperactivity disorder (ADHD) and may be useful for diagnosis and treatment-monitoring. However, actigraphy has not been examined in complex neurodevelopmental conditions. This study used actigraphy to objectively measure movement levels in individuals with a complex neurodevelopmental genetic disorder, tuberous sclerosis (TSC). Thirty participants with TSC (11–21 years, 20 females, IQ = 35–108) underwent brief (approximately 1 h) daytime actigraph assessment during two settings: movie viewing and cognitive testing. Multiple linear regressions were used to test associations between movement measurements and parent-rated ADHD symptoms. Correlations were used to examine associations between actigraph measures and parent-rated ADHD symptoms and other characteristics of TSC (symptoms of autism spectrum disorder (ASD), intellectual ability (IQ), epilepsy severity, cortical tuber count). Higher movement levels during movies were associated with higher parent-rated ADHD symptoms. Higher ADHD symptoms and actigraph-measured movement levels during movies were positively associated with ASD symptoms and negatively associated with IQ. Inter-individual variability of movement during movies was not associated with parent-rated hyperactivity or IQ but was negatively associated with ASD symptoms. There were no associations with tuber count or epilepsy. Our findings suggest that actigraph-measured movement provides a useful correlate of ADHD in TSC.
Collapse
Affiliation(s)
- Tom Earnest
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (E.S.); (C.T.); (F.M.); (H.L.); (F.S.); (P.F.B.)
- Correspondence:
| | - Elizabeth Shephard
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (E.S.); (C.T.); (F.M.); (H.L.); (F.S.); (P.F.B.)
| | - Charlotte Tye
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (E.S.); (C.T.); (F.M.); (H.L.); (F.S.); (P.F.B.)
- Social, Genetic & Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Fiona McEwen
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (E.S.); (C.T.); (F.M.); (H.L.); (F.S.); (P.F.B.)
- Social, Genetic & Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Emma Woodhouse
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK;
| | - Holan Liang
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (E.S.); (C.T.); (F.M.); (H.L.); (F.S.); (P.F.B.)
- Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Fintan Sheerin
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (E.S.); (C.T.); (F.M.); (H.L.); (F.S.); (P.F.B.)
| | - Patrick F. Bolton
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (E.S.); (C.T.); (F.M.); (H.L.); (F.S.); (P.F.B.)
| |
Collapse
|
27
|
Abstract
Epilepsy and autism frequently co-occur. Epilepsy confers an increased risk of autism and autism confers an increased risk of epilepsy. Specific epilepsy syndromes, intellectual disability, and female gender present a particular risk of autism in individuals with epilepsy. Epilepsy and autism are likely to share common etiologies, which predispose individuals to either or both conditions. Genetic factors, metabolic disorders, mitochondrial disorders, and immune dysfunction all can be implicated.
Collapse
Affiliation(s)
- Frank M C Besag
- East London NHS Foundation Trust, 5-7 Rush Court, Bedford MK40 3JT, UK; University College London, London, UK; King's College London, London, UK.
| | - Michael J Vasey
- East London NHS Foundation Trust, 5-7 Rush Court, Bedford MK40 3JT, UK
| |
Collapse
|
28
|
Williams ME, Pearson DA, Capal JK, Byars AW, Murray DS, Kissinger R, O'Kelley SE, Hanson E, Bing NM, Kent B, Wu JY, Northrup H, Bebin EM, Sahin M, Krueger D. Impacting development in infants with tuberous sclerosis complex: Multidisciplinary research collaboration. ACTA ACUST UNITED AC 2020; 74:356-367. [PMID: 30945897 DOI: 10.1037/amp0000436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Tuberous Sclerosis Complex Autism Center of Excellence Network (TACERN) is a 6-site collaborative conducting longitudinal research on infants with tuberous sclerosis complex (TSC), focused on identifying early biomarkers for autism spectrum disorder (ASD). A multidisciplinary research team that includes the specialties of psychology, neurology, pediatrics, medical genetics, and speech-language pathology, its members work together to conduct studies on neurological status, brain structure and function, neurodevelopmental phenotype, and behavioral challenges in this population. This article provides insights into the roles of the multidisciplinary multisite team and lessons learned from the collaboration, in terms of research as well as training of future researchers and clinicians. In addition, the authors detail the major findings to date, including those related to the identification and measurement of early symptoms of ASD, relationship between seizures and early development, and early biomarkers for epilepsy and developmental delay in infants and young children with TSC. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hope Northrup
- University of Texas Health Science Center at Houston
| | | | | | | | | |
Collapse
|
29
|
Capal JK, Macklin EA, Lu F, Barnes G. Factors Associated With Seizure Onset in Children With Autism Spectrum Disorder. Pediatrics 2020; 145:S117-S125. [PMID: 32238538 DOI: 10.1542/peds.2019-1895o] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Children with autism spectrum disorder (ASD) have a higher prevalence of epilepsy compared with general populations. In this pilot study, we prospectively identified baseline risk factors for the development of seizures in individuals with ASD and also identified characteristics sensitive to seizure onset up to 6 years after enrollment in the Autism Speaks Autism Treatment Network. METHODS Children with ASD and no history of seizures at baseline who either experienced onset of seizures after enrollment in the Autism Treatment Network or remained seizure free were included in the analysis. RESULTS Among 472 qualifying children, 22 (4.7%) experienced onset of seizures after enrollment. Individuals who developed seizures after enrollment exhibited lower scores at baseline on all domains of the Vineland Adaptive Behavior Scales, greater hyperactivity on the Aberrant Behavior Checklist (25.4 ± 11.8 vs 19.2 ± 11.1; P = .018), and lower physical quality of life scores on the Pediatric Quality of Life Inventory (60.1 ± 24.2 vs 76.0 ± 18.2; P < .001). Comparing change in scores from entry to call-back, adjusting for age, sex, length of follow-up, and baseline Vineland II composite score, individuals who developed seizures experienced declines in daily living skills (-8.38; 95% confidence interval -14.50 to -2.50; P = .005). Adjusting for baseline age, sex, and length of follow-up, baseline Vineland II composite score was predictive of seizure development (risk ratio = 0.95 per unit Vineland II composite score, 95% confidence interval 0.92 to 0.99; P = .007). CONCLUSIONS Individuals with ASD at risk for seizures exhibited changes in adaptive functioning and behavior.
Collapse
Affiliation(s)
- Jamie K Capal
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; .,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Eric A Macklin
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Harvard University, Boston, Massachusetts; and
| | - Frances Lu
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Gregory Barnes
- Departments of Neurology and Pediatrics, University of Louisville Autism Center, Louisville, Kentucky
| |
Collapse
|
30
|
Tye C, Mcewen FS, Liang H, Underwood L, Woodhouse E, Barker ED, Sheerin F, Yates JRW, Bolton PF. Long-term cognitive outcomes in tuberous sclerosis complex. Dev Med Child Neurol 2020; 62:322-329. [PMID: 31538337 PMCID: PMC7027810 DOI: 10.1111/dmcn.14356] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2019] [Indexed: 01/10/2023]
Abstract
AIM To investigate the interdependence between risk factors associated with long-term intellectual development in individuals with tuberous sclerosis complex (TSC). METHOD The Tuberous Sclerosis 2000 Study is a prospective longitudinal study of individuals with TSC. In phase 1 of the study, baseline measures of intellectual ability, epilepsy, cortical tuber load, and mutation were obtained for 125 children (63 females, 62 males; median age=39mo). In phase 2, at an average of 8 years later, intellectual abilities were estimated for 88 participants with TSC and 35 unaffected siblings. Structural equation modelling was used to determine the risk pathways from genetic mutation through to IQ at phase 2. RESULTS Intellectual disability was present in 57% of individuals with TSC. Individuals without intellectual disability had significantly lower mean IQ compared to unaffected siblings, supporting specific genetic factors associated with intellectual impairment. Individuals with TSC who had a slower gain in IQ from infancy to middle childhood were younger at seizure onset and had increased infant seizure severity. Structural equation modelling indicated indirect pathways from genetic mutation, to tuber count, to seizure severity in infancy, through to IQ in middle childhood and adolescence. INTERPRETATION Early-onset and severe epilepsy in the first 2 years of life are associated with increased risk of long-term intellectual disability in individuals with TSC, emphasizing the importance of early and effective treatment or prevention of epilepsy. WHAT THIS PAPER ADDS Intellectual disability was present in 57% of individuals with tuberous sclerosis complex (TSC). Those with TSC without intellectual disability had significantly lower mean IQ compared to unaffected siblings. Earlier onset and greater severity of seizures in the first 2 years were observed in individuals with a slower gain in intellectual ability. Risk pathways through seizures in the first 2 years predict long-term cognitive outcomes in individuals with TSC.
Collapse
Affiliation(s)
- Charlotte Tye
- Department of Child & Adolescent PsychiatryInstitute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK,Social Genetic & Developmental Psychiatry CentreInstitute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Fiona S Mcewen
- Department of Child & Adolescent PsychiatryInstitute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK,Social Genetic & Developmental Psychiatry CentreInstitute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK,Department of Biological and Experimental PsychologySchool of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Holan Liang
- Department of Child & Adolescent PsychiatryInstitute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK,Great Ormond Street Hospital NHS TrustLondonUK,Institute of Child HealthUniversity College LondonLondonUK
| | - Lisa Underwood
- Department of Population HealthUniversity of AucklandAucklandNew Zealand
| | - Emma Woodhouse
- Forensic and Neurodevelopmental SciencesInstitute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK,South London and Maudsley NHS TrustLondonUK
| | - Edward D Barker
- Department of PsychologyInstitute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Fintan Sheerin
- Department of NeuroradiologyOxford University Hospital NHS Foundation TrustOxfordUK
| | - John R W Yates
- Department of Medical GeneticsCambridge UniversityCambridgeUK
| | - Patrick F Bolton
- Department of Child & Adolescent PsychiatryInstitute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK,Social Genetic & Developmental Psychiatry CentreInstitute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | | |
Collapse
|
31
|
Lv M, Ma Q. Autophagy in Neurodevelopmental Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:171-182. [PMID: 32671746 DOI: 10.1007/978-981-15-4272-5_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neurodevelopmental diseases are a class of neurodevelopmental disorders characterized by cognitive impairment and behavioral abnormalities and are mainly manifested as developmental disorders of the brain and nervous system. The pathological mechanism is not fully understood and may be related to hereditary or environmental factors. The elevation of autophagy during neural development suggests that autophagy may be involved in the process of neurodevelopment. This chapter focuses on the important functions of autophagy in all aspects of neurodevelopment and the role and mechanism of autophagy in neurodevelopmental disorders, especially in autism spectrum disorder.
Collapse
Affiliation(s)
- Meihong Lv
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu Province, China
| | - Quanhong Ma
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
32
|
Park BS, Yoo MJ, Kim IH, Park JH, Park SH, Lee YJ, Park KM. Alterations of gray matter volumes and connectivity in patients with tuberous sclerosis complex. J Clin Neurosci 2019; 72:360-364. [PMID: 31892496 DOI: 10.1016/j.jocn.2019.12.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022]
Abstract
Tuberous sclerosis complex (TSC) is an inherited genetic disorder caused by mutations in the TSC1 or TSC2 genes, encoding hamartin and tuberin. We aimed to evaluate structural volumes and connectivity of patients with TSC compared to those of healthy subjects. We consecutively enrolled 13 patients with a diagnosis of TSC and 15 age- and sex-matched healthy control subjects. Subjects underwent three-dimensional volumetric T1-weighted imaging, suitable for a quantitative analysis. Structural volumes were investigated using FreeSurfer image analysis software, and structural connectivity was calculated from a connectivity matrix, which was estimated from the correlation analysis of structural volumes using the Brain Analysis using Graph Theory software package. Differences in structural volumes and connectivity were analyzed between patients with TSC and healthy subjects. There were no differences of cortical volumes between the patients with TSC and healthy controls. However, we found decreased gray matter volumes in several subcortical regions in the patients with TSC compared to those in healthy controls, specifically in the putamen (0.3212 vs. 0.3841%, p = 0.001), even after multiple corrections. Regarding global structural connectivity, the small-worldness index was significantly decreased in patients with TSC compared to that in healthy controls (0.907 vs. 0.977, p = 0.049). This study revealed structural volumes and connectivity in patients with TSC that are significantly different from those in healthy controls. These alterations have implications for the pathogenesis of TSC.
Collapse
Affiliation(s)
- Bong Soo Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Mi Jung Yoo
- Department of Internal Medicine, Dongkang Hospital, Ulsan, South Korea
| | - Il Hwan Kim
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Jin Han Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Si Hyung Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Yoo Jin Lee
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea.
| |
Collapse
|
33
|
Besag FMC, Vasey MJ. Social cognition and psychopathology in childhood and adolescence. Epilepsy Behav 2019; 100:106210. [PMID: 31196824 DOI: 10.1016/j.yebeh.2019.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/04/2019] [Accepted: 03/10/2019] [Indexed: 11/16/2022]
Abstract
There is a substantial body of research on social cognition in adults with epilepsy, and in broad categories such as focal and generalized epilepsies, but much less has been written about social cognition in children with epilepsy (CWE), and in childhood-onset epilepsy syndromes specifically. In several of these syndromes, autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD), two disorders with social cognitive impairments, are reported. There is strong evidence for social cognitive deficits in juvenile myoclonic epilepsy (JME). There is also a considerable amount of evidence for such deficits in a number of syndromes that may be associated with ASD or ADHD, including West syndrome (WS), Dravet syndrome (DS), and the Landau-Kleffner syndrome (LKS). However, the evidence is of variable quality and incomplete across the range of childhood epilepsy syndromes. In some syndromes, childhood epilepsy substantially increases the risk of severe social cognitive impairment, which may persist after the seizures remit. This paper presents an overview of current research on social cognition in childhood epilepsy, with a particular focus on syndromes with a high prevalence of autistic and behavioral comorbidities. Social cognitive impairments represent a considerable additional challenge for patients and caregivers. Early diagnosis and intervention might significantly improve long-term social cognitive outcomes, highlighting the need for greater awareness among clinicians of this important topic. This article is part of the Special Issue "Epilepsy and social cognition across the lifespan".
Collapse
Affiliation(s)
- Frank M C Besag
- East London Foundation NHS Trust, 5-7 Rush Court, Bedford MK40 3JT, UK; University College, London, UK; King's College, London, UK.
| | | |
Collapse
|
34
|
Ahtam B, Dehaes M, Sliva DD, Peters JM, Krueger DA, Bebin EM, Northrup H, Wu JY, Warfield SK, Sahin M, Grant PE. Resting-State fMRI Networks in Children with Tuberous Sclerosis Complex. J Neuroimaging 2019; 29:750-759. [PMID: 31304656 DOI: 10.1111/jon.12653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/16/2019] [Accepted: 06/20/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE There are no published studies examining resting state networks (RSNs) and their relationship with neurodevelopmental metrics in tuberous sclerosis complex (TSC). We aimed to identify major resting-state functional magnetic resonance imaging (rs-fMRI) networks in infants with TSC and correlate network analyses with neurodevelopmental assessments, autism diagnosis, and seizure history. METHODS Rs-fMRI data from 34 infants with TSC, sedated with propofol during the scan, were analyzed to identify auditory, motor, and visual RSNs. We examined the correlations between auditory, motor, and visual RSNs at approximately 11.5 months, neurodevelopmental outcome at approximately 18.5 months, and diagnosis of autism spectrum disorders at approximately 36 months of age. RESULTS RSNs were obtained in 76.5% (26/34) of infants. We observed significant negative correlations between auditory RSN and auditory comprehension test scores (p = .038; r = -.435), as well as significant positive correlations between motor RSN and gross motor skills test scores (p = .023; r = .564). Significant positive correlations between motor RSNs and gross motor skills (p = .012; r = .754) were observed in TSC infants without autism, but not in TSC infants with autism, which could suggest altered motor processing. There were no significant differences in RSNs according to seizure history. CONCLUSIONS Negative correlation between auditory RSN, as well as positive correlation between motor RSN and developmental outcome measures might reflect different brain mechanisms and, when identified, may be helpful in predicting later function. A larger study of TSC patients with a healthy control group is needed before auditory and motor RSNs could be considered as neurodevelopmental outcome biomarkers.
Collapse
Affiliation(s)
- Banu Ahtam
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Mathieu Dehaes
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal and CHU Sainte-Justine, Montreal, QC, Canada
| | - Danielle D Sliva
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Neuroscience, Brown University, Providence, RI
| | - Jurriaan M Peters
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Darcy A Krueger
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | | | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Joyce Y Wu
- Division of Pediatric Neurology, University of California at Los Angeles Mattel Children's Hospital, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Mustafa Sahin
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA
| | - Patricia Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Division of Neuroradiology, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | -
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
35
|
Okamoto SI, Prikhodko O, Pina-Crespo J, Adame A, McKercher SR, Brill LM, Nakanishi N, Oh CK, Nakamura T, Masliah E, Lipton SA. NitroSynapsin for the treatment of neurological manifestations of tuberous sclerosis complex in a rodent model. Neurobiol Dis 2019; 127:390-397. [PMID: 30928642 DOI: 10.1016/j.nbd.2019.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis (TSC) is an autosomal dominant disorder caused by heterozygous mutations in the TSC1 or TSC2 gene. TSC is often associated with neurological, cognitive, and behavioral deficits. TSC patients also express co-morbidity with anxiety and mood disorders. The mechanism of pathogenesis in TSC is not entirely clear, but TSC-related neurological symptoms are accompanied by excessive glutamatergic activity and altered synaptic spine structures. To address whether extrasynaptic (e)NMDA-type glutamate receptor (NMDAR) antagonists, as opposed to antagonists that block physiological phasic synaptic activity, can ameliorate the synaptic and behavioral features of this disease, we utilized the Tsc2+/- mouse model of TSC to measure biochemical, electrophysiological, histological, and behavioral parameters in the mice. We found that antagonists that preferentially block tonic activity as found at eNMDARs, particularly the newer drug NitroSynapsin, provide biological and statistically significant improvement in Tsc2+/- phenotypes. Accompanying this improvement was correction of activity in the p38 MAPK-TSC-Rheb-mTORC1-S6K1 pathway. Deficits in hippocampal long-term potentiation (LTP), histological loss of synapses, and behavioral fear conditioning in Tsc2+/- mice were all improved after treatment with NitroSynapsin. Taken together, these results suggest that amelioration of excessive excitation, by limiting aberrant eNMDAR activity, may represent a novel treatment approach for TSC.
Collapse
Affiliation(s)
| | - Olga Prikhodko
- Biomedical Sciences Graduate Program, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Juan Pina-Crespo
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Anthony Adame
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Scott R McKercher
- Scintillon Institute, San Diego, CA 92121, USA; Neuroscience Translational Center, Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Laurence M Brill
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Chang-Ki Oh
- Scintillon Institute, San Diego, CA 92121, USA; Neuroscience Translational Center, Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tomohiro Nakamura
- Scintillon Institute, San Diego, CA 92121, USA; Neuroscience Translational Center, Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Stuart A Lipton
- Scintillon Institute, San Diego, CA 92121, USA; Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA; Neuroscience Translational Center, Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
36
|
Amin S, Kingswood JC, Bolton PF, Elmslie F, Gale DP, Harland C, Johnson SR, Parker A, Sampson JR, Smeaton M, Wright I, O'Callaghan FJ. The UK guidelines for management and surveillance of Tuberous Sclerosis Complex. QJM 2019; 112:171-182. [PMID: 30247655 DOI: 10.1093/qjmed/hcy215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/15/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The severity of Tuberous Sclerosis Complex (TSC) can vary among affected individuals. Complications of TSC can be life threatening, with significant impact on patients' quality of life. Management may vary dependent on treating physician, local and national policies, and funding. There are no current UK guidelines. We conducted a Delphi consensus process to reach agreed guidance for the management of patients with TSC in the UK. METHODS We performed a literature search and reviewed the 2012/13 international guideline for TSC management. Based on these, a Delphi questionnaire was formed. We invited 86 clinicians and medical researchers to complete an online survey in two rounds. All the people surveyed were based in the UK. Clinicians were identified through the regional TSC clinics, and researchers were identified through publications. In round one, 55 questions were asked. In round two, 18 questions were asked in order to obtain consensus on the outstanding points that had been contentious in round one. The data was analysed by a core committee and subcommittees, which consisted of UK experts in different aspects of TSC. The Tuberous Sclerosis Association was consulted. RESULTS About 51 TSC experts took part in this survey. Two rounds were required to achieve consensus. The responders were neurologists, nephrologists, psychiatrist, psychologists, oncologists, general paediatricians, dermatologist, urologists, radiologists, clinical geneticists, neurosurgeons, respiratory and neurodisability clinicians. CONCLUSIONS These new UK guidelines for the management and surveillance of TSC patients provide consensus guidance for delivery of best clinical care to individuals with TSC in the UK.
Collapse
Affiliation(s)
- S Amin
- University Hospitals Bristol, Upper Maudlin Street, Education Centre Level 6, Bristol, UK
| | - J C Kingswood
- Brighton and Sussex University Hospitals, Eastern Rd, Brighton, East Sussex, UK
| | - P F Bolton
- King's College London, Institute of Psychiatry, London, UK
| | - F Elmslie
- St George's University Hospitals, Cranmer Terrace, London, UK
| | - D P Gale
- UCL Centre for Nephrology, Royal Free Hospital, University College London, London, UK
| | - C Harland
- Epsom & St Helier Hospital, Wrythe Lane, Carshalton, Surrey, UK
| | - S R Johnson
- Division of Respiratory Medicine, Faculty of Medicine & Health Sciences, Nottingham University, Nottingham, UK
| | - A Parker
- Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, UK
| | - J R Sampson
- Division of Cancer and Genetics, University of Cardiff, Cardiff, UK
| | - M Smeaton
- Tuberous Sclerosis Association, CAN Mezzanine, 32-36 Loman Street, London, UK
| | - I Wright
- University of Bristol, The Priory Road Complex, Priory Road, Bristol, Clifton, UK
| | - F J O'Callaghan
- UCL GOS Institute of Child Health, 41 Clinical Neurosciences Section, 4th Floor Philip Ullman Wing South, London, UK
| |
Collapse
|
37
|
Factors affecting epilepsy prognosis in patients with tuberous sclerosis. Childs Nerv Syst 2019; 35:463-468. [PMID: 30673834 DOI: 10.1007/s00381-019-04066-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE We aimed to determine the characteristics of epileptic seizures that significantly affect the cognitive functions of 83 patients followed with tuberous sclerosis complex (TSC), their resistance to treatment and risk factors causing this resistance. MATERIALS-METHODS In order to determine the prognosis, the seizure-free/seizure-controlled group and the group with refractory seizures were compared. In addition, risk factors affecting cognitive functions in the patients were determined. RESULTS There was a statistical significance between the presence of a history of seizures in the neonatal period, the age of onset of seizures being less than 2 years of age, autism, status epilepticus, Lennox-Gastaut syndrome (LGS), presence of infantile spasm, generalization of the electroencephalography (EEG) findings, the number of tubers in cerebral imaging being more than three and refractory seizures (p < 0.05). Statistically significant relationship was found between presence of a history of seizures in the neonatal period, the age of onset of seizures, autism, LGS, presence of infantile spasm, presence of status epilepticus history, history of using more than three antiepileptic drugs, generalization of EEG findings, presence of SEGA in cerebral imaging, number of tubers being more than three and the patient's mental retardation (p < 0.05). CONCLUSION In logistic regression analysis, the age of the seizure onset being less than 2 years of age, the presence of autism and number of tubers being more than three in cerebral magnetic resonance imaging (MRI) are determined to be the risk factors that most likely to increase the seizures to be more resistant.
Collapse
|
38
|
Wilde L, Wade K, Eden K, Moss J, de Vries PJ, Oliver C. Persistence of self-injury, aggression and property destruction in children and adults with tuberous sclerosis complex. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2018; 62:1058-1071. [PMID: 29417652 DOI: 10.1111/jir.12472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/27/2017] [Accepted: 12/15/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Individuals with tuberous sclerosis complex (TSC) are at increased risk of developing self-injurious behaviour. The persistence of this deleterious behaviour over years is reported in aetiologically heterogeneous samples to be between 60% and 80% but is unknown for TSC. METHOD In this study, we determined the 3-year persistence of self-injury in a sample (n = 52) of children (with and without ID) and adults (with ID) with TSC and examined characteristics associated with persistence. RESULTS Findings for self-injury were contrasted to those for aggression and property destruction to examine the specificity of results to this behaviour. Self-injury was persistent in 84.6% of those with TSC who showed this behaviour, in contrast to 66.7% both for aggression and destruction. Persistent self-injury was associated with poor self-help skills, greater overactivity/impulsivity and more behavioural indicators of pain. These latter two characteristics were also associated with persistent aggression. No characteristics were associated with persistence of property destruction. CONCLUSION These findings suggest that self-injurious behaviours in individuals with TSC, together with aggressive and destructive behaviours, are highly persistent and would benefit from targeted intervention. Poor adaptive skills, overactivity/impulsivity and painful health conditions may differentiate those at most risk for persistent self-injury or aggression.
Collapse
Affiliation(s)
- L Wilde
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, UK
| | - K Wade
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, UK
| | - K Eden
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, UK
| | - J Moss
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, UK
- Institute of Cognitive Neuroscience, University College London, UK
| | - P J de Vries
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Mental Health, University of Cape Town, South Africa
| | - C Oliver
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, UK
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW This article provides an overview of the most common nervous system malformations and serves as a reference for the latest advances in diagnosis and treatment. RECENT FINDINGS Major advances have occurred in recognizing the genetic basis of nervous system malformations. Environmental causes of nervous system malformations, such as perinatal infections including Zika virus, are also reviewed. Treatment for nervous system malformations begins prior to birth with prevention. Folic acid supplementation reduces the risk of neural tube defects and is an important part of health maintenance for pregnant women. Fetal surgery is now available for prenatal repair of myelomeningocele and has been demonstrated to improve outcomes. SUMMARY Each type of nervous system malformation is relatively uncommon, but, collectively, they constitute a large population of neurologic patients. The diagnosis of nervous system malformations begins with radiographic characterization. Genetic studies, including chromosomal microarray, targeted gene sequencing, and next-generation sequencing, are increasingly important aspects of the assessment. A genetic diagnosis may identify an associated medical condition and is necessary for family planning. Treatment consists primarily of supportive therapies for developmental delays and epilepsy, but prenatal surgery for myelomeningocele offers a glimpse of future possibilities. Prognosis depends on multiple clinical factors, including the examination findings, imaging characteristics, and genetic results. Treatment is best conducted in a multidisciplinary setting with neurology, neurosurgery, developmental pediatrics, and genetics working together as a comprehensive team.
Collapse
|
40
|
de Vries PJ, Wilde L, de Vries MC, Moavero R, Pearson DA, Curatolo P. A clinical update on tuberous sclerosis complex-associated neuropsychiatric disorders (TAND). AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:309-320. [PMID: 30117265 DOI: 10.1002/ajmg.c.31637] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022]
Abstract
Tuberous sclerosis complex (TSC) is associated with a wide range of behavioral, psychiatric, intellectual, academic, neuropsychological, and psychosocial difficulties, which are often underdiagnosed and undertreated. Here, we present a clinical update on TSC-associated neuropsychiatric disorders, abbreviated as "TAND," to guide screening, diagnosis, and treatment in practice. The review is aimed at clinical geneticists, genetic counselors, pediatricians, and all generalists involved in the assessment and treatment of children, adolescents and adults with TSC, and related disorders. The review starts with a summary of the construct and levels of TAND, before presenting up-to-date information about each level of investigation. The review concludes with a synopsis of current and future TAND research.
Collapse
Affiliation(s)
- Petrus J de Vries
- Division of Child and Adolescent Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Lucy Wilde
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Magdalena C de Vries
- Division of Child and Adolescent Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, University of Rome Tor Vergata, Rome, Italy.,Child Neurology Unit, Neuroscience and Neurorehabilitation Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Deborah A Pearson
- Department of Psychiatry & Behavioral Sciences, McGovern Medical School, University of Texas Health Centre, Houston, Texas
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
41
|
Waltereit R, Feucht M, de Vries MC, Huemer J, Roessner V, de Vries PJ. [Neuropsychiatric manifestations in Tuberous Sclerosis Complex (TSC): diagnostic guidelines, TAND concept and therapy with mTOR inhibitors]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2018; 47:139-153. [PMID: 30080117 DOI: 10.1024/1422-4917/a000604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuropsychiatric manifestations in Tuberous Sclerosis Complex (TSC): diagnostic guidelines, TAND concept and therapy with mTOR inhibitors Abstract. Tuberous sclerosis complex (TSC), albeit a rare autosomal-dominant multisystem disease with an incidence of 1:6,000, is one of the most important monogenetic disorders in child and adolescent psychiatry. In up to 90 % of patients, neurological disorders such as epilepsy and psychiatric disorders such as autism spectrum disorder, ADHD, affective disorders, and intellectual disability are observed. In recent years, significant progress has been made in understanding the molecular mechanism as well as in the clinical diagnosis and treatment of the disease. Here, we review these recent developments. In the first part, we describe the need for psychiatric assessment and treatment of patients and analyse challenges in interdisciplinary work between child and adolescent psychiatry, child neurology, and other professional groups. In the second part, we introduce the concept of TSC-associated neuropsychiatric disorders (TAND), developed by the TSC Neuropsychiatry Panel as a guide to help clinical teams, families, and individuals with TSC via screening, assessment, and treatment of neuropsychiatric symptoms and disorders as well as with a novel screening instrument, the TAND Checklist. Finally, we report findings from recent clinical trials of mTOR-inhibitors to treat TAND. The paper includes the German translation of the TAND Checklist as an electronic supplement.
Collapse
Affiliation(s)
- Robert Waltereit
- 1 Klinik und Poliklinik für Kinder- und Jugendpsychiatrie und -psychotherapie, Technische Universität Dresden, Deutschland
| | - Martha Feucht
- 2 Universitätsklinik für Kinder- und Jugendheilkunde, Medizinische Universität Wien, Österreich
| | | | - Julia Huemer
- 4 Universitätsklinik für Kinder- und Jugendpsychiatrie, Medizinische Universität Wien, Österreich
| | - Veit Roessner
- 1 Klinik und Poliklinik für Kinder- und Jugendpsychiatrie und -psychotherapie, Technische Universität Dresden, Deutschland
| | - Petrus J de Vries
- 3 Abteilung für Kinder- und Jugendpsychiatrie, Universität Kapstadt, Südafrika
| |
Collapse
|
42
|
Tordjman S, Cohen D, Anderson G, Botbol M, Canitano R, Coulon N, Roubertoux P. Repint of “Reframing autism as a behavioral syndrome and not a specific mental disorder: Implications of genetic and phenotypic heterogeneity”. Neurosci Biobehav Rev 2018; 89:132-150. [DOI: 10.1016/j.neubiorev.2018.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/18/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022]
|
43
|
Leclezio L, Gardner-Lubbe S, de Vries PJ. Is It Feasible to Identify Natural Clusters of TSC-Associated Neuropsychiatric Disorders (TAND)? Pediatr Neurol 2018. [PMID: 29530301 DOI: 10.1016/j.pediatrneurol.2017.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a genetic disorder with multisystem involvement. The lifetime prevalence of TSC-Associated Neuropsychiatric Disorders (TAND) is in the region of 90% in an apparently unique, individual pattern. This "uniqueness" poses significant challenges for diagnosis, psycho-education, and intervention planning. To date, no studies have explored whether there may be natural clusters of TAND. The purpose of this feasibility study was (1) to investigate the practicability of identifying natural TAND clusters, and (2) to identify appropriate multivariate data analysis techniques for larger-scale studies. METHODS TAND Checklist data were collected from 56 individuals with a clinical diagnosis of TSC (n = 20 from South Africa; n = 36 from Australia). Using R, the open-source statistical platform, mean squared contingency coefficients were calculated to produce a correlation matrix, and various cluster analyses and exploratory factor analysis were examined. RESULTS Ward's method rendered six TAND clusters with good face validity and significant convergence with a six-factor exploratory factor analysis solution. The "bottom-up" data-driven strategies identified a "scholastic" cluster of TAND manifestations, an "autism spectrum disorder-like" cluster, a "dysregulated behavior" cluster, a "neuropsychological" cluster, a "hyperactive/impulsive" cluster, and a "mixed/mood" cluster. CONCLUSIONS These feasibility results suggest that a combination of cluster analysis and exploratory factor analysis methods may be able to identify clinically meaningful natural TAND clusters. Findings require replication and expansion in larger dataset, and could include quantification of cluster or factor scores at an individual level.
Collapse
Affiliation(s)
- Loren Leclezio
- Division of Child and Adolescent Psychiatry, University of Cape Town, South Africa
| | - Sugnet Gardner-Lubbe
- Department of Statistics and Actuarial Science, Stellenbosch University, South Africa
| | - Petrus J de Vries
- Division of Child and Adolescent Psychiatry, University of Cape Town, South Africa.
| |
Collapse
|
44
|
Harris JC. The origin and natural history of autism spectrum disorders. Nat Neurosci 2018; 19:1390-1391. [PMID: 27786188 DOI: 10.1038/nn.4427] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- James C Harris
- Department of Psychiatry and Behavioral Sciences, Developmental Neuropsychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Cortical dysplasia and autistic trait severity in children with Tuberous Sclerosis Complex: a clinical epidemiological study. Eur Child Adolesc Psychiatry 2018; 27:753-765. [PMID: 29063203 PMCID: PMC5973967 DOI: 10.1007/s00787-017-1066-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/09/2017] [Indexed: 01/08/2023]
Abstract
Tuberous Sclerosis Complex (TSC) is characterized by a high prevalence of autism spectrum disorders (ASD). Little is known about the relation between cortical dysplasia and ASD severity in TSC. We assessed ASD severity (using the Autism Diagnostic Observation Scale), tuber and radial migration line (RML) count and location, and cognitive functioning in 52 children with TSC and performed regression and mediation analyses. Tuber and RML count were strongly positively related to ASD severity. However, when correcting for cognitive functioning, the majority of associations became insignificant and only total tuber count remained associated to the severity of restricted/repetitive behaviors. Occipital RML count remained associated with overall ASD severity, and social communication/interaction deficit severity specifically. This study shows the important explanatory role of cognitive functioning in the association between cortical dysplasia and ASD severity, and the relevance of separately studying the two ASD subdomains.
Collapse
|
46
|
Abstract
Autism is more common in people with epilepsy, approximately 20%, and epilepsy is more common in people with autism with reported rates of approximately 20%. However, these figures are likely to be affected by the current broader criteria for autism spectrum disorder (ASD), which have contributed to an increased prevalence of autism, with the result that the rate for ASD in epilepsy is likely to be higher and the figure for epilepsy in ASD is likely to be lower. Some evidence suggests that there are two peaks of epilepsy onset in autism, in infancy and adolescence. The rate of autism in epilepsy is much higher in those with intellectual disability. In conditions such as the Landau-Kleffner syndrome and nonconvulsive status epilepticus, the epilepsy itself may present with autistic features. There is no plausible mechanism for autism causing epilepsy, however. The co-occurrence of autism and epilepsy is almost certainly the result of underlying factors predisposing to both conditions, including both genetic and environmental factors. Conditions such as attention deficit hyperactivity disorder, anxiety and sleep disorders are common in both epilepsy and autism. Epilepsy is generally not a contraindication to treating these conditions with suitable medication, but it is important to take account of relevant drug interactions. One of the greatest challenges in autism is to determine why early childhood regression occurs in perhaps 25%. Further research should focus on finding the cause for such regression. Whether epilepsy plays a role in the regression of a subgroup of children with autism who lose skills remains to be determined.
Collapse
Affiliation(s)
- Frank Mc Besag
- Neurodevelopmental Team, East London Foundation NHS Trust, Family Consultation Clinic, Bedford, UK
| |
Collapse
|
47
|
Tye C, Runicles AK, Whitehouse AJO, Alvares GA. Characterizing the Interplay Between Autism Spectrum Disorder and Comorbid Medical Conditions: An Integrative Review. Front Psychiatry 2018; 9:751. [PMID: 30733689 PMCID: PMC6354568 DOI: 10.3389/fpsyt.2018.00751] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022] Open
Abstract
Co-occurring medical disorders and associated physiological abnormalities in individuals with autism spectrum disorder (ASD) may provide insight into causal pathways or underlying biological mechanisms. Here, we review medical conditions that have been repeatedly highlighted as sharing the strongest associations with ASD-epilepsy, sleep, as well as gastrointestinal and immune functioning. We describe within each condition their prevalence, associations with behavior, and evidence for successful treatment. We additionally discuss research aiming to uncover potential aetiological mechanisms. We then consider the potential interaction between each group of conditions and ASD and, based on the available evidence, propose a model that integrates these medical comorbidities in relation to potential shared aetiological mechanisms. Future research should aim to systematically examine the interactions between these physiological systems, rather than considering these in isolation, using robust and sensitive biomarkers across an individual's development. A consideration of the overlap between medical conditions and ASD may aid in defining biological subtypes within ASD and in the development of specific targeted interventions.
Collapse
Affiliation(s)
- Charlotte Tye
- Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Abigail K Runicles
- Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Andrew J O Whitehouse
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, QLD, Australia
| | - Gail A Alvares
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, QLD, Australia
| |
Collapse
|
48
|
Capal JK, Horn PS, Murray DS, Byars AW, Bing NM, Kent B, Bucher LA, Williams ME, O'Kelley S, Pearson DA, Sahin M, Krueger DA. Utility of the Autism Observation Scale for Infants in Early Identification of Autism in Tuberous Sclerosis Complex. Pediatr Neurol 2017; 75:80-86. [PMID: 28844798 PMCID: PMC5610103 DOI: 10.1016/j.pediatrneurol.2017.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a genetic disorder with high prevalence of associated autism spectrum disorder (ASD). Our primary objectives were to determine early predictors of autism risk to identify children with TSC in most need of early interventions. The Autism Observation Scale for Infants (AOSI) was evaluated as a measure of ASD-associated behaviors in infants with TSC at age 12 months and its ability to predict ASD at 24 months. METHODS Children ages 0 to 36 months with TSC were enrolled in the TSC Autism Center of Excellence Research Network (TACERN), a multicenter, prospective observational study to identify biomarkers of ASD. The AOSI was administered at age 12 months and the Autism Diagnostic Observation Schedule-2 (ADOS-2) and Autism Diagnostic Interview-Revised (ADI-R) at 24 months. Developmental functioning was assessed using the Mullen Scales of Early Learning. Children were classified as ASD or non-ASD according to the ADOS-2. RESULTS Analysis included 79 children who had been administered the AOSI at 12 months and ADOS-2 and ADI-R at 24 months. The ASD group had a mean AOSI total score at 12 months significantly higher than the non-ASD group (11.8 ± 7.4 vs 6.3 ± 4.7; P < 0.001). An AOSI total score cutoff of 13 provided a specificity of 0.89 to detect ASD with the ADOS-2. AOSI total score at 12 months was similarly associated with exceeding cutoff scores on the ADI-R. CONCLUSIONS The AOSI is a useful clinical tool in determining which infants with TSC are at increased risk for developing ASD.
Collapse
Affiliation(s)
- Jamie K Capal
- Department of Neurology MLC 2015, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| | - Paul S Horn
- Department of Neurology MLC 2015, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Donna S Murray
- Department of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Autism Speaks Inc, Boston, Massachusetts
| | - Anna Weber Byars
- Department of Neurology MLC 2015, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nicole M Bing
- Department of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Bridget Kent
- Department of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lindsey A Bucher
- Department of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Marian E Williams
- Keck School of Medicine of USC, University of Southern California, Children's Hospital Los Angeles, Los Angeles, California
| | - Sarah O'Kelley
- University of Alabama at Birmingham, Birmingham, Alabama
| | - Deborah A Pearson
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Darcy A Krueger
- Department of Neurology MLC 2015, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
49
|
Abstract
Epileptic encephalopathies represent a particularly severe form of epilepsy, associated with cognitive and behavioral deficits, including impaired social-communication and restricted, repetitive behaviors that are the hallmarks of autism spectrum disorder (ASD). With the advent of next-generation sequencing, the genetic landscape of epileptic encephalopathies is growing and demonstrates overlap with genes separately implicated in ASD. However, many questions remain about this connection, including whether epileptiform activity itself contributes to the development of ASD symptomatology. In this review, we compiled a database of genes associated with both epileptic encephalopathy and ASD, limiting our purview to Mendelian disorders not including inborn errors of metabolism, and we focused on the connection between ASD and epileptic encephalopathy rather than epilepsy broadly. Our review has four goals: to (1) discuss the overlapping presentations of ASD and monogenic epileptic encephalopathies; (2) examine the impact of the epilepsy itself on neurocognitive features, including ASD, in monogenic epileptic encephalopathies; (3) outline many of the genetic causes responsible for both ASD and epileptic encephalopathy; (4) provide an illustrative example of a final common pathway that may be implicated in both ASD and epileptic encephalopathy. We demonstrate that autistic features are a common association with monogenic epileptic encephalopathies. Certain epileptic encephalopathy syndromes, like infantile spasms, are especially linked to the development of ASD. The connection between seizures themselves and neurobehavioral deficits in these monogenic encephalopathies remains open to debate. Finally, advances in genetics have revealed many genes that overlap in ties to both ASD and epileptic encephalopathy and that play a role in diverse central nervous system processes. Increased attention to the autistic features of monogenic epileptic encephalopathies is warranted for both researchers and clinicians alike.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| |
Collapse
|
50
|
Gipson TT, Johnston MV. New insights into the pathogenesis and prevention of tuberous sclerosis-associated neuropsychiatric disorders (TAND). F1000Res 2017; 6. [PMID: 28663780 PMCID: PMC5473405 DOI: 10.12688/f1000research.11110.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2017] [Indexed: 01/13/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a multi-system disorder resulting from mutations in either the TSC1 or TSC2 genes leading to hyperactivation of mechanistic target of rapamycin (mTOR) signaling. TSC is commonly associated with autism (61%), intellectual disability (45%), and behavioral, psychiatric, intellectual, academic, neuropsychological, and psychosocial difficulties that are collectively referred to as TSC-associated neuropsychiatric disorders (TAND). More than 90% of children with TSC have epilepsy, including infantile spasms, and early onset of seizures, especially infantile spasms, is associated with greater impairment in intellectual development compared with individuals with TSC without seizures. Development of the mTOR inhibitors everolimus and sirolimus has led to considerable progress in the treatment of renal angiomyolipomata, pulmonary lymphangioleiomyomatosis, and subependymal giant cell astrocytomas in the brain. However, similar therapeutic progress is needed in the treatment of TAND.
Collapse
Affiliation(s)
- Tanjala T Gipson
- Boling Center for Developmental Disabilities, LeBonheur Children's Hospital, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Michael V Johnston
- Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|