1
|
Yamashita S. Late-onset primary muscle diseases mimicking sarcopenia. Geriatr Gerontol Int 2024; 24:1099-1110. [PMID: 39402847 DOI: 10.1111/ggi.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024]
Abstract
Sarcopenia is an age-related loss of skeletal muscle mass, strength, and function that causes various health problems. In contrast, late-onset primary myopathies, which occur in the older population, are caused by a variety of factors, including genetic mutations, autoimmune processes, and metabolic abnormalities. Although sarcopenia and primary myopathy are two distinct disease processes, their symptoms can overlap, making differentiation challenging. The diagnostic criteria for sarcopenia have evolved over time, and various criteria have been proposed by expert groups. Late-onset primary muscle diseases such as inclusion body myositis, sporadic late-onset nemaline myopathy, muscular dystrophies, distal myopathies, myofibrillar myopathies, metabolic myopathies, and mitochondrial myopathies share common pathogenic mechanisms with sarcopenia, further complicating the diagnostic process. Appropriate clinical evaluation, including detailed history-taking, physical examination, and diagnostic testing, is essential for accurate diagnosis and management. Treatment approaches, including exercise, nutritional support, and disease-specific therapies, must be tailored to the characteristics of each disease. Despite these differences, sarcopenia and primary myopathies require careful consideration in the clinical setting for proper diagnosis and management. This review outlines the evolution of diagnostic criteria and diagnostic items for sarcopenia, late-onset primary myopathies that should be differentiated from sarcopenia, common pathomechanisms, and diagnostic algorithms to properly differentiate primary myopathies. Geriatr Gerontol Int 2024; 24: 1099-1110.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Department of Neurology, International University of Health and Welfare Narita Hospital, Narita, Japan
| |
Collapse
|
2
|
Piga D, Zanotti S, Ripolone M, Napoli L, Ciscato P, Gibertini S, Maggi L, Fortunato F, Rigamonti A, Ronchi D, Comi GP, Corti S, Sciacco M. Association between ZASP/LDB3 Pro26Ser and Inclusion Body Myopathy. Int J Mol Sci 2024; 25:6547. [PMID: 38928252 PMCID: PMC11203685 DOI: 10.3390/ijms25126547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Inclusion body myositis (IBM) is a slowly progressive disorder belonging to the idiopathic inflammatory myopathies, and it represents the most common adult-onset acquired myopathy. The main clinical features include proximal or distal muscular asymmetric weakness, with major involvement of long finger flexors and knee extensors. The main histological findings are the presence of fiber infiltrations, rimmed vacuoles, and amyloid inclusions. The etiopathogenesis is a challenge because both environmental and genetic factors are implicated in muscle degeneration and a distinction has been made previously between sporadic and hereditary forms. Here, we describe an Italian patient affected with a hereditary form of IBM with onset in his mid-forties. Next-generation sequencing analysis disclosed a heterozygous mutation c.76C>T (p.Pro26Ser) in the PDZ motif of the LDB3/ZASP gene, a mutation already described in a family with a late-onset myopathy and highly heterogenous degree of skeletal muscle weakness. In the proband's muscle biopsy, the expression of ZASP, myotilin, and desmin were increased. In our family, in addition to the earlier age of onset, the clinical picture is even more peculiar given the evidence, in one of the affected family members, of complete ophthalmoplegia in the vertical gaze. These findings help extend our knowledge of the clinical and genetic background associated with inclusion body myopathic disorders.
Collapse
Affiliation(s)
- Daniela Piga
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Simona Zanotti
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Laura Napoli
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Patrizia Ciscato
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Sara Gibertini
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, 20133 Milan, Italy
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, 20133 Milan, Italy
| | - Francesco Fortunato
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Andrea Rigamonti
- UOC Neurologia–Stroke Unit, Presidio “A. Manzoni”, ASST Lecco, 23900 Lecco, Italy
| | - Dario Ronchi
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Stefania Corti
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Monica Sciacco
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
3
|
Du H, Chen Y, Zeng L, Wu R, Wu T, Zhu J. Myofibrillar myopathies due to a novel mutation in exon 8 of the LDB3 gene. Int J Rheum Dis 2024; 27:e15036. [PMID: 38333999 DOI: 10.1111/1756-185x.15036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 12/23/2023] [Accepted: 12/30/2023] [Indexed: 02/10/2024]
Abstract
Myofibrillar myopathies (MFMs) are a group of genetically heterogeneous diseases affecting the skeletal and cardiac muscles. Myofibrillar myopathies are characterized by focal lysis of myogenic fibers and integration of degraded myogenic fiber products into inclusion bodies, which are typically rich in desmin and many other proteins. Herein, we report a case of a 54-year-old woman who experienced bilateral thigh weakness for over three years. She was diagnosed with MFMs based on muscle biopsy findings and the presence of a novel mutation in exon 8 of the LDB3 gene. Myofibrillar myopathies caused by a mutation in the LDB3 gene are extremely uncommon and often lack distinct clinical characteristics and typically exhibit a slow disease progression. When considering a diagnosis of MFMs, particularly in complex instances of autosomal dominant myopathies where muscle biopsies do not clearly indicate MFMs, it becomes crucial for clinicians to utilize genetic test as a diagnostic tool.
Collapse
Affiliation(s)
- Hongjia Du
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Fifth Internal Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Li Zeng
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rui Wu
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Tong Wu
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jing Zhu
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
4
|
Savarese M, Jokela M, Udd B. Distal myopathy. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:497-519. [PMID: 37562883 DOI: 10.1016/b978-0-323-98818-6.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Distal myopathies are a group of genetic, primary muscle diseases. Patients develop progressive weakness and atrophy of the muscles of forearm, hands, lower leg, or feet. Currently, over 20 different forms, presenting a variable age of onset, clinical presentation, disease progression, muscle involvement, and histological findings, are known. Some of them are dominant and some recessive. Different variants in the same gene are often associated with either dominant or recessive forms, although there is a lack of a comprehensive understanding of the genotype-phenotype correlations. This chapter provides a description of the clinicopathologic and genetic aspects of distal myopathies emphasizing known etiologic and pathophysiologic mechanisms.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Manu Jokela
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland; Division of Clinical Neurosciences, Department of Neurology, Turku University Hospital, Turku, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland; Department of Neurology, Vaasa Central Hospital, Vaasa, Finland.
| |
Collapse
|
5
|
Koopmann TT, Jamshidi Y, Naghibi-Sistani M, van der Klift HM, Birjandi H, Al-Hassnan Z, Alwadai A, Zifarelli G, Karimiani EG, Sedighzadeh S, Bahreini A, Nouri N, Peter M, Watanabe K, van Duyvenvoorde HA, Ruivenkamp CAL, Teunissen AKK, Ten Harkel ADJ, van Duinen SG, Haak MC, Prada CE, Santen GWE, Maroofian R. Biallelic loss of LDB3 leads to a lethal pediatric dilated cardiomyopathy. Eur J Hum Genet 2023; 31:97-104. [PMID: 36253531 PMCID: PMC9823012 DOI: 10.1038/s41431-022-01204-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 02/08/2023] Open
Abstract
Autosomal dominant variants in LDB3 (also known as ZASP), encoding the PDZ-LIM domain-binding factor, have been linked to a late onset phenotype of cardiomyopathy and myofibrillar myopathy in humans. However, despite knockout mice displaying a much more severe phenotype with premature death, bi-allelic variants in LDB3 have not yet been reported. Here we identify biallelic loss-of-function variants in five unrelated cardiomyopathy families by next-generation sequencing. In the first family, we identified compound heterozygous LOF variants in LDB3 in a fetus with bilateral talipes and mild left cardiac ventricular enlargement. Ultra-structural examination revealed highly irregular Z-disc formation, and RNA analysis demonstrated little/no expression of LDB3 protein with a functional C-terminal LIM domain in muscle tissue from the affected fetus. In a second family, a homozygous LDB3 nonsense variant was identified in a young girl with severe early-onset dilated cardiomyopathy with left ventricular non-compaction; the same homozygous nonsense variant was identified in a third unrelated female infant with dilated cardiomyopathy. We further identified homozygous LDB3 frameshift variants in two unrelated probands diagnosed with cardiomegaly and severely reduced left ventricular ejection fraction. Our findings demonstrate that recessive LDB3 variants can lead to an early-onset severe human phenotype of cardiomyopathy and myopathy, reminiscent of the knockout mouse phenotype, and supporting a loss of function mechanism.
Collapse
Affiliation(s)
- Tamara T. Koopmann
- grid.10419.3d0000000089452978Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, The Netherlands
| | - Yalda Jamshidi
- grid.264200.20000 0000 8546 682XGenetics Research Centre, Molecular and Clinical Sciences Institute, St George’s University of London, London, UK
| | - Mohammad Naghibi-Sistani
- grid.411583.a0000 0001 2198 6209Pediatric & Congenital Cardiology Division, Pediatric Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Heleen M. van der Klift
- grid.10419.3d0000000089452978Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, The Netherlands
| | - Hassan Birjandi
- grid.411583.a0000 0001 2198 6209Pediatric & Congenital Cardiology Division, Pediatric Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zuhair Al-Hassnan
- grid.415310.20000 0001 2191 4301The Cardiovascular Genetics Program, Centre for Genomic Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Abdullah Alwadai
- grid.415989.80000 0000 9759 8141PICU Department, Prince Sultan Cardiac Center, Riyadh, Saudi Arabia
| | - Giovanni Zifarelli
- grid.511058.80000 0004 0548 4972CENTOGENE GmbH, Am Strande 7, 18055 Rostock, Germany
| | - Ehsan G. Karimiani
- grid.264200.20000 0000 8546 682XGenetics Research Centre, Molecular and Clinical Sciences Institute, St George’s University of London, London, UK ,Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Sahar Sedighzadeh
- grid.412504.60000 0004 0612 5699Department of Biological Sciences, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran ,KaryoGen, Isfahan, Iran
| | - Amir Bahreini
- KaryoGen, Isfahan, Iran ,grid.21925.3d0000 0004 1936 9000Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA USA
| | - Nayereh Nouri
- KaryoGen, Isfahan, Iran ,grid.411036.10000 0001 1498 685XDepartment of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Merlene Peter
- grid.413808.60000 0004 0388 2248Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611 USA
| | - Kyoko Watanabe
- grid.413808.60000 0004 0388 2248Division of Cardiology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611 USA
| | - Hermine A. van Duyvenvoorde
- grid.10419.3d0000000089452978Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, The Netherlands
| | - Claudia A. L. Ruivenkamp
- grid.10419.3d0000000089452978Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, The Netherlands
| | - Aalbertine K. K. Teunissen
- grid.10419.3d0000000089452978Department of Obstetrics and Prenatal Diagnosis, Leiden University Medical Center, Leiden, The Netherlands
| | - Arend D. J. Ten Harkel
- grid.10419.3d0000000089452978Department of Pediatric Cardiology, Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd G. van Duinen
- grid.10419.3d0000000089452978Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique C. Haak
- grid.10419.3d0000000089452978Department of Pediatric Cardiology, Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Carlos E. Prada
- grid.413808.60000 0004 0388 2248Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611 USA ,grid.16753.360000 0001 2299 3507Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL 60611 USA
| | - Gijs W. E. Santen
- grid.10419.3d0000000089452978Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden, The Netherlands
| | - Reza Maroofian
- grid.83440.3b0000000121901201Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
6
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
7
|
Southard T, Kelly K, Armien AG. Myocardial protein aggregates in pet guinea pigs. Vet Pathol 2021; 59:157-163. [PMID: 34530659 DOI: 10.1177/03009858211042586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A retrospective study of guinea pigs submitted for necropsy revealed intracytoplasmic inclusions in the cardiomyocytes of 26 of 30 animals. The inclusions were found with approximately the same frequency in male and female guinea pigs and were slightly more common in older animals. In most cases, the animals did not have clinical signs or necropsy findings suggestive of heart failure, and the cause of death or reason for euthanasia was attributed to concurrent disease processes. However, the 4 guinea pigs with the highest inclusion body burden all had pulmonary edema, sometimes with intra-alveolar hemosiderin-laden macrophages, suggestive of heart failure. The inclusions were found in both the left and right ventricular myocardium, mainly in the papillary muscles, but were most common in the right ventricular free wall. No inclusions were detected in the atrial myocardium or in skeletal muscle. The inclusions did not stain with Congo red or periodic acid-Schiff. Electron microscopy revealed dense aggregates of disorganized myofilaments and microtubules that displaced and compressed the adjacent organelles. By immunohistochemistry, there was some scattered immunoreactivity for desmin and actin at the periphery of the inclusions and punctate actin reactivity within the aggregates. The inclusions did not react with antibodies to ubiquitin or cardiac myosin, but were variably reactive for alpha B crystallin, a small heat shock chaperone protein. The inclusions were interpreted as evidence of impaired proteostasis.
Collapse
|
8
|
Kwon HK, Choi H, Park SG, Park WJ, Kim, DH, Park ZY. Integrated Quantitative Phosphoproteomics and Cell-based Functional Screening Reveals Specific Pathological Cardiac Hypertrophy-related Phosphorylation Sites. Mol Cells 2021; 44:500-516. [PMID: 34158421 PMCID: PMC8334354 DOI: 10.14348/molcells.2021.4002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/29/2022] Open
Abstract
Cardiac hypertrophic signaling cascades resulting in heart failure diseases are mediated by protein phosphorylation. Recent developments in mass spectrometry-based phosphoproteomics have led to the identification of thousands of differentially phosphorylated proteins and their phosphorylation sites. However, functional studies of these differentially phosphorylated proteins have not been conducted in a large-scale or high-throughput manner due to a lack of methods capable of revealing the functional relevance of each phosphorylation site. In this study, an integrated approach combining quantitative phosphoproteomics and cell-based functional screening using phosphorylation competition peptides was developed. A pathological cardiac hypertrophy model, junctate-1 transgenic mice and control mice, were analyzed using label-free quantitative phosphoproteomics to identify differentially phosphorylated proteins and sites. A cell-based functional assay system measuring hypertrophic cell growth of neonatal rat ventricle cardiomyocytes (NRVMs) following phenylephrine treatment was applied, and changes in phosphorylation of individual differentially phosphorylated sites were induced by incorporation of phosphorylation competition peptides conjugated with cell-penetrating peptides. Cell-based functional screening against 18 selected phosphorylation sites identified three phosphorylation sites (Ser-98, Ser-179 of Ldb3, and Ser-1146 of palladin) displaying near-complete inhibition of cardiac hypertrophic growth of NRVMs. Changes in phosphorylation levels of Ser-98 and Ser-179 in Ldb3 were further confirmed in NRVMs and other pathological/physiological hypertrophy models, including transverse aortic constriction and swimming models, using site-specific phospho-antibodies. Our integrated approach can be used to identify functionally important phosphorylation sites among differentially phosphorylated sites, and unlike conventional approaches, it is easily applicable for large-scale and/or high-throughput analyses.
Collapse
Affiliation(s)
- Hye Kyeong Kwon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Hyunwoo Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Woo Jin Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Do Han Kim,
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
9
|
Chen L, Chen DF, Dong HL, Liu GL, Wu ZY. A novel frameshift ACTN2 variant causes a rare adult-onset distal myopathy with multi-minicores. CNS Neurosci Ther 2021; 27:1198-1205. [PMID: 34170073 PMCID: PMC8446211 DOI: 10.1111/cns.13697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Introduction Distal myopathies are a group of rare muscle disorders characterized by selective or predominant weakness in the feet and/or hands. In 2019, ACTN2 gene was firstly identified to be a cause of a new adult‐onset distal muscular dystrophy calling actininopathy and another distinctly different myopathy, named multiple structured core disease (MsCD). Thus, the various phenotypes and limited mutations in ACTN2‐related myopathy make the genotype‐phenotype correlation hard to understand. Aims To investigate the clinical features and histological findings in a Chinese family with distal myopathy. Whole exome sequencing and several functional studies were performed to explore the pathogenesis of the disease. Results We firstly identified a novel frameshift variant (c.2504delT, p.Phe835Serfs*66) within ACTN2 in a family including three patients. The patients exhibited adult‐onset distal myopathy with multi‐minicores, which, interestingly, was more like a combination of MsCD and actininopathy. Moreover, functional analysis using muscle samples revealed that the variant significantly increased the expression level of α‐actinin‐2 and resulted in abnormal Z‐line organization of muscle fiber. Vitro studies suggested aggregate formations might be involved in the pathogenesis of the disease. Conclusion Our results expanded the phenotypes of ACTN2‐related myopathy and provided helpful information to clarify the molecular mechanisms.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Dian-Fu Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Gong-Lu Liu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Wang Z, Grange M, Wagner T, Kho AL, Gautel M, Raunser S. The molecular basis for sarcomere organization in vertebrate skeletal muscle. Cell 2021; 184:2135-2150.e13. [PMID: 33765442 PMCID: PMC8054911 DOI: 10.1016/j.cell.2021.02.047] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
Sarcomeres are force-generating and load-bearing devices of muscles. A precise molecular picture of how sarcomeres are built underpins understanding their role in health and disease. Here, we determine the molecular architecture of native vertebrate skeletal sarcomeres by electron cryo-tomography. Our reconstruction reveals molecular details of the three-dimensional organization and interaction of actin and myosin in the A-band, I-band, and Z-disc and demonstrates that α-actinin cross-links antiparallel actin filaments by forming doublets with 6-nm spacing. Structures of myosin, tropomyosin, and actin at ~10 Å further reveal two conformations of the "double-head" myosin, where the flexible orientation of the lever arm and light chains enable myosin not only to interact with the same actin filament, but also to split between two actin filaments. Our results provide unexpected insights into the fundamental organization of vertebrate skeletal muscle and serve as a strong foundation for future investigations of muscle diseases.
Collapse
Affiliation(s)
- Zhexin Wang
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Michael Grange
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Thorsten Wagner
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Ay Lin Kho
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Excellence Centre, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Mathias Gautel
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Excellence Centre, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| |
Collapse
|
11
|
Pathak P, Blech-Hermoni Y, Subedi K, Mpamugo J, Obeng-Nyarko C, Ohman R, Molloy I, Kates M, Hale J, Stauffer S, Sharan SK, Mankodi A. Myopathy associated LDB3 mutation causes Z-disc disassembly and protein aggregation through PKCα and TSC2-mTOR downregulation. Commun Biol 2021; 4:355. [PMID: 33742095 PMCID: PMC7979776 DOI: 10.1038/s42003-021-01864-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Mechanical stress induced by contractions constantly threatens the integrity of muscle Z-disc, a crucial force-bearing structure in striated muscle. The PDZ-LIM proteins have been proposed to function as adaptors in transducing mechanical signals to preserve the Z-disc structure, however the underlying mechanisms remain poorly understood. Here, we show that LDB3, a well-characterized striated muscle PDZ-LIM protein, modulates mechanical stress signaling through interactions with the mechanosensing domain in filamin C, its chaperone HSPA8, and PKCα in the Z-disc of skeletal muscle. Studies of Ldb3Ala165Val/+ mice indicate that the myopathy-associated LDB3 p.Ala165Val mutation triggers early aggregation of filamin C and its chaperones at muscle Z-disc before aggregation of the mutant protein. The mutation causes protein aggregation and eventually Z-disc myofibrillar disruption by impairing PKCα and TSC2-mTOR, two important signaling pathways regulating protein stability and disposal of damaged cytoskeletal components at a major mechanosensor hub in the Z-disc of skeletal muscle.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Animals
- Autophagy
- Disease Models, Animal
- Down-Regulation
- Filamins/metabolism
- HSC70 Heat-Shock Proteins/metabolism
- LIM Domain Proteins/genetics
- Mechanotransduction, Cellular
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle Contraction
- Muscle Strength
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Myopathies, Structural, Congenital/enzymology
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/pathology
- Myopathies, Structural, Congenital/physiopathology
- Point Mutation
- Protein Aggregates
- Protein Aggregation, Pathological
- Protein Kinase C-alpha/genetics
- Protein Kinase C-alpha/metabolism
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Tuberous Sclerosis Complex 2 Protein/genetics
- Tuberous Sclerosis Complex 2 Protein/metabolism
- Mice
Collapse
Affiliation(s)
- Pankaj Pathak
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Yotam Blech-Hermoni
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Kalpana Subedi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jessica Mpamugo
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Charissa Obeng-Nyarko
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Rachel Ohman
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ilda Molloy
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Malcolm Kates
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jessica Hale
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ami Mankodi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
12
|
The Role of Z-disc Proteins in Myopathy and Cardiomyopathy. Int J Mol Sci 2021; 22:ijms22063058. [PMID: 33802723 PMCID: PMC8002584 DOI: 10.3390/ijms22063058] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.
Collapse
|
13
|
Williams ZJ, Velez-Irizarry D, Petersen JL, Ochala J, Finno CJ, Valberg SJ. Candidate gene expression and coding sequence variants in Warmblood horses with myofibrillar myopathy. Equine Vet J 2021; 53:306-315. [PMID: 32453872 PMCID: PMC7864122 DOI: 10.1111/evj.13286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/18/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Myofibrillar myopathy (MFM) of unknown aetiology has recently been identified in Warmblood (WB) horses. In humans, 16 genes have been implicated in various MFM-like disorders. OBJECTIVES To identify variants in 16 MFM candidate genes and compare allele frequencies of all variants between MFM WB and non-MFM WB and coding variants with moderate or severe predicted effects in MFM WB with publicly available data of other breeds. To compare differential gene expression and muscle fibre contractile force between MFM and non-MFM WB. STUDY DESIGN Case-control. ANIMALS 8 MFM WB, 8 non-MFM WB, 33 other WB, 32 Thoroughbreds, 80 Quarter Horses and 77 horses of other breeds in public databases. METHODS Variants were called within transcripts of 16 candidate genes using gluteal muscle mRNA sequences aligned to EquCab3.0 and allele frequencies compared by Fisher's exact test among MFM WB, non-MFM WB and public sequences across breeds. Candidate gene differential expression was determined between MFM and non-MFM WB by fitting a negative binomial generalised log-linear model per gene (false discovery rate <0.05). The maximal isometric force/cross-sectional area generated by isolated membrane-permeabilised muscle fibres was determined. RESULTS None of the 426 variants identified in 16 candidate genes were associated with MFM including 26 missense variants. Breed-specific differences existed in allele frequencies. Candidate gene differential expression and muscle fibre-specific force did not differ between MFM WB (143.1 ± 34.7 kPa) and non-MFM WB (140.2 ± 43.7 kPa) (P = .8). MAIN LIMITATIONS RNA-seq-only assays transcripts expressed in skeletal muscle. Other possible candidate genes were not evaluated. CONCLUSIONS Evidence for association of variants with a disease is essential because coding sequence variants are common in the equine genome. Variants identified in MFM candidate genes, including two coding variants offered as commercial MFM equine genetic tests, did not associate with the WB MFM phenotype.
Collapse
Affiliation(s)
- Zoë J. Williams
- Large Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| | - Deborah Velez-Irizarry
- Large Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| | - Jessica L. Petersen
- Department of Animal Science, University of Nebraska Lincoln, Lincoln, NE, USA
| | - Julien Ochala
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Carrie J. Finno
- University of California at Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Stephanie J. Valberg
- Large Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| |
Collapse
|
14
|
Savarese M, Sarparanta J, Vihola A, Jonson PH, Johari M, Rusanen S, Hackman P, Udd B. Panorama of the distal myopathies. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:245-265. [PMID: 33458580 PMCID: PMC7783427 DOI: 10.36185/2532-1900-028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Distal myopathies are genetic primary muscle disorders with a prominent weakness at onset in hands and/or feet. The age of onset (from early childhood to adulthood), the distribution of muscle weakness (upper versus lower limbs) and the histological findings (ranging from nonspecific myopathic changes to myofibrillar disarrays and rimmed vacuoles) are extremely variable. However, despite being characterized by a wide clinical and genetic heterogeneity, the distal myopathies are a category of muscular dystrophies: genetic diseases with progressive loss of muscle fibers. Myopathic congenital arthrogryposis is also a form of distal myopathy usually caused by focal amyoplasia. Massive parallel sequencing has further expanded the long list of genes associated with a distal myopathy, and contributed identifying as distal myopathy-causative rare variants in genes more often related with other skeletal or cardiac muscle diseases. Currently, almost 20 genes (ACTN2, CAV3, CRYAB, DNAJB6, DNM2, FLNC, HNRNPA1, HSPB8, KHLH9, LDB3, MATR3, MB, MYOT, PLIN4, TIA1, VCP, NOTCH2NLC, LRP12, GIPS1) have been associated with an autosomal dominant form of distal myopathy. Pathogenic changes in four genes (ADSSL, ANO5, DYSF, GNE) cause an autosomal recessive form; and disease-causing variants in five genes (DES, MYH7, NEB, RYR1 and TTN) result either in a dominant or in a recessive distal myopathy. Finally, a digenic mechanism, underlying a Welander-like form of distal myopathy, has been recently elucidated. Rare pathogenic mutations in SQSTM1, previously identified with a bone disease (Paget disease), unexpectedly cause a distal myopathy when combined with a common polymorphism in TIA1. The present review aims at describing the genetic basis of distal myopathy and at summarizing the clinical features of the different forms described so far.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Center, Department of Genetics, Fimlab Laboratories, Tampere, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Salla Rusanen
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
15
|
Cassandrini D, Merlini L, Pilla F, Cenni V, Santi S, Faldini C, Santorelli FM, Sabatelli P. Protein aggregates and autophagy involvement in a family with a mutation in Z-band alternatively spliced PDZ-motif protein. Neuromuscul Disord 2020; 31:44-51. [PMID: 33308939 DOI: 10.1016/j.nmd.2020.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022]
Abstract
Z-band alternatively spliced PDZ-motif protein (ZASP) is a sarcomeric component expressed both in cardiac and skeletal muscles. Mutations in the LDB3/ZASP gene cause cardiomyopathy and myofibrillar myopathy. We describe a c.76C>T / p.[Pro26Ser] mutation in the PDZ motif of LDB3/ZASP in two siblings exhibiting late-onset myopathy with axial, proximal and distal muscles involvement and marked variability in clinical severity in the absence of a significant family history for neuromuscular disorders. Notably, we identified involvement of the psoas muscle on MRI and muscle CT, a feature not previously documented. Proband's muscle biopsy showed an increase of ZASP expression by western blotting. Muscle fibres morphological features included peculiar sarcolemmal invaginations, pathological aggregates positive to ZASP, ubiquitin, p62 and LC3 antibodies, and the accumulation of autophagic vacuoles, suggesting that protein aggregate formation and autophagy are involved in this additional case of zaspopathy.
Collapse
Affiliation(s)
- Denise Cassandrini
- Molecular Medicine- IRCCS Fondazione Stella Maris- via dei Giacinti 2, 56128 Pisa, Italy
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy
| | - Federico Pilla
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, via Pupilli 1, 40139 Bologna, Italy
| | - Vittoria Cenni
- CNR-Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"-Unit of Bologna, via di Barbiano 1/10, 40136 Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Spartaco Santi
- CNR-Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"-Unit of Bologna, via di Barbiano 1/10, 40136 Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Cesare Faldini
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, via Pupilli 1, 40139 Bologna, Italy
| | - Filippo M Santorelli
- Molecular Medicine- IRCCS Fondazione Stella Maris- via dei Giacinti 2, 56128 Pisa, Italy
| | - Patrizia Sabatelli
- CNR-Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"-Unit of Bologna, via di Barbiano 1/10, 40136 Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
16
|
246th ENMC International Workshop: Protein aggregate myopathies 24-26 May 2019, Hoofddorp, The Netherlands. Neuromuscul Disord 2020; 31:158-166. [PMID: 33303357 DOI: 10.1016/j.nmd.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022]
|
17
|
Characterizing the actin-binding ability of Zasp52 and its contribution to myofibril assembly. PLoS One 2020; 15:e0232137. [PMID: 32614896 PMCID: PMC7332060 DOI: 10.1371/journal.pone.0232137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/07/2020] [Indexed: 11/23/2022] Open
Abstract
In sarcomeres, α-actinin crosslinks thin filaments and anchors them at the Z-disc. Drosophila melanogaster Zasp52 also localizes at Z-discs and interacts with α-actinin via its extended PDZ domain, thereby contributing to myofibril assembly and maintenance, yet the detailed mechanism of Zasp52 function is unknown. Here we show a strong genetic interaction between actin and Zasp52 during indirect flight muscle assembly, indicating that this interaction plays a critical role during myofibril assembly. Our results suggest that Zasp52 contains an actin-binding site, which includes the extended PDZ domain and the ZM region. Zasp52 binds with micromolar affinity to monomeric actin. A co-sedimentation assay indicates that Zasp52 can also bind to F-actin. Finally, we use in vivo rescue assays of myofibril assembly to show that the α-actinin-binding domain of Zasp52 is not sufficient for a full rescue of Zasp52 mutants suggesting additional contributions of Zasp52 actin-binding to myofibril assembly.
Collapse
|
18
|
Arbustini E, Di Toro A, Giuliani L, Favalli V, Narula N, Grasso M. Cardiac Phenotypes in Hereditary Muscle Disorders: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 72:2485-2506. [PMID: 30442292 DOI: 10.1016/j.jacc.2018.08.2182] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 01/05/2023]
Abstract
Hereditary muscular diseases commonly involve the heart. Cardiac manifestations encompass a spectrum of phenotypes, including both cardiomyopathies and rhythm disorders. Common biomarkers suggesting cardiomuscular diseases include increased circulating creatine kinase and/or lactic acid levels or disease-specific metabolic indicators. Cardiac and extra-cardiac traits, imaging tests, family studies, and genetic testing provide precise diagnoses. Cardiac phenotypes are mainly dilated and hypokinetic in dystrophinopathies, Emery-Dreifuss muscular dystrophies, and limb girdle muscular dystrophies; hypertrophic in Friedreich ataxia, mitochondrial diseases, glycogen storage diseases, and fatty acid oxidation disorders; and restrictive in myofibrillar myopathies. Left ventricular noncompaction is variably associated with the different myopathies. Conduction defects and arrhythmias constitute a major phenotype in myotonic dystrophies and skeletal muscle channelopathies. Although the actual cardiac management is rarely based on the cause, the cardiac phenotypes need precise characterization because they are often the only or the predominant manifestations and the prognostic determinants of many hereditary muscle disorders.
Collapse
Affiliation(s)
- Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy.
| | - Alessandro Di Toro
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Giuliani
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | | | - Nupoor Narula
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy; Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| | - Maurizia Grasso
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
19
|
Garske KM, Pan DZ, Miao Z, Bhagat YV, Comenho C, Robles CR, Benhammou JN, Alvarez M, Ko A, Ye CJ, Pisegna JR, Mohlke KL, Sinsheimer JS, Laakso M, Pajukanta P. Reverse gene-environment interaction approach to identify variants influencing body-mass index in humans. Nat Metab 2019; 1:630-642. [PMID: 31538139 PMCID: PMC6752726 DOI: 10.1038/s42255-019-0071-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Identifying gene-environment interactions (GxEs) contributing to human cardiometabolic disorders is challenging. Here we apply a reverse GxE candidate search by deriving candidate variants from promoter-enhancer interactions that respond to dietary fatty acid challenge through altered chromatin accessibility in human primary adipocytes. We then test all variants residing in the lipid-responsive open chromatin sites within adipocyte promoter-enhancer contacts for interaction effects between the genotype and dietary saturated fat intake on body mass index (BMI) in the UK Biobank. We discover 14 novel GxE variants in 12 lipid-responsive promoters, including well-known lipid genes (LIPE, CARM1, and PLIN2) and novel genes, such as LDB3, for which we provide further functional and integrative genomics evidence. We further identify 24 GxE variants in enhancers, totaling 38 new GxE variants for BMI in the UK Biobank, demonstrating that molecular genomics data produced in physiologically relevant contexts can discover new functional GxE mechanisms in humans.
Collapse
Affiliation(s)
- Kristina M Garske
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA, 90095
| | - David Z Pan
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA, 90095
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA, 90095
| | - Zong Miao
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA, 90095
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA, 90095
| | - Yash V Bhagat
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA, 90095
| | - Caroline Comenho
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA, 90095
| | | | - Jihane N Benhammou
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA, 90095
- Vache and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA, 90095
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA, 90095
| | - Arthur Ko
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA, 90095
| | - Chun Jimmie Ye
- Institute for Human Genetics, Department of Epidemiology and Biostatistics, Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, USA, 94143
| | - Joseph R Pisegna
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA, 90095
- Vache and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA, 90095
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA, 27599
| | - Janet S Sinsheimer
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA, 90095
- Department of Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA, 90095
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland, FI-70210
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA, 90095
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA, 90095
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland, FI-70210
| |
Collapse
|
20
|
Milone M, Liewluck T. The unfolding spectrum of inherited distal myopathies. Muscle Nerve 2018; 59:283-294. [PMID: 30171629 DOI: 10.1002/mus.26332] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/30/2022]
Abstract
Distal myopathies are a group of rare muscle diseases characterized by distal weakness at onset. Although acquired myopathies can occasionally present with distal weakness, the majority of distal myopathies have a genetic etiology. Their age of onset varies from early-childhood to late-adulthood while the predominant muscle weakness can affect calf, ankle dorsiflexor, or distal upper limb muscles. A spectrum of muscle pathological changes, varying from nonspecific myopathic changes to rimmed vacuoles to myofibrillar pathology to nuclei centralization, have been noted. Likewise, the underlying molecular defect is heterogeneous. In addition, there is emerging evidence that distal myopathies can result from defective proteins encoded by genes causative of neurogenic disorders, be manifestation of multisystem proteinopathies or the result of the altered interplay between different genes. In this review, we provide an overview on the clinical, electrophysiological, pathological, and molecular aspects of distal myopathies, focusing on the most recent developments in the field. Muscle Nerve 59:283-294, 2019.
Collapse
Affiliation(s)
| | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
22
|
Nojszewska M, Gawel M, Szmidt-Salkowska E, Kostera-Pruszczyk A, Potulska-Chromik A, Lusakowska A, Kierdaszuk B, Lipowska M, Macias A, Gawel D, Seroka A, Kaminska AM. Abnormal spontaneous activity in primary myopathic disorders. Muscle Nerve 2016; 56:427-432. [PMID: 28000226 DOI: 10.1002/mus.25521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Reproducible non-insertional spontaneous activity (SA), with the exception of endplate activity, is an unequivocal sign of abnormality and is one of the most useful findings obtained on electromyography. METHODS In this retrospective study we analyzed occurrence and distribution of abnormal SA in 151 patients with genetically confirmed myopathies. RESULTS Complex repetitive discharges (CRDs) occurred more frequently than fibrillation potentials (fibs) and positive sharp waves (PSWs) in centronuclear myopathy (CNM) and limb-girdle muscular dystrophy type 2A (LGMD-2A), whereas fibs/PSWs were observed more often in desminopathy and facioscapulohumeral dystrophy (FSHD). Abnormal SA was commonly found in CNM (66.7%) and desminopathy (61.5%), occasionally in Duchenne (DMD) and Becker muscular dystrophy (BMD) (45.2% and 27.6%, respectively), but rarely in FSHD (14.9%) and LGMD-2A (12.0%). CONCLUSIONS Abnormal SA probably occurs more frequently in disorders associated with structural changes in muscle fibers. Screening for SA may be a valuable tool for diagnosis of non-myotonic myopathies. Muscle Nerve 56: 427-432, 2017.
Collapse
Affiliation(s)
- Monika Nojszewska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Gawel
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | - Anna Lusakowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Biruta Kierdaszuk
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Marta Lipowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Macias
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Damian Gawel
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka Strasse 99/103, 01-813, Warsaw, Poland
| | - Andrzej Seroka
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Anna M Kaminska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Ten Dam L, van der Kooi AJ, Verhamme C, Wattjes MP, de Visser M. Muscle imaging in inherited and acquired muscle diseases. Eur J Neurol 2016; 23:688-703. [PMID: 27000978 DOI: 10.1111/ene.12984] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 01/18/2016] [Indexed: 02/05/2023]
Abstract
In this review we discuss the use of conventional (computed tomography, magnetic resonance imaging, ultrasound) and advanced muscle imaging modalities (diffusion tensor imaging, magnetic resonance spectroscopy) in hereditary and acquired myopathies. We summarize the data on specific patterns of muscle involvement in the major categories of muscle disease and provide recommendations on how to use muscle imaging in this field of neuromuscular disorders.
Collapse
Affiliation(s)
- L Ten Dam
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
| | - A J van der Kooi
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
| | - C Verhamme
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
| | - M P Wattjes
- Department of Radiology and Nuclear Medicine, VU University Medical Centre, Amsterdam, The Netherlands
| | - M de Visser
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Myofibrillar and distal myopathies. Rev Neurol (Paris) 2016; 172:587-593. [DOI: 10.1016/j.neurol.2016.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/29/2016] [Indexed: 11/22/2022]
|
25
|
Avila-Smirnow D, Gueneau L, Batonnet-Pichon S, Delort F, Bécane HM, Claeys K, Beuvin M, Goudeau B, Jais JP, Nelson I, Richard P, Ben Yaou R, Romero NB, Wahbi K, Mathis S, Voit T, Furst D, van der Ven P, Gil R, Vicart P, Fardeau M, Bonne G, Behin A. Cardiac arrhythmia and late-onset muscle weakness caused by a myofibrillar myopathy with unusual histopathological features due to a novel missense mutation in FLNC. Rev Neurol (Paris) 2016; 172:594-606. [PMID: 27633507 DOI: 10.1016/j.neurol.2016.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 07/16/2016] [Accepted: 07/26/2016] [Indexed: 11/29/2022]
Abstract
Myofibrillar myopathies (MFM) are mostly adult-onset diseases characterized by progressive morphological alterations of the muscle fibers beginning in the Z-disk and the presence of protein aggregates in the sarcoplasm. They are mostly caused by mutations in different genes that encode Z-disk proteins, including DES, CRYAB, LDB3, MYOT, FLNC and BAG3. A large family of French origin, presenting an autosomal dominant pattern, characterized by cardiac arrhythmia associated to late-onset muscle weakness, was evaluated to clarify clinical, morphological and genetic diagnosis. Muscle weakness began during adult life (over 30 years of age), and had a proximal distribution. Histology showed clear signs of a myofibrillar myopathy, but with unusual, large inclusions. Subsequently, genetic testing was performed in MFM genes available for screening at the time of clinical/histological diagnosis, and desmin (DES), αB-crystallin (CRYAB), myotilin (MYOT) and ZASP (LDB3), were excluded. LMNA gene screening found the p.R296C variant which did not co-segregate with the disease. Genome wide scan revealed linkage to 7q.32, containing the FLNC gene. FLNC direct sequencing revealed a heterozygous c.3646T>A p.Tyr1216Asn change, co-segregating with the disease, in a highly conserved amino acid of the protein. Normal filamin C levels were detected by Western-blot analysis in patient muscle biopsies and expression of the mutant protein in NIH3T3 showed filamin C aggregates. This is an original FLNC mutation in a MFM family with an atypical clinical and histopathological presentation, given the presence of significantly focal lesions and prominent sarcoplasmic masses in muscle biopsies and the constant heart involvement preceding significantly the onset of the myopathy. Though a rare etiology, FLNC gene should not be excluded in early-onset arrhythmia, even in the absence of myopathy, which occurs later in the disease course.
Collapse
Affiliation(s)
- D Avila-Smirnow
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France
| | - L Gueneau
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France
| | - S Batonnet-Pichon
- Sorbonne Paris Cité, université Paris Diderot, CNRS, unité de biologie fonctionnelle et adaptative, UMR 8251, 75013 Paris, France
| | - F Delort
- Sorbonne Paris Cité, université Paris Diderot, CNRS, unité de biologie fonctionnelle et adaptative, UMR 8251, 75013 Paris, France
| | - H-M Bécane
- AP-HP, groupe hospitalier Pitié-Salpêtrière, institut de myologie, centre de référence de pathologie neuromusculaire Paris-Est, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - K Claeys
- Groupe hospitalier Pitié-Salpêtrière, association institut de myologie, unité de morphologie neuromusculaire, 75013 Paris, France
| | - M Beuvin
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France
| | - B Goudeau
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France
| | - J-P Jais
- GH Necker Enfants-Malades, université Paris Descartes, faculté de médecine, biostatistique et informatique médicale, EA 4067, 75015 Paris, France
| | - I Nelson
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France
| | - P Richard
- AP-HP, groupe hospitalier Pitié-Salpêtrière, service de biochimie métabolique, U.F. cardiogénétique et myogénétique, 75013 Paris, France
| | - R Ben Yaou
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France; AP-HP, groupe hospitalier Pitié-Salpêtrière, institut de myologie, centre de référence de pathologie neuromusculaire Paris-Est, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - N B Romero
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France; Groupe hospitalier Pitié-Salpêtrière, association institut de myologie, unité de morphologie neuromusculaire, 75013 Paris, France
| | - K Wahbi
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France; AP-HP, groupe hospitalier Pitié-Salpêtrière, institut de myologie, centre de référence de pathologie neuromusculaire Paris-Est, 47-83, boulevard de l'Hôpital, 75013 Paris, France; AP-HP, groupe hospitalier Cochin-Broca-Hôtel Dieu, service de cardiologie, 75013 Paris, France
| | - S Mathis
- CHU de la Milétrie, service de neurologie, 86021 Poitiers, France
| | - T Voit
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France; AP-HP, groupe hospitalier Pitié-Salpêtrière, institut de myologie, centre de référence de pathologie neuromusculaire Paris-Est, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - D Furst
- University of Bonn, institute for cell biology, department of molecular cell biology, Bonn, Germany
| | - P van der Ven
- University of Bonn, institute for cell biology, department of molecular cell biology, Bonn, Germany
| | - R Gil
- CHU de la Milétrie, service de neurologie, 86021 Poitiers, France
| | - P Vicart
- Sorbonne Paris Cité, université Paris Diderot, CNRS, unité de biologie fonctionnelle et adaptative, UMR 8251, 75013 Paris, France
| | - M Fardeau
- Groupe hospitalier Pitié-Salpêtrière, association institut de myologie, unité de morphologie neuromusculaire, 75013 Paris, France
| | - G Bonne
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France
| | - A Behin
- AP-HP, groupe hospitalier Pitié-Salpêtrière, institut de myologie, centre de référence de pathologie neuromusculaire Paris-Est, 47-83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
26
|
Zheng J, Chen S, Chen Y, Zhu M, Hong D. A novel mutation in the PDZ-like motif of ZASP causes distal ZASP-related myofibrillar myopathy. Neuropathology 2016; 37:45-51. [PMID: 27546599 DOI: 10.1111/neup.12328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/03/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022]
Abstract
Mutations in the LDB3 gene have been identified in patients with Z-disc-associated, alternatively spliced, PDZ motif-containing protein (ZASP)-related myofibrillar myopathy (ZASP-MFM) characterized by late-onset distal myopathy with signs of cardiomyopathy and neuropathy. We describe an autosomal dominant inherited pedigree with ZASP-MFM that is in line with the typical phenotype of distal myopathy without cardiomyopathy and neuropathy, while mild asymmetrical muscle atrophy can be observed in some affected members. Muscle MRI revealed considerable fatty degeneration involved in the posterior compartment of thigh and lower leg, but relatively preserved in rectus femoris, sartorius, gracilis, adductor longus and biceps femoris breve muscles in the later stage. In addition, fatty infiltration of medial gastrocnemius muscle can be initiated as early as in the third decade in asymptomatic individuals. Myopathological features showed sarcoplasmic accumulation of multiple protein deposits and electron dense filamentous bundle aggregates. A novel heterozygous missense mutation (p.N155H) in a highly conserved PDZ-like motif of ZASP was identified. The results indicate that typical ZASP-MFM presenting with late-onset distal myopathy is commonly associated with mutations in PDZ-like motif of ZASP. The development of fatty degeneration is consistent with the typical pattern of ZASP-MFM, and the initial fatty infiltration might be started from medial gastrocnemius muscle. Our study expands the clinical and mutational spectrum of ZASP-MFM.
Collapse
Affiliation(s)
- Junjun Zheng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuyun Chen
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunqing Chen
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Zhu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Exome sequencing identifies variants in two genes encoding the LIM-proteins NRAP and FHL1 in an Italian patient with BAG3 myofibrillar myopathy. J Muscle Res Cell Motil 2016; 37:101-15. [PMID: 27443559 PMCID: PMC5010835 DOI: 10.1007/s10974-016-9451-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/09/2016] [Indexed: 11/06/2022]
Abstract
Myofibrillar myopathies (MFMs) are genetically heterogeneous dystrophies characterized by the disintegration of Z-disks and myofibrils and are associated with mutations in genes encoding Z-disk or Z-disk-related proteins. The c.626 C > T (p.P209L) mutation in the BAG3 gene has been described as causative of a subtype of MFM. We report a sporadic case of a 26-year-old Italian woman, affected by MFM with axonal neuropathy, cardiomyopathy, rigid spine, who carries the c.626 C > T mutation in the BAG3 gene. The patient and her non-consanguineous healthy parents and brother were studied with whole exome sequencing (WES) to further investigate the genetic basis of this complex phenotype. In the patient, we found that the BAG3 mutation is associated with variants in the NRAP and FHL1 genes that encode muscle-specific, LIM domain containing proteins. Quantitative real time PCR, immunohistochemistry and Western blot analysis of the patient’s muscular biopsy showed the absence of NRAP expression and FHL1 accumulation in aggregates in the affected skeletal muscle tissue. Molecular dynamic analysis of the mutated FHL1 domain showed a modification in its surface charge, which could affect its capability to bind its target proteins. To our knowledge this is the first study reporting, in a BAG3 MFM, the simultaneous presence of genetic variants in the BAG3 and FHL1 genes (previously described as independently associated with MFMs) and linking the NRAP gene to MFM for the first time.
Collapse
|
28
|
Bang ML. Animal Models of Congenital Cardiomyopathies Associated With Mutations in Z-Line Proteins. J Cell Physiol 2016; 232:38-52. [PMID: 27171814 DOI: 10.1002/jcp.25424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/10/2016] [Indexed: 01/15/2023]
Abstract
The cardiac Z-line at the boundary between sarcomeres is a multiprotein complex connecting the contractile apparatus with the cytoskeleton and the extracellular matrix. The Z-line is important for efficient force generation and transmission as well as the maintenance of structural stability and integrity. Furthermore, it is a nodal point for intracellular signaling, in particular mechanosensing and mechanotransduction. Mutations in various genes encoding Z-line proteins have been associated with different cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, and left ventricular noncompaction, and mutations even within the same gene can cause widely different pathologies. Animal models have contributed to a great advancement in the understanding of the physiological function of Z-line proteins and the pathways leading from mutations in Z-line proteins to cardiomyopathy, although genotype-phenotype prediction remains a great challenge. This review presents an overview of the currently available animal models for Z-line and Z-line associated proteins involved in human cardiomyopathies with special emphasis on knock-in and transgenic mouse models recapitulating the clinical phenotypes of human cardiomyopathy patients carrying mutations in Z-line proteins. Pros and cons of mouse models will be discussed and a future outlook will be given. J. Cell. Physiol. 232: 38-52, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research, UOS Milan, National Research Council and Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|
29
|
Park HJ, Hong YB, Choi YC, Lee J, Kim EJ, Lee JS, Mo WM, Ki SM, Kim HI, Kim HJ, Hyun YS, Hong HD, Nam K, Jung SC, Kim SB, Kim SH, Kim DH, Oh KW, Kim SH, Yoo JH, Lee JE, Chung KW, Choi BO. ADSSL1 mutation relevant to autosomal recessive adolescent onset distal myopathy. Ann Neurol 2015; 79:231-43. [PMID: 26506222 DOI: 10.1002/ana.24550] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/07/2015] [Accepted: 10/18/2015] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Distal myopathy is a heterogeneous group of muscle diseases characterized by predominant distal muscle weakness. A study was done to identify the underlying cause of autosomal recessive adolescent onset distal myopathy. METHODS Four patients from 2 unrelated Korean families were evaluated. To isolate the genetic cause, exome sequencing was performed. In vitro and in vivo assays using myoblast cells and zebrafish models were performed to examine the ADSSL1 mutation causing myopathy pathogenesis. RESULTS Patients had an adolescent onset distal myopathy phenotype that included distal dominant weakness, facial muscle weakness, rimmed vacuoles, and mild elevation of serum creatine kinase. Exome sequencing identified completely cosegregating compound heterozygous mutations (p.D304N and p.I350fs) in ADSSL1, which encodes a muscle-specific adenylosuccinate synthase in both families. None of the controls had both mutations, and the mutation sites were located in well-conserved regions. Both the D304N and I350fs mutations in ADSSL1 led to decreased enzymatic activity. The knockdown of the Adssl1 gene significantly inhibited the proliferation of mouse myoblast cells, and the addition of human wild-type ADSSL1 reversed the reduced viability. In an adssl1 knockdown zebrafish model, muscle fibers were severely disrupted, which was evaluated by myosin expression and birefringence. In these conditions, supplementing wild-type ADSSL1 protein reversed the muscle defect. INTERPRETATION We suggest that mutations in ADSSL1 are the novel genetic cause of the autosomal recessive adolescent onset distal myopathy. This study broadens the genetic and clinical spectrum of distal myopathy and will be useful for exact molecular diagnostics.
Collapse
Affiliation(s)
- Hyung Jun Park
- Department of Neurology, Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, South Korea.,Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Bin Hong
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Young-Chul Choi
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jinho Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Eun Ja Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ji-Su Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Won Min Mo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Soo Mi Ki
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hyo In Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hye Jin Kim
- Department of Biological Science, Kongju National University, Gongju, South Korea
| | - Young Se Hyun
- Department of Biological Science, Kongju National University, Gongju, South Korea
| | - Hyun Dae Hong
- Department of Biological Science, Kongju National University, Gongju, South Korea
| | - Kisoo Nam
- Department of Chemistry, New York University, New York, NY
| | - Sung Chul Jung
- Department of Biochemistry, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Sang-Beom Kim
- Department of Neurology, Kyung Hee University College of Medicine, Kangdong Hospital, Seoul, South Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Ki-Wook Oh
- Department of Neurology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Jeong Hyun Yoo
- Department of Radiology, Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea.,Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Ki Wha Chung
- Department of Biological Science, Kongju National University, Gongju, South Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea.,Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| |
Collapse
|
30
|
Béhin A, Salort-Campana E, Wahbi K, Richard P, Carlier RY, Carlier P, Laforêt P, Stojkovic T, Maisonobe T, Verschueren A, Franques J, Attarian S, Maues de Paula A, Figarella-Branger D, Bécane HM, Nelson I, Duboc D, Bonne G, Vicart P, Udd B, Romero N, Pouget J, Eymard B. Myofibrillar myopathies: State of the art, present and future challenges. Rev Neurol (Paris) 2015; 171:715-29. [DOI: 10.1016/j.neurol.2015.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 05/11/2015] [Accepted: 06/02/2015] [Indexed: 12/18/2022]
|
31
|
Jackson S, Schaefer J, Meinhardt M, Reichmann H. Mitochondrial abnormalities in the myofibrillar myopathies. Eur J Neurol 2015. [DOI: 10.1111/ene.12814] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- S. Jackson
- Department of Neurology; Technische Universität Dresden; Dresden Germany
| | - J. Schaefer
- Department of Neurology; Technische Universität Dresden; Dresden Germany
| | - M. Meinhardt
- Department of Pathology; Technische Universität Dresden; Dresden Germany
| | - H. Reichmann
- Department of Neurology; Technische Universität Dresden; Dresden Germany
| |
Collapse
|
32
|
Ramspacher C, Steed E, Boselli F, Ferreira R, Faggianelli N, Roth S, Spiegelhalter C, Messaddeq N, Trinh L, Liebling M, Chacko N, Tessadori F, Bakkers J, Laporte J, Hnia K, Vermot J. Developmental Alterations in Heart Biomechanics and Skeletal Muscle Function in Desmin Mutants Suggest an Early Pathological Root for Desminopathies. Cell Rep 2015; 11:1564-76. [PMID: 26051936 DOI: 10.1016/j.celrep.2015.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 04/03/2015] [Accepted: 05/05/2015] [Indexed: 11/25/2022] Open
Abstract
Desminopathies belong to a family of muscle disorders called myofibrillar myopathies that are caused by Desmin mutations and lead to protein aggregates in muscle fibers. To date, the initial pathological steps of desminopathies and the impact of desmin aggregates in the genesis of the disease are unclear. Using live, high-resolution microscopy, we show that Desmin loss of function and Desmin aggregates promote skeletal muscle defects and alter heart biomechanics. In addition, we show that the calcium dynamics associated with heart contraction are impaired and are associated with sarcoplasmic reticulum dilatation as well as abnormal subcellular distribution of Ryanodine receptors. Our results demonstrate that desminopathies are associated with perturbed excitation-contraction coupling machinery and that aggregates are more detrimental than Desmin loss of function. Additionally, we show that pharmacological inhibition of aggregate formation and Desmin knockdown revert these phenotypes. Our data suggest alternative therapeutic approaches and further our understanding of the molecular determinants modulating Desmin aggregate formation.
Collapse
Affiliation(s)
- Caroline Ramspacher
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Emily Steed
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Francesco Boselli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Rita Ferreira
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Nathalie Faggianelli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Stéphane Roth
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Coralie Spiegelhalter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Le Trinh
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael Liebling
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Nikhil Chacko
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Federico Tessadori
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Karim Hnia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
33
|
Mu Y, Jing R, Peter AK, Lange S, Lin L, Zhang J, Ouyang K, Fang X, Veevers J, Zhou X, Evans SM, Cheng H, Chen J. Cypher and Enigma homolog protein are essential for cardiac development and embryonic survival. J Am Heart Assoc 2015; 4:jah3966. [PMID: 25944877 PMCID: PMC4599425 DOI: 10.1161/jaha.115.001950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The striated muscle Z-line, a multiprotein complex at the boundary between sarcomeres, plays an integral role in maintaining striated muscle structure and function. Multiple Z-line-associated proteins have been identified and shown to play an increasingly important role in the pathogenesis of human cardiomyopathy. Cypher and its close homologue, Enigma homolog protein (ENH), are 2 Z-line proteins previously shown to be individually essential for maintenance of postnatal cardiac function and stability of the Z-line during muscle contraction, but dispensable for cardiac myofibrillogenesis and development. Methods and Results The current studies were designed to test whether Cypher and ENH play redundant roles during embryonic development. Here, we demonstrated that mice lacking both ENH and Cypher exhibited embryonic lethality and growth retardation. Lethality in double knockout embryos was associated with cardiac dilation and abnormal Z-line structure. In addition, when ENH was ablated in conjunction with selective ablation of either Cypher short isoforms (CypherS), or Cypher long isoforms (CypherL), only the latter resulted in embryonic lethality. Conclusions Cypher and ENH redundantly play an essential role in sustaining Z-line structure from the earliest stages of cardiac function, and are redundantly required to maintain normal embryonic heart function and embryonic viability.
Collapse
Affiliation(s)
- Yongxin Mu
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.)
| | - Ran Jing
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.) Xiangya Hospital, Central South University, Changsha, China (R.J., X.Z.)
| | - Angela K Peter
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.)
| | - Stephan Lange
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.)
| | - Lizhu Lin
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.) Department of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA (L.L., S.M.E.)
| | - Jianlin Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.)
| | - Kunfu Ouyang
- Key Laboratory of Chemical Genomics, Drug Discovery Center, Peking University Shenzhen Graduate School, Shenzhen, China (K.O.)
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.)
| | - Jennifer Veevers
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.)
| | - Xinmin Zhou
- Xiangya Hospital, Central South University, Changsha, China (R.J., X.Z.)
| | - Sylvia M Evans
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.) Department of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA (L.L., S.M.E.)
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China (H.C.)
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, CA (Y.M., R.J., A.K.P., S.L., L.L., J.Z., X.F., J.V., S.M.E., J.C.)
| |
Collapse
|
34
|
Newby R, Jamieson S, Udd B, Alty J. When myopathy breaks the rules: a late-onset distal presentation. BMJ Case Rep 2015; 2015:bcr2015209436. [PMID: 25911362 PMCID: PMC4420815 DOI: 10.1136/bcr-2015-209436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2015] [Indexed: 11/03/2022] Open
Abstract
Myopathies typically present with proximal or generalised muscle weakness, but it is important for clinicians to recognise they may also have other distributions. This paper describes a case of distal myopathy that was confirmed genetically as ZASP (Z-band alternatively spliced PDZ motif-containing protein) myofibrillar myopathy (MFM). MFMs are particularly topical because the genetic basis of several have recently been established, enabling diagnosis of conditions previously labelled 'idiopathic myopathy', and shedding new light on their pathophysiology. This paper describes a purely distal lower limb phenotype of ZASP MFM, the pathophysiology of ZASP and other MFMs, and the differential diagnosis of late-onset distal symmetrical weakness. The case includes several learning points: ZASP MFM is a new diagnosis; it should be included in differential diagnoses for late-onset myopathy, especially if there is a distal pattern or autosomal dominant inheritance; testing for cardiomyopathy is recommended, and a genetic test is now available.
Collapse
Affiliation(s)
- Rachel Newby
- Department of Neurosciences, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Stuart Jamieson
- Department of Neurosciences, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Bjarne Udd
- Neuromuscular Research Center, Tampere, Finland
- Folkhalsan Institute of Genetics, Helsinki, Finland
| | - Jane Alty
- Department of Neurosciences, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
35
|
Abstract
In this article, distal myopathy syndromes are discussed. A discussion of the more traditional distal myopathies is followed by discussion of the myofibrillar myopathies. Other clinically and genetically distinctive distal myopathy syndromes usually based on single or smaller family cohorts are reviewed. Other neuromuscular disorders that are important to recognize are also considered, because they show prominent distal limb weakness.
Collapse
Affiliation(s)
- Mazen M Dimachkie
- Neuromuscular Section, Neurophysiology Division, Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA.
| | - Richard J Barohn
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| |
Collapse
|
36
|
Yamashita Y, Matsuura T, Kurosaki T, Amakusa Y, Kinoshita M, Ibi T, Sahashi K, Ohno K. LDB3 splicing abnormalities are specific to skeletal muscles of patients with myotonic dystrophy type 1 and alter its PKC binding affinity. Neurobiol Dis 2014; 69:200-5. [PMID: 24878509 DOI: 10.1016/j.nbd.2014.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/06/2014] [Accepted: 05/19/2014] [Indexed: 01/20/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by transcription of CUG repeat RNA, which causes sequestration of muscleblind-like 1 (MBNL1) and upregulation of CUG triplet repeat RNA-binding protein (CUG-BP1). In DM1, dysregulation of these proteins contributes to many aberrant splicing events, causing various symptoms of the disorder. Here, we demonstrate the occurrence of aberrant splicing of LIM domain binding 3 (LDB3) exon 11 in DM1 skeletal muscle. Exon array surveys, RT-PCR, and western blotting studies demonstrated that exon 11 inclusion was DM1 specific and could be reproduced by transfection of a minigene containing the CTG repeat expansion. Moreover, we found that the LDB3 exon 11-positive isoform had reduced affinity for PKC compared to the exon 11-negative isoform. Since PKC exhibits hyperactivation in DM1 and stabilizes CUG-BP1 by phosphorylation, aberrant splicing of LDB3 may contribute to CUG-BP1 upregulation through changes in its affinity for PKC.
Collapse
Affiliation(s)
- Yoshihiro Yamashita
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tohru Matsuura
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Neurology, Department of Medicine, Jichi Medical University, Shomotsuke, Japan.
| | - Tatsuaki Kurosaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinobu Amakusa
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masanobu Kinoshita
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Tohru Ibi
- Department of Neurology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Ko Sahashi
- Department of Neurology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Myofibrillar myopathies (MFMs) are a heterogeneous group of skeletal and cardiac muscle diseases. In this review, we highlight recent discoveries of new genes and disease mechanisms involved in this group of disorders. RECENT FINDINGS The advent of next-generation sequencing technology, laser microdissection and mass spectrometry-based proteomics has facilitated the discovery of new MFM causative genes and pathomechanisms. New mutations have also been discovered in 'older' genes, helping to find a classification niche for MFM-linked disorders showing variant phenotypes. Cell transfection experiments using primary cultured myoblasts and newer animal models provide insights into the pathogenesis of MFMs. SUMMARY An increasing number of genes are involved in the causation of variant subtypes of MFM. The application of modern technologies in combination with classical histopathological and ultrastructural studies is helping to establish the molecular diagnosis and reach a better understanding of the pathogenic mechanisms of each MFM subtype, thus putting an emphasis on the development of specific means for prevention and therapy of these incapacitating and frequently fatal diseases.
Collapse
|
38
|
Lin X, Ruiz J, Bajraktari I, Ohman R, Banerjee S, Gribble K, Kaufman JD, Wingfield PT, Griggs RC, Fischbeck KH, Mankodi A. Z-disc-associated, alternatively spliced, PDZ motif-containing protein (ZASP) mutations in the actin-binding domain cause disruption of skeletal muscle actin filaments in myofibrillar myopathy. J Biol Chem 2014; 289:13615-26. [PMID: 24668811 DOI: 10.1074/jbc.m114.550418] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The core of skeletal muscle Z-discs consists of actin filaments from adjacent sarcomeres that are cross-linked by α-actinin homodimers. Z-disc-associated, alternatively spliced, PDZ motif-containing protein (ZASP)/Cypher interacts with α-actinin, myotilin, and other Z-disc proteins via the PDZ domain. However, these interactions are not sufficient to maintain the Z-disc structure. We show that ZASP directly interacts with skeletal actin filaments. The actin-binding domain is between the modular PDZ and LIM domains. This ZASP region is alternatively spliced so that each isoform has unique actin-binding domains. All ZASP isoforms contain the exon 6-encoded ZASP-like motif that is mutated in zaspopathy, a myofibrillar myopathy (MFM), whereas the exon 8-11 junction-encoded peptide is exclusive to the postnatal long ZASP isoform (ZASP-LΔex10). MFM is characterized by disruption of skeletal muscle Z-discs and accumulation of myofibrillar degradation products. Wild-type and mutant ZASP interact with α-actin, α-actinin, and myotilin. Expression of mutant, but not wild-type, ZASP leads to Z-disc disruption and F-actin accumulation in mouse skeletal muscle, as in MFM. Mutations in the actin-binding domain of ZASP-LΔex10, but not other isoforms, cause disruption of the actin cytoskeleton in muscle cells. These isoform-specific mutation effects highlight the essential role of the ZASP-LΔex10 isoform in F-actin organization. Our results show that MFM-associated ZASP mutations in the actin-binding domain have deleterious effects on the core structure of the Z-discs in skeletal muscle.
Collapse
Affiliation(s)
- Xiaoyan Lin
- From the Neurogenetics Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892-3075
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Martinelli VC, Kyle WB, Kojic S, Vitulo N, Li Z, Belgrano A, Maiuri P, Banks L, Vatta M, Valle G, Faulkner G. ZASP interacts with the mechanosensing protein Ankrd2 and p53 in the signalling network of striated muscle. PLoS One 2014; 9:e92259. [PMID: 24647531 PMCID: PMC3960238 DOI: 10.1371/journal.pone.0092259] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/19/2014] [Indexed: 01/31/2023] Open
Abstract
ZASP is a cytoskeletal PDZ-LIM protein predominantly expressed in striated muscle. It forms multiprotein complexes and plays a pivotal role in the structural integrity of sarcomeres. Mutations in the ZASP protein are associated with myofibrillar myopathy, left ventricular non-compaction and dilated cardiomyopathy. The ablation of its murine homologue Cypher results in neonatal lethality. ZASP has several alternatively spliced isoforms, in this paper we clarify the nomenclature of its human isoforms as well as their dynamics and expression pattern in striated muscle. Interaction is demonstrated between ZASP and two new binding partners both of which have roles in signalling, regulation of gene expression and muscle differentiation; the mechanosensing protein Ankrd2 and the tumour suppressor protein p53. These proteins and ZASP form a triple complex that appears to facilitate poly-SUMOylation of p53. We also show the importance of two of its functional domains, the ZM-motif and the PDZ domain. The PDZ domain can bind directly to both Ankrd2 and p53 indicating that there is no competition between it and p53 for the same binding site on Ankrd2. However there is competition for this binding site between p53 and a region of the ZASP protein lacking the PDZ domain, but containing the ZM-motif. ZASP is negative regulator of p53 in transactivation experiments with the p53-responsive promoters, MDM2 and BAX. Mutations in the ZASP ZM-motif induce modification in protein turnover. In fact, two mutants, A165V and A171T, were not able to bind Ankrd2 and bound only poorly to alpha-actinin2. This is important since the A165V mutation is responsible for zaspopathy, a well characterized autosomal dominant distal myopathy. Although the mechanism by which this mutant causes disease is still unknown, this is the first indication of how a ZASP disease associated mutant protein differs from that of the wild type ZASP protein.
Collapse
Affiliation(s)
| | - W. Buck Kyle
- Department of Paediatrics (Cardiology), Baylor College of Medicine, Houston, Texas, United States of America
| | - Snezana Kojic
- Laboratory of Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nicola Vitulo
- Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative, University of Padua, Padova, Italy
| | - Zhaohui Li
- Department of Paediatrics (Cardiology), Baylor College of Medicine, Houston, Texas, United States of America
| | - Anna Belgrano
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Paolo Maiuri
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Systems Cell Biology of Cell Polarity and Cell Division, Institut Curie, Paris, France
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Matteo Vatta
- Department of Paediatrics (Cardiology), Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medical and Molecular Genetics, University of Indiana, Indianapolis, Indiana, United States of America
| | - Giorgio Valle
- Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative, University of Padua, Padova, Italy
| | - Georgine Faulkner
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative, University of Padua, Padova, Italy
| |
Collapse
|
40
|
|
41
|
Udd B. The Meryon Society Lecture at the 38th Oxford Muscle Symposium, June 28th 2013: the story of the distal myopathies. Neuromuscul Disord 2014; 24:74-6. [PMID: 24239231 DOI: 10.1016/j.nmd.2013.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Bjarne Udd
- Neurology in Neuromuscular Research Center, Tampere University and University Hospital, 33520 Tampere, Finland; Folkhalsan Institute of Genetics, Biomedicum, B336b, University of Helsinki, Finland; Vasa Central Hospital, Department of Neurology, 65130 Vasa, Finland.
| |
Collapse
|
42
|
Abstract
The distal myopathies are a heterogeneous group of genetic disorders defined by a predominant distal weakness at onset or throughout the evolution of the disease and by pathological data supporting a myopathic process. The number of genes associated with distal myopathies continues to increase. Fourteen distinct distal myopathies are currently defined by their gene and causative mutations, compared to just five entities delineated on clinical grounds two decades ago. The known proteins affected in the distal myopathies are of many types and include a significant number of sarcomeric proteins. The useful indicators for clinicians to direct towards a correct molecular diagnosis are the mode of inheritance, the age at onset, the pattern of muscle involvement, the serum creatine kinase level and the muscle pathology findings. This review gives an overview of the clinical and genetic characteristics of the currently identified distal myopathies with emphasis on some recent findings.
Collapse
|
43
|
Sandell SM, Mahjneh I, Palmio J, Tasca G, Ricci E, Udd BA. 'Pathognomonic' muscle imaging findings in DNAJB6 mutated LGMD1D. Eur J Neurol 2013; 20:1553-9. [PMID: 23865856 DOI: 10.1111/ene.12239] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/17/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND PURPOSE We have previously reported clinical, genetic and molecular pathomechanistic findings in DNAJB6 mutated LGMD1D. After publishing clinical findings of the original Finnish family we identified more Finnish, Italian and US families with the same disease, ultimately confirmed by mutations in the same gene. METHODS Of the total number of 28 examined Finnish and Italian patients 23 underwent lower limb muscle imaging. RESULTS At the early stages of the disease fatty degeneration in T1-weighed MRI sequences were observed in the soleus, adductor magnus, semimembranosus and biceps femoris muscles followed by medial gastrocnemius, adductor longus and later by vasti muscles of the quadriceps. Rectus femoris, lateral gastrocnemius, sartorius, gracilis and the anterolateral group of the lower leg muscles were spared until late senecence. The pattern of differential involvement could be identified at different stages of the disease process. CONCLUSIONS Since the general clinical findings do not provide clues for diagnosis this distinct pattern of muscle involvement and pathognomonic imaging findings are highly relevant in the clinical setting. The pattern of muscle involvement is so typical that it can be used as a differential diagnostic tool for LGMD1D. The final diagnosis however requires molecular genetic confirmation.
Collapse
Affiliation(s)
- S M Sandell
- Department of Neurology, Seinäjoki Central Hospital, Seinäjoki, Finland; Neuromuscular Research Center, Department of Neurology, University Hospital and University of Tampere, Tampere, Finland
| | | | | | | | | | | |
Collapse
|
44
|
Distal myopathies: from clinical classification to molecular understanding. J Neural Transm (Vienna) 2013; 120 Suppl 1:S3-7. [PMID: 23842731 DOI: 10.1007/s00702-013-1058-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
Abstract
The distal myopathies are a group of rare diseases that in the past were primarily classified by eponyms. Classification criteria were the beginning of the disease, the distribution of the muscle weakness, the course of the disease, the prognosis, and histological changes in the muscle biopsy. Advances of molecular genetics have identified various genes and mutations in many of the clinical phenotypes. This led to modifications and extensions of the existing clinical classification. Our own study on 42 patients with distal myopathy including 15 patients from six families with matrin-3 mutation suggests that in distal myopathies (1) there seem to be no monogenetic classical phenotypes; (2) there are phenotypes with different genotypes and (3) phenotypes with genotypes that are usually associated with other than distal phenotypes. Some of these phenotypes could not be classified according to the traditional clinical classification. In matrin-3 associated myopathy most but not all patients had predominant distal weakness. Also in the initial families distal weakness myopathy was associated with vocal cord and pharyngeal weakness, this was observed in half of our patients. Three of 15 patients met the criteria of Welander-phenotype. The recent classification by Udd distinguishes major groups of myopathies based on age of onset, mode of inheritance, and morphological changes in muscle biopsy. In many but not all subforms of these major groups the genotype has been established so far.
Collapse
|
45
|
Alp/Enigma family proteins cooperate in Z-disc formation and myofibril assembly. PLoS Genet 2013; 9:e1003342. [PMID: 23505387 PMCID: PMC3591300 DOI: 10.1371/journal.pgen.1003342] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/10/2013] [Indexed: 11/19/2022] Open
Abstract
The Drosophila Alp/Enigma family protein Zasp52 localizes to myotendinous junctions and Z-discs. It is required for terminal muscle differentiation and muscle attachment. Its vertebrate ortholog ZASP/Cypher also localizes to Z-discs, interacts with α-actinin through its PDZ domain, and is involved in Z-disc maintenance. Human mutations in ZASP cause myopathies and cardiomyopathies. Here we show that Drosophila Zasp52 is one of the earliest markers of Z-disc assembly, and we use a Zasp52-GFP fusion to document myofibril assembly by live imaging. We demonstrate that Zasp52 is required for adult Z-disc stability and pupal myofibril assembly. In addition, we show that two closely related proteins, Zasp66 and the newly identified Zasp67, are also required for adult Z-disc stability and are participating with Zasp52 in Z-disc assembly resulting in more severe, synergistic myofibril defects in double mutants. Zasp52 and Zasp66 directly bind to α-actinin, and they can also form a ternary complex. Our results indicate that Alp/Enigma family members cooperate in Z-disc assembly and myofibril formation; and we propose, based on sequence analysis, a novel class of PDZ domain likely involved in α-actinin binding.
Collapse
|
46
|
Abstract
Myofibrillar myopathies (MFMs) are rare, inherited or sporadic, progressive neuromuscular disorders with considerable clinical and genetic heterogeneity. MFMs are defined morphologically by foci of myofibril dissolution that begins at the Z-disk, accumulation of myofibrillar degradation products, and ectopic expression of a large number of proteins including desmin. To date, mutations in six genes are known to cause MFMs, accounting for approximately half of the MFM patients identified. The causative genes encode mainly sarcomeric Z-disk(-related) proteins: desmin, αB-crystallin, myotilin, Z-band alternatively spliced PDZ motif containing protein (ZASP), filamin C and the antiapoptotic BCL2-associated athanogene 3 (Bag3). Although in most MFM patients the disease presents in adulthood and evolves slowly, some patients with desminopathy, αB-crystallinopathy or Bag3opathies have an infantile or juvenile disease onset. Cardiac involvement is very common in desminopathies and can sometimes be the initial or only symptom of the disease. Respiratory symptoms are noted during childhood in αB-crystallinopathies. Early severe cardiac and respiratory involvement is seen in Bag3opathies. Optical microscopic and immunohistochemical features are similar in MFMs; however, ultrastructural findings can be useful to differentiate between the distinct MFM subtypes. No curative treatment for MFMs is currently available. Careful follow-up, especially of cardiac and respiratory function, is important.
Collapse
|
47
|
Kraya T, Kress W, Stoevesant D, Deschauer M, Zierz S. Myofibrilläre Myopathie bei ZASP-Mutation Ala147Thr. DER NERVENARZT 2012; 84:209-13. [DOI: 10.1007/s00115-012-3689-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Feldkirchner S, Schessl J, Müller S, Schoser B, Hanisch FG. Patient-specific protein aggregates in myofibrillar myopathies: laser microdissection and differential proteomics for identification of plaque components. Proteomics 2012; 12:3598-609. [PMID: 23044792 DOI: 10.1002/pmic.201100559] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 09/17/2012] [Accepted: 10/01/2012] [Indexed: 01/15/2023]
Abstract
Myofibrillar myopathies (MFMs) are histopathologically characterized by desmin-positive protein aggregates and myofibrillar degeneration. While about half of all MFM are caused by mutations in genes encoding sarcomeric and extra-sarcomeric proteins (desmin, filamin C, plectin, VCP, FHL1, ZASP, myotilin, αB-crystallin, and BAG3), the other half of these diseases is due to still unresolved gene defects. The present study aims at the proteomic characterization of pathological protein aggregates in skeletal muscle biopsies from patients with MFM-causing gene mutations. The technical strategy is based on the dissection of plaque versus plaque-free tissue areas from the same individual patient by laser dissection microscopy, filter-aided sample preparation, iTRAQ-labeling, and analysis on the peptide level using offline nano-LC and MALDI-TOF-TOF MS/MS for protein identification and quantification. The outlined workflow overcomes limitations of merely qualitative analyses, which cannot discriminate contaminating nonaggregated proteins. Dependent on the MFM causing mutation, different sets of proteins were revealed as genuine (accumulated) plaque components in independent technical replicates: (i) αB-crystallin, desmin, filamin A/C, myotilin, PRAF3, RTN2, SQSTM, XIRP1, and XIRP2 (patient with defined MFM mutation distinct from FHL1) or (ii) desmin, FHL1, filamin A/C, KBTBD10, NRAP, SQSTM, RL40, XIRP1, and XIRP2 (patient with FHL1 mutation). The results from differential proteomics indicate that plaques from different patients exhibit protein compositions with partial overlap, on the one hand, and mutation-dependent protein contents on the other. The FHL1 mutation-specific pattern was validated for four patients with respect to desmin, SQSTM, and FHL1 by immunohistochemistry.
Collapse
Affiliation(s)
- Sarah Feldkirchner
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | |
Collapse
|
49
|
Okada Y, Ayaki T, Matsumoto R, Ito H, Takahashi R, Nakano S. [Patient of myofibrillar myopathy associated with muscle cramp and distal muscle involvement]. Rinsho Shinkeigaku 2012; 52:774-7. [PMID: 23064629 DOI: 10.5692/clinicalneurol.52.774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 53-year-old man presented mild, but gradually worsening, distal-dominant upper bilateral limbs weakness and muscle cramp in both legs from the age of 30. He had no obvious muscle atrophy during the course of the disease. Muscle biopsy of the right lateral vastus muscle showed myopathic changes with round or helical hyaline inclusions in eosinophilic on H&E staining and dark green on modified Gomori trichrome. There were also non-rimmed vacuoles. NADH-TR showed lack of enzymic activity in areas corresponding to the inclusions. Immunohistochemistry demonstrated abnormal accumulation of desmin and myotilin in fibers with inclusions. Given these pathological findings, he was diagnosed with myofibrillar myopathy (MFM). Because MFM is genetically heterogeneous, its clinical manifestations are reported as variable. While MFM patients are sometimes reported to develop serious conditions such as severe weakness, cardiomyopathy or respiratory failure, which require a pacemaker or mechanical ventilator, our case only had mild distal dominant limb weakness and muscle cramps. Our patient suggests that we must consider MFM as a differential diagnosis in adult onset distal myopathies.
Collapse
Affiliation(s)
- Yoichiro Okada
- Department of Neurology, Kyoto University School of Medicine
| | | | | | | | | | | |
Collapse
|
50
|
Strach K, Reimann J, Thomas D, Naehle CP, Kress W, Kornblum C. ZASPopathy with childhood-onset distal myopathy. J Neurol 2012; 259:1494-6. [PMID: 22619057 DOI: 10.1007/s00415-012-6543-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
Abstract
We report on a German family presenting with a predominantly distal myopathy primarily affecting anterior compartments of lower legs in childhood. Proximal lower limb and hip girdle weakness developed later in early adulthood in the female index patient and likewise in her mother. Consecutive muscle biopsy findings were first attributed to a mild congenital myopathy and later on interpreted as neurogenic changes without clear signs of a myopathy. Molecular genetic analysis was performed because of the clinical impression of a distal myopathy combined with dominant inheritance. The heterozygous mutation c.349G>A (p.D117N) in the ZASP gene could be found. This mutation had been previously associated with an adult-onset, isolated, dilated left ventricular non-compaction cardiomyopathy (OMIM*605906.0007), which was not present in our patients. Our data show that this mutation can be associated with an isolated skeletal muscle phenotype. Second, mutation analysis of the ZASP gene is suggested for distal myopathies of any age, even in cases of uncharacteristic muscle biopsy findings on routine analysis.
Collapse
|