1
|
Borgert L, Becker T, den Brave F. Conserved quality control mechanisms of mitochondrial protein import. J Inherit Metab Dis 2024. [PMID: 38790152 DOI: 10.1002/jimd.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Mitochondria carry out essential functions for the cell, including energy production, various biosynthesis pathways, formation of co-factors and cellular signalling in apoptosis and inflammation. The functionality of mitochondria requires the import of about 900-1300 proteins from the cytosol in baker's yeast Saccharomyces cerevisiae and human cells, respectively. The vast majority of these proteins pass the outer membrane in a largely unfolded state through the translocase of the outer mitochondrial membrane (TOM) complex. Subsequently, specific protein translocases sort the precursor proteins into the outer and inner membranes, the intermembrane space and matrix. Premature folding of mitochondrial precursor proteins, defects in the mitochondrial protein translocases or a reduction of the membrane potential across the inner mitochondrial membrane can cause stalling of precursors at the protein import apparatus. Consequently, the translocon is clogged and non-imported precursor proteins accumulate in the cell, which in turn leads to proteotoxic stress and eventually cell death. To prevent such stress situations, quality control mechanisms remove non-imported precursor proteins from the TOM channel. The highly conserved ubiquitin-proteasome system of the cytosol plays a critical role in this process. Thus, the surveillance of protein import via the TOM complex involves the coordinated activity of mitochondria-localized and cytosolic proteins to prevent proteotoxic stress in the cell.
Collapse
Affiliation(s)
- Lion Borgert
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Fabian den Brave
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Srivastav S, van der Graaf K, Singh P, Utama AB, Meyer MD, McNew JA, Stern M. Atl (atlastin) regulates mTor signaling and autophagy in Drosophila muscle through alteration of the lysosomal network. Autophagy 2024; 20:131-150. [PMID: 37649246 PMCID: PMC10761077 DOI: 10.1080/15548627.2023.2249794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
ABBREVIATIONS atl atlastin; ALR autophagic lysosome reformation; ER endoplasmic reticulum; GFP green fluorescent protein; HSP hereditary spastic paraplegia; Lamp1 lysosomal associated membrane protein 1 PolyUB polyubiquitin; RFP red fluorescent protein; spin spinster; mTor mechanistic Target of rapamycin; VCP valosin containing protein.
Collapse
Affiliation(s)
| | | | - Pratibha Singh
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Matthew D. Meyer
- Shared Equipment Authority, Rice University, Houston, Texas, USA
| | - James A. McNew
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Michael Stern
- Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
3
|
Esteller D, Schiava M, Verdú-Díaz J, Villar-Quiles RN, Dibowski B, Venturelli N, Laforet P, Alonso-Pérez J, Olive M, Domínguez-González C, Paradas C, Vélez B, Kostera-Pruszczyk A, Kierdaszuk B, Rodolico C, Claeys K, Pál E, Malfatti E, Souvannanorath S, Alonso-Jiménez A, de Ridder W, De Smet E, Papadimas G, Papadopoulos C, Xirou S, Luo S, Muelas N, Vilchez JJ, Ramos-Fransi A, Monforte M, Tasca G, Udd B, Palmio J, Sri S, Krause S, Schoser B, Fernández-Torrón R, López de Munain A, Pegoraro E, Farrugia ME, Vorgerd M, Manousakis G, Chanson JB, Nadaj-Pakleza A, Cetin H, Badrising U, Warman-Chardon J, Bevilacqua J, Earle N, Campero M, Díaz J, Ikenaga C, Lloyd TE, Nishino I, Nishimori Y, Saito Y, Oya Y, Takahashi Y, Nishikawa A, Sasaki R, Marini-Bettolo C, Guglieri M, Straub V, Stojkovic T, Carlier RY, Díaz-Manera J. Analysis of muscle magnetic resonance imaging of a large cohort of patient with VCP-mediated disease reveals characteristic features useful for diagnosis. J Neurol 2023; 270:5849-5865. [PMID: 37603075 PMCID: PMC10632218 DOI: 10.1007/s00415-023-11862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND The diagnosis of patients with mutations in the VCP gene can be complicated due to their broad phenotypic spectrum including myopathy, motor neuron disease and peripheral neuropathy. Muscle MRI guides the diagnosis in neuromuscular diseases (NMDs); however, comprehensive muscle MRI features for VCP patients have not been reported so far. METHODS We collected muscle MRIs of 80 of the 255 patients who participated in the "VCP International Study" and reviewed the T1-weighted (T1w) and short tau inversion recovery (STIR) sequences. We identified a series of potential diagnostic MRI based characteristics useful for the diagnosis of VCP disease and validated them in 1089 MRIs from patients with other genetically confirmed NMDs. RESULTS Fat replacement of at least one muscle was identified in all symptomatic patients. The most common finding was the existence of patchy areas of fat replacement. Although there was a wide variability of muscles affected, we observed a common pattern characterized by the involvement of periscapular, paraspinal, gluteal and quadriceps muscles. STIR signal was enhanced in 67% of the patients, either in the muscle itself or in the surrounding fascia. We identified 10 diagnostic characteristics based on the pattern identified that allowed us to distinguish VCP disease from other neuromuscular diseases with high accuracy. CONCLUSIONS Patients with mutations in the VCP gene had common features on muscle MRI that are helpful for diagnosis purposes, including the presence of patchy fat replacement and a prominent involvement of the periscapular, paraspinal, abdominal and thigh muscles.
Collapse
Affiliation(s)
- Diana Esteller
- Neurology Department, Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Marianela Schiava
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - José Verdú-Díaz
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Rocío-Nur Villar-Quiles
- APHP, Centre de Référence des Maladies Neuromusculaires, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Boris Dibowski
- Department of Radiology, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU Start Imaging, Raymond Poincaré Teaching Hospital, Garches, France
| | - Nadia Venturelli
- Department of Radiology, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU Start Imaging, Raymond Poincaré Teaching Hospital, Garches, France
| | - Pascal Laforet
- Département de Neurologie Hôpital Raymond-Poincaré Garches France Inserm U1179, Garches, France
| | - Jorge Alonso-Pérez
- Servicio de Neurología. Hospital Virgen de la Candelaria, Tenerife, Spain
- Neuromuscular Diseases Unit, Neurology Department, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Montse Olive
- Neuromuscular Diseases Unit, Neurology Department, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Domínguez-González
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Enfermedades Neuromusculares, Servicio de Neurología, Instituto de Investigación imas12, Hospital 12 de Octubre, Madrid, Spain
| | - Carmen Paradas
- Unidad de Enfermedades Neuromusculares, Servicio de Neurología, Hospital Virgen del Rocio, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Beatriz Vélez
- Unidad de Enfermedades Neuromusculares, Servicio de Neurología, Hospital Virgen del Rocio, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Anna Kostera-Pruszczyk
- Department of Neurology, Medical University of Warsaw, ERN EURO NMD, Warsaw, Poland
- Neuromuscular Reference Centre, ERN-EURO-NMD, Warsaw, Poland
| | - Biruta Kierdaszuk
- Department of Neurology, Medical University of Warsaw, ERN EURO NMD, Warsaw, Poland
- Neuromuscular Reference Centre, ERN-EURO-NMD, Warsaw, Poland
| | - Carmelo Rodolico
- UOC di Neurologia e Malattie Neuromuscolari, AOU Policlinico "G. Martino", Rome, Italy
| | - Kristl Claeys
- Neurologie, Neuromusculair Referentiecentrum, Universitaire Ziekenhuizen, Leuven, Belgium
| | - Endre Pál
- Neurology Department, University of Pécs, Pécs, Hungary
| | - Edoardo Malfatti
- Université Paris Est, U955 INSERM, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, EURO-NMD, 94010, Creteil, France
| | - Sarah Souvannanorath
- Université Paris Est, U955 INSERM, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, EURO-NMD, 94010, Creteil, France
| | | | - Willem de Ridder
- Neurology Department, Universitary Hospital Antwerpen, Edegem, Belgium
| | - Eline De Smet
- Neurology Department, Universitary Hospital Antwerpen, Edegem, Belgium
| | - George Papadimas
- Department of Neurology, Eginition Hospital, Medical School, NKUA, ERN, EURO NMD, Athens, Greece
| | | | - Sofia Xirou
- Department of Neurology, Eginition Hospital, Medical School, NKUA, ERN, EURO NMD, Athens, Greece
| | - Sushan Luo
- Neurology Department, Huashan Hospital, Fudan University, Shangai, China
| | - Nuria Muelas
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - Juan J Vilchez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - Alba Ramos-Fransi
- Unitat de Malalties Neuromusculars, Servei de Neurologia, Hospital Germans Tries I Pujol, Badalona, Spain
| | - Mauro Monforte
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Bjarne Udd
- Tampere Neuromuscular Center, Tampere University Hospital, Tampere, Finland
- Folkhalsan Genetic Institute, Helsinki University, Helsinki, Finland
| | - Johanna Palmio
- Tampere Neuromuscular Center, Tampere University Hospital, Tampere, Finland
- Folkhalsan Genetic Institute, Helsinki University, Helsinki, Finland
| | - Srtuhi Sri
- Sree Chitra Tirunal Insitute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Sabine Krause
- Department of Neurology, Friedrich-Baur-Institute, LMU Clinics, Munich, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, LMU Clinics, Munich, Germany
| | - Roberto Fernández-Torrón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Neurology Department, Biodonostia Health Research Institute, Donostia, Spain
| | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Neurology Department, Biodonostia Health Research Institute, Donostia, Spain
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, Scotland, UK
| | - Mathias Vorgerd
- Heimer Institut for Muscle Research, Klinikum Bergmannsheil Ruhr, University Bochum, Bochum, Germany
| | | | - Jean Baptiste Chanson
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France and ERN-EURO-NMD, Neurology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Aleksandra Nadaj-Pakleza
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France and ERN-EURO-NMD, Neurology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Hakan Cetin
- Neurology Department, Medical University of Vienna, Vienna, Austria
| | | | | | - Jorge Bevilacqua
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Nicholas Earle
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Mario Campero
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Jorge Díaz
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Chiseko Ikenaga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology, Tokyo, Japan
| | - Yukako Nishimori
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology, Tokyo, Japan
| | - Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology, Tokyo, Japan
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, NCNP, Tokyo, Japan
| | - Yoshiaki Takahashi
- Department of Neurology, Kagawa Prefectural Central Hospital, Kagawa, Japan
| | | | - Ryo Sasaki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Tanya Stojkovic
- APHP, Centre de Référence des Maladies Neuromusculaires, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Robert Y Carlier
- Department of Radiology, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU Start Imaging, Raymond Poincaré Teaching Hospital, Garches, France
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom.
- Neuromuscular Diseases Unit, Neurology Department, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Chu S, Xie X, Payan C, Stochaj U. Valosin containing protein (VCP): initiator, modifier, and potential drug target for neurodegenerative diseases. Mol Neurodegener 2023; 18:52. [PMID: 37545006 PMCID: PMC10405438 DOI: 10.1186/s13024-023-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
The AAA+ ATPase valosin containing protein (VCP) is essential for cell and organ homeostasis, especially in cells of the nervous system. As part of a large network, VCP collaborates with many cofactors to ensure proteostasis under normal, stress, and disease conditions. A large number of mutations have revealed the importance of VCP for human health. In particular, VCP facilitates the dismantling of protein aggregates and the removal of dysfunctional organelles. These are critical events to prevent malfunction of the brain and other parts of the nervous system. In line with this idea, VCP mutants are linked to the onset and progression of neurodegeneration and other diseases. The intricate molecular mechanisms that connect VCP mutations to distinct brain pathologies continue to be uncovered. Emerging evidence supports the model that VCP controls cellular functions on multiple levels and in a cell type specific fashion. Accordingly, VCP mutants derail cellular homeostasis through several mechanisms that can instigate disease. Our review focuses on the association between VCP malfunction and neurodegeneration. We discuss the latest insights in the field, emphasize open questions, and speculate on the potential of VCP as a drug target for some of the most devastating forms of neurodegeneration.
Collapse
Affiliation(s)
- Siwei Chu
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Xinyi Xie
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Carla Payan
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada.
- Quantitative Life Sciences Program, McGill University, Montreal, Canada.
| |
Collapse
|
5
|
Guettsches AK, Meyer N, Zahedi RP, Evangelista T, Muentefering T, Ruck T, Lacene E, Heute C, Gonczarowska-Jorge H, Schoser B, Krause S, Hentschel A, Vorgerd M, Roos A. FYCO1 Increase and Effect of Arimoclomol-Treatment in Human VCP-Pathology. Biomedicines 2022; 10:biomedicines10102443. [PMID: 36289705 PMCID: PMC9598455 DOI: 10.3390/biomedicines10102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Dominant VCP–mutations cause a variety of neurological manifestations including inclusion body myopathy with early–onset Paget disease and frontotemporal dementia 1 (IBMPFD). VCP encodes a ubiquitously expressed multifunctional protein that is a member of the AAA+ protein family, implicated in multiple cellular functions ranging from organelle biogenesis to ubiquitin–dependent protein degradation. The latter function accords with the presence of protein aggregates in muscle biopsy specimens derived from VCP–patients. Studying the proteomic signature of VCP–mutant fibroblasts, we identified a (pathophysiological) increase of FYCO1, a protein involved in autophagosome transport. We confirmed this finding applying immunostaining also in muscle biopsies derived from VCP–patients. Treatment of fibroblasts with arimoclomol, an orphan drug thought to restore physiologic cellular protein repair pathways, ameliorated cellular cytotoxicity in VCP–patient derived cells. This finding was accompanied by increased abundance of proteins involved in immune response with a direct impact on protein clearaqnce as well as by elevation of pro–survival proteins as unravelled by untargeted proteomic profiling. Hence, the combined results of our study reveal a dysregulation of FYCO1 in the context of VCP–etiopathology, highlight arimoclomol as a potential drug and introduce proteins targeted by the pre–clinical testing of this drug in fibroblasts.
Collapse
Affiliation(s)
- Anne-Katrin Guettsches
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
- Correspondence: (A.-K.G.); (A.R.); Tel.: +49-234-3020 (A.-K.G.); +49-201-723-6570 (A.R.)
| | - Nancy Meyer
- Department of Neuropediatrics and Neuromuscular Centre for Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences, University Duisburg–Essen, 45147 Essen, Germany
| | - René P. Zahedi
- Manitoba Centre for Proteomics and Systems Biology, 715 McDermot Aveue, Winnipeg, MB R3E 3P4, Canada
- Department of Internal Medicine, University of Manitoba, 820 Sherbrook Street, Winnipeg, MB R3A 1R9, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
- Leibniz–Institut für Analytische Wissenschaften—ISAS—e.V, 44227 Dortmund, Germany
| | - Teresinha Evangelista
- Nord/Est/Ile–de–France Neuromuscular Reference Center, Unité de Morphologie Neuromusculaire, Institute of Myology, Pitié–Salpêtrière Hospital, APHP, Sorbonne University, 75013 Paris, France
| | - Thomas Muentefering
- Department of Neurology, Medical Faculty, Heinrich–Heine–University Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich–Heine–University Düsseldorf, 40225 Düsseldorf, Germany
| | - Emmanuelle Lacene
- Nord/Est/Ile–de–France Neuromuscular Reference Center, Unité de Morphologie Neuromusculaire, Institute of Myology, Pitié–Salpêtrière Hospital, APHP, Sorbonne University, 75013 Paris, France
| | - Christoph Heute
- Department of Neuropediatrics and Neuromuscular Centre for Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences, University Duisburg–Essen, 45147 Essen, Germany
| | | | - Benedikt Schoser
- Department of Neurology, Friedrich–Baur–Institute, Ludwig–Maximilians–University Munich, Ziemssenstr. 1a, 80336 Munich, Germany
| | - Sabine Krause
- Department of Neurology, Friedrich–Baur–Institute, Ludwig–Maximilians–University Munich, Ziemssenstr. 1a, 80336 Munich, Germany
| | - Andreas Hentschel
- Leibniz–Institut für Analytische Wissenschaften—ISAS—e.V, 44227 Dortmund, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| | - Andreas Roos
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
- Department of Neuropediatrics and Neuromuscular Centre for Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences, University Duisburg–Essen, 45147 Essen, Germany
- Children’s Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, ON K1H 5B2, Canada
- Correspondence: (A.-K.G.); (A.R.); Tel.: +49-234-3020 (A.-K.G.); +49-201-723-6570 (A.R.)
| |
Collapse
|
6
|
Pfeffer G, Lee G, Pontifex CS, Fanganiello RD, Peck A, Weihl CC, Kimonis V. Multisystem Proteinopathy Due to VCP Mutations: A Review of Clinical Heterogeneity and Genetic Diagnosis. Genes (Basel) 2022; 13:963. [PMID: 35741724 PMCID: PMC9222868 DOI: 10.3390/genes13060963] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
In this work, we review clinical features and genetic diagnosis of diseases caused by mutations in the gene encoding valosin-containing protein (VCP/p97), the functionally diverse AAA-ATPase. VCP is crucial to a multitude of cellular functions including protein quality control, stress granule formation and clearance, and genomic integrity functions, among others. Pathogenic mutations in VCP cause multisystem proteinopathy (VCP-MSP), an autosomal dominant, adult-onset disorder causing dysfunction in several tissue types. It can result in complex neurodegenerative conditions including inclusion body myopathy, frontotemporal dementia, amyotrophic lateral sclerosis, or combinations of these. There is also an association with other neurodegenerative phenotypes such as Alzheimer-type dementia and Parkinsonism. Non-neurological presentations include Paget disease of bone and may also include cardiac dysfunction. We provide a detailed discussion of genotype-phenotype correlations, recommendations for genetic diagnosis, and genetic counselling implications of VCP-MSP.
Collapse
Affiliation(s)
- Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Grace Lee
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California Irvine Medical Center, Orange, CA 92868, USA; (G.L.); (V.K.)
| | - Carly S. Pontifex
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Roberto D. Fanganiello
- Oral Ecology Research Group, Faculty of Dental Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Allison Peck
- Cure VCP Disease, Inc., Americus, GA 31709, USA;
| | - Conrad C. Weihl
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Virginia Kimonis
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California Irvine Medical Center, Orange, CA 92868, USA; (G.L.); (V.K.)
| |
Collapse
|
7
|
Ferrari V, Cristofani R, Tedesco B, Crippa V, Chierichetti M, Casarotto E, Cozzi M, Mina F, Piccolella M, Galbiati M, Rusmini P, Poletti A. Valosin Containing Protein (VCP): A Multistep Regulator of Autophagy. Int J Mol Sci 2022; 23:1939. [PMID: 35216053 PMCID: PMC8878954 DOI: 10.3390/ijms23041939] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
Valosin containing protein (VCP) has emerged as a central protein in the regulation of the protein quality control (PQC) system. VCP mutations are causative of multisystem proteinopathies, which include neurodegenerative diseases (NDs), and share various signs of altered proteostasis, mainly associated with autophagy malfunctioning. Autophagy is a complex multistep degradative system essential for the maintenance of cell viability, especially in post-mitotic cells as neurons and differentiated skeletal muscle cells. Interestingly, many studies concerning NDs have focused on autophagy impairment as a pathological mechanism or autophagy activity boosting to rescue the pathological phenotype. The role of VCP in autophagy has been widely debated, but recent findings have defined new mechanisms associated with VCP activity in the regulation of autophagy, showing that VCP is involved in different steps of this pathway. Here we will discuss the multiple activity of VCP in the autophagic pathway underlying its leading role either in physiological or pathological conditions. A better understanding of VCP complexes and mechanisms in regulating autophagy could define the altered mechanisms by which VCP directly or indirectly causes or modulates different human diseases and revealing possible new therapeutic approaches for NDs.
Collapse
Affiliation(s)
- Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Barbara Tedesco
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS—Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy;
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| |
Collapse
|
8
|
Harley J, Hagemann C, Serio A, Patani R. TDP-43 and FUS mislocalization in VCP mutant motor neurons is reversed by pharmacological inhibition of the VCP D2 ATPase domain. Brain Commun 2021; 3:fcab166. [PMID: 34396115 PMCID: PMC8361416 DOI: 10.1093/braincomms/fcab166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 12/02/2022] Open
Abstract
RNA binding proteins have been shown to play a key role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Mutations in valosin-containing protein (VCP/p97) cause ALS and exhibit the hallmark nuclear-to-cytoplasmic mislocalization of RNA binding proteins (RBPs). However, the mechanism by which mutations in VCP lead to this mislocalization of RBPs remains incompletely resolved. To address this, we used human-induced pluripotent stem cell-derived motor neurons carrying VCP mutations. We first demonstrate reduced nuclear-to-cytoplasmic ratios of transactive response DNA-binding protein 43 (TDP-43), fused in sarcoma/translocated in liposarcoma (FUS) and splicing factor proline and glutamine rich (SFPQ) in VCP mutant motor neurons. Upon closer analysis, we also find these RBPs are mislocalized to motor neuron neurites themselves. To address the hypothesis that altered function of the D2 ATPase domain of VCP causes RBP mislocalization, we used pharmacological inhibition of this domain in control motor neurons and found this does not recapitulate RBP mislocalization phenotypes. However, D2 domain inhibition in VCP mutant motor neurons was able to robustly reverse mislocalization of both TDP-43 and FUS, in addition to partially relocalizing SFPQ from the neurites. Together these results argue for a gain-of-function of D2 ATPase in VCP mutant human motor neurons driving the mislocalization of TDP-43 and FUS. Our data raise the intriguing possibility of harnessing VCP D2 ATPase inhibitors in the treatment of VCP-related ALS.
Collapse
Affiliation(s)
- Jasmine Harley
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.,The Francis Crick Institute, London NW1 1AT, UK
| | - Cathleen Hagemann
- The Francis Crick Institute, London NW1 1AT, UK.,Centre for Craniofacial & Regenerative Biology, King's College London, London WC2R 2LS, UK
| | - Andrea Serio
- The Francis Crick Institute, London NW1 1AT, UK.,Centre for Craniofacial & Regenerative Biology, King's College London, London WC2R 2LS, UK
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.,The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
9
|
Toupenet Marchesi L, Leblanc M, Stevanin G. Current Knowledge of Endolysosomal and Autophagy Defects in Hereditary Spastic Paraplegia. Cells 2021; 10:cells10071678. [PMID: 34359848 PMCID: PMC8307360 DOI: 10.3390/cells10071678] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) refers to a group of neurological disorders involving the degeneration of motor neurons. Due to their clinical and genetic heterogeneity, finding common effective therapeutics is difficult. Therefore, a better understanding of the common pathological mechanisms is necessary. The role of several HSP genes/proteins is linked to the endolysosomal and autophagic pathways, suggesting a functional convergence. Furthermore, impairment of these pathways is particularly interesting since it has been linked to other neurodegenerative diseases, which would suggest that the nervous system is particularly sensitive to the disruption of the endolysosomal and autophagic systems. In this review, we will summarize the involvement of HSP proteins in the endolysosomal and autophagic pathways in order to clarify their functioning and decipher some of the pathological mechanisms leading to HSP.
Collapse
Affiliation(s)
- Liriopé Toupenet Marchesi
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, CNRS, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.T.M.); (M.L.)
- Neurogenetics Team, EPHE, Paris Sciences Lettres Research University, 75000 Paris, France
| | - Marion Leblanc
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, CNRS, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.T.M.); (M.L.)
- Neurogenetics Team, EPHE, Paris Sciences Lettres Research University, 75000 Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, CNRS, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.T.M.); (M.L.)
- Neurogenetics Team, EPHE, Paris Sciences Lettres Research University, 75000 Paris, France
- Correspondence:
| |
Collapse
|
10
|
Moon SL, Morisaki T, Stasevich TJ, Parker R. Coupling of translation quality control and mRNA targeting to stress granules. J Cell Biol 2021; 219:151851. [PMID: 32520986 PMCID: PMC7401812 DOI: 10.1083/jcb.202004120] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Stress granules are dynamic assemblies of proteins and nontranslating RNAs that form when translation is inhibited in response to diverse stresses. Defects in ubiquitin–proteasome system factors including valosin-containing protein (VCP) and the proteasome impact the kinetics of stress granule induction and dissolution as well as being implicated in neuropathogenesis. However, the impacts of dysregulated proteostasis on mRNA regulation and stress granules are not well understood. Using single mRNA imaging, we discovered ribosomes stall on some mRNAs during arsenite stress, and the release of transcripts from stalled ribosomes for their partitioning into stress granules requires the activities of VCP, components of the ribosome-associated quality control (RQC) complex, and the proteasome. This is an unexpected contribution of the RQC system in releasing mRNAs from translation under stress, thus identifying a new type of stress-activated RQC (saRQC) distinct from canonical RQC pathways in mRNA substrates, cellular context, and mRNA fate.
Collapse
Affiliation(s)
- Stephanie L Moon
- Department of Human Genetics, University of Michigan, Ann Arbor, MI.,Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI
| | - Tatsuya Morisaki
- Department of Biochemistry, Colorado State University, Fort Collins, CO
| | - Timothy J Stasevich
- Department of Biochemistry, Colorado State University, Fort Collins, CO.,World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO.,Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
11
|
Matsubara T, Izumi Y, Oda M, Takahashi M, Maruyama H, Miyamoto R, Watanabe C, Tachiyama Y, Morino H, Kawakami H, Saito Y, Murayama S. An autopsy report of a familial amyotrophic lateral sclerosis case carrying VCP Arg487His mutation with a unique TDP-43 proteinopathy. Neuropathology 2021; 41:118-126. [PMID: 33415820 DOI: 10.1111/neup.12710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023]
Abstract
We here report an autopsy case of familial amyotrophic lateral sclerosis (ALS) with p.Arg487His mutation in the valosin-containing protein (VCP) gene (VCP), in which upper motor neurons (UMNs) were predominantly involved. Moreover, our patient developed symptoms of frontotemporal dementia later in life and pathologically exhibited numerous phosphorylated transactivation response DNA-binding protein of 43 kDa (p-TDP-43)-positive neuronal cytoplasmic inclusions and short dystrophic neurites with a few lentiform neuronal intranuclear inclusions, sharing the features of frontotemporal lobar degeneration with TDP-43 pathology type A pattern. A review of previous reports of ALS with VCP mutations suggests that our case is unique in terms of its UMN-predominant lesion pattern and distribution of p-TDP-43 pathology. Thus, this case report effectively expands the clinical and pathological phenotype of ALS in patients with a VCP mutation.
Collapse
Affiliation(s)
- Tomoyasu Matsubara
- Department of Neurology, Mifukai Vihara Hananosato Hospital, Hiroshima, Japan.,Department of Neurology and Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuishin Izumi
- Department of Neurology, Mifukai Vihara Hananosato Hospital, Hiroshima, Japan.,Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masaya Oda
- Department of Neurology, Mifukai Vihara Hananosato Hospital, Hiroshima, Japan
| | | | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ryosuke Miyamoto
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Chigusa Watanabe
- Department of Neurology, National Hospital Organization Hiroshima-Nishi Medical Center, Hiroshima, Japan
| | - Yoshiro Tachiyama
- Department of Clinical Laboratory, National Hospital Organization Hiroshima-Nishi Medical Center, Hiroshima, Japan
| | - Hiroyuki Morino
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yuko Saito
- Department of Neurology and Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neurology and Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Molecular Research Center for Children's Mental Development (Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders), United Graduate School of Child Development, Osaka University, Osaka, Japan
| |
Collapse
|
12
|
Nakamura T, Kawarabayashi T, Koh K, Takiyama Y, Ikeda Y, Shoji M. Spastic Paraplegia with Paget's Disease of Bone due to a VCP Gene Mutation. Intern Med 2021; 60:141-144. [PMID: 32893227 PMCID: PMC7835475 DOI: 10.2169/internalmedicine.4617-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a neurodegenerative disorder clinically characterized by slowly progressing spastic paraparesis. We herein report a 50-year-old Japanese woman who presented with slowly progressing spastic paraplegia and a history of Paget's disease of bone (PDB). Genetic testing revealed a mutation of the Valosin-containing protein (VCP) gene (p.Arg155Cys; c.436C>T). This mutation has not been reported to cause HSP with PDB.
Collapse
Affiliation(s)
- Takumi Nakamura
- Department of Neurology, Gunma University Graduate School of Medicine, Japan
| | | | - Kishin Koh
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Japan
| | - Mikio Shoji
- Dementia Center, Geriatrics Research Institute Hospital, Japan
| |
Collapse
|
13
|
Ando T, Nakamura R, Kuru S, Yokoi D, Atsuta N, Koike H, Suzuki M, Hara K, Iguchi Y, Harada Y, Yoshida Y, Hattori M, Murakami A, Noda S, Kimura S, Sone J, Nakamura T, Goto Y, Mano K, Okada H, Okuda S, Nishino I, Ogi T, Sobue G, Katsuno M. The wide-ranging clinical and genetic features in Japanese families with valosin-containing protein proteinopathy. Neurobiol Aging 2020; 100:120.e1-120.e6. [PMID: 33339634 DOI: 10.1016/j.neurobiolaging.2020.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
Mutations in the valosin-containing protein (VCP) gene are known to cause various neurodegenerative disorders. Here, we report 8 Japanese patients [6 men, 2 women; median age at onset: 49.5 (range, 35-58) years] from 5 unrelated families with VCP missense mutations. Although 7 of 8 patients were diagnosed with either inclusion body myopathy or amyotrophic lateral sclerosis, 1 patient showed demyelinating polyneuropathy, which was confirmed by longitudinal nerve conduction studies. Sural nerve biopsy of the patient revealed intranuclear ubiquitin staining in Schwann cells. Three known pathogenic VCP mutations (p.Arg191Gln, p.Arg155Cys, and p.Ile126Phe) were detected. A novel mutation, c.293 A>T (p.Asp98Val), was also identified in a patient with amyotrophic lateral sclerosis and frontotemporal dementia. This mutation was predicted to be "deleterious" or "disease causing" using in silico mutation analyses. In conclusion, demyelinating polyneuropathy may be a novel phenotype caused by VCP mutations. The p.Asp98Val mutation was found to be a novel pathogenic mutation of VCP proteinopathy. We believe our cases represent a wide clinical spectrum of VCP mutations.
Collapse
Affiliation(s)
- Takashi Ando
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Ryoichi Nakamura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Satoshi Kuru
- Department of Neurology, National Hospital Organization Suzuka National Hospital, Suzuka, Mie, Japan
| | - Daichi Yokoi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Department of Neurology, Kakeyu-Misayama Rehabilitation Center Kakeyu Hospital, Ueda, Nagano, Japan
| | - Naoki Atsuta
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Haruki Koike
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masashi Suzuki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yumiko Harada
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yusuke Yoshida
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Makoto Hattori
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Ayuka Murakami
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Department of Neurology, National Hospital Organization Suzuka National Hospital, Suzuka, Mie, Japan
| | - Seiya Noda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Department of Neurology, National Hospital Organization Suzuka National Hospital, Suzuka, Mie, Japan
| | - Seigo Kimura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Department of Neurology, National Hospital Organization Suzuka National Hospital, Suzuka, Mie, Japan
| | - Jun Sone
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Department of Neurology, National Hospital Organization Suzuka National Hospital, Suzuka, Mie, Japan
| | - Tomohiko Nakamura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoji Goto
- Department of Neurology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Aichi, Japan
| | - Kazuo Mano
- Department of Neurology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Aichi, Japan
| | - Hisashi Okada
- Department of Neurology, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Satoshi Okuda
- Department of Neurology, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Aichi, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| |
Collapse
|
14
|
Ikenaga C, Findlay AR, Seiffert M, Peck A, Peck N, Johnson NE, Statland JM, Weihl CC. Phenotypic diversity in an international Cure VCP Disease registry. Orphanet J Rare Dis 2020; 15:267. [PMID: 32993728 PMCID: PMC7523394 DOI: 10.1186/s13023-020-01551-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background Dominant mutations in valosin-containing protein (VCP) gene cause an adult onset inclusion body myopathy, Paget’s disease of bone, and frontotemporal dementia also termed multisystem proteinopathy (MSP). The genotype-phenotype relationships in VCP-related MSP are still being defined; in order to understand this better, we investigated the phenotypic diversity and patterns of weakness in the Cure VCP Disease Patient Registry. Methods Cure VCP Disease, Inc. was founded in 2018 for the purpose of connecting patients with VCP gene mutations and researchers to help advance treatments and cures. Cure VCP Disease Patient Registry is maintained by Coordination of Rare Diseases at Sanford. The results of two questionnaires with a 5-point Likert scale questions regarding to patients’ disease onset, symptoms, and daily life were obtained from 59 participants (28 males and 31 females) between June 2018 and May 2020. Independent of the registry, 22 patients were examined at the Cure VCP Disease annual patient conference in 2019. Results In the questionnaires of the registry, fifty-three patients (90%) reported that they were with inclusion body myopathy, 17 patients (29%) with Paget’s disease of bone, eight patients (14%) with dementia, two patients (3%) with amyotrophic lateral sclerosis, and a patient with parkinsonism. Thirteen patients (22%) reported dysphagia and 25 patients (42%) reported dyspnea on exertion. A self-reported functional rating scale for motor function identified challenges with sit to stand (72%), walking (67%), and climbing stairs (85%). Thirty-five (59%) patients in the registry answered that their quality of life is more than good. As for the weakness pattern of the 22 patients who were evaluated at the Cure VCP Disease annual conference, 50% of patients had facial weakness, 55% had scapular winging, 68% had upper proximal weakness, 41% had upper distal weakness, 77% had lower proximal, and 64% had lower distal weakness. Conclusions The Cure VCP Disease Patient Registry is useful for deepening the understanding of patient daily life, which would be a basis to develop appropriate clinical outcome measures. The registry data is consistent with previous studies evaluating VCP patients in the clinical setting. Patient advocacy groups are essential in developing and maintaining disease registries.
Collapse
Affiliation(s)
- Chiseko Ikenaga
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, Saint Louis, MO, 63110, USA
| | - Andrew R Findlay
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, Saint Louis, MO, 63110, USA
| | - Michelle Seiffert
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, Saint Louis, MO, 63110, USA
| | | | | | - Nicholas E Johnson
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas, Medical Center, Kansas City, KS, USA
| | - Conrad C Weihl
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, Saint Louis, MO, 63110, USA.
| |
Collapse
|
15
|
SPG7 mutations in amyotrophic lateral sclerosis: a genetic link to hereditary spastic paraplegia. J Neurol 2020; 267:2732-2743. [PMID: 32447552 PMCID: PMC7419373 DOI: 10.1007/s00415-020-09861-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and hereditary spastic paraplegia (HSP) are motor neuron diseases sharing clinical, pathological, and genetic similarities. While biallelic SPG7 mutations are known to cause recessively inherited HSP, heterozygous SPG7 mutations have repeatedly been identified in HSP and recently also in ALS cases. However, the frequency and clinical impact of rare SPG7 variants have not been studied in a larger ALS cohort. Here, whole-exome (WES) or targeted SPG7 sequencing was done in a cohort of 214 European ALS patients. The consequences of a splice site variant were analyzed on the mRNA level. The resulting protein alterations were visualized in a crystal structure model. All patients were subjected to clinical, electrophysiological, and neuroradiological characterization. In 9 of 214 (4.2%) ALS cases, we identified five different rare heterozygous SPG7 variants, all of which were previously reported in patients with HSP or ALS. All detected SPG7 variants affect the AAA+ domain of the encoded mitochondrial metalloprotease paraplegin and impair its stability or function according to predictions from mRNA analysis or crystal structure modeling. ALS patients with SPG7 mutations more frequently presented with cerebellar symptoms, flail arm or leg syndrome compared to those without SPG7 mutations, and showed a partial clinical overlap with HSP. Brain MRI findings in SPG7 mutation carriers included cerebellar atrophy and patterns suggestive of frontotemporal dementia. Collectively, our findings suggest that SPG7 acts as a genetic risk factor for ALS. ALS patients carrying SPG7 mutations present with distinct features overlapping with HSP, particularly regarding cerebellar findings.
Collapse
|
16
|
Zhang T, Hay BA, Guo M. Generation, Analyzing and in-vivo Drug Treatment of Drosophila Models with IBMPFD. Bio Protoc 2020; 10:e3621. [PMID: 33659294 DOI: 10.21769/bioprotoc.3621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/16/2020] [Accepted: 03/10/2020] [Indexed: 11/02/2022] Open
Abstract
Missense mutations of p97/cdc48/Valosin-containing protein (VCP) cause inclusion body myopathy, Paget disease with frontotemporal dementia (IBMPFD) and other neurodegenerative diseases. The pathological mechanism of IBMPFD is not clear and there is no treatment. We generated Drosophila models of IBMPFD in adult flight muscle in vivo. Here we describe a variety of assays to characterize disease pathology and dissect disease mechanism, and the consequences of in vivo feeding of VCP inhibitors.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ming Guo
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,California Nanosystems Institute at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Martin PB, Hicks AN, Holbrook SE, Cox GA. Overlapping spectrums: The clinicogenetic commonalities between Charcot-Marie-Tooth and other neurodegenerative diseases. Brain Res 2020; 1727:146532. [PMID: 31678418 PMCID: PMC6939129 DOI: 10.1016/j.brainres.2019.146532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive and heterogeneous inherited peripheral neuropathy. A myriad of genetic factors have been identified that contribute to the degeneration of motor and sensory axons in a length-dependent manner. Emerging biological themes underlying disease include defects in axonal trafficking, dysfunction in RNA metabolism and protein homeostasis, as well deficits in the cellular stress response. Moreover, genetic contributions to CMT can have overlap with other neuropathies, motor neuron diseases (MNDs) and neurodegenerative disorders. Recent progress in understanding the molecular biology of CMT and overlapping syndromes aids in the search for necessary therapeutic targets.
Collapse
Affiliation(s)
- Paige B Martin
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Amy N Hicks
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sarah E Holbrook
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
18
|
Lee S, Park H, Zhu PP, Jung SY, Blackstone C, Chang J. Hereditary spastic paraplegia SPG8 mutations impair CAV1-dependent, integrin-mediated cell adhesion. Sci Signal 2020; 13:13/613/eaau7500. [PMID: 31911435 DOI: 10.1126/scisignal.aau7500] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mutations in WASHC5 (also known as KIAA0196) cause autosomal dominant hereditary spastic paraplegia (HSP) type SPG8. WASHC5, commonly called strumpellin, is a core component of the Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex that activates actin nucleation at endosomes. Although various other cellular roles for strumpellin have also been described, none account for how SPG8-associated mutations lead to HSP. Here, we identified protein interactors of the WASH complex by immunoprecipitation and mass spectrometry and assessed the functions of strumpellin in cultured cells using both overexpression and RNA interference along with cell-spreading assays to investigate cell adhesion. We uncovered a decrease in CAV1 protein abundance as well as endosomal fission defects resulting from pathogenic SPG8 mutations. CAV1, a key component of caveolae, interacted with strumpellin in cells, and strumpellin inhibited the lysosomal degradation of CAV1. SPG8-associated missense mutations in strumpellin did not rescue endosomal tubulation defects, reduction in CAV1 protein abundance, or integrin-mediated cell adhesion in strumpellin-deficient cells. Mechanistically, we demonstrated that the WASH complex maintained CAV1 and integrin protein amounts by inhibiting their lysosomal degradation through its endosomal actin nucleation activity. In addition, the interaction of strumpellin with CAV1 stimulated integrin recycling, thereby promoting cell adhesion. These findings provide a molecular link between WASHC5 mutations and impairment of CAV1- and integrin-mediated cell adhesion, providing insights into the cellular pathogenesis of SPG8.
Collapse
Affiliation(s)
- Seongju Lee
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Anatomy and Hypoxia-Related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Hyungsun Park
- Department of Anatomy and Hypoxia-Related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Peng-Peng Zhu
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Soon-Young Jung
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Brain Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Jaerak Chang
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA. .,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Brain Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
19
|
Mishra P, Zhang T, Guo M, Chan D. Mitochondrial Respiratory Measurements in Patient-derived Fibroblasts. Bio Protoc 2019; 9:e3446. [PMID: 33654941 DOI: 10.21769/bioprotoc.3446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/10/2019] [Accepted: 11/19/2019] [Indexed: 11/02/2022] Open
Abstract
Mitochondrial dysfunction is associated with a number of human diseases. As an example, we recently established in vivo Drosophila models of IBMPFD (Inclusion body myopathy, Paget disease, and frontotemporal dementia), and uncovered that human disease mutations of the p97/VCP (Valosin Containing Protein) gene behave as hyperactive alleles associated with mitochondrial defects. Pharmacologic inhibition of VCP strongly suppressed disease and mitochondrial pathology in these animal models. In this protocol, we describe a method to evaluate mitochondrial respiratory function in IBMPFD patient-derived fibroblasts, as well as investigate the role of pharmacologic treatments. These experiments complement work done in animal models by investigating mitochondrial biology and the pharmacologic response in a human cell-based model of the disease. In principle, this technique can be used to investigate mitochondrial respiratory function for any disease in which patient-derived fibroblasts are available.
Collapse
Affiliation(s)
- Prashant Mishra
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ting Zhang
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ming Guo
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,California Nanosystems Institute at UCLA, Los Angeles, CA 90095, USA
| | - David Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
20
|
Genetic and Clinical Profile of Chinese Patients with Autosomal Dominant Spastic Paraplegia. Mol Diagn Ther 2019; 23:781-789. [DOI: 10.1007/s40291-019-00426-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Van Mossevelde S, Engelborghs S, van der Zee J, Van Broeckhoven C. Genotype-phenotype links in frontotemporal lobar degeneration. Nat Rev Neurol 2019; 14:363-378. [PMID: 29777184 DOI: 10.1038/s41582-018-0009-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) represents a group of neurodegenerative brain diseases with highly heterogeneous clinical, neuropathological and genetic characteristics. This high degree of heterogeneity results from the presence of several different underlying molecular disease processes; consequently, it is unlikely that all patients with FTLD will benefit from a single therapy. Therapeutic strategies for FTLD are currently being explored, and tools are urgently needed that enable the selection of patients who are the most likely to benefit from a particular therapy. Definition of the phenotypic characteristics in patients with different FTLD subtypes that share the same underlying disease processes would assist in the stratification of patients into homogeneous groups. The most common subtype of FTLD is characterized by TAR DNA-binding protein 43 (TDP43) pathology (FTLD-TDP). In this group, pathogenic mutations have been identified in four genes: C9orf72, GRN, TBK1 and VCP. Here, we provide a comprehensive overview of the phenotypic characteristics of patients with FTLD-TDP, highlighting shared features and differences among groups of patients who have a pathogenic mutation in one of these four genes.
Collapse
Affiliation(s)
- Sara Van Mossevelde
- Neurodegenerative Brain Diseases Group, VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, UAntwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp, Belgium.,Department of Neurology and Memory Clinic, University Hospital Antwerp, Edegem, Belgium
| | - Sebastiaan Engelborghs
- Institute Born-Bunge, UAntwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, UAntwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium. .,Institute Born-Bunge, UAntwerp, Antwerp, Belgium.
| |
Collapse
|
22
|
Kustermann M, Manta L, Paone C, Kustermann J, Lausser L, Wiesner C, Eichinger L, Clemen CS, Schröder R, Kestler HA, Sandri M, Rottbauer W, Just S. Loss of the novel Vcp (valosin containing protein) interactor Washc4 interferes with autophagy-mediated proteostasis in striated muscle and leads to myopathy in vivo. Autophagy 2018; 14:1911-1927. [PMID: 30010465 PMCID: PMC6152520 DOI: 10.1080/15548627.2018.1491491] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
VCP/p97 (valosin containing protein) is a key regulator of cellular proteostasis. It orchestrates protein turnover and quality control in vivo, processes fundamental for proper cell function. In humans, mutations in VCP lead to severe myo- and neuro-degenerative disorders such as inclusion body myopathy with Paget disease of the bone and frontotemporal dementia (IBMPFD), amyotrophic lateral sclerosis (ALS) or and hereditary spastic paraplegia (HSP). We analyzed here the in vivo role of Vcp and its novel interactor Washc4/Swip (WASH complex subunit 4) in the vertebrate model zebrafish (Danio rerio). We found that targeted inactivation of either Vcp or Washc4, led to progressive impairment of cardiac and skeletal muscle function, structure and cytoarchitecture without interfering with the differentiation of both organ systems. Notably, loss of Vcp resulted in compromised protein degradation via the proteasome and the macroautophagy/autophagy machinery, whereas Washc4 deficiency did not affect the function of the ubiquitin-proteasome system (UPS) but caused ER stress and interfered with autophagy function in vivo. In summary, our findings provide novel insights into the in vivo functions of Vcp and its novel interactor Washc4 and their particular and distinct roles during proteostasis in striated muscle cells.
Collapse
Affiliation(s)
- Monika Kustermann
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Linda Manta
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Christoph Paone
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Jochen Kustermann
- b Institute of Molecular Genetics and Cell Biology, Department of Biology , University of Ulm , Ulm , Germany
| | - Ludwig Lausser
- c Institute of Medical Systems Biology , University of Ulm , Ulm , Germany
| | - Cora Wiesner
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Ludwig Eichinger
- d Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty , University of Cologne , Cologne , Germany
| | - Christoph S Clemen
- d Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty , University of Cologne , Cologne , Germany.,e Department of Neurology, Heimer Institute for Muscle Research , University Hospital Bergmannsheil, Ruhr-University Bochum , Bochum , Germany
| | - Rolf Schröder
- f Institute of Neuropathology , University Hospital Erlangen , Erlangen , Germany
| | - Hans A Kestler
- c Institute of Medical Systems Biology , University of Ulm , Ulm , Germany
| | - Marco Sandri
- g Department of Biomedical Science, Venetian Institute of Molecular Medicine (VIMM) , University of Padova , Padova , Italy
| | - Wolfgang Rottbauer
- h Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Steffen Just
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| |
Collapse
|
23
|
Clemen CS, Winter L, Strucksberg KH, Berwanger C, Türk M, Kornblum C, Florin A, Aguilar-Pimentel JA, Amarie OV, Becker L, Garrett L, Hans W, Moreth K, Neff F, Pingen L, Rathkolb B, Rácz I, Rozman J, Treise I, Fuchs H, Gailus-Durner V, de Angelis MH, Vorgerd M, Eichinger L, Schröder R. The heterozygous R155C VCP mutation: Toxic in humans! Harmless in mice? Biochem Biophys Res Commun 2018; 503:2770-2777. [PMID: 30100055 DOI: 10.1016/j.bbrc.2018.08.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022]
Abstract
Heterozygous missense mutations in the human VCP gene cause inclusion body myopathy associated with Paget disease of bone and fronto-temporal dementia (IBMPFD) and amyotrophic lateral sclerosis (ALS). The exact molecular mechanisms by which VCP mutations cause disease manifestation in different tissues are incompletely understood. In the present study, we report the comprehensive analysis of a newly generated R155C VCP knock-in mouse model, which expresses the ortholog of the second most frequently occurring human pathogenic VCP mutation. Heterozygous R155C VCP knock-in mice showed decreased plasma lactate, serum albumin and total protein concentrations, platelet numbers, and liver to body weight ratios, and increased oxygen consumption and CD8+/Ly6C + T-cell fractions, but none of the typical human IBMPFD or ALS pathologies. Breeding of heterozygous mice did not yield in the generation of homozygous R155C VCP knock-in animals. Immunoblotting showed identical total VCP protein levels in human IBMPFD and murine R155C VCP knock-in tissues as compared to wild-type controls. However, while in human IBMPFD skeletal muscle tissue 70% of the total VCP mRNA was derived from the mutant allele, in R155C VCP knock-in mice only 5% and 7% mutant mRNA were detected in skeletal muscle and brain tissue, respectively. The lack of any obvious IBMPFD or ALS pathology could thus be a consequence of the very low expression of mutant VCP. We conclude that the increased and decreased fractions of the R155C mutant VCP mRNA in man and mice, respectively, are due to missense mutation-induced, divergent alterations in the biological half-life of the human and murine mutant mRNAs. Furthermore, our work suggests that therapy approaches lowering the expression of the mutant VCP mRNA below a critical threshold may ameliorate the intrinsic disease pathology.
Collapse
Affiliation(s)
- Christoph S Clemen
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany; Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany.
| | - Lilli Winter
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054, Erlangen, Germany; Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Karl-Heinz Strucksberg
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Carolin Berwanger
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany; Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Matthias Türk
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Cornelia Kornblum
- Department of Neurology, University Hospital Bonn, 53125, Bonn, Germany; Center for Rare Diseases Bonn, University Hospital Bonn, 53127, Bonn, Germany
| | - Alexandra Florin
- Institute for Pathology, University Hospital Cologne, 50937, Cologne, Germany
| | - Juan Antonio Aguilar-Pimentel
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Oana Veronica Amarie
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Wolfgang Hans
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Kristin Moreth
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Frauke Neff
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Laura Pingen
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, 81377, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Ildikó Rácz
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127, Bonn, Germany; Clinic of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical Center, 53127, Bonn, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Irina Treise
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, 85354, Freising, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany
| | - Ludwig Eichinger
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054, Erlangen, Germany.
| |
Collapse
|
24
|
Pehrson C, Hertz JM, Wirenfeldt M, Stenager E, Wermuth L, Winther Kristensen B. Hereditary spastic paraplegia type 8: Neuropathological findings. Brain Pathol 2018; 28:292-294. [PMID: 28181327 DOI: 10.1111/bpa.12494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Caroline Pehrson
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Jens Michael Hertz
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Martin Wirenfeldt
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Egon Stenager
- MS-Clinic of Southern Jutland (Sønderborg, Esbjerg, Kolding), Department of Neurology, Sygehus Sønderjylland, Denmark and Institute of Regional Research, University of Southern Denmark, Denmark
| | - Lene Wermuth
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
25
|
Abstract
Patients and their family members often ask about genetic testing for asymptomatic individuals who are at risk for developing a genetic disorder. Ordering a genetic test is a complex process involving consideration of many basic ethical principles including autonomy, beneficence, and nonmaleficence, as well as the physician's duty to act in the patient's best interest. Physicians have many choices regarding what tests to order, and they must develop the knowledge and skills to best discuss genetic testing with their patients. Integration of core ethical principles into these processes will permit physicians to best serve their patients when obtaining informed consent, considering advantages and harms of potential results, disclosing those results, and providing follow-up.
Collapse
|
26
|
Morais S, Raymond L, Mairey M, Coutinho P, Brandão E, Ribeiro P, Loureiro JL, Sequeiros J, Brice A, Alonso I, Stevanin G. Massive sequencing of 70 genes reveals a myriad of missing genes or mechanisms to be uncovered in hereditary spastic paraplegias. Eur J Hum Genet 2017; 25:1217-1228. [PMID: 28832565 PMCID: PMC5643959 DOI: 10.1038/ejhg.2017.124] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 06/09/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are neurodegenerative disorders characterized by lower limb spasticity and weakness that can be complicated by other neurological or non-neurological signs. Despite a high genetic heterogeneity (>60 causative genes), 40–70% of the families remain without a molecular diagnosis. Analysis of one of the pioneer cohorts of 193 HSP families generated in the early 1990s in Portugal highlighted that SPAST and SPG11 are the most frequent diagnoses. We have now explored 98 unsolved families from this series using custom next generation sequencing panels analyzing up to 70 candidate HSP genes. We identified the likely disease-causing variant in 20 of the 98 families with KIF5A being the most frequently mutated gene. We also found 52 variants of unknown significance (VUS) in 38% of the cases. These new diagnoses resulted in 42% of solved cases in the full Portuguese cohort (81/193). Segregation of the variants was not always compatible with the presumed inheritance, indicating that the analysis of all HSP genes regardless of the inheritance mode can help to explain some cases. Our results show that there is still a large set of unknown genes responsible for HSP and most likely novel mechanisms or inheritance modes leading to the disease to be uncovered, but this will require international collaborative efforts, particularly for the analysis of VUS.
Collapse
Affiliation(s)
- Sara Morais
- UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,INSERM, U 1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, Paris, France.,Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Laure Raymond
- INSERM, U 1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, Paris, France.,Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Mathilde Mairey
- INSERM, U 1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, Paris, France.,Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Paula Coutinho
- UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Eva Brandão
- Serviço de Neurologia, Centro Hospitalar de Entre o Douro e Vouga, Santa Maria da Feira, Portugal
| | - Paula Ribeiro
- Serviço de Neurologia, Centro Hospitalar de Entre o Douro e Vouga, Santa Maria da Feira, Portugal
| | - José Leal Loureiro
- UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Serviço de Neurologia, Centro Hospitalar de Entre o Douro e Vouga, Santa Maria da Feira, Portugal
| | - Jorge Sequeiros
- UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Alexis Brice
- INSERM, U 1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, Paris, France.,Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, Paris, France
| | - Isabel Alonso
- UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Giovanni Stevanin
- INSERM, U 1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UMRS_1127, Paris, France.,Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France.,APHP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, Paris, France
| |
Collapse
|
27
|
Türk M, Schröder R, Khuller K, Hofmann A, Berwanger C, Ludolph AC, Dekomien G, Müller K, Weishaupt JH, Thiel CT, Clemen CS. Genetic analysis of VCP and WASH complex genes in a German cohort of sporadic ALS-FTD patients. Neurobiol Aging 2017; 56:213.e1-213.e5. [DOI: 10.1016/j.neurobiolaging.2017.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/13/2017] [Accepted: 04/23/2017] [Indexed: 10/24/2022]
|
28
|
New genetic causes for complex hereditary spastic paraplegia. J Neurol Sci 2017; 379:283-292. [DOI: 10.1016/j.jns.2017.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/01/2017] [Accepted: 06/13/2017] [Indexed: 11/17/2022]
|
29
|
Zhang T, Mishra P, Hay BA, Chan D, Guo M. Valosin-containing protein (VCP/p97) inhibitors relieve Mitofusin-dependent mitochondrial defects due to VCP disease mutants. eLife 2017; 6. [PMID: 28322724 PMCID: PMC5360448 DOI: 10.7554/elife.17834] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 02/13/2017] [Indexed: 11/13/2022] Open
Abstract
Missense mutations of valosin-containing protein (VCP) cause an autosomal dominant disease known as inclusion body myopathy, Paget disease with frontotemporal dementia (IBMPFD) and other neurodegenerative disorders. The pathological mechanism of IBMPFD is not clear and there is no treatment. We show that endogenous VCP negatively regulates Mitofusin, which is required for outer mitochondrial membrane fusion. Because 90% of IBMPFD patients have myopathy, we generated an in vivo IBMPFD model in adult Drosophila muscle, which recapitulates disease pathologies. We show that common VCP disease mutants act as hyperactive alleles with respect to regulation of Mitofusin. Importantly, VCP inhibitors suppress mitochondrial defects, muscle tissue damage and cell death associated with IBMPFD models in Drosophila. These inhibitors also suppress mitochondrial fusion and respiratory defects in IBMPFD patient fibroblasts. These results suggest that VCP disease mutants cause IBMPFD through a gain-of-function mechanism, and that VCP inhibitors have therapeutic value.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angele, United States
| | - Prashant Mishra
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - David Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ming Guo
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angele, United States.,Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, University of California, Los Angeles, United States
| |
Collapse
|
30
|
Tang WK, Xia D. Mutations in the Human AAA + Chaperone p97 and Related Diseases. Front Mol Biosci 2016; 3:79. [PMID: 27990419 PMCID: PMC5131264 DOI: 10.3389/fmolb.2016.00079] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022] Open
Abstract
A number of neurodegenerative diseases have been linked to mutations in the human protein p97, an abundant cytosolic AAA+ (ATPase associated with various cellular activities) ATPase, that functions in a large number of cellular pathways. With the assistance of a variety of cofactors and adaptor proteins, p97 couples the energy of ATP hydrolysis to conformational changes that are necessary for its function. Disease-linked mutations, which are found at the interface between two main domains of p97, have been shown to alter the function of the protein, although the pathogenic mutations do not appear to alter the structure of individual subunit of p97 or the formation of the hexameric biological unit. While exactly how pathogenic mutations alter the cellular function of p97 remains unknown, functional, biochemical and structural differences between wild-type and pathogenic mutants of p97 are being identified. Here, we summarize recent progress in the study of p97 pathogenic mutants.
Collapse
Affiliation(s)
- Wai Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
31
|
One family, one gene and three phenotypes: A novel VCP (valosin-containing protein) mutation associated with myopathy with rimmed vacuoles, amyotrophic lateral sclerosis and frontotemporal dementia. J Neurol Sci 2016; 368:352-8. [PMID: 27538664 DOI: 10.1016/j.jns.2016.07.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND VCP (valosin-containing protein gene) variants have been associated with peripheral and central neurodegenerative processes, including inclusion body myopathy (IBM), Paget disease of bone (PDB), frontotemporal dementia (FTD), and familial amyotrophic lateral sclerosis (ALS) type 14. The combination of IBM, PDB (IBMPFD1) can presented in one individual. However, the association of IBMPFD1 and ALS in the same family is rare. METHODS We reported three individuals from a Brazilian kindred with intrafamilial phenotype variability. Whole exome sequencing (WES) of the proband was performed and revealed a novel VCP variant. VCP Sanger sequencing was performed in the proband and his family members to confirm WES finding and segregation. We performed a systematic review of the literature regarding the genotypic-phenotypic VCP correlations. RESULTS Each individual presented with either myopathy with rimmed vacuoles, ALS, or FTD. There was no PDB. WES of the proband identified the heterozygous variant c.271A>T (p.Asn91Tyr) in the exon 3 of VCP. Sanger sequencing confirmed the segregation of this variant in an autosomal-dominant pattern. CONCLUSION This study expands the genotypic spectrum of the missense mutations of the VCP gene with a novel p.Asn91Tyr variant found in a Brazilian family presenting with the unusual intrafamiliar association of myopathy with rimmed vacuoles, ALS and FTD.
Collapse
|
32
|
Evangelista T, Weihl CC, Kimonis V, Lochmüller H. 215th ENMC International Workshop VCP-related multi-system proteinopathy (IBMPFD) 13-15 November 2015, Heemskerk, The Netherlands. Neuromuscul Disord 2016; 26:535-47. [PMID: 27312024 DOI: 10.1016/j.nmd.2016.05.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Teresinha Evangelista
- John Walton Muscular Dystrophy Research Centre and MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, UK
| | - Conrad C Weihl
- Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO, USA
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, University of California - Irvine Medical Centre, Irvine, USA
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre and MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, UK.
| | | |
Collapse
|
33
|
Boland-Freitas R, Graham J, Davis M, Geevasinga N, Vucic S, Ng K. Late-onset distal myopathy of the upper limbs due to P.Ile151Val mutation in the valosin-containing protein. Muscle Nerve 2016; 54:165-6. [PMID: 26853221 DOI: 10.1002/mus.25073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Robert Boland-Freitas
- Department of Neurology and Neurophysiology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - John Graham
- Brisbane Waters Private Hospital, Woy Woy, New South Wales, Australia
| | - Mark Davis
- Neurogenetics Unit, Department of Diagnostic Genomics, PathWest Laboratory Medicine, QE II Medical Centre, Nedlands, Western Australia, Australia
| | - Nimeshan Geevasinga
- Department of Neurology, Westmead Hospital, Westmead, New South Wales, Australia.,Department of Neurophysiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Steve Vucic
- Department of Neurology, Westmead Hospital, Westmead, New South Wales, Australia.,Department of Neurophysiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Karl Ng
- Department of Neurology and Neurophysiology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
34
|
Benatar M, Stanislaw C, Reyes E, Hussain S, Cooley A, Fernandez MC, Dauphin DD, Michon SC, Andersen PM, Wuu J. Presymptomatic ALS genetic counseling and testing: Experience and recommendations. Neurology 2016; 86:2295-302. [PMID: 27194384 DOI: 10.1212/wnl.0000000000002773] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/15/2016] [Indexed: 12/11/2022] Open
Abstract
Remarkable advances in our understanding of the genetic contributions to amyotrophic lateral sclerosis (ALS) have sparked discussion and debate about whether clinical genetic testing should routinely be offered to patients with ALS. A related, but distinct, question is whether presymptomatic genetic testing should be offered to family members who may be at risk for developing ALS. Existing guidelines for presymptomatic counseling and testing are mostly based on small number of individuals, clinical judgment, and experience from other neurodegenerative disorders. Over the course of the last 8 years, we have provided testing and 317 genetic counseling sessions (including predecision, pretest, posttest, and ad hoc counseling) to 161 first-degree family members participating in the Pre-Symptomatic Familial ALS Study (Pre-fALS), as well as testing and 75 posttest counseling sessions to 63 individuals with familial ALS. Based on this experience, and the real-world challenges we have had to overcome in the process, we recommend an updated set of guidelines for providing presymptomatic genetic counseling and testing to people at high genetic risk for developing ALS. These recommendations are especially timely and relevant given the growing interest in studying presymptomatic ALS.
Collapse
Affiliation(s)
- Michael Benatar
- From the Department of Neurology (M.B., E.R., S.H., A.C., M.C.F., D.D.D., S.-C.M., J.W.), University of Miami, FL; Winship Cancer Institute and Department of Human Genetics (C.S.), Emory University, Atlanta, GA; and Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden.
| | - Christine Stanislaw
- From the Department of Neurology (M.B., E.R., S.H., A.C., M.C.F., D.D.D., S.-C.M., J.W.), University of Miami, FL; Winship Cancer Institute and Department of Human Genetics (C.S.), Emory University, Atlanta, GA; and Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden
| | - Eliana Reyes
- From the Department of Neurology (M.B., E.R., S.H., A.C., M.C.F., D.D.D., S.-C.M., J.W.), University of Miami, FL; Winship Cancer Institute and Department of Human Genetics (C.S.), Emory University, Atlanta, GA; and Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden
| | - Sumaira Hussain
- From the Department of Neurology (M.B., E.R., S.H., A.C., M.C.F., D.D.D., S.-C.M., J.W.), University of Miami, FL; Winship Cancer Institute and Department of Human Genetics (C.S.), Emory University, Atlanta, GA; and Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden
| | - Anne Cooley
- From the Department of Neurology (M.B., E.R., S.H., A.C., M.C.F., D.D.D., S.-C.M., J.W.), University of Miami, FL; Winship Cancer Institute and Department of Human Genetics (C.S.), Emory University, Atlanta, GA; and Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden
| | - Maria Catalina Fernandez
- From the Department of Neurology (M.B., E.R., S.H., A.C., M.C.F., D.D.D., S.-C.M., J.W.), University of Miami, FL; Winship Cancer Institute and Department of Human Genetics (C.S.), Emory University, Atlanta, GA; and Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden
| | - Danielle D Dauphin
- From the Department of Neurology (M.B., E.R., S.H., A.C., M.C.F., D.D.D., S.-C.M., J.W.), University of Miami, FL; Winship Cancer Institute and Department of Human Genetics (C.S.), Emory University, Atlanta, GA; and Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden
| | - Sara-Claude Michon
- From the Department of Neurology (M.B., E.R., S.H., A.C., M.C.F., D.D.D., S.-C.M., J.W.), University of Miami, FL; Winship Cancer Institute and Department of Human Genetics (C.S.), Emory University, Atlanta, GA; and Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden
| | - Peter M Andersen
- From the Department of Neurology (M.B., E.R., S.H., A.C., M.C.F., D.D.D., S.-C.M., J.W.), University of Miami, FL; Winship Cancer Institute and Department of Human Genetics (C.S.), Emory University, Atlanta, GA; and Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden
| | - Joanne Wuu
- From the Department of Neurology (M.B., E.R., S.H., A.C., M.C.F., D.D.D., S.-C.M., J.W.), University of Miami, FL; Winship Cancer Institute and Department of Human Genetics (C.S.), Emory University, Atlanta, GA; and Department of Pharmacology and Clinical Neuroscience (P.M.A.), Umeå University, Sweden
| |
Collapse
|
35
|
Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel gene-disease associations and unanticipated rare disorders. Eur J Hum Genet 2016; 24:1460-6. [PMID: 27165006 PMCID: PMC5027687 DOI: 10.1038/ejhg.2016.42] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 03/25/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022] Open
Abstract
Cerebellar ataxia (CA) and hereditary spastic paraplegia (HSP) are two of the most prevalent motor disorders with extensive locus and allelic heterogeneity. We implemented clinical exome sequencing, followed by filtering data for a ‘movement disorders' gene panel, as a generic test to increase variant detection in 76 patients with these disorders. Segregation analysis or phenotypic re-evaluation was utilized to substantiate findings. Disease-causing variants were identified in 9 of 28 CA patients, and 8 of 48 HSP patients. In addition, possibly disease-causing variants were identified in 1 and 8 of the remaining CA and HSP patients, respectively. In 10 patients with CA, the total disease-causing or possibly disease-causing variants were detected in 8 different genes, whereas 16 HSP patients had such variants in 12 different genes. In the majority of cases, the identified variants were compatible with the patient phenotype. Interestingly, in some patients variants were identified in genes hitherto related to other movement disorders, such as TH variants in two siblings with HSP. In addition, rare disorders were uncovered, for example, a second case of HSP caused by a VCP variant. For some patients, exome sequencing results had implications for treatment, exemplified by the favorable L-DOPA treatment in a patient with HSP due to ATP13A2 variants (Parkinson type 9). Thus, clinical exome sequencing in this cohort of CA and HSP patients suggests broadening of disease spectra, revealed novel gene–disease associations, and uncovered unanticipated rare disorders. In addition, clinical exome sequencing results have shown their value in guiding practical patient management.
Collapse
|
36
|
Rijal R, Arhzaouy K, Strucksberg KH, Cross M, Hofmann A, Schröder R, Clemen CS, Eichinger L. Mutant p97 exhibits species-specific changes of its ATPase activity and compromises the UBXD9-mediated monomerisation of p97 hexamers. Eur J Cell Biol 2016; 95:195-207. [PMID: 27132113 DOI: 10.1016/j.ejcb.2016.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022] Open
Abstract
p97 (VCP) is a homo-hexameric triple-A ATPase that exerts a plethora of cellular processes. Heterozygous missense mutations of p97 cause at least five human neurodegenerative disorders. However, the specific molecular consequences of p97 mutations are hitherto widely unknown. Our in silico structural models of human and Dictyostelium p97 showed that the disease-causing human R93C, R155H, and R155C as well as Dictyostelium R154C, E219K, R154C/E219K p97 mutations constitute variations in surface-exposed locations. In-gel ATPase activity measurements of p97 monomers and hexamers revealed significant mutation- and species-specific differences. While all human p97 mutations led to an increase in ATPase activity, no changes could be detected for the Dictyostelium R154C mutant, which is orthologous to human R155C. The E219K mutation led to an almost complete loss of activity, which was partially recuperated in the R154C/E219K double-mutant indicating p97 inter-domain communication. By means of co-immunoprecipitation experiments we identified an UBX-domain containing Dictyostelium protein as a novel p97 interaction partner. We categorized all UBX-domain containing Dictyostelium proteins and named the interaction partner UBXD9. Pull-down assays and surface plasmon resonance analyses of Dictyostelium UBXD9 or the human orthologue TUG/ASPL/UBXD9 demonstrated direct interactions with p97 as well as species-, mutation- and ATP-dependent differences in the binding affinities. Sucrose density gradient assays revealed that both human and Dictyostelium UBXD9 proteins very efficiently disassembled wild-type, but to a lesser extent mutant p97 hexamers into monomers. Our results are consistent with a scenario in which p97 point mutations lead to differences in enzymatic activities and molecular interactions, which in the long-term result in a late-onset and progressive multisystem disease.
Collapse
Affiliation(s)
- Ramesh Rijal
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Khalid Arhzaouy
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Karl-Heinz Strucksberg
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Megan Cross
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland 4111, Australia
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland 4111, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3030, Australia
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Christoph S Clemen
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
| | - Ludwig Eichinger
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
37
|
Kazamel M, Sorenson EJ, McEvoy KM, Jones LK, Leep-Hunderfund AN, Mauermann ML, Milone M. Clinical spectrum of valosin containing protein (VCP)-opathy. Muscle Nerve 2015; 54:94-9. [PMID: 26574898 DOI: 10.1002/mus.24980] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/21/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Valosin containing protein (VCP) mutations cause a rare disorder characterized by hereditary inclusion body myopathy, Paget disease of bone (PDB), and frontotemporal dementia (FTD) with variable penetrance. VCP mutations have also been linked to amyotrophic lateral sclerosis and Charcot-Marie-Tooth disease type 2. METHODS Review of clinical, serological, electrophysiological, and myopathological findings of 6 VCP-opathy patients from 4 unrelated families. RESULTS Patients manifested muscle weakness between ages 40 and 53 years and developed predominant asymmetric limb girdle weakness. One patient had distal weakness at onset and co-existing peripheral neuropathy. Another patient had PDB, 1 had mild cognitive deficits, and 1 had FTD. All patients had myopathic and neurogenic electromyographic findings with predominant neurogenic changes in 2. Rimmed vacuoles were infrequent, while neurogenic changes were prominent in muscle biopsies. CONCLUSIONS VCP-opathy is a multifaceted disorder in which myopathy and peripheral neuropathy can coexist. The electrophysiological and pathological neurogenic changes raise the possibility of coexisting motor neuron involvement. Muscle Nerve, 2015 Muscle Nerve 54: 94-99, 2016 Muscle Nerve 54: 94-99, 2016.
Collapse
Affiliation(s)
- Mohamed Kazamel
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Eric J Sorenson
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Kathleen M McEvoy
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Lyell K Jones
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | | | | | - Margherita Milone
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| |
Collapse
|
38
|
Fusser M, Kernstock S, Aileni VK, Egge-Jacobsen W, Falnes PØ, Klungland A. Lysine Methylation of the Valosin-Containing Protein (VCP) Is Dispensable for Development and Survival of Mice. PLoS One 2015; 10:e0141472. [PMID: 26544960 PMCID: PMC4636187 DOI: 10.1371/journal.pone.0141472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 10/08/2015] [Indexed: 01/02/2023] Open
Abstract
Valosin-containing protein (VCP) is a homohexameric ATPase involved in a multitude cellular processes and it was recently shown that VCP is trimethylated at lysine 315 by the VCP lysine methyltransferase (VCPKMT). Here, we generated and validated a constitutive knockout mouse by targeting exon 1-4 of the Vcpkmt gene. We show that Vcpkmt is ubiquitously expressed in all tissues examined and confirm the sub-cellular localization to the cytoplasm. We show by (I) mass spectrometric analysis, (II) VCPKMT-mediated in vitro methylation of VCP in cell extracts and (III) immunostaining with a methylation specific antibody, that in Vcpkmt-/- mice the methylation of lysine 315 in VCP is completely abolished. In contrast, VCP is almost exclusively trimethylated in wild-type mice. Furthermore, we investigated the specificity of VCPKMT with in vitro methylation assays using as source of substrate protein extracts from Vcpkmt-/- mouse organs or three human Vcpkmt-/- cell lines. The results show that VCPKMT is a highly specific enzyme, and suggest that VCP is its sole substrate. The Vcpkmt-/- mice were viable, fertile and had no obvious pathological phenotype. Their body weight, life span and acute endurance capacity were comparable to wild-type controls. Overall the results show that VCPKMT is an enzyme required for methylation of K315 of VCP in vivo, but VCPKMT is not essential for development or survival under unstressed conditions.
Collapse
Affiliation(s)
- Markus Fusser
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Stefan Kernstock
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Vinay Kumar Aileni
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Wolfgang Egge-Jacobsen
- Glyconor Mass Spectrometry, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Pål Ø. Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Arne Klungland
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
39
|
Clemen CS, Marko M, Strucksberg KH, Behrens J, Wittig I, Gärtner L, Winter L, Chevessier F, Matthias J, Türk M, Tangavelou K, Schütz J, Arhzaouy K, Klopffleisch K, Hanisch FG, Rottbauer W, Blümcke I, Just S, Eichinger L, Hofmann A, Schröder R. VCP and PSMF1: Antagonistic regulators of proteasome activity. Biochem Biophys Res Commun 2015; 463:1210-7. [DOI: 10.1016/j.bbrc.2015.06.086] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/12/2015] [Indexed: 11/25/2022]
|
40
|
Kumar KR, Blair NF, Sue CM. An Update on the Hereditary Spastic Paraplegias: New Genes and New Disease Models. Mov Disord Clin Pract 2015; 2:213-223. [PMID: 30838228 DOI: 10.1002/mdc3.12184] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/24/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023] Open
Abstract
Aims The hereditary spastic paraplegias (HSPs) are a heterogeneous group of disorders characterized by spasticity in the lower limbs. We provide an overview of HSP with an emphasis on recent developments. Methods A PubMed search using the term "hereditary spastic paraplegia" and "hereditary spastic paraparesis" was conducted for a period from January 2012 to January 2015. We discuss and critique the major studies in the field over this 36-month period. Results A total of 346 publications were identified, of which 47 were selected for review. We provide an update of the common forms of HSP and include patient videos. We also discuss how next-generation sequencing (NGS) has led to the accelerated discovery of new HSP genes, including B4GALNT1,DDHD1, C19orf12,GBA2,TECPR2,DDHD2, C12orf65,REEP2, and IBA57. Moreover, a single study alone identified 18 previously unknown putative HSP genes and created a model for the protein interactions of HSP, called the "HSPome." Many of the newly reported genes cause rare, complicated, autosomal recessive forms of HSP. NGS also has important clinical applications by facilitating the molecular diagnosis of HSP. Furthermore, common genetic forms of HSP have been studied using new disease models, such as neurons derived from induced pluripotent stem cells. These models have been used to elucidate important disease mechanisms and have served as platforms to screen for candidate drug compounds. Conclusion The field of HSP research has been progressing at a rapid pace. The challenge remains in translating these advances into new targeted disease therapies.
Collapse
Affiliation(s)
- Kishore R Kumar
- Departments of Neurology and Neurogenetics Kolling Institute of Medical Research and Royal North Shore Hospital University of Sydney Sydney New South Wales Australia
| | - Nicholas F Blair
- Departments of Neurology and Neurogenetics Kolling Institute of Medical Research and Royal North Shore Hospital University of Sydney Sydney New South Wales Australia
| | - Carolyn M Sue
- Departments of Neurology and Neurogenetics Kolling Institute of Medical Research and Royal North Shore Hospital University of Sydney Sydney New South Wales Australia
| |
Collapse
|
41
|
Zhao J, Hedera P. Strumpellin and Spartin, Hereditary Spastic Paraplegia Proteins, are Binding Partners. J Exp Neurosci 2015; 9:15-25. [PMID: 25987849 PMCID: PMC4426939 DOI: 10.4137/jen.s22969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/06/2015] [Accepted: 04/10/2015] [Indexed: 01/02/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is one of the most heterogeneous neurodegenerative diseases with more than 50 identified genes causing a relatively stereotypical phenotypic presentation. Recent studies of HSP pathogenesis have suggested the existence of shared biochemical pathways that are crucial for axonal maintenance and degeneration. We explored possible interactions of several proteins associated with this condition. Here we report interactions of endogenous and overexpressed strumpellin with another HSP-associated protein, spartin. This biochemical interaction does not appear to be a part of the Wiskott–Aldrich syndrome protein and Scar homologue (WASH) complex because spartin is not co-immunoprecipitated with WASH1 protein. The spartin–strumpellin association does not require the presence of the microtubule interacting and trafficking domain of spartin. Over-expression of mutant forms of strumpellin with the introduced HSP-causing mutations does not alter the colocalization of these two proteins. Knockdown of strumpellin in cultured cortical rat neurons interferes with development of neuronal branching and results in reduced expression of endogenous spartin. Proteosomal inhibition stabilized the levels of spartin and WASH1 proteins, supporting increased spartin degradation in the absence of strumpellin.
Collapse
Affiliation(s)
- Jiali Zhao
- Department of Neurology, Vanderbilt University, Nashville, TN, USA
| | - Peter Hedera
- Department of Neurology, Vanderbilt University, Nashville, TN, USA. ; Center for Molecular Neuroscience, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
42
|
Delving into the complexity of hereditary spastic paraplegias: how unexpected phenotypes and inheritance modes are revolutionizing their nosology. Hum Genet 2015; 134:511-38. [PMID: 25758904 PMCID: PMC4424374 DOI: 10.1007/s00439-015-1536-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/23/2015] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegias (HSP) are rare neurodegenerative diseases sharing the degeneration of the corticospinal tracts as the main pathological characteristic. They are considered one of the most heterogeneous neurological disorders. All modes of inheritance have been described for the 84 different loci and 67 known causative genes implicated up to now. Recent advances in molecular genetics have revealed clinico-genetic heterogeneity of these disorders including their clinical and genetic overlap with other diseases of the nervous system. The systematic analysis of a large set of genes, including exome sequencing, is unmasking unusual phenotypes or inheritance modes associated with mutations in HSP genes and related genes involved in various neurological diseases. A new nosology may emerge after integration and understanding of these new data to replace the current classification. Collectively, functions of the known genes implicate the disturbance of intracellular membrane dynamics and trafficking as the consequence of alterations of cytoskeletal dynamics, lipid metabolism and organelle structures, which represent in fact a relatively small number of cellular processes that could help to find common curative approaches, which are still lacking.
Collapse
|
43
|
Caenorhabditis elegans Models of Hereditary Spastic Paraplegia. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00074-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
44
|
Ayaki T, Ito H, Fukushima H, Inoue T, Kondo T, Ikemoto A, Asano T, Shodai A, Fujita T, Fukui S, Morino H, Nakano S, Kusaka H, Yamashita H, Ihara M, Matsumoto R, Kawamata J, Urushitani M, Kawakami H, Takahashi R. Immunoreactivity of valosin-containing protein in sporadic amyotrophic lateral sclerosis and in a case of its novel mutant. Acta Neuropathol Commun 2014; 2:172. [PMID: 25492614 PMCID: PMC4297454 DOI: 10.1186/s40478-014-0172-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/27/2014] [Indexed: 12/19/2022] Open
Abstract
Background Mutations in the valosin-containing protein (VCP) gene were first found to cause inclusion- body myopathy with early-onset Paget disease and frontotemporal dementia (IBMPFD). Mutations in the VCP gene were later reported to occur in familial amyotrophic lateral sclerosis (ALS). But the role of VCP in the neurodegenerative processes that occur in ALS remains unknown. The purpose of the present study was to elucidate the role of VCP in the neurodegeneration seen in sporadic and VCP mutant ALS. Results Immunohistochemistry demonstrated that the frequency of distinct VCP-positive nuclei of spinal motor neurons of patients with sporadic ALS (SALS) and the ALS with VCP novel mutation (ALS-VCP, M158V) was increased, compared with that of the control cases. No VCP-positive inclusion bodies were observed in SALS patients, a ALS-VCP patient or in control subjects. Neuropathologic examination of the ALS-VCP case showed loss of motor neurons, the presence of Bunina bodies, and degeneration of the corticospinal tracts. Bunina bodies detected in this case were confirmed to show immunohistochemical and ultrastructural features similar to those previously described. Furthermore, neuronal intracytoplasmic inclusions immunopositive for TAR DNA-binding protein 43 kDa (TDP-43), phosphorylated TDP-43, ubiquitin (Ub), p62, and optineurin were identified in the spinal and medullary motoneurons, but not in the neocortex. Gene analysis of this ALS-VCP patient confirmed the de novo mutation of M158V, which was not found in control cases; and bioinformatics using several in silico analyses showed possible damage to the structure of VCP. Immunocytochemical study of cultured cells showed increased cytoplasmic translocation of TDP-43 in cells transfected with several mutant VCP including our patient’s compared with wild-type VCP. Conclusion These findings support the idea that VCP is associated with the pathomechanism of SALS and familial ALS with a VCP mutation, presumably acting through a dominant-negative mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s40478-014-0172-0) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Gonzalez MA, Feely SM, Speziani F, Strickland AV, Danzi M, Bacon C, Lee Y, Chou TF, Blanton SH, Weihl CC, Zuchner S, Shy ME. A novel mutation in VCP causes Charcot-Marie-Tooth Type 2 disease. ACTA ACUST UNITED AC 2014; 137:2897-902. [PMID: 25125609 DOI: 10.1093/brain/awu224] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Mutations in VCP have been reported to account for a spectrum of phenotypes that include inclusion body myopathy with Paget's disease of the bone and frontotemporal dementia, hereditary spastic paraplegia, and 1-2% of familial amyotrophic lateral sclerosis. We identified a novel VCP mutation (p.Glu185Lys) segregating in an autosomal dominant Charcot-Marie-Tooth disease type 2 family. Functional studies showed that the Glu185Lys variant impaired autophagic function leading to the accumulation of immature autophagosomes. VCP mutations should thus be considered for genetically undefined Charcot-Marie-Tooth disease type 2.
Collapse
Affiliation(s)
- Michael A Gonzalez
- 1 Dr John T Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Shawna M Feely
- 2 Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Fiorella Speziani
- 1 Dr John T Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alleene V Strickland
- 1 Dr John T Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Matt Danzi
- 1 Dr John T Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Chelsea Bacon
- 2 Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Youjin Lee
- 3 Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Tsui-Fen Chou
- 4 Division of Medical Genetics, Department of Paediatrics, Harbor-UCLA Medical Centre and Los Angeles Biomedical Research Institute, Torrance, CA 90502, USA
| | - Susan H Blanton
- 1 Dr John T Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Conrad C Weihl
- 3 Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Stephan Zuchner
- 1 Dr John T Macdonald Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Michael E Shy
- 2 Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
46
|
Guerreiro R, Brás J, Hardy J, Singleton A. Next generation sequencing techniques in neurological diseases: redefining clinical and molecular associations. Hum Mol Genet 2014; 23:R47-53. [PMID: 24794858 PMCID: PMC4170717 DOI: 10.1093/hmg/ddu203] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The development of next-generation sequencing technologies has allowed for the identification of several new genes and genetic factors in human genetics. Common results from the application of these technologies have revealed unexpected presentations for mutations in known disease genes. In this review, we summarize the major contributions of exome sequencing to the study of neurodegenerative disorders and other neurological conditions and discuss the interface between Mendelian and complex neurological diseases with a particular focus on pleiotropic events.
Collapse
Affiliation(s)
- Rita Guerreiro
- Department of Molecular Neuroscience and Reta Lila Weston Laboratories, UCL Institute of Neurology, London WC1N 1PJ, UK Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | - José Brás
- Department of Molecular Neuroscience and Reta Lila Weston Laboratories, UCL Institute of Neurology, London WC1N 1PJ, UK
| | - John Hardy
- Department of Molecular Neuroscience and Reta Lila Weston Laboratories, UCL Institute of Neurology, London WC1N 1PJ, UK
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| |
Collapse
|
47
|
Segers K, Glibert G, Callebaut J, Kevers L, Alcan I, Dachy B. Involvement of peripheral and central nervous systems in a valosin-containing protein mutation. J Clin Neurol 2014; 10:166-70. [PMID: 24829604 PMCID: PMC4017021 DOI: 10.3988/jcn.2014.10.2.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 12/12/2022] Open
Abstract
Background Inclusion-body myopathy with Paget's disease of the bone and frontotemporal dementia (IBMPFD) is a rare, late-onset autosomal disorder arising from missense mutations in a gene coding for valosin-containing protein. Case Report We report the case of a man carrying the previously described p.Arg159His mutation, who had an unusual axonal sensorimotor neuropathy as the first clinical manifestation of IBMPFD, and for whom diagnosis only became clear 8 years later when the patient developed frontotemporal dementia. Conclusions Peripheral neuropathy is a rare manifestation of IBMPFD. This underdiagnosed disorder should be considered when a patient develops dementia or has signs of Paget's disease.
Collapse
Affiliation(s)
- Kurt Segers
- Department of Neurology, The Brugmann University Hospital, Brussels, Belgium
| | - Gerald Glibert
- Department of Neurology, The Brugmann University Hospital, Brussels, Belgium
| | - Johan Callebaut
- Department of Neurology, Clinique Sainte-Anne Saint-Remi, Brussels, Belgium
| | - Luc Kevers
- Department of Neurology, Clinique Saint-Jean, Brussels, Belgium
| | - Ibrahim Alcan
- Department of Radiology, The Brugmann University Hospital, Brussels, Belgium
| | - Bernard Dachy
- Department of Neurology, The Brugmann University Hospital, Brussels, Belgium
| |
Collapse
|
48
|
O'Sullivan NC, Dräger N, O'Kane CJ. Characterization of the Drosophila atlastin interactome reveals VCP as a functionally related interactor. J Genet Genomics 2013; 40:297-306. [PMID: 23790629 DOI: 10.1016/j.jgg.2013.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 01/19/2023]
Abstract
At least 25 genes, many involved in trafficking, localisation or shaping of membrane organelles, have been identified as causative genes for the neurodegenerative disorder hereditary spastic paraplegia (HSP). One of the most commonly mutated HSP genes, atlastin-1, encodes a dynamin-like GTPase that mediates homotypic fusion of endoplasmic reticulum (ER) membranes. However, the molecular mechanisms of atlastin-1-related membrane fusion and axonopathy remain unclear. To better understand its mode of action, we used affinity purification coupled with mass spectrometry to identify protein interactors of atlastin in Drosophila. Analysis of 72 identified proteins revealed that the atlastin interactome contains many proteins involved in protein processing and transport, in addition to proteins with roles in mRNA binding, metabolism and mitochondrial proteins. The highest confidence interactor from mass spectrometry analysis, the ubiquitin-selective AAA-ATPase valosin-containing protein (VCP), was validated as an atlastin-interacting protein, and VCP and atlastin showed overlapping subcellular distributions. Furthermore, VCP acted as a genetic modifier of atlastin: loss of VCP partially suppressed an eye phenotype caused by atlastin overexpression, whereas overexpression of VCP enhanced this phenotype. These interactions between atlastin and VCP suggest a functional relationship between these two proteins, and point to potential shared mechanisms between HSP and other forms of neurodegeneration.
Collapse
Affiliation(s)
- Niamh C O'Sullivan
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom.
| | | | | |
Collapse
|
49
|
Benatar M, Wuu J, Fernandez C, Weihl CC, Katzen H, Steele J, Oskarsson B, Taylor JP. Motor neuron involvement in multisystem proteinopathy: implications for ALS. Neurology 2013; 80:1874-80. [PMID: 23635965 DOI: 10.1212/wnl.0b013e3182929fc3] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To explore the putative connection between inclusion body myopathy, Paget disease, frontotemporal dementia (IBMPFD) and motor neuron disease (MND). METHODS Clinical, genetic, and EMG characterization of 17 patients from 8 IBMPFD families. RESULTS Limb weakness was the most common clinical manifestation (present in 15 patients, median onset age 38 years, range 25-52), with unequivocal evidence of upper motor neuron dysfunction in 3. EMG, abnormal in all 17, was purely neurogenic in 4, purely myopathic in 6, and mixed neurogenic/myopathic in 7. Cognitive/behavioral impairment was detected in at least 8. Mutations in VCP (R155H, R159G, R155C) were identified in 6 families, and in hnRNPA2B1 (D290V) in another family. The genetic cause in the eighth family has not yet been identified. CONCLUSION Mutations in at least 4 genes may cause IBMPFD, and its phenotypic spectrum extends beyond IBM, Paget disease, and frontotemporal dementia (FTD). Weakness, the most common and disabling manifestation, may be caused by muscle disease or MND. The acronym IBMPFD is, therefore, insufficient to describe disorders due to VCP mutations or other recently identified IBMPFD-associated genes. Instead, we favor the descriptor multisystem proteinopathy (MSP), which encompasses both the extended clinical phenotype and the previously described prominent pathologic feature of protein aggregation in affected tissues. The nomenclature MSP1, MSP2, and MSP3 may be used for VCP-, HNRNPA2B1-, and HNRNPA1-associated disease, respectively. Genetic defects in MSP implicate a range of biological mechanisms including RNA processing and protein homeostasis, both with potential relevance to the pathobiology of more common MNDs such as amyotrophic lateral sclerosis (ALS) and providing an additional link between ALS and FTD.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
VCP is essential for mitochondrial quality control by PINK1/Parkin and this function is impaired by VCP mutations. Neuron 2013; 78:65-80. [PMID: 23498974 DOI: 10.1016/j.neuron.2013.02.029] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2013] [Indexed: 12/12/2022]
Abstract
Mutations in VCP cause multisystem degeneration impacting the nervous system, muscle, and/or bone. Patients may present with ALS, Parkinsonism, frontotemporal dementia, myopathy, Paget's disease, or a combination of these. The disease mechanism is unknown. We developed a Drosophila model of VCP mutation-dependent degeneration. The phenotype is reminiscent of PINK1 and parkin mutants, including a pronounced mitochondrial defect. Indeed, VCP interacts genetically with the PINK1/parkin pathway in vivo. Paradoxically, VCP complements PINK1 deficiency but not parkin deficiency. The basis of this paradox is resolved by mechanistic studies in vitro showing that VCP recruitment to damaged mitochondria requires Parkin-mediated ubiquitination of mitochondrial targets. VCP recruitment coincides temporally with mitochondrial fission, and VCP is required for proteasome-dependent degradation of Mitofusins in vitro and in vivo. Further, VCP and its adaptor Npl4/Ufd1 are required for clearance of damaged mitochondria via the PINK1/Parkin pathway, and this is impaired by pathogenic mutations in VCP.
Collapse
|