1
|
Erkelens AM, van Erp B, Meijer WJJ, Dame RT. Rok from B. subtilis: Bridging genome structure and transcription regulation. Mol Microbiol 2025; 123:109-123. [PMID: 38511404 PMCID: PMC11841835 DOI: 10.1111/mmi.15250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Bacterial genomes are folded and organized into compact yet dynamic structures, called nucleoids. Nucleoid orchestration involves many factors at multiple length scales, such as nucleoid-associated proteins and liquid-liquid phase separation, and has to be compatible with replication and transcription. Possibly, genome organization plays an intrinsic role in transcription regulation, in addition to classical transcription factors. In this review, we provide arguments supporting this view using the Gram-positive bacterium Bacillus subtilis as a model. Proteins BsSMC, HBsu and Rok all impact the structure of the B. subtilis chromosome. Particularly for Rok, there is compelling evidence that it combines its structural function with a role as global gene regulator. Many studies describe either function of Rok, but rarely both are addressed at the same time. Here, we review both sides of the coin and integrate them into one model. Rok forms unusually stable DNA-DNA bridges and this ability likely underlies its repressive effect on transcription by either preventing RNA polymerase from binding to DNA or trapping it inside DNA loops. Partner proteins are needed to change or relieve Rok-mediated gene repression. Lastly, we investigate which features characterize H-NS-like proteins, a family that, at present, lacks a clear definition.
Collapse
Affiliation(s)
- Amanda M. Erkelens
- Leiden Institute of Chemistry, Leiden UniversityLeidenthe Netherlands
- Centre for Microbial Cell BiologyLeiden UniversityLeidenthe Netherlands
- Centre for Interdisciplinary Genome ResearchLeiden UniversityLeidenthe Netherlands
- Present address:
Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
| | - Bert van Erp
- Leiden Institute of Chemistry, Leiden UniversityLeidenthe Netherlands
- Centre for Microbial Cell BiologyLeiden UniversityLeidenthe Netherlands
- Centre for Interdisciplinary Genome ResearchLeiden UniversityLeidenthe Netherlands
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)C. Nicolás Cabrera 1, Universidad AutónomaMadridSpain
| | - Remus T. Dame
- Leiden Institute of Chemistry, Leiden UniversityLeidenthe Netherlands
- Centre for Microbial Cell BiologyLeiden UniversityLeidenthe Netherlands
- Centre for Interdisciplinary Genome ResearchLeiden UniversityLeidenthe Netherlands
| |
Collapse
|
2
|
Abbondanzieri EA, Badrinarayanan AB, Barillà D, Bell SD, Blombach F, Bouet JY, Bulgheresi S, Cao QAD, Dame RT, Dekker C, Demuysere M, Espéli O, Fogg PCM, Freddolino PL, Ganji M, Gerson TM, Grainger DC, Hamoen LW, Harju J, Hocher A, Hustmyer CM, Kaljevic JK, Karney MK, Kleckner N, Laloux G, Landick R, Lioy VS, Liu WL, Liu CL, Mäkelä J, Meyer AS, Noy A, Pineau MP, Premrajka K, Racki LR, Rashid FZM, Schnetz K, Schwab S, Tišma M, van der Sijs AI, van Heesch T, van Raaphorst R, Vreede J, Walker AW, Walter JC, Weber SC, Wiggins PA, Wing HJ, Xiao J, Zhang Z. Future Directions of the Prokaryotic Chromosome Field. Mol Microbiol 2025; 123:89-100. [PMID: 39977301 DOI: 10.1111/mmi.15347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
In September 2023, the Biology and Physics of Prokaryotic Chromosomes meeting ran at the Lorentz Center in Leiden, The Netherlands. As part of the workshop, those in attendance developed a series of discussion points centered around current challenges for the field, how these might be addressed, and how the field is likely to develop over the next 10 years. The Lorentz Center staff facilitated these discussions via tools aimed at optimizing productive interactions. This Perspective article is a summary of these discussions and reflects the state-of-the-art of the field. It is expected to be of help to colleagues in advancing their own research related to prokaryotic chromosomes and inspiring novel interdisciplinary collaborations. This forward-looking perspective highlights the open questions driving current research and builds on the impressive recent progress in these areas as represented by the accompanying reviews, perspectives, and research articles in this issue. These articles underline the multi-disciplinary nature of the field, the multiple length scales at which chromatin is studied in vitro and in and highlight the differences and similarities of bacterial and archaeal chromatin and chromatin-associated processes.
Collapse
Affiliation(s)
- E A Abbondanzieri
- Department of Biology, University of Rochester, Rochester, New York, USA
| | | | - D Barillà
- Department of Biology, University of York, York, UK
| | - S D Bell
- Indiana University, Bloomington, Indiana, USA
| | | | - J Y Bouet
- LMGM-CBI, CNRS, University of Toulouse Paul Sabatier, Toulouse, France
| | - S Bulgheresi
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
| | - Q A D Cao
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - R T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - C Dekker
- Kavli Institute of Nanoscience Delft, Delft, the Netherlands
| | - M Demuysere
- Molecular Microbiology and Structural Biochemistry, CNRS/University of Lyon 1, Lyon, France
| | - O Espéli
- Collége de France, Paris, France
| | | | | | - M Ganji
- Indian Institute of Science, Bangalore, India
| | - T M Gerson
- University of Nevada-Las Vegas, Las Vegas, Nevada, USA
| | | | - L W Hamoen
- University of Amsterdam, Amsterdam, the Netherlands
| | - J Harju
- Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - A Hocher
- Medical Research Council London Institute of Medical Sciences, London, UK
| | - C M Hustmyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - J K Kaljevic
- de Duve Institute, UCLouvain, Brussels, Brussels, Belgium
| | - M K Karney
- University of Nevada-Las Vegas, Las Vegas, Nevada, USA
| | - N Kleckner
- Harvard University, Cambridge, Massachusetts, USA
| | - G Laloux
- de Duve Institute, UCLouvain, Brussels, Brussels, Belgium
| | - R Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - V S Lioy
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, France
| | - W L Liu
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - C L Liu
- Chinese Academy of Sciences, China
| | - J Mäkelä
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - A S Meyer
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - A Noy
- University of York, York, UK
| | - M P Pineau
- Microbiology, Adaptation and Pathogenesis, UMR5240, INSA, Lyon, France
| | | | | | | | - K Schnetz
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - S Schwab
- Leiden University, Leiden, the Netherlands
| | - M Tišma
- Kavli Institute of Nanoscience Delft, Delft, the Netherlands
| | | | - T van Heesch
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | | | - J Vreede
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - A W Walker
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - J-C Walter
- Laboratory Charles Coulomb (L2C), CNRS & Montpellier Université, Montpellier, France
| | - S C Weber
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Department of Physics, McGill University, Montreal, Quebec, Canada
| | - P A Wiggins
- University of Washington, Seattle, Washington, USA
| | - H J Wing
- University of Nevada-Las Vegas, Las Vegas, Nevada, USA
| | - J Xiao
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Z Zhang
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| |
Collapse
|
3
|
Goodman SD. Extracellular DNA-protein interactions. Curr Opin Struct Biol 2024; 89:102943. [PMID: 39418796 DOI: 10.1016/j.sbi.2024.102943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Intracellular DNA primarily serves as the cellular genetic material both in eukaryotes and prokaryotes. This function is often regulated by alterations in the DNA structure to accommodate transcription, recombination, and DNA replication. Extracellularly, both eukaryotic and prokaryotic cells take advantage of DNA plenty in addition to a permissive environment and create novel structures to fulfill multiple new roles. As often occurs intracellularly, extracellular DNA requires proteins to facilitate and stabilize these important structures. Here I review, both host and eubacterial nucleoprotein structures, their composition, their functions, and how these distinct structures can interact. Even at this early stage of study, it is clear that extracellular chromatin plays important biological roles in the survival of both prokaryotic and eukaryotic organisms.
Collapse
Affiliation(s)
- Steven D Goodman
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis The Ohio State University College of Medicine 700 Children's Drive, WA5021 Columbus, OH 43205, USA.
| |
Collapse
|
4
|
Schwab S, Dame RT. Identification, characterization and classification of prokaryotic nucleoid-associated proteins. Mol Microbiol 2024. [PMID: 39039769 DOI: 10.1111/mmi.15298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
Common throughout life is the need to compact and organize the genome. Possible mechanisms involved in this process include supercoiling, phase separation, charge neutralization, macromolecular crowding, and nucleoid-associated proteins (NAPs). NAPs are special in that they can organize the genome at multiple length scales, and thus are often considered as the architects of the genome. NAPs shape the genome by either bending DNA, wrapping DNA, bridging DNA, or forming nucleoprotein filaments on the DNA. In this mini-review, we discuss recent advancements of unique NAPs with differing architectural properties across the tree of life, including NAPs from bacteria, archaea, and viruses. To help the characterization of NAPs from the ever-increasing number of metagenomes, we recommend a set of cheap and simple in vitro biochemical assays that give unambiguous insights into the architectural properties of NAPs. Finally, we highlight and showcase the usefulness of AlphaFold in the characterization of novel NAPs.
Collapse
Affiliation(s)
- Samuel Schwab
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
5
|
Hustmyer CM, Landick R. Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression. Mol Microbiol 2024; 122:81-112. [PMID: 38847475 PMCID: PMC11260248 DOI: 10.1111/mmi.15283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
DNA in bacterial chromosomes is organized into higher-order structures by DNA-binding proteins called nucleoid-associated proteins (NAPs) or bacterial chromatin proteins (BCPs). BCPs often bind to or near DNA loci transcribed by RNA polymerase (RNAP) and can either increase or decrease gene expression. To understand the mechanisms by which BCPs alter transcription, one must consider both steric effects and the topological forces that arise when DNA deviates from its fully relaxed double-helical structure. Transcribing RNAP creates DNA negative (-) supercoils upstream and positive (+) supercoils downstream whenever RNAP and DNA are unable to rotate freely. This (-) and (+) supercoiling generates topological forces that resist forward translocation of DNA through RNAP unless the supercoiling is constrained by BCPs or relieved by topoisomerases. BCPs also may enhance topological stress and overall can either inhibit or aid transcription. Here, we review current understanding of how RNAP, BCPs, and DNA topology interplay to control gene expression.
Collapse
Affiliation(s)
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison
- Department of Bacteriology, University of Wisconsin-Madison
| |
Collapse
|
6
|
Pisetsky DS, Herbert A. The role of DNA in the pathogenesis of SLE: DNA as a molecular chameleon. Ann Rheum Dis 2024; 83:830-837. [PMID: 38749573 PMCID: PMC11168871 DOI: 10.1136/ard-2023-225266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/11/2024] [Indexed: 06/14/2024]
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterised by antibodies to DNA (anti-DNA) and other nuclear macromolecules. Anti-DNA antibodies are markers for classification and disease activity and promote pathogenesis by forming immune complexes that deposit in the tissue or stimulate cytokine production. Studies on the antibody response to DNA have focused primarily on a conformation of DNA known as B-DNA, the classic right-handed double helix. Among other conformations of DNA, Z-DNA is a left-handed helix with a zig-zag backbone; hence, the term Z-DNA. Z-DNA formation is favoured by certain base sequences, with the energetically unfavourable flip from B-DNA to Z-DNA dependent on conditions. Z-DNA differs from B-DNA in its immunogenicity in animal models. Furthermore, anti-Z-DNA antibodies, but not anti-B-DNA antibodies, can be present in otherwise healthy individuals. In SLE, antibodies to Z-DNA can occur in association with antibodies to B-DNA as a cross-reactive response, rising and falling together. While formed transiently in chromosomal DNA, Z-DNA is stably present in bacterial biofilms; biofilms can provide protection against antibiotics and other challenges including elements of host defence. The high GC content of certain bacterial DNA also favours Z-DNA formation as do DNA-binding proteins of bacterial or host origin. Together, these findings suggest that sources of Z-DNA can enhance the immunogenicity of DNA and, in SLE, stimulate the production of cross-reactive antibodies that bind both B-DNA and Z-DNA. As such, DNA can act as a molecular chameleon that, when stabilised in the Z-DNA conformation, can drive autoimmunity.
Collapse
Affiliation(s)
- David S Pisetsky
- Duke University Medical Center, Durham, North Carolina, USA
- Medical Research, Durham VA Health Care System, Durham, North Carolina, USA
| | - Alan Herbert
- InsideOutBio Inc, Charlestown, Massachusetts, USA
| |
Collapse
|
7
|
Åberg A, Gideonsson P, Bhat A, Ghosh P, Arnqvist A. Molecular insights into the fine-tuning of pH-dependent ArsR-mediated regulation of the SabA adhesin in Helicobacter pylori. Nucleic Acids Res 2024; 52:5572-5595. [PMID: 38499492 PMCID: PMC11162790 DOI: 10.1093/nar/gkae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
Adaptation to variations in pH is crucial for the ability of Helicobacter pylori to persist in the human stomach. The acid responsive two-component system ArsRS, constitutes the global regulon that responds to acidic conditions, but molecular details of how transcription is affected by the ArsR response regulator remains poorly understood. Using a combination of DNA-binding studies, in vitro transcription assays, and H. pylori mutants, we demonstrate that phosphorylated ArsR (ArsR-P) forms an active protein complex that binds DNA with high specificity in order to affect transcription. Our data showed that DNA topology is key for DNA binding. We found that AT-rich DNA sequences direct ArsR-P to specific sites and that DNA-bending proteins are important for the effect of ArsR-P on transcription regulation. The repression of sabA transcription is mediated by ArsR-P with the support of Hup and is affected by simple sequence repeats located upstream of the sabA promoter. Here stochastic events clearly contribute to the fine-tuning of pH-dependent gene regulation. Our results reveal important molecular aspects for how ArsR-P acts to repress transcription in response to acidic conditions. Such transcriptional control likely mediates shifts in bacterial positioning in the gastric mucus layer.
Collapse
Affiliation(s)
- Anna Åberg
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Pär Gideonsson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Abhayprasad Bhat
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Prachetash Ghosh
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Anna Arnqvist
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
8
|
Hernández-Martínez G, Ares MA, Rosales-Reyes R, Soria-Bustos J, Yañez-Santos JA, Cedillo ML, Girón JA, Martínez-Laguna Y, Leng F, Ibarra JA, De la Cruz MA. The nucleoid protein HU positively regulates the expression of type VI secretion systems in Enterobacter cloacae. mSphere 2024; 9:e0006024. [PMID: 38647313 PMCID: PMC11324020 DOI: 10.1128/msphere.00060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Enterobacter cloacae is an emerging pathogen isolated in healthcare-associated infections. A major virulence factor of this bacterium is the type VI secretion system (T6SS). The genome of E. cloacae harbors two T6SS gene clusters (T6SS-1 and T6SS-2), and the functional characterization of both systems showed that these two T6SSs are not expressed under the same conditions. Here, we report that the major histone-like protein HU positively regulates the expression of both T6SSs and, therefore, the function that each T6SS exerts in E. cloacae. Single deletions of the genes encoding the HU subunits (hupA and hupB) decreased mRNA levels of both T6SS. In contrast, the hupA hupB double mutant dramatically affected the T6SS expression, diminishing its transcription. The direct binding of HU to the promoter regions of T6SS-1 and T6SS-2 was confirmed by electrophoretic mobility shift assay. In addition, single and double mutations in the hup genes affected the ability of inter-bacterial killing, biofilm formation, adherence to epithelial cells, and intestinal colonization, but these phenotypes were restored when such mutants were trans-complemented. Our data broaden our understanding of the regulation of HU-mediated T6SS in these pathogenic bacteria. IMPORTANCE T6SS is a nanomachine that functions as a weapon of bacterial destruction crucial for successful colonization in a specific niche. Enterobacter cloacae expresses two T6SSs required for bacterial competition, adherence, biofilm formation, and intestinal colonization. Expression of T6SS genes in pathogenic bacteria is controlled by multiple regulatory systems, including two-component systems, global regulators, and nucleoid proteins. Here, we reported that the HU nucleoid protein directly activates both T6SSs in E. cloacae, affecting the T6SS-related phenotypes. Our data describe HU as a new regulator involved in the transcriptional regulation of T6SS and its impact on E. cloacae pathogenesis.
Collapse
Affiliation(s)
- Gabriela Hernández-Martínez
- Unidad de
Investigación Médica en Enfermedades Infecciosas y
Parasitarias, Hospital de Pediatría, Centro Médico
Nacional Siglo XXI, Instituto Mexicano del Seguro
Social, Mexico City,
Mexico
- Escuela Nacional de
Ciencias Biológicas, Instituto Politécnico
Nacional, Mexico City,
Mexico
| | - Miguel A. Ares
- Unidad de
Investigación Médica en Enfermedades Infecciosas y
Parasitarias, Hospital de Pediatría, Centro Médico
Nacional Siglo XXI, Instituto Mexicano del Seguro
Social, Mexico City,
Mexico
- Escuela Nacional de
Ciencias Biológicas, Instituto Politécnico
Nacional, Mexico City,
Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina
Experimental de la Facultad de Medicina, Universidad Autónoma de
México, Mexico
City, Mexico
| | - Jorge Soria-Bustos
- Pathogen and
Microbiome Division, Translational Genomics Research Institute (TGen)
North, Flagstaff,
Arizona, USA
- Instituto de Ciencias
de la Salud, Universidad Autónoma del Estado de
Hidalgo, Pachuca,
Hidalgo, Mexico
| | | | - María L. Cedillo
- Centro de
Detección Biomolecular, Benemérita Universidad
Autónoma de Puebla,
Puebla, Mexico
| | - Jorge A. Girón
- Centro de
Detección Biomolecular, Benemérita Universidad
Autónoma de Puebla,
Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Centro de
Investigación en Ciencias Microbiológicas,
Benemérita Universidad Autónoma de
Puebla, Puebla,
Mexico
| | - Fenfei Leng
- Biomolecular Sciences
Institute and Department of Chemistry and Biochemistry, Florida
International University,
Miami, Florida, USA
| | - J. Antonio Ibarra
- Escuela Nacional de
Ciencias Biológicas, Instituto Politécnico
Nacional, Mexico City,
Mexico
| | - Miguel A. De la Cruz
- Centro de
Detección Biomolecular, Benemérita Universidad
Autónoma de Puebla,
Puebla, Mexico
- Facultad de Medicina,
Benemérita Universidad Autónoma de
Puebla, Puebla,
Mexico
| |
Collapse
|
9
|
Shahu S, Vtyurina N, Das M, Meyer AS, Ganji M, Abbondanzieri E. Bridging DNA contacts allow Dps from E. coli to condense DNA. Nucleic Acids Res 2024; 52:4456-4465. [PMID: 38572752 PMCID: PMC11077075 DOI: 10.1093/nar/gkae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
The DNA-binding protein from starved cells (Dps) plays a crucial role in maintaining bacterial cell viability during periods of stress. Dps is a nucleoid-associated protein that interacts with DNA to create biomolecular condensates in live bacteria. Purified Dps protein can also rapidly form large complexes when combined with DNA in vitro. However, the mechanism that allows these complexes to nucleate on DNA remains unclear. Here, we examine how DNA topology influences the formation of Dps-DNA complexes. We find that DNA supercoils offer the most preferred template for the nucleation of condensed Dps structures. More generally, bridging contacts between different regions of DNA can facilitate the nucleation of condensed Dps structures. In contrast, Dps shows little affinity for stretched linear DNA before it is relaxed. Once DNA is condensed, Dps forms a stable complex that can form inter-strand contacts with nearby DNA, even without free Dps present in solution. Taken together, our results establish the important role played by bridging contacts between DNA strands in nucleating and stabilizing Dps complexes.
Collapse
Affiliation(s)
- Sneha Shahu
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Anne S Meyer
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Mahipal Ganji
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
10
|
Corvaglia V, Wu J, Deepak D, Loos M, Huc I. Enhancing the Features of DNA Mimic Foldamers for Structural Investigations. Chemistry 2024; 30:e202303650. [PMID: 38193643 DOI: 10.1002/chem.202303650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/10/2024]
Abstract
DNA mimic foldamers based on aromatic oligoamide helices bearing anionic phosphonate side chains have been shown to bind to DNA-binding proteins sometimes orders of magnitude better than DNA itself. Here, we introduce new features in the DNA mimic foldamers to facilitate structural investigations of their interactions with proteins. Thirteen new foldamer sequences have been synthesized and characterized using NMR, circular dichroism, molecular modeling, and X-ray crystallography. The results show that foldamer helix handedness can be quantitatively biased by means of a single stereogenic center, that the foldamer structure can be made C2-symmetrical as in palindromic B-DNA sequences, and that associations between foldamer helices can be promoted utilizing dedicated C-terminal residues that act as sticky ends in B-DNA structures.
Collapse
Affiliation(s)
- Valentina Corvaglia
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
- Current address: Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (Italy) & Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Jiaojiao Wu
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Deepak Deepak
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Manuel Loos
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| |
Collapse
|
11
|
Shahu S, Vtyurina N, Das M, Meyer AS, Ganji M, Abbondanzieri EA. Bridging DNA contacts allow Dps from E. coli to condense DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576774. [PMID: 38328146 PMCID: PMC10849575 DOI: 10.1101/2024.01.22.576774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The DNA-binding protein from starved cells (Dps) plays a crucial role in maintaining bacterial cell viability during periods of stress. Dps is a nucleoid-associated protein that interacts with DNA to create biomolecular condensates in live bacteria. Purified Dps protein can also rapidly form large complexes when combined with DNA in vitro. However, the mechanism that allows these complexes to nucleate on DNA remains unclear. Here, we examine how DNA topology influences the formation of Dps-DNA complexes. We find that DNA supercoils offer the most preferred template for the nucleation of condensed Dps structures. More generally, bridging contacts between different regions of DNA can facilitate the nucleation of condensed Dps structures. In contrast, Dps shows little affinity for stretched linear DNA before it is relaxed. Once DNA is condensed, Dps forms a stable complex that can form inter-strand contacts with nearby DNA, even without free Dps present in solution. Taken together, our results establish the important role played by bridging contacts between DNA strands in nucleating and stabilizing Dps complexes.
Collapse
Affiliation(s)
- Sneha Shahu
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY, 14623
| | - Anne S. Meyer
- Department of Biology, University of Rochester, Rochester, NY, 14627
| | - Mahipal Ganji
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
12
|
Nishiyama A, Shimizu M, Narita T, Kodera N, Ozeki Y, Yokoyama A, Mayanagi K, Yamaguchi T, Hakamata M, Shaban A, Tateishi Y, Ito K, Matsumoto S. Dynamic action of an intrinsically disordered protein in DNA compaction that induces mycobacterial dormancy. Nucleic Acids Res 2024; 52:816-830. [PMID: 38048321 PMCID: PMC10810275 DOI: 10.1093/nar/gkad1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria.
Collapse
Affiliation(s)
- Akihito Nishiyama
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Masahiro Shimizu
- Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
- Division of Quantum Beam Material Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Tomoyuki Narita
- Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Akira Yokoyama
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kouta Mayanagi
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takehiro Yamaguchi
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Mariko Hakamata
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
- Department of Respiratory Medicine and Infectious Disease, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Amina Kaboso Shaban
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Yoshitaka Tateishi
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Kosuke Ito
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
- Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Kampus C Jl. Mulyorejo, Surabaya, East Java 60115, Indonesia
- Division of Research Aids, Hokkaido University Institute for Vaccine Research & Development, Kita 20, Nishi 10, Kita-ku, Sapporo, 001-0020, Japan
| |
Collapse
|
13
|
Hoareau M, Gerges E, Crémazy FGE. Shedding Light on Bacterial Chromosome Structure: Exploring the Significance of 3C-Based Approaches. Methods Mol Biol 2024; 2819:3-26. [PMID: 39028499 DOI: 10.1007/978-1-0716-3930-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The complex architecture of DNA within living organisms is essential for maintaining the genetic information that dictates their functions and characteristics. Among the many complexities of genetic material organization, the folding and arrangement of DNA into chromosomes play a critical role in regulating gene expression, replication, and other essential cellular processes. Bacteria, despite their apparently simple cellular structure, exhibit a remarkable level of chromosomal organization that influences their adaptability and survival in diverse environments. Understanding the three-dimensional arrangement of bacterial chromosomes has long been a challenge due to technical limitations, but the development of Chromosome Conformation Capture (3C) methods revolutionized our ability to explore the hierarchical structure and the dynamics of bacterial genomes. Here, we review the major advances in the field of bacterial chromosome structure using 3C technology over the past decade.
Collapse
Affiliation(s)
- Marion Hoareau
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Elias Gerges
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Frédéric G E Crémazy
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France.
| |
Collapse
|
14
|
Norris V, Kayser C, Muskhelishvili G, Konto-Ghiorghi Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol Rev 2023; 47:fuac049. [PMID: 36549664 DOI: 10.1093/femsre/fuac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
Collapse
Affiliation(s)
- Vic Norris
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Clara Kayser
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - Yoan Konto-Ghiorghi
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| |
Collapse
|
15
|
Verma SC, Harned A, Narayan K, Adhya S. Non-specific and specific DNA binding modes of bacterial histone, HU, separately regulate distinct physiological processes through different mechanisms. Mol Microbiol 2023; 119:439-455. [PMID: 36708073 PMCID: PMC10120378 DOI: 10.1111/mmi.15033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
The histone-like protein HU plays a diverse role in bacterial physiology from the maintenance of chromosome structure to the regulation of gene transcription. HU binds DNA in a sequence-non-specific manner via two distinct binding modes: (i) random binding to any DNA through ionic bonds between surface-exposed lysine residues (K3, K18, and K83) and phosphate backbone (non-specific); (ii) preferential binding to contorted DNA of given structures containing a pair of kinks (structure-specific) through conserved proline residues (P63) that induce and/or stabilize the kinks. First, we show here that the P63-mediated structure-specific binding also requires the three lysine residues, which are needed for a non-specific binding. Second, we demonstrate that substituting P63 to alanine in HU had no impact on non-specific binding but caused differential transcription of diverse genes previously shown to be regulated by HU, such as those associated with the organonitrogen compound biosynthetic process, galactose metabolism, ribosome biogenesis, and cell adhesion. The structure-specific binding also helps create DNA supercoiling, which, in turn, may influence directly or indirectly the transcription of other genes. Our previous and current studies show that non-specific and structure-specific HU binding appear to have separate functions- nucleoid architecture and transcription regulation- which may be true in other DNA-binding proteins.
Collapse
Affiliation(s)
- Subhash C Verma
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Adam Harned
- Center for Molecular Microscopy, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Samuel AZ, Sugiyama K, Ando M, Takeyama H. Direct imaging of intracellular RNA, DNA, and liquid-liquid phase separated membraneless organelles with Raman microspectroscopy. Commun Biol 2022; 5:1383. [PMID: 36528668 PMCID: PMC9759543 DOI: 10.1038/s42003-022-04342-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Methodologies for direct intracellular imaging of RNA and DNA are necessary for the advancement of bioimaging. Here we show direct label-free imaging of RNA and DNA in single cells by isolating their accurate Raman spectra. Raman images of DNA from interphase cells show intact nucleus, while those from mitotic cells reveal condensed chromosome. The condensed chromosome images are accurate enough to assign the stage of mitotic cell division (e.g., metaphase). Raman spectral features indicate B-DNA double helical conformational form in all the cell lines investigated here. The Raman images of RNAs, on the other hand, reveal liquid-liquid phase separated (LLPS) membraneless organelles in interphase cells, which disappears during mitosis. Further, the Raman spectrum of proteins from the intracellular LLPS organelles indicates slight enrichment of amyloid-like secondary structural features. Vibrational imaging of intracellular DNA and RNA simultaneously would open myriad of opportunities for examining functional biochemical aspects of cells and organelles.
Collapse
Affiliation(s)
- Ashok Zachariah Samuel
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
| | - Kaori Sugiyama
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Masahiro Ando
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Haruko Takeyama
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Japan, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
17
|
Hou J, Dai J, Chen Z, Wang Y, Cao J, Hu J, Ye S, Hua Y, Zhao Y. Phosphorylation Regulation of a Histone-like HU Protein from Deinococcus radiodurans. Protein Pept Lett 2022; 29:891-899. [PMID: 35986527 PMCID: PMC9900698 DOI: 10.2174/0929866529666220819121911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Histone-like proteins are small molecular weight DNA-binding proteins that are widely distributed in prokaryotes. These proteins have multiple functions in cellular structures and processes, including the morphological stability of the nucleoid, DNA compactness, DNA replication, and DNA repair. Deinococcus radiodurans, an extremophilic microorganism, has extraordinary DNA repair capability and encodes an essential histone-like protein, DrHU. OBJECTIVE We aim to investigate the phosphorylation regulation role of a histone-like HU protein from Deinococcus radiodurans. METHODS LC-MS/MS analysis was used to determine the phosphorylation site of endogenous DrHU. The predicted structure of DrHU-DNA was obtained from homology modeling (Swissmodel) using Staphylococcus aureus HU-DNA structure (PDB ID: 4QJU) as the starting model. Two types of mutant proteins T37E and T37A were generated to explore their DNA binding affinity. Complemented-knockout strategy was used to generate the ΔDrHU/pk-T37A and ΔDrHU/pk-T37E strains for growth curves and phenotypical analyses. RESULTS AND DISCUSSION The phosphorylation site Thr37, which is present in most bacterial HU proteins, is located at the putative protein-DNA interaction interface of DrHU. Compared to the wild-type protein, one in which this threonine is replaced by glutamate to mimic a permanent state of phosphorylation (T37E) showed enhanced double-stranded DNA binding but a weakened protective effect against hydroxyl radical cleavage. Complementation of T37E in a DrHU-knockout strain caused growth defects and sensitized the cells to UV radiation and oxidative stress. CONCLUSIONS Phosphorylation modulates the DNA-binding capabilities of the histone-like HU protein from D. radiodurans, which contributes to the environmental adaptation of this organism.
Collapse
Affiliation(s)
- Jinfeng Hou
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China
| | - Jingli Dai
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China
| | - Zijing Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China
| | - Yudong Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China
| | - Jiajia Cao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China
| | - Jing Hu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China
| | - Shumai Ye
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China,Address correspondence to this author at the MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China; E-mail:
| |
Collapse
|
18
|
Agarwal N, Nagar N, Raj R, Kumar D, Poluri KM. Conserved Apical Proline Regulating the Structure and DNA Binding Properties of Helicobacter pylori Histone-like DNA Binding Protein (Hup). ACS OMEGA 2022; 7:15231-15246. [PMID: 35572751 PMCID: PMC9089689 DOI: 10.1021/acsomega.2c01754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Prokaryotic cells lack a proper dedicated nuclear arrangement machinery. A set of proteins known as nucleoid associated proteins (NAPs) perform opening and closure of nucleic acids, behest cellular requirement. Among these, a special class of proteins analogous to eukaryotic histones popularly known as histone-like (HU) DNA binding proteins facilitate the nucleic acid folding/compaction thereby regulating gene architecture and gene regulation. DNA compaction and DNA protection in Helicobacter pylori is performed by HU protein (Hup). To dissect and galvanize the role of proline residue in the binding of Hup with DNA, the structure-dynamics-functional relationship of Hup-P64A variant was analyzed. NMR and biophysical studies evidenced that Hup-P64A protein attenuated DNA-binding and induced structural/stability changes in the DNA binding domain (DBD). Moreover, molecular dynamics simulations and 15N relaxation studies established the reduced conformational dynamics of P64A protein. This comprehensive study dissected the exclusive role of evolutionarily conserved apical proline residue in regulating the structure and DNA binding of Hup protein as P64 is presumed to be involved in the external leverage mechanism responsible for DNA bending and packaging, as proline rings wedge into the DNA backbone through intercalation besides their significant role in DNA binding.
Collapse
Affiliation(s)
- Nipanshu Agarwal
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Nupur Nagar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Ritu Raj
- Centre
of Biomedical Research, SGPGIMS Campus, Lucknow-226014, India
| | - Dinesh Kumar
- Centre
of Biomedical Research, SGPGIMS Campus, Lucknow-226014, India
| | - Krishna Mohan Poluri
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
- Centre
for Nanotechnology, Indian Institute of
Technology Roorkee, Roorkee-247667, Uttarakhand, India
| |
Collapse
|
19
|
Small Prokaryotic DNA-Binding Proteins Protect Genome Integrity throughout the Life Cycle. Int J Mol Sci 2022; 23:ijms23074008. [PMID: 35409369 PMCID: PMC8999374 DOI: 10.3390/ijms23074008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022] Open
Abstract
Genomes of all organisms are persistently threatened by endogenous and exogenous assaults. Bacterial mechanisms of genome maintenance must provide protection throughout the physiologically distinct phases of the life cycle. Spore-forming bacteria must also maintain genome integrity within the dormant endospore. The nucleoid-associated proteins (NAPs) influence nucleoid organization and may alter DNA topology to protect DNA or to alter gene expression patterns. NAPs are characteristically multifunctional; nevertheless, Dps, HU and CbpA are most strongly associated with DNA protection. Archaea display great variety in genome organization and many inhabit extreme environments. As of yet, only MC1, an archaeal NAP, has been shown to protect DNA against thermal denaturation and radiolysis. ssDNA are intermediates in vital cellular processes, such as DNA replication and recombination. Single-stranded binding proteins (SSBs) prevent the formation of secondary structures but also protect the hypersensitive ssDNA against chemical and nuclease degradation. Ionizing radiation upregulates SSBs in the extremophile Deinococcus radiodurans.
Collapse
|
20
|
Oetke S, Scheidig AJ, Krupinska K. WHIRLY1 of Barley and Maize Share a PRAPP Motif Conferring Nucleoid Compaction. PLANT & CELL PHYSIOLOGY 2022; 63:234-247. [PMID: 34792609 DOI: 10.1093/pcp/pcab164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
WHIRLY1 in barley was shown to be a major architect of plastid nucleoids. Its accumulation in cells of Escherichia coli coincided with an induction of nucleoid compaction and growth retardation. While WHIRLY1 of maize had similar effects on E. coli cells, WHIRLY1 proteins of Arabidopsis and potato as well as WHIRLY2 proteins had no impact on nucleoid compaction in E. coli. By mutagenesis of HvWHIRLY1 the PRAPP motif at the N-terminus preceding the highly conserved WHIRLY domain was identified to be responsible for the nucleoid compacting activity of HvWHIRLY1 in bacteria. This motif is found in WHIRLY1 proteins of most members of the Poaceae family, but neither in the WHIRLY2 proteins of the family nor in any WHIRLY protein of eudicot species such as Arabidopsis thaliana. This finding indicates that a subset of the monocot WHIRLY1 proteins has acquired a specific function as nucleoid compacters by sequence variation in the N-terminal part preceding the conserved WHIRLY domain and that in different groups of higher plants the compaction of nucleoids is mediated by other proteins.
Collapse
Affiliation(s)
- Svenja Oetke
- Institute of Botany, Christian-Albrechts-University of Kiel, Am Botanischen Garten 7, 24118 Kiel, Germany
| | - Axel J Scheidig
- Institute of Zoology, Christian-Albrechts-University of Kiel, Am Botanischen Garten 7, 24118 Kiel, Germany
| | - Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Am Botanischen Garten 7, 24118 Kiel, Germany
| |
Collapse
|
21
|
Barlow VL, Tsai YH. Acetylation at Lysine 86 of Escherichia coli HUβ Modulates the DNA-Binding Capability of the Protein. Front Microbiol 2022; 12:809030. [PMID: 35185833 PMCID: PMC8854993 DOI: 10.3389/fmicb.2021.809030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
DNA-binding protein HU is highly conserved in bacteria and has been implicated in a range of cellular processes and phenotypes. Like eukaryotic histones, HU is subjected to post-translational modifications. Specifically, acetylation of several lysine residues have been reported in both homologs of Escherichia coli HU. Here, we investigated the effect of acetylation at Lys67 and Lys86, located in the DNA binding-loop and interface of E. coli HUβ, respectively. Using the technique of genetic code expansion, homogeneous HUβ(K67ac) and HUβ(K86ac) protein units were obtained. Acetylation at Lys86 seemed to have negligible effects on protein secondary structure and thermal stability. Nevertheless, we found that this site-specific acetylation can regulate DNA binding by the HU homodimer but not the heterodimer. Intriguingly, while Lys86 acetylation reduced the interaction of the HU homodimer with short double-stranded DNA containing a 2-nucleotide gap or nick, it enhanced the interaction with longer DNA fragments and had minimal effect on a short, fully complementary DNA fragment. These results demonstrate the complexity of post-translational modifications in functional regulation, as well as indicating the role of lysine acetylation in tuning bacterial gene transcription and epigenetic regulation.
Collapse
Affiliation(s)
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- *Correspondence: Yu-Hsuan Tsai,
| |
Collapse
|
22
|
Fisunov GY, Zubov AI, Pobeguts OV, Varizhuk AM, Galyamina MA, Evsyutina DV, Semashko TA, Manuvera VA, Kovalchuk SI, Ziganshin RK, Barinov NA, Klinov DV, Govorun VM. The Dynamics of Mycoplasma gallisepticum Nucleoid Structure at the Exponential and Stationary Growth Phases. Front Microbiol 2021; 12:753760. [PMID: 34867875 PMCID: PMC8637272 DOI: 10.3389/fmicb.2021.753760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
The structure and dynamics of bacterial nucleoids play important roles in regulating gene expression. Bacteria of class Mollicutes and, in particular, mycoplasmas feature extremely reduced genomes. They lack multiple structural proteins of the nucleoid, as well as regulators of gene expression. We studied the organization of Mycoplasma gallisepticum nucleoids in the stationary and exponential growth phases at the structural and protein levels. The growth phase transition results in the structural reorganization of M. gallisepticum nucleoid. In particular, it undergoes condensation and changes in the protein content. The observed changes corroborate with the previously identified global rearrangement of the transcriptional landscape in this bacterium during the growth phase transition. In addition, we identified that the glycolytic enzyme enolase functions as a nucleoid structural protein in this bacterium. It is capable of non-specific DNA binding and can form fibril-like complexes with DNA.
Collapse
Affiliation(s)
- Gleb Y Fisunov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Alexander I Zubov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Olga V Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Anna M Varizhuk
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Mariya A Galyamina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daria V Evsyutina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Tatiana A Semashko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Valentin A Manuvera
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Sergey I Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Rustam K Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nicolay A Barinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Dmitry V Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Vadim M Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
23
|
Lin SN, Dame RT, Wuite GJL. Direct visualization of the effect of DNA structure and ionic conditions on HU-DNA interactions. Sci Rep 2021; 11:18492. [PMID: 34531428 PMCID: PMC8446073 DOI: 10.1038/s41598-021-97763-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Architectural DNA–binding proteins are involved in many important DNA transactions by virtue of their ability to change DNA conformation. Histone-like protein from E. coli strain U93, HU, is one of the most studied bacterial architectural DNA–binding proteins. Nevertheless, there is still a limited understanding of how the interactions between HU and DNA are affected by ionic conditions and the structure of DNA. Here, using optical tweezers in combination with fluorescent confocal imaging, we investigated how ionic conditions affect the interaction between HU and DNA. We directly visualized the binding and the diffusion of fluorescently labelled HU dimers on DNA. HU binds with high affinity and exhibits low mobility on the DNA in the absence of Mg2+; it moves 30-times faster and stays shorter on the DNA with 8 mM Mg2+ in solution. Additionally, we investigated the effect of DNA tension on HU–DNA complexes. On the one hand, our studies show that binding of HU enhances DNA helix stability. On the other hand, we note that the binding affinity of HU for DNA in the presence of Mg2+ increases at tensions above 50 pN, which we attribute to force-induced structural changes in the DNA. The observation that HU diffuses faster along DNA in presence of Mg2+ compared to without Mg2+ suggests that the free energy barrier for rotational diffusion along DNA is reduced, which can be interpreted in terms of reduced electrostatic interaction between HU and DNA, possibly coinciding with reduced DNA bending.
Collapse
Affiliation(s)
- Szu-Ning Lin
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.,Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands. .,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
| | - Gijs J L Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. .,LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Kamagata K, Itoh Y, Tan C, Mano E, Wu Y, Mandali S, Takada S, Johnson RC. Testing mechanisms of DNA sliding by architectural DNA-binding proteins: dynamics of single wild-type and mutant protein molecules in vitro and in vivo. Nucleic Acids Res 2021; 49:8642-8664. [PMID: 34352099 PMCID: PMC8421229 DOI: 10.1093/nar/gkab658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/10/2021] [Accepted: 07/22/2021] [Indexed: 01/06/2023] Open
Abstract
Architectural DNA-binding proteins (ADBPs) are abundant constituents of eukaryotic or bacterial chromosomes that bind DNA promiscuously and function in diverse DNA reactions. They generate large conformational changes in DNA upon binding yet can slide along DNA when searching for functional binding sites. Here we investigate the mechanism by which ADBPs diffuse on DNA by single-molecule analyses of mutant proteins rationally chosen to distinguish between rotation-coupled diffusion and DNA surface sliding after transient unbinding from the groove(s). The properties of yeast Nhp6A mutant proteins, combined with molecular dynamics simulations, suggest Nhp6A switches between two binding modes: a static state, in which the HMGB domain is bound within the minor groove with the DNA highly bent, and a mobile state, where the protein is traveling along the DNA surface by means of its flexible N-terminal basic arm. The behaviors of Fis mutants, a bacterial nucleoid-associated helix-turn-helix dimer, are best explained by mobile proteins unbinding from the major groove and diffusing along the DNA surface. Nhp6A, Fis, and bacterial HU are all near exclusively associated with the chromosome, as packaged within the bacterial nucleoid, and can be modeled by three diffusion modes where HU exhibits the fastest and Fis the slowest diffusion.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Cheng Tan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yining Wu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Sridhar Mandali
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
25
|
Anand C, Santoshi M, Singh PR, Nagaraja V. Rv0802c is an acyltransferase that succinylates and acetylates Mycobacterium tuberculosis nucleoid-associated protein HU. MICROBIOLOGY-SGM 2021; 167. [PMID: 34224344 DOI: 10.1099/mic.0.001058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Among the nucleoid-associated proteins (NAPs), HU is the most conserved in eubacteria, engaged in overall chromosome organization and regulation of gene expression. Unlike other bacteria, HU from Mycobacterium tuberculosis (MtHU), has a long carboxyl terminal domain enriched in basic amino acids, resembling eukaryotic histone N-terminal tails. As with histones, MtHU undergoes post-translational modifications and we have previously identified interacting kinases, methyltransferases, an acetyltransferase and a deacetylase. Here we show that Rv0802c interacts and succinylates MtHU. Although categorized as a succinyltransferase, we show that this GNAT superfamily member can catalyse both succinylation and acetylation of MtHU with comparable kinetic parameters. Like acetylation of MtHU, succinylation of MtHU caused reduced interaction of the NAP with DNA, determined by electrophoretic mobility shift assay and surface plasmon resonance. However, in vivo expression of Rv0802c did not significantly alter the nucleoid architecture. Although such succinylation of NAPs is rare, these modifications of the archetypal NAP may provide avenues to the organism to compensate for the underrepresentation of NAPs in its genome to control the dynamics of nucleoid architecture and cellular functions.
Collapse
Affiliation(s)
- Chinmay Anand
- Department of Microbiology and Cell biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Meghna Santoshi
- Department of Microbiology and Cell biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Prakruti R Singh
- Department of Microbiology and Cell biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India
| |
Collapse
|
26
|
Arora K, Thakur B, Mrigwani A, Guptasarma P. N-Terminal Extensions Appear to Frustrate HU Heterodimer Formation by Strengthening Intersubunit Contacts and Blocking the Formation of a Heterotetrameric Intermediate. Biochemistry 2021; 60:1836-1852. [PMID: 34015918 DOI: 10.1021/acs.biochem.1c00081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HU is a bacterial nucleoid-associated protein. Two homologues, known as HU-A, and HU-B, are found in Escherichia coli within which the early, late, and stationary phases of growth are dominated by HU-AA, HU-BB, and HU-AB dimers, respectively. Here, using genetic manipulation, mass spectrometry, spectroscopy, chromatography, and electrophoretic examination of glutaraldehyde-mediated cross-linking of subunits, in combination with experiments involving mixing, co-expression, unfolding, and refolding of HU chains, we show that the spontaneous formation of HU-AB heterodimers that is reported to occur upon mixing of wild-type HU-AA and HU-BB homodimers does not occur if chains possess N-terminal extensions. We show that N-terminal extensions interfere with the conversion of homodimers into heterodimers. We also show that heterodimers are readily formed at anticipated levels by chains possessing N-terminal extensions in vivo, when direct chain-chain interactions are facilitated through production of HU-A and HU-B chains from proximal genes located upon the same plasmid. From the data, two explanations emerge regarding the mechanism by which N-terminal extensions happen to adversely affect the conversion of homodimers into heterodimers. (1) The disappearance of the α-amino group at HU's N-terminus impacts the intersubunit stacking of β-sheets at HU's dimeric interface, reducing the ease with which subunits dissociate from each other. Simultaneously, (2) the presence of an N-terminal extension appears to sterically prevent the association of HU-AA and HU-BB homodimers into a critically required, heterotetrameric intermediate (within which homodimers could otherwise exchange subunits without releasing monomers into solution, by remaining physically associated with each other).
Collapse
Affiliation(s)
- Kanika Arora
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Bhishem Thakur
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Arpita Mrigwani
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| |
Collapse
|
27
|
HBD1 protein with a tandem repeat of two HMG-box domains is a DNA clip to organize chloroplast nucleoids in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2021; 118:2021053118. [PMID: 33975946 PMCID: PMC8157925 DOI: 10.1073/pnas.2021053118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Compaction of bulky DNA is a universal issue for all DNA-based life forms. Chloroplast nucleoids (chloroplast DNA-protein complexes) are critical for chloroplast DNA maintenance and transcription, thereby supporting photosynthesis, but their detailed structure remains enigmatic. Our proteomic analysis of chloroplast nucleoids of the green alga Chlamydomonas reinhardtii identified a protein (HBD1) with a tandem repeat of two DNA-binding high mobility group box (HMG-box) domains, which is structurally similar to major mitochondrial nucleoid proteins transcription factor A, mitochondrial (TFAM), and ARS binding factor 2 protein (Abf2p). Disruption of the HBD1 gene by CRISPR-Cas9-mediated genome editing resulted in the scattering of chloroplast nucleoids. This phenotype was complemented when intact HBD1 was reintroduced, whereas a truncated HBD1 with a single HMG-box domain failed to complement the phenotype. Furthermore, ectopic expression of HBD1 in the mitochondria of yeast Δabf2 mutant successfully complemented the defects, suggesting functional similarity between HBD1 and Abf2p. Furthermore, in vitro assays of HBD1, including the electrophoretic mobility shift assay and DNA origami/atomic force microscopy, showed that HBD1 is capable of introducing U-turns and cross-strand bridges, indicating that proteins with two HMG-box domains would function as DNA clips to compact DNA in both chloroplast and mitochondrial nucleoids.
Collapse
|
28
|
Thakur B, Arora K, Gupta A, Guptasarma P. The DNA-binding protein HU is a molecular glue that attaches bacteria to extracellular DNA in biofilms. J Biol Chem 2021; 296:100532. [PMID: 33713701 PMCID: PMC8063757 DOI: 10.1016/j.jbc.2021.100532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
In biofilms, bacteria that possess a negatively charged surface are embedded within a matrix of polymers consisting mainly of negatively charged extracellular DNA (e-DNA). In all likelihood, a multivalent positively charged substance, for example, a basic protein, exists within biofilms to neutralize charge–charge repulsions and act as a ‘glue’ attaching negatively charged bacteria to negatively charged e-DNA; however, no protein capable of doing so has yet been identified. We decided to investigate whether a highly abundant nucleoid-associated histone-like protein (HU) happens to be the glue in question. In recent years, HU has been shown to possess qualities that could be considered desirable in the proposed glue, for example, (a) availability in association with e-DNA; (b) multivalent DNA binding; (c) non–sequence-specific DNA-binding; (d) enhancement of biofilm formation upon exogenous addition, and (e) disruption of biofilms, upon removal by HU–cognate antibodies. Geometric considerations suggest that basic residues in HU's canonical and noncanonical DNA-binding sites can interact with sugar-linked terminal phosphates in lipopolysaccharide (LPS) molecules in bacterial outer membranes. Here, using genetic, spectroscopic, biophysical–chemical, microscopy-based, and cytometry-based experiments, we demonstrate that HU's DNA-binding sites also bind to LPS, that this facilitates DNA–DNA, DNA–LPS, and LPS–LPS interactions, and that this facilitates bacterial clumping and attachment of bacteria to DNA. Exogenous addition of HU to bacteria in (nonshaken) cultures is shown to cause cells to become engulfed in a matrix of DNA, potentially arising from the lysis of bacteria with vulnerable cell walls (as they strain to grow, divide, and move away from each other, in opposition to the accreting influence of HUs).
Collapse
Affiliation(s)
- Bhishem Thakur
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Punjab, India
| | - Kanika Arora
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Punjab, India
| | - Archit Gupta
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Punjab, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Punjab, India.
| |
Collapse
|
29
|
Clauvelin N, Olson WK. Synergy between Protein Positioning and DNA Elasticity: Energy Minimization of Protein-Decorated DNA Minicircles. J Phys Chem B 2021; 125:2277-2287. [DOI: 10.1021/acs.jpcb.0c11612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicolas Clauvelin
- Center for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Wilma K. Olson
- Center for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
30
|
Reverchon S, Meyer S, Forquet R, Hommais F, Muskhelishvili G, Nasser W. The nucleoid-associated protein IHF acts as a 'transcriptional domainin' protein coordinating the bacterial virulence traits with global transcription. Nucleic Acids Res 2021; 49:776-790. [PMID: 33337488 PMCID: PMC7826290 DOI: 10.1093/nar/gkaa1227] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 02/04/2023] Open
Abstract
Bacterial pathogenic growth requires a swift coordination of pathogenicity function with various kinds of environmental stress encountered in the course of host infection. Among the factors critical for bacterial adaptation are changes of DNA topology and binding effects of nucleoid-associated proteins transducing the environmental signals to the chromosome and coordinating the global transcriptional response to stress. In this study, we use the model phytopathogen Dickeya dadantii to analyse the organisation of transcription by the nucleoid-associated heterodimeric protein IHF. We inactivated the IHFα subunit of IHF thus precluding the IHFαβ heterodimer formation and determined both phenotypic effects of ihfA mutation on D. dadantii virulence and the transcriptional response under various conditions of growth. We show that ihfA mutation reorganises the genomic expression by modulating the distribution of chromosomal DNA supercoils at different length scales, thus affecting many virulence genes involved in both symptomatic and asymptomatic phases of infection, including those required for pectin catabolism. Altogether, we propose that IHF heterodimer is a 'transcriptional domainin' protein, the lack of which impairs the spatiotemporal organisation of transcriptional stress-response domains harbouring various virulence traits, thus abrogating the pathogenicity of D. dadantii.
Collapse
Affiliation(s)
- Sylvie Reverchon
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Sam Meyer
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Raphaël Forquet
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Florence Hommais
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - William Nasser
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| |
Collapse
|
31
|
Lin SN, Wuite GJ, Dame RT. Effect of Different Crowding Agents on the Architectural Properties of the Bacterial Nucleoid-Associated Protein HU. Int J Mol Sci 2020; 21:ijms21249553. [PMID: 33334011 PMCID: PMC7765392 DOI: 10.3390/ijms21249553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
HU is a nucleoid-associated protein expressed in most eubacteria at a high amount of copies (tens of thousands). The protein is believed to bind across the genome to organize and compact the DNA. Most of the studies on HU have been carried out in a simple in vitro system, and to what extent these observations can be extrapolated to a living cell is unclear. In this study, we investigate the DNA binding properties of HU under conditions approximating physiological ones. We report that these properties are influenced by both macromolecular crowding and salt conditions. We use three different crowding agents (blotting grade blocker (BGB), bovine serum albumin (BSA), and polyethylene glycol 8000 (PEG8000)) as well as two different MgCl2 conditions to mimic the intracellular environment. Using tethered particle motion (TPM), we show that the transition between two binding regimes, compaction and extension of the HU protein, is strongly affected by crowding agents. Our observations suggest that magnesium ions enhance the compaction of HU–DNA and suppress filamentation, while BGB and BSA increase the local concentration of the HU protein by more than 4-fold. Moreover, BGB and BSA seem to suppress filament formation. On the other hand, PEG8000 is not a good crowding agent for concentrations above 9% (w/v), because it might interact with DNA, the protein, and/or surfaces. Together, these results reveal a complex interplay between the HU protein and the various crowding agents that should be taken into consideration when using crowding agents to mimic an in vivo system.
Collapse
Affiliation(s)
- Szu-Ning Lin
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands;
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Gijs J.L. Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Correspondence: (G.J.L.W.); (R.T.D.)
| | - Remus T. Dame
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands;
- Centre for Microbial Cell Biology, Leiden University, 2333 CC Leiden, The Netherlands
- Correspondence: (G.J.L.W.); (R.T.D.)
| |
Collapse
|
32
|
Thakur B, Gupta A, Guptasarma P. A novel protein-engineered dsDNA-binding protein (HU-Simulacrum) inspired by HU, a nucleoid-associated DNABII protein. Biochem Biophys Res Commun 2020; 534:47-52. [PMID: 33310187 DOI: 10.1016/j.bbrc.2020.11.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/21/2020] [Indexed: 11/30/2022]
Abstract
HU, a DNA-binding protein, has a helical N-terminal region (NTR) of ∼44 residues and a beta strand- and IDR-rich C-terminal region (CTR) of ∼46 residues. CTR binds to DNA through (i) a clasp (two arginine/lysine-rich, IDR-rich beta hairpins that bind to phosphate groups in the minor groove), (ii) a flat surface (comprising four antiparallel beta strands that abut the major groove), and (iii) a charge cluster (two lysine residues upon a short C-terminal helix). HU forms a dimer displaying extensive inter-subunit CTR-CTR contacts. A single-chain simulacrum of these contacts (HU-Simul) incorporating all DNA-binding elements was created by fusing together the CTRs of Escherichia coli HU-A and Thermus thermophilus HU. HU-Simul is monomeric, binds to dsDNA and cruciform DNA, but not to ssDNA.
Collapse
Affiliation(s)
- Bhishem Thakur
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab, 140306, India.
| | - Archit Gupta
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab, 140306, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab, 140306, India.
| |
Collapse
|
33
|
Gao Y, Harris AJ, Li H, Gao X. Hybrid Speciation and Introgression Both Underlie the Genetic Structures and Evolutionary Relationships of Three Morphologically Distinct Species of Lilium (Liliaceae) Forming a Hybrid Zone Along an Elevational Gradient. FRONTIERS IN PLANT SCIENCE 2020; 11:576407. [PMID: 33365039 PMCID: PMC7750405 DOI: 10.3389/fpls.2020.576407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/02/2020] [Indexed: 05/28/2023]
Abstract
We studied hybrid interactions of Lilium meleagrinum, Lilium gongshanense, and Lilium saluenense using an integrative approach combining population genetics, fieldwork, and phenological research. These three species occur along an elevational gradient, with L. meleagrinum occurring at lower elevations, L. saluenense at higher elevations, and L. gongshanense between them. The species show strong morphological differentiation despite there being no clear environmental barriers to gene flow among them. Lilium gongshanense is likely to have a hybrid origin based on our prior work, but its progenitors remain uncertain. We sought to determine whether gene flow occurs among these three parapatric species, and, if so, whether L. gongshanense is a hybrid of L. meleagrinum and/or L. saluenense. We analyzed data from multiple chloroplast genes and spacers, nuclear internal transcribed spacer (ITS), and 18 nuclear Expressed Sequence Tag-Simple Sequence Repeat (EST-SSR) microsatellites for accessions of the three species representing dense population-level sampling. We also inferred phenology by examining species in the field and using herbarium specimens. We found that there are only two types of chloroplast genomes shared among the three species and that L. gongshanense forms two distinct groups with closest links to other species of Lilium based on ITS. Taken together, L. gongshanense is unlikely to be a hybrid species resulting from a cross between L. meleagrinum and L. saluenense, but gene flow is occurring among the three species. The gene flow is likely to be rare according to evidence from all molecular datasets, and this is corroborated by detection of only one putative hybrid individual in the field and asynchronous phenology. We suspect that the rarity of hybridization events among the species facilitates their continued genetic separation.
Collapse
Affiliation(s)
- Yundong Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - AJ Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Huaicheng Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Xinfen Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
34
|
Kamagata K, Ouchi K, Tan C, Mano E, Mandali S, Wu Y, Takada S, Takahashi S, Johnson RC. The HMGB chromatin protein Nhp6A can bypass obstacles when traveling on DNA. Nucleic Acids Res 2020; 48:10820-10831. [PMID: 32997109 PMCID: PMC7641734 DOI: 10.1093/nar/gkaa799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/13/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
DNA binding proteins rapidly locate their specific DNA targets through a combination of 3D and 1D diffusion mechanisms, with the 1D search involving bidirectional sliding along DNA. However, even in nucleosome-free regions, chromosomes are highly decorated with associated proteins that may block sliding. Here we investigate the ability of the abundant chromatin-associated HMGB protein Nhp6A from Saccharomyces cerevisiae to travel along DNA in the presence of other architectural DNA binding proteins using single-molecule fluorescence microscopy. We observed that 1D diffusion by Nhp6A molecules is retarded by increasing densities of the bacterial proteins Fis and HU and by Nhp6A, indicating these structurally diverse proteins impede Nhp6A mobility on DNA. However, the average travel distances were larger than the average distances between neighboring proteins, implying Nhp6A is able to bypass each of these obstacles. Together with molecular dynamics simulations, our analyses suggest two binding modes: mobile molecules that can bypass barriers as they seek out DNA targets, and near stationary molecules that are associated with neighboring proteins or preferred DNA structures. The ability of mobile Nhp6A molecules to bypass different obstacles on DNA suggests they do not block 1D searches by other DNA binding proteins.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Department of Chemistry, Faculty of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Kana Ouchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Cheng Tan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Sridhar Mandali
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737 USA
| | - Yining Wu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Department of Chemistry, Faculty of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Department of Chemistry, Faculty of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737 USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
35
|
Chen SWW, Banneville AS, Teulon JM, Timmins J, Pellequer JL. Nanoscale surface structures of DNA bound to Deinococcus radiodurans HU unveiled by atomic force microscopy. NANOSCALE 2020; 12:22628-22638. [PMID: 33150905 DOI: 10.1039/d0nr05320a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Deinococcus radiodurans protein HU (DrHU) was shown to be critical for nucleoid activities, yet its functional and structural properties remain largely unexplored. We have applied atomic force microscopy (AFM) imaging to study DrHU binding to pUC19-DNA in vitro and analyzed the topographic structures formed at the nanoscale. At the single-molecule level, AFM imaging allows visualization of super-helical turns on naked DNA surfaces and characterization of free DrHU molecules observed as homodimers. When enhancing the molecular surface structures of AFM images by the Laplacian weight filter, the distribution of bound DrHUs was visibly varied as a function of the DrHU/DNA molar ratio. At a low molar ratio, DrHU binding was found to reduce the volume of condensed DNA configuration by about 50%. We also show that DrHU is capable of bridging distinct DNA segments. Moreover, at a low molar ratio, the binding orientation of individual DrHU dimers could be perceived on partially "open" DNA configuration. At a high molar ratio, DrHU stiffened the DNA molecule and enlarged the spread of the open DNA configuration. Furthermore, a lattice-like pattern could be seen on the surface of DrHU-DNA complex, indicating that DrHU multimerization had occurred leading to the formation of a higher order architecture. Together, our results show that the functional plasticity of DrHU in mediating DNA organization is subject to both the conformational dynamics of DNA molecules and protein abundance.
Collapse
Affiliation(s)
- Shu-Wen W Chen
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France.
| | | | | | | | | |
Collapse
|
36
|
Structure-based inhibitors targeting the alpha-helical domain of the Spiroplasma melliferum histone-like HU protein. Sci Rep 2020; 10:15128. [PMID: 32934267 PMCID: PMC7493962 DOI: 10.1038/s41598-020-72113-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022] Open
Abstract
Here we report bisphenol derivatives of fluorene (BDFs) as a new type of chemical probes targeting a histone-like HU protein, a global regulator of bacterial nucleoids, via its dimerization interface perturbation. BDFs were identified by virtual screening and molecular docking that targeted the core of DNA-binding β-saddle-like domain of the HU protein from Spiroplasma melliferum. However, NMR spectroscopy, complemented with molecular dynamics and site-directed mutagenesis, indicated that the actual site of the inhibitors’ intervention consists of residues from the α-helical domain of one monomer and the side portion of the DNA-binding domain of another monomer. BDFs inhibited DNA-binding properties of HU proteins from mycoplasmas S. melliferum, Mycoplasma gallicepticum and Escherichia coli with half-maximum inhibitory concentrations in the range between 5 and 10 µM. In addition, BDFs demonstrated antimicrobial activity against mycoplasma species, but not against E. coli, which is consistent with the compensatory role of other nucleoid-associated proteins in the higher bacteria. Further evaluation of antimicrobial effects of BDFs against various bacteria and viruses will reveal their pharmacological potential, and the allosteric inhibition mode reported here, which avoids direct competition for the binding site with DNA, should be considered in the development of small molecule inhibitors of nucleoid-associated proteins as well as other types of DNA-binding multimeric proteins.
Collapse
|
37
|
Vozáriková V, Kunová N, Bauer JA, Frankovský J, Kotrasová V, Procházková K, Džugasová V, Kutejová E, Pevala V, Nosek J, Tomáška Ľ. Mitochondrial HMG-Box Containing Proteins: From Biochemical Properties to the Roles in Human Diseases. Biomolecules 2020; 10:biom10081193. [PMID: 32824374 PMCID: PMC7463775 DOI: 10.3390/biom10081193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial DNA (mtDNA) molecules are packaged into compact nucleo-protein structures called mitochondrial nucleoids (mt-nucleoids). Their compaction is mediated in part by high-mobility group (HMG)-box containing proteins (mtHMG proteins), whose additional roles include the protection of mtDNA against damage, the regulation of gene expression and the segregation of mtDNA into daughter organelles. The molecular mechanisms underlying these functions have been identified through extensive biochemical, genetic, and structural studies, particularly on yeast (Abf2) and mammalian mitochondrial transcription factor A (TFAM) mtHMG proteins. The aim of this paper is to provide a comprehensive overview of the biochemical properties of mtHMG proteins, the structural basis of their interaction with DNA, their roles in various mtDNA transactions, and the evolutionary trajectories leading to their rapid diversification. We also describe how defects in the maintenance of mtDNA in cells with dysfunctional mtHMG proteins lead to different pathologies at the cellular and organismal level.
Collapse
Affiliation(s)
- Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Nina Kunová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Ján Frankovský
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Veronika Kotrasová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Katarína Procházková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Vladimíra Džugasová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Eva Kutejová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Vladimír Pevala
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia;
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
- Correspondence: ; Tel.: +421-2-90149-433
| |
Collapse
|
38
|
Bettridge K, Verma S, Weng X, Adhya S, Xiao J. Single-molecule tracking reveals that the nucleoid-associated protein HU plays a dual role in maintaining proper nucleoid volume through differential interactions with chromosomal DNA. Mol Microbiol 2020; 115:12-27. [PMID: 32640056 DOI: 10.1111/mmi.14572] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022]
Abstract
HU (Histone-like protein from Escherichia coli strain U93) is the most conserved nucleoid-associated protein in eubacteria, but how it impacts global chromosome organization is poorly understood. Using single-molecule tracking, we demonstrate that HU exhibits nonspecific, weak, and transitory interactions with the chromosomal DNA. These interactions are largely mediated by three conserved, surface-exposed lysine residues (triK), which were previously shown to be responsible for nonspecific binding to DNA. The loss of these weak, transitory interactions in a HUα(triKA) mutant results in an over-condensed and mis-segregated nucleoid. Mutating a conserved proline residue (P63A) in the HUα subunit, deleting the HUβ subunit, or deleting nucleoid-associated naRNAs, each previously implicated in HU's high-affinity binding to kinked or cruciform DNA, leads to less dramatically altered interacting dynamics of HU compared to the HUα(triKA) mutant, but highly expanded nucleoids. Our results suggest HU plays a dual role in maintaining proper nucleoid volume through its differential interactions with chromosomal DNA. On the one hand, HU compacts the nucleoid through specific DNA structure-binding interactions. On the other hand, it decondenses the nucleoid through many nonspecific, weak, and transitory interactions with the bulk chromosome. Such dynamic interactions may contribute to the viscoelastic properties and fluidity of the bacterial nucleoid to facilitate proper chromosome functions.
Collapse
Affiliation(s)
- Kelsey Bettridge
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Subhash Verma
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaoli Weng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Orans J, Kovach AR, Hoff KE, Horstmann NM, Brennan RG. Crystal structure of an Escherichia coli Hfq Core (residues 2-69)-DNA complex reveals multifunctional nucleic acid binding sites. Nucleic Acids Res 2020; 48:3987-3997. [PMID: 32133526 PMCID: PMC7144919 DOI: 10.1093/nar/gkaa149] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Hfq regulates bacterial gene expression post-transcriptionally by binding small RNAs and their target mRNAs, facilitating sRNA-mRNA annealing, typically resulting in translation inhibition and RNA turnover. Hfq is also found in the nucleoid and binds double-stranded (ds) DNA with a slight preference for A-tracts. Here, we present the crystal structure of the Escherichia coli Hfq Core bound to a 30 bp DNA, containing three 6 bp A-tracts. Although previously postulated to bind to the ‘distal’ face, three statistically disordered double stranded DNA molecules bind across the proximal face of the Hfq hexamer as parallel, straight rods with B-DNA like conformational properties. One DNA duplex spans the diameter of the hexamer and passes over the uridine-binding proximal-face pore, whereas the remaining DNA duplexes interact with the rims and serve as bridges between adjacent hexamers. Binding is sequence-independent with residues N13, R16, R17 and Q41 interacting exclusively with the DNA backbone. Atomic force microscopy data support the sequence-independent nature of the Hfq-DNA interaction and a role for Hfq in DNA compaction and nucleoid architecture. Our structure and nucleic acid-binding studies also provide insight into the mechanism of sequence-independent binding of Hfq to dsRNA stems, a function that is critical for proper riboregulation.
Collapse
Affiliation(s)
- Jillian Orans
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alexander R Kovach
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kirsten E Hoff
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicola M Horstmann
- Department of Infectious Diseases, Infection Control Research, University of Texas MD Anderson Cancer Center, Houston TX 77054, USA
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
40
|
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M. Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 2020; 11:2905. [PMID: 32518228 PMCID: PMC7283360 DOI: 10.1038/s41467-020-16724-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/19/2020] [Indexed: 01/26/2023] Open
Abstract
Bacterial nucleoid remodeling dependent on conserved histone-like protein, HU is one of the determining factors in global gene regulation. By imaging of near-native, unlabeled E. coli cells by soft X-ray tomography, we show that HU remodels nucleoids by promoting the formation of a dense condensed core surrounded by less condensed isolated domains. Nucleoid remodeling during cell growth and environmental adaptation correlate with pH and ionic strength controlled molecular switch that regulated HUαα dependent intermolecular DNA bundling. Through crystallographic and solution-based studies we show that these effects mechanistically rely on HUαα promiscuity in forming multiple electrostatically driven multimerization interfaces. Changes in DNA bundling consequently affects gene expression globally, likely by constrained DNA supercoiling. Taken together our findings unveil a critical function of HU–DNA interaction in nucleoid remodeling that may serve as a general microbial mechanism for transcriptional regulation to synchronize genetic responses during the cell cycle and adapt to changing environments. HU is among the most conserved and abundant nucleoid-associated proteins in eubacteria. Here the authors investigate the role of histone-like proteins (HU) in the 3D organization of the bacteria DNA and show via soft X-ray tomography the process of nucleoid remodeling.
Collapse
Affiliation(s)
- Soumya G Remesh
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Subhash C Verma
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Anatomy, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Axel A Ekman
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Anatomy, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Carolyn A Larabell
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Anatomy, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
41
|
The Nucleoid-Associated Protein GapR Uses Conserved Structural Elements To Oligomerize and Bind DNA. mBio 2020; 11:mBio.00448-20. [PMID: 32518183 PMCID: PMC7373187 DOI: 10.1128/mbio.00448-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bacteria organize their genetic material in a structure called the nucleoid, which needs to be compact to fit inside the cell and, at the same time, dynamic to allow high rates of replication and transcription. Nucleoid-associated proteins (NAPs) play a pivotal role in this process, so their detailed characterization is crucial for our understanding of DNA organization into bacterial cells. Even though NAPs affect DNA-related processes differently, all of them have to oligomerize and bind DNA for their function. The significance of this study is the identification of structural elements involved in the oligomerization and DNA binding of a newly discovered NAP in C. crescentus and the demonstration that structural elements are conserved in evolutionarily distant and functionally distinct NAPs. Nucleoid-associated proteins (NAPs) are DNA binding proteins critical for the organization and function of the bacterial chromosome. A newly discovered NAP in Caulobacter crescentus, GapR, is thought to facilitate the movement of the replication and transcription machines along the chromosome by stimulating type II topoisomerases to remove positive supercoiling. Here, utilizing genetic, biochemical, and biophysical studies of GapR in light of a recently published DNA-bound crystal structure of GapR, we identified the structural elements involved in oligomerization and DNA binding. Moreover, we show that GapR is maintained as a tetramer upon its dissociation from DNA and that tetrameric GapR is capable of binding DNA molecules in vitro. Analysis of protein chimeras revealed that two helices of GapR are functionally conserved in H-NS, demonstrating that two evolutionarily distant NAPs with distinct mechanisms of action utilize conserved structural elements to oligomerize and bind DNA.
Collapse
|
42
|
The structural basis of African swine fever virus pA104R binding to DNA and its inhibition by stilbene derivatives. Proc Natl Acad Sci U S A 2020; 117:11000-11009. [PMID: 32358196 DOI: 10.1073/pnas.1922523117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
African swine fever virus (ASFV) is a highly contagious nucleocytoplasmic large DNA virus (NCLDV) that causes nearly 100% mortality in swine. The development of effective vaccines and drugs against this virus is urgently needed. pA104R, an ASFV-derived histone-like protein, shares sequence and functional similarity with bacterial HU/IHF family members and is essential for viral replication. Herein, we solved the crystal structures of pA104R in its apo state as well as in complex with DNA. Apo-pA104R forms a homodimer and folds into an architecture conserved in bacterial heat-unstable nucleoid proteins/integration host factors (HUs/IHFs). The pA104R-DNA complex structure, however, uncovers that pA104R has a DNA binding pattern distinct from its bacterial homologs, that is, the β-ribbon arms of pA104R stabilize DNA binding by contacting the major groove instead of the minor groove. Mutations of the basic residues at the base region of the β-strand DNA binding region (BDR), rather than those in the β-ribbon arms, completely abolished DNA binding, highlighting the major role of the BDR base in DNA binding. An overall DNA bending angle of 93.8° is observed in crystal packing of the pA104R-DNA complex structure, which is close to the DNA bending angle in the HU-DNA complex. Stilbene derivatives SD1 and SD4 were shown to disrupt the binding between pA104R and DNA and inhibit the replication of ASFV in primary porcine alveolar macrophages. Collectively, these results reveal the structural basis of pA104R binding to DNA highlighting the importance of the pA104R-DNA interaction in the ASFV replication cycle and provide inhibitor leads for ASFV chemotherapy.
Collapse
|
43
|
Sreenivasan R, Shkel IA, Chhabra M, Drennan A, Heitkamp S, Wang HC, Sridevi MA, Plaskon D, McNerney C, Callies K, Cimperman CK, Record MT. Fluorescence-Detected Conformational Changes in Duplex DNA in Open Complex Formation by Escherichia coli RNA Polymerase: Upstream Wrapping and Downstream Bending Precede Clamp Opening and Insertion of the Downstream Duplex. Biochemistry 2020; 59:1565-1581. [PMID: 32216369 DOI: 10.1021/acs.biochem.0c00098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
FRET (fluorescence resonance energy transfer) between far-upstream (-100) and downstream (+14) cyanine dyes (Cy3, Cy5) showed extensive bending and wrapping of λPR promoter DNA on Escherichia coli RNA polymerase (RNAP) in closed and open complexes (CC and OC, respectively). Here we determine the kinetics and mechanism of DNA bending and wrapping by FRET and of formation of RNAP contacts with -100 and +14 DNA by single-dye protein-induced fluorescence enhancement (PIFE). FRET and PIFE kinetics exhibit two phases: rapidly reversible steps forming a CC ensemble ({CC}) of four intermediates [initial (RPC), early (I1E), mid (I1M), and late (I1L)], followed by conversion of {CC} to OC via I1L. FRET and PIFE are first observed for I1E, not RPc. FRET and PIFE together reveal large-scale bending and wrapping of upstream and downstream DNA as RPC advances to I1E, decreasing the Cy3-Cy5 distance to ∼75 Å and making RNAP-DNA contacts at -100 and +14. We propose that far-upstream DNA wraps on the upper β'-clamp while downstream DNA contacts the top of the β-pincer in I1E. Converting I1E to I1M (∼1 s time scale) reduces FRET efficiency with little change in -100 or +14 PIFE, interpreted as clamp opening that moves far-upstream DNA (on β') away from downstream DNA (on β) to increase the Cy3-Cy5 distance by ∼14 Å. FRET increases greatly in converting I1M to I1L, indicating bending of downstream duplex DNA into the clamp and clamp closing to reduce the Cy3-Cy5 distance by ∼21 Å. In the subsequent rate-determining DNA-opening step, in which the clamp may also open, I1L is converted to the initial unstable OC (I2). Implications for facilitation of CC-to-OC isomerization by upstream DNA and upstream binding, DNA-bending transcription activators are discussed.
Collapse
|
44
|
Travers A, Muskhelishvili G. Chromosomal Organization and Regulation of Genetic Function in Escherichia coli Integrates the DNA Analog and Digital Information. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0016-2019. [PMID: 32056535 PMCID: PMC11168577 DOI: 10.1128/ecosalplus.esp-0016-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Indexed: 12/22/2022]
Abstract
In this article, we summarize our current understanding of the bacterial genetic regulation brought about by decades of studies using the Escherichia coli model. It became increasingly evident that the cellular genetic regulation system is organizationally closed, and a major challenge is to describe its circular operation in quantitative terms. We argue that integration of the DNA analog information (i.e., the probability distribution of the thermodynamic stability of base steps) and digital information (i.e., the probability distribution of unique triplets) in the genome provides a key to understanding the organizational logic of genetic control. During bacterial growth and adaptation, this integration is mediated by changes of DNA supercoiling contingent on environmentally induced shifts in intracellular ionic strength and energy charge. More specifically, coupling of dynamic alterations of the local intrinsic helical repeat in the structurally heterogeneous DNA polymer with structural-compositional changes of RNA polymerase holoenzyme emerges as a fundamental organizational principle of the genetic regulation system. We present a model of genetic regulation integrating the genomic pattern of DNA thermodynamic stability with the gene order and function along the chromosomal OriC-Ter axis, which acts as a principal coordinate system organizing the regulatory interactions in the genome.
Collapse
Affiliation(s)
- Andrew Travers
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | |
Collapse
|
45
|
Georgoulis A, Louka M, Mylonas S, Stavros P, Nounesis G, Vorgias CE. Consensus protein engineering on the thermostable histone-like bacterial protein HUs significantly improves stability and DNA binding affinity. Extremophiles 2020; 24:293-306. [PMID: 31980943 DOI: 10.1007/s00792-020-01154-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/06/2020] [Indexed: 11/28/2022]
Abstract
Consensus-based protein engineering strategy has been applied to various proteins and it can lead to the design of proteins with enhanced biological performance. Histone-like HUs comprise a protein family with sequence variety within a highly conserved 3D-fold. HU function includes compacting and regulating bacterial DNA in a wide range of biological conditions in bacteria. To explore the possible impact of consensus-based design in the thermodynamic stability of HU proteins, the approach was applied using a dataset of sequences derived from a group of 40 mesostable, thermostable, and hyperthermostable HUs. The consensus-derived HU protein was named HUBest, since it is expected to perform best. The synthetic HU gene was overexpressed in E. coli and the recombinant protein was purified. Subsequently, HUBest was characterized concerning its correct folding and thermodynamic stability, as well as its ability to interact with plasmid DNA. A substantial increase in HUBest stability at high temperatures is observed. HUBest has significantly improved biological performance at ambience temperature, presenting very low Kd values for binding plasmid DNA as indicated from the Gibbs energy profile of HUBest. This Kd may be associated to conformational changes leading to decreased thermodynamic stability and, therefore, higher flexibility at ambient temperature.
Collapse
Affiliation(s)
- Anastasios Georgoulis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Maria Louka
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Stratos Mylonas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Philemon Stavros
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research "Demokritos", 153 10, Agia Paraskevi, Greece
| | - George Nounesis
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research "Demokritos", 153 10, Agia Paraskevi, Greece
| | - Constantinos E Vorgias
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece.
| |
Collapse
|
46
|
Abstract
How genomes are organized within cells and how the 3D architecture of a genome influences cellular functions are significant questions in biology. A bacterial genomic DNA resides inside cells in a highly condensed and functionally organized form called nucleoid (nucleus-like structure without a nuclear membrane). The Escherichia coli chromosome or nucleoid is composed of the genomic DNA, RNA, and protein. The nucleoid forms by condensation and functional arrangement of a single chromosomal DNA with the help of chromosomal architectural proteins and RNA molecules as well as DNA supercoiling. Although a high-resolution structure of a bacterial nucleoid is yet to come, five decades of research has established the following salient features of the E. coli nucleoid elaborated below: 1) The chromosomal DNA is on the average a negatively supercoiled molecule that is folded as plectonemic loops, which are confined into many independent topological domains due to supercoiling diffusion barriers; 2) The loops spatially organize into megabase size regions called macrodomains, which are defined by more frequent physical interactions among DNA sites within the same macrodomain than between different macrodomains; 3) The condensed and spatially organized DNA takes the form of a helical ellipsoid radially confined in the cell; and 4) The DNA in the chromosome appears to have a condition-dependent 3-D structure that is linked to gene expression so that the nucleoid architecture and gene transcription are tightly interdependent, influencing each other reciprocally. Current advents of high-resolution microscopy, single-molecule analysis and molecular structure determination of the components are expected to reveal the total structure and function of the bacterial nucleoid.
Collapse
Affiliation(s)
- Subhash C. Verma
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (SCV); (SLA)
| | - Zhong Qian
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sankar L. Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (SCV); (SLA)
| |
Collapse
|
47
|
Qin L, Erkelens AM, Ben Bdira F, Dame RT. The architects of bacterial DNA bridges: a structurally and functionally conserved family of proteins. Open Biol 2019; 9:190223. [PMID: 31795918 PMCID: PMC6936261 DOI: 10.1098/rsob.190223] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Every organism across the tree of life compacts and organizes its genome with architectural chromatin proteins. While eukaryotes and archaea express histone proteins, the organization of bacterial chromosomes is dependent on nucleoid-associated proteins. In Escherichia coli and other proteobacteria, the histone-like nucleoid structuring protein (H-NS) acts as a global genome organizer and gene regulator. Functional analogues of H-NS have been found in other bacterial species: MvaT in Pseudomonas species, Lsr2 in actinomycetes and Rok in Bacillus species. These proteins complement hns- phenotypes and have similar DNA-binding properties, despite their lack of sequence homology. In this review, we focus on the structural and functional characteristics of these four architectural proteins. They are able to bridge DNA duplexes, which is key to genome compaction, gene regulation and their response to changing conditions in the environment. Structurally the domain organization and charge distribution of these proteins are conserved, which we suggest is at the basis of their conserved environment responsive behaviour. These observations could be used to find and validate new members of this protein family and to predict their response to environmental changes.
Collapse
Affiliation(s)
- L. Qin
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - A. M. Erkelens
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - F. Ben Bdira
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - R. T. Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
48
|
Chromosome organization in bacteria: mechanistic insights into genome structure and function. Nat Rev Genet 2019; 21:227-242. [DOI: 10.1038/s41576-019-0185-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/28/2022]
|
49
|
Sarangi MK, Zvoda V, Holte MN, Becker NA, Peters JP, Maher LJ, Ansari A. Evidence for a bind-then-bend mechanism for architectural DNA binding protein yNhp6A. Nucleic Acids Res 2019; 47:2871-2883. [PMID: 30698746 PMCID: PMC6451137 DOI: 10.1093/nar/gkz022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/18/2018] [Accepted: 01/18/2019] [Indexed: 01/17/2023] Open
Abstract
The yeast Nhp6A protein (yNhp6A) is a member of the eukaryotic HMGB family of chromatin factors that enhance apparent DNA flexibility. yNhp6A binds DNA nonspecifically with nM affinity, sharply bending DNA by >60°. It is not known whether the protein binds to unbent DNA and then deforms it, or if bent DNA conformations are ‘captured’ by protein binding. The former mechanism would be supported by discovery of conditions where unbent DNA is bound by yNhp6A. Here, we employed an array of conformational probes (FRET, fluorescence anisotropy, and circular dichroism) to reveal solution conditions in which an 18-base-pair DNA oligomer indeed remains bound to yNhp6A while unbent. In 100 mM NaCl, yNhp6A-bound DNA unbends as the temperature is raised, with no significant dissociation of the complex detected up to ∼45°C. In 200 mM NaCl, DNA unbending in the intact yNhp6A complex is again detected up to ∼35°C. Microseconds-resolved laser temperature-jump perturbation of the yNhp6a–DNA complex revealed relaxation kinetics that yielded unimolecular DNA bending/unbending rates on timescales of 500 μs−1 ms. These data provide the first direct observation of bending/unbending dynamics of DNA in complex with yNhp6A, suggesting a bind-then-bend mechanism for this protein.
Collapse
Affiliation(s)
- Manas Kumar Sarangi
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Viktoriya Zvoda
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Molly Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Justin P Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
50
|
Loth K, Largillière J, Coste F, Culard F, Landon C, Castaing B, Delmas AF, Paquet F. New protein-DNA complexes in archaea: a small monomeric protein induces a sharp V-turn DNA structure. Sci Rep 2019; 9:14253. [PMID: 31582767 PMCID: PMC6776556 DOI: 10.1038/s41598-019-50211-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/05/2019] [Indexed: 01/02/2023] Open
Abstract
MC1, a monomeric nucleoid-associated protein (NAP), is structurally unrelated to other DNA-binding proteins. The protein participates in the genome organization of several Euryarchaea species through an atypical compaction mechanism. It is also involved in DNA transcription and cellular division through unknown mechanisms. We determined the 3D solution structure of a new DNA-protein complex formed by MC1 and a strongly distorted 15 base pairs DNA. While the protein just needs to adapt its conformation slightly, the DNA undergoes a dramatic curvature (the first two bend angles of 55° and 70°, respectively) and an impressive torsional stress (dihedral angle of 106°) due to several kinks upon binding of MC1 to its concave side. Thus, it adopts a V-turn structure. For longer DNAs, MC1 stabilizes multiple V-turn conformations in a flexible and dynamic manner. The existence of such V-turn conformations of the MC1-DNA complexes leads us to propose two binding modes of the protein, as a bender (primary binding mode) and as a wrapper (secondary binding mode). Moreover, it opens up new opportunities for studying and understanding the repair, replication and transcription molecular machineries of Archaea.
Collapse
Affiliation(s)
- Karine Loth
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France. .,UFR Collegium Sciences et Techniques, Université d'Orléans, rue de Chartres, 45100, Orléans, France.
| | - Justine Largillière
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Franck Coste
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Françoise Culard
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Céline Landon
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Agnès F Delmas
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Françoise Paquet
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France.
| |
Collapse
|