1
|
Urrutia-Baca VH, Álvarez-Buylla JR, Gueimonde M, Chuck-Hernández C, Ruas-Madiedo P, González-Iglesias H. Comparative study of the oligosaccharide profile in goat, bovine, sheep, and human milk whey. Food Chem 2025; 463:141123. [PMID: 39260165 DOI: 10.1016/j.foodchem.2024.141123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Milk oligosaccharides are high added value compounds that could be obtained by exploiting cheese whey, a byproduct of dairy industry. The objective was to compare the abundance and diversity of oligosaccharides in whey samples from domestic animals and humans. During fresh cheese making, whey samples were collected and analyzed by untargeted and targeted small molecule analysis using high-resolution mass-spectrometry. A great similarity in the metabolite profile between goat and sheep was observed. Up to 11 oligosaccharides were observed in the sheep whey from those typically found in humans. The concentration of 2'-Fucosyllactose (0.136 ± 0.055 g/L) and 3-Fucosyllactose (0.079 ± 0.009 g/L) were significantly higher (p-value <0.01) in sheep whey, while the concentration of 3'-Sialyllactose (0.826 ± 0.638 g/L) was higher in goat whey. No significant differences were observed between goat and sheep whey for the other oligosaccharides (p-value >0.05). Therefore, sheep and goat whey could become an important source of oligosaccharides through their revalorization.
Collapse
Affiliation(s)
- Víctor Hugo Urrutia-Baca
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| | - Jorge R Álvarez-Buylla
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Miguel Gueimonde
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Cristina Chuck-Hernández
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico.
| | - Patricia Ruas-Madiedo
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Héctor González-Iglesias
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.
| |
Collapse
|
2
|
Jiang Y, Sun T, Lin Y, Liu M, Wang X. Is it possible to obtain substitutes for human milk oligosaccharides from bovine milk, goat milk, or other mammal milks? Compr Rev Food Sci Food Saf 2024; 23:e70018. [PMID: 39302160 DOI: 10.1111/1541-4337.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Considering the current level of chemical and biological synthesis technology, it was a sensible selection to obtain milk oligosaccharides (MOs) from other mammals as the potential substitute for human MOs (HMOs) that possessed various structural features in the infant formula. Through a comprehensive analysis of the content, structure, and function of MOs in six distinct varieties of mammal milk, it has been shown that goat milk was the most suitable material for the preparation as a human milk substitute. Goat MOs (GMOs) had a relatively high content and diverse structural features compared to those found in other mammalian milks. The concentration of GMOs in colostrum ranged from 60 to 350 mg/L, whereas in mature milk, it ranged from 200 to 24,00 mg/L. The acidic oligosaccharides in goat milk have attracted considerable attention due to their closeness in acidic content and structural diversity with HMOs. Simultaneously, it was discovered that some structures, like N-glycolylneuraminic acid, were found to have a certain content in GMOs and served essential functional properties. Moreover, studies focused on the extraction of MOs from goat milk indicated that the production of GMOs on an industrial scale was viable. Furthermore, it is imperative to do further study on GMOs to enhance the preparation process, discover of new MOs structures and bioactivity evaluation, which will contribute to the development of both the commercial production of MOs and the goat milk industry.
Collapse
Affiliation(s)
- Yishan Jiang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Tianrui Sun
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yihan Lin
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Manshun Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
- College of Enology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
- Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong Province, China
| |
Collapse
|
3
|
Isernhagen L, Galuska CE, Vernunft A, Galuska SP. Structural Characterization and Abundance of Sialylated Milk Oligosaccharides in Holstein Cows during Early Lactation. Foods 2024; 13:2484. [PMID: 39200411 PMCID: PMC11353935 DOI: 10.3390/foods13162484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Among other bioactive molecules, milk contains high amounts of sialylated milk oligosaccharides (MOs) that influence numerous processes in the offspring. For instance, sialylated MOs inhibit the invasion of pathogens and positively influence the gut microbiome to support the optimal development of the offspring. For these reasons, sialylated MOs are also used in infant formula as well as food supplements and are potential therapeutic substances for humans and animals. Because of the high interest in sialylated bovine MOs (bMOs), we used several analytical approaches, such as gas and liquid chromatography in combination with mass spectrometry, to investigate in detail the profile of sialylated bMOs in the milk of Holstein Friesian cows during early lactation. Most of the 40 MOs identified in this study were sialylated, and a rapid decrease in all detected sialylated bMOs took place during the first day of lactation. Remarkably, we observed a high variance within the sialylation level during the first two days after calving. Therefore, our results suggest that the content of sialylated MOs might be an additional quality marker for the bioactivity of colostrum and transitional milk to ensure its optimized application for the production of milk replacer and food supplements.
Collapse
Affiliation(s)
| | | | | | - Sebastian P. Galuska
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (L.I.); (A.V.)
| |
Collapse
|
4
|
Wanapat M, Dagaew G, Sommai S, Matra M, Suriyapha C, Prachumchai R, Muslykhah U, Phupaboon S. The application of omics technologies for understanding tropical plants-based bioactive compounds in ruminants: a review. J Anim Sci Biotechnol 2024; 15:58. [PMID: 38689368 PMCID: PMC11062008 DOI: 10.1186/s40104-024-01017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/29/2024] [Indexed: 05/02/2024] Open
Abstract
Finding out how diet impacts health and metabolism while concentrating on the functional qualities and bioactive components of food is the crucial scientific objective of nutritional research. The complex relationship between metabolism and nutrition could be investigated with cutting-edge "omics" and bioinformatics techniques. This review paper provides an overview of the use of omics technologies in nutritional research, with a particular emphasis on the new applications of transcriptomics, proteomics, metabolomics, and genomes in functional and biological activity research on ruminant livestock and products in the tropical regions. A wealth of knowledge has been uncovered regarding the regulation and use of numerous physiological and pathological processes by gene, mRNA, protein, and metabolite expressions under various physiological situations and guidelines. In particular, the components of meat and milk were assessed using omics research utilizing the various methods of transcriptomics, proteomics, metabolomics, and genomes. The goal of this review is to use omics technologies-which have been steadily gaining popularity as technological tools-to develop new nutritional, genetic, and leadership strategies to improve animal products and their quality control. We also present an overview of the new applications of omics technologies in cattle production and employ nutriomics and foodomics technologies to investigate the microbes in the rumen ecology. Thus, the application of state-of-the-art omics technology may aid in our understanding of how species and/or breeds adapt, and the sustainability of tropical animal production, in the long run, is becoming increasingly important as a means of mitigating the consequences of climate change.
Collapse
Affiliation(s)
- Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Gamonmas Dagaew
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sukruthai Sommai
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Maharach Matra
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaichana Suriyapha
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rittikeard Prachumchai
- Department of Animal Science, Faculty of Agricultural Technology, University of Technology Thanyaburi, Rajamangala Pathum Thani, 12130, Thailand
| | - Uswatun Muslykhah
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Srisan Phupaboon
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
5
|
Yao Q, Gao Y, Wang F, Delcenserie V, Wang J, Zheng N. Label-Free quantitation of milk oligosaccharides from different mammal species and heat treatment influence. Food Chem 2024; 430:136977. [PMID: 37552901 DOI: 10.1016/j.foodchem.2023.136977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 08/10/2023]
Abstract
Milk oligosaccharides (MOs) exhibit significant variations in concentrations and patterns among different species. However, there is limited knowledge about milk oligosaccharides in domestic animals and the impact of heat treatment on them. Here, we developed an LC-ESI-MS/MS method to analyze 11 milk oligosaccharides in 7 distinct species simultaneously. The results showed that human milk presented a completely different composition pattern of milk oligosaccharides from animals. In detail, animal milk predominantly contained sialylated oligosaccharides, and human milk had high levels of fucosylated neutral oligosaccharides. Notably, sheep milk exhibited similarities to human milk in terms of oligosaccharides composition. Then, the milk samples from dairy cows were treated with two common industrial heat treatments. We found that 65 °C treatment had no significant effect on the concentration of milk oligosaccharides, whereas 135 °C heating was associated with their decline, suggesting that high temperatures should be avoided in the processing of oligosaccharides supplemented/enriched products.
Collapse
Affiliation(s)
- Qianqian Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Department of Food Science, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Yanan Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fengen Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Veronique Delcenserie
- Department of Food Science, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
6
|
Zhang L, Lin Q, Zhang J, Shi Y, Pan L, Hou Y, Peng X, Li W, Wang J, Zhou P. Qualitative and Quantitative Changes of Oligosaccharides in Human and Animal Milk over Lactation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15553-15568. [PMID: 37815401 DOI: 10.1021/acs.jafc.3c03181] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The aim of this study was to investigate the changes in human and animal milk oligosaccharides over lactation. In total, 89, 97, 115, and 71 oligosaccharides were identified in human, bovine, goat, and camel milk. The number of common oligosaccharides between camel and human milk was the highest (16 and 17 in transitional and mature milk). With respect to the absolute concentration of eight oligosaccharides (2'-FL, 3-FL, α3'-GL, LNT, LNnT, 3'-SL, 6'-SL, and DSL), 2'-FL, 3'-FL, LNT, and LNnT were much higher in human than three animal species. 3'-SL had a similar concentration in bovine colostrum (322.2 μg/mL) and human colostrum (321.0 μg/mL), followed by goat colostrum (105.1 μg/mL); however, it had the highest concentration in camel mature milk (304.5 μg/mL). The ratio of 6'-SL and 3'-SL (1.77) in goat colostrum was similar to that in human colostrum (1.68), followed by bovine colostrum (0.13). In terms of changes of eight oligosaccharides over lactation, they all decreased with the increase of lactation in bovine and goat milk; however, α3'-GL, 2'-FL, and 3-FL increased in camel species, and LNT increased first and then decreased over lactation in human milk. This study provides a better understanding of the variation of milk oligosaccharides related to lactation and species.
Collapse
Affiliation(s)
- Lina Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Qiaran Lin
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jinyue Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yue Shi
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Lina Pan
- Ausnutria Dairy (China) Company, Limited, Changsha, Hunan 410200, People's Republic of China
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia 010110, People's Republic of China
| | - Yanmei Hou
- Ausnutria Hyproca Nutrition Company, Limited, Changsha, Hunan 410011, People's Republic of China
| | - Xiaoyu Peng
- Ausnutria Dairy (China) Company, Limited, Changsha, Hunan 410200, People's Republic of China
| | - Wei Li
- Ausnutria Dairy (China) Company, Limited, Changsha, Hunan 410200, People's Republic of China
| | - Jiaqi Wang
- Ausnutria Dairy (China) Company, Limited, Changsha, Hunan 410200, People's Republic of China
| | - Peng Zhou
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
7
|
van der Toorn M, Chatziioannou AC, Pellis L, Haandrikman A, van der Zee L, Dijkhuizen L. Biological Relevance of Goat Milk Oligosaccharides to Infant Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13935-13949. [PMID: 37691562 PMCID: PMC10540210 DOI: 10.1021/acs.jafc.3c02194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Milk is often regarded as the gold standard for the nourishment of all mammalian offspring. The World Health Organization (WHO) recommends exclusive breastfeeding for the first 6 months of the life of the infant, followed by a slow introduction of complementary foods to the breastfeeding routine for a period of approximately 2 years, whenever this is possible ( Global Strategy for Infant and Young Child Feeding; WHO, 2003). One of the most abundant components in all mammals' milk, which is associated with important health benefits, is the oligosaccharides. The milk oligosaccharides (MOS) of humans and other mammals differ in terms of their concentration and diversity. Among those, goat milk contains more oligosaccharides (gMOS) than other domesticated dairy animals, as well as a greater range of structures. This review summarizes the biological functions of MOS found in both human and goat milk to identify the possible biological relevance of gMOS in human health and development. Based on the existing literature, seven biological functions of gMOS were identified, namely, MOS action as prebiotics, immune modulators, and pathogen traps; their modulation of intestinal cells; protective effect against necrotizing enterocolitis; improved brain development; and positive effects on stressor exposure. Overall, goat milk is a viable alternate supply of functional MOS that could be employed in a newborn formula.
Collapse
Affiliation(s)
| | - Anastasia Chrysovalantou Chatziioannou
- CarbExplore
Research BV, Groningen, 9747 AN The Netherlands
- Department
of Chemistry, Laboratory of Analytical Biochemistry, University of Crete, Heraklion, 70013, Greece
| | | | | | | | - Lubbert Dijkhuizen
- CarbExplore
Research BV, Groningen, 9747 AN The Netherlands
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
8
|
Analysis of milk with liquid chromatography–mass spectrometry: a review. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-022-04197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
AbstractAs a widely consumed foodstuff, milk and dairy products are increasingly studied over the years. At the present time, milk profiling is used as a benchmark to assess the properties of milk. Modern biomolecular mass spectrometers have become invaluable to fully characterize the milk composition. This review reports the analysis of milk and its components using liquid chromatography coupled with mass spectrometry (LC–MS). LC–MS analysis as a whole will be discussed subdivided into the major constituents of milk, namely, lipids, proteins, sugars and the mineral fraction.
Collapse
|
9
|
Yang B, Zhang M, Qiao W, Zhao J, Chen J, Yang K, Hu J, Hou J, Chen L. Cascaded membrane and chromatography technologies for fractionating and purifying of bovine milk oligosaccharides. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Weng WC, Liao HE, Huang SP, Tsai ST, Hsu HC, Liew CY, Gannedi V, Hung SC, Ni CK. Unusual free oligosaccharides in human bovine and caprine milk. Sci Rep 2022; 12:10790. [PMID: 35750794 PMCID: PMC9232581 DOI: 10.1038/s41598-022-15140-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Free oligosaccharides are abundant macronutrients in milk and involved in prebiotic functions and antiadhesive binding of viruses and pathogenic bacteria to colonocytes. Despite the importance of these oligosaccharides, structural determination of oligosaccharides is challenging, and milk oligosaccharide biosynthetic pathways remain unclear. Oligosaccharide structures are conventionally determined using a combination of chemical reactions, exoglycosidase digestion, nuclear magnetic resonance spectroscopy, and mass spectrometry. Most reported free oligosaccharides are highly abundant and have lactose at the reducing end, and current oligosaccharide biosynthetic pathways in human milk are proposed based on these oligosaccharides. In this study, a new mass spectrometry technique, which can identify linkages, anomericities, and stereoisomers, was applied to determine the structures of free oligosaccharides in human, bovine, and caprine milk. Oligosaccharides that do not follow the current biosynthetic pathways and are not synthesized by any discovered enzymes were found, indicating the existence of undiscovered biosynthetic pathways and enzymes.
Collapse
Affiliation(s)
- Wei-Chien Weng
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Molecular Science and Technology, International Graduate Program, Academia Sinica and National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hung-En Liao
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Shih-Pei Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Shang-Ting Tsai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Hsu-Chen Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Chia Yen Liew
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University and Taiwan International Graduate Program of Molecular Science and Technology, Academia Sinica, Taipei, 10617, Taiwan
| | | | | | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan.
- Molecular Science and Technology, International Graduate Program, Academia Sinica and National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
11
|
Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes 2022; 13:95-168. [PMID: 35729770 DOI: 10.3920/bm2021.0090] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with proteins and fats, carbohydrates are one of the macronutrients in the human diet. Digestible carbohydrates, such as starch, starch-based products, sucrose, lactose, glucose and some sugar alcohols and unusual (and fairly rare) α-linked glucans, directly provide us with energy while other carbohydrates including high molecular weight polysaccharides, mainly from plant cell walls, provide us with dietary fibre. Carbohydrates which are efficiently digested in the small intestine are not available in appreciable quantities to act as substrates for gut bacteria. Some oligo- and polysaccharides, many of which are also dietary fibres, are resistant to digestion in the small intestines and enter the colon where they provide substrates for the complex bacterial ecosystem that resides there. This review will focus on these non-digestible carbohydrates (NDC) and examine their impact on the gut microbiota and their physiological impact. Of particular focus will be the potential of non-digestible carbohydrates to act as prebiotics, but the review will also evaluate direct effects of NDC on human cells and systems.
Collapse
Affiliation(s)
- R A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - M Diez-Municio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - S D Forssten
- IFF Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | - A Meynier
- Nutrition Research, Mondelez France R&D SAS, 6 rue René Razel, 91400 Saclay, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Respondek
- Tereos, Zoning Industriel Portuaire, 67390 Marckolsheim, France
| | - B Stah
- Human Milk Research & Analytical Science, Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - M Wiese
- Department of Microbiology and Systems Biology, TNO, Utrechtseweg 48, 3704 HE, Zeist, the Netherlands
| |
Collapse
|
12
|
Mendis PM, Jackson GP. Structural characterization of human milk oligosaccharides using ultrahigh performance liquid chromatography-helium charge transfer dissociation mass spectrometry. Glycobiology 2022; 32:483-495. [PMID: 35275172 PMCID: PMC9271224 DOI: 10.1093/glycob/cwac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The combination of helium charge transfer dissociation mass spectrometry (He-CTD-MS) with ultrahigh performance liquid chromatography (UHPLC) is presented for the analysis of a complex mixture of acidic and neutral human milk oligosaccharides (HMOs). The research focuses on the identification of the monosaccharide sequence, the branching patterns, the sialylation/fucosylation arrangements, and the differentiation of isomeric oligosaccharides in the mixture. Initial studies first optimized the conditions for the UHPLC separation and the He-CTD-MS conditions. Results demonstrate that He-CTD is compatible with UHPLC timescales and provides unambiguous glycosidic and cross-ring cleavages from both the reducing and the nonreducing ends, which is not typically possible using collision-induced dissociation. He-CTD produces informative fragments, including 0,3An and 0,4An ions, which have been observed with electron transfer dissociation, electron detachment dissociation, and ultraviolet photodissociation (UVPD) and are crucial for differentiating the α-2,3- versus α-2,6-linked sialic acid (Neu5Ac) residues present among sialyllacto-N-tetraose HMOs. In addition to the linkage positions, He-CTD is able to differentiate structural isomers for both sialyllacto-N-tetraoses and lacto-N-fucopentaoses structures by providing unique, unambiguous cross-ring cleavages of types 0,2An, 0,2Xn, and 1,5An while preserving most of the labile Neu5Ac and fucose groups.
Collapse
Affiliation(s)
- Praneeth M Mendis
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506-6121, USA
| | - Glen P Jackson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506-6121, USA.,Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV 26506-6121, USA
| |
Collapse
|
13
|
Abstract
Sialyloligosaccharides (SOS) are bioactive molecules that play an important role in brain development and the increase in immunity in infants. In adults, they act as prebiotics, enhancing protection against microbial pathogens. In the present work, we aimed to analyze the levels of SOS in mature milk, at days 60 and 120 after calving in four cow breeds: Holstein (HO), Simmental × Holstein (SM × HO), Simmental (SM), all fed with total mixed ration (TMR) in intensive production, and Podolica (POD) raised on pasture in an extensive system. The concentrations of SOS (3′-sialyllactose = 3′-SL, 6′-sialyllactose = 6′-SL, 6′-Sialyl-N-acetyllactosamine = 6′-SLN, disialyllactose = DSL, expressed in mg/L) were determined using HPAEC-PAD, a high-performance anion-exchange chromatography with pulsed amperometric detection. Results showed both breed and lactation effects. The contents of 3′-SL, 6′-SL, 6′-SLN, and DSL were higher at 60 than 120 days (p < 0.001), as well as in POD, as compared to the other breeds (p < 0.001). Furthermore, SM showed a significantly greater level of 3′-SL than HO (p < 0.001), as well as a significantly higher level of 6′-SLN in SM than HO (p < 0.001) and SM × HO (p < 0.001). Our findings may have implications for several areas of sustainability that might be used in the cattle management system.
Collapse
|
14
|
Abstract
Food carbohydrates are macronutrients that are found in fruits, grains, vegetables, and milk products. These organic compounds are present in foods in the form of sugars, starches, and fibers and are composed of carbon, hydrogen, and oxygen. These wide ranging macromolecules can be classified according to their chemical structure into three major groups: low molecular weight mono- and disaccharides, intermediate molecular weight oligosaccharides, and high molecular weight polysaccharides. Notably, the digestibility of specific carbohydrate components differ and nondigestible carbohydrates can reach the large intestine intact where they act as food sources for beneficial bacteria. In this review, we give an overview of advances made in food carbohydrate analysis. Overall, this review indicates the importance of carbohydrate analytical techniques in the quest to identify and isolate health-promoting carbohydrates to be used as additives in the functional foods industry.
Collapse
Affiliation(s)
- Leonie J Kiely
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Rita M Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
15
|
Shi Y, Han B, Zhang L, Zhou P. Comprehensive Identification and Absolute Quantification of Milk Oligosaccharides in Different Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15585-15597. [PMID: 34928137 DOI: 10.1021/acs.jafc.1c05872] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human and animal milk contains a rich variety of oligosaccharides (OSs), which are of great interest due to a similar biological efficacy. In this study, the OSs were identified and the concentrations of eight specific OSs in human and four animal milk (cow, goat, sheep, and camel) were analyzed. In general, 30, 42, 32, 34, and 35 OSs were identified in bovine, caprine, ovine, camel, and human milk, respectively. Camel milk was the most similar in type to human milk than other four animal milk. The concentration of eight OSs in human milk was approximately six times higher than that in camel milk, 20 times higher than that in bovine and caprine milk, and 75 times higher than that in ovine milk. Collectively, these findings revealed the characteristics and concentrations of OSs in the milk of different species, providing insights into the potential application of OSs in medical and functional foods.
Collapse
Affiliation(s)
- Yue Shi
- State Key Lab of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Binsong Han
- State Key Lab of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lina Zhang
- State Key Lab of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Peng Zhou
- State Key Lab of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
16
|
Lang Y, Zhang Y, Wang C, Huang L, Liu X, Song N, Li G, Yu G. Comparison of Different Labeling Techniques for the LC-MS Profiling of Human Milk Oligosaccharides. Front Chem 2021; 9:691299. [PMID: 34589467 PMCID: PMC8473617 DOI: 10.3389/fchem.2021.691299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
Human milk oligosaccharides (HMOs) exhibit various biological activities for infants, such as serving as prebiotics, blocking pathogens, and aiding in brain development. HMOs are a complex mixture of hetero-oligosaccharides that are generally highly branched, containing multiple structural isomers and no intrinsic chromophores, presenting a challenge to both their resolution and quantitative detection. While liquid chromatography-mass spectrometry (LC-MS) has become the primary strategy for analysis of various compounds, the very polar and chromophore-free properties of native glycans hinder their separation in LC and ionization in MS. Various labeling approaches have been developed to achieve separation of glycans with higher resolution and greater sensitivity of detection. Here, we compared five commonly used labeling techniques [by 2-aminobenzamide, 2-aminopyridine, 2-aminobenzoic acid (2-AA), 2,6-diaminopyridine, and 1-phenyl-3-methyl-5-pyrazolone] for analyzing HMOs specifically under hydrophilic-interaction chromatography-mass spectrometry (HILIC-MS) conditions. The 2-AA labeling showed the most consistent deprotonated molecular ions, the enhanced sensitivity with the least structural selectivity, and the sequencing-informative tandem MS fragmentation spectra for the widest range of HMOs; therefore, this labeling technique was selected for further optimization under the porous graphitized carbon chromatography-mass spectrometry (PGC-MS) conditions. The combination strategy of 2-AA labeling and PGC-MS techniques provided online decontamination (removal of excess 2-AA, salts, and lactose) and resolute detection of many HMOs, enabling us to characterize the profiles of complicated HMO mixtures comprehensively in a simple protocol.
Collapse
Affiliation(s)
- Yinzhi Lang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yongzhen Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chen Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Limei Huang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaoxiao Liu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ni Song
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Evolution of milk oligosaccharides: Origin and selectivity of the ratio of milk oligosaccharides to lactose among mammals. Biochim Biophys Acta Gen Subj 2021; 1866:130012. [PMID: 34536507 DOI: 10.1016/j.bbagen.2021.130012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The carbohydrate fraction of mammalian milk is constituted of lactose and oligosaccharides, most of which contain a lactose unit at their reducing ends. Although lactose is the predominant saccharide in the milk of most eutherians, oligosaccharides significantly predominate over lactose in the milk of monotremes and marsupials. SCOPE OF REVIEW This review describes the most likely process by which lactose and milk oligosaccharides were acquired during the evolution of mammals and the mechanisms by which these saccharides are digested and absorbed by the suckling neonates. MAJOR CONCLUSIONS During the evolution of mammals, c-type lysozyme evolved to α-lactalbumin. This permitted the biosynthesis of lactose by modulating the substrate specificity of β4galactosyltransferase 1, thus enabling the concomitant biosynthesis of milk oligosaccharides through the activities of several glycosyltransferases using lactose as an acceptor. In most eutherian mammals the digestion of lactose to glucose and galactose is achieved through the action of intestinal lactase (β-galactosidase), which is located within the small intestinal brush border. This enzyme, however, is absent in neonatal monotremes and macropod marsupials. It has therefore been proposed that in these species the absorption of milk oligosaccharides is achieved by pinocytosis or endocytosis, after which digestion occurs through the actions of several lysosomal acid glycosidases. This process would enable the milk oligosaccharides of monotremes and marsupials to be utilized as a significant energy source for the suckling neonates. GENERAL SIGNIFICANCE The evolution and significance of milk oligosaccharides is discussed in relation to the evolution of mammals.
Collapse
|
18
|
Milk Exosomes Transfer Oligosaccharides into Macrophages to Modulate Immunity and Attenuate Adherent-Invasive E. coli (AIEC) Infection. Nutrients 2021; 13:nu13093198. [PMID: 34579075 PMCID: PMC8472098 DOI: 10.3390/nu13093198] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Exosomes are abundance in human body fluids like urine, milk and blood. They act a critical role in extracellular and intracellular communication, intracellular trafficking and physiological regulation. Multiple immune-modulatory components, such as proteins, RNAs and carbohydrates (glycoproteins), have been found in human milk exosomes, which play immune-regulatory functions. However, little is known about oligosaccharides in milk exosomes, the “free sugars”, which act critical roles in the development of infant’s immature mucosal immune system. In this study, the profile of milk exosomes encapsulated human milk oligosaccharides (HMOs) was calibrated with characteristic oligosaccharides in colostrum and mature milk, respectively. The exosomes containing human milk oligosaccharides were uptaken by macrophages, which were responsible for the establishment of intestinal immunity. Furthermore, mice pretreated with exosome encapsulated HMOs were protected from AIEC infection and had significantly less LPS-induced inflammation and intestinal damage. Exosome encapsulated milk oligosaccharides are regarded to provide a natural manner for milk oligosaccharides to accomplish their critical functions in modifying newborn innate immunity. The understanding of the interaction between a mother’s breastfeeding and the development of an infant’s mucosal immune system would be advantageous. The transport of milk oligosaccharides to its target via exosome-like particles appears to be promising.
Collapse
|
19
|
Gu F, Kate GAT, Arts ICW, Penders J, Thijs C, Lindner C, Nauta A, van Leusen E, van Leeuwen SS, Schols HA. Combining HPAEC-PAD, PGC-LC-MS, and 1D 1H NMR to Investigate Metabolic Fates of Human Milk Oligosaccharides in 1-Month-Old Infants: a Pilot Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6495-6509. [PMID: 34060814 PMCID: PMC8278486 DOI: 10.1021/acs.jafc.0c07446] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
A solid-phase extraction procedure was optimized to extract 3-fucosyllactose and other human milk oligosaccharides (HMOs) from human milk samples separately, followed by absolute quantitation using high-performance anion-exchange chromatography-pulsed amperometric detection and porous graphitized carbon-liquid chromatography-mass spectrometry, respectively. The approach developed was applied on a pilot sample set of 20 human milk samples and paired infant feces collected at around 1 month postpartum. One-dimensional 1H nuclear magnetic resonance spectroscopy was employed on the same samples to determine the relative levels of fucosylated epitopes and sialylated (Neu5Ac) structural elements. Based on different HMO consumption patterns in the gastrointestinal tract, the infants were assigned to three clusters as follows: complete consumption; specific consumption of non-fucosylated HMOs; and, considerable levels of HMOs still present with consumption showing no specific preference. The consumption of HMOs by infant microbiota also showed structure specificity, with HMO core structures and Neu5Ac(α2-3)-decorated HMOs being most prone to degradation. The degree and position of fucosylation impacted HMO metabolization differently.
Collapse
Affiliation(s)
- Fangjie Gu
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Geert A. ten Kate
- Microbial
Physiology, University of Groningen, P.O. Box 72, Groningen 9700 AB, The Netherlands
| | - Ilja C. W. Arts
- Maastricht
University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
- Maastricht
Centre for Systems Biology (MaCSBio), Paul-Henri Spaaklaan 1, Maastricht 6229 EN, The Netherlands
| | - John Penders
- Maastricht
University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Carel Thijs
- Maastricht
University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Cordula Lindner
- FrieslandCampina
Innovation Centre, Bronland
20, Wageningen 6708 WH, The Netherlands
| | - Arjen Nauta
- FrieslandCampina
Innovation Centre, Bronland
20, Wageningen 6708 WH, The Netherlands
| | - Ellen van Leusen
- FrieslandCampina
Innovation Centre, Bronland
20, Wageningen 6708 WH, The Netherlands
| | - Sander S. van Leeuwen
- Microbial
Physiology, University of Groningen, P.O. Box 72, Groningen 9700 AB, The Netherlands
| | - Henk A. Schols
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| |
Collapse
|
20
|
Morrin ST, Buck RH, Farrow M, Hickey RM. Milk-derived anti-infectives and their potential to combat bacterial and viral infection. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Wang Y, Yu J. Membrane separation processes for enrichment of bovine and caprine milk oligosaccharides from dairy byproducts. Compr Rev Food Sci Food Saf 2021; 20:3667-3689. [PMID: 33931948 DOI: 10.1111/1541-4337.12758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/07/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Abstract
Breast milk is an ideal source of human milk oligosaccharides (HMOs) for isolation and purification. However, breast milk is not for sale and at most is distributed to neonatal intensive care units as donor milk. To overcome this limitation, isolating HMOs analogs including bovine milk oligosaccharides (BMOs) and caprine milk oligosaccharides (CMOs) from other sources is timely and significant. Advances in the development of equipment and analytical methods have revealed that dairy processing byproducts are good sources of BMOs and CMOs. Enrichment of these oligosaccharides from dairy byproducts, such as whey, permeate, and mother liquor, is of increasing academic and economic value. The commonly employed approach for oligosaccharides purification is chromatographic technique, but it is only used at lab scale. In the dairy industry, chromatographic methods (large-scale ion exchange, 10,000 L size) are currently routinely used for the isolation/purification of milk proteins (e.g., lactoferrin). In contrast, membrane technology has been proven to be a suitable approach for the isolation and purification of BMOs and CMOs from dairy byproducts. Therefore, this review simply introduces BMOs and CMOs in dairy processing byproducts. This review also summarizes membrane separation processes for isolating and purifying BMOs and CMOs from different dairy byproducts. Finally, the technological challenges and solutions of each processing strategy are discussed in detail.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Jinghua Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
22
|
High-throughput and high-sensitivity N-Glycan profiling: A platform for biopharmaceutical development and disease biomarker discovery. Anal Biochem 2021; 623:114205. [PMID: 33891963 DOI: 10.1016/j.ab.2021.114205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/11/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Protein glycosylation contributes to critical biological function of glycoproteins. Glycan analysis is essential for the production of biopharmaceuticals as well as for the identification of disease biomarkers. However, glycans are highly heterogeneous, which has considerably hampered the progress of glycomics. Here, we present an improved 96-well plate format platform for streamlined glycan profiling that takes advantage of rapid glycoprotein denaturation, deglycosylation, fluorescent derivatization, and on-matrix glycan clean-up. This approach offers high sensitivity with consistent identification and quantification of diverse N-glycans across multiple samples on a high-throughput scale. We demonstrate its capability for N-glycan profiling of glycoproteins from various sources, including two recombinant monoclonal antibodies produced from Chinese Hamster Ovary cells, EG2-hFc and rituximab, polyclonal antibodies purified from human serum, and total glycoproteins from human serum. Combined with the complementary information obtained by sequential digestion from exoglycosidase arrays, this approach allows the detection and identification of multiple N-glycans in these complex biological samples. The reagents, workflow, and Hydrophilic interaction liquid chromatography with fluorescence detection (HILIC-FLD), are simple enough to be implemented into a straightforward user-friendly setup. This improved technology provides a powerful tool in support of rapid advancement of glycan analysis for biopharmaceutical development and biomarker discovery for clinical disease diagnosis.
Collapse
|
23
|
Moore RE, Xu LL, Townsend SD. Prospecting Human Milk Oligosaccharides as a Defense Against Viral Infections. ACS Infect Dis 2021; 7:254-263. [PMID: 33470804 DOI: 10.1021/acsinfecdis.0c00807] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to providing maximal nutritional value for neonatal growth and development, human milk functions as an early defense mechanism against invading pathogens. Human milk oligosaccharides (HMOs), which are abundant in human milk, are a diverse group of heterogeneous carbohydrates with wide ranging protective effects. In addition to promoting the colonization of beneficial intestinal flora, HMOs serve as decoy receptors, effectively blocking the attachment of pathogenic bacteria. HMOs also function as bacteriostatic agents, inhibiting the growth of gram-positive bacteria. Based on this precedence, an emerging area in the field has focused on characterizing the antiviral properties of HMOs. Indeed, HMOs have been evaluated as antiviral agents, with many possessing activity against life-threatening infections. This targeted review provides insight into the known glycan-binding interactions between select HMOs and influenza, rotavirus, respiratory syncytial virus, human immunodeficiency virus, and norovirus. Additionally, we review the role of HMOs in preventing necrotizing enterocolitis, an intestinal disease linked to viral infections. We close with a discussion of what is known broadly regarding human milk oligosaccharides and their interactions with coronaviruses.
Collapse
Affiliation(s)
- Rebecca E. Moore
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Lianyan L. Xu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, Tennessee 37212, United States
| |
Collapse
|
24
|
Mineguchi Y, Goto K, Sudo Y, Hirayama K, Kashiwagi H, Sasagase I, Kitazawa H, Asakuma S, Fukuda K, Urashima T. Characterisation of sugar nucleotides in colostrum of dairy domestic farms animals. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Abstract
Numerous bioactive components exist in human milk including free oligosaccharides, which represent some of the most important, and provide numerous health benefits to the neonate. Considering the demonstrated value of these compounds, much interest lies in characterising structurally similar oligosaccharides in the dairy industry. In this study, the impacts of days post-parturition and parity of the cows on the oligosaccharide and lactose profiles of their milk were evaluated. Colostrum and milk samples were obtained from 18 cows 1–5 days after parturition. Three distinct phases were identified using multivariate analysis: colostrum (day 0), transitional milk (days 1–2) and mature milk (days 3–5). LS-tetrasaccharide c, lacto-N-neotetraose, disialyllacto-N-tetraose, 3’-sial-N-acetyllactosamine, 3’-sialyllactose, lacto-N-neohexaose and disialyllactose were found to be highly affiliated with colostrum. Notably, levels of lactose were at their lowest concentration in the colostrum and substantially increased 1-day post-parturition. The cow’s parity was also shown to have a significant effect on the oligosaccharide profile, with first lactation cows containing more disialyllacto-N-tetraose, 6’-sialyllactose and LS-tetrasaccharide compared to cows in their second or third parity. Overall, this study identifies key changes in oligosaccharide and lactose content that clearly distinguish colostrum from transitional and mature milk and may facilitate the collection of specific streams with divergent biological functions.
Collapse
|
26
|
van Leeuwen SS, te Poele EM, Chatziioannou AC, Benjamins E, Haandrikman A, Dijkhuizen L. Goat Milk Oligosaccharides: Their Diversity, Quantity, and Functional Properties in Comparison to Human Milk Oligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13469-13485. [PMID: 33141570 PMCID: PMC7705968 DOI: 10.1021/acs.jafc.0c03766] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Human milk is considered the golden standard in infant nutrition. Free oligosaccharides in human milk provide important health benefits. These oligosaccharides function as prebiotics, immune modulators, and pathogen inhibitors and were found to improve barrier function in the gut. Infant formulas nowadays often contain prebiotics but lack the specific functions of human milk oligosaccharides (hMOS). Milk from domesticated animals also contains milk oligosaccharides but at much lower levels and with less diversity. Goat milk contains significantly more oligosaccharides (gMOS) than bovine (bMOS) or sheep (sMOS) milk and also has a larger diversity of structures. This review summarizes structural studies, revealing a diversity of up to 77 annotated gMOS structures with almost 40 structures fully characterized. Quantitative studies of goat milk oligosaccharides range from 60 to 350 mg/L in mature milk and from 200 to 650 mg/L in colostrum. These levels are clearly lower than in human milk (5-20 g/L) but higher than in other domesticated dairy animals, e.g., bovine (30-60 mg/L) and sheep (20-40 mg/L). Finally, the review focuses on demonstrated and potential functionalities of gMOS. Some studies have shown anti-inflammatory effects of mixtures enriched in gMOS. Goat MOS also display prebiotic potential, particularly in stimulating growth of bifidobacteria preferentially. Although functional studies of gMOS are still limited, several structures are also found in human milk and have known functions as immune modulators and pathogen inhibitors. In conclusion, goat milk constitutes a promising alternative source for milk oligosaccharides, which can be used in infant formula.
Collapse
Affiliation(s)
- Sander S. van Leeuwen
- Department
of Laboratory Medicine, Cluster Human Nutrition and Health, University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, Netherlands
- E-mail:
| | | | | | | | | | - Lubbert Dijkhuizen
- CarbExplore
Research BV, 9747 AN Groningen, Netherlands
- Department
of Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology
Institute (GBB), University of Groningen, 9700 AB Groningen, Netherlands
| |
Collapse
|
27
|
|
28
|
Porfirio S, Archer-Hartmann S, Moreau GB, Ramakrishnan G, Haque R, Kirkpatrick BD, Petri WA, Azadi P. New strategies for profiling and characterization of human milk oligosaccharides. Glycobiology 2020; 30:774-786. [PMID: 32248230 PMCID: PMC7526734 DOI: 10.1093/glycob/cwaa028] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
Human breast milk is an incredibly rich and complex biofluid composed of proteins, lipids and complex carbohydrates, including a diverse repertoire of free human milk oligosaccharides (HMOs). Strikingly, HMOs are not digested by the infant but function as prebiotics for bacterial strains associated with numerous benefits. Considering the broad variety of beneficial effects of HMOs, and the vast number of factors that affect breast milk composition, the analysis of HMO diversity and complexity is of utmost relevance. Using human milk samples from a cohort of Bangladeshi mothers participating in a study on malnutrition and stunting in children, we have characterized breast milk oligosaccharide composition by means of permethylation followed by liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-MS/MS) analysis. This approach identified over 100 different glycoforms and showed a wide diversity of milk composition, with a predominance of fucosylated and sialylated HMOs over nonmodified HMOs. We observed that these samples contain on average 80 HMOs, with the highest permethylated masses detected being >5000 mass units. Here we report an easily implemented method developed for the separation, characterization and relative quantitation of large arrays of HMOs, including higher molecular weight sialylated HMOs. Our ultimate goal is to create a simple, high-throughput method, which can be used for full characterization of sialylated and/or fucosylated HMOs. These results demonstrate how current analytical techniques can be applied to characterize human milk composition, providing new tools to help the scientific community shed new light on the impact of HMOs during infant development.
Collapse
Affiliation(s)
- Sara Porfirio
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| | | | - G Brett Moreau
- Department of Medicine/Infectious Diseases, University of Virginia, Charlottesville, VA 22903, USA
| | - Girija Ramakrishnan
- Department of Medicine/Infectious Diseases, University of Virginia, Charlottesville, VA 22903, USA
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Beth D Kirkpatrick
- Department of Medicine, University of Vermont, Burlington, VT 05401, USA
| | - William A Petri
- Department of Medicine/Infectious Diseases, University of Virginia, Charlottesville, VA 22903, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
29
|
Quinn EM, Joshi L, Hickey RM. Symposium review: Dairy-derived oligosaccharides-Their influence on host-microbe interactions in the gastrointestinal tract of infants. J Dairy Sci 2020; 103:3816-3827. [PMID: 32089300 DOI: 10.3168/jds.2019-17645] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
Abstract
Oligosaccharides are the third most abundant component in human milk. It is widely accepted that they play several important protective, physiological, and biological roles, including selective growth stimulation of beneficial gut microbiota, inhibition of pathogen adhesion, and immune modulation. However, until recently, very few commercial products on the market have capitalized on these functions. This is mainly because the quantities of human milk oligosaccharides required for clinical trials have been unavailable. Recently, clinical studies have tested the potential beneficial effects of feeding infants formula containing 2'-fucosyllactose, which is the most abundant oligosaccharide in human milk. These studies have opened this field for further well-designed studies, which are required to fully understand the role of human milk oligosaccharides. However, one of the most striking features of human milk is its diversity of oligosaccharides, with over 200 identified to date. It may be that a mixture of oligosaccharides is even more beneficial to infants than a single structure. For this reason, the milk of domestic animals has become a focal point in recent years as an alternative source of complex oligosaccharides with associated biological activity. This review will focus specifically on free oligosaccharides found in bovine and caprine milk and the biological roles associated with such structures. These dairy streams are ideal sources of oligosaccharides, given their wide availability and use in so many regularly consumed dairy products. The aim of this review was to provide an overview of research into the functional role of bovine and caprine milk oligosaccharides in host-microbial interactions in the gut and provide current knowledge related to the isolation of oligosaccharides as ingredients for incorporation in functional or medical foods.
Collapse
Affiliation(s)
- Erinn M Quinn
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland; Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Lokesh Joshi
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Rita M Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland.
| |
Collapse
|
30
|
Lu J, Zhang Y, Song B, Zhang S, Pang X, Sari RN, Liu L, Wang J, Lv J. Comparative analysis of oligosaccharides in Guanzhong and Saanen goat milk by using LC-MS/MS. Carbohydr Polym 2020; 235:115965. [PMID: 32122499 DOI: 10.1016/j.carbpol.2020.115965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/02/2020] [Accepted: 02/06/2020] [Indexed: 12/23/2022]
Abstract
Human milk oligosaccharides play an important role in promoting healthy growth of infants. Goat milk was one of the alternative sources for producing oligosaccharides. An in-depth understanding the composition and the quantity of oligosaccharides in goat milk was needed for its better utilization. In the present study, oligosaccharides were identified and quantified by using UPLC-MS/MS. The elution condition of UPLC was optimized leading to successful identification of 64 oligosaccharides in goat milk. Furthermore, the method to absolutely quantify 6 oligosaccharides in goat milk had been developed. The oligosaccharides in Guanzhong, local breed in China and Saanen goat milk, were compared by using this method. Five oligosaccharides were significantly different between two breeds. The amount of 6'-sialyllactose was 3.3 times higher in Guanzhong goat milk than that in Saanen goat milk. Guanzhong goat milk could be a potential good source for producing sialylated oligosaccharides, especially 6'-sialyllactose.
Collapse
Affiliation(s)
- Jing Lu
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China.
| | - Yan Zhang
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China; College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Bo Song
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Shuwen Zhang
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Xiaoyang Pang
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Ratna Nurmalita Sari
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Liu Liu
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Junhui Wang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Jiaping Lv
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China.
| |
Collapse
|
31
|
Westreich ST, Salcedo J, Durbin-Johnson B, Smilowitz JT, Korf I, Mills DA, Barile D, Lemay DG. Fecal metatranscriptomics and glycomics suggest that bovine milk oligosaccharides are fully utilized by healthy adults. J Nutr Biochem 2020; 79:108340. [PMID: 32028108 DOI: 10.1016/j.jnutbio.2020.108340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Human milk oligosaccharides play a vital role in the development of the gut microbiome in the human infant. Although oligosaccharides derived from bovine milk (BMO) differ in content and profile with those derived from human milk (HMO), several oligosaccharide structures are shared between the species. BMO are commercial alternatives to HMO, but their fate in the digestive tract of healthy adult consumers is unknown. Healthy human subjects consumed two BMO doses over 11-day periods each and provided fecal samples. Metatranscriptomics of fecal samples were conducted to determine microbial and host gene expression in response to the supplement. Fecal samples were also analyzed by mass spectrometry to determine levels of undigested BMO. No changes were observed in microbial gene expression across all participants. Repeated sampling enabled subject-specific analyses: four of six participants had minor, yet statistically significant, changes in microbial gene expression. No significant change was observed in the gene expression of host cells exfoliated in stool. Levels of BMO excreted in feces after supplementation were not significantly different from baseline and were not correlated with dosage or expressed microbial enzyme levels. Collectively, these data suggest that BMO are fully fermented in the human gastrointestinal tract upstream of the distal colon. Additionally, the unaltered host transcriptome provides further evidence for the safety of BMO as a dietary supplement or food ingredient. Further research is needed to investigate potential health benefits of this completely fermentable prebiotic that naturally occurs in cow's milk.
Collapse
Affiliation(s)
- Samuel T Westreich
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California, United States; Genome Center, University of California-Davis, Davis, California, United States.
| | - Jaime Salcedo
- Department of Food Science and Technology, University of California-Davis, Davis, California, United States.
| | | | - Jennifer T Smilowitz
- Department of Food Science and Technology, University of California-Davis, Davis, California, United States; Foods for Health Institute, University of California, Davis, California, United States.
| | - Ian Korf
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California, United States; Genome Center, University of California-Davis, Davis, California, United States.
| | - David A Mills
- Department of Food Science and Technology, University of California-Davis, Davis, California, United States; Foods for Health Institute, University of California, Davis, California, United States.
| | - Daniela Barile
- Department of Food Science and Technology, University of California-Davis, Davis, California, United States; Foods for Health Institute, University of California, Davis, California, United States.
| | - Danielle G Lemay
- Genome Center, University of California-Davis, Davis, California, United States; Foods for Health Institute, University of California, Davis, California, United States; USDA ARS Western Human Nutrition Research Center, Davis, California, United States.
| |
Collapse
|
32
|
Human Milk Oligosaccharide 2′-Fucosyllactose Reduces Neurodegeneration in Stroke Brain. Transl Stroke Res 2020; 11:1001-1011. [DOI: 10.1007/s12975-019-00774-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
|
33
|
Huang X, Zhu B, Jiang T, Yang C, Qiao W, Hou J, Han Y, Xiao H, Chen L. Improved Simple Sample Pretreatment Method for Quantitation of Major Human Milk Oligosaccharides Using Ultrahigh Pressure Liquid Chromatography with Fluorescence Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12237-12244. [PMID: 31560847 DOI: 10.1021/acs.jafc.9b03445] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Human milk oligosaccharides (HMOs) maintain and promote infant health. Most of the current methods for HMOs quantitation require labor-intensive and time-consuming steps for sample preparation. This study presents two very simple and easy-to-operate pretreatment methods, requiring either ultrafiltration or centrifugation to separate free oligosaccharides from whole fat human milk and other milk matrix before oligosaccharides labeling for quantifying HMOs using ultrahigh pressure liquid chromatography with fluorescence detection. A single chromatography run quantified 15 sialylated and neutral HMOs with high sensitivity (with an LOD less than 8 pg for all HMOs tested: about 1 pg for 2'-fucosyllactose, 3-fucosyllactose, 4'-galactosyllactose, 3'-galactosyllactose, and 6'-galactosyllactose) and good linearity with coefficient of correlation above 0.999. Accuracy and precision were satisfactory for both pretreatment methods. Overall, the centrifugation pretreatment was efficient and reliable for samples with high levels of oligosaccharides, and the ultrafiltration pretreatment was especially suitable for samples with low oligosaccharide abundance.
Collapse
Affiliation(s)
- Xunwen Huang
- National Engineering Center of Dairy for Maternal and Child Health , Beijing Sanyuan Foods Co. Ltd. , Beijing 100163 , P. R. China
- Beijing Engineering Research Center of Dairy , Beijing Sanyuan Foods Co. Ltd. , Beijing 100163 , P. R. China
- Institute of Microbiology , China Academy of Sciences , Beijing 100101 , P. R. China
| | - Baoli Zhu
- Institute of Microbiology , China Academy of Sciences , Beijing 100101 , P. R. China
| | - Tiemin Jiang
- National Engineering Center of Dairy for Maternal and Child Health , Beijing Sanyuan Foods Co. Ltd. , Beijing 100163 , P. R. China
- Beijing Engineering Research Center of Dairy , Beijing Sanyuan Foods Co. Ltd. , Beijing 100163 , P. R. China
| | - Chunying Yang
- National Engineering Center of Dairy for Maternal and Child Health , Beijing Sanyuan Foods Co. Ltd. , Beijing 100163 , P. R. China
- Beijing Engineering Research Center of Dairy , Beijing Sanyuan Foods Co. Ltd. , Beijing 100163 , P. R. China
| | - Weicang Qiao
- National Engineering Center of Dairy for Maternal and Child Health , Beijing Sanyuan Foods Co. Ltd. , Beijing 100163 , P. R. China
- Beijing Engineering Research Center of Dairy , Beijing Sanyuan Foods Co. Ltd. , Beijing 100163 , P. R. China
| | - Juncai Hou
- College of Food Science , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Yanhui Han
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 010003 , United States
| | - Hang Xiao
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 010003 , United States
| | - Lijun Chen
- National Engineering Center of Dairy for Maternal and Child Health , Beijing Sanyuan Foods Co. Ltd. , Beijing 100163 , P. R. China
- Beijing Engineering Research Center of Dairy , Beijing Sanyuan Foods Co. Ltd. , Beijing 100163 , P. R. China
| |
Collapse
|
34
|
Kim W, Kim J, You S, Do J, Jang Y, Kim D, Lee J, Ha J, Kim HH. Qualitative and quantitative characterization of sialylated N-glycans using three fluorophores, two columns, and two instrumentations. Anal Biochem 2019; 571:40-48. [PMID: 30797744 DOI: 10.1016/j.ab.2019.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
Abstract
Sialylation can influence the stability, half-life, and immunogenicity of glycoproteins, but sialylated N-glycans are known to be difficult to analyze. Human alpha1-acid glycoprotein (AGP) is reported to have glycans that consist of sialylated N-glycans. The N-glycan profiling of AGP is qualitatively and quantitatively investigated here by UPLC and LC-ESI-MS/MS. Three fluorescent tags (AB, AA, and ProA) and two separation columns (HILIC and AEX-HILIC) were adopted to confirm and compare each analytical characteristic. The results of AA were comparable to those of the well-established AB. The qualification of ProA was notable due to its superior fluorescence intensity and ionization efficiency, and ProA showed smaller quantitative or larger-sized fragments in LC-ESI-MS/MS compared to AB and AA. However, the MS quantification of ProA was distorted because the increased sialylation level decreased the LC-ESI-MS/MS ionization efficiency. HILIC had better peak separability, AEX-HILIC had an advantage in UPLC sialylation profiling, and each isomeric glycan could be identified by both columns in LC-ESI-MS/MS. In conclusion, ProA is favored for UPLC and LC-ESI-MS/MS detection but not reliable for MS quantification. This study firstly demonstrates the qualification and quantification of sialylated N-glycans by comparing the commonly used analytical conditions with different fluorescent tags, columns, and instruments.
Collapse
Affiliation(s)
- Wooseok Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06944, South Korea
| | - Jihye Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06944, South Korea
| | - Seungkwan You
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06944, South Korea
| | - Jonghye Do
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06944, South Korea
| | - Yeonjoo Jang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06944, South Korea
| | - Donghwi Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06944, South Korea
| | - Junmyoung Lee
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06944, South Korea
| | - Jongkwan Ha
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06944, South Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06944, South Korea.
| |
Collapse
|
35
|
Houeix B, Cairns MT. Engineering of CHO cells for the production of vertebrate recombinant sialyltransferases. PeerJ 2019; 7:e5788. [PMID: 30775162 PMCID: PMC6375257 DOI: 10.7717/peerj.5788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/19/2018] [Indexed: 11/24/2022] Open
Abstract
Background Sialyltransferases (SIATs) are a family of enzymes that transfer sialic acid (Sia) to glycan chains on glycoproteins, glycolipids, and oligosaccharides. They play key roles in determining cell–cell and cell-matrix interactions and are important in neuronal development, immune regulation, protein stability and clearance. Most fully characterized SIATs are of mammalian origin and these have been used for in vitro and in vivo modification of glycans. Additional versatility could be achieved by the use of animal SIATs from other species that live in much more variable environments. Our aim was to generate a panel of stable CHO cell lines expressing a range of vertebrate SIATs with different physicochemical and functional properties. Methods The soluble forms of various animal ST6Gal and ST3Gal enzymes were stably expressed from a Gateway-modified secretion vector in CHO cells. The secreted proteins were IMAC-purified from serum-free media. Functionality of the protein was initially assessed by lectin binding to the host CHO cells. Activity of purified proteins was determined by a number of approaches that included a phosphate-linked sialyltransferase assay, HILIC-HPLC identification of sialyllactose products and enzyme-linked lectin assay (ELLA). Results A range of sialyltransferase from mammals, birds and fish were stably expressed in CHO Flp-In cells. The stable cell lines expressing ST6Gal1 modify the glycans on the surface of the CHO cells as detected by fluorescently labelled lectin microscopy. The catalytic domains, as isolated by Ni Sepharose from culture media, have enzymatic activities comparable to commercial enzymes. Sialyllactoses were identified by HILIC-HPLC on incubation of the enzymes from lactose or whey permeate. The enzymes also increased SNA-I labelling of asialofetuin when incubated in a plate format. Conclusion Stable cell lines are available that may provide options for the in vivo sialylation of glycoproteins. Proteins are active and should display a variety of biological and physicochemical properties based on the animal source of the enzyme.
Collapse
Affiliation(s)
- Benoit Houeix
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Galway, Ireland
| | - Michael T Cairns
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
36
|
Bovine colostrum-driven modulation of intestinal epithelial cells for increased commensal colonisation. Appl Microbiol Biotechnol 2019; 103:2745-2758. [PMID: 30685814 DOI: 10.1007/s00253-019-09642-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 01/04/2023]
Abstract
Nutritional intake may influence the intestinal epithelial glycome and in turn the available attachment sites for bacteria. In this study, we tested the hypothesis that bovine colostrum may influence the intestinal cell surface and in turn the attachment of commensal organisms. Human HT-29 intestinal cells were exposed to a bovine colostrum fraction (BCF) rich in free oligosaccharides. The adherence of several commensal bacteria, comprising mainly bifidobacteria, to the intestinal cells was significantly enhanced (up to 52-fold) for all strains tested which spanned species that are found across the human lifespan. Importantly, the changes to the HT-29 cell surface did not support enhanced adhesion of the enteric pathogens tested. The gene expression profile of the HT-29 cells following treatment with the BCF was evaluated by microarray analysis. Many so called "glyco-genes" (glycosyltransferases and genes involved in the complex biosynthetic pathways of glycans) were found to be differentially regulated suggesting modulation of the enzymatic addition of sugars to glycoconjugate proteins. The microarray data was further validated by means of real-time PCR. The current findings provide an insight into how commensal microorganisms colonise the human gut and highlight the potential of colostrum and milk components as functional ingredients that can potentially increase commensal numbers in individuals with lower counts of health-promoting bacteria.
Collapse
|
37
|
Abstract
Sialic acids are cytoprotectors, mainly localized on the surface of cell membranes with multiple and outstanding cell biological functions. The history of their structural analysis, occurrence, and functions is fascinating and described in this review. Reports from different researchers on apparently similar substances from a variety of biological materials led to the identification of a 9-carbon monosaccharide, which in 1957 was designated "sialic acid." The most frequently occurring member of the sialic acid family is N-acetylneuraminic acid, followed by N-glycolylneuraminic acid and O-acetylated derivatives, and up to now over about 80 neuraminic acid derivatives have been described. They appeared first in the animal kingdom, ranging from echinoderms up to higher animals, in many microorganisms, and are also expressed in insects, but are absent in higher plants. Sialic acids are masks and ligands and play as such dual roles in biology. Their involvement in immunology and tumor biology, as well as in hereditary diseases, cannot be underestimated. N-Glycolylneuraminic acid is very special, as this sugar cannot be expressed by humans, but is a xenoantigen with pathogenetic potential. Sialidases (neuraminidases), which liberate sialic acids from cellular compounds, had been known from very early on from studies with influenza viruses. Sialyltransferases, which are responsible for the sialylation of glycans and elongation of polysialic acids, are studied because of their significance in development and, for instance, in cancer. As more information about the functions in health and disease is acquired, the use of sialic acids in the treatment of diseases is also envisaged.
Collapse
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Johannis P Kamerling
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
38
|
Mineguchi Y, Miyoshi M, Taufik E, Kawamura A, Asakawa T, Suzuki I, Souma K, Okubo M, Saito T, Fukuda K, Asakuma S, Urashima T. Chemical characterization of the milk oligosaccharides of some Artiodactyla species including giraffe (Giraffa camelopardalis), sitatunga (Tragelaphus spekii), deer (Cervus nippon yesoensis) and water buffalo (Bubalus bubalis). Glycoconj J 2018; 35:561-574. [DOI: 10.1007/s10719-018-9849-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/28/2018] [Accepted: 11/05/2018] [Indexed: 11/29/2022]
|
39
|
Mank M, Welsch P, Heck AJR, Stahl B. Label-free targeted LC-ESI-MS 2 analysis of human milk oligosaccharides (HMOS) and related human milk groups with enhanced structural selectivity. Anal Bioanal Chem 2018; 411:231-250. [PMID: 30443773 DOI: 10.1007/s00216-018-1434-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 01/19/2023]
Abstract
Human milk (HM) supports the healthy development of neonates and exerts many of its beneficial effects via contained free human milk oligosaccharides (HMOS). These HMOS exhibit a complexity and structural diversity that pose a significant analytical challenge. A detailed characterization of HMOS is essential as every individual structure may have a different function/activity. Certain HMOS isomers may even fundamentally differ in their biological function, and especially their characterization by LC or LC-MS is often impaired by co-elution phenomena. Thus, more efficient analytical methodologies with enhanced structural selectivity are required. Therefore, we developed a negative ion mode LC-ESI-MS2 approach featuring straightforward sample preparation, environmentally friendly EtOH gradient elution, and enhanced, semiquantitative characterization of distinct native HMOS by multiple reaction monitoring (MRM). Our MRM-LC-MS setup takes advantage of highly selective, glycan configuration-dependent collision-induced dissociation (CID) fragments to identify individual neutral and acidic HMOS. Notably, many human milk oligosaccharide isomers could be distinguished in a retention time-independent manner. This contrasts with other contemporary MRM approaches relying on rather unspecific MRM transitions. Our method was used to determine the most abundant human milk tri-, tetra-, penta-, and hexaoses semiquantitatively in a single LC-MS assay. Detected HMO structures included fucosyllactoses (e.g., 2'-FL), lacto-N-difucotetraose (LDFT), lacto-N-tetraoses (LNTs), lacto-N-fucopentaoses (e.g., LNFP I, LNFP II and III), lacto-N-difucohexaoses (LNDFHs) as well as sialyllactoses (SLs) and tentatively assigned blood group A and B tetrasaccharides from which correct human milk type assignment could be also demonstrated. Correctness of milk typing was validated for milk groups I-IV by high pressure anion exchange chromatography (HPAEC) coupled to pulsed amperometric detection (HPAEC-PAD). Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Marko Mank
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands.
| | - Philipp Welsch
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics Division, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Bernd Stahl
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
40
|
Urakami H, Saeki M, Watanabe Y, Kawamura R, Nishizawa S, Suzuki Y, Watanabe A, Ajisaka K. Isolation and assessment of acidic and neutral oligosaccharides from goat milk and bovine colostrum for use as ingredients of infant formulae. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Ryan JT, Slattery H, Hickey RM, Marotta M. Bovine milk oligosaccharides as anti-adhesives against the respiratory tract pathogen Streptococcus pneumoniae. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Robinson RC, Poulsen NA, Barile D. Multiplexed bovine milk oligosaccharide analysis with aminoxy tandem mass tags. PLoS One 2018; 13:e0196513. [PMID: 29698512 PMCID: PMC5919578 DOI: 10.1371/journal.pone.0196513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/09/2018] [Indexed: 12/29/2022] Open
Abstract
Milk oligosaccharides (OS) are a key factor that influences the infant gut microbial composition, and their importance in promoting healthy infant development and disease prevention is becoming increasingly apparent. Investigating the structures, properties, and sources of these compounds requires a host of complementary analytical techniques. Relative compound quantification by mass spectral analysis of isobarically labeled samples is a relatively new technique that has been used mainly in the proteomics field. Glycomics applications have so far focused on analysis of protein-linked glycans, while analysis of free milk OS has previously been conducted only on analytical standards. In this paper, we extend the use of isobaric glycan tags to the analysis of bovine milk OS by presenting a method for separation of labeled OS on a porous graphitized carbon liquid chromatographic column with subsequent analysis by quadrupole time-of-flight tandem mass spectrometry. Abundances for 15 OS extracted from mature bovine milk were measured, with replicate injections providing coefficients of variation below 15% for most OS. Isobaric labeling improved ionization efficiency for low-abundance, high-molecular weight fucosylated OS, which are known to exist in bovine milk but have been only sporadically reported in the literature. We compared the abundances of four fucosylated OS in milk from Holstein and Jersey cattle and found that three of the compounds were more abundant in Jersey milk, which is in general agreement with a previous study. This novel method represents an advancement in our ability to characterize milk OS and provides the advantages associated with isobaric labeling, including reduced instrumental analysis time and increased analyte ionization efficiency. This improved ability to measure differences in bioactive OS abundances in large datasets will facilitate exploration of OS from all food sources for the purpose of developing health-guiding products for infants, immune-compromised elderly, and the population at large.
Collapse
Affiliation(s)
- Randall C. Robinson
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States of America
| | | | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States of America
- Foods for Health Institute, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
O'Sullivan A, Salcedo J, Rubert J. Advanced analytical strategies for measuring free bioactive milk sugars: from composition and concentrations to human metabolic response. Anal Bioanal Chem 2018. [PMID: 29536151 DOI: 10.1007/s00216-018-0913-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our daily food intake provides the nutrients to maintain health. However, in addition to the nutritional values, food can promote health and be beneficial in preventing diseases. Human milk is a unique food source that contains essential nutrients in the right balance and other bioactive factors that make it the ideal food for all healthy term infants. Human milk oligosaccharides (HMOs) play an important role in health, at several levels: acting as prebiotics promoting the growth of beneficial bacterial strains, preventing the growth of pathogenic bacteria in the intestine, and modulating the immune response against bacterial infections. However, despite their biological relevance and the advances made in the analytical field, very few studies have been carried out to better understand HMOs bioactivity mechanisms or to examine human metabolic response to dietary supplementation. This review describes the state-of-the-art of glycomics strategies, recent analytical methods, and future trends for the identification and discovery of bioactive sugars, the known mechanisms of action, and discusses findings of some recent human intervention trials.
Collapse
Affiliation(s)
- Aifric O'Sullivan
- UCD Institute for Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jaime Salcedo
- Department of Food Science & Technology, University of California-Davis, One Shields Av, Davis, CA, 95616, USA.,Chemistry Product Development, Waters Technologies Ireland Ltd., Wexford Business Park, Drinagh, Ireland
| | - Josep Rubert
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Italy.
| |
Collapse
|
44
|
Yan J, Ding J, Jin G, Yu D, Yu L, Long Z, Guo Z, Chai W, Liang X. Profiling of Sialylated Oligosaccharides in Mammalian Milk Using Online Solid Phase Extraction-Hydrophilic Interaction Chromatography Coupled with Negative-Ion Electrospray Mass Spectrometry. Anal Chem 2018; 90:3174-3182. [DOI: 10.1021/acs.analchem.7b04468] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jingyu Yan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian 116023, China
| | - Junjie Ding
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaowa Jin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian 116023, China
| | - Dongping Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian 116023, China
| | - Zhen Long
- Thermofisher Scientific Corporation, Beijing 100080, China
| | - Zhimou Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian 116023, China
| | - Wengang Chai
- Glycosciences Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Xinmiao Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian 116023, China
| |
Collapse
|
45
|
Struwe WB, Baldauf C, Hofmann J, Rudd PM, Pagel K. Ion mobility separation of deprotonated oligosaccharide isomers - evidence for gas-phase charge migration. Chem Commun (Camb) 2018; 52:12353-12356. [PMID: 27711324 DOI: 10.1039/c6cc06247d] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There has been increasing evidence that certain isomeric glycans can be separated efficiently by ion mobility-mass spectrometry when deprotonated ions are analyzed. To better understand the fundamentals behind these separations, we here investigate the impact of ionisation mode and adduct formation using IM-MS, density-functional theory and ab initio molecular dynamics.
Collapse
Affiliation(s)
- W B Struwe
- National Institute of Bioprocessing, Research and Training (NIBRT), Fosters Avenue, Dublin, Ireland.
| | - C Baldauf
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.
| | - J Hofmann
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.
| | - P M Rudd
- National Institute of Bioprocessing, Research and Training (NIBRT), Fosters Avenue, Dublin, Ireland.
| | - K Pagel
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany. and Institut für Chemie und Biochemie der Freien Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| |
Collapse
|
46
|
de Moura Bell JMLN, Cohen JL, de Aquino LFMC, Lee H, de Melo Silva VL, Liu Y, Domizio P, Barile D. An Integrated Bioprocess to Recover Bovine Milk Oligosaccharides from Colostrum Whey Permeate. J FOOD ENG 2018; 216:27-35. [PMID: 29217872 PMCID: PMC5714328 DOI: 10.1016/j.jfoodeng.2017.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A major challenge in isolating oligosaccharides from dairy streams is to enrich oligosaccharides while simultaneously reducing the content of simple sugars (mono- and disaccharides) that do not possess the desired prebiotic functions. An integrated approach based on optimized conditions that favor maximum lactose hydrolysis, monosaccharide fermentation and oligosaccharides recovery by nanofiltration was developed. Upon complete lactose hydrolysis and fermentation of the monosaccharides by yeast, nanofiltration of fermented whey permeate from colostrum enabled the recovery of 95% of the oligosaccharides at high purity. While the number of commercially available standards has limited the quantification of only a few sialylated oligosaccharides, the application of both high performance anion-exchange chromatography with pulsed amperometric detection and mass spectrometry provided a complete profile of the final product. Approximately 85% of the oligosaccharides in the final concentrate were sialylated, with the remainder being neutral.
Collapse
Affiliation(s)
- Juliana M. L. N. de Moura Bell
- Department of Food Science and Technology, University of California,
Davis, One Shields Avenue, Davis, CA, 95616, United States
- Foods for Health Institute, University of California, Davis, One
Shields Avenue, Davis, CA, 95616, United States
| | - Joshua L. Cohen
- Department of Food Science and Technology, University of California,
Davis, One Shields Avenue, Davis, CA, 95616, United States
| | - Leticia F. M. C. de Aquino
- Department of Food Science and Technology, University of California,
Davis, One Shields Avenue, Davis, CA, 95616, United States
| | - Hyeyoung Lee
- Department of Food Science and Technology, University of California,
Davis, One Shields Avenue, Davis, CA, 95616, United States
| | - Vitor L. de Melo Silva
- Department of Food Science and Technology, University of California,
Davis, One Shields Avenue, Davis, CA, 95616, United States
| | - Yan Liu
- Department of Food Science and Technology, University of California,
Davis, One Shields Avenue, Davis, CA, 95616, United States
| | - Paola Domizio
- Department of Food Science and Technology, University of California,
Davis, One Shields Avenue, Davis, CA, 95616, United States
| | - Daniela Barile
- Department of Food Science and Technology, University of California,
Davis, One Shields Avenue, Davis, CA, 95616, United States
- Foods for Health Institute, University of California, Davis, One
Shields Avenue, Davis, CA, 95616, United States
| |
Collapse
|
47
|
Park H, Kim J, Lee YK, Kim W, You SK, Do J, Jang Y, Oh DB, Il Kim J, Kim HH. Four unreported types of glycans containing mannose-6-phosphate are heterogeneously attached at three sites (including newly found Asn 233) to recombinant human acid alpha-glucosidase that is the only approved treatment for Pompe disease. Biochem Biophys Res Commun 2017; 495:2418-2424. [PMID: 29274340 DOI: 10.1016/j.bbrc.2017.12.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 11/25/2022]
Abstract
Myozyme is a recombinant human acid alpha-glucosidase (rhGAA) that is currently the only drug approved for treating Pompe disease, and its low efficacy means that a high dose is required. Mannose-6-phosphate (M6P) glycosylation on rhGAA is a key factor influencing lysosomal enzyme targeting and the efficacy of enzyme replacement therapy (ERT); however, its complex structure and relatively small quantity still remain to be characterized. This study investigated M6P glycosylation on rhGAA using liquid chromatography (LC)-electrospray ionization (ESI)-high-energy collisional dissociation (HCD) tandem mass spectrometry (MS/MS). The glycans released from rhGAA were labeled with procainamide to improve mass ionization efficiency and the sensitivity of MS/MS. The relative quantities (%) of 78 glycans were obtained, and 1.0% of them were glycans containing M6P (M6P glycans). These were categorized according to their structure into 4 types: 3 newly found ones, comprising high-mannose-type M6P glycans capped with N-acetylglucosamine (GlcNAc) (2 variants, 17.5%), hybrid-type M6P glycans (2 variants, 11.2%), and hybrid-type M6P glycans capped with GlcNAc (3 variants, 6.9%), as well as high-mannose-type M6P glycans (3 variants, 64.4%). HCD-MS/MS spectra identified six distinctive M6P-derived oxonium ions. The glycopeptides obtained from protease-digested rhGAA were analyzed using nano-LC-ESI-HCD-MS/MS, and the extracted-ion chromatograms of M6P-derived oxonium ions confirmed three M6P glycosylation sites comprising Asn 140, Asn 233 (newly found), and Asn 470 attached heterogeneously to nine M6P glycans (two types), eight M6P glycans (four types), and seven M6P glycans (two types), respectively. This is the first study of rhGAA to differentiate M6P glycans and identify their attachment sites, despite rhGAA already being an approved drug for Pompe disease.
Collapse
Affiliation(s)
- Heajin Park
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06944, South Korea
| | - Jihye Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06944, South Korea
| | - Young Kwang Lee
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06944, South Korea
| | - Wooseok Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06944, South Korea
| | - Seung Kwan You
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06944, South Korea
| | - Jonghye Do
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06944, South Korea
| | - Yeonjoo Jang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06944, South Korea
| | - Doo-Byung Oh
- Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jae Il Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, South Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06944, South Korea.
| |
Collapse
|
48
|
Ganzorig K, Asakawa T, Sasaki M, Saito T, Suzuki I, Fukuda K, Urashima T. Identification of sialyl oligosaccharides including an oligosaccharide nucleotide in colostrum of an addax (Addax nasomaculatus) (Subfamily Antelopinae). Anim Sci J 2017; 89:167-175. [PMID: 28881070 DOI: 10.1111/asj.12899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/14/2017] [Indexed: 11/30/2022]
Abstract
Mammalian milk/colostrum usually contains milk oligosaccharides along with the predominant lactose. Although milk oligosaccharides of a variety of Bovidae species including cow, sheep and goat have been characterized, those of the addax, an Antelopinae species of the Bovidae, have not as yet been clarified. In this study, several sialyl oligosaccharides were purified from a sample of addax colostrum and characterized as follows: Neu5Ac(α2-8)Neu5Ac(α2-3)Gal(β1-4)Glc, Neu5Gc(α2-8)Neu5Gc(α2-3)Gal(β1-4)Glc, Neu5Ac(α2-3)Gal(β1-4)Glc, Neu5Ac(α2-6)Gal(β1-4)GlcNAc, Neu5Gc(α2-3)Gal(β1-4)Glc, Neu5Gc(α2-6)Gal(β1-4)Glc, Neu5Gc(α2-6)Gal(β1-4)GlcNAc. In addition, an oligosaccharide nucleotide Neu5Gc(α2-6)Gal(β1-4)GlcNAcα1-UDP was characterized. Molecular species of a variety of sialyl oligosaccharides found in milk and colostrum of these Bovidae were compared.
Collapse
Affiliation(s)
- Khuukhenbaatar Ganzorig
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Takuya Asakawa
- Himeji Central Park, Toyotomicho Konandai, Himeji, Hyogo, Japan
| | - Masashi Sasaki
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tadao Saito
- Graduate School of Agriculture, Tohoku University, Sendai, Miyagi, Japan
| | - Isao Suzuki
- Himeji Central Park, Toyotomicho Konandai, Himeji, Hyogo, Japan
| | - Kenji Fukuda
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tadasu Urashima
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
49
|
Analytical characterization of human milk oligosaccharides - potential applications in pharmaceutical analysis. J Pharm Biomed Anal 2017; 146:168-178. [PMID: 28881314 DOI: 10.1016/j.jpba.2017.08.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/15/2022]
Abstract
Human breast milk is the gold standard for infant feeding and the best possible nourishment a new-born could have. Breastfeeding is the natural way to provide optimal nutritional, immunological and emotional nurturing for the healthy growth and development of infants. Human milk is a complex and dynamic biofluid comprised of many hundreds to thousands of distinct bioactive structures, among which one of the most abundant substances are the non-conjugated complex carbohydrates referred to as human milk oligosaccharides (HMOs). Due to their structural diversity and abundance, HMOs possess many beneficial biological functions. In order to understand human milk composition and HMO functions, state-of-the-art glycomic methods are inevitable. The industrial, large scale chemoenzymatic production of the most abundant HMOs became a reality in the last years and it evokes the need for straightforward and genuine analytical procedures to monitor the synthetic process and the quality of the products. It is obvious, that HMOs represent the next breakthrough in infant nutrition, as the addition of HMOs (such as 2'-fucosyllactose or lacto-N-neotetraose) to infant- and follow-on formulas, processed cereal-based food and baby foods for infants and young children etc. will revolutionize this field. This review highlights the potential applications of HMOs in the (bio)pharmaceutical industry, also summarizes the analytical methods available for the characterization of HMOs. An overview of the structure and function of HMOs along with their determination methods in complex matrices are provided. Various separation methods including liquid- and gas chromatography and capillary electrophoresis for the characterization and novel approaches for the quantitation of HMOs are discussed.
Collapse
|
50
|
Bode L, Contractor N, Barile D, Pohl N, Prudden AR, Boons GJ, Jin YS, Jennewein S. Overcoming the limited availability of human milk oligosaccharides: challenges and opportunities for research and application. Nutr Rev 2017; 74:635-44. [PMID: 27634978 DOI: 10.1093/nutrit/nuw025] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are complex sugars highly abundant in human milk but currently not present in infant formula. Rapidly accumulating evidence from in vitro and in vivo studies, combined with epidemiological associations and correlations, suggests that HMOs benefit infants through multiple mechanisms and in a variety of clinical contexts. Until recently, however, research on HMOs has been limited by an insufficient availability of HMOs. Most HMOs are found uniquely in human milk, and thus far it has been prohibitively tedious and expensive to isolate and synthesize them. This article reviews new strategies to overcome this lack of availability by generating HMOs through chemoenzymatic synthesis, microbial metabolic engineering, and isolation from human donor milk or dairy streams. Each approach has its advantages and comes with its own challenges, but combining the different methods and acknowledging their limitations creates new opportunities for research and application with the goal of improving maternal and infant health.
Collapse
Affiliation(s)
- Lars Bode
- L. Bode is with the Department of Pediatrics, Mother Milk Infant Center of Research Excellence (MoMI CoRE), University of California, San Diego, La Jolla, California, USA. N. Contractor is with Metagenics, Inc, Gig Harbor, Washington, USA. D. Barile is with the Department of Food Science and Technology, University of California, Davis, Davis, California, USA. N. Pohl is with the Department of Chemistry, Indiana University, Bloomington, Indiana, USA. A.R. Prudden and G.-J. Boons are with the Department of Chemistry and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA. Y.-S. Jin is with the Department of Food Science and Human Nutrition, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. S. Jennewein is with Jennewein Biotechnologie GmbH, Rheinbreitbach, Rhineland Palatinate, Germany.
| | - Nikhat Contractor
- L. Bode is with the Department of Pediatrics, Mother Milk Infant Center of Research Excellence (MoMI CoRE), University of California, San Diego, La Jolla, California, USA. N. Contractor is with Metagenics, Inc, Gig Harbor, Washington, USA. D. Barile is with the Department of Food Science and Technology, University of California, Davis, Davis, California, USA. N. Pohl is with the Department of Chemistry, Indiana University, Bloomington, Indiana, USA. A.R. Prudden and G.-J. Boons are with the Department of Chemistry and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA. Y.-S. Jin is with the Department of Food Science and Human Nutrition, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. S. Jennewein is with Jennewein Biotechnologie GmbH, Rheinbreitbach, Rhineland Palatinate, Germany
| | - Daniela Barile
- L. Bode is with the Department of Pediatrics, Mother Milk Infant Center of Research Excellence (MoMI CoRE), University of California, San Diego, La Jolla, California, USA. N. Contractor is with Metagenics, Inc, Gig Harbor, Washington, USA. D. Barile is with the Department of Food Science and Technology, University of California, Davis, Davis, California, USA. N. Pohl is with the Department of Chemistry, Indiana University, Bloomington, Indiana, USA. A.R. Prudden and G.-J. Boons are with the Department of Chemistry and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA. Y.-S. Jin is with the Department of Food Science and Human Nutrition, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. S. Jennewein is with Jennewein Biotechnologie GmbH, Rheinbreitbach, Rhineland Palatinate, Germany
| | - Nicola Pohl
- L. Bode is with the Department of Pediatrics, Mother Milk Infant Center of Research Excellence (MoMI CoRE), University of California, San Diego, La Jolla, California, USA. N. Contractor is with Metagenics, Inc, Gig Harbor, Washington, USA. D. Barile is with the Department of Food Science and Technology, University of California, Davis, Davis, California, USA. N. Pohl is with the Department of Chemistry, Indiana University, Bloomington, Indiana, USA. A.R. Prudden and G.-J. Boons are with the Department of Chemistry and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA. Y.-S. Jin is with the Department of Food Science and Human Nutrition, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. S. Jennewein is with Jennewein Biotechnologie GmbH, Rheinbreitbach, Rhineland Palatinate, Germany
| | - Anthony R Prudden
- L. Bode is with the Department of Pediatrics, Mother Milk Infant Center of Research Excellence (MoMI CoRE), University of California, San Diego, La Jolla, California, USA. N. Contractor is with Metagenics, Inc, Gig Harbor, Washington, USA. D. Barile is with the Department of Food Science and Technology, University of California, Davis, Davis, California, USA. N. Pohl is with the Department of Chemistry, Indiana University, Bloomington, Indiana, USA. A.R. Prudden and G.-J. Boons are with the Department of Chemistry and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA. Y.-S. Jin is with the Department of Food Science and Human Nutrition, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. S. Jennewein is with Jennewein Biotechnologie GmbH, Rheinbreitbach, Rhineland Palatinate, Germany
| | - Geert-Jan Boons
- L. Bode is with the Department of Pediatrics, Mother Milk Infant Center of Research Excellence (MoMI CoRE), University of California, San Diego, La Jolla, California, USA. N. Contractor is with Metagenics, Inc, Gig Harbor, Washington, USA. D. Barile is with the Department of Food Science and Technology, University of California, Davis, Davis, California, USA. N. Pohl is with the Department of Chemistry, Indiana University, Bloomington, Indiana, USA. A.R. Prudden and G.-J. Boons are with the Department of Chemistry and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA. Y.-S. Jin is with the Department of Food Science and Human Nutrition, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. S. Jennewein is with Jennewein Biotechnologie GmbH, Rheinbreitbach, Rhineland Palatinate, Germany
| | - Yong-Su Jin
- L. Bode is with the Department of Pediatrics, Mother Milk Infant Center of Research Excellence (MoMI CoRE), University of California, San Diego, La Jolla, California, USA. N. Contractor is with Metagenics, Inc, Gig Harbor, Washington, USA. D. Barile is with the Department of Food Science and Technology, University of California, Davis, Davis, California, USA. N. Pohl is with the Department of Chemistry, Indiana University, Bloomington, Indiana, USA. A.R. Prudden and G.-J. Boons are with the Department of Chemistry and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA. Y.-S. Jin is with the Department of Food Science and Human Nutrition, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. S. Jennewein is with Jennewein Biotechnologie GmbH, Rheinbreitbach, Rhineland Palatinate, Germany
| | - Stefan Jennewein
- L. Bode is with the Department of Pediatrics, Mother Milk Infant Center of Research Excellence (MoMI CoRE), University of California, San Diego, La Jolla, California, USA. N. Contractor is with Metagenics, Inc, Gig Harbor, Washington, USA. D. Barile is with the Department of Food Science and Technology, University of California, Davis, Davis, California, USA. N. Pohl is with the Department of Chemistry, Indiana University, Bloomington, Indiana, USA. A.R. Prudden and G.-J. Boons are with the Department of Chemistry and the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA. Y.-S. Jin is with the Department of Food Science and Human Nutrition, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. S. Jennewein is with Jennewein Biotechnologie GmbH, Rheinbreitbach, Rhineland Palatinate, Germany
| |
Collapse
|