1
|
McCulloch JB, Gassmann AJ. Effects of combining soil-applied insecticide and Bt corn for integrated pest management and resistance management of western corn rootworm (Coleoptera: Chrysomelidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1884-1891. [PMID: 38986518 PMCID: PMC11473038 DOI: 10.1093/jee/toae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
The western corn rootworm, (Diabrotica virgifera virgifera LeConte, Coleoptera: Chrysomelidae), is a serious pest of corn (Zea mays Linnaeus, Cyperales: Poaceae) in the midwestern United States. Management practices for corn rootworm larvae include crop rotation, transgenic corn producing insecticidal toxins from the bacterium Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) (Bt), and soil-applied insecticides. The extent to which combining soil-applied insecticide with Bt corn would be beneficial from the perspective of insect resistance management (IRM) or integrated pest management (IPM) remains uncertain. We conducted a 3-yr field study to characterize the implications of combining a soil-applied insecticide and Bt corn for IRM and IPM of western corn rootworm. Experimental treatments were Bt corn, a soil-applied insecticide, the combination of these factors, and an experimental control in which both factors were absent. Data were collected on root injury to corn by rootworm, survival to adulthood, adult size, and emergence time for western corn rootworm. We found that mortality caused by the soil-applied insecticide was insufficient to delay resistance to Bt corn. While combining Bt corn and a soil-applied insecticide may provide a short-term economic benefit, additional research is needed to determine appropriate economic thresholds for combining these tactics. Additionally, combining a soil-applied insecticide and Bt corn would not be sustainable over multiple growing seasons because of its potential to rapidly select for Bt resistance. In general, a more sustainable IRM strategy for rootworm management would include using crop rotation and alternating between non-Bt corn with soil-applied insecticide and Bt corn without soil-applied insecticide.
Collapse
Affiliation(s)
- John B McCulloch
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| | - Aaron J Gassmann
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| |
Collapse
|
2
|
Ruan J, Yang Y, Carrière Y, Wu Y. Development of resistance monitoring for Helicoverpa armigera (Lepidoptera: Noctuidae) resistance to pyramided Bt cotton in China. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2093-2099. [PMID: 39186571 DOI: 10.1093/jee/toae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
The cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), is a significant cotton pest worldwide. Bacillus thuringiensis (Bt) cotton producing Cry1Ac has been used since 1997 for the control of this pest in China and a significant increase in H. armigera resistance to Cry1Ac has occurred in northern China. To mitigate resistance evolution, it is necessary to develop and plant pyramided 2- and 3-toxin Bt cotton to replace Cry1Ac cotton. For sustainable use of pyramided Bt cotton, we used diet overlay bioassays to measure the baseline susceptibility of H. armigera to Cry2Ab in 33 populations collected in 2017, 2018, and 2021 in 12 locations from major cotton-producing areas of China. The lethal concentration killing 50% (LC50) or 99% (LC99) of individuals from the populations ranged from 0.030 to 0.138 µg/cm2 and 0.365 to 2.964 µg/cm2, respectively. The ratio of the LC50 for the most resistant and susceptible population was 4.6, indicating moderate among-population variability in resistance. The susceptibility of H. armigera to Cry2Ab did not vary significantly over years. A diagnostic concentration of 2 µg/cm2 was calculated as twice the LC99 from an analysis of pooled data for the field-collected populations. This concentration discriminated well between susceptible and resistant individuals, as it killed all larvae from a susceptible laboratory strain and 0%, 0%, and 23% of larvae from 3 laboratory strains with > 100-fold resistance to Cry2Ab. These baseline susceptibility data and diagnostic concentration for Cry2Ab will be useful for monitoring the evolution of H. armigera resistance to pyramided Bt cotton in China.
Collapse
Affiliation(s)
- Jianqiu Ruan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Yang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yves Carrière
- Department of Entomology, The University of Arizona, Tucson, AZ, USA
| | - Yidong Wu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Gupta M, Kumar H, Debbarma A, Kaur S. Unraveling the abundance of vip3-type genes in Indian Bacillus thuringiensis across the agroclimatic landscape and impact of amino acid substitutions for safer agriculture. Gene 2024; 933:148953. [PMID: 39299531 DOI: 10.1016/j.gene.2024.148953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/26/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Vegetative insecticidal protein (vip) genes of Bacillus thuringiensis (Bt) are candidates for gene pyramiding in the resistance management of pests. The prevalence of vip genes in Bt isolates is relatively under-explored. Bt isolates recovered from 29 diverse sources in nine agro-climatic zones of India were screened for the presence of vip3-type genes by PCR with 4 sets of oligonucleotide primers. Out of 155 Bt isolates, 70.32 % (109) and 44.52 % (69) isolates were positive for amplification of partial vip3-type genes with primer sets 1 and 4, respectively. The primer set-2 was found to be more efficient for amplifying full-length genes (29.03 % /45 isolates) as compared with primer set-3 (3.23 %/ 5 isolates), also corroborated in the amplification of full-length vip3 genes in ten Bt BGSC strains used as reference. Frequency analysis revealed presence of vip3 genes in Bt isolates across all agro-climatic zones. Thus, Indian Bt isolates from diverse sources have a rich repertoire of vip3-type genes. Our study reports the highest number (45) of full-length vip3-type genes detected in a native Bt isolates collection, demonstrating enrichment of Indian Bt isolates for vip3 genes. Twelve of these genes have been cloned, sequenced, and out of these, six were found to be effective against Helicoverpa armigera in our laboratory previously. Comparison of substitutions in deduced amino acids sequence of these genes and expression of Vip3 proteins in SDS-PAGE analysis of selected native Bt isolates positive for full-length vip3-type genes indicated their biopesticidal potential.
Collapse
Affiliation(s)
- Mamta Gupta
- ICAR-National Institute of Plant Biotechnology, PUSA Campus, New Delhi 110012, India; ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, Punjab 141004, India
| | - Harish Kumar
- Punjab Agricultural University, Regional Research Station, Faridkot, Punjab 151203, India
| | - Ashika Debbarma
- ICAR-National Institute of Plant Biotechnology, PUSA Campus, New Delhi 110012, India
| | - Sarvjeet Kaur
- ICAR-National Institute of Plant Biotechnology, PUSA Campus, New Delhi 110012, India.
| |
Collapse
|
4
|
Lázaro-Berenguer M, Ferré J, Hernández-Martínez P. Receptor interactions of protoxin and activated Vip3Aa structural conformations in Spodoptera exigua. PEST MANAGEMENT SCIENCE 2024. [PMID: 39123331 DOI: 10.1002/ps.8341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND The Vip3Aa insecticidal protein, produced by Bacillus thuringiensis, has been effectively used in commercial Bt-crops to manage lepidopteran pests. Upon ingestion by larvae, the protoxin is processed by midgut proteases into the activated protein and binds specifically to its receptors in the midgut, leading to insect mortality. Cryo-EM resolution of the trypsin-processed Vip3Aa protein unveiled structural remodelling of the N-terminal region during the transition from protoxin to activated protein. This conformational change has been demonstrated to be crucial for toxicity against Spodoptera exigua larvae, a major global lepidopteran pest. In this study, we investigated the relevance of the structural remodelling for the specific binding to midgut receptors. RESULTS We conducted in vitro binding assays with radiolabelled proteins and brush border membrane vesicles (BBMV) from S. exigua, employing structural mutants that lock the protein in either its protoxin or its activated conformation. Our results indicate that both structural stages of the protein share binding sites in the midgut epithelium. Moreover, in vivo competition assays revealed that Vip3Aa is able to bind to functional receptors in S. exigua larvae both as protoxin and as activated protein. CONCLUSION Altogether, our findings point to both structural conformations contributing to receptor binding. In vivo, either spontaneous structural shift upon proteolytic cleavage or receptor-mediated remodelling could be occurring. However, the timing and context in which the conformational change occurs could influence membrane insertion and toxicity. Our results show the complex interplay between proteolytic processing, protein structure and receptor interactions in Vip3Aa's toxicity. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Maria Lázaro-Berenguer
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Juan Ferré
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | | |
Collapse
|
5
|
McCulloch JB, Gassmann AJ. Larval density-dependent mortality of western corn rootworm (Coleoptera: Chrysomelidae) in Bt and non-Bt maize and implications on dose calculations †. PEST MANAGEMENT SCIENCE 2024; 80:4034-4043. [PMID: 38563449 DOI: 10.1002/ps.8110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Transgenic crops producing insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) have been used to manage insect pests for nearly 30 years. Dose of a Bt crop is key to assessing the risk of resistance evolution because it affects the heritability of resistance traits. Western corn rootworm (Diabrotica virgifera virgifera, LeConte), a major pest of maize, has evolved resistance to all commercially available Bt traits targeting it, and threatens resistance to future transgenic traits. Past research shows the dose of Bt maize targeting western corn rootworm can be confounded by larval density-dependent mortality. We conducted a 2-year field study at two locations to quantify larval density-dependent mortality in Bt and non-Bt maize. We used these results to calculate dose for our method and compared it to three previously published methods. Additionally, adult emergence and root injury were analyzed for predicting initial egg density. RESULTS Increased pest density caused greater proportions of larvae to die in Bt maize than in non-Bt maize. All methods for calculating dose produced values less than high-dose, and stochastic variation had the greatest impact on dose at high and low pest densities. Our method for calculating dose did not produce values positively correlated with pest density while the three other methods did. CONCLUSION To achieve the most accurate calculation of dose for transgenic maize targeting western corn rootworm, density-dependent mortality should be taken into account for both transgenic and non-transgenic maize and assessed at moderate pest densities. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- John B McCulloch
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| | - Aaron J Gassmann
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| |
Collapse
|
6
|
Wang L, Xu M, He L, Wei W, Xu D, Cong S, Liu K, Wan P. Mutation in PgABCC2 confers low-level resistance to Cry1Ac in pink bollworm. PEST MANAGEMENT SCIENCE 2024; 80:3326-3333. [PMID: 38380740 DOI: 10.1002/ps.8036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND With the increasing incidence of pest resistance to transgenic crops producing Bacillus thuringiensis (Bt) proteins in the field, elucidating the molecular basis of resistance is important for monitoring, delaying and countering pest resistance. Previous work revealed that mutation or down-regulated expression of the cadherin gene (PgCad1) is associated with pink bollworm (Pectinophora gossypiella) resistance to Cry1Ac, and 20 mutant PgCad1 alleles (r1-r20) were characterized. Here, we tested the hypothesis that the ABC transporter PgABCC2 is a functional receptor for the Bt toxin Cry1Ac and that a mutation is associated with resistance. RESULTS We identified and characterized the first resistance allele (rC2) of PgABCC2 in the laboratory-selected Cry1Ac-resistant strain AQ-C2 of pink bollworm. The rC2 allele had a one-base deletion in exon20, resulting in a frameshift and the introduction of a premature stop codon. This resulting PgABCC2 protein had a truncated C-terminus, including the loss of the NBD2 domain. AQ-C2 exhibited 20.2-fold greater resistance to Cry1Ac than the susceptible strain, and its inheritance of Cry1Ac resistance was recessive and genetically linked to PgABCC2. When produced in cultured insect cells, recombinant wild-type and rC2 mutant PgABCC2 proteins localized within the cell plasma membrane, although substantial cytoplasmic retention was also observed for the mutant protein, while the mutant PgABCC2 caused a 13.9-fold decrease in Cry1Ac toxicity versus the wild-type PgABCC2. CONCLUSIONS PgABCC2 is a functional receptor of Cry1Ac and the loss of its carboxyl terminus (including its NBD2 domain) confers low-level resistance to Cry1Ac in both larvae and in cultured cells. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Min Xu
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Lu He
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Wei Wei
- Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan, China
| | - Dong Xu
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shengbo Cong
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Peng Wan
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
7
|
Dagar VS, Mishra M, Sharma A, Sankar M, Goyal S, Pal R, Kumar S. Ascertaining variations in the activity of larval midgut enzymes of Helicoverpa armigera by dietary emamectin benzoate through biochemical and in silico docking study. CHEMOSPHERE 2024; 359:142288. [PMID: 38750729 DOI: 10.1016/j.chemosphere.2024.142288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
Helicoverpa armigera, a ubiquitous polyphagous pest, poses a significant threat to global agriculture, causing substantial economic losses and demonstrating resistance to synthetic pesticides. This study investigates the potential of emamectin benzoate (EMB), an avermectin derivative, as an effective control agent against H. armigera. The larvae of the NBII-MP-NOC-01 strain of H. armigera were reared on an artificial diet. The impact of dietary EMB was examined on four midgut enzymes; alanine aminotransferase (ALT), aspartate aminotransferase (AST), acid phosphatase (ACP), and alkaline phosphatase (ALP). Results showed a dose-dependent and time-dependent reduction in ALT and AST activity, while an initial increase and subsequent decline in ACP and ALP activity at higher EMB concentrations. Computational modelling of enzyme structures and molecular docking studies revealed differential binding of EMB with the midgut enzymes. The strongest interaction was observed between EMB and ALT residues, contrasting with weakest interactions observed with AST. The study also showed that decreased activity of transaminases in H. armigera caused by EMB may be because of stability-activity trade-off, while in phosphatases reverse may be the case. This research provides crucial insights into the biochemical responses and the intricate insecticide-enzyme interactions in H. armigera caused by EMB exposure. This study lays the foundation for further research aimed at developing environmentally friendly approaches for managing H. armigera, addressing the challenges associated with conventional pesticides.
Collapse
Affiliation(s)
- Vinay Singh Dagar
- Department of Zoology, Acharya Narendra Dev College (University of Delhi), Govindpuri, New Delhi, India; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Sector-3, Dwarka, New Delhi, India.
| | - Monika Mishra
- Department of Zoology, Acharya Narendra Dev College (University of Delhi), Govindpuri, New Delhi, India.
| | - Aarti Sharma
- Galgotias University, School of Biological and Life Sciences, Greater Noida, Uttar Pradesh, India.
| | - Manu Sankar
- Department of Zoology, Acharya Narendra Dev College (University of Delhi), Govindpuri, New Delhi, India.
| | - Shubham Goyal
- Department of Microbiology, University of Manitoba, Winnipeg City, Manitoba Province, Canada.
| | - Ranjan Pal
- Department of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| | - Sarita Kumar
- Department of Zoology, Acharya Narendra Dev College (University of Delhi), Govindpuri, New Delhi, India.
| |
Collapse
|
8
|
Long L, Xu FC, Yuan M, Shang SZ, Song HG, Zhao JR, Hu GY, Zhang ZN, Zhao XT, Ma JY, Hussain A, Wang P, Cai YF, Jin SX, Gao W. GhHAM regulates GoPGF-dependent gland development and contributes to broad-spectrum pest resistance in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:879-894. [PMID: 38923085 DOI: 10.1111/tpj.16803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 06/28/2024]
Abstract
Cotton is a globally cultivated crop, producing 87% of the natural fiber used in the global textile industry. The pigment glands, unique to cotton and its relatives, serve as a defense structure against pests and pathogens. However, the molecular mechanism underlying gland formation and the specific role of pigment glands in cotton's pest defense are still not well understood. In this study, we cloned a gland-related transcription factor GhHAM and generated the GhHAM knockout mutant using CRISPR/Cas9. Phenotypic observations, transcriptome analysis, and promoter-binding experiments revealed that GhHAM binds to the promoter of GoPGF, regulating pigment gland formation in cotton's multiple organs via the GoPGF-GhJUB1 module. The knockout of GhHAM significantly reduced gossypol production and increased cotton's susceptibility to pests in the field. Feeding assays demonstrated that more than 80% of the cotton bollworm larvae preferred ghham over the wild type. Furthermore, the ghham mutants displayed shorter cell length and decreased gibberellins (GA) production in the stem. Exogenous application of GA3 restored stem cell elongation but not gland formation, thereby indicating that GhHAM controls gland morphogenesis independently of GA. Our study sheds light on the functional differentiation of HAM proteins among plant species, highlights the significant role of pigment glands in influencing pest feeding preference, and provides a theoretical basis for breeding pest-resistant cotton varieties to address the challenges posed by frequent outbreaks of pests.
Collapse
Affiliation(s)
- Lu Long
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Fu-Chun Xu
- Changzhi Medical College, Changzhi, Shanxi, 046000, P.R. China
| | - Man Yuan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Shen-Zhai Shang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Hao-Ge Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Jing-Ruo Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Gai-Yuan Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
- Sanya Institute of Henan University, Sanya, Hainan, 572024, P.R. China
| | - Zhen-Nan Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Xiao-Tong Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Jia-Yi Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Amjad Hussain
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Ping Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Ying-Fan Cai
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Shuang-Xia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Wei Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| |
Collapse
|
9
|
Tang J, Lu J, Zhang C, Zhang D, Yu S, Fang F, Naing ZL, Soe ET, Ding Z, Liang G. Reduced expression of the P-glycoprotein gene HaABCB1 is linked to resistance to Bacillus thuringiensis Cry1Ac toxin but not Cry2Ab toxin in Helicoverpa armigera. Int J Biol Macromol 2023; 253:127668. [PMID: 37884238 DOI: 10.1016/j.ijbiomac.2023.127668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Rapid evolution of pest resistance to Bt insecticidal proteins presents a serious threat to the sustainable use of Bt crops. The cotton bollworm has been extensively exposed to Bt cotton worldwide and has evolved resistance in laboratory and field. Previous studies have highlighted the significant roles played by the ABC transporter proteins in Bt resistance. In this study, the ORF of HaABCB1 was cloned and analyzed. The expression of HaABCB1 was detected in all developmental stages and tissues, with the highest expression in third instar larvae stage and hindgut tissue. Compared with susceptible strain, a remarkable decrease of HaABCB1 expression in Cry1Ac resistant strain while no significant change in Cry2Ab resistant strain were found. The HaABCB1 expression reduced after susceptible larvae induced by Cry1Ac, but no obvious expression changes after Cry2Ab exposure. RNAi-mediated down-regulation of HaABCB1 could lead to a significant reduction in larval susceptibility to Cry1Ac, but not to Cry2Ab, in susceptible strain. Genetic linkage analysis confirmed that decreased expression of the HaABCB1 mediates resistance to Cry1Ac, but not Cry2Ab resistance. This knowledge contributes to better understanding of the complex molecular mechanisms underlying Bt resistance and provide theoretical foundation for the development of new strategies for pest resistance management.
Collapse
Affiliation(s)
- Jinrong Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Caihong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dandan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Siqi Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengyun Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zaw Lin Naing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ei Thinzar Soe
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhongwei Ding
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
10
|
Anuradha P, E MS, Priyanka M, Emaiya R, Karthik P, Suganthi A, Krishnamoorthy SV. Determination of chlorantraniliprole for managing Helicoverpa armigera and Spodoptera litura in cotton ecosystem. ENVIRONMENTAL RESEARCH 2023; 239:117301. [PMID: 37805183 DOI: 10.1016/j.envres.2023.117301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
Cotton bollworm incidence and damages are high in India. In addition, it causes considerable yield loss. A new insecticide formulation Chlorantraniliprole 600 g/L SC was used along with recommended insecticides for managing Spodoptera litura and Helicoverpa armigera in two consecutive experimental trials during the period October 2021 to September 2022. Two foliar applications of Chlorantraniliprole (40 and 30 g a. i/ha) at ten days interval period reduced significantly the larval populations of H. armigera, S. litura without any phytotoxic symptoms in cotton. Chlorantraniliprole application in open field condition was found to be harmless to natural enemy (coccinellids and spiders). Even though, a temporary lessening of natural enemy populations was noticed after spray, progressively the population was increased within a week time. Cotton yield was high in chlorantraniliprole @ 40 g a. i/ha treated plot (22.66, 22.12 q/ha) when compared to untreated control. Similar effect was also noticed in the dose at 30 g a. i/ha (22.35, 21.81 q/ha) and it was statistically on par in both experiments. Residue analysis results confirming that, cotton lint, cotton seed and soil samples collected from treated (30 and 60 g a. i/ha) and untreated samples during harvest were free from chlorantraniliprole residues (below detectable levels of 0.008 μg/g).
Collapse
Affiliation(s)
- P Anuradha
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Madhu Sudhanan E
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India.
| | - M Priyanka
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | - R Emaiya
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | - P Karthik
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | - A Suganthi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | - S V Krishnamoorthy
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
11
|
Subramanian A. Sustainable agriculture and GM crops: the case of Bt cotton impact in Ballari district of India. FRONTIERS IN PLANT SCIENCE 2023; 14:1102395. [PMID: 37711290 PMCID: PMC10499354 DOI: 10.3389/fpls.2023.1102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Effects of Bacillus thuringiensis (Bt) cotton are at the forefront of an intense debate on the benefits of genetically modified (GM) crops among smallholder farmers in developing countries. Existing studies fail to control for confounders, selection bias, or cultivation bias from preferential treatment in the initial adoption phase. Addressing these concerns in this paper, I examine the impact of Bt cotton employing an unbalanced panel fixed-effects model of a crop yield and profit function on newly collected plot-level data in the most recent decade. Results show that Bt cotton yields have stagnated, have a null effect on profits, and have become more sensitive to pest pressure in the most recent decade. Though many studies have demonstrated higher crop yield and profit gains in the first decade of Bt cotton adoption that raised the average returns to the technology, the second decade shows convergence in benefits, which raises obvious questions about the prospect of GM technology. Since Bt cotton is the only GM crop technology widely adopted by smallholder farmers, the findings of this paper contribute to the broader public debate on the future of agricultural biotechnology.
Collapse
Affiliation(s)
- Arjunan Subramanian
- Economics, Adam Smith Business School, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
12
|
Matheson P, Parvizi E, Fabrick JA, Siddiqui HA, Tabashnik BE, Walsh T, McGaughran A. Genome-wide analysis reveals distinct global populations of pink bollworm (Pectinophora gossypiella). Sci Rep 2023; 13:11762. [PMID: 37474628 PMCID: PMC10359307 DOI: 10.1038/s41598-023-38504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
The pink bollworm (Pectinophora gossypiella) is one of the world's most destructive pests of cotton. This invasive lepidopteran occurs in nearly all cotton-growing countries. Its presence in the Ord Valley of North West Australia poses a potential threat to the expanding cotton industry there. To assess this threat and better understand population structure of pink bollworm, we analysed genomic data from individuals collected in the field from North West Australia, India, and Pakistan, as well as from four laboratory colonies that originated in the United States. We identified single nucleotide polymorphisms (SNPs) using a reduced-representation, genotyping-by-sequencing technique (DArTseq). The final filtered dataset included 6355 SNPs and 88 individual genomes that clustered into five groups: Australia, India-Pakistan, and three groups from the United States. We also analysed sequences from Genbank for mitochondrial DNA (mtDNA) locus cytochrome c oxidase I (COI) for pink bollworm from six countries. We found low genetic diversity within populations and high differentiation between populations from different continents. The high genetic differentiation between Australia and the other populations and colonies sampled in this study reduces concerns about gene flow to North West Australia, particularly from populations in India and Pakistan that have evolved resistance to transgenic insecticidal cotton. We attribute the observed population structure to pink bollworm's narrow host plant range and limited dispersal between continents.
Collapse
Affiliation(s)
- Paige Matheson
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand.
| | - Elahe Parvizi
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| | - Jeffrey A Fabrick
- United States Department of Agriculture Agricultural Research Service, United States Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | | | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | - Tom Walsh
- Commonwealth Scientific Industrial Research Organisation Environment, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Angela McGaughran
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
13
|
Smith JL, Farhan Y. Monitoring resistance of Ostrinia nubilalis (Lepidoptera: Crambidae) in Canada to Cry toxins produced by Bt corn. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:916-926. [PMID: 36939027 DOI: 10.1093/jee/toad046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 06/14/2023]
Abstract
The first case of field-evolved resistance in European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) to transgenic corn (Zea mays L.) producing a Bacillus thuringiensis (Bt) Berliner toxin was discovered in Nova Scotia, Canada in 2018. This case involved resistance to Bt corn producing Cry1Fa toxin. As a mitigation response, Bt corn hybrids producing only Cry1Fa were replaced in that region with hybrids producing two or three Bt toxins targeting O. nubilalis. In this study, we collected O. nubilalis in several corn-growing regions of Canada during 2018 to 2020 and tested their progeny for susceptibility to four Bt toxins produced by currently available Bt corn that targets O. nubilalis: Cry1Fa, Cry1Ab, Cry1A.105, and Cry2Ab. Based on toxin concentrations killing 50% of larvae from 23 field-derived strains relative to two susceptible laboratory strains, the resistance ratio was at least 10 for Cry1Fa for 12 strains (52% of strains) consisting of 10 strains from Nova Scotia, as well as strains from near Montreal, Quebec and Roseisle, Manitoba. We found low but statistically significant resistance relative to at least one of two susceptible strains for Cry1Ab (23% of strains), Cry1A.105 (45% of strains), and Cry2Ab (14% of strains), with maximum resistance ratios of 3.9, 5.8, and 2.0, respectively. These results provide key information for addressing O. nubilalis resistance to Bt corn in Canada.
Collapse
Affiliation(s)
- Jocelyn L Smith
- Department of Plant Agriculture, Ridgetown Campus, University of Guelph, 120 Main Street East, Ridgetown, ON, Canada N0P 2C0
| | - Yasmine Farhan
- Department of Plant Agriculture, Ridgetown Campus, University of Guelph, 120 Main Street East, Ridgetown, ON, Canada N0P 2C0
| |
Collapse
|
14
|
Zuo W, Wu B, Wang Y, Xu S, Tian J, Jiu X, Dong H, Zhang W. Optimal planting pattern of cotton is regulated by irrigation amount under mulch drip irrigation. FRONTIERS IN PLANT SCIENCE 2023; 14:1158329. [PMID: 37324720 PMCID: PMC10265678 DOI: 10.3389/fpls.2023.1158329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Objective It is of great importance to explore agronomic management measures for water conservation and cotton yield in arid areas. Methods A four-year field experiment was conducted to evaluate cotton yield and soil water consumption under four row spacing configurations (high/low density with 66+10 cm wide, narrow row spacing, RS66+10H and RS66+10L; high/low density with 76 cm equal row spacing, RS76H and RS76L) and two irrigation amounts (CI:conventional drip irrigation; LI:limited drip irrigation) during the growing seasons in Shihezi, Xinjiang. Results A quadratic relationship was observed between the maximum LAI (LAImax) and seed yield. Canopy apparent transpiration rate(CAT), daily water consumption intensity (DWCI) and crop evapotranspiration (ETC) were positively and linearly correlated with LAI. The seed yields, lint yields, and ETC under CI were 6.6-18.3%,7.1-20.8% and 22.9-32.6%higher than those observed under LI, respectively. The RS66+10H under CI had the highest seed and lint yields. RS76L had an optimum LAImax range, which ensured a higher canopy apparent photosynthesis and daily dry matter accumulation and reached the same yield level as RS66+10H; however, soil water consumption in RS76L was reduced ETC by 51-60 mm at a depth of 20-60 cm at a radius of 19-38 cm from the cotton row,and water use efficiency increased by 5.6-8.3%compared to RS66+10H under CI. Conclusion A 5.0<LAImax<5.5 is optimum for cotton production in northern Xinjiang, and RS76L under CI is recommended for high yield and can further reduce water consumption. Under LI, the seed and lint yield of RS66+10H were 3.7-6.0% and 4.6-6.9% higher than those of RS76L, respectively. In addition, high-density planting can exploit the potential of soil water to increase cotton yields under water shortage conditions.
Collapse
Affiliation(s)
- Wenqing Zuo
- Key Laboratory of Oasis Eco–Agriculture, Xinjiang Production and Construction Corps, College of Agronomy, Shihezi University, Shihezi, Xinjiang, China
| | - Baojian Wu
- Key Laboratory of Oasis Eco–Agriculture, Xinjiang Production and Construction Corps, College of Agronomy, Shihezi University, Shihezi, Xinjiang, China
| | - Yuxuan Wang
- Key Laboratory of Oasis Eco–Agriculture, Xinjiang Production and Construction Corps, College of Agronomy, Shihezi University, Shihezi, Xinjiang, China
| | - Shouzhen Xu
- Key Laboratory of Oasis Eco–Agriculture, Xinjiang Production and Construction Corps, College of Agronomy, Shihezi University, Shihezi, Xinjiang, China
| | - Jingshan Tian
- Key Laboratory of Oasis Eco–Agriculture, Xinjiang Production and Construction Corps, College of Agronomy, Shihezi University, Shihezi, Xinjiang, China
| | - Xingli Jiu
- Regimental Farm 149, Division Eight, Xinjiang Production and Construction Corps, Shihezi, China
| | - Hengyi Dong
- Regimental Farm 149, Division Eight, Xinjiang Production and Construction Corps, Shihezi, China
| | - Wangfeng Zhang
- Key Laboratory of Oasis Eco–Agriculture, Xinjiang Production and Construction Corps, College of Agronomy, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
15
|
Farhan Y, Smith JL, Sovic MG, Michel AP. Genetic mutations linked to field-evolved Cry1Fa-resistance in the European corn borer, Ostrinia nubilalis. Sci Rep 2023; 13:8081. [PMID: 37202428 DOI: 10.1038/s41598-023-35252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023] Open
Abstract
Transgenic corn, Zea mays (L.), expressing insecticidal toxins such as Cry1Fa, from Bacillus thuringiensis (Bt corn) targeting Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) resulted in over 20 years of management success. The first case of practical field-evolved resistance by O. nubilalis to a Bt corn toxin, Cry1Fa, was discovered in Nova Scotia, Canada, in 2018. Laboratory-derived Cry1Fa-resistance by O. nubilalis was linked to a genome region encoding the ATP Binding Cassette subfamily C2 (ABCC2) gene; however, the involvement of ABCC2 and specific mutations in the gene leading to resistance remain unknown. Using a classical candidate gene approach, we report on O. nubilalis ABCC2 gene mutations linked to laboratory-derived and field-evolved Cry1Fa-resistance. Using these mutations, a DNA-based genotyping assay was developed to test for the presence of the Cry1Fa-resistance alleles in O. nubilalis strains collected in Canada. Screening data provide strong evidence that field-evolved Cry1Fa-resistance in O. nubilalis maps to the ABCC2 gene and demonstrates the utility of this assay for detecting the Cry1Fa resistance allele in O. nubilalis. This study is the first to describe mutations linked to Bt resistance in O. nubilalis and provides a DNA-based detection method that can be used for monitoring.
Collapse
Affiliation(s)
- Yasmine Farhan
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, Ridgetown, ON, Canada.
| | - Jocelyn L Smith
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, Ridgetown, ON, Canada
| | - Michael G Sovic
- Infectious Diseases Institute, The Ohio State University, Pickerington, OH, USA
| | - Andrew P Michel
- Department of Entomology, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
16
|
Li X, Zhang Y, Zhan Y, Tian H, Yan B, Cai J. Utilization of a strong promoter combined with the knockout of protease genes to improve the yield of Vip3Aa in Bacillus thuringiensis BMB171. PEST MANAGEMENT SCIENCE 2023; 79:1713-1720. [PMID: 36622044 DOI: 10.1002/ps.7343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Vip3Aa is an insecticidal protein secreted by some Bacillus thuringiensis strains during vegetative growth. It has excellent insecticidal activity, its mechanism of action is different from that of Cry protein, and it can delay the development of pest resistance. To date, Vip3Aa has been widely used in genetically modified Bt crops. However, the secretion of Vip3Aa by industrial production strains is usually very low. Moreover, most of the Vip3Aa in the medium is degraded by proteases, limiting its application as a biopesticide. RESULTS We report a novel constitutive strong promoter from B. thuringiensis, Prsi , which directs the abundant expression of vip3Aa in B. thuringiensis BMB171. Furthermore, to reduce the degradation of Vip3Aa caused by proteases, we constructed B. thuringiensis mutants in which different protease genes were knocked out. We found that the degradation of Vip3Aa was greatly inhibited and its yield was significantly improved in a mutant that lacked all three protease genes. CONCLUSION Our results provide a new strategy to enhance the production of Vip3Aa in B. thuringiensis and have reference value for the research and development of novel bioinsecticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuelian Li
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanli Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yunda Zhan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongwei Tian
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| |
Collapse
|
17
|
Tabashnik BE, Fabrick JA, Carrière Y. Global Patterns of Insect Resistance to Transgenic Bt Crops: The First 25 Years. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:297-309. [PMID: 36610076 DOI: 10.1093/jee/toac183] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 05/29/2023]
Abstract
Crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have improved pest management and reduced reliance on insecticide sprays. However, evolution of practical resistance by some pests has reduced the efficacy of Bt crops. We analyzed global resistance monitoring data for 24 pest species based on the first 25 yr of cultivation of Bt crops including corn, cotton, soybean, and sugarcane. Each of the 73 cases examined represents the response of one pest species in one country to one Bt toxin produced by one or more Bt crops. The cases of practical resistance rose from 3 in 2005 to 26 in 2020. Practical resistance has been documented in some populations of 11 pest species (nine lepidopterans and two coleopterans), collectively affecting nine widely used crystalline (Cry) Bt toxins in seven countries. Conversely, 30 cases reflect no decrease in susceptibility to Bt crops in populations of 16 pest species in 10 countries. The remaining 17 cases provide early warnings of resistance, which entail genetically based decreases in susceptibility without evidence of reduced field efficacy. The early warnings involve four Cry toxins and the Bt vegetative insecticidal protein Vip3Aa. Factors expected to favor sustained susceptibility include abundant refuges of non-Bt host plants, recessive inheritance of resistance, low resistance allele frequency, fitness costs, incomplete resistance, and redundant killing by multi-toxin Bt crops. Also, sufficiently abundant refuges can overcome some unfavorable conditions for other factors. These insights may help to increase the sustainability of current and future transgenic insecticidal crops.
Collapse
Affiliation(s)
| | - Jeffrey A Fabrick
- USDA ARS, U. S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
18
|
Guan F, Dai X, Yang Y, Tabashnik BE, Wu Y. Population Genomics of Nonrecessive Resistance to Bt Toxin Cry1Ac in Helicoverpa armigera From Northern China. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:310-320. [PMID: 36610305 DOI: 10.1093/jee/toac182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 05/30/2023]
Abstract
Transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt) have provided control of some key pests since 1996. However, the evolution of resistance by pests reduces the benefits of Bt crops. Resistance to Bt crops that is not recessively inherited is especially challenging to manage. Here we analyzed nonrecessive resistance to Bt toxin Cry1Ac in eight field populations of Helicoverpa armigera sampled in 2018 from northern China, where this global pest has been exposed to Cry1Ac in Bt cotton since 1997. Bioassays revealed 7.5% of field-derived larvae were resistant to Cry1Ac of which 87% had at least one allele conferring nonrecessive resistance. To analyze this nonrecessive resistance, we developed and applied a variant of a genomic mapping approach called quantitative trait locus (QTL)-seq. This analysis identified a region on chromosome 10 associated with nonrecessive resistance to Cry1Ac in all 21 backcross families derived from field-collected moths. Individual sequencing revealed that all 21 field-collected resistant grandparents of the backcross families had a previously identified dominant point mutation in the tetraspanin gene HaTSPAN1 that occurs in the region of chromosome 10 identified by QTL-seq. QTL-seq also revealed a region on chromosome 26 associated with nonrecessive resistance in at most 14% of the backcross families. Overall, the results imply the point mutation in HaTSPAN1 is the primary genetic basis of nonrecessive resistance to Cry1Ac in field populations of H. armigera from northern China. Moreover, because nonrecessive resistance is predominant, tracking the frequency of this point mutation could facilitate resistance monitoring in the region.
Collapse
Affiliation(s)
- Fang Guan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Dai
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Santiago-González JC, Kerns DL, Head GP, Yang F. A Modified F2 Screen for Estimating Cry1Ac and Cry2Ab Resistance Allele Frequencies in Helicoverpa zea (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:289-296. [PMID: 36610074 DOI: 10.1093/jee/toac181] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 05/30/2023]
Abstract
Evaluating the frequency of resistance alleles is important for resistance management and sustainable use of transgenic crops that produce insecticidal proteins from Bacillus thuringiensis. Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) is a major crop pest in the United States that has evolved practical resistance to the crystalline (Cry) proteins in Bt corn and cotton. The standard F2 screen for estimating resistance allele frequency does not work well for H. zea because successful single-pair matings are rare. In this study, we developed and implemented a modified F2 screen for H. zea that generates F1 progeny by crossing three laboratory susceptible female moths with one feral male moth instead of single-pair crosses. During 2019-2020, we used this modified method to establish 192 F2 families from 623 matings between susceptible females and feral males from Arkansas, Louisiana, Mississippi, and Tennessee. From each F2 family, we screened 128 neonates against discriminating concentrations of Cry1Ac and Cry2Ab in diet overlay bioassays. Based on these discriminating concentration bioassays, families were considered positive for resistance if at least five larvae survived to second instar, including at least one to third instar. The percentage of positive families was 92.7% for Cry1Ac and 38.5% for Cry2Ab, which yields an estimated resistance allele frequency (with 95% confidence interval) of 0.722 (0.688-0.764) for Cry1Ac and 0.217 (0.179-0.261) for Cry2Ab. The modified F2 screen developed and implemented here may be useful for future resistance monitoring studies of H. zea and other pests.
Collapse
Affiliation(s)
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | - Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
20
|
García M, García-Benítez C, Ortego F, Farinós GP. Monitoring Insect Resistance to Bt Maize in the European Union: Update, Challenges, and Future Prospects. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:275-288. [PMID: 36610405 PMCID: PMC10125040 DOI: 10.1093/jee/toac154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 05/30/2023]
Abstract
Transgenic maize producing the Cry1Ab toxin of Bacillus thuringiensis (Bt maize) was approved for cultivation in the European Union (EU) in 1998 to control the corn borers Sesamia nonagrioides (Lefèbvre) and Ostrinia nubilalis (Hübner). In the EU since then, Cry1Ab is the only Bt toxin produced by Bt maize and Spain is the only country where Bt maize has been planted every year. In 2021, about 100,000 hectares of Bt maize producing Cry1Ab were cultivated in the EU, with Spain accounting for 96% and Portugal 4% of this area. In both countries, Bt maize represented less than 25% of all maize planted in 2021, with a maximum regional adoption of 64% Bt maize in northeastern Spain. Insect resistance management based on the high-dose/refuge strategy has been implemented in the EU since 1998. This has been accompanied by monitoring to enable early detection of resistance. The monitoring data from laboratory bioassays show no decrease in susceptibility to Cry1Ab had occurred in either pest as of 2021. Also, control failures have not been reported, confirming that Bt maize producing Cry1Ab remains effective against both pests. Conditions in the EU preventing approval of new genetically modified crops, including maize producing two or more Bt toxins targeting corn borers, may limit the future effectiveness of resistance management strategies.
Collapse
Affiliation(s)
| | | | - Félix Ortego
- Laboratory of Applied Entomology for Human and Plant Health, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | | |
Collapse
|
21
|
Yao X, Duan Y, Deng Z, Zhao W, Wei J, Li X, An S. ATP Synthase Subunit α from Helicoverpa armigera Acts as a Receptor of Bacillus thuringiensis Cry1Ac and Synergizes Cry1Ac Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37036055 DOI: 10.1021/acs.jafc.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Insect resistance to Bacillus thuringiensis (Bt) toxins has led to an urgent need to explore the insecticidal mechanisms of Bt. Previous studies indicated that Helicoverpa armigera ATP synthase subunit α (HaATPs-α) is involved in Cry1Ac resistance. In this study, a real-time quantitative polymerase chain reaction (RT-PCR) confirmed that HaATPs-α expression was significantly reduced in the Cry1Ac-resistant strain (BtR). Cry1Ac feeding induced the downregulated expression of HaATPs-α in the susceptible strain, but not in the BtR strain. Furthermore, the interaction between HaATPs-α and Cry1Ac was verified by ligand blotting and homologous competition experiments. The in vitro gain and loss of function analyses showed HaATPs-α involved in Cry1Ac toxicity by expressing endogenous HaATPs-α and HaATPs-α double-stranded RNAs in Sf9 and midgut cells, respectively. Importantly, purified HaATPs-α synergized Cry1Ac toxicity to H. armigera larvae. These findings provide the first evidence that HaATPs-α is a potential receptor of Cry1Ac, it shows downregulated participation in Cry1Ac resistance, and it exhibits higher enhancement of Cry1Ac toxicity to H. armigera larvae.
Collapse
Affiliation(s)
- Xue Yao
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Yunpeng Duan
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhongyuan Deng
- College of Life Science, Zhengzhou University, Zhengzhou, Henan450000, China
| | - Wenli Zhao
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
22
|
Yang J, Chen S, Xu X, Lin S, Wu J, Lin G, Bai J, Song Q, You M, Xie M. Novel miR-108 and miR-234 target juvenile hormone esterase to regulate the response of Plutella xylostella to Cry1Ac protoxin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114761. [PMID: 36907089 DOI: 10.1016/j.ecoenv.2023.114761] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Insect hormones, such as juvenile hormone (JH), precisely regulate insect life-history traits. The regulation of JH is tightly associated with the tolerance or resistance to Bacillus thuringiensis (Bt). JH esterase (JHE) is a primary JH-specific metabolic enzyme which plays a key role in regulating JH titer. Here, we characterized a JHE gene from Plutella xylostella (PxJHE), and found it was differentially expressed in the Bt Cry1Ac resistant and susceptible strains. Suppression of PxJHE expression with RNAi increased the tolerance of P. xylostella to Cry1Ac protoxin. To investigate the regulatory mechanism of PxJHE, two target site prediction algorithms were applied to predict the putative miRNAs targeting PxJHE, and the resulting putative miRNAs were subsequently verified for their function targeting PxJHE using luciferase reporter assay and RNA immunoprecipitation. MiR-108 or miR-234 agomir delivery dramatically reduced PxJHE expression in vivo, whilst only miR-108 overexpression consequently increased the tolerance of P. xylostella larvae to Cry1Ac protoxin. By contrast, reduction of miR-108 or miR-234 dramatically increased PxJHE expression, accompanied by the decreased tolerance to Cry1Ac protoxin. Furthermore, injection of miR-108 or miR-234 led to developmental defects in P. xylostella, whilst injection of antagomir did not cause any obvious abnormal phenotypes. Our results indicated that miR-108 or miR-234 can be applied as potential molecular targets to combat P. xylostella and perhaps other lepidopteran pests, providing novel insights into miRNA-based integrated pest management.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiyao Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuejiao Xu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Sujie Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaqi Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guifang Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianlin Bai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Miao Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
23
|
Carrière Y, Tabashnik BE. Fitness Costs and Incomplete Resistance Associated with Delayed Evolution of Practical Resistance to Bt Crops. INSECTS 2023; 14:214. [PMID: 36975899 PMCID: PMC10051223 DOI: 10.3390/insects14030214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Insect pests are increasingly evolving practical resistance to insecticidal transgenic crops that produce Bacillus thuringiensis (Bt) proteins. Here, we analyzed data from the literature to evaluate the association between practical resistance to Bt crops and two pest traits: fitness costs and incomplete resistance. Fitness costs are negative effects of resistance alleles on fitness in the absence of Bt toxins. Incomplete resistance entails a lower fitness of resistant individuals on a Bt crop relative to a comparable non-Bt crop. In 66 studies evaluating strains of nine pest species from six countries, costs in resistant strains were lower in cases with practical resistance (14%) than without practical resistance (30%). Costs in F1 progeny from crosses between resistant and susceptible strains did not differ between cases with and without practical resistance. In 24 studies examining seven pest species from four countries, survival on the Bt crop relative to its non-Bt crop counterpart was higher in cases with practical resistance (0.76) than without practical resistance (0.43). Together with previous findings showing that the nonrecessive inheritance of resistance is associated with practical resistance, these results identify a syndrome associated with practical resistance to Bt crops. Further research on this resistance syndrome could help sustain the efficacy of Bt crops.
Collapse
|
24
|
Fabrick JA, Li X, Carrière Y, Tabashnik BE. Molecular Genetic Basis of Lab- and Field-Selected Bt Resistance in Pink Bollworm. INSECTS 2023; 14:insects14020201. [PMID: 36835770 PMCID: PMC9959750 DOI: 10.3390/insects14020201] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 05/17/2023]
Abstract
Transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) control some important insect pests. However, evolution of resistance by pests reduces the efficacy of Bt crops. Here we review resistance to Bt cotton in the pink bollworm, Pectinophora gossypiella, one of the world's most damaging pests of cotton. Field outcomes with Bt cotton and pink bollworm during the past quarter century differ markedly among the world's top three cotton-producing countries: practical resistance in India, sustained susceptibility in China, and eradication of this invasive lepidopteran pest from the United States achieved with Bt cotton and other tactics. We compared the molecular genetic basis of pink bollworm resistance between lab-selected strains from the U.S. and China and field-selected populations from India for two Bt proteins (Cry1Ac and Cry2Ab) produced in widely adopted Bt cotton. Both lab- and field-selected resistance are associated with mutations affecting the cadherin protein PgCad1 for Cry1Ac and the ATP-binding cassette transporter protein PgABCA2 for Cry2Ab. The results imply lab selection is useful for identifying genes important in field-evolved resistance to Bt crops, but not necessarily the specific mutations in those genes. The results also suggest that differences in management practices, rather than genetic constraints, caused the strikingly different outcomes among countries.
Collapse
Affiliation(s)
- Jeffrey A. Fabrick
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
- Correspondence:
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
25
|
Quan Y, Wu K. Managing Practical Resistance of Lepidopteran Pests to Bt Cotton in China. INSECTS 2023; 14:179. [PMID: 36835748 PMCID: PMC9965927 DOI: 10.3390/insects14020179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
China is one of the major cotton producers globally with small farmers. Lepidopteran pests have always been the main factor affecting cotton production. To reduce the occurrence of and damage caused by lepidopteran pests, China has employed a pest control method focused on planting Bt (Cry1Ac) cotton since 1997. Chinese resistance management tactics for the main target pests, the cotton bollworm and pink bollworm, were also implemented. For polyphagous (multiple hosts) and migratory pests such as the cotton bollworm (Helicoverpa armigera), the "natural refuge" strategy, consisting of non-Bt crops such as corn, soybean, vegetables, peanuts, and other host crops, was adopted in the Yellow River Region (YRR) and Northwest Region (NR). For a single host and weak migration ability pest, such as the pink bollworm (Pectinophora gossypiella), the seed mix refuge strategy yields a random mixture within fields of 25% non-Bt cotton by sowing second-generation (F2) seeds. According to field monitoring results for more than 20 years in China, practical resistance (Bt cotton failure) of target pests was avoided, and there were no cases of Bt (Cry1Ac) failure of pest control in cotton production. This indicated that this Chinese resistance management strategy was very successful. The Chinese government has decided to commercialize Bt corn, which will inevitably reduce the role of natural refuges; therefore, this paper also discusses adjustments and future directions of cotton pest resistance management strategies.
Collapse
Affiliation(s)
- Yudong Quan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510641, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
26
|
Xiao Z, Yao X, Bai S, Wei J, An S. Involvement of an Enhanced Immunity Mechanism in the Resistance to Bacillus thuringiensis in Lepidopteran Pests. INSECTS 2023; 14:151. [PMID: 36835720 PMCID: PMC9965922 DOI: 10.3390/insects14020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Bacillus thuringiensis (Bt) is the safest, economically successful entomopathogen to date. It is extensively produced in transgenic crops or used in spray formulations to control Lepidopteran pests. The most serious threat to the sustainable usage of Bt is insect resistance. The resistance mechanisms to Bt toxins depend not only on alterations in insect receptors, but also on the enhancement of insect immune responses. In this work, we review the current knowledge of the immune response and resistance of insects to Bt formulations and Bt proteins, mainly in Lepidopteran pests. We discuss the pattern recognition proteins for recognizing Bt, antimicrobial peptides (AMPs) and their synthetic signaling pathways, the prophenoloxidase system, reactive oxygen species (ROS) generation, nodulation, encapsulation, phagocytosis, and cell-free aggregates, which are involved in immune response reactions or resistance to Bt. This review also analyzes immune priming, which contributes to the evolution of insect resistance to Bt, and puts forward strategies to improve the insecticidal activity of Bt formulations and manage insect resistance, targeting the insect immune responses and resistance.
Collapse
|
27
|
Yang X, Zhao S, Liu B, Gao Y, Hu C, Li W, Yang Y, Li G, Wang L, Yang X, Yuan H, Liu J, Liu D, Shen X, Wyckhuys KAG, Lu Y, Wu K. Bt maize can provide non-chemical pest control and enhance food safety in China. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:391-404. [PMID: 36345605 PMCID: PMC9884019 DOI: 10.1111/pbi.13960] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 05/26/2023]
Abstract
China is the world's second-largest maize producer and consumer. In recent years, the invasive fall armyworm Spodoptera frugiperda (J.E. Smith) has adversely affected maize productivity and compromised food security. To mitigate pest-inflicted food shortages, China's Government issued biosafety certificates for two genetically modified (GM) Bt maize hybrids, Bt-Cry1Ab DBN9936 and Bt-Cry1Ab/Cry2Aj Ruifeng 125, in 2019. Here, we quantitatively assess the impact of both Bt maize hybrids on pest feeding damage, crop yield and food safety throughout China's maize belt. Without a need to resort to synthetic insecticides, Bt maize could mitigate lepidopteran pest pressure by 61.9-97.3%, avoid yield loss by 16.4-21.3% (range -11.9-99.2%) and lower mycotoxin contamination by 85.5-95.5% as compared to the prevailing non-Bt hybrids. Yield loss avoidance varied considerably between experimental sites and years, as mediated by on-site infestation pressure and pest identity. For either seed mixtures or block refuge arrangements, pest pressure was kept below established thresholds at 90% Bt maize coverage in Yunnan (where S. frugiperda was the dominant species) and 70% Bt maize coverage in other sites dominated by Helicoverpa armigera (Hübner) and Ostrinia furnacalis (Guenée). Drawing on experiences from other crop/pest systems, Bt maize in se can provide area-wide pest management and thus, contribute to a progressive phase-down of chemical pesticide use. Hence, when consciously paired with agroecological and biodiversity-based measures, GM insecticidal crops can ensure food and nutrition security, contribute to the sustainable intensification of China's agriculture and reduce food systems' environmental footprint.
Collapse
Affiliation(s)
- Xianming Yang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shengyuan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Bing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yu Gao
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Chaoxing Hu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous RegionInstitute of Entomology, Guizhou UniversityGuiyangChina
| | - Wenjing Li
- Institute of Plant Protection and Soil FertilityHubei Academy of Agricultural SciencesWuhanChina
| | - Yizhong Yang
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsu ProvinceChina
| | - Guoping Li
- Institute of Plant ProtectionHenan Academy of Agricultural SciencesZhengzhouChina
| | - Lili Wang
- Yantai Academy of Agricultural SciencesYantaiChina
| | - Xueqing Yang
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Haibin Yuan
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Jian Liu
- College of AgricultureNortheast Agricultural UniversityHarbinChina
| | - Dazhong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Agricultural Information InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Xiujing Shen
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Kris A. G. Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Fujian Agriculture and Forestry UniversityFuzhouChina
- University of QueenslandBrisbaneQueenslandAustralia
- Chrysalis ConsultingHanoiVietnam
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
28
|
Gassmann AJ, Reisig DD. Management of Insect Pests with Bt Crops in the United States. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:31-49. [PMID: 36170641 DOI: 10.1146/annurev-ento-120220-105502] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Genetically engineered corn and cotton that produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) have been used to manage insect pests in the United States and elsewhere. In some cases, this has led to regional suppression of pest populations and pest eradication within the United States, and these outcomes were associated with reductions in conventional insecticides and increased profits for farmers. In other instances, pests evolved resistance to multiple Bt traits, compromising the capacity of Bt crops to manage pests and leading to increased feeding injury to crops in the field. Several aspects of pest biology and pest-crop interactions were associated with cases where pests remained susceptible versus instances where pests evolved resistance. The viability of future transgenic traits can be improved by learning from these past outcomes. In particular, efforts should be made to delay resistance by increasing the prevalence of refuges and using integrated pest management.
Collapse
Affiliation(s)
- Aaron J Gassmann
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA;
| | - Dominic D Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Plymouth, North Carolina, USA
| |
Collapse
|
29
|
Residual Effects of Transgenic Cotton on the Intestinal Microbiota of Dysdercus concinnus. Microorganisms 2023; 11:microorganisms11020261. [PMID: 36838225 PMCID: PMC9967337 DOI: 10.3390/microorganisms11020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
The interaction among plants, insects, and microbes (PIM) is a determinant factor for the assembly and functioning of natural and anthropic ecosystems. In agroecosystems, the relationships among PIM are based on the interacting taxa, environmental conditions, and agricultural management, including genetically modified (GM) organisms. Although evidence for the unintended effects of GM plants on non-target insects is increasingly robust, our knowledge remains limited regarding their impact on gut microbes and their repercussions on the host's ecology, especially in the wild. In this study, we compared the gut microbial community of Dysdercus concinnus bugs collected on wild cotton (Gossypium hirsutum), with and without insecticidal transgenes (cry1ab/ac), in its center of origin and diversity. By sequencing the V4-V5 region of 16S rRNA, we show differences in the diversity, structure, and topology of D. concinnus gut microbial interactions between specimens foraging cotton plants with and without transgenes. Identifying unintended residual effects of genetic engineering in natural ecosystems will provide first-line knowledge for informed decision-making to manage genetic, ecological, and evolutionary resources. Thus, determining which organisms interact with GM plants and how is the first step toward conserving natural ecosystems with evidence of transgenic introgression.
Collapse
|
30
|
Cai L, Liu X, Tian Z, Michaud JP, Shen Z, Li Z, Zhang S, Liu X. Safety of Bacillus thuringiensis Cry1Ah and Vip3Aa toxins for the predatory stink bug Arma custos (Hemiptera: Pentatomidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158120. [PMID: 35987246 DOI: 10.1016/j.scitotenv.2022.158120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The widespread adoption of Bt crops expressing insecticidal proteins derived from Bacillus thuringiensis has created a need to assess the potential effects of these toxins on non-target organisms, especially species such as Arma custos, a generalist predator that provides important biological control services in many field crops in Asia. Direct dietary exposure of A. custos to Cry1Ah and Vip3Aa proteins produced no adverse effects on life history traits, despite continuous exposure throughout development and early adult life to concentrations significantly higher than the Bt protein concentration likely encountered by A.custos in the field, even when feeding directly on Bt plants. Enzyme-linked immunosorbent assay confirmed the presence of Bt proteins in A. custos midguts, but quantitative real-time PCR analysis of 12 genes associated with detoxification, antioxidative responses, immune responses, and metabolism revealed no significant changes in expression in adult bugs. Indirect exposure to these toxins via consumption of intoxicated prey, larvae of Helicoverpa armigera (Hübner), likewise produced no negative impacts on survival, development, adult weight, or female fecundity in either the F0 (exposed) or F1 (unexposed) generation, but female fresh weight was reduced in the F0 generation by the Cry1Ah (50 μg/g) treatment. Finally, a competitive binding assay with labelled protein and a ligand blotting assay both demonstrated that the Cry1Ah protein could not bind to receptors on the midgut brush border membrane vesicles (BBMVs) of A. custos adults. Therefore, we conclude that Cry1Ah and Vip3Aa proteins are unlikely to have significant negative effects on A. custos populations if employed as plant-incorporated protectants in field crops.
Collapse
Affiliation(s)
- Limei Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Xiaoming Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Zhiqiang Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Station-Hays, Hays, KS 67601, USA
| | - Zhongjian Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China.
| |
Collapse
|
31
|
de Oliveira WS, Sakuno CIR, Miraldo LL, Tavares MAGC, Komada KMA, Teresani D, Santos JLX, Huang F. Varied frequencies of resistance alleles to Cry1Ab and Cry1Ac among Brazilian populations of the sugarcane borer, Diatraea saccharalis (F.). PEST MANAGEMENT SCIENCE 2022; 78:5150-5163. [PMID: 36070208 DOI: 10.1002/ps.7133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Brazil is the largest grower of the world's 26 million ha of sugarcane, Saccharum officinarum. Pest damage mainly by the sugarcane borer, Diatraea saccharalis (F.), is a great challenge to the sugarcane industry. To control D. saccharalis, Brazil launched the world's first commercial use of Bt sugarcane in 2017. As part of the resistance management programs for Bt sugarcane planting, 535 F2 isoline families of D. saccharalis collected from three major sugarcane planting states (Goiás, Minas Gerais and São Paulo) in Brazil during 2019-2020 were screened for resistance to two Bt sugarcane varieties: CTC20BT expressing Cry1Ab and CTC9001BT expressing Cry1Ac. Here we report the results of the first study related to Bt resistance in a sugarcane cropping system. RESULTS Larval survivorships of these families in an F2 screen on CTC20BT were highly correlated with their survival on CTC9001BT, whereas the Cry1Ac tissues exhibited greater insecticidal activities than Cry1Ab. Resistance allele frequencies (RAFs) for populations from Goiás and Minas Gerais were relatively low at 0.0034 for Cry1Ab and 0.0045 to Cry1Ac. By contrast, RAFs for São Paulo populations were considerably greater (0.0393 to Cry1Ab, 0.0245 to Cry1Ac). CONCLUSIONS RAFs to Cry1Ab and Cry1Ac varied among Brazilian D. saccharalis populations. Prior selection resulting from an intensive use of single-gene Bt maize under low compliance of refuge planting could be a main factor contributing to the high RAF in São Paulo. The results suggest that mitigation measures including sufficient non-Bt maize refuge planting, effective resistance monitoring, and use of pyramided Bt sugarcane traits should be implemented promptly to prevent further increase in the RAF to ensure the sustainable use of Bt sugarcane in Brazil. MINI ABSTRACT To control Diatraea saccharalis, Brazil launched the world's first commercial use of Bt sugarcane in 2017. As part of the resistance management programs for Bt sugarcane planting in Brazil, 535 F2 isoline families of D. saccharalis collected from three major sugarcane planting states (Goiás, Minas Gerais and São Paulo) in Brazil during 2019-2020 were screened for resistance to Cry1Ab and Cry1Ac sugarcane plants Resistance allele frequencies (RAFs) for the populations from Goiás and Minas Gerais were relatively low at 0.0034 for Cry1Ab and 0.0045 to Cry1Ac. By contrast, RAFs for the São Paulo populations were considerably greater (0.0393 to Cry1Ab, 0.0245 to Cry1Ac). Prior selection resulting from an intensive use of single-gene Bt maize under low compliance of non-Bt maize refuge planting could be a main factor contributing to the high RAF in São Paulo. The results suggest that effective mitigation measures including sufficient non-Bt maize refuge planting, effective resistance monitoring and use of pyramided Bt sugarcane traits should be implemented promptly to prevent further increase in the RAF to ensure the sustainable use of Bt sugarcane in Brazil. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| |
Collapse
|
32
|
Yang F, Kerns DL, Little N, Brown SA, Stewart SD, Catchot AL, Cook DR, Gore J, Crow WD, Lorenz GM, Towles T, Tabashnik BE. Practical resistance to Cry toxins and efficacy of Vip3Aa in Bt cotton against Helicoverpa zea. PEST MANAGEMENT SCIENCE 2022; 78:5234-5242. [PMID: 36053801 DOI: 10.1002/ps.7142] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Crops genetically engineered to make insect-killing proteins from Bacillus thuringiensis (Bt) have revolutionized management of some pests. However, the benefits of such transgenic crops are reduced when pests evolve resistance to Bt toxins. We evaluated resistance to Bt toxins and Bt cotton plants using laboratory bioassays and complementary field trials focusing on Helicoverpa zea, one of the most economically important pests of cotton and other crops in the United States. RESULTS The data from 235 laboratory bioassays demonstrate resistance to Cry1Ac, Cry1Fa, and Cry2Ab occurred in most of the 95 strains of H. zea derived from Arkansas, Louisiana, Mississippi, Tennessee, and Texas during 2016 to 2021. Complementary field data show efficacy decreased for Bt cotton producing Cry1Ac + Cry1Fa or Cry1Ac + Cry2Ab, but not Cry1Ac + Cry1Fa + Vip3Aa. Moreover, analysis of data paired by field site and year shows higher survival in bioassays was generally associated with lower efficacy of Bt cotton. CONCLUSIONS The results confirm and extend previous evidence showing widespread practical resistance of H. zea in the United States to the Cry toxins produced by Bt cotton and corn, but not to Vip3Aa. Despite deployment in combination with Cry toxins in Bt crops, Vip3Aa effectively acts as a single toxin against H. zea larvae that are highly resistant to Cry toxins. Furthermore, Vip3Aa adoption is increasing and previous work provided an early warning of field-evolved resistance. Thus, rigorous resistance management measures are needed to preserve the efficacy of Vip3Aa against this highly adaptable pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Nathan Little
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS, USA
| | - Sebe A Brown
- Department of Entomology and Plant Pathology, University of Tennessee, Jackson, TN, USA
| | - Scott D Stewart
- Department of Entomology and Plant Pathology, University of Tennessee, Jackson, TN, USA
| | - Angus L Catchot
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Donald R Cook
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Jeffrey Gore
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Whitney D Crow
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Gustav M Lorenz
- Department of Entomology and Plant Pathology, University of Arkansas, Lonoke, AR, USA
| | - Tyler Towles
- Department of Entomology, Louisiana State University, Winnsboro, LA, USA
| | | |
Collapse
|
33
|
Li G, Ji T, Zhao S, Feng H, Wu K. High-Dose Assessment of Transgenic Insect-Resistant Maize Events against Major Lepidopteran Pests in China. PLANTS (BASEL, SWITZERLAND) 2022; 11:3125. [PMID: 36432854 PMCID: PMC9699326 DOI: 10.3390/plants11223125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Lepidopteran pests present a key problem for maize production in China. In order to develop a new strategy for the pest control, the Chinese government has issued safety certificates for insect-resistant transgenic maize, but whether these transformation events can achieve high dose levels to major target pests is still unclear. In this paper, the transformation events of DBN9936 (Bt-Cry1Ab), DBN9936 × DBN9501 (Bt-Cry1Ab + Vip3A), Ruifeng 125 (Bt-Cry1Ab/Cry2Aj), and MIR162 (Bt-Vip3A) were planted in the Huang-huai-hai summer corn region of China to evaluate the lethal effects on major lepidopteran pests, Spodoptera frugiperda, Helicoverpa armigera, Ostrinia furnacalis, Conogethes punctiferalis, Mythimna separata, Leucania loreyi, and Athetis lepigone, using an artificial diet containing lyophilized Bt maize tissue at a concentration representing a 25-fold dilution of tissue. The results showed that the corrected mortalities of DBN9936 (Bt-Cry1Ab), DBN9936 × DBN9501 (Bt-Cry1Ab + Vip3A), Ruifeng 125 (Bt-Cry1Ab/Cry2Aj), and MIR162 (Bt-Vip3A) to the seven pests were in the ranges 53.80~100%, 62.98~100%, 57.09~100%, and 41.02~100%, respectively. In summary, the events of DBN9936, DBN9936 × DBN9501, and MIR162 reached high dose levels to S. frugiperda. DBN9936 × DBN9501 only at the R1 stage reached a high dose level to H. armigera. DBN9936, DBN9936 × DBN9501, and Ruifeng 125, at most growth stages, reached high dose levels to O. furnacalis, and these three events at some stages also reached high dose levels to A. lepigone. Ruifeng 125 presented a high dose level only to C. punctiferalis. However, no transformations reached high dose levels to either M. separata or L. loreyi. This study provides a support for the breeding of high-dose varieties to different target pests, the combined application of multiple genes and the commercial regional planting of insect-resistant transgenic maize in China.
Collapse
Affiliation(s)
- Guoping Li
- Key Laboratory of Integrated Pest Management on Crops in Southern Part of Northern China, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Tingjie Ji
- Key Laboratory of Integrated Pest Management on Crops in Southern Part of Northern China, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shengyuan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongqiang Feng
- Key Laboratory of Integrated Pest Management on Crops in Southern Part of Northern China, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
34
|
Zhang C, Wei J, Naing ZL, Soe ET, Tang J, Liang G. Up-regulated serpin gene involved in Cry1Ac resistance in Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105269. [PMID: 36464374 DOI: 10.1016/j.pestbp.2022.105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/29/2022] [Accepted: 10/15/2022] [Indexed: 06/17/2023]
Abstract
Insect resistance to Bacillus thuringiensis (Bt) is a critical limiting factor for applying the Bt crops. Some studies indicated that decreased protoxin activation because of lower enzymatic activities of trypsin and chymotrypsin and increased expression of serpin might involve in Bt resistance. Our previous study identified an endogenous serpin could inhibit the midgut proteases to activate Cry1Ac and reduce the insecticide activity to Helicoverpa armigera. We hypothesis that up-regulated serpin involve in resistance via inhibiting enzymatic activities of trypsin and chymotrypsin to decrease protoxin activation. Herein, we found the serpin-e gene relative expression in midgut was significantly higher in the LF30 resistant strain than that in the susceptible strain during all developmental stages. Importantly, RNAi-mediated silencing of serpin-e gene expression caused 4.46-fold mortality changes in LF30 strain, but the trypsin and chymotrypsin proteases activities were only changed 0.79-fold and 2.22-fold. In addition, although proteases activities were significantly lower in LF30 strain than that in the susceptible strain, the resistance ratios of LF30 to Cry1Ac protoxin and to activated Cry1Ac toxin were no difference. The results indicated serpins caused insect resistance to Cry1Ac protoxins partly through inhibiting the trypsin and chymotrypsin proteases activities, but it also existed other mechanisms in LF30.
Collapse
Affiliation(s)
- Caihong Zhang
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jizhen Wei
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zaw Lin Naing
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ei Thinzar Soe
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jinrong Tang
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Gemei Liang
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100,PR China.
| |
Collapse
|
35
|
Wei J, Liu S, Wang K, Sun C, Li S, Liu X, Yin X, Bai S, Liang G, Crickmore N, An S. Cyclosporin A acts as a novel insecticide against Cry1Ac-susceptible and -resistant Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105283. [PMID: 36464338 DOI: 10.1016/j.pestbp.2022.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Cotton bollworm (Helicoverpa armigera) is an economically important pest, which is difficult to manage due to its biological and ecological traits, and resistance to most insecticides. Alternative compounds for the sustainable management of H. armigera are needed. As a fungal metabolite, Cyclosporin A (CsA) has not been applied in agriculture pests. Here, CsA was evaluated as a propective insecticide for H. armigera. The results showed that CsA displayed high insecticidal activity against both Cry1Ac-susceptible and -resistant populations of H. armigera. Moreover, lower concentrations of CsA had clear effects, including significantly reduced pupal weight, pupation rate, emergence rate, ovary size, female fecundity and egg hatchability. Further study confirmed that CsA suppressed calcineurin activity and the subsequent expression of endogenous antimicrobial peptide genes (APMs), leading to impaired immunity, ultimately resulting in delayed development and increased mortality. Thus, CsA treatment could control the cotton bollworm population and even showed efficacy against those with Bt resistance. In addition, the morphological changes observed in insects fed CsA with lower concentrations provide insight into insect immunity, regulation of growth and development, regulation of body color, ovary development and sexual selection under external pressure. Overall, our study provides information on biological control potential of Cry1Ac-susceptible and -resistant populations of H. armigera to develop novel bioinsecticides.
Collapse
Affiliation(s)
- Jizhen Wei
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shaokai Liu
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Kai Wang
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chengxian Sun
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shunjia Li
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoguang Liu
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinming Yin
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Sufen Bai
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Shiheng An
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
36
|
Resistance of Cabbage Loopers to Bacillus thuringiensis (Bt) Toxin Cry1F and to Dual-Bt Toxin WideStrike Cotton Plants. Appl Environ Microbiol 2022; 88:e0119422. [PMID: 36200769 PMCID: PMC9599322 DOI: 10.1128/aem.01194-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Cry proteins from Bacillus thuringiensis (Bt) are major insecticidal toxins in formulated Bt sprays and are expressed in genetically engineered Bt crops for insect pest control. However, the widespread application of Bt toxins in the field imposes strong selection pressure on target insects, leading to the evolution of insect resistance to the Bt toxins. Identification and understanding of mechanisms of insect resistance to Bt toxins are an important approach for dissecting the modes of action of Bt toxins and providing knowledge necessary for the development of resistance management technologies. In this study, cabbage looper (Trichoplusia ni) strains resistant to the transgenic dual-Bt toxin WideStrike cotton plants, which express Bt toxins Cry1Ac and Cry1F, were selected from T. ni strains resistant to the Bt formulation Bt-DiPel. The WideStrike-resistant T. ni larvae were confirmed to be resistant to both Bt toxins Cry1Ac and Cry1F. From the WideStrike-resistant T. ni, the Cry1F resistance trait was further isolated to establish a T. ni strain resistant to Cry1F only. The levels of Cry1F resistance in the WideStrike-resistant and the Cry1F-resistant strains were determined, and the inheritance of the Cry1F-resistant trait in the two strains was characterized. Genetic association analysis of the Cry1F resistance trait indicated that the Cry1F resistance in T. ni isolated in this study is not shared with the Cry1Ac resistance mechanism nor is it associated with a mutation in the ABCC2 gene, as has so far been reported in Cry1F-resistant insects. IMPORTANCE Insecticidal toxins from Bacillus thuringiensis (Bt) are highly effective for insect control in agriculture. However, the widespread application of Bt toxins exerts strong selection for Bt resistance in insect populations. The continuing success of Bt biotechnology for pest control requires the identification of resistance and understanding of the mechanisms of resistance to Bt toxins. Cry1F is an important Bt toxin used in transgenic cotton, maize, and soybean varieties adopted widely for insect control. To understand the mode of action of Cry1F and mechanisms of Cry1F resistance in insects, it is important to identify Cry1F-specific resistance and the resistance mechanisms. In this study, Trichoplusia ni strains resistant to commercial "WideStrike" cotton plants that express Bt toxins Cry1Ac and Cry1F were selected, and a Cry1F-specific resistant strain was isolated. The isolation of the novel Cry1F-specific resistance in the T. ni provided an invaluable biological system to discover a Cry1F-specific novel resistance mechanism.
Collapse
|
37
|
Fabrick JA, Heu CC, LeRoy DM, DeGain BA, Yelich AJ, Unnithan GC, Wu Y, Li X, Carrière Y, Tabashnik BE. Knockout of ABC transporter gene ABCA2 confers resistance to Bt toxin Cry2Ab in Helicoverpa zea. Sci Rep 2022; 12:16706. [PMID: 36202979 PMCID: PMC9537329 DOI: 10.1038/s41598-022-21061-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/22/2022] [Indexed: 11/08/2022] Open
Abstract
Evolution of pest resistance reduces the benefits of widely cultivated genetically engineered crops that produce insecticidal proteins derived from Bacillus thuringiensis (Bt). Better understanding of the genetic basis of pest resistance to Bt crops is needed to monitor, manage, and counter resistance. Previous work shows that in several lepidopterans, resistance to Bt toxin Cry2Ab is associated with mutations in the gene encoding the ATP-binding cassette protein ABCA2. The results here show that mutations introduced by CRISPR/Cas9 gene editing in the Helicoverpa zea (corn earworm or bollworm) gene encoding ABCA2 (HzABCA2) can cause resistance to Cry2Ab. Disruptive mutations in HzABCA2 facilitated the creation of two Cry2Ab-resistant strains. A multiple concentration bioassay with one of these strains revealed it had > 200-fold resistance to Cry2Ab relative to its parental susceptible strain. All Cry2Ab-resistant individuals tested had disruptive mutations in HzABCA2. We identified five disruptive mutations in HzABCA2 gDNA. The most common mutation was a 4-bp deletion in the expected Cas9 guide RNA target site. The results here indicate that HzABCA2 is a leading candidate for monitoring Cry2Ab resistance in field populations of H. zea.
Collapse
Affiliation(s)
- Jeffrey A Fabrick
- USDA ARS, U.S. Arid Land Agricultural Research Center, 21881 N. Cardon Lane, Maricopa, AZ, 85138, USA.
| | - Chan C Heu
- USDA ARS, U.S. Arid Land Agricultural Research Center, 21881 N. Cardon Lane, Maricopa, AZ, 85138, USA
| | - Dannialle M LeRoy
- USDA ARS, U.S. Arid Land Agricultural Research Center, 21881 N. Cardon Lane, Maricopa, AZ, 85138, USA
| | - Ben A DeGain
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | - Alex J Yelich
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
38
|
Tabashnik BE, Unnithan GC, Yelich AJ, Fabrick JA, Dennehy TJ, Carrière Y. Responses to Bt toxin Vip3Aa by pink bollworm larvae resistant or susceptible to Cry toxins. PEST MANAGEMENT SCIENCE 2022; 78:3973-3979. [PMID: 35633103 DOI: 10.1002/ps.7016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Transgenic crops that make insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized management of some pests. However, evolution of resistance to Bt toxins by pests diminishes the efficacy of Bt crops. Resistance to crystalline (Cry) Bt toxins has spurred adoption of crops genetically engineered to produce the Bt vegetative insecticidal protein Vip3Aa. Here we used laboratory diet bioassays to evaluate responses to Vip3Aa by pink bollworm (Pectinophora gossypiella), one of the world's most damaging pests of cotton. RESULTS Against pink bollworm larvae susceptible to Cry toxins, Vip3Aa was less potent than Cry1Ac or Cry2Ab. Conversely, Vip3Aa was more potent than Cry1Ac or Cry2Ab against laboratory strains highly resistant to those Cry toxins. Five Cry-susceptible field populations were less susceptible to Vip3Aa than a Cry-susceptible laboratory strain (APHIS-S). Relative to APHIS-S, significant resistance to Vip3Aa did not occur in strains selected in the laboratory for > 700-fold resistance to Cry1Ac or both Cry1Ac and Cry2Ab. CONCLUSIONS Resistance to Cry1Ac and Cry2Ab did not cause strong cross-resistance to Vip3Aa in pink bollworm, which is consistent with predictions based on the lack of shared midgut receptors between these toxins and previous results from other lepidopterans. Comparison of the Bt toxin concentration in plants relative to the median lethal concentration (LC50 ) from bioassays may be useful for estimating efficacy. The moderate potency of Vip3Aa against Cry1Ac- and Cry2Ab-resistant and susceptible pink bollworm larvae suggests that Bt cotton producing this toxin together with novel Cry toxins might be useful as one component of integrated pest management. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Jeffrey A Fabrick
- USDA ARS, US Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | | | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
39
|
Yang S, Cao Q, Peng K, Xie J. Jasmonic Acid-Treated Cotton Plant Leaves Impair Larvae Growth Performance, Activities of Detoxification Enzymes, and Insect Humoral Immunity of Cotton Bollworm. NEOTROPICAL ENTOMOLOGY 2022; 51:570-582. [PMID: 35680779 DOI: 10.1007/s13744-022-00970-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Enhancement of plant defense by exogenous elicitors is a promising tool for integrated pest management strategy. In the present study, cotton plants were treated with different concentrations (0, 0.01, 0.1, and 1.0 mM) of the natural plant defense elicitor, jasmonic acid (JA), and defense-related indicators in the plants were then determined. The cotton bollworm larvae were fed with JA-treated cotton leaves and larvae performances were discussed in terms of larvae relative growth rate (RGR), larval duration, pupal mass, humoral immunity, and activities of a target enzyme, three detoxification enzymes and two metabolic enzymes. Research results showed that JA treatment increased the contents of gossypol and H2O2, and decreased that of the total soluble carbohydrates, and 0.1 mM JA was more powerful in the induction of defense-related parameters. As a consequence, cotton bollworm larvae reared on JA-treated cotton leaves showed slower RGR, prolonged larvae duration, and decreased pupal mass. In addition, when larvae were fed with JA-treated cotton leaves, activities of phenoloxidae (an indicator of humoral immunity) and acetylcholinesterase (AchE, a target enzyme), alkaline phosphatases (ALP), acidic phosphatase (ACP), and three detoxification enzymes, carboxylesterase (CarE), glutathione S-transferase (GST), and cytochrome P450 (P450), were all reduced compared to the control. Taken together, the results suggest that JA can be an alternative agent for pest management by delaying insect growth and inhibiting immune defense and detoxification capacity of the cotton bollworm, which may reduce the use of synthetic pesticides.
Collapse
Affiliation(s)
- Shiyong Yang
- School of Ecology and Environment, Anhui Normal Univ, Wuhu, People's Republic of China.
- Collaborative Innovation Center for Recovery and Reconstruction of Degraded Ecosystem in Wanjing Basin Co-Founded by Anhui Province and Ministry of Education, Wuhu, People's Republic of China.
| | - Qian Cao
- School of Ecology and Environment, Anhui Normal Univ, Wuhu, People's Republic of China
| | - Kaihao Peng
- School of Ecology and Environment, Anhui Normal Univ, Wuhu, People's Republic of China
| | - Jianchun Xie
- School of Ecology and Environment, Anhui Normal Univ, Wuhu, People's Republic of China
| |
Collapse
|
40
|
Wang X, Yi XL, Hou CX, Wang XY, Sun X, Zhang ZJ, Qin S, Li MW. Map-based cloning and functional analysis revealed ABCC2 is responsible for Cry1Ac toxin resistance in Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21886. [PMID: 35307854 DOI: 10.1002/arch.21886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Bt toxins are parasporal crystals produced by Bacillus thuringiensis (Bt). They have specific killing activity against various insects and have been widely used to control agricultural pests. However, their widespread use has developed the resistance of many target insects. To maintain the sustainable use of Bt products, the resistance mechanism of insects to Bt toxins must be fully clarified. In this study, Bt-resistant and Bt-susceptible silkworm strains were used to construct genetic populations, and the genetic pattern of silkworm resistance to Cry1Ac toxin was determined. Sequence-tagged site molecular marker technology was used to finely map the resistance gene and to draw a molecular genetic linkage map, and the two closest markers were T1590 and T1581, indicating the resistance gene located in the 155 kb genetic region. After analyzing the sequence of the predicted gene in the genetic region, an ATP binding cassette transporter (ABCC2) was identified as the candidate gene. Molecular modeling and protein-protein docking result showed that a tyrosine insertion in the mutant ABCC2 might be responsible for the interaction between Cry1Ac and ABCC2. Moreover, CRISPR/Cas9-mediated genome editing technology was used to knockout ABCC2 gene. The homozygous mutant ABCC2 silkworm was resistant to Cry1Ac toxin, which indicated ABCC2 is the key gene that controls silkworm resistance to Cry1Ac toxin. The results have laid the foundation for elucidating the molecular resistance mechanism of silkworms to Cry1Ac toxin and could provide a theoretical basis for the biological control of lepidopteran pests.
Collapse
Affiliation(s)
- Xin Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Xiao-Li Yi
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Cheng-Xiang Hou
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Xue-Yang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Xia Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Zhong-Jie Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Mu-Wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| |
Collapse
|
41
|
Transcriptional Analysis of Cotton Bollworm Strains with Different Genetic Mechanisms of Resistance and Their Response to Bacillus thuringiensis Cry1Ac Toxin. Toxins (Basel) 2022; 14:toxins14060366. [PMID: 35737027 PMCID: PMC9228822 DOI: 10.3390/toxins14060366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Transgenic crops producing Bacillus thuringiensis (Bt) insecticidal proteins are grown widely for pest control, but the evolution of resistance in target pests could reduce their efficacy. Mutations in genes encoding cadherin, ABC transporter or tetraspanin were linked with resistance to Cry1Ac in several lepidopteran insects, including the cotton bollworm (Helicoverpa armigera), a worldwide agricultural pest. However, the detailed molecular mechanisms by which these mutations confer insect resistance to Cry1Ac remain largely unknown. In this study, we analyzed the midgut transcriptomes of a susceptible SCD strain and three SCD-derived Cry1Ac-resistant strains of H. armigera (SCD-r1, with a naturally occurring deletion mutation of cadherin; SCD-KI, with a knock-in T92C point mutation in tetraspanin; and C2/3-KO, with both ABCC2 and ABCC3 knocked out). Evaluation of midgut transcript profiles of the four strains without Cry1Ac exposure identified many constitutively differentially expressed genes (DEGs) in the resistant SCD-r1 (n = 1355), SCD-KI (n = 1254) and C2/3-KO (n = 2055) strains. Analysis of DEGs in the midguts of each strain after Cry1Ac exposure revealed similar patterns of response to Cry1Ac in the SCD and SCD-r1 strains, but unique responses in the SCD-KI and C2/3-KO strains. Expression of midgut epithelium healing and defense-related genes was strongly induced by Cry1Ac intoxication in the SCD and SCD-r1 strains, while immune-related pattern recognition receptor and effector genes were highly expressed in the SCD-KI strain after Cry1Ac exposure. This study advances our knowledge of the transcriptomic basis for insect resistance to Bt toxins and provides a valuable resource for further molecular characterization of insect response to Cry1Ac toxin in H. armigera and other pest species.
Collapse
|
42
|
Naik VCB, Supreeth GS, Gokte-Narkhedkar N, Prasad Y. In vitro rearing protocol for pink bollworm, Pectinophora gossypiella (Saunders) (Gelechiidae: Lepidoptera) on semi-synthetic diet. ANIM BIOL 2022. [DOI: 10.1163/15707563-bja10078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Cotton is one of the major commercial crops cultivated in India. One constraint limiting the potential yield in cotton is due to the bollworm complex, among which pink bollworm (PBW), Pectinophora gossypiella (Saunders), is major. To reduce this impact of PBW, farmers have opted for chemical insecticides to manage the pest. Indiscriminate use of these insecticides has led to the problem of resistance. Hence continuous monitoring is a must to keep check on the changing status and trends in the resistance. In order to conduct laboratory studies, a uniform population of sufficient size, producing the insect in high numbers and throughout the year, is required. Hence, a semi-synthetic diet will greatly help in maintaining such populations in the laboratory. The protocol followed for the rearing has resulted in increased larval and pupal weights which depict the suitability of the semi-synthetic diet as well as the efficiency of the rearing technique. This study on the biology of PBW has revealed that the rearing protocol on semi-synthetic diet is ideal, and this has enables us to obtain maximum recovery (less mortality) in a short period of time under laboratory conditions.
Collapse
Affiliation(s)
- V. Chinna Babu Naik
- Division of Crop Protection, ICAR-Central Institute for Cotton Research, Nagpur-440010, India
| | - Gillesugur Sham Supreeth
- Department of Agricultural Entomology, University of Agricultural Sciences, Raichur-584104, India
| | - N. Gokte-Narkhedkar
- Division of Crop Protection, ICAR-Central Institute for Cotton Research, Nagpur-440010, India
| | - Y.G. Prasad
- Division of Crop Protection, ICAR-Central Institute for Cotton Research, Nagpur-440010, India
| |
Collapse
|
43
|
Benowitz KM, Allan CW, Degain BA, Li X, Fabrick JA, Tabashnik BE, Carrière Y, Matzkin LM. Novel genetic basis of resistance to Bt toxin Cry1Ac in Helicoverpa zea. Genetics 2022; 221:iyac037. [PMID: 35234875 PMCID: PMC9071530 DOI: 10.1093/genetics/iyac037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/25/2022] [Indexed: 11/14/2022] Open
Abstract
Crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis have advanced pest management, but their benefits are diminished when pests evolve resistance. Elucidating the genetic basis of pest resistance to Bacillus thuringiensis toxins can improve resistance monitoring, resistance management, and the design of new insecticides. Here, we investigated the genetic basis of resistance to Bacillus thuringiensis toxin Cry1Ac in the lepidopteran Helicoverpa zea, one of the most damaging crop pests in the United States. To facilitate this research, we built the first chromosome-level genome assembly for this species, which has 31 chromosomes containing 375 Mb and 15,482 predicted proteins. Using a genome-wide association study, fine-scale mapping, and RNA-seq, we identified a 250-kb quantitative trait locus on chromosome 13 that was strongly associated with resistance in a strain of Helicoverpa zea that had been selected for resistance in the field and lab. The mutation in this quantitative trait locus contributed to but was not sufficient for resistance, which implies alleles in more than one gene contributed to resistance. This quantitative trait locus contains no genes with a previously reported role in resistance or susceptibility to Bacillus thuringiensis toxins. However, in resistant insects, this quantitative trait locus has a premature stop codon in a kinesin gene, which is a primary candidate as a mutation contributing to resistance. We found no changes in gene sequence or expression consistently associated with resistance for 11 genes previously implicated in lepidopteran resistance to Cry1Ac. Thus, the results reveal a novel and polygenic basis of resistance.
Collapse
Affiliation(s)
- Kyle M Benowitz
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology, Austin Peay State University, Clarksville, TN 37040, USA
| | - Carson W Allan
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Benjamin A Degain
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Jeffrey A Fabrick
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Luciano M Matzkin
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
44
|
Resistance Allele Frequency to Cry1Ab and Vip3Aa20 in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Louisiana and Three Other Southeastern U.S. States. Toxins (Basel) 2022; 14:toxins14040270. [PMID: 35448879 PMCID: PMC9028807 DOI: 10.3390/toxins14040270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023] Open
Abstract
The corn earworm/bollworm, Helicoverpa zea (Boddie), is a pest species that is targeted by both Bacillus thuringiensis (Bt) maize and cotton in the United States. Cry1Ab and Vip3Aa20 are two common Bt toxins that are expressed in transgenic maize. The objective of this study was to determine the resistance allele frequency (RAF) to Cry1Ab and Vip3Aa20 in H. zea populations that were collected during 2018 and 2019 from four southeastern U.S. states: Louisiana, Mississippi, Georgia, and South Carolina. By using a group-mating approach, 104 F2 iso-lines of H. zea were established from field collections with most iso-lines (85) from Louisiana. These F2 iso-lines were screened for resistance alleles to Cry1Ab and Vip3Aa20, respectively. There was no correlation in larval survivorship between Cry1Ab and Vip3Aa20 when the iso-lines were exposed to these two toxins. RAF to Cry1Ab maize was high (0.256) and the RAFs were similar between Louisiana and the other three states and between the two sampling years. In contrast, no functional major resistance allele (RA) that allowed resistant insects to survive on Vip3Aa20 maize was detected and the expected RAF of major RAs with 95% probability was estimated to 0 to 0.0073. However, functional minor RAs to Vip3Aa20 maize were not uncommon; the estimated RAF for minor alleles was 0.028. The results provide further evidence that field resistance to Cry1Ab maize in H. zea has widely occurred, while major RAs to Vip3Aa20 maize are uncommon in the southeastern U.S. region. Information that was generated from this study should be useful in resistance monitoring and refinement of resistance management strategies to preserve Vip3A susceptibility in H. zea.
Collapse
|
45
|
Van den Berg J, Greyvenstein B, du Plessis H. Insect resistance management facing African smallholder farmers under climate change. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100894. [PMID: 35247642 DOI: 10.1016/j.cois.2022.100894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Changes in climatic conditions affect pest populations and ultimately result in increased pest status and yield losses. While pesticide application is usually the first defensive tool used to control pest species that threaten crop production, genetically modified (GM) crops with insecticidal traits (Bt crops) are becoming more common. The indiscriminate and over use of insecticides, and absence of insect resistance management (IRM) strategies ultimately lead to evolution of resistance against these technologies. IRM faces significant challenges in the African context. In this paper we use examples of cotton, maize, cowpea and tomato pests to illustrate their potential to evolve resistance to insecticides and also highlight the importance of IRM strategies, both with regard to the use of pesticides and the cultivation of Bt cotton, Bt maize and Bt cowpea.
Collapse
Affiliation(s)
- Johnnie Van den Berg
- IPM Program, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa.
| | - Bianca Greyvenstein
- IPM Program, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Hannalene du Plessis
- IPM Program, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
46
|
Lázaro-Berenguer M, Quan Y, Hernández-Martínez P, Ferré J. In vivo competition assays between Vip3 proteins confirm the occurrence of shared binding sites in Spodoptera littoralis. Sci Rep 2022; 12:4578. [PMID: 35301405 PMCID: PMC8931066 DOI: 10.1038/s41598-022-08633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/07/2022] [Indexed: 11/09/2022] Open
Abstract
Due to their different specificity, the use of Vip3 proteins from Bacillus thuringiensis in combination with the conventionally used Cry proteins in crop protection is being essential to counteract the appearance of insect resistance. Therefore, understanding the mode of action of Vip3 proteins is crucial for their better application, with special interest on the binding to membrane receptors as the main step for specificity. Derived from in vitro heterologous competition binding assays using 125I-Vip3A and other Vip3 proteins as competitors, it has been shown that Vip3 proteins share receptors in Spodoptera frugiperda and Spodoptera exigua brush border membrane vesicles (BBMV). In this study, using 125I-Vip3Aa, we have first extended the in vitro competition binding site model of Vip3 proteins to Spodoptera littoralis. With the aim to understand the relevance (in terms of toxicity) of the binding to the midgut sites observed in vitro on the insecticidal activity of these proteins, we have performed in vivo competition assays with S. littoralis larvae, using disabled mutant (non-toxic) Vip3 proteins as competitors for blocking the toxicity of Vip3Aa and Vip3Af. The results of the in vivo competition assays confirm the occurrence of shared binding sites among Vip3 proteins and help understand the functional role of the shared binding sites as revealed in vitro.
Collapse
Affiliation(s)
- María Lázaro-Berenguer
- Institute of Biotechnology and Biomedicine (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain
| | - Yudong Quan
- Institute of Biotechnology and Biomedicine (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain
| | - Patricia Hernández-Martínez
- Institute of Biotechnology and Biomedicine (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain
| | - Juan Ferré
- Institute of Biotechnology and Biomedicine (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
47
|
Gao Q, Lin Y, Wang X, Jing D, Wang Z, He K, Bai S, Zhang Y, Zhang T. Knockout of ABC Transporter ABCG4 Gene Confers Resistance to Cry1 Proteins in Ostrinia furnacalis. Toxins (Basel) 2022; 14:toxins14010052. [PMID: 35051029 PMCID: PMC8780026 DOI: 10.3390/toxins14010052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/16/2022] Open
Abstract
Ostrinia furnacalis is an important borer on maize. Long-term and large-scale planting of transgenic corn has led O. furnacalis evolving resistance and reducing the control effect. Recently, high levels of resistance to Bt Cry1 toxins have been reported to be genetically linked to the mutation or down-regulation of ABC transporter subfamily G gene ABCG4 in O. furnacalis. In order to further determine the relationship between ABCG4 gene and the resistance to Cry1 toxins in O. furnacalis, the novel CRISPR/Cas9 genome engineering system was utilized to successfully construct ABCG4-KO knockout homozygous strain. Bioassay results indicated that an ABCG4-KO strain had a higher resistance to Cry1 proteins compared with a susceptible strain (ACB-BtS). The result indicates that the ABCG4 gene may act as a receptor of the Bt Cry1 toxin in O. furnacalis. Furthermore, the development time was significantly changed in the early stage ABCG4-KO larvae, and the population parameters were also significantly changed. In summary, our CRISPR/Cas9-mediated genome editing study presents evidence that ABCG4 gene is a functional receptor for Bt Cry1 toxins, laying the foundation for further clarification of the Bt resistance mechanism.
Collapse
Affiliation(s)
- Qing Gao
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Yaling Lin
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
- College of Plant Protection, Gansu Agriculture University, Lanzhou 730070, China
| | - Xiuping Wang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
- Correspondence: (X.W.); (T.Z.)
| | - Dapeng Jing
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Zhenying Wang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Kanglai He
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Shuxiong Bai
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Yongjun Zhang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Tiantao Zhang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
- Correspondence: (X.W.); (T.Z.)
| |
Collapse
|
48
|
Wang L, Xu D, Huang Y, Zhou H, Liu W, Cong S, Wang J, Li W, Wan P. Mutation in the Cadherin Gene Is a Key Factor for Pink Bollworm Resistance to Bt Cotton in China. Toxins (Basel) 2022; 14:toxins14010023. [PMID: 35051000 PMCID: PMC8777804 DOI: 10.3390/toxins14010023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 02/04/2023] Open
Abstract
Transgenic crops producing Bacillus thuringiensis (Bt) toxins are widely planted for insect control, but their efficacy may decrease as insects evolve resistance. Understanding the genetic basis of insect resistance is essential for developing an integrated strategy of resistance management. To understand the genetic basis of resistance in pink bollworm (Pectinophora gossypiella) to Bt cotton in the Yangtze River Valley of China, we conducted an F2 screening for alleles associated with resistance to the Bt (Cry1Ac) protein for the first time. A total of 145 valid single-paired lines were screened, among which seven lines were found to carry resistance alleles. All field parents in those seven lines carried recessive resistance alleles at the cadherin locus, including three known alleles, r1, r13 and r15, and two novel alleles, r19 and r20. The overall frequency of resistance alleles in 145 lines was 0.0241 (95% CI: 0.0106-0.0512). These results demonstrated that resistance was rare and that recessive mutation in the cadherin gene was the primary mechanism of pink bollworm resistance to Bt cotton in the Yangtze River Valley of China, which will provide a scientific basis for implementing targeted resistance management statics of pink bollworm in this region.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.W.); (D.X.); (S.C.); (J.W.); (W.L.)
| | - Dong Xu
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.W.); (D.X.); (S.C.); (J.W.); (W.L.)
| | - Yunxin Huang
- School of Resource and Environmental Sciences, Hubei University, Wuhan 430062, China;
| | - Huazhong Zhou
- General Station of Plant Protection, Hubei Province, Wuhan 430070, China; (H.Z.); (W.L.)
| | - Weiguo Liu
- General Station of Plant Protection, Hubei Province, Wuhan 430070, China; (H.Z.); (W.L.)
| | - Shengbo Cong
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.W.); (D.X.); (S.C.); (J.W.); (W.L.)
| | - Jintao Wang
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.W.); (D.X.); (S.C.); (J.W.); (W.L.)
| | - Wenjing Li
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.W.); (D.X.); (S.C.); (J.W.); (W.L.)
| | - Peng Wan
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.W.); (D.X.); (S.C.); (J.W.); (W.L.)
- Correspondence:
| |
Collapse
|
49
|
Yao X, Liu C, Duan Y, An S, Wei J, Liang G. ABCC2 is a functional receptor of Bacillus thuringiensis Cry1Ca in Spodoptera litura. Int J Biol Macromol 2022; 194:9-16. [PMID: 34861271 DOI: 10.1016/j.ijbiomac.2021.11.174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
Spodoptera litura is a serious polyphagous pest in the whole world, which has developed resistance to most conventional insecticides and even some Bacillus thuringiensis (Bt) toxins. Cry1Ca has excellent insecticide activity against S. litura with potential application to control S. litura and delay the development of insect resistance. However, the mode of action of Cry1Ca in S. litura is poorly understood. Here, Cry1Ca-binding proteins were identified from S. litura by using pull down assays and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results indicated that aminopeptidase-N (APN), ATP binding cassette subfamily C member 2 (ABCC2), polycalin, actin and V-type proton ATPase subunit A may bind with Cry1Ca. Further study confirmed that ABCC2 fragment expressed in vitro can bind to Cry1Ca as demonstrated by Ligand blot and homologous competition experiments. The over-expression of endogenous SlABCC2 in Sf9 cells increased Cry1Ca cytotoxicity. Correspondingly, the vivo loss of function analyses by SlABCC2 small interfering RNAs (siRNAs) in S. litura larvae decreased the toxicity of Cry1Ca to larvae. Altogether, these results show that ABCC2 of S. litura is a functional receptor that is involved in the action mode of Cry1Ca.
Collapse
Affiliation(s)
- Xue Yao
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| | - Yunpeng Duan
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiheng An
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jizhen Wei
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China.
| |
Collapse
|
50
|
Wang S, Zhang M, Huang J, Li L, Huang K, Zhang Y, Li Y, Deng Z, Ni X, Li X. Inductive and synergistic interactions between plant allelochemical flavone and Bt toxin Cry1Ac in Helicoverpa armigera. INSECT SCIENCE 2021; 28:1756-1765. [PMID: 33377308 DOI: 10.1111/1744-7917.12897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/02/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Genetically engineered crops simultaneously produce defensive allelochemicals and Bacillus thuringiensis (Bt) toxin proteins to kill some of the world's most devastating insect pests. How the two types of toxins, when ingested sequentially or simultaneously, interact at both lethal and sublethal doses in these pests remains underexplored. Here, we examined the toxicological interactions between the Bt toxin Cry1Ac and the flavonoid allelochemical flavone in Helicoverpa armigera. Simultaneous exposure of H. armigera neonates to lethal doses (LC25 ) of Cry1Ac and flavone caused a mortality significantly higher than that of either toxin alone and their expected additive mortality. Preexposure for 24 h to a sublethal dose (LC10 ) of Cry1Ac followed by 6-d simultaneous exposure to the same dose of Cry1Ac plus a lethal dose (1.6 mg/g diets, LC50 ) of flavone resulted in a mortality significantly higher than that of the LC50 dose of flavone alone and the expected additive mortality of the LC50 dose of flavone plus the LC10 dose of Cry1Ac. One-day preexposure to the sublethal dose (LC10 ) of flavone followed by 6-d simultaneous exposure to the LC50 dose (6 ng/cm2 ) of Cry1Ac plus the LC10 dose of flavone yielded a mortality significantly higher than that of the LC50 dose of Cry1Ac but similar to the expected additive mortality of the LC50 dose of Cry1Ac plus the LC10 dose of flavone. The results suggest that Cry1Ac induces and synergizes the toxicity of flavone against H. armigera larvae.
Collapse
Affiliation(s)
- Shan Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Min Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Leyao Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Kaiyuan Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuting Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yalu Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinzhi Ni
- USDA-ARS, Crop Genetics and Breeding Research Unit, University of Georgia-Tifton Campus, Tifton, GA, USA
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|