1
|
Cabrera FP, Paiano MO, Fumo JT, Allsopp KR, Smith CM, Spalding HL, Kosaki RK, Sherwood AR. Organellar genomic characterization of Anunuuluaehu liula representing a new genus and species of Phyllophoraceae (Gigartinales, Rhodophyta) from the mesophotic zone of Hawai'i. JOURNAL OF PHYCOLOGY 2024; 60:116-132. [PMID: 38289653 DOI: 10.1111/jpy.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 02/17/2024]
Abstract
Over the last 2 decades, routine collections in the Hawaiian Archipelago have expanded to mesophotic reefs, leading to the discovery of a new red algal genus and species, here described as Anunuuluaehu liula gen. et sp. nov. This study provides a detailed genus and species description and characterizes chloroplast and mitochondrial organellar genomes. The new genus, Anunuuluaehu, shares many characteristics with the family Phyllophoraceae and shows close similarities to Archestennogramma and Stenogramma, including habit morphology, nemathecia forming proliferations at the outer cortex with terminal chains of tetrasporangia, and carposporophytes with multi-layered pericarps. The single species in this genus exhibits distinctive features within the Phyllophoraceae: the presence of single-layer construction of large medullary cells and the development of long, tubular gonimoblastic filaments. Multi-gene phylogenetic analyses confirmed it as a unique, monophyletic lineage within the family. Cis-splicing genes, interrupted by intron-encoded proteins within group II introns, are present in both the chloroplast and mitochondrial genomes of A. liula. Notably, a specific region of the coxI group II intron exhibits similarity to fungal introns. Anunuuluaehu liula is presumed to be endemic to the Hawaiian Archipelago and thus far is known to live solely at mesophotic depths from Hōlanikū to Kaho'olawe ranging from 54 to 201 m, which is the deepest collection record of any representative in the family. Overall, this study enhances our understanding of the genomic and taxonomic complexities of red algae in mesophotic habitats, emphasizing the significance of continued research in this area to uncover further insights into evolutionary processes and biogeographic patterns.
Collapse
Affiliation(s)
- Feresa P Cabrera
- School of Life Sciences, University of Hawai'i, Honolulu, Hawai'i, USA
| | - Monica O Paiano
- School of Life Sciences, University of Hawai'i, Honolulu, Hawai'i, USA
| | - James T Fumo
- School of Life Sciences, University of Hawai'i, Honolulu, Hawai'i, USA
| | - Kazumi R Allsopp
- School of Life Sciences, University of Hawai'i, Honolulu, Hawai'i, USA
| | - Celia M Smith
- School of Life Sciences, University of Hawai'i, Honolulu, Hawai'i, USA
| | - Heather L Spalding
- Department of Biology, College of Charleston, Charleston, South Carolina, USA
| | - Randall K Kosaki
- Papahānaumokuākea Marine National Monument, NOAA, Honolulu, Hawai'i, USA
| | - Alison R Sherwood
- School of Life Sciences, University of Hawai'i, Honolulu, Hawai'i, USA
| |
Collapse
|
2
|
Nowruzi B, Shishir MA, Porzani SJ, Ferdous UT. Exploring the Interactions between Algae and Bacteria. Mini Rev Med Chem 2022; 22:2596-2607. [PMID: 35507745 DOI: 10.2174/1389557522666220504141047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
Humans have used algae for hundreds of years to make various products viz. agar, fertilizer, food, and pigments. Algae are also used in bioremediation to clean up polluted water and as essential laboratory tools in genomics, proteomics, and other research applications such as environmental warnings. Several special features of algae, including the oxygenic photosynthesis, higher yield in biomass, growth on the non-arable lands, their survival in a wide range of water supplies (contaminated or filtered waters), the production of necessary byproducts and biofuels, the enhancement of soil productivity, and the greenhouse gas emissions, etc. altogether rendered them as vital bio-resources in the sustainable development. Algae and bacteria have been assumed to coexist from the early stages of the development of the earth, and a wide variety of interactions were observed between them which have influenced the ecosystems ranging from the oceans to the lichens. Research has shown that bacteria and algae interact synergistically, especially roseobacter-algae interactions being the most common. These interactions are common to all ecosystems and characterize their primary efficiency. The commercialization of algae for industrial purposes, an important field, is also influenced by this interaction which frequently results in bacterial infections among the consumers. However, the recent findings have revealed that the bacteria improve algal growth and support flocculation which are very crucial in algal biotechnology. Some of the most exciting advancements in the area of algal biotic interactions and potential difficulties were reviewed in this article. Information gleaned in this study would provide a firm foundation for launching more contemporaneous research efforts in understanding and utilizing the algal species in biotechnology industries and medical sectors.
Collapse
Affiliation(s)
- Bahareh Nowruzi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Samaneh J Porzani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Umme Tamanna Ferdous
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Park SH, Kyndt JA, Brown JK. Comparison of Auxenochlorella protothecoides and Chlorella spp. Chloroplast Genomes: Evidence for Endosymbiosis and Horizontal Virus-like Gene Transfer. Life (Basel) 2022; 12:life12030458. [PMID: 35330209 PMCID: PMC8955559 DOI: 10.3390/life12030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
Resequencing of the chloroplast genome (cpDNA) of Auxenochlorella protothecoides UTEX 25 was completed (GenBank Accession no. KC631634.1), revealing a genome size of 84,576 base pairs and 30.8% GC content, consistent with features reported for the previously sequenced A. protothecoides 0710, (GenBank Accession no. KC843975). The A. protothecoides UTEX 25 cpDNA encoded 78 predicted open reading frames, 32 tRNAs, and 4 rRNAs, making it smaller and more compact than the cpDNA genome of C. variabilis (124,579 bp) and C. vulgaris (150,613 bp). By comparison, the compact genome size of A. protothecoides was attributable primarily to a lower intergenic sequence content. The cpDNA coding regions of all known Chlorella species were found to be organized in conserved colinear blocks, with some rearrangements. The Auxenochlorella and Chlorella species genome structure and composition were similar, and of particular interest were genes influencing photosynthetic efficiency, i.e., chlorophyll synthesis and photosystem subunit I and II genes, consistent with other biofuel species of interest. Phylogenetic analysis revealed that Prototheca cutis is the closest known A. protothecoides relative, followed by members of the genus Chlorella. The cpDNA of A. protothecoides encodes 37 genes that are highly homologous to representative cyanobacteria species, including rrn16, rrn23, and psbA, corroborating a well-recognized symbiosis. Several putative coding regions were identified that shared high nucleotide sequence identity with virus-like sequences, suggestive of horizontal gene transfer. Despite these predictions, no corresponding transcripts were obtained by RT-PCR amplification, indicating they are unlikely to be expressed in the extant lineage.
Collapse
Affiliation(s)
- Sang-Hyuck Park
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA; (S.-H.P.); (J.K.B.)
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO 81001, USA
| | - John A. Kyndt
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA
- Correspondence:
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA; (S.-H.P.); (J.K.B.)
| |
Collapse
|
4
|
Li J, Li X, Khatab AA, Xie G. Phylogeny, structural diversity and genome-wide expression analysis of fibrillin family genes in rice. PHYTOCHEMISTRY 2020; 175:112377. [PMID: 32315840 DOI: 10.1016/j.phytochem.2020.112377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Fibrillins (FBNs) constitute a plastid-lipid-associated protein family that plays a role in chloroplast development, lipids metabolism and stress responses in plants. Until now, FBNs have been functionally characterized in stability of thylakoid and responses to the different stress stimuli. Consequently, phylogeny, domain composition and structural features of 121 FBNs family proteins from ten representative species have been identified. As results, phylogenetic analysis demonstrated that FBNs proteins were grouped into 24 clades and further subdivided into three groups, including terrestrial plant-specific, algae-specific, and intermediate group. These FBNs genes had different numbers of introns and exons but encoded the conserved N-terminal chloroplast transport peptide (CTP) domains and plastid lipid-associated protein (PAP) domains, which greatly contributed to the sub-functionalization and neo-functionalization. Meanwhile, the CTP domains of eleven OsFBN proteins except OsFBN8 could help them transport into chloroplasts. The PAP domains of OsFBN2 and OsFBN4 showed the in vitro specific binding activity to C12-C22 fatty acids that were affected by YxD motif. The qRT-PCR analysis showed that OsFBN genes were differentially induced by heat stress and cold stress in rice. Collectively, this study has provided the new insights into the evolution, structure, and functions of FBN gene family and will help to elucidate the molecular mechanisms of these proteins functioning in growth, development and adaptations in the global climate change.
Collapse
Affiliation(s)
- Jiajia Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Xukai Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Ahmed Adel Khatab
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt.
| | - Guosheng Xie
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
5
|
Zúñiga A, Laporte D, González A, Gómez M, Sáez CA, Moenne A. Isolation and Characterization of Copper- and Zinc- Binding Metallothioneins from the Marine Alga Ulva compressa (Chlorophyta). Int J Mol Sci 2019; 21:E153. [PMID: 31881655 PMCID: PMC6981760 DOI: 10.3390/ijms21010153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023] Open
Abstract
In this work, transcripts encoding three metallothioneins from Ulva compressa (UcMTs) were amplified: The 5'and 3' UTRs by RACE-PCR, and the open reading frames (ORFs) by PCR. Transcripts encoding UcMT1.1 (Crassostrea-like), UcMT2 (Mytilus-like), and UcMT3 (Dreissena-like) showed a 5'UTR of 61, 71, and 65 nucleotides and a 3'UTR of 418, 235, and 193 nucleotides, respectively. UcMT1.1 ORF encodes a protein of 81 amino acids (MW 8.2 KDa) with 25 cysteines (29.4%), arranged as three motifs CC and nine motifs CXC; UcMT2 ORF encode a protein of 90 amino acids (9.05 kDa) with 27 cysteines (30%), arranged as three motifs CC, nine motifs CXC, and one motif CXXC; UcMT3 encode a protein of 139 amino acids (13.4 kDa) with 34 cysteines (24%), arranged as seven motifs CC and seven motifs CXC. UcMT1 and UcMT2 were more similar among each other, showing 60% similarity in amino acids; UcMT3 showed only 31% similarity with UcMT1 and UcMT2. In addition, UcMTs displayed structural similarity with MTs of marine invertebrates MTs and the terrestrial invertebrate Caenorhabtidis elegans MTs, but not with MTs from red or brown macroalgae. The ORFs fused with GST were expressed in bacteria allowing copper accumulation, mainly in MT1 and MT2, and zinc, in the case of the three MTs. Thus, the three MTs allowed copper and zinc accumulation in vivo. UcMTs may play a role in copper and zinc accumulation in U. compressa.
Collapse
Affiliation(s)
- Antonio Zúñiga
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 9170022, Chile; (A.Z.); (A.G.); (M.G.)
- HUB AMBIENTAL UPLA, Vicerrectoría de Investigación, Postgrado e Innovación, University of Playa Ancha, Avenida Carvallo 270, Valparaíso 2340000, Chile;
| | - Daniel Laporte
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 9170022, Chile; (A.Z.); (A.G.); (M.G.)
| | - Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 9170022, Chile; (A.Z.); (A.G.); (M.G.)
| | - Melissa Gómez
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 9170022, Chile; (A.Z.); (A.G.); (M.G.)
| | - Claudio A. Sáez
- HUB AMBIENTAL UPLA, Vicerrectoría de Investigación, Postgrado e Innovación, University of Playa Ancha, Avenida Carvallo 270, Valparaíso 2340000, Chile;
- Laboratory of Aquatic Environmental Research, Center of Advances Studies, University of Playa Ancha, Traslaviña 450, Viña del Mar 2520000, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 9170022, Chile; (A.Z.); (A.G.); (M.G.)
| |
Collapse
|
6
|
González A, Sáez CA, Morales B, Moenne A. Copper-induced activation of TRP channels promotes extracellular calcium entry and activation of CaMK, PKA, PKC, PKG and CBLPK leading to increased expression of antioxidant enzymes in Ectocarpus siliculosus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 126:106-116. [PMID: 29518656 DOI: 10.1016/j.plaphy.2018.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2023]
Abstract
The existence of functional Transient Receptor Potential (TRP) channels was analyzed in Ectocarpus siliculosus using agonists of human TRPs and specific antagonists of TRPA1, TRPC5, TRPM8 and TRPV; intracellular calcium was detected for 60 min. Increases in intracellular calcium were observed at 13, 29, 39 and 50-52 min, which appeared to be mediated by the activation of TRPM8/V1 at 13 min, TRPV1 at 29 min, TRPA1/V1 at 39 min and TRPA1/C5 at 50-52 min. In addition, intracellular calcium increases appear to be due to extracellular calcium entry, not requiring protein kinase activation. On the other hand, 2.5 μM copper exposure induced increased intracellular calcium at 13, 29, 39 and 51 min, likely due to the activation of a TRPA1/V1 at 13 min, TRPA1/C5/M8 at 29 min, TRPC5/M8 at 39 min, and a TRPC5/V1 at 51 min. The increases in intracellular calcium induced by copper were due to extracellular calcium entry and required protein kinase activation. Furthermore, from 3 to 24 h, copper exposure induced an increase in the level of transcripts encoding antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione reductase and peroxiredoxin. The described upregulation decreased with inhibitors of CaMK, PKA, PKC, PKG and CBLPK, as well as with a mixture of TRP inhibitors. Thus, copper induces the activation of TRP channels allowing extracellular calcium entry as well as the activation of CaMK, PKA, PKC, PKG and CBLPK leading to increased expression of genes encoding antioxidant enzymes in E. siliculosus.
Collapse
Affiliation(s)
- Alberto González
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile.
| | - Claudio A Sáez
- Laboratory of Coastal Environmental Research, Center of Advanced Studies, University of Playa Ancha, Viña del mar, Chile
| | - Bernardo Morales
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Alejandra Moenne
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile.
| |
Collapse
|
7
|
Nagao R, Suzuki T, Dohmae N, Shen JR, Tomo T. Functional role of Lys residues of Psb31 in electrostatic interactions with diatom photosystem II. FEBS Lett 2017; 591:3259-3264. [DOI: 10.1002/1873-3468.12830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology; Okayama University; Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit; RIKEN Center for Sustainable Resource Science; Wako Saitama Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit; RIKEN Center for Sustainable Resource Science; Wako Saitama Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology; Okayama University; Japan
| | - Tatsuya Tomo
- Department of Biology; Faculty of Science; Tokyo University of Science; Shinjuku-ku Tokyo Japan
| |
Collapse
|
8
|
Moenne A, González A, Sáez CA. Mechanisms of metal tolerance in marine macroalgae, with emphasis on copper tolerance in Chlorophyta and Rhodophyta. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:30-37. [PMID: 27107242 DOI: 10.1016/j.aquatox.2016.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Green and red macroalgae are closely related organisms, and with terrestrial plants, and constitute the base of marine food webs in coastal ecosystems. Green and red seaweeds, as all living organisms, require essential metals, such as copper, iron, zinc, which can act as co-factors for several proteins and enzymes; however, these metals in excess can induce stress and impair cell viability. Most important negative effects of metal excess are related to the induction of an oxidative stress condition, characterized by the over-accumulation of Reactive Oxygen Species (ROS). In this respect, copper, abundant in wastewaters disposed to coastal environments from domestic and industrial activities, has been one of the most studied metals. Different investigations have provided evidence that green and red macroalgae display several defenses against copper excess to prevent, or at least reduce, stress and damage, among which are cellular exclusion mechanisms, synthesis of metal-chelating compounds, and the activation of the antioxidant system. Most important defense mechanisms identified in green and red seaweed involve: metal-binding to cell wall and epibionts; syntheses of metallothioneins and phytochelatins that accumulate in the cytoplasm; and the increase in the activity of antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione peroxidase and catalase, and greater production of antioxidant metabolites as glutathione and ascorbate in organelles and the cytoplasm. In this review, we go through historical records, latest advances, and pending tasks aiming to expand our current knowledge on defense mechanisms to copper excess in green and red macroalgae, with emphasis on biochemical and molecular aspects.
Collapse
Affiliation(s)
- Alejandra Moenne
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile.
| | - Alberto González
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Claudio A Sáez
- Center of Advanced Studies, University of Playa Ancha, Viña del Mar, Chile.
| |
Collapse
|
9
|
Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnol Adv 2016; 34:14-29. [PMID: 26657897 DOI: 10.1016/j.biotechadv.2015.12.003] [Citation(s) in RCA: 548] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 11/28/2022]
Abstract
Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications.
Collapse
Affiliation(s)
- Rishiram Ramanan
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Byung-Hyuk Kim
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Dae-Hyun Cho
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Hee-Mock Oh
- Bioenergy and Biochemical Research Center, KRIBB, Yuseong-gu, Daejeon 305-806, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Hee-Sik Kim
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology, Yuseong-gu, Daejeon 305-806, Republic of Korea.
| |
Collapse
|
10
|
Chan CX, Bhattacharya D, Reyes-Prieto A. Endosymbiotic and horizontal gene transfer in microbial eukaryotes: Impacts on cell evolution and the tree of life. Mob Genet Elements 2014; 2:101-105. [PMID: 22934244 PMCID: PMC3429517 DOI: 10.4161/mge.20110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The evolution of microbial eukaryotes, in particular of photosynthetic lineages, is complicated by multiple instances of endosymbiotic and horizontal gene transfer (E/HGT) resulting from plastid origin(s). Our recent analysis of diatom membrane transporters provides evidence of red and/or green algal origins of 172 of the genes encoding these proteins (ca. 25% of the examined phylogenies), with the majority putatively derived from green algae. These data suggest that E/HGT has been an important driver of evolutionary innovation among diatoms (and likely other stramenopiles), and lend further support to the hypothesis of an ancient, cryptic green algal endosymbiosis in "chromalveolate" lineages. Here, we discuss the implications of our findings on the understanding of eukaryote evolution and inference of the tree of life.
Collapse
|
11
|
Wisecaver JH, Brosnahan ML, Hackett JD. Horizontal gene transfer is a significant driver of gene innovation in dinoflagellates. Genome Biol Evol 2014; 5:2368-81. [PMID: 24259313 PMCID: PMC3879968 DOI: 10.1093/gbe/evt179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The dinoflagellates are an evolutionarily and ecologically important group of microbial eukaryotes. Previous work suggests that horizontal gene transfer (HGT) is an important source of gene innovation in these organisms. However, dinoflagellate genomes are notoriously large and complex, making genomic investigation of this phenomenon impractical with currently available sequencing technology. Fortunately, de novo transcriptome sequencing and assembly provides an alternative approach for investigating HGT. We sequenced the transcriptome of the dinoflagellate Alexandrium tamarense Group IV to investigate how HGT has contributed to gene innovation in this group. Our comprehensive A. tamarense Group IV gene set was compared with those of 16 other eukaryotic genomes. Ancestral gene content reconstruction of ortholog groups shows that A. tamarense Group IV has the largest number of gene families gained (314-1,563 depending on inference method) relative to all other organisms in the analysis (0-782). Phylogenomic analysis indicates that genes horizontally acquired from bacteria are a significant proportion of this gene influx, as are genes transferred from other eukaryotes either through HGT or endosymbiosis. The dinoflagellates also display curious cases of gene loss associated with mitochondrial metabolism including the entire Complex I of oxidative phosphorylation. Some of these missing genes have been functionally replaced by bacterial and eukaryotic xenologs. The transcriptome of A. tamarense Group IV lends strong support to a growing body of evidence that dinoflagellate genomes are extraordinarily impacted by HGT.
Collapse
|
12
|
Yue J, Sun G, Hu X, Huang J. The scale and evolutionary significance of horizontal gene transfer in the choanoflagellate Monosiga brevicollis. BMC Genomics 2013; 14:729. [PMID: 24156600 PMCID: PMC4046809 DOI: 10.1186/1471-2164-14-729] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/17/2013] [Indexed: 12/29/2022] Open
Abstract
Background It is generally agreed that horizontal gene transfer (HGT) is common in phagotrophic protists. However, the overall scale of HGT and the cumulative impact of acquired genes on the evolution of these organisms remain largely unknown. Results Choanoflagellates are phagotrophs and the closest living relatives of animals. In this study, we performed phylogenomic analyses to investigate the scale of HGT and the evolutionary importance of horizontally acquired genes in the choanoflagellate Monosiga brevicollis. Our analyses identified 405 genes that are likely derived from algae and prokaryotes, accounting for approximately 4.4% of the Monosiga nuclear genome. Many of the horizontally acquired genes identified in Monosiga were probably acquired from food sources, rather than by endosymbiotic gene transfer (EGT) from obsolete endosymbionts or plastids. Of 193 genes identified in our analyses with functional information, 84 (43.5%) are involved in carbohydrate or amino acid metabolism, and 45 (23.3%) are transporters and/or involved in response to oxidative, osmotic, antibiotic, or heavy metal stresses. Some identified genes may also participate in biosynthesis of important metabolites such as vitamins C and K12, porphyrins and phospholipids. Conclusions Our results suggest that HGT is frequent in Monosiga brevicollis and might have contributed substantially to its adaptation and evolution. This finding also highlights the importance of HGT in the genome and organismal evolution of phagotrophic eukaryotes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-729) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
13
|
Wei L, Xin Y, Wang D, Jing X, Zhou Q, Su X, Jia J, Ning K, Chen F, Hu Q, Xu J. Nannochloropsis plastid and mitochondrial phylogenomes reveal organelle diversification mechanism and intragenus phylotyping strategy in microalgae. BMC Genomics 2013; 14:534. [PMID: 23915326 PMCID: PMC3750441 DOI: 10.1186/1471-2164-14-534] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 07/31/2013] [Indexed: 12/26/2022] Open
Abstract
Background Microalgae are promising feedstock for production of lipids, sugars, bioactive compounds and in particular biofuels, yet development of sensitive and reliable phylotyping strategies for microalgae has been hindered by the paucity of phylogenetically closely-related finished genomes. Results Using the oleaginous eustigmatophyte Nannochloropsis as a model, we assessed current intragenus phylotyping strategies by producing the complete plastid (pt) and mitochondrial (mt) genomes of seven strains from six Nannochloropsis species. Genes on the pt and mt genomes have been highly conserved in content, size and order, strongly negatively selected and evolving at a rate 33% and 66% of nuclear genomes respectively. Pt genome diversification was driven by asymmetric evolution of two inverted repeats (IRa and IRb): psbV and clpC in IRb are highly conserved whereas their counterparts in IRa exhibit three lineage-associated types of structural polymorphism via duplication or disruption of whole or partial genes. In the mt genomes, however, a single evolution hotspot varies in copy-number of a 3.5 Kb-long, cox1-harboring repeat. The organelle markers (e.g., cox1, cox2, psbA, rbcL and rrn16_mt) and nuclear markers (e.g., ITS2 and 18S) that are widely used for phylogenetic analysis obtained a divergent phylogeny for the seven strains, largely due to low SNP density. A new strategy for intragenus phylotyping of microalgae was thus proposed that includes (i) twelve sequence markers that are of higher sensitivity than ITS2 for interspecies phylogenetic analysis, (ii) multi-locus sequence typing based on rps11_mt-nad4, rps3_mt and cox2-rrn16_mt for intraspecies phylogenetic reconstruction and (iii) several SSR loci for identification of strains within a given species. Conclusion This first comprehensive dataset of organelle genomes for a microalgal genus enabled exhaustive assessment and searches of all candidate phylogenetic markers on the organelle genomes. A new strategy for intragenus phylotyping of microalgae was proposed which might be generally applicable to other microalgal genera and should serve as a valuable tool in the expanding algal biotechnology industry.
Collapse
Affiliation(s)
- Li Wei
- BioEnergy Genome Center and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nagao R, Tomo T, Narikawa R, Enami I, Ikeuchi M. Light-independent biosynthesis and assembly of the photosystem II complex in the diatomChaetoceros gracilis. FEBS Lett 2013; 587:1340-5. [DOI: 10.1016/j.febslet.2013.02.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
|
15
|
Chan CX, Soares MB, Bonaldo MF, Wisecaver JH, Hackett JD, Anderson DM, Erdner DL, Bhattacharya D. ANALYSIS OF ALEXANDRIUM TAMARENSE (DINOPHYCEAE) GENES REVEALS THE COMPLEX EVOLUTIONARY HISTORY OF A MICROBIAL EUKARYOTE(). JOURNAL OF PHYCOLOGY 2012; 48:1130-1142. [PMID: 23066170 PMCID: PMC3466611 DOI: 10.1111/j.1529-8817.2012.01194.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Microbial eukaryotes may extinguish much of their nuclear phylogenetic history due to endosymbiotic/horizontal gene transfer (E/HGT). We studied E/HGT in 32,110 contigs of expressed sequence tags (ESTs) from the dinoflagellate Alexandrium tamarense (Dinophyceae) using a conservative phylogenomic approach. The vast majority of predicted proteins (86.4%) in this alga are novel or dinoflagellate-specific. We searched for putative homologs of these predicted proteins against a taxonomically broadly sampled protein database that includes all currently available data from algae and protists and reconstructed a phylogeny from each of the putative homologous protein sets. Of the 2,523 resulting phylogenies, 14-17% are potentially impacted by E/HGT involving both prokaryote and eukaryote lineages, with 2-4% showing clear evidence of reticulate evolution. The complex evolutionary histories of the remaining proteins, many of which may also have been affected by E/HGT, cannot be interpreted using our approach with currently available gene data. We present empirical evidence of reticulate genome evolution that combined with inadequate or highly complex phylogenetic signal in many proteins may impede genome-wide approaches to infer the tree of microbial eukaryotes.
Collapse
Affiliation(s)
- Cheong Xin Chan
- Department of Ecology, Evolution and Natural Resources, and Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Marcelo B. Soares
- Northwestern University, Children's Memorial Research Center, Chicago, IL 60614, USA
| | - Maria F. Bonaldo
- Northwestern University, Children's Memorial Research Center, Chicago, IL 60614, USA
| | - Jennifer H. Wisecaver
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ 85721, USA
| | - Jeremiah D. Hackett
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ 85721, USA
| | | | - Deana L. Erdner
- Marine Science Institute, University of Texas, Port Aransas, TX 78373, USA
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, and Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
16
|
Lashin SA, Suslov VV, Matushkin YG. Theories of biological evolution from the viewpoint of the modern systemic biology. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412030064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Gross J, Bhattacharya D, Pelletreau KN, Rumpho ME, Reyes-Prieto A. Secondary and Tertiary Endosymbiosis and Kleptoplasty. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Chan CX, Reyes-Prieto A, Bhattacharya D. Red and green algal origin of diatom membrane transporters: insights into environmental adaptation and cell evolution. PLoS One 2011; 6:e29138. [PMID: 22195008 PMCID: PMC3237598 DOI: 10.1371/journal.pone.0029138] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 11/21/2011] [Indexed: 01/06/2023] Open
Abstract
Membrane transporters (MTs) facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates) appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene transfer (E/HGT). Here we used the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum as models to examine the evolutionary origin of MTs in this important group of marine primary producers. Using phylogenomics, we used 1,014 diatom MTs as query against a broadly sampled protein sequence database that includes novel genome data from the mesophilic red algae Porphyridium cruentum and Calliarthron tuberculosum, and the stramenopile Ectocarpus siliculosus. Our conservative approach resulted in 879 maximum likelihood trees of which 399 genes show a non-lineal history between diatoms and other eukaryotes and prokaryotes (at the bootstrap value ≥70%). Of the eukaryote-derived MTs, 172 (ca. 25% of 697 examined phylogenies) have members of both red/green algae as sister groups, with 103 putatively arising from green algae, 19 from red algae, and 50 have an unresolved affiliation to red and/or green algae. We used topology tests to analyze the most convincing cases of non-lineal gene history in which red and/or green algae were nested within stramenopiles. This analysis showed that ca. 6% of all trees (our most conservative estimate) support an algal origin of MTs in stramenopiles with the majority derived from green algae. Our findings demonstrate the complex evolutionary history of photosynthetic eukaryotes and indicate a reticulate origin of MT genes in diatoms. We postulate that the algal-derived MTs acquired via E/HGT provided diatoms and other related microbial eukaryotes the ability to persist under conditions of fluctuating ocean chemistry, likely contributing to their great success in marine environments.
Collapse
Affiliation(s)
- Cheong Xin Chan
- Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Adrian Reyes-Prieto
- Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
19
|
Yang Y, Maruyama S, Sekimoto H, Sakayama H, Nozaki H. An extended phylogenetic analysis reveals ancient origin of "non-green" phosphoribulokinase genes from two lineages of "green" secondary photosynthetic eukaryotes: Euglenophyta and Chlorarachniophyta. BMC Res Notes 2011; 4:330. [PMID: 21899749 PMCID: PMC3224528 DOI: 10.1186/1756-0500-4-330] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 09/07/2011] [Indexed: 01/29/2023] Open
Abstract
Background Euglenophyta and Chlorarachniophyta are groups of photosynthetic eukaryotes harboring secondary plastids of distinct green algal origins. Although previous phylogenetic analyses of genes encoding Calvin cycle enzymes demonstrated the presence of genes apparently not derived from green algal endosymbionts in the nuclear genomes of Euglena gracilis (Euglenophyta) and Bigelowiella natans (Chlorarachniophyta), the origins of these "non-green" genes in "green" secondary phototrophs were unclear due to the limited taxon sampling. Results Here, we sequenced five new phosphoribulokinase (PRK) genes (from one euglenophyte, two chlorarachniophytes, and two glaucophytes) and performed an extended phylogenetic analysis of the genes based on a phylum-wide taxon sampling from various photosynthetic eukaryotes. Our phylogenetic analyses demonstrated that the PRK sequences form two genera of Euglenophyta formed a robust monophyletic group within a large clade including stramenopiles, haptophytes and a cryptophyte, and three genera of Chlorarachniophyta were placed within the red algal clade. These "non-green" affiliations were supported by the taxon-specific insertion/deletion sequences in the PRK alignment, especially between euglenophytes and stramenopiles. In addition, phylogenetic analysis of another Calvin cycle enzyme, plastid-targeted sedoheptulose-bisphosphatase (SBP), showed that the SBP sequences from two genera of Chlorarachniophyta were positioned within a red algal clade. Conclusions Our results suggest that PRK genes may have been transferred from a "stramenopile" ancestor to Euglenophyta and from a "red algal" ancestor to Chlorarachniophyta before radiation of extant taxa of these two "green" secondary phototrophs. The presence of two of key Calvin cycle enzymes, PRK and SBP, of red algal origins in Chlorarachniophyta indicate that the contribution of "non-green" algae to the plastid proteome in the "green" secondary phototrophs is more significant than ever thought. These "non-green" putative plastid-targeted enzymes from Chlorarachniophyta are likely to have originated from an ancestral red alga via horizontal gene transfer, or from a cryptic red algal endosymbiosis in the common ancestor of the extant chlorarachniophytes.
Collapse
Affiliation(s)
- Yi Yang
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
20
|
Dorrell RG, Smith AG. Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates. EUKARYOTIC CELL 2011; 10:856-68. [PMID: 21622904 PMCID: PMC3147421 DOI: 10.1128/ec.00326-10] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The chromalveolate "supergroup" is of key interest in contemporary phycology, as it contains the overwhelming majority of extant algal species, including several phyla of key importance to oceanic net primary productivity such as diatoms, kelps, and dinoflagellates. There is also intense current interest in the exploitation of these algae for industrial purposes, such as biodiesel production. However, the evolution of the constituent species, and in particular the origin and radiation of the chloroplast genomes, remains poorly understood. In this review, we discuss current theories of the origins of the extant red alga-derived chloroplast lineages in the chromalveolates and the potential ramifications of the recent discovery of large numbers of green algal genes in chromalveolate genomes. We consider that the best explanation for this is that chromalveolates historically possessed a cryptic green algal endosymbiont that was subsequently replaced by a red algal chloroplast. We consider how changing selective pressures acting on ancient chromalveolate lineages may have selectively favored the serial endosymbioses of green and red algae and whether a complex endosymbiotic history facilitated the rise of chromalveolates to their current position of ecological prominence.
Collapse
Affiliation(s)
- Richard G Dorrell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom.
| | | |
Collapse
|
21
|
Chan CX, Bhattacharya D. Non-random sharing of Plantae genes. Commun Integr Biol 2011; 4:361-3. [PMID: 21980581 DOI: 10.4161/cib.4.3.15700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 04/01/2011] [Indexed: 12/20/2022] Open
Abstract
The power of eukaryote genomics relies strongly on taxon sampling. This point was underlined in a recent analysis of red algal genome evolution in which we tested the Plantae hypothesis that posits the monophyly of red, green (including plants) and glaucophyte algae. The inclusion of novel genome data from two mesophilic red algae enabled us to robustly demonstrate the sisterhood of red and green algae in the tree of life. Perhaps more exciting was the finding that >1,800 putative genes in the unicellular red alga Porphyridium cruentum showed evidence of gene-sharing with diverse lineages of eukaryotes and prokaryotes. Here we assessed the correlation between the putative functions of these shared genes and their susceptibility to transfer. It turns out that genes involved in complex interactive networks such as biological regulation and transcription/translation are less susceptible to endosymbiotic or horizontal gene transfer, when compared to genes with metabolic and transporter functions.
Collapse
Affiliation(s)
- Cheong Xin Chan
- Department of Ecology, Evolution and Natural Resources; and Institute of Marine and Coastal Sciences; Rutgers University; New Brunswick, NJ USA
| | | |
Collapse
|
22
|
Chan CX, Gross J, Yoon HS, Bhattacharya D. Plastid origin and evolution: new models provide insights into old problems. PLANT PHYSIOLOGY 2011; 155:1552-60. [PMID: 21343425 PMCID: PMC3091110 DOI: 10.1104/pp.111.173500] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 02/19/2011] [Indexed: 05/18/2023]
|
23
|
Andersson JO. Evolution of patchily distributed proteins shared between eukaryotes and prokaryotes: Dictyostelium as a case study. J Mol Microbiol Biotechnol 2011; 20:83-95. [PMID: 21430389 DOI: 10.1159/000324505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Protein families are often patchily distributed in the tree of life; they are present in distantly related organisms, but absent in more closely related lineages. This could either be the result of lateral gene transfer between ancestors of organisms that encode them, or losses in the lineages that lack them. Here a novel approach is developed to study the evolution of patchily distributed proteins shared between prokaryotes and eukaryotes. Proteins encoded in the genome of cellular slime mold Dictyostelium discoideum and a restricted number of other lineages, including at least one prokaryote, were identified. Analyses of the phylogenetic distribution of 49 such patchily distributed protein families showed conflicts with organismal phylogenies; 25 are shared with the distantly related amoeboflagellate Naegleria (Excavata), whereas only two are present in the more closely related Entamoeba. Most protein families show unexpected topologies in phylogenetic analyses; eukaryotes are polyphyletic in 85% of the trees. These observations suggest that gene transfers have been an important mechanism for the distribution of patchily distributed proteins across all domains of life. Further studies of this exchangeable gene fraction are needed for a better understanding of the origin and evolution of eukaryotic genes and the diversification process of eukaryotes.
Collapse
Affiliation(s)
- Jan O Andersson
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden. jan.andersson @ ebc.uu.se
| |
Collapse
|
24
|
Abstract
SUMMARYSingle-celled parasites like Entamoeba, Trypanosoma, Phytophthora and Plasmodium wreak untold havoc on human habitat and health. Understanding the position of the various protistan pathogens in the larger context of eukaryotic diversity informs our study of how these parasites operate on a cellular level, as well as how they have evolved. Here, we review the literature that has brought our understanding of eukaryotic relationships from an idea of parasites as primitive cells to a crystallized view of diversity that encompasses 6 major divisions, or supergroups, of eukaryotes. We provide an updated taxonomic scheme (for 2011), based on extensive genomic, ultrastructural and phylogenetic evidence, with three differing levels of taxonomic detail for ease of referencing and accessibility (see supplementary material at Cambridge Journals On-line). Two of the most pressing issues in cellular evolution, the root of the eukaryotic tree and the evolution of photosynthesis in complex algae, are also discussed along with ideas about what the new generation of genome sequencing technologies may contribute to the field of eukaryotic systematics. We hope that, armed with this user's guide, cell biologists and parasitologists will be encouraged about taking an increasingly evolutionary point of view in the battle against parasites representing real dangers to our livelihoods and lives.
Collapse
|
25
|
Chan CX, Yang EC, Banerjee T, Yoon HS, Martone PT, Estevez JM, Bhattacharya D. Red and Green Algal Monophyly and Extensive Gene Sharing Found in a Rich Repertoire of Red Algal Genes. Curr Biol 2011; 21:328-33. [DOI: 10.1016/j.cub.2011.01.037] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/17/2010] [Accepted: 01/12/2011] [Indexed: 11/30/2022]
|
26
|
Green BR. After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c. PHOTOSYNTHESIS RESEARCH 2011; 107:103-15. [PMID: 20676772 DOI: 10.1007/s11120-010-9584-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 07/07/2010] [Indexed: 05/24/2023]
Abstract
The chromalveolate hypothesis proposed by Cavalier-Smith (J Euk Microbiol 46:347-366, 1999) suggested that all the algae with chlorophyll c (heterokonts, haptophytes, cryptophytes, and dinoflagellates), as well as the ciliates, apicomplexans, oomycetes, and other non-photosynthetic relatives, shared a common ancestor that acquired a chloroplast by secondary endosymbiosis of a red alga. Much of the evidence from plastid and nuclear genomes supports a red algal origin for plastids of the photosynthetic lineages, but the number of secondary endosymbioses and the number of plastid losses have not been resolved. The issue is complicated by the fact that nuclear genomes are mosaics of genes acquired over a very long time period, not only by vertical descent but also by endosymbiotic and horizontal gene transfer. Phylogenomic analysis of the available whole-genome data has suggested major alterations to our view of eukaryotic evolution, and given rise to alternative models. The next few years may see even more changes once a more representative collection of sequenced genomes becomes available.
Collapse
Affiliation(s)
- Beverley R Green
- Botany Department, University of British Columbia, Vancouver, B.C, V6T 1Z4, Canada.
| |
Collapse
|
27
|
Bertrand M. Carotenoid biosynthesis in diatoms. PHOTOSYNTHESIS RESEARCH 2010; 106:89-102. [PMID: 20734232 DOI: 10.1007/s11120-010-9589-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 07/24/2010] [Indexed: 05/20/2023]
Abstract
Diatoms are ubiquitous and constitute an important group of the phytoplankton community having a major contribution to the total marine primary production. These microalgae exhibit a characteristic golden-brown colour due to a high amount of the xanthophyll fucoxanthin that plays a major role in the light-harvesting complex of photosystems. In the water column, diatoms are exposed to light intensities that vary quickly from lower to higher values. Xanthophyll cycles prevent photodestruction of the cells in excessive light intensities. In diatoms, the diadinoxanthin-diatoxanthin cycle is the most important short-term photoprotective mechanism. If the biosynthetic pathways of chloroplast pigments have been extensively studied in higher plants and green algae, the research on carotenoid biosynthesis in diatoms is still in its infancy. In this study, the data on the biosynthetic pathway of diatom carotenoids are reviewed. The early steps occur through the 2-C-methyl-D: -erythritol 4-phosphate (MEP) pathway. Then a hypothetical pathway is suggested from dimethylallyl diphosphate (DMAPP) and isopentenyl pyrophosphate (IPP). Most of the enzymes of the pathway have not been so far isolated from diatoms, but candidate genes for each of them were identified using protein similarity searches of genomic data.
Collapse
Affiliation(s)
- Martine Bertrand
- MiMeTox, National Institute for Marine Sciences and Techniques, CNAM, BP 324, 50103 Cherbourg-Octeville Cedex, France.
| |
Collapse
|
28
|
Lyubetsky VA, Rubanov LI, Seliverstov AV. Lack of conservation of bacterial type promoters in plastids of Streptophyta. Biol Direct 2010; 5:34. [PMID: 20459727 PMCID: PMC2881121 DOI: 10.1186/1745-6150-5-34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 05/10/2010] [Indexed: 11/15/2022] Open
Abstract
We demonstrate the scarcity of conserved bacterial-type promoters in plastids of Streptophyta and report widely conserved promoters only for genes psaA, psbA, psbB, psbE, rbcL. Among the reasonable explanations are: evolutionary changes of sigma subunit paralogs and phage-type RNA polymerases possibly entailing the loss of corresponding nuclear genes, de novo emergence of the promoters, their loss together with plastome genes; functional substitution of the promoter boxes by transcription activation factor binding sites. Reviewers This article was reviewed by Dr. Arcady Mushegian, and by Dr. Alexander Bolshoy and Dr. Yuri Wolf (both nominated by Dr. Purificación López-García).
Collapse
Affiliation(s)
- Vassily A Lyubetsky
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, 127994, Russia.
| | | | | |
Collapse
|
29
|
Genome-wide analysis of the diatom cell cycle unveils a novel type of cyclins involved in environmental signaling. Genome Biol 2010; 11:R17. [PMID: 20146805 PMCID: PMC2872877 DOI: 10.1186/gb-2010-11-2-r17] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/01/2010] [Accepted: 02/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite the enormous importance of diatoms in aquatic ecosystems and their broad industrial potential, little is known about their life cycle control. Diatoms typically inhabit rapidly changing and unstable environments, suggesting that cell cycle regulation in diatoms must have evolved to adequately integrate various environmental signals. The recent genome sequencing of Thalassiosira pseudonana and Phaeodactylum tricornutum allows us to explore the molecular conservation of cell cycle regulation in diatoms. RESULTS By profile-based annotation of cell cycle genes, counterparts of conserved as well as new regulators were identified in T. pseudonana and P. tricornutum. In particular, the cyclin gene family was found to be expanded extensively compared to that of other eukaryotes and a novel type of cyclins was discovered, the diatom-specific cyclins. We established a synchronization method for P. tricornutum that enabled assignment of the different annotated genes to specific cell cycle phase transitions. The diatom-specific cyclins are predominantly expressed at the G1-to-S transition and some respond to phosphate availability, hinting at a role in connecting cell division to environmental stimuli. CONCLUSION The discovery of highly conserved and new cell cycle regulators suggests the evolution of unique control mechanisms for diatom cell division, probably contributing to their ability to adapt and survive under highly fluctuating environmental conditions.
Collapse
|
30
|
Evolutionary History and Taxonomy of Red Algae. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2010. [DOI: 10.1007/978-90-481-3795-4_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
|
32
|
Suzuki K, Miyagishima SY. Eukaryotic and Eubacterial Contributions to the Establishment of Plastid Proteome Estimated by Large-Scale Phylogenetic Analyses. Mol Biol Evol 2009; 27:581-90. [DOI: 10.1093/molbev/msp273] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Rumpho ME, Pochareddy S, Worful JM, Summer EJ, Bhattacharya D, Pelletreau KN, Tyler MS, Lee J, Manhart JR, Soule KM. Molecular characterization of the Calvin cycle enzyme phosphoribulokinase in the stramenopile alga Vaucheria litorea and the plastid hosting mollusc Elysia chlorotica. MOLECULAR PLANT 2009; 2:1384-96. [PMID: 19995736 PMCID: PMC2782795 DOI: 10.1093/mp/ssp085] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 09/15/2009] [Indexed: 05/24/2023]
Abstract
Phosphoribulokinase (PRK), a nuclear-encoded plastid-localized enzyme unique to the photosynthetic carbon reduction (Calvin) cycle, was cloned and characterized from the stramenopile alga Vaucheria litorea. This alga is the source of plastids for the mollusc (sea slug) Elysia chlorotica which enable the animal to survive for months solely by photoautotrophic CO2 fixation. The 1633-bp V. litorea prk gene was cloned and the coding region, found to be interrupted by four introns, encodes a 405-amino acid protein. This protein contains the typical bipartite target sequence expected of nuclear-encoded proteins that are directed to complex (i.e. four membrane-bound) algal plastids. De novo synthesis of PRK and enzyme activity were detected in E. chlorotica in spite of having been starved of V. litorea for several months. Unlike the algal enzyme, PRK in the sea slug did not exhibit redox regulation. Two copies of partial PRK-encoding genes were isolated from both sea slug and aposymbiotic sea slug egg DNA using PCR. Each copy contains the nucleotide region spanning exon 1 and part of exon 2 of V. litorea prk, including the bipartite targeting peptide. However, the larger prk fragment also includes intron 1. The exon and intron sequences of prk in E. chlorotica and V. litorea are nearly identical. These data suggest that PRK is differentially regulated in V. litorea and E. chlorotica and at least a portion of the V. litorea nuclear PRK gene is present in sea slugs that have been starved for several months.
Collapse
Affiliation(s)
- Mary E Rumpho
- Department of Biochemistry, Microbiology and Molecular Biology, 5735 Hitchner Hall, University of Maine, Orono, ME 04469, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Le Corguillé G, Pearson G, Valente M, Viegas C, Gschloessl B, Corre E, Bailly X, Peters AF, Jubin C, Vacherie B, Cock JM, Leblanc C. Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids. BMC Evol Biol 2009; 9:253. [PMID: 19835607 PMCID: PMC2765969 DOI: 10.1186/1471-2148-9-253] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 10/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heterokont algae, together with cryptophytes, haptophytes and some alveolates, possess red-algal derived plastids. The chromalveolate hypothesis proposes that the red-algal derived plastids of all four groups have a monophyletic origin resulting from a single secondary endosymbiotic event. However, due to incongruence between nuclear and plastid phylogenies, this controversial hypothesis remains under debate. Large-scale genomic analyses have shown to be a powerful tool for phylogenetic reconstruction but insufficient sequence data have been available for red-algal derived plastid genomes. RESULTS The chloroplast genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus, have been fully sequenced. These species represent two distinct orders of the Phaeophyceae, which is a major group within the heterokont lineage. The sizes of the circular plastid genomes are 139,954 and 124,986 base pairs, respectively, the size difference being due principally to the presence of longer inverted repeat and intergenic regions in E. siliculosus. Gene contents of the two plastids are similar with 139-148 protein-coding genes, 28-31 tRNA genes, and 3 ribosomal RNA genes. The two genomes also exhibit very similar rearrangements compared to other sequenced plastid genomes. The tRNA-Leu gene of E. siliculosus lacks an intron, in contrast to the F. vesiculosus and other heterokont plastid homologues, suggesting its recent loss in the Ectocarpales. Most of the brown algal plastid genes are shared with other red-algal derived plastid genomes, but a few are absent from raphidophyte or diatom plastid genomes. One of these regions is most similar to an apicomplexan nuclear sequence. The phylogenetic relationship between heterokonts, cryptophytes and haptophytes (collectively referred to as chromists) plastids was investigated using several datasets of concatenated proteins from two cyanobacterial genomes and 18 plastid genomes, including most of the available red algal and chromist plastid genomes. CONCLUSION The phylogenetic studies using concatenated plastid proteins still do not resolve the question of the monophyly of all chromist plastids. However, these results support both the monophyly of heterokont plastids and that of cryptophyte and haptophyte plastids, in agreement with nuclear phylogenies.
Collapse
Affiliation(s)
- Gildas Le Corguillé
- CNRS, FR2424, Computer and Genomics Resource Centre, Station Biologique, Roscoff, France
- UPMC Univ. Paris 06, FR2424, Computer and Genomics Resource Centre, Station Biologique, Roscoff, France
| | - Gareth Pearson
- Centre of Marine Sciences, University of Algarve, Marine Ecology and Evolution, Faro, Portugal
| | - Marta Valente
- Centre of Marine Sciences, University of Algarve, Marine Ecology and Evolution, Faro, Portugal
| | - Carla Viegas
- Centre of Marine Sciences, University of Algarve, Marine Ecology and Evolution, Faro, Portugal
| | - Bernhard Gschloessl
- CNRS, UMR7139, Marine Plants and Biomolecules, Station Biologique, Roscoff, France
- UPMC Univ. Paris 06, UMR7139, Marine Plants and Biomolecules, Station Biologique, Roscoff, France
| | - Erwan Corre
- CNRS, FR2424, Computer and Genomics Resource Centre, Station Biologique, Roscoff, France
- UPMC Univ. Paris 06, FR2424, Computer and Genomics Resource Centre, Station Biologique, Roscoff, France
| | - Xavier Bailly
- CNRS, FR2424, Computer and Genomics Resource Centre, Station Biologique, Roscoff, France
- UPMC Univ. Paris 06, FR2424, Computer and Genomics Resource Centre, Station Biologique, Roscoff, France
| | - Akira F Peters
- CNRS, UMR7139, Marine Plants and Biomolecules, Station Biologique, Roscoff, France
- UPMC Univ. Paris 06, UMR7139, Marine Plants and Biomolecules, Station Biologique, Roscoff, France
| | - Claire Jubin
- CEA, DSV, Institut de Génomique, Genoscope, Evry, France
- CNRS, UMR 8030, Evry, France
- Université d'Evry, Evry, France
| | | | - J Mark Cock
- CNRS, UMR7139, Marine Plants and Biomolecules, Station Biologique, Roscoff, France
- UPMC Univ. Paris 06, UMR7139, Marine Plants and Biomolecules, Station Biologique, Roscoff, France
| | - Catherine Leblanc
- CNRS, UMR7139, Marine Plants and Biomolecules, Station Biologique, Roscoff, France
- UPMC Univ. Paris 06, UMR7139, Marine Plants and Biomolecules, Station Biologique, Roscoff, France
| |
Collapse
|
35
|
Elias M, Patron NJ, Keeling PJ. The RAB family GTPase Rab1A from Plasmodium falciparum defines a unique paralog shared by chromalveolates and rhizaria. J Eukaryot Microbiol 2009; 56:348-56. [PMID: 19602080 DOI: 10.1111/j.1550-7408.2009.00408.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The RAB GTPases, which are involved in regulation of endomembrane trafficking, exhibit a complex but incompletely understood evolutionary history. We elucidated the evolution of the RAB1 subfamily ancestrally implicated in the endoplasmic reticulum-to-Golgi traffic. We found that RAB1 paralogs have been generated over the course of eukaryotic evolution, with some duplications coinciding with the advent of major eukaryotic lineages (e.g. Metazoa, haptophytes). We also identified a unique, derived RAB1 paralog, orthologous to the Plasmodium Rab1A, that occurs in stramenopiles, alveolates, and Rhizaria, represented by the chlorarachniophyte Gymnochlora stellata. This finding is consistent with the recently documented existence of a major eukaryotic clade ("SAR") comprising these three lineages. We further found a Rab1A-like protein in the cryptophyte Guillardia theta, but it exhibits unusual features among RAB proteins: absence of a C-terminal prenylation motif and an N-terminal extension with two MSP domains; and its phylogenetic relationships could not be established convincingly due to its divergent nature. Our results nevertheless point to a unique membrane trafficking pathway shared by at least some lineages of chromalveolates and Rhizaria, an insight that has implications towards interpreting the early evolution of eukaryotes and the endomembrane system.
Collapse
Affiliation(s)
- Marek Elias
- Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| | | | | |
Collapse
|
36
|
Rogozin IB, Basu MK, Csürös M, Koonin EV. Analysis of rare genomic changes does not support the unikont-bikont phylogeny and suggests cyanobacterial symbiosis as the point of primary radiation of eukaryotes. Genome Biol Evol 2009; 1:99-113. [PMID: 20333181 PMCID: PMC2817406 DOI: 10.1093/gbe/evp011] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2009] [Indexed: 11/29/2022] Open
Abstract
The deep phylogeny of eukaryotes is an important but extremely difficult problem of evolutionary biology. Five eukaryotic supergroups are relatively well established but the relationship between these supergroups remains elusive, and their divergence seems to best fit a “Big Bang” model. Attempts were made to root the tree of eukaryotes by using potential derived shared characters such as unique fusions of conserved genes. One popular model of eukaryotic evolution that emerged from this type of analysis is the unikont–bikont phylogeny: The unikont branch consists of Metazoa, Choanozoa, Fungi, and Amoebozoa, whereas bikonts include the rest of eukaryotes, namely, Plantae (green plants, Chlorophyta, and Rhodophyta), Chromalveolata, excavates, and Rhizaria. We reexamine the relationships between the eukaryotic supergroups using a genome-wide analysis of rare genomic changes (RGCs) associated with multiple, conserved amino acids (RGC_CAMs and RGC_CAs), to resolve trifurcations of major eukaryotic lineages. The results do not support the basal position of Chromalveolata with respect to Plantae and unikonts or the monophyly of the bikont group and appear to be best compatible with the monophyly of unikonts and Chromalveolata. Chromalveolata show a distinct, additional signal of affinity with Plantae, conceivably, owing to genes transferred from the secondary, red algal symbiont. Excavates are derived forms, with extremely long branches that complicate phylogenetic inference; nevertheless, the RGC analysis suggests that they are significantly more likely to cluster with the unikont–Chromalveolata assemblage than with the Plantae. Thus, the first split in eukaryotic evolution might lie between photosynthetic and nonphotosynthetic forms and so could have been triggered by the endosymbiosis between an ancestral unicellular eukaryote and a cyanobacterium that gave rise to the chloroplast.
Collapse
Affiliation(s)
- Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
37
|
Whitaker JW, McConkey GA, Westhead DR. The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes. Genome Biol 2009; 10:R36. [PMID: 19368726 PMCID: PMC2688927 DOI: 10.1186/gb-2009-10-4-r36] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/06/2009] [Accepted: 04/15/2009] [Indexed: 12/02/2022] Open
Abstract
Metabolic network analysis in multiple eukaryotes identifies how horizontal and endosymbiotic gene transfer of metabolic enzyme-encoding genes leads to functional gene gain during evolution. Background Metabolic networks are responsible for many essential cellular processes, and exhibit a high level of evolutionary conservation from bacteria to eukaryotes. If genes encoding metabolic enzymes are horizontally transferred and are advantageous, they are likely to become fixed. Horizontal gene transfer (HGT) has played a key role in prokaryotic evolution and its importance in eukaryotes is increasingly evident. High levels of endosymbiotic gene transfer (EGT) accompanied the establishment of plastids and mitochondria, and more recent events have allowed further acquisition of bacterial genes. Here, we present the first comprehensive multi-species analysis of E/HGT of genes encoding metabolic enzymes from bacteria to unicellular eukaryotes. Results The phylogenetic trees of 2,257 metabolic enzymes were used to make E/HGT assertions in ten groups of unicellular eukaryotes, revealing the sources and metabolic processes of the transferred genes. Analyses revealed a preference for enzymes encoded by genes gained through horizontal and endosymbiotic transfers to be connected in the metabolic network. Enrichment in particular functional classes was particularly revealing: alongside plastid related processes and carbohydrate metabolism, this highlighted a number of pathways in eukaryotic parasites that are rich in enzymes encoded by transferred genes, and potentially key to pathogenicity. The plant parasites Phytophthora were discovered to have a potential pathway for lipopolysaccharide biosynthesis of E/HGT origin not seen before in eukaryotes outside the Plantae. Conclusions The number of enzymes encoded by genes gained through E/HGT has been established, providing insight into functional gain during the evolution of unicellular eukaryotes. In eukaryotic parasites, genes encoding enzymes that have been gained through horizontal transfer may be attractive drug targets if they are part of processes not present in the host, or are significantly diverged from equivalent host enzymes.
Collapse
Affiliation(s)
- John W Whitaker
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | | | | |
Collapse
|
38
|
Roberts E, Roberts AW. A CELLULOSE SYNTHASE (CESA) GENE FROM THE RED ALGA PORPHYRA YEZOENSIS (RHODOPHYTA)(1). JOURNAL OF PHYCOLOGY 2009; 45:203-12. [PMID: 27033658 DOI: 10.1111/j.1529-8817.2008.00626.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The cell walls of Porphyra species, like those of land plants, contain cellulose microfibrils that are synthesized by clusters of cellulose synthase enzymes ("terminal complexes"), which move in the plasma membrane. However, the morphologies of the Porphyra terminal complexes and the cellulose microfibrils they produce differ from those of land plants. To characterize the genetic basis for these differences, we have identified, cloned, and sequenced a cellulose synthase (CESA) gene from Porphyra yezoensis Ueda strain TU-1. A partial cDNA sequence was identified in the P. yezoensis expressed sequence tag (EST) index using a land plant CESA sequence as a query. High-efficiency thermal asymmetric interlaced PCR was used to amplify sequences upstream of the cDNA sequence from P. yezoensis genomic DNA. Using the resulting genomic sequences as queries, we identified additional EST sequences and a full-length cDNA clone, which we named PyCESA1. The conceptual translation of PyCESA1 includes the four catalytic domains and the N- and C-terminal transmembrane domains that characterize CESA proteins. Genomic PCR demonstrated that PyCESA1 contains no introns. Southern blot analysis indicated that P. yezoensis has at least three genomic sequences with high similarity to the cloned gene; two of these are pseudogenes based on analysis of amplified genomic sequences. The P. yezoensis CESA peptide sequence is most similar to cellulose synthase sequences from the oomycete Phytophthora infestans and from cyanobacteria. Comparing the CESA genes of P. yezoensis and land plants may facilitate identification of sequences that control terminal complex and cellulose microfibril morphology.
Collapse
Affiliation(s)
- Eric Roberts
- Department of Biology, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, USADepartment of Biological Sciences, Ranger Hall, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Alison W Roberts
- Department of Biology, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, USADepartment of Biological Sciences, Ranger Hall, University of Rhode Island, Kingston, Rhode Island 02881, USA
| |
Collapse
|
39
|
Keeling PJ. Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids. Methods Mol Biol 2009; 532:501-515. [PMID: 19271204 DOI: 10.1007/978-1-60327-853-9_29] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plastids are the organelles derived from a cyanobacterium through endosymbiosis. Unlike mitochondria, plastids are not found in all eukaryotes, but their evolution has an added layer of complexity since plastids have moved between eukaryotic lineages by secondary and tertiary endosymbiotic events. This complex history, together with the genetic integration between plastids and their host, has led to many opportunities for gene flow between phylogenetically distinct lineages. Some intracellular transfers do not lead to a protein functioning in a new environment, but many others do and the protein makeup of many plastids appears to have been influenced by exogenous sources as well. Here, different evolutionary sources and cellular destinations of gene flow that has affected the plastid lineage are reviewed. Most horizontal gene transfer (HGT) affecting the modern plastid has taken place via the host nucleus, in the form of genes for plastid-targeted proteins. The impact of this varies greatly from lineage to lineage, but in some cases such transfers can be as high as one fifth of analyzed genes. More rarely, genes have also been transferred to the plastid genome itself, and plastid genes have also been transferred to other non-plant, non-algal lineages. Overall, the proteome of many plastids has emerged as a mosaic of proteins from many sources, some from within the same cell (e.g., cytosolic genes or genes left over from the replacement of an earlier plastid), some from the plastid of other algal lineages, and some from completely unrelated sources.
Collapse
Affiliation(s)
- Patrick J Keeling
- Botany Department, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
40
|
Maheswari U, Mock T, Armbrust EV, Bowler C. Update of the Diatom EST Database: a new tool for digital transcriptomics. Nucleic Acids Res 2008; 37:D1001-5. [PMID: 19029140 PMCID: PMC2686495 DOI: 10.1093/nar/gkn905] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Diatom Expressed Sequence Tag (EST) Database was constructed to provide integral access to ESTs from these ecologically and evolutionarily interesting microalgae. It has now been updated with 130 000 Phaeodactylum tricornutum ESTs from 16 cDNA libraries and 77 000 Thalassiosira pseudonana ESTs from seven libraries, derived from cells grown in different nutrient and stress regimes. The updated relational database incorporates results from statistical analyses such as log-likelihood ratios and hierarchical clustering, which help to identify differentially expressed genes under different conditions, and allow similarities in gene expression in different libraries to be investigated in a functional context. The database also incorporates links to the recently sequenced genomes of P. tricornutum and T. pseudonana, enabling an easy cross-talk between the expression pattern of diatom orthologs and the genome browsers. These improvements will facilitate exploration of diatom responses to conditions of ecological relevance and will aid gene function identification of diatom-specific genes and in silico gene prediction in this largely unexplored class of eukaryotes. The updated Diatom EST Database is available at http://www.biologie.ens.fr/diatomics/EST3.
Collapse
Affiliation(s)
- Uma Maheswari
- CNRS UMR8186, Department of Biology, Ecole Normale Supérieure, Paris, France
| | | | | | | |
Collapse
|
41
|
Reyes-Prieto A, Moustafa A, Bhattacharya D. Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic. Curr Biol 2008; 18:956-62. [PMID: 18595706 DOI: 10.1016/j.cub.2008.05.042] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 05/20/2008] [Accepted: 05/22/2008] [Indexed: 11/25/2022]
Abstract
Plantae (as defined by Cavalier-Smith, 1981) plastids evolved via primary endosymbiosis whereby a heterotrophic protist enslaved a photosynthetic cyanobacterium. This "primary" plastid spread into other eukaryotes via secondary endosymbiosis. An important but contentious theory in algal evolution is the chromalveolate hypothesis that posits chromists (cryptophytes, haptophytes, and stramenopiles) and alveolates (ciliates, apicomplexans, and dinoflagellates) share a common ancestor that contained a red-algal-derived "secondary" plastid. Under this view, the existence of several later-diverging plastid-lacking chromalveolates such as ciliates and oomycetes would be explained by plastid loss in these lineages. To test the idea of a photosynthetic ancestry for ciliates, we used the 27,446 predicted proteins from the macronuclear genome of Tetrahymena thermophila to query prokaryotic and eukaryotic genomes. We identified 16 proteins of possible algal origin in the ciliates Tetrahymena and Paramecium tetraurelia. Fourteen of these are present in other chromalveolates. Here we compare and contrast the likely scenarios for algal-gene origin in ciliates either via multiple rounds of horizontal gene transfer (HGT) from algal prey or symbionts, or through endosymbiotic gene transfer (EGT) during a putative photosynthetic phase in their evolution.
Collapse
Affiliation(s)
- Adrian Reyes-Prieto
- Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, Iowa 52242-1324, USA
| | | | | |
Collapse
|
42
|
Sanchez-Puerta MV, Delwiche CF. A HYPOTHESIS FOR PLASTID EVOLUTION IN CHROMALVEOLATES(1). JOURNAL OF PHYCOLOGY 2008; 44:1097-1107. [PMID: 27041706 DOI: 10.1111/j.1529-8817.2008.00559.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Four eukaryotic lineages, namely, haptophytes, alveolates, cryptophytes, and heterokonts, contain in most cases photosynthetic and nonphotosynthetic members-the photosynthetic ones with secondary plastids with chl c as the main photosynthetic pigment. These four photosynthetic lineages were grouped together on the basis of their pigmentation and called chromalveolates, which is usually understood to imply loss of plastids in the nonphotosynthetic members. Despite the ecological and economic importance of this group of organisms, the phylogenetic relationships among these algae are only partially understood, and the so-called chromalveolate hypothesis is very controversial. This review evaluates the evidence for and against this grouping and summarizes the present understanding of chromalveolate evolution. We also describe a testable hypothesis that is intended to accommodate current knowledge based on plastid and nuclear genomic data, discuss the implications of this model, and comment on areas that require further examination.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- Department of Biology, Indiana University, 1001 E 3rd St., Bloomington, Indiana 47405, USADepartment of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742-5815, USA
| | - Charles F Delwiche
- Department of Biology, Indiana University, 1001 E 3rd St., Bloomington, Indiana 47405, USADepartment of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742-5815, USA
| |
Collapse
|
43
|
Abstract
Horizontal gene transfer (HGT) is the stable transfer of genetic material from one organism to another without reproduction or human intervention. Transfer occurs by the passage of donor genetic material across cellular boundaries, followed by heritable incorporation to the genome of the recipient organism. In addition to conjugation, transformation and transduction, other diverse mechanisms of DNA and RNA uptake occur in nature. The genome of almost every organism reveals the footprint of many ancient HGT events. Most commonly, HGT involves the transmission of genes on viruses or mobile genetic elements. HGT first became an issue of public concern in the 1970s through the natural spread of antibiotic resistance genes amongst pathogenic bacteria, and more recently with commercial production of genetically modified (GM) crops. However, the frequency of HGT from plants to other eukaryotes or prokaryotes is extremely low. The frequency of HGT to viruses is potentially greater, but is restricted by stringent selection pressures. In most cases the occurrence of HGT from GM crops to other organisms is expected to be lower than background rates. Therefore, HGT from GM plants poses negligible risks to human health or the environment.
Collapse
Affiliation(s)
- Paul Keese
- Office of the Gene Technology Regulator, GPO Box 9848 Canberra, ACT 2601 [corrected] Australia.
| |
Collapse
|
44
|
Frommolt R, Werner S, Paulsen H, Goss R, Wilhelm C, Zauner S, Maier UG, Grossman AR, Bhattacharya D, Lohr M. Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Mol Biol Evol 2008; 25:2653-67. [PMID: 18799712 DOI: 10.1093/molbev/msn206] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chromist algae (stramenopiles, cryptophytes, and haptophytes) are major contributors to marine primary productivity. These eukaryotes acquired their plastid via secondary endosymbiosis, whereby an early-diverging red alga was engulfed by a protist and the plastid was retained and its associated nuclear-encoded genes were transferred to the host genome. Current data suggest, however, that chromists are paraphyletic; therefore, it remains unclear whether their plastids trace back to a single secondary endosymbiosis or, alternatively, this organelle has resulted from multiple independent events in the different chromist lineages. Both scenarios, however, predict that plastid-targeted, nucleus-encoded chromist proteins should be most closely related to their red algal homologs. Here we analyzed the biosynthetic pathway of carotenoids that are essential components of all photosynthetic eukaryotes and find a mosaic evolutionary origin of these enzymes in chromists. Surprisingly, about one-third (5/16) of the proteins are most closely related to green algal homologs with three branching within or sister to the early-diverging Prasinophyceae. This phylogenetic association is corroborated by shared diagnostic indels and the syntenic arrangement of a specific gene pair involved in the photoprotective xanthophyll cycle. The combined data suggest that the prasinophyte genes may have been acquired before the ancient split of stramenopiles, haptophytes, cryptophytes, and putatively also dinoflagellates. The latter point is supported by the observed monophyly of alveolates and stramenopiles in most molecular trees. One possible explanation for our results is that the green genes are remnants of a cryptic endosymbiosis that occurred early in chromalveolate evolution; that is, prior to the postulated split of stramenopiles, alveolates, haptophytes, and cryptophytes. The subsequent red algal capture would have led to the loss or replacement of most green genes via intracellular gene transfer from the new endosymbiont. We argue that the prasinophyte genes were retained because they enhance photosynthetic performance in chromalveolates, thus extending the niches available to these organisms. The alternate explanation of green gene origin via serial endosymbiotic or horizontal gene transfers is also plausible, but the latter would require the independent origins of the same five genes in some or all the different chromalveolate lineages.
Collapse
Affiliation(s)
- Ruth Frommolt
- Institut für Biologie I, Pflanzenphysiologie, Universität Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms. PLoS One 2008; 3:e2896. [PMID: 18682837 PMCID: PMC2483416 DOI: 10.1371/journal.pone.0002896] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 07/07/2008] [Indexed: 01/09/2023] Open
Abstract
Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP) enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymena thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several components of the carotenoid biosynthesis pathway in photosynthetic eukaryotes and provide information about how they have diversified and acquired new functions in the diatoms.
Collapse
|
46
|
Becker B, Hoef-Emden K, Melkonian M. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes. BMC Evol Biol 2008; 8:203. [PMID: 18627593 PMCID: PMC2490706 DOI: 10.1186/1471-2148-8-203] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 07/15/2008] [Indexed: 11/10/2022] Open
Abstract
Background Chlamydiae are obligate intracellular bacteria of protists, invertebrates and vertebrates, but have not been found to date in photosynthetic eukaryotes (algae and embryophytes). Genes of putative chlamydial origin, however, are present in significant numbers in sequenced genomes of photosynthetic eukaryotes. It has been suggested that such genes were acquired by an ancient horizontal gene transfer from Chlamydiae to the ancestor of photosynthetic eukaryotes. To further test this hypothesis, an extensive search for proteins of chlamydial origin was performed using several recently sequenced algal genomes and EST databases, and the proteins subjected to phylogenetic analyses. Results A total of 39 proteins of chlamydial origin were retrieved from the photosynthetic eukaryotes analyzed and their identity verified through phylogenetic analyses. The distribution of the chlamydial proteins among four groups of photosynthetic eukaryotes (Viridiplantae, Rhodoplantae, Glaucoplantae, Bacillariophyta) was complex suggesting multiple acquisitions and losses. Evidence is presented that all except one of the chlamydial genes originated from an ancient endosymbiosis of a chlamydial bacterium into the ancestor of the Plantae before their divergence into Viridiplantae, Rhodoplantae and Glaucoplantae, i.e. more than 1.1 BYA. The chlamydial proteins subsequently spread through secondary plastid endosymbioses to other eukaryotes. Of 20 chlamydial proteins recovered from the genomes of two Bacillariophyta, 10 were of rhodoplant, and 10 of viridiplant origin suggesting that they were acquired by two different secondary endosymbioses. Phylogenetic analyses of concatenated sequences demonstrated that the viridiplant secondary endosymbiosis likely occurred before the divergence of Chlorophyta and Streptophyta. Conclusion We identified 39 proteins of chlamydial origin in photosynthetic eukaryotes signaling an ancient invasion of the ancestor of the Plantae by a chlamydial bacterium accompanied by horizontal gene transfer. Subsequently, chlamydial proteins spread through secondary endosymbioses to other eukaryotes. We conclude that intracellular chlamydiae likely persisted throughout the early history of the Plantae donating genes to their hosts that replaced their cyanobacterial/plastid homologs thus shaping early algal/plant evolution before they eventually vanished.
Collapse
Affiliation(s)
- Burkhard Becker
- Botanisches Institut, Universität zu Köln, Gyrhofstr. 15, 50931 Köln, Germany.
| | | | | |
Collapse
|
47
|
Abstract
The establishment of the photosynthetic organelle (plastid) in eukaryotes and the diversification of algae and plants were landmark evolutionary events because these taxa form the base of the food chain for many ecosystems on our planet. The plastid originated via a putative single, ancient primary endosymbiosis in which a heterotrophic protist engulfed and retained a cyanobacterium in its cytoplasm. Once successfully established, this plastid spread into other protist lineages through eukaryote-eukaryote (secondary and tertiary) endosymbioses. This process of serial cell capture and enslavement explains the diversity of photosynthetic eukaryotes. Recent genomic and phylogenomic approaches have significantly clarified plastid genome evolution, the movement of endosymbiont genes to the "host" nuclear genome (endosymbiotic gene transfer), and plastid spread throughout the eukaryotic tree of life. Here we review these aspects of plastid evolution with a focus on understanding early events in plastid endosymbiosis.
Collapse
Affiliation(s)
- Adrian Reyes-Prieto
- Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, IA 52242-1324, USA.
| | | | | |
Collapse
|
48
|
Tyra HM, Linka M, Weber APM, Bhattacharya D. Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol 2008; 8:R212. [PMID: 17919328 PMCID: PMC2246286 DOI: 10.1186/gb-2007-8-10-r212] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/23/2007] [Accepted: 10/05/2007] [Indexed: 11/10/2022] Open
Abstract
Analysis of plastid transporter proteins in Arabidopsis suggests a host origin and provides new insights into plastid evolution. Background It is generally accepted that a single primary endosymbiosis in the Plantae (red, green (including land plants), and glaucophyte algae) common ancestor gave rise to the ancestral photosynthetic organelle (plastid). Plastid establishment necessitated many steps, including the transfer and activation of endosymbiont genes that were relocated to the nuclear genome of the 'host' followed by import of the encoded proteins into the organelle. These innovations are, however, highly complex and could not have driven the initial formation of the endosymbiosis. We postulate that the re-targeting of existing host solute transporters to the plastid fore-runner was critical for the early success of the primary endosymbiosis, allowing the host to harvest endosymbiont primary production. Results We tested this model of transporter evolution by conducting a comprehensive analysis of the plastid permeome in Arabidopsis thaliana. Of 137 well-annotated transporter proteins that were initially considered, 83 that are broadly distributed in Plantae were submitted to phylogenetic analysis. Consistent with our hypothesis, we find that 58% of Arabidopsis transporters, including all carbohydrate transporters, are of host origin, whereas only 12% arose from the cyanobacterial endosymbiont. Four transporter genes are derived from a Chlamydia-like source, suggesting that establishment of the primary plastid likely involved contributions from at least two prokaryotic sources. Conclusion Our results indicate that the existing plastid solute transport system shared by Plantae is derived primarily from host genes. Important contributions also came from the cyanobacterial endosymbiont and Chlamydia-like bacteria likely co-resident in the first algae.
Collapse
Affiliation(s)
- Heather M Tyra
- Department of Biological Sciences and Roy J Carver Center for Comparative Genomics, 446 Biology Building, University of Iowa, Iowa City, IA 52242-1324, USA.
| | | | | | | |
Collapse
|
49
|
Lane CE, Archibald JM. The eukaryotic tree of life: endosymbiosis takes its TOL. Trends Ecol Evol 2008; 23:268-75. [PMID: 18378040 DOI: 10.1016/j.tree.2008.02.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/06/2008] [Accepted: 02/11/2008] [Indexed: 11/17/2022]
Abstract
Resolving the structure of the eukaryotic tree of life remains one of the most important and challenging tasks facing biologists. The notion of six eukaryotic 'supergroups' has recently gained some acceptance, and several papers in 2007 suggest that resolution of higher taxonomic levels is possible. However, in organisms that acquired photosynthesis via secondary (i.e. eukaryote-eukaryote) endosymbiosis, the host nuclear genome is a mosaic of genes derived from two (or more) nuclei, a fact that is often overlooked in studies attempting to reconstruct the deep evolutionary history of eukaryotes. Accurate identification of gene transfers and replacements involving eukaryotic donor and recipient genomes represents a potentially formidable challenge for the phylogenomics community as more protist genomes are sequenced and concatenated data sets grow.
Collapse
Affiliation(s)
- Christopher E Lane
- The Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| | | |
Collapse
|
50
|
Bhattacharya D, Nosenko T. ENDOSYMBIOTIC AND HORIZONTAL GENE TRANSFER IN CHROMALVEOLATES(1). JOURNAL OF PHYCOLOGY 2008; 44:7-10. [PMID: 27041032 DOI: 10.1111/j.1529-8817.2007.00433.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chromalveolates include photosynthetic and nonphotosynthetic (some plastid-lacking) algae and protists that define a vast swath of eukaryotic diversity. These taxa are masters of gene acquisition through serial endosymbiosis (endosymbiotic gene transfer, EGT) and horizontal gene transfer (HGT). Understanding the contribution of these sources to nuclear genomes is key to elucidating chromalveolate evolution and to identifying suitable phylogenetic markers to place this lineage in the tree of life. Here we briefly review recent findings in our lab with regard to EGT and HGT in chromalveolates.
Collapse
Affiliation(s)
- Debashish Bhattacharya
- Department of Biological Sciences and the Roy J. Carver Center for Comparative Genomics, University of Iowa, 446 Biology Building, Iowa City, Iowa 52242-1324, USA
| | - Tetyana Nosenko
- Department of Biological Sciences and the Roy J. Carver Center for Comparative Genomics, University of Iowa, 446 Biology Building, Iowa City, Iowa 52242-1324, USA
| |
Collapse
|