1
|
Takemoto N, Numata I, Su’etsugu M, Miyoshi-Akiyama T. Bacterial EndoMS/NucS acts as a clamp-mediated mismatch endonuclease to prevent asymmetric accumulation of replication errors. Nucleic Acids Res 2018; 46:6152-6165. [PMID: 29878158 PMCID: PMC6159521 DOI: 10.1093/nar/gky481] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/11/2018] [Accepted: 05/19/2018] [Indexed: 12/22/2022] Open
Abstract
Mismatch repair (MMR) systems based on MutS eliminate mismatches originating from replication errors. Despite extensive conservation of mutS homologues throughout the three domains of life, Actinobacteria and some archaea do not have genes homologous to mutS. Here, we report that EndoMS/NucS of Corynebacterium glutamicum is the mismatch-specific endonuclease that functions cooperatively with a sliding clamp. EndoMS/NucS function in MMR was fully dependent on physical interaction between EndoMS/NucS and sliding clamp. A combination of endoMS/nucS gene disruption and a mutation in dnaE, which reduced the fidelity of DNA polymerase, increased the mutation rate synergistically and confirmed the participation of EndoMS in replication error correction. EndoMS specifically cleaved G/T, G/G and T/T mismatches in vitro, and such substrate specificity was consistent with the mutation spectrum observed in genome-wide analyses. The observed substrate specificity of EndoMS, together with the effects of endoMS gene disruption, led us to speculate that the MMR system, regardless of the types of proteins in the system, evolved to address asymmetrically occurring replication errors in which G/T mismatches occur much more frequently than C/A mismatches.
Collapse
Affiliation(s)
- Norihiko Takemoto
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Itaru Numata
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Masayuki Su’etsugu
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| |
Collapse
|
2
|
Alphonse S, Ghose R. Cystoviral RNA-directed RNA polymerases: Regulation of RNA synthesis on multiple time and length scales. Virus Res 2017; 234:135-152. [PMID: 28104452 PMCID: PMC5476504 DOI: 10.1016/j.virusres.2017.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 12/18/2022]
Abstract
Role of the RNA polymerase in the cystoviral life-cycle. Spatio-temporal regulation of RNA synthesis in cystoviruses. Emerging role of conformational dynamics in polymerase function.
P2, an RNA-directed RNA polymerase (RdRP), is encoded on the largest of the three segments of the double-stranded RNA genome of cystoviruses. P2 performs the dual tasks of replication and transcription de novo on single-stranded RNA templates, and plays a critical role in the viral life-cycle. Work over the last few decades has yielded a wealth of biochemical and structural information on the functional regulation of P2, on its role in the spatiotemporal regulation of RNA synthesis and its variability across the Cystoviridae family. These range from atomic resolution snapshots of P2 trapped in functionally significant states, in complex with catalytic/structural metal ions, polynucleotide templates and substrate nucleoside triphosphates, to P2 in the context of viral capsids providing structural insight into the assembly of supramolecular complexes and regulatory interactions therein. They include in vitro biochemical studies using P2 purified to homogeneity and in vivo studies utilizing infectious core particles. Recent advances in experimental techniques have also allowed access to the temporal dimension and enabled the characterization of dynamics of P2 on the sub-nanosecond to millisecond timescale through measurements of nuclear spin relaxation in solution and single molecule studies of transcription from seconds to minutes. Below we summarize the most significant results that provide critical insight into the role of P2 in regulating RNA synthesis in cystoviruses.
Collapse
Affiliation(s)
- Sébastien Alphonse
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, United States.
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, United States; Graduate Programs in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, United States; Graduate Programs in Chemistry, The Graduate Center of CUNY, New York, NY 10016, United States; Graduate Programs in Physics, The Graduate Center of CUNY, New York, NY 10016, United States.
| |
Collapse
|
3
|
Structural basis of viral RNA-dependent RNA polymerase catalysis and translocation. Proc Natl Acad Sci U S A 2016; 113:E4005-14. [PMID: 27339134 DOI: 10.1073/pnas.1602591113] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Viral RNA-dependent RNA polymerases (RdRPs) play essential roles in viral genome replication and transcription. We previously reported several structural states of the poliovirus RdRP nucleotide addition cycle (NAC) that revealed a unique palm domain-based active site closure mechanism and proposed a six-state NAC model including a hypothetical state representing translocation intermediates. Using the RdRP from another human enterovirus, enterovirus 71, here we report seven RdRP elongation complex structures derived from a crystal lattice that allows three NAC events. These structures suggested a key order of events in initial NTP binding and NTP-induced active site closure and revealed a bona fide translocation intermediate featuring asymmetric movement of the template-product duplex. Our work provides essential missing links in understanding NTP recognition and translocation mechanisms in viral RdRPs and emphasizes the uniqueness of the viral RdRPs compared with other processive polymerases.
Collapse
|
4
|
Gu S, Li W, Zhang H, Fleming J, Yang W, Wang S, Wei W, Zhou J, Zhu G, Deng J, Hou J, Zhou Y, Lin S, Zhang XE, Bi L. The β2 clamp in the Mycobacterium tuberculosis DNA polymerase III αβ2ε replicase promotes polymerization and reduces exonuclease activity. Sci Rep 2016; 6:18418. [PMID: 26822057 PMCID: PMC4731781 DOI: 10.1038/srep18418] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/17/2015] [Indexed: 12/20/2022] Open
Abstract
DNA polymerase III (DNA pol III) is a multi-subunit replication machine responsible for the accurate and rapid replication of bacterial genomes, however, how it functions in Mycobacterium tuberculosis (Mtb) requires further investigation. We have reconstituted the leading-strand replication process of the Mtb DNA pol III holoenzyme in vitro, and investigated the physical and functional relationships between its key components. We verify the presence of an αβ2ε polymerase-clamp-exonuclease replicase complex by biochemical methods and protein-protein interaction assays in vitro and in vivo and confirm that, in addition to the polymerase activity of its α subunit, Mtb DNA pol III has two potential proofreading subunits; the α and ε subunits. During DNA replication, the presence of the β2 clamp strongly promotes the polymerization of the αβ2ε replicase and reduces its exonuclease activity. Our work provides a foundation for further research on the mechanism by which the replication machinery switches between replication and proofreading and provides an experimental platform for the selection of antimicrobials targeting DNA replication in Mtb.
Collapse
Affiliation(s)
- Shoujin Gu
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjuan Li
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongtai Zhang
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Joy Fleming
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiqiang Yang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjing Wei
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Zhou
- The Fourth People's Hospital, Foshan 528000, China
| | - Guofeng Zhu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jiaoyu Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jian Hou
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Zhou
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shiqiang Lin
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xian-En Zhang
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijun Bi
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Pack SP, Morimoto H, Makino K, Tajima K, Kanaori K. Solution structure and stability of the DNA undecamer duplexes containing oxanine mismatch. Nucleic Acids Res 2011; 40:1841-55. [PMID: 22039100 PMCID: PMC3287195 DOI: 10.1093/nar/gkr872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Solution structures of DNA duplexes containing oxanine (Oxa, O) opposite a cytosine (O:C duplex) and opposite a thymine (O:T duplex) have been solved by the combined use of 1H NMR and restrained molecular dynamics calculation. One mismatch pair was introduced into the center of the 11-mer duplex of [d(GTGACO6CACTG)/d(CAGTGX17GTCAC), X = C or T]. 1H NMR chemical shifts and nuclear Overhauser enhancement (NOE) intensities indicate that both the duplexes adopt an overall right-handed B-type conformation. Exchangeable resonances of C17 4-amino proton of the O:C duplex and of T17 imino proton of O:T duplex showed unusual chemical shifts, and disappeared with temperature increasing up to 30°C, although the melting temperatures were >50°C. The O:C mismatch takes a wobble geometry with positive shear parameter where the Oxa ring shifted toward the major groove and the paired C17 toward the minor groove, while, in the O:T mismatch pair with the negative shear, the Oxa ring slightly shifted toward the minor groove and the paired T17 toward the major groove. The Oxa mismatch pairs can be wobbled largely because of no hydrogen bond to the O1 position of the Oxa base, and may occupy positions in the strands that optimize the stacking with adjacent bases.
Collapse
Affiliation(s)
- Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Jochiwon, Chungnam 339-700, Korea.
| | | | | | | | | |
Collapse
|
6
|
Wang M, Lee HR, Konigsberg W. Effect of A and B metal ion site occupancy on conformational changes in an RB69 DNA polymerase ternary complex. Biochemistry 2009; 48:2075-86. [PMID: 19228037 DOI: 10.1021/bi801627h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rapid chemical quench assays, as well as equilibrium and stopped-flow fluorescence experiments, were performed with an RB69 DNA polymerase (RB69 pol)-primer-template (P/T) complex containing 2-aminopurine (dAP) and a metal exchange-inert Rh(III) derivative of a deoxynucleoside triphosphate (Rh.dTTP). The objective was to determine the effect of catalytic metal ion (A site) occupancy on the affinity of an incoming Rh.dTTP for the RB69 pol-P/T binary complex and on the rate of the conformational change induced by Rh.dTTP binding. With Ca(2+) in the A site, the affinity of the incoming Rh.dTTP for the RB69 pol-P/T binary complex and the conformational change rate can be determined in the absence of chemistry. When Mg(2+) was added to a ternary complex containing Rh.dTTP opposite dAP, the templating base, nucleotidyl transfer occurred, but the rate of product formation was only one-tenth of that found with Mg.dTTP, as determined by rapid chemical quench assays. Rates of conformational change subsequent to formation of a ternary complex, in the absence of chemistry, were estimated from the rate of change in dAP fluorescence with an increase in the Rh.dTTP concentration. We have shown that there is an initial rapid quenching of dAP fluorescence followed by a second phase of dAP quenching, which has nearly the same rate as that of dTMP incorporation, as estimated from rapid chemical quench experiments. We have also demonstrated that the affinity of Rh.dTTP for occupancy of the B metal ion site is dependent on the presence of Ca(2+). However, a saturating Rh.dTTP concentration in the absence of Ca(2+) results in full quenching of dAP fluorescence, whereas a saturating Ca(2+) concentration in the absence of Rh.dTTP gives only partial quenching of dAP fluorescence. The implications of these results for the mechanism of Fingers closing, metal ion binding, and base selectivity are discussed.
Collapse
Affiliation(s)
- Mina Wang
- Molecular Biophysics and Biochemistry Department, Yale University, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
7
|
Accurate DNA synthesis by Sulfolobus solfataricus DNA polymerase B1 at high temperature. Extremophiles 2009; 14:107-17. [DOI: 10.1007/s00792-009-0292-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/23/2009] [Indexed: 11/24/2022]
|
8
|
Trostler M, Delier A, Beckman J, Urban M, Patro JN, Spratt TE, Beese LS, Kuchta RD. Discrimination between right and wrong purine dNTPs by DNA polymerase I from Bacillus stearothermophilus. Biochemistry 2009; 48:4633-41. [PMID: 19348507 DOI: 10.1021/bi900104n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We used a series of dATP and dGTP analogues to determine how DNA polymerase I from Bacillus stearothermophilus (BF), a prototypical A family polymerase, uses N-1, N(2), N-3, and N(6) of purine dNTPs to differentiate between right and wrong nucleotide incorporation. Altering any of these nitrogens had two effects. First, it decreased the efficiency of correct incorporation of the resulting dNTP analogue, with the loss of N-1 and N-3 having the most severe effects. Second, it dramatically increased the rate of misincorporation of the resulting dNTP analogues, with alterations in either N-1 or N(6) having the most severe impacts. Adding N(2) to dNTPs containing the bases adenine and purine increased the degree of polymerization opposite T but also tremendously increased the degree of misincorporation opposite A, C, and G. Thus, BF uses N-1, N(2), N-3, and N(6) of purine dNTPs both as negative selectors to prevent misincorporation and as positive selectors to enhance correct incorporation. Comparing how BF discriminates between right and wrong dNTPs with both B family polymerases and low-fidelity polymerases indicates that BF has chosen a unique solution vis-a-vis these other enzymes and, therefore, that nature has evolved at least three mechanistically distinct solutions.
Collapse
Affiliation(s)
- Michael Trostler
- Department of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, Colorado 80309, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Coordinating DNA polymerase traffic during high and low fidelity synthesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1167-79. [PMID: 19540941 DOI: 10.1016/j.bbapap.2009.06.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 02/08/2023]
Abstract
With the discovery that organisms possess multiple DNA polymerases (Pols) displaying different fidelities, processivities, and activities came the realization that mechanisms must exist to manage the actions of these diverse enzymes to prevent gratuitous mutations. Although many of the Pols encoded by most organisms are largely accurate, and participate in DNA replication and DNA repair, a sizeable fraction display a reduced fidelity, and act to catalyze potentially error-prone translesion DNA synthesis (TLS) past lesions that persist in the DNA. Striking the proper balance between use of these different enzymes during DNA replication, DNA repair, and TLS is essential for ensuring accurate duplication of the cell's genome. This review highlights mechanisms that organisms utilize to manage the actions of their different Pols. A particular emphasis is placed on discussion of current models for how different Pols switch places with each other at the replication fork during high fidelity replication and potentially error-pone TLS.
Collapse
|
10
|
Renders M, Lievrouw R, Krecmerová M, Holý A, Herdewijn P. Enzymatic polymerization of phosphonate nucleosides. Chembiochem 2009; 9:2883-8. [PMID: 19006151 DOI: 10.1002/cbic.200800494] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
5'-O-phosphonomethyl-2'-deoxyadenosine (PMdA) proved to be a good substrate of the Therminator polymerase. In this article, we investigated whether the A, C, T and U analogues of this phosphonate nucleoside (PMdN) series can function as substrates of natural DNA polymerases. PMdT and PMdU could only be polymerized enzymatically to a limited extent. Nevertheless, PMdA and PMdC could be incorporated into a DNA duplex with complete chain elongation by all the DNA polymerases tested. A mixed sequence of four nucleotides containing modified C, T and A residues could be obtained with the Vent(exo(-)) and Therminator polymerases. The kinetic values for the incorporation of PMdA by Vent(exo(-)) polymerase were determined; a reduced K(M) value was found for the incorporation of PMdA compared to the natural substrate. Future polymerase directed evolution studies will allow us to select an enzyme with a heightened capacity to process these modified DNA building blocks into modified strands.
Collapse
Affiliation(s)
- Marleen Renders
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
11
|
Danilov VI, Anisimov VM, Kurita N, Hovorun D. MP2 and DFT studies of the DNA rare base pairs: The molecular mechanism of the spontaneous substitution mutations conditioned by tautomerism of bases. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.06.123] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Mulder BA, Anaya S, Yu P, Lee KW, Nguyen A, Murphy J, Willson R, Briggs JM, Gao X, Hardin SH. Nucleotide modification at the gamma-phosphate leads to the improved fidelity of HIV-1 reverse transcriptase. Nucleic Acids Res 2005; 33:4865-73. [PMID: 16141194 PMCID: PMC1197130 DOI: 10.1093/nar/gki779] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mechanism by which HIV-1 reverse transcriptase (HIV-RT) discriminates between the correct and incorrect nucleotide is not clearly understood. Chemically modified nucleotides containing 1-aminonaphthalene-5-sulfonate (ANS) attached to their gamma-phosphate were synthesized and used to probe nucleotide selection by this error prone polymerase. Primer extension reactions provide direct evidence that the polymerase is able to incorporate the gamma-modified nucleotides. Forward mutation assays reveal a 6-fold reduction in the mutational frequency with the modified nucleotides, and specific base substitutions are dramatically reduced or eliminated. Molecular modeling illustrates potential interactions between critical residues within the polymerase active site and the modified nucleotides. Our data demonstrate that the fidelity of reverse transcriptase is improved using modified nucleotides, and we suggest that specific modifications to the gamma-phosphate may be useful in designing new antiviral therapeutics or, more generally, as a tool for defining the structural role that the polymerase active site has on nucleotide selectivity.
Collapse
Affiliation(s)
- Brent A. Mulder
- Department of Biology and Biochemistry, University of HoustonHouston TX 77204-5001, USA
- VisiGen Biotechnologies, Inc.2575 West Bellfort, Suite 250, Houston, TX 77054, USA
| | - Steve Anaya
- Department of Biology and Biochemistry, University of HoustonHouston TX 77204-5001, USA
| | - Peilin Yu
- Department of Chemistry, University of HoustonHouston TX 77204-5003, USA
| | - Keun Woo Lee
- Department of Biology and Biochemistry, University of HoustonHouston TX 77204-5001, USA
| | - Anvy Nguyen
- Department of Biology and Biochemistry, University of HoustonHouston TX 77204-5001, USA
- VisiGen Biotechnologies, Inc.2575 West Bellfort, Suite 250, Houston, TX 77054, USA
| | - Jason Murphy
- Department of Chemical Engineering, University of HoustonHouston, TX 77204-4004, USA
| | - Richard Willson
- Department of Biology and Biochemistry, University of HoustonHouston TX 77204-5001, USA
- Department of Chemical Engineering, University of HoustonHouston, TX 77204-4004, USA
- VisiGen Biotechnologies, Inc.2575 West Bellfort, Suite 250, Houston, TX 77054, USA
| | - James M. Briggs
- Department of Biology and Biochemistry, University of HoustonHouston TX 77204-5001, USA
- VisiGen Biotechnologies, Inc.2575 West Bellfort, Suite 250, Houston, TX 77054, USA
| | - Xiaolian Gao
- Department of Biology and Biochemistry, University of HoustonHouston TX 77204-5001, USA
- Department of Chemistry, University of HoustonHouston TX 77204-5003, USA
| | - Susan H. Hardin
- Department of Biology and Biochemistry, University of HoustonHouston TX 77204-5001, USA
- VisiGen Biotechnologies, Inc.2575 West Bellfort, Suite 250, Houston, TX 77054, USA
- To whom correspondence should be addressed. Tel: +1 713 743 2686; Fax: +1 713 743 2636;
| |
Collapse
|
13
|
Abstract
DNA polymerases are molecular motors directing the synthesis of DNA from nucleotides. All polymerases have a common architectural framework consisting of three canonical subdomains termed the fingers, palm, and thumb subdomains. Kinetically, they cycle through various states corresponding to conformational transitions, which may or may not generate force. In this review, we present and discuss the kinetic, structural, and single-molecule works that have contributed to our understanding of DNA polymerase function.
Collapse
Affiliation(s)
- Paul J Rothwell
- Institute of Structural Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | | |
Collapse
|
14
|
Lehtinen D, Perrino F. Dysfunctional proofreading in the Escherichia coli DNA polymerase III core. Biochem J 2004; 384:337-48. [PMID: 15352874 PMCID: PMC1134117 DOI: 10.1042/bj20040660] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 08/23/2004] [Accepted: 09/07/2004] [Indexed: 11/17/2022]
Abstract
The epsilon-subunit contains the catalytic site for the 3'-->5' proofreading exonuclease that functions in the DNA pol III (DNA polymerase III) core to edit nucleotides misinserted by the alpha-subunit DNA pol. A novel mutagenesis strategy was used to identify 23 dnaQ alleles that exhibit a mutator phenotype in vivo. Fourteen of the epsilon mutants were purified, and these proteins exhibited 3'-->5' exonuclease activities that ranged from 32% to 155% of the activity exhibited by the wild-type epsilon protein, in contrast with the 2% activity exhibited by purified MutD5 protein. DNA pol III core enzymes constituted with 11 of the 14 epsilon mutants exhibited an increased error rate during in vitro DNA synthesis using a forward mutation assay. Interactions of the purified epsilon mutants with the alpha- and theta;-subunits were examined by gel filtration chromatography and exonuclease stimulation assays, and by measuring polymerase/exonuclease ratios to identify the catalytically active epsilon511 (I170T/V215A) mutant with dysfunctional proofreading in the DNA pol III core. The epsilon511 mutant associated tightly with the alpha-subunit, but the exonuclease activity of epsilon511 was not stimulated in the alpha-epsilon511 complex. Addition of the theta;-subunit to generate the alpha-epsilon511-theta; DNA pol III core partially restored stimulation of the epsilon511 exonuclease, indicating a role for the theta;-subunit in co-ordinating the alpha-epsilon polymerase-exonuclease interaction. The alpha-epsilon511-theta; DNA pol III core exhibited a 3.5-fold higher polymerase/exonuclease ratio relative to the wild-type DNA pol III core, further indicating dysfunctional proofreading in the alpha-epsilon511-theta; complex. Thus the epsilon511 mutant has wild-type 3'-->5' exonuclease activity and associates physically with the alpha- and theta;-subunits to generate a proofreading-defective DNA pol III enzyme.
Collapse
Affiliation(s)
- Duane A. Lehtinen
- Wake Forest University Health Sciences, Department of Biochemistry, Winston-Salem, NC 27157, U.S.A
| | - Fred W. Perrino
- Wake Forest University Health Sciences, Department of Biochemistry, Winston-Salem, NC 27157, U.S.A
| |
Collapse
|
15
|
Maki H. Origins of spontaneous mutations: specificity and directionality of base-substitution, frameshift, and sequence-substitution mutageneses. Annu Rev Genet 2003; 36:279-303. [PMID: 12429694 DOI: 10.1146/annurev.genet.36.042602.094806] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spontaneous mutations are derived from various sources, including errors made during replication of undamaged template DNA, mutagenic nucleotide substrates, and endogenous DNA lesions. These sources vary in their frequencies and resultant mutations, and are differently affected by the DNA sequence, DNA transactions, and cellular metabolism. Organisms possess a variety of cellular functions to suppress spontaneous mutagenesis, and the specificity and effectiveness of each function strongly affect the pattern of spontaneous mutations. Base substitutions and single-base frameshifts, two major classes of spontaneous mutations, occur non-randomly throughout the genome. Within target DNA sequences there are hotspots for particular types of spontaneous mutations; outside of the hotspots, spontaneous mutations occur more randomly and much less frequently. Hotspot mutations are attributable more to endogenous DNA lesions than to replication errors. Recently, a novel class of mutagenic pathway that depends on short inverted repeats was identified as another important source of hotspot mutagenesis.
Collapse
Affiliation(s)
- Hisaji Maki
- Department of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan.
| |
Collapse
|
16
|
Abstract
Various physicochemical factors influence DNA replication fidelity. Since it is now known that Watson-Crick hydrogen bonds are not necessary for efficient and selective replication of a base pair by DNA polymerase enzymes, a number of alternative physical factors have been examined to explain the efficiency of these enzymes. Among these factors are minor groove hydrogen bonding, base stacking, solvation, and steric effects. We discuss the concept of active site tightness in DNA polymerases, and consider how it might influence steric (size and shape) effects of nucleotide selection in synthesis of a base pair. A high level of active site tightness is expected to lead to higher fidelity relative to proteins with looser active sites. We review the current data on what parts and dimensions of active sites are most affected by size and shape, based on data with modified nucleotides that have been examined as polymerase substrates. We also discuss recent data on nucleotide analogs displaying higher fidelity than the natural ones. The published data are discussed with a view toward testing this sterically based hypothesis and unifying existing observations into a narrowly defined range of effects.
Collapse
Affiliation(s)
- Eric T Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
17
|
Fidalgo da Silva E, Mandal SS, Reha-Krantz LJ. Using 2-aminopurine fluorescence to measure incorporation of incorrect nucleotides by wild type and mutant bacteriophage T4 DNA polymerases. J Biol Chem 2002; 277:40640-9. [PMID: 12189135 DOI: 10.1074/jbc.m203315200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of wild type and mutant T4 DNA polymerases to discriminate in the utilization of the base analog 2-aminopurine (2AP) and the fluorescence of 2AP were used to determine how DNA polymerases distinguish between correct and incorrect nucleotides. Because T4 DNA polymerase incorporates dTMP opposite 2AP under single-turnover conditions, it was possible to compare directly the kinetic parameters for incorporation of dTMP opposite template 2AP to the parameters for incorporation of dTMP opposite template A without the complication of enzyme dissociation. The most significant difference detected was in the K(d) for dTTP, which was 10-fold higher for incorporation of dTMP opposite template 2AP (approximately 367 microm) than for incorporation of dTMP opposite template A (approximately 31 microm). In contrast, the dTMP incorporation rate was reduced only about 2-fold from about 318 s(-1) with template A to about 165 s(-1) for template 2AP. Discrimination is due to the high selectivity in the initial nucleotide-binding step. T4 DNA polymerase binding to DNA with 2AP in the template position induces formation of a nucleotide binding pocket that is preshaped to bind dTTP and to exclude other nucleotides. If nucleotide binding is hindered, initiation of the proofreading pathway acts as an error avoidance mechanism to prevent incorporation of incorrect nucleotides.
Collapse
|
18
|
Sugaya Y, Ihara K, Masuda Y, Ohtsubo E, Maki H. Hyper-processive and slower DNA chain elongation catalysed by DNA polymerase III holoenzyme purified from the dnaE173 mutator mutant of Escherichia coli. Genes Cells 2002; 7:385-99. [PMID: 11952835 DOI: 10.1046/j.1365-2443.2002.00527.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND A strong mutator mutation, dnaE173, leads to a Glu612 --> Lys amino acid change in the alpha subunit of Escherichia coli DNA polymerase III (PolIII) holoenzyme and abolishes the proofreading function of the replicative enzyme without affecting the 3' --> 5' exonuclease activity of the epsilon subunit. The dnaE173 mutator is unique in its ability to induce sequence-substitution mutations, suggesting that an unknown function of the alpha subunit is hampered by the dnaE173 mutation. RESULTS A PolIII holoenzyme reconstituted from dnaE173 PolIII* (DNA polymerase III holoenzyme lacking the beta clamp subunit) and the beta subunit showed a strong resistance to replication-pausing on the template DNA and readily promoted strand-displacement DNA synthesis. Unlike wild-type PolIII*, dnaE173 PolIII* was able to catalyse highly processive DNA synthesis without the aid of the beta-clamp subunit. The rate of chain elongation by the dnaE173 holoenzyme was reduced to one-third of that determined for the wild-type enzyme. In contrast, an exonuclease-deficient PolIII holoenzyme was vastly prone to pausing, but had the same rate of chain elongation as the wild-type. CONCLUSIONS The hyper-processivity and slower DNA chain elongation rate of the dnaE173 holoenzyme are distinct effects caused by the dnaE173 mutation and are likely to be involved in the sequence-substitution mutagenesis. A link between the proofreading and chain elongation processes was suggested.
Collapse
Affiliation(s)
- Yutaka Sugaya
- Department of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
19
|
Bakhanashvili M. p53 enhances the fidelity of DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase. Oncogene 2001; 20:7635-44. [PMID: 11753641 DOI: 10.1038/sj.onc.1204956] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2001] [Revised: 08/31/2001] [Accepted: 09/04/2001] [Indexed: 11/08/2022]
Abstract
The tumor suppressor protein p53 plays a critical role in the maintenance of genetic integrity. p53 possesses 3'-->5' exonuclease activity, however, the significance of this function in DNA replication process remains elusive. It was suggested that 3'-->5' exonuclease activity of p53 may provide a proofreading function for DNA polymerases. In order to better understand the significance of this activity, the purified wild-type recombinant p53 was further evaluated for substrate specificity and for contribution to the accuracy of DNA synthesis. p53-associated 3'-->5' exonuclease displays 3' terminal nucleotide excision from RNA/DNA template-primer using ribosomal RNA as a template. The data demonstrate that p53 is highly efficient in removing a terminal mispair. Analysis of mispair excision opposite the template adenine residue shows that p53 catalyzes 3' terminal mismatch excision with a specificity of A : G>A : A>A : C. Hence, the observed specificity of mismatch excision indicates that p53 exonucleolytic proofreading preferentially repairs transversion mutations. The influence of the p53 on the accuracy of DNA synthesis was determined with exonuclease-deficient human immunodeficiency virus-1 (HIV-1) reverse transcriptase (RT), a key enzyme in the life cycle of the virus, that contributes significantly to the low accuracy of proviral DNA synthesis. Using an in vitro biochemical assay with recombinant purified HIV-1 RT, p53 and defined RNA/DNA or DNA/DNA template-primers, two basic features related to fidelity of DNA synthesis were studied: the misinsertion and mispair extension. The misincorporation of non-complementary deoxynucleotides into nascent DNA and subsequent mispair extension by HIV-1 RT were substantially decreased in the presence of p53 with both RNA/DNA and DNA/DNA template-primers. In addition, the productive interaction between polymerization (by HIV-1 RT) and exonuclease (by p53) activities was observed; p53 preferentially hydrolyzes mispaired 3'-termini, permitting subsequent extension of the correctly paired 3'-terminus by HIV-1 RT. Taken together the data demonstrate that preferential excision of mismatched nucleotides by 3'-->5' exonuclease activity of wild-type p53 enhances the fidelity of DNA synthesis by HIV-1 RT in vitro, thus providing a biochemical mechanism to reduce mutations caused by incorporation of mismatched nucleotides. The fact that p53 is reactive with both RNA/DNA and DNA/DNA template-primers raises an interesting possibility of the existence of functional cooperation between p53 and HIV-1 RT in cytoplasm during the reverse transcription process, which may be important for maintaining HIV genomic integrity.
Collapse
Affiliation(s)
- M Bakhanashvili
- Infectious Diseases Unit, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel.
| |
Collapse
|
20
|
Sherer EC, Bono SJ, Shields GC. Further Quantum Mechanical Evidence that Difluorotoluene Does Not Hydrogen Bond. J Phys Chem B 2001. [DOI: 10.1021/jp010197x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Edward C. Sherer
- Department of Chemistry, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, and Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455
| | - Sam J. Bono
- Department of Chemistry, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, and Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455
| | - George C. Shields
- Department of Chemistry, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, and Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455
| |
Collapse
|
21
|
Perlow RA, Broyde S. Evading the proofreading machinery of a replicative DNA polymerase: induction of a mutation by an environmental carcinogen. J Mol Biol 2001; 309:519-36. [PMID: 11371169 DOI: 10.1006/jmbi.2001.4674] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA replication fidelity is dictated by DNA polymerase enzymes and associated proteins. When the template DNA is damaged by a carcinogen, the fidelity of DNA replication is sometimes compromized, allowing mispaired bases to persist and be incorporated into the DNA, resulting in a mutation. A key question in chemical carcinogenesis by metabolically activated polycyclic aromatic hydrocarbons (PAHs) is the nature of the interactions between the carcinogen-damaged DNA and the replicating polymerase protein that permits the mutagenic misincorporation to occur. PAHs are environmental carcinogens that, upon metabolic activation, can react with DNA to form bulky covalently linked combination molecules known as carcinogen-DNA adducts. Benzo[a]pyrene (BP) is a common PAH found in a wide range of material ingested by humans, including cigarette smoke, car exhaust, broiled meats and fish, and as a contaminant in other foods. BP is metabolically activated into several highly reactive intermediates, including the highly tumorigenic (+)-anti-benzo[a]pyrene diol epoxide (BPDE). The primary product of the reaction of (+)-anti-BPDE with DNA, the (+)-trans-anti-benzo[a]pyrene diol epoxide-N(2)-dG ((+)-ta-[BP]G) adduct, is the most mutagenic BP adduct in mammalian systems and primarily causes G-to-T transversion mutations, resulting from the mismatch of adenine with BP-damaged guanine during replication. In order to elucidate the structural characteristics and interactions between the DNA polymerase and carcinogen-damaged DNA that allow a misincorporation opposite a DNA lesion, we have modeled a (+)-ta-[BP]G adduct at a primer-template junction within the replicative phage T7 DNA polymerase containing an incoming dATP, the nucleotide most commonly mismatched with the (+)-ta-[BP]G adduct during replication. A one nanosecond molecular dynamics simulation, using AMBER 5.0, has been carried out, and the resultant trajectory analyzed. The modeling and simulation have revealed that a (+)-ta-[BP]G:A mismatch can be accommodated stably in the active site so that the fidelity mechanisms of the polymerase are evaded and the polymerase accepts the incoming mutagenic base. In this structure, the modified guanine base is in the syn conformation, with the BP moiety positioned in the major groove, without interfering with the normal protein-DNA interactions required for faithful polymerase function. This structure is stabilized by a hydrogen bond between the modified guanine base and dATP partner, hydrophobic interactions between the BP moiety and the polymerase, a hydrogen bond between the modified guanine base and the polymerase, and several hydrogen bonds between the BP moiety and polymerase side-chains. Moreover, the G:A mismatch in this system closely resembles the size and shape of a normal Watson-Crick pair. These features reveal how the polymerase proofreading machinery may be evaded in the presence of a mutagenic carcinogen-damaged DNA, so that a mismatch can be accommodated readily, allowing bypass of the adduct by the replicative T7 DNA polymerase.
Collapse
MESH Headings
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/metabolism
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/pharmacology
- Bacteriophage T7/enzymology
- Base Pair Mismatch/genetics
- Base Pairing
- Benzo(a)pyrene/metabolism
- Benzo(a)pyrene/pharmacology
- Binding Sites
- Carcinogens, Environmental/metabolism
- Carcinogens, Environmental/pharmacology
- Computer Simulation
- DNA Adducts/chemistry
- DNA Adducts/drug effects
- DNA Adducts/genetics
- DNA Adducts/metabolism
- DNA Damage/drug effects
- DNA Damage/genetics
- DNA Primers/genetics
- DNA Replication/genetics
- DNA-Directed DNA Polymerase/chemistry
- DNA-Directed DNA Polymerase/metabolism
- Deoxyadenine Nucleotides/metabolism
- Genes, p53/genetics
- Guanine/chemistry
- Guanine/metabolism
- Hydrogen Bonding
- Magnesium/metabolism
- Models, Molecular
- Mutagenesis/drug effects
- Protein Conformation
- Software
- Stereoisomerism
- Templates, Genetic
Collapse
Affiliation(s)
- R A Perlow
- Department of Biology, New York University, 100 Washington Square East Room 1009M, New York, NY 10003, USA
| | | |
Collapse
|
22
|
Abstract
The tumour suppressor p53 protein plays an important role in maintaining genetic integrity. Recently, p53 was shown to have an intrinsic 3'-->5' exonuclease activity. The current study has extended the characterization of purified wild-type recombinant p53-associated 3'-->5' exonuclease function to demonstrate proofreading activity. p53-associated 3'-->5' exonuclease shows clear preference for degradation of ssDNA over dsDNA substrate. On partial duplex structures, this exonucleolytic activity displays a marked preference for excision of a mismatched vs. a correctly paired 3' terminus which enables the p53 protein to act as a proofreader. However, p53 displays variation in excision of mismatched base pairs. The results demonstrate that p53 exhibits mispair excision with a specificity of A:A > A:G > A:C opposite the template adenine residue and with a specificity of G:A > G:G > G:T opposite the template guanine residue. Hence, the observed specificity of mismatch excision shows that p53 exonucleolytic proofreading preferentially repairs transversion mutations. As part of an investigation of the functional interaction between p53 and DNA polymerase, the influence of p53 on the accuracy of DNA synthesis was determined with exonuclease-deficient murine leukemia virus (MLV) reverse transcriptase (RT), representing a relatively low fidelity enzyme. Using an in vitro biochemical assay with 3'-terminal mismatch-containing DNA template primers, it was shown that wild-type recombinant p53 protein enhanced the DNA replication fidelity of MLV RT. A functional interaction between the exonuclease (p53) and polymerase (MLV RT) activities was observed; excision of mispairs by p53 was followed by further elongation onto correctly base-paired 3'-termini by MLV RT. Furthermore, the formation of 3'-mispair and subsequent mispair extension by the enzyme were decreased substantially in the presence of p53. The fact that the exonuclease-deficient MLV RT is more accurate in the presence of p53, suggests that p53 protein may function as an external proofreading exonuclease for viral enzyme. The observed decrease in initial nucleotide misincorporation and 3'-terminal mispair extension by MLV RT in the presence of p53, indicates the mechanism by which p53 affects the DNA replication fidelity of exonuclease-deficient DNA polymerase.
Collapse
Affiliation(s)
- M Bakhanashvili
- Infectious Diseases Unit, Chaim Sheba Medical Center, Israel.
| |
Collapse
|
23
|
Abstract
DNA replication fidelity is a key determinant of genome stability and is central to the evolution of species and to the origins of human diseases. Here we review our current understanding of replication fidelity, with emphasis on structural and biochemical studies of DNA polymerases that provide new insights into the importance of hydrogen bonding, base pair geometry, and substrate-induced conformational changes to fidelity. These studies also reveal polymerase interactions with the DNA minor groove at and upstream of the active site that influence nucleotide selectivity, the efficiency of exonucleolytic proofreading, and the rate of forming errors via strand misalignments. We highlight common features that are relevant to the fidelity of any DNA synthesis reaction, and consider why fidelity varies depending on the enzymes, the error, and the local sequence environment.
Collapse
Affiliation(s)
- T A Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|
24
|
Abstract
A temporary state of hypermutation can in principle arise through an increase in the rate of polymerase errors (which may or may not be triggered by template damage) and/or through abrogation of fidelity mechanisms such as proofreading and mismatch correction. In bacteria there are numerous examples of transient mutator states, often occurring as a consequence of stress. They may be targeted to certain regions of the DNA, for example by transcription or by recombination. The initial errors are made by various DNA polymerases which vary in their error-proneness: several are inducible and are under the control of the SOS system. There are several structurally related polymerases in mammals that have recently come to light and that have unusual properties, such as the ability to carry out 'accurate' translesion synthesis opposite sites of template damage or the possession of exceedingly high misincorporation rates. In bacteria the initial errors may be genuinely spontaneous polymerase errors or they may be triggered by damage to the template strand, for example as a result of attack by active oxidative species such as singlet oxygen. In mammalian cells, hypermutable states persisting for many generations have been shown to be induced by various agents, not all of them DNA damaging agents. A hypermutable state induced by ionizing radiation in male germ cells in the mouse results in a high rate of sequence errors in certain unstable minisatellite loci; the mechanism is unclear but believed to be associated with recombination events.
Collapse
Affiliation(s)
- B A Bridges
- MRC Cell Mutation Unit, University of Sussex, Brighton, UK.
| |
Collapse
|
25
|
Bakker FT, Culham A, Gomez-Martinez R, Carvalho J, Compton J, Dawtrey R, Gibby M. Patterns of nucleotide substitution in angiosperm cpDNA trnL (UAA)-trnF (GAA) regions. Mol Biol Evol 2000; 17:1146-55. [PMID: 10991703 DOI: 10.1093/oxfordjournals.molbev.a026397] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Patterns of substitution in chloroplast encoded trnL_F regions were compared between species of Actaea (Ranunculales), Digitalis (Scrophulariales), Drosera (Caryophyllales), Panicoideae (Poales), the small chromosome species clade of Pelargonium (Geraniales), each representing a different order of flowering plants, and Huperzia (Lycopodiales). In total, the study included 265 taxa, each with > 900-bp sequences, totaling 0.24 Mb. Both pairwise and phylogeny-based comparisons were used to assess nucleotide substitution patterns. In all six groups, we found that transition/transversion ratios, as estimated by maximum likelihood on most-parsimonious trees, ranged between 0.8 and 1.0 for ingroups. These values occurred both at low sequence divergences, where substitutional saturation, i.e., multiple substitutions having occurred at the same (homologous) nucleotide position, was not expected, and at higher levels of divergence. This suggests that the angiosperm trnL-F regions evolve in a pattern different from that generally observed for nuclear and animal mtDNA (transitional/transversion ratio > or = 2). Transition/transversion ratios in the intron and the spacer region differed in all alignments compared, yet base compositions between the regions were highly similar in all six groups. A>-<T and G<->C transversions were significantly less frequent than the other four substitution types. This correlates with results from studies on fidelity mechanisms in DNA replication that predict A<->T and G<->C transversions to be least likely to occur. It therefore strengthens confidence in the link between mutation bias at the polymerase level and the actual fixation of substitutions as recorded on evolutionary trees, and concomitantly, in the neutrality of nucleotide substitutions as phylogenetic markers.
Collapse
Affiliation(s)
- F T Bakker
- Department of Botany, The University of Reading, Reading, England.
| | | | | | | | | | | | | |
Collapse
|
26
|
Karam JD, Konigsberg WH. DNA polymerase of the T4-related bacteriophages. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:65-96. [PMID: 10697407 DOI: 10.1016/s0079-6603(00)64002-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The DNA polymerase of bacteriophage T4, product of phage gene 43 (gp43), has served as a model replicative DNA polymerase in nucleic acids research for nearly 40 years. The base-selection (polymerase, or Pol) and editing (3'-exonuclease, or Exo) functions of this multifunctional protein, which have counterparts in the replicative polymerases of other organisms, are primary determinants of the high fidelity of DNA synthesis in phage DNA replication. T4 gp43 is considered to be a member of the "B family" of DNA-dependent DNA polymerases (those resembling eukaryotic Pol alpha) because it exhibits striking similarities in primary structure to these enzymes. It has been extensively analyzed at the genetic, physiological, and biochemical levels; however, relationships between the in vivo properties of this enzyme and its physical structure have not always been easy to explain due to a paucity of structural data on the intact molecule. However, gp43 from phage RB69, a phylogenetic relative of T4, was crystallized and its structure solved in a complex with single-stranded DNA occupying the Exo site, as well as in the unliganded form. Analyses with these crystals, and crystals of a T4 gp43 proteolytic fragment harboring the Exo function, are opening new avenues to interpret existing biological and biochemical data on the intact T4 enzyme and are revealing new aspects of the microanatomy of gp43 that can now be explored further for functional significance. We summarize our current understanding of gp43 structure and review the physiological roles of this protein as an essential DNA-binding component of the multiprotein T4 DNA replication complex and as a nucleotide-sequence-specific RNA-binding translational repressor that controls its own biosynthesis and activity in vivo. We also contrast the properties of the T4 DNA replication complex to the functionally analogous complexes of other organisms, particularly Escherichia coli, and point out some of the unanswered questions about gp43 and T4 DNA replication.
Collapse
Affiliation(s)
- J D Karam
- Department of Biochemistry, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
27
|
|
28
|
Seki M, Akiyama M, Sugaya Y, Ohtsubo E, Maki H. Strand asymmetry of +1 frameshift mutagenesis at a homopolymeric run by DNA polymerase III holoenzyme of Escherichia coli. J Biol Chem 1999; 274:33313-9. [PMID: 10559208 DOI: 10.1074/jbc.274.47.33313] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently shown that single-base frameshifts were predominant among mutations induced within the rpsL target sequence upon oriC plasmid DNA replication in vitro. We found that the occurrence of +1 frameshifts at a run of 6 residues of dA/dT could be increased proportionally by increasing the concentration of dATP present in the in vitro replication. Using single-stranded circular DNA containing either the coding sequence of the rpsL gene or its complementary sequence, the +1 frameshift mutagenesis by DNA polymerase III holoenzyme of Escherichia coli was extensively examined. A(6) --> A(7) frameshifts occurred 30 to 90 times more frequently during DNA synthesis with the noncoding sequence (dT tract) template than with the coding sequence (dA tract). Excess dATP enhanced the occurrence of +1 frameshifts during DNA synthesis with the dT tract template, but no other dNTPs showed such an effect. In the presence of 0.1 mM dATP, the A(6) --> A(7) mutagenesis with the dT tract template was not inhibited by 1.5 mM dCTP, which is complementary to the residue immediately upstream of the dT tract. These results strongly suggested that the A(6) --> A(7) frameshift mutagenesis possesses an asymmetric strand nature and that slippage errors leading to the +1 frameshift are made during chain elongation within the tract rather than by misincorporation of nucleotides opposite residues next to the tract.
Collapse
Affiliation(s)
- M Seki
- Department of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
29
|
Fujii S, Akiyama M, Aoki K, Sugaya Y, Higuchi K, Hiraoka M, Miki Y, Saitoh N, Yoshiyama K, Ihara K, Seki M, Ohtsubo E, Maki H. DNA replication errors produced by the replicative apparatus of Escherichia coli. J Mol Biol 1999; 289:835-50. [PMID: 10369765 DOI: 10.1006/jmbi.1999.2802] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
It has been hard to detect forward mutations generated during DNA synthesis in vitro by replicative DNA polymerases, because of their extremely high fidelity and a high background level of pre-existing mutations in the single-stranded template DNA used. Using the oriC plasmid DNA replication in vitro system and the rpsL forward mutation assay, we examined the fidelity of DNA replication catalyzed by the replicative apparatus of Escherichia coli. Upon DNA synthesis by the fully reconstituted system, the frequency of rpsL-mutations in the product DNA was increased to 1.9x10(-4), 50-fold higher than the background level of the template DNA. Among the mutations generated in vitro, single-base frameshifts predominated and occurred with a pattern similar to those induced in mismatch-repair deficient E. coli cells, indicating that the major replication error was slippage at runs of the same nucleotide. Large deletions and other structural alterations of DNA appeared to be induced also during the action of the replicative apparatus.
Collapse
Affiliation(s)
- S Fujii
- Department of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0101, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Barsky D, Kool ET, Colvin ME. Interaction and solvation energies of nonpolar DNA base analogues and their role in polymerase insertion fidelity. J Biomol Struct Dyn 1999; 16:1119-34. [PMID: 10447197 DOI: 10.1080/07391102.1999.10508321] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Although DNA polymerase fidelity has been mainly ascribed to Watson-Crick hydrogen bonds, two nonpolar isosteres for thymine (T) and adenine (A)--difluorotoluene (F) and benzimidazole (Z) --effectively mimic their natural counterparts in polymerization experiments with pol I (KF exo-) [JC Morales and ET Kool. Nature Struct Biol, 5, 950-954, 1998]. By ab initio quantum chemical gas phase methods (HF/6-31G* and MP2/6-31G**) and a solvent phase method (CPCM-HF/6-31G**), we find that the A-F interaction energy is 1/3 the A-T interaction energy in the gas phase and unstable in the solvent phase. The F-Z and T-Z interactions are very weak and T-Z is quite unstable in the solvent. Electrostatic solvation energy calculations on F, Z and toluene yield that Z is two times, and F and toluene are five times, less hydrophilic than the natural bases. Of the new "base-pairs" (F-Z, T-Z, and F-A), only F-A formed an A-T-like arrangement in unconstrained optimizations. F-Z and T-Z do not freely form planar arrangements, and constrained optimizations show that large amounts of energy are required to make these pairs fit the exact A-T geometry, suggesting that the polymerase does not require all bases to conform to the exact A-T geometry. We discuss a model for polymerase/nucleotide binding energies and investigate the forces and conformational range involved in the polymerase geometrical selection.
Collapse
Affiliation(s)
- D Barsky
- Biology and Biotechnology Research Program, Lawrence Livermore National Lab, Livermore, CA 94550, USA.
| | | | | |
Collapse
|
31
|
Abstract
The recent crystal structure determination of T7 DNA polymerase complexed to a deoxynucleoside triphosphate and primer-template DNA has provided the first glimpse of a replicative DNA polymerase in a catalytic complex. The structure complements many functional and structural studies of this and other DNA polymerases, allowing a detailed evaluation of proposals for the mechanism of nucleotidyl transfer and the exploration of the basis for the high fidelity of template-directed DNA synthesis.
Collapse
Affiliation(s)
- S Doublié
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School 240 Longwood Avenue Boston MA 02115-5730 USA.
| | | |
Collapse
|
32
|
Smith CA, Baeten J, Taylor JS. The ability of a variety of polymerases to synthesize past site-specific cis-syn, trans-syn-II, (6-4), and Dewar photoproducts of thymidylyl-(3'-->5')-thymidine. J Biol Chem 1998; 273:21933-40. [PMID: 9705333 DOI: 10.1074/jbc.273.34.21933] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of photoproduct structure, 3' --> 5' exonuclease activity, and processivity on polynucleotide synthesis past photoproducts of thymidylyl-(3' --> 5')-thymidine was investigated. Both Moloney murine leukemia virus reverse transcriptase and 3' --> 5' exonuclease-deficient (exo-) Vent polymerase were blocked by all photoproducts, whereas Taq polymerase could slowly bypass the cis-syn dimer. T7 RNA polymerase was able to bypass all the photoproducts in the order cis-syn > Dewar > (6-4) > trans-syn-II. Klenow fragment could not bypass any of the photoproducts, but an exo- mutant could bypass the cis-syn dimer to a greater extent than the others. Likewise T7 DNA polymerase, composed of the T7 gene 5 protein and Escherichia coli thioredoxin, was blocked by all the photoproducts, but the exo- mutant Sequenase 2.0 was able to bypass them all in the order cis-syn > Dewar > trans-syn-II > (6-4). No bypass occurred with an exo- gene 5 protein in the absence of the thioredoxin processivity factor. Bypass of the cis-syn and trans-syn-II products by Sequenase 2.0 was essentially non-mutagenic, whereas about 20% dTMP was inserted opposite the 5'-T of the Dewar photoproduct. A mechanism involving a transient abasic site is proposed to account for the preferential incorporation of dAMP opposite the 3'-T of the photoproducts.
Collapse
Affiliation(s)
- C A Smith
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
33
|
Abstract
This review summarizes mutagenesis studies, emphasizing the use of bacteriophage T4 mutator and antimutator strains. Early genetic studies on T4 identified mutator and antimutator variants of DNA polymerase that, in turn, stimulated the development of model systems for the study of DNA polymerase fidelity in vitro. Later enzymatic studies using purified T4 mutator and antimutator polymerases were essential in elucidating mechanisms of base selection and exonuclease proofreading. In both cases, the base analogue 2-aminopurine (2AP) proved tremendously useful-first as a mutagen in vivo and then as a probe of DNA polymerase fidelity in vitro. Investigations into mechanisms of DNA polymerase fidelity inspired theoretical models that, in turn, called for kinetic and thermodynamic analyses. Thus, the field of DNA synthesis fidelity has grown from many directions: genetics, enzymology, kinetics, physical biochemistry, and thermodynamics, and today the interplay continues. The relative contributions of hydrogen bonding and base stacking to the accuracy of DNA synthesis are beginning to be deciphered. For the future, the main challenges lie in understanding the origins of mutational hot and cold spots.
Collapse
Affiliation(s)
- M F Goodman
- Department of Biological Sciences, Hedco Molecular Biology Laboratories, University of Southern California, Los Angeles 90089-1340, USA.
| | | |
Collapse
|
34
|
Bloom LB, Chen X, Fygenson DK, Turner J, O'Donnell M, Goodman MF. Fidelity of Escherichia coli DNA polymerase III holoenzyme. The effects of beta, gamma complex processivity proteins and epsilon proofreading exonuclease on nucleotide misincorporation efficiencies. J Biol Chem 1997; 272:27919-30. [PMID: 9346941 DOI: 10.1074/jbc.272.44.27919] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The fidelity of Escherichia coli DNA polymerase III (pol III) is measured and the effects of beta, gamma processivity and epsilon proofreading subunits are evaluated using a gel kinetic assay. Pol III holoenzyme synthesizes DNA with extremely high fidelity, misincorporating dTMP, dAMP, and dGMP opposite a template G target with efficiencies finc = 5.6 x 10(-6), 4.2 x 10(-7), and 7 x 10(-7), respectively. Elevated dGMP.G and dTMP.G misincorporation efficiencies of 3.2 x 10(-5) and 5.8 x 10(-4), attributed to a "dNTP-stabilized" DNA misalignment mechanism, occur when C and A, respectively, are located one base downstream from the template target G. At least 92% of misinserted nucleotides are excised by pol III holoenzyme in the absence of a next correct "rescue" nucleotide. As rescue dNTP concentrations are increased, pol III holoenzyme suffers a maximum 8-fold reduction in fidelity as proofreading of mispaired primer termini are reduced in competition with incorporation of a next correct nucleotide. Compared with pol III holoenzyme, the alpha holoenzyme, which cannot proofread, has 47-, 32-, and 13-fold higher misincorporation rates for dGMP.G, dTMP.G, and dAMP.G mispairs. Both the beta, gamma complex and the downstream nucleotide have little effect on the fidelity of catalytic alpha subunit. An analysis of the gel kinetic fidelity assay when multiple polymerase-DNA encounters occur is presented in the "Appendix" (see Fygenson, D. K., and Goodman, M. F. (1997) J. Biol. Chem. 272, 27931-27935 (accompanying paper)).
Collapse
Affiliation(s)
- L B Bloom
- Department of Biological Sciences, Hedco Molecular Biology Laboratories, University of Southern California, Los Angeles, California 90089-1340, USA
| | | | | | | | | | | |
Collapse
|
35
|
Goodman MF. Hydrogen bonding revisited: geometric selection as a principal determinant of DNA replication fidelity. Proc Natl Acad Sci U S A 1997; 94:10493-5. [PMID: 9380666 PMCID: PMC33771 DOI: 10.1073/pnas.94.20.10493] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- M F Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-1340, USA
| |
Collapse
|
36
|
Mo JY, Schaaper RM. Fidelity and error specificity of the alpha catalytic subunit of Escherichia coli DNA polymerase III. J Biol Chem 1996; 271:18947-53. [PMID: 8702558 DOI: 10.1074/jbc.271.31.18947] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Escherichia coli DNA polymerase III holoenzyme is the replicative enzyme primarily responsible for the duplication of the E. coli chromosome. This process occurs with high accuracy, less than 10(-9) to 10(-10) errors being committed per base pair per round of replication. As a first step in understanding the mechanisms responsible for the high fidelity of this process, we have purified the polymerase III alpha catalytic subunit, free of exonuclease activity, and analyzed its fidelity in vitro. We employed a newly developed gap-filling assay using the N-terminal 250 bases of the lacI gene as a forward mutational target. When synthesizing across this target, alpha subunit produced mutations at a frequency of 0.6%. DNA sequencing revealed that the mutants created in vitro consisted mostly of frameshift mutations, although some base substitutions were also observed. The frameshifts, occurring at more than 120-fold above the background, consisted largely of -1 deletions. Among them, about 80% were the deletion of a purine template base with a pyrimidine 5'-neighbor. These results suggest that the alpha subunit (i) has a relatively low ability to extend from misincorporated bases, accounting for the low level of observed base substitutions, and (ii) has a relatively high capability of extension after misalignment of a misincorporated base on the next (complementary) template base, accounting for the high level of frameshift mutations. This model is supported by an experiment in which alpha subunit was required to initiate DNA synthesis from a terminal mispair in a sequence context that allowed slippage on the next template base. Among the products of this reaction, frameshifts outnumbered base pair substitutions by greater than 70-fold. A comparison to in vivo mutational spectra suggests that the pol III accessory factors may play a major role in modulating the fidelity of DNA synthesis.
Collapse
Affiliation(s)
- J Y Mo
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
37
|
Luo J, Bergstrom DE, Barany F. Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res 1996; 24:3071-8. [PMID: 8760896 PMCID: PMC146030 DOI: 10.1093/nar/24.15.3071] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The DNA ligase from Thermus thermophilus (Tth DNA ligase) seals single-strand breaks (nicks) in DNA duplex substrates. The specificity and thermostability of this enzyme are exploited in the ligase chain reaction (LCR) and ligase detection reaction (LDR) to distinguish single base mutations associated with genetic diseases. Herein, we describe a quantitative assay using fluorescently labeled substrates to study the fidelity of Tth DNA ligase. The enzyme exhibits significantly greater discrimination against all single base mismatches on the 3'-side of the nick in comparison with those on the 5'-side of the nick. Among all 12 possible single base pair mismatches on the 3'-side of the nick, only T-G and G-T mismatches generated a quantifiable level of ligation products after 23 h incubation. The high fidelity of Tth DNA ligase can be improved further by introducing a mismatched base or a universal nucleoside analog at the third position of the discriminating oligonucleotide. Finally, two mutant Tth DNA ligases, K294R and K294P, were found to have increased fidelity using this assay.
Collapse
Affiliation(s)
- J Luo
- Hearst Microbiology Research Center, Strang Cancer Prevention Center, Cornell University Medical College, NY 10021, USA
| | | | | |
Collapse
|
38
|
Luo J, Bergstrom DE, Barany F. Improving the Fidelity of Thermus Thermophilus DNA Ligase. Nucleic Acids Res 1996. [DOI: 10.1093/nar/24.14.3071] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Schaaper R. Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80446-3] [Citation(s) in RCA: 222] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
Bakhanashvili M, Hizi A. Fidelity of DNA synthesis exhibited in vitro by the reverse transcriptase of the lentivirus equine infectious anemia virus. Biochemistry 1993; 32:7559-67. [PMID: 7687876 DOI: 10.1021/bi00080a030] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The lentivirus equine infectious anemia virus (EIAV) shows high genetic variations. To gain insight into the relative contribution of the reverse transcription process to the EIAV mutation rate, the accuracy of DNA synthesis catalyzed in vitro by the reverse transcriptase (RT) of EIAV was determined. Since the RT of EIAV shows a relatively high sequence homology with other lentiviral RTs, most notable being the RTs of human immunodeficiency viruses (HIVs), type 1 and type 2, it was of interest to study the fidelity of EIAV RT as part of an investigation of the structure-function relationship in lentiviral RTs. Like other RTs, EIAV RT was found to lack a 3'-->5' exonuclease activity. The fidelity of EIAV RT was analyzed by studying two distinct steps that lead to base substitution mutations: nucleotide misinsertions and elongation from 3'-terminal DNA mispairs. Analysis of misincorporation rates opposite the template adenine residue in native phi x174am3 DNA showed that EIAV RT catalyzes nucleotide mismatches with a specificity of A:C >> A:G > A:A. Interestingly, the same order of specificity was also detected during mispair extension with three templates tested (i.e., phi x174am3 DNA, rRNA, and synthetic oligo DNA). The mispair extension efficiency and mispair formation appear to be affected mainly by the increase in apparent Km values, rather than by the change in Vmax values. Furthermore, EIAV RT exhibits similar mispair extension efficiencies with both RNA and DNA templates with identical surrounding sequences. However, dissimilarities were detected in mispair extension frequencies with two DNAs which have different sequences, thus emphasizing the importance of the sequences copied.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Bakhanashvili
- Department of Cell Biology and Histology, Sackler School of Medicine, Tel Aviv University, Israel
| | | |
Collapse
|
41
|
Goodman MF, Creighton S, Bloom LB, Petruska J. Biochemical basis of DNA replication fidelity. Crit Rev Biochem Mol Biol 1993; 28:83-126. [PMID: 8485987 DOI: 10.3109/10409239309086792] [Citation(s) in RCA: 391] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DNA polymerase is the critical enzyme maintaining genetic integrity during DNA replication. Individual steps in the replication process that contribute to DNA synthesis fidelity include nucleotide insertion, exonucleolytic proofreading, and binding to and elongation of matched and mismatched primer termini. Each process has been investigated using polyacrylamide gel electrophoresis (PAGE) to resolve 32P-labeled primer molecules extended by polymerase. We describe how integrated gel band intensities can be used to obtain site-specific velocities for addition of correct and incorrect nucleotides, extending mismatched compared to correctly matched primer termini and measuring polymerase dissociation rates and equilibrium DNA binding constants. The analysis is based on steady-state "single completed hit conditions", where polymerases encounter many DNA molecules but where each DNA encounters an enzyme at most once. Specific topics addressed include nucleotide misinsertion, mismatch extension, exonucleolytic proofreading, single nucleotide discrimination using PCR, promiscuous mismatch extension by HIV-1 and AMV reverse transcriptases, sequence context effects on fidelity and polymerase dissociation, structural and kinetic properties of mispairs relating to fidelity, error avoidance mechanisms, kinetics of copying template lesions, the "A-rule" for insertion at abasic template lesions, an interesting exception to the "A-rule", thermodynamic and kinetic determinants of base pair discrimination by polymerases.
Collapse
Affiliation(s)
- M F Goodman
- University of Southern California, Department of Biological Sciences, Los Angeles 90089-1340
| | | | | | | |
Collapse
|
42
|
Fowler RG, Amutan MV, Isbell RJ. The interaction of the Escherichia coli mutD and mutT pathways in the prevention of A:T-->C:G transversions. Mutat Res 1992; 284:307-19. [PMID: 1281282 DOI: 10.1016/0027-5107(92)90015-t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Escherichia coli mutT mutator allele produces high frequencies of exclusively A:T-->C:G transversions. This is thought to be caused by a failure to prevent or remove A:G mispairs during DNA replication. The mutD5 mutator allele maps to the dnaQ locus which encodes the epsilon subunit of the DNA polymerase III holoenzyme. This subunit provides 3'-->5' exonuclease, proofreading, activity for removing mispaired nucleotides at the 3' end of the newly synthesized DNA strand. mutD5 has an altered epsilon resulting in reduced levels of proofreading and subsequent high mutation frequencies for all base-pair substitutions. We have analyzed the interaction between mutD5 and mutT-induced A:T-->C:G transversions by measuring reversion frequencies in mutD5 and mutT single mutator strains and mutD5mutT double mutator strains using the well-characterized trpA58 and trpA88 alleles. We find that the double mutator strains produce more A:T-->C:G substitutions than would be expected from simple additivity of the single mutator strains. We interpret this to mean that the two systems, at least in part, do act together to prevent the same mutational intermediate from producing A:T-->C:G transversions. It is estimated that over 90% of the mutT-induced A:G mispairs are corrected by proofreading at the trpA58 site while only about 30% are corrected at trpA88. Reversion frequencies in the mutD5mutT double mutator strains indicate A:G misincorporations occur about 100 x more frequently at trpA58 than at the trpA88 site. Using these and other data we also provide estimations of the fidelity contributions for mutT editing, proofreading and methyl-directed mismatch repair at the two trpA sites for both transversions and the transition that could be scored. In the case of A:T-->C:G transversions, both mutT editing and proofreading make major contributions in error reduction with mismatch repair playing a small or no role at all. For the A:T-->G:C transition, proofreading and mismatch repair were both important in preventing mutations while no contribution was observed for mutT editing.
Collapse
Affiliation(s)
- R G Fowler
- Department of Biological Sciences, San Jose State University, CA 95192
| | | | | |
Collapse
|
43
|
Joyce C, Sun X, Grindley N. Reactions at the polymerase active site that contribute to the fidelity of Escherichia coli DNA polymerase I (Klenow fragment). J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35792-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Lifsics MR, Lancy ED, Maurer R. DNA replication defect in Salmonella typhimurium mutants lacking the editing (epsilon) subunit of DNA polymerase III. J Bacteriol 1992; 174:6965-73. [PMID: 1400246 PMCID: PMC207376 DOI: 10.1128/jb.174.21.6965-6973.1992] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In Salmonella typhimurium, dnaQ null mutants (encoding the epsilon editing subunit of DNA polymerase III [Pol III]) exhibit a severe growth defect when the genetic background is otherwise wild type. Suppression of the growth defect requires both a mutation affecting the alpha (polymerase) subunit of DNA polymerase III and adequate levels of DNA polymerase I. In the present paper, we report on studies that clarify the nature of the physiological defect imposed by the loss of epsilon and the mechanism of its suppression. Unsuppressed dnaQ mutants exhibited chronic SOS induction, indicating exposure of single-stranded DNA in vivo, most likely as gaps in double-stranded DNA. Suppression of the growth defect was associated with suppression of SOS induction. Thus, Pol I and the mutant Pol III combined to reduce the formation of single-stranded DNA or accelerate its maturation to double-stranded DNA. Studies with mutants in major DNA repair pathways supported the view that the defect in DNA metabolism in dnaQ mutants was at the level of DNA replication rather than of repair. The requirement for Pol I was satisfied by alleles of the gene for Pol I encoding polymerase activity or by rat DNA polymerase beta (which exhibits polymerase activity only). Consequently, normal growth is restored to dnaQ mutants when sufficient polymerase activity is provided and this compensatory polymerase activity can function independently of Pol III. The high level of Pol I polymerase activity may be required to satisfy the increased demand for residual DNA synthesis at regions of single-stranded DNA generated by epsilon-minus pol III. The emphasis on adequate polymerase activity in dnaQ mutants is also observed in the purified alpha subunit containing the suppressor mutation, which exhibits a modestly elevated intrinsic polymerase activity relative to that of wild-type alpha.
Collapse
Affiliation(s)
- M R Lifsics
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4960
| | | | | |
Collapse
|
45
|
Maki H, Sekiguchi M. MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 1992; 355:273-5. [PMID: 1309939 DOI: 10.1038/355273a0] [Citation(s) in RCA: 696] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Errors in the replication of DNA are a major source of spontaneous mutations, and a number of cellular functions are involved in correction of these errors to keep the frequency of spontaneous mutations very low. We report here a novel mechanism which prevents replicational errors by degrading a potent mutagenic substrate for DNA synthesis. This error-avoiding process is catalysed by a protein encoded by the mutT gene of Escherichia coli, mutations of which increase the occurrence of A.T----C.G transversions 100 to 10,000 times the level of the wild type. Spontaneous oxidation of dGTP forms 8-oxo-7,8-dihydro-2'-dGTP (8-oxodGTP), which is inserted opposite dA and dC residues of template DNA with almost equal efficiency, and the MutT protein specifically degrades 8-oxodGTP to the monophosphate. This indicates that elimination from the nucleotide pool of the oxidized form of guanine nucleotide is important for the high fidelity of DNA synthesis.
Collapse
Affiliation(s)
- H Maki
- Department of Biochemistry, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
46
|
Specificity and enzymatic mechanism of the editing exonuclease of Escherichia coli DNA polymerase III. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)89533-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
A strong mutator effect caused by an amino acid change in the alpha subunit of DNA polymerase III of Escherichia coli. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67755-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
|
49
|
Affiliation(s)
- H Echols
- Department of Molecular and Cell Biology, University of California, Berkeley
| | | |
Collapse
|
50
|
Yatagai F, Glickman BW. Specificity of spontaneous mutation in the lacI gene cloned into bacteriophage M13. Mutat Res 1990; 243:21-8. [PMID: 2300081 DOI: 10.1016/0165-7992(90)90118-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have studied the specificity of spontaneous mutation in the lacI gene of Escherichia coli cloned into bacteriophage M13. The comparison of the spectrum of 85 spontaneous mutations with that of the lacI gene carried on an E. coli F' episone revealed the following characteristics: (i) base substitution was predominant, accounting for 80% of spontaneous events compared with only 11% on the F' episome; (ii) among the base substitutions, the majority were G:C----A:T transitions (86%); (iii) not one mutation recovered on M13 corresponded to a mutation at the spontaneous hotspots seen in the F' spectrum (i.e., neither the addition or deletion of the tetramer 5'-CTGG-3' at position 620-631 nor the A:T----G:C transition at position +6 of lacO were recovered). The enhanced rate of cytosine deamination in single-stranded DNA, the unique replication mechanism and the refractory nature of single-stranded DNA to excision-repair processes present likely explanations for the observed mutational spectrum.
Collapse
Affiliation(s)
- F Yatagai
- Radiation Biology Laboratory, Institute of Physical and Chemical Research, Saitama, Japan
| | | |
Collapse
|