1
|
Wong CE, Chang Y, Chen PW, Huang YT, Chang YC, Chiang CH, Wang LC, Lee PH, Huang CC, Hsu HJ, Lee JS. Dendritic cell vaccine for glioblastoma: an updated meta-analysis and trial sequential analysis. J Neurooncol 2024; 170:253-263. [PMID: 39167243 DOI: 10.1007/s11060-024-04798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Dendritic cell (DC) vaccine is an emerging immunotherapy that could potentially improve glioblastoma survival. The first phase III clinical trial of DC vaccine was recently published. This meta-analysis aims to update and reappraise existing evidence on the efficacy of DC vaccine in patients with glioblastoma. METHODS We searched PubMed, Embase, and Cochrane Library for clinical trials of DC vaccine for glioblastoma. The quality of the studies was assessed using the RoB 2.0 and ROBINS-I tools. The results of overall survival (OS) and progression-free survival (PFS) were pooled using hazard ratios (HRs) with corresponding 95% confidence intervals (CI). Summary effects were evaluated using random effects models. Trial sequential analysis (TSA) was performed. RESULTS Seven clinical trials involving 3,619 patients were included. DC vaccine plus standard care was associated with significantly improved OS (HR = 0.71; 95% CI, 0.57 - 0.88) and PFS (HR = 0.65; 95% CI, 0.43 - 0.98). In the subgroup of newly diagnosed glioblastoma, DC vaccine was associated with improved PFS (HR = 0.59; 95% CI, 0.39 - 0.90). TSA of OS showed that the cumulative z-score line for the DC vaccine crossed the benefit boundary and reached the required sample size. TSA of PFS and subgroup analysis of newly diagnosed glioblastoma showed that the required sample size was not reached. CONCLUSIONS This updated meta-analysis, which included the first phase III trial of a DC vaccine for glioblastoma, demonstrated that the DC vaccine was associated with improved OS. Moreover, TSA showed that the required sample size was reached, indicating a true-positive result. Future studies are required for patient subgroups with newly diagnosed and recurrent glioblastoma.
Collapse
Affiliation(s)
- Chia-En Wong
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yu Chang
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Wen Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Ta Huang
- Surgical Intensive Care Unit, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Cheng Chang
- Department of Medicine, Danbury Hospital, Danbury, CT, USA
| | - Cho-Han Chiang
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Liang-Chao Wang
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Po-Hsuan Lee
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chen Huang
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Heng-Juei Hsu
- Department of Neurosurgery, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), No. 670, Chongde Road, Tainan, 701, Taiwan.
| | - Jung-Shun Lee
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Neurosurgery, Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan.
| |
Collapse
|
2
|
Huang L, Zhan J, Li Y, Huang K, Zhu X, Li J. The roles of extracellular vesicles in gliomas: Challenge or opportunity? Life Sci 2024; 358:123150. [PMID: 39471898 DOI: 10.1016/j.lfs.2024.123150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/07/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Gliomas are increasingly becoming a major disease affecting human health, and current treatments are not as effective as expected. Deeper insights into glioma heterogeneity and the search for new diagnostic and therapeutic strategies appear to be urgent. Gliomas adapt to their surroundings and form a supportive tumor microenvironment (TME). Glioma cells will communicate with the surrounding cells through extracellular vesicles (EVs) carrying bioactive substances such as nucleic acids, proteins and lipids which is related to the modification to various metabolic pathways and regulation of biological behaviors, and this regulation can be bidirectional, widely existing between cells in the TME, constituting a complex network of interactions. This complex regulation can affect glioma therapy, leading to different types of resistance. Because of the feasibility of EVs isolation in various body fluids, they have a promising usage in the diagnosis and monitoring of gliomas. At the same time, the nature of EVs to cross the blood-brain barrier (BBB) confers potential for their use as drug delivery systems. In this review, we will focus on the roles and functions of EVs derived from different cellular origins in the glioma microenvironment and the intercellular regulatory networks, and explore possible clinical applications in glioma diagnosis and precision therapy.
Collapse
Affiliation(s)
- Le Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jianhao Zhan
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yao Li
- The 1st affiiated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Kai Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China.
| | - Xingen Zhu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The 2nd Affiliated Hospital, Jiangxi Medical University, Nanchang University, Nanchang, PR China.
| |
Collapse
|
3
|
Rodriguez SMB, Tataranu LG, Kamel A, Turliuc S, Rizea RE, Dricu A. Glioblastoma and Immune Checkpoint Inhibitors: A Glance at Available Treatment Options and Future Directions. Int J Mol Sci 2024; 25:10765. [PMID: 39409094 PMCID: PMC11477435 DOI: 10.3390/ijms251910765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma is known to be one of the most aggressive and fatal human cancers, with a poor prognosis and resistance to standard treatments. In the last few years, many solid tumor treatments have been revolutionized with the help of immunotherapy. However, this type of treatment has failed to improve the results in glioblastoma patients. Effective immunotherapeutic strategies may be developed after understanding how glioblastoma achieves tumor-mediated immune suppression in both local and systemic landscapes. Biomarkers may help identify patients most likely to benefit from this type of treatment. In this review, we discuss the use of immunotherapy in glioblastoma, with an emphasis on immune checkpoint inhibitors and the factors that influence clinical response. A Pubmed data search was performed for all existing information regarding immune checkpoint inhibitors used for the treatment of glioblastoma. All data evaluating the ongoing clinical trials involving the use of ICIs either as monotherapy or in combination with other drugs was compiled and analyzed.
Collapse
Affiliation(s)
- Silvia Mara Baez Rodriguez
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
- Neurosurgical Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania
| | - Amira Kamel
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy “G. T. Popa”, 700115 Iasi, Romania;
| | - Radu Eugen Rizea
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
- Neurosurgical Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania
| | - Anica Dricu
- Biochemistry Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania;
| |
Collapse
|
4
|
Luo S, Wang J, Gao M. Sodium alginate hydrogel encapsulating microglia cell lysate subjected to serum starvation for mitigating glioma cells. J Biomater Appl 2024; 39:396-405. [PMID: 39075851 DOI: 10.1177/08853282241268694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Glioma is the most common malignant tumor in the brain, accounting for over 80% of all primary intracranial tumors. The current clinical treatment has shown certain limitations. Although M1 type microglia can secrete various pro-inflammatory cytokines and are expected to be used for glioma treatment, direct use of microglia may lead to overactivation and trigger immune storms. Therefore, we first found that serum starvation can stimulate the transformation of microglia into M1 type. Subsequently, we found through comparative experiments that the inhibitory effect of microglial cell lysis medium on glioma cells was stronger than that of microglial cell culture medium. Finally, we successfully prepared sodium alginate hydrogel loaded with microglia lysis solution to achieve sustained inhibitory effect on the growth of glioma and avoid its proliferation.
Collapse
Affiliation(s)
- Shenzhong Luo
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Jilong Wang
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Meng Gao
- Department of Gastroenterology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Hu G, Tian B, Han S, Wang S, Hacker M, Li X, Bai X. Prognostic evaluation in recurrent glioma through 11C-Choline PET/CT imaging. EJNMMI Res 2024; 14:84. [PMID: 39266803 PMCID: PMC11393258 DOI: 10.1186/s13550-024-01146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
Affiliation(s)
- Geng Hu
- Department of Nuclear Medicine, The Affliated Hospital of Inner Mongolia Medical University, #1 Tongdao North Street.Huimin District, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Bin Tian
- Department of Nuclear Medicine, The Affliated Hospital of Inner Mongolia Medical University, #1 Tongdao North Street.Huimin District, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Shaoli Han
- Evomics Medical Technology Co., Ltd, Shanghai, China
| | - Shiwei Wang
- Evomics Medical Technology Co., Ltd, Shanghai, China
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Xiang Li
- Department of Nuclear Medicine, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic, Capital Medical University, Tumor Research Institute, Beijing, China.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Vienna General Hospital, Medical University of Vienna, Vienna, Austria.
| | - Xia Bai
- Department of Nuclear Medicine, The Affliated Hospital of Inner Mongolia Medical University, #1 Tongdao North Street.Huimin District, Hohhot, 010050, Inner Mongolia, People's Republic of China.
| |
Collapse
|
6
|
Benn KW, Yuan PH, Chong HK, Stylii SS, Luwor RB, French CR. hERG channel agonist NS1643 strongly inhibits invasive astrocytoma cell line SMA-560. PLoS One 2024; 19:e0309438. [PMID: 39240809 PMCID: PMC11379238 DOI: 10.1371/journal.pone.0309438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 09/08/2024] Open
Abstract
Gliomas are highly malignant brain tumours that remain refractory to treatment. Treatment is typically surgical intervention followed by concomitant temozolomide and radiotherapy; however patient prognosis remains poor. Voltage gated ion channels have emerged as novel targets in cancer therapy and inhibition of a potassium selective subtype (hERG, Kv11.1) has demonstrated antitumour activity. Unfortunately blockade of hERG has been limited by cardiotoxicity, however hERG channel agonists have produced similar chemotherapeutic benefit without significant side effects. In this study, electrophysiological recordings suggest the presence of hERG channels in the anaplastic astrocytoma cell line SMA-560, and treatment with the hERG channel agonist NS1643, resulted in a significant reduction in the proliferation of SMA-560 cells. In addition, NS1643 treatment also resulted in a reduction of the secretion of matrix metalloproteinase-9 and SMA-560 cell migration. When combined with temozolomide, an additive impact was observed, suggesting that NS1643 may be a suitable adjuvant to temozolomide and limit the invasiveness of glioma.
Collapse
Affiliation(s)
- Kieran W Benn
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick H Yuan
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Harvey K Chong
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Stanley S Stylii
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosurgery, Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia
| | - Rodney B Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher R French
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Zhong W, Mao J, Wu D, Peng J, Ye W. The efficacy of stereotactic radiotherapy followed by bevacizumab and temozolomide in the treatment of recurrent glioblastoma: a case report. Front Pharmacol 2024; 15:1401000. [PMID: 39295944 PMCID: PMC11408163 DOI: 10.3389/fphar.2024.1401000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor among adults. Despite advancements in multimodality therapy for GBM, the overall prognosis remains poor, with an extremely high risk of recurrence. Currently, there is no established consensus on the optimal treatment option for recurrent GBM, which may include reoperation, reirradiation, chemotherapy, or a combination of the above. Bevacizumab is considered a first-line treatment option for recurrent GBM, as is temozolomide. However, in recurrent GBM, it is necessary to balance the risks and benefits of reirradiation in combination with bevacizumab and temozolomide. Herein, we report the case of a patient with recurrent GBM after standard treatment who benefited from stereotactic radiotherapy followed by bevacizumab and temozolomide maintenance therapy. Following 16 months of concurrent chemoradiotherapy (CCRT), the patient was diagnosed with recurrent GBM by a 3-T contrast-enhanced magnetic resonance imaging (MRI). The addition of localized radiotherapy to the ongoing treatment regimen of bevacizumab, in combination with temozolomide therapy, prolonged the patient's disease-free survival to over 2 years, achieving a significant long-term outcome, with no notable adverse effects observed. This clinical case may provide a promising new option for patients with recurrent GBM.
Collapse
Affiliation(s)
- Wangyan Zhong
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Jiwei Mao
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Dongping Wu
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Jianghua Peng
- Department of General Practice, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Wanli Ye
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
8
|
Lee Y, Lee E, Roh TH, Kim SH. Bevacizumab Alone Versus Bevacizumab Plus Irinotecan in Patients With Recurrent Glioblastoma: A Nationwide Population-Based Study. J Korean Med Sci 2024; 39:e244. [PMID: 39228184 PMCID: PMC11372412 DOI: 10.3346/jkms.2024.39.e244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/10/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND For treating recurrent glioblastoma, for which there is no established treatment, the antiangiogenic antibody, bevacizumab, is used alone or with irinotecan. This study was aimed at comparing the survival of patients with recurrent glioblastoma receiving bevacizumab monotherapy and those receiving bevacizumab plus irinotecan combination therapy (B+I) by using a nationwide population-based dataset. METHODS Patients matching the International Classification of Diseases code C71.x were screened from the Health Insurance Review and Assessment Service database. From January 2008 to November 2021, patients who underwent surgery or biopsy and subsequent standard concurrent chemoradiation with temozolomide were included. Among them, those who received bevacizumab monotherapy or B+I were selected. Demographic characteristics, inpatient stay, prescription frequency, survival outcomes, and steroid prescription duration were compared between these two groups. RESULTS Eight hundred and forty-six patients who underwent surgery or biopsy and received concurrent chemoradiotherapy with temozolomide were included. Of these, 450 and 396 received bevacizumab monotherapy and B+I, respectively. The corresponding median overall survival from the initial surgery was 22.60 months (95% confidence interval [CI], 20.50-24.21) and 20.44 months (95% CI, 18.55-22.60; P = 0.508, log-rank test). The B+I group had significantly more bevacizumab prescriptions (median 5 times; BEV group: median 3 times). Cox analysis, based on the postsurgery period, revealed that male sex (hazard ratio [HR], 1.28; P = 0.002), older age (HR, 1.01; P = 0.042), and undergoing biopsy instead of surgery (HR, 1.79; P < 0.0001) were significantly associated with decreased survival. Fewer radiotherapy cycles correlated with improved survival outcomes (HR, 0.63; P = 0.001). Cox analysis, conducted from the start of chemotherapy including bevacizumab, showed that male sex was the only variable significantly associated with decreased survival (HR, 1.18; P = 0.044). CONCLUSION We found no significant difference in overall survival between the bevacizumab monotherapy and B+I groups. Considering the additional potential toxicity associated with irinotecan, bevacizumab monotherapy could be a suitable treatment option for treating recurrent glioblastoma.
Collapse
Affiliation(s)
- Yeonhu Lee
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, Korea
| | - Eunyoung Lee
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Tae Hoon Roh
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, Korea.
| | - Se-Hyuk Kim
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
9
|
Lee J, Lathia JD. Skull bones harbour immune cells that are poised to target brain tumours. Nature 2024; 633:528-529. [PMID: 39227751 DOI: 10.1038/d41586-024-02789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
|
10
|
Kim D, Lee JH, Kim N, Lim DH, Song JH, Suh CO, Wee CW, Kim IA. Optimizing Recurrent Glioblastoma Salvage Treatment: A Multicenter Study Integrating Genetic Biomarkers From the Korean Radiation Oncology Group (21-02). Neurosurgery 2024; 95:584-595. [PMID: 38511935 DOI: 10.1227/neu.0000000000002903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/13/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Few studies have used real-world patient data to compare overall treatment patterns and survival outcomes for recurrent glioblastoma (rGBM). This study aimed to evaluate postprogression survival (PPS) according to the treatment strategy for rGBM by incorporating biomarker analysis. METHODS We assessed 468 adult patients with rGBM who underwent standard temozolomide-based chemoradiation. The impact of predictors on PPS was evaluated in patients with isocitrate dehydrogenase wild-type rGBM (n = 439) using survival probability analysis. We identified patients who would benefit from reirradiation (re-RT) during the first progression. RESULTS Median PPS was 3.4, 13.8, 6.6, and 10.0 months in the best supportive care (n = 82), surgery (with/without adjuvant therapy, n = 112), chemotherapy alone (n = 170), and re-RT (with/without chemotherapy, n = 75) groups, respectively. After propensity score matching analysis of the cohort, both the surgery and re-RT groups had a significantly better PPS than the chemotherapy-only group; however, no significant difference was observed in PPS between the surgery and re-RT groups. In the surgery subgroup, surgery with chemotherapy ( P = .024) and surgery with radio(chemo)therapy ( P = .039) showed significantly improved PPS compared with surgery alone. In the no-surgery subgroup, radio(chemo)therapy showed significantly improved PPS compared with chemotherapy alone ( P = .047). Homozygous deletion of cyclin-dependent kinase inhibitor 2A/B, along with other clinical factors (performance score and progression-free interval), was significantly associated with the re-RT survival benefit. CONCLUSION Surgery combined with radio(chemo)therapy resulted in the best survival outcomes for rGBM. re-RT should also be considered for patients with rGBM at first recurrence. Furthermore, this study identified a specific genetic biomarker and clinical factors that may enhance the survival benefit of re-RT.
Collapse
Affiliation(s)
- Dowook Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul , Korea
- Department of Radiation Oncology, Chungnam National University Hospital, Daejeon , Korea
| | - Joo Ho Lee
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul , Korea
- Department of Radiation Oncology, Seoul National University Hospital, Seoul , Korea
| | - Nalee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul , Korea
| | - Do Hoon Lim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul , Korea
| | - Jin Ho Song
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University, Seoul , Korea
| | - Chang-Ok Suh
- Department of Radiation Oncology, Bundang CHA Medical Center, CHA University, Seongnam , Korea
| | - Chan Woo Wee
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul , Korea
| | - In Ah Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul , Korea
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam , Korea
| |
Collapse
|
11
|
Shehaj A, Khristov V, Mareboina M, Tufano E, Abdeen A, Rizk E, Connor J. Genetic Biomarkers in Astrocytoma: Diagnostic, Prognostic, and Therapeutic Potential. World Neurosurg 2024; 189:339-350.e1. [PMID: 38857866 DOI: 10.1016/j.wneu.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Astrocytoma is the most common adult brain tumor, with glioblastoma being the deadliest neuro-related malignancy. Despite advances in oncology, the prognosis for astrocytoma, especially glioblastoma, remains poor, and tracking disease progression is challenging due to a lack of robust biomarkers. Genetic biomarkers, including microRNAs, cell-free DNA, circulating tumor DNA, circular RNA, and long noncoding RNA, can serve as potential diagnostic and therapeutic targets. In this review, we examine the existing literature, analyzing the various less established liquid and tumor genetic biomarkers and their potential to act as diagnostic, prognostic, and therapeutic targets. We highlight the clinical challenges and limitations in implementing liquid biopsy strategies in clinical practice. The article discusses the potential of liquid biopsies as valuable tools for personalized astrocytoma management while emphasizing the need for standardized protocols and further advancements to establish their clinical utility and therapeutic application.
Collapse
Affiliation(s)
- Andrea Shehaj
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA.
| | - Vladimir Khristov
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - Manvita Mareboina
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - Emily Tufano
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - Ahmed Abdeen
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - Elias Rizk
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - James Connor
- Department of Neurosurgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
12
|
Moltoni G, Romano A, Capriotti G, Campagna G, Ascolese AM, Romano A, Dellepiane F, Minniti G, Signore A, Bozzao A. ASL, DSC, DCE perfusion MRI and 18F-DOPA PET/CT in differentiating glioma recurrence from post-treatment changes. LA RADIOLOGIA MEDICA 2024; 129:1382-1393. [PMID: 39117936 PMCID: PMC11379733 DOI: 10.1007/s11547-024-01862-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES To discriminate between post-treatment changes and tumor recurrence in patients affected by glioma undergoing surgery and chemoradiation with a new enhancing lesion is challenging. We aimed to evaluate the role of ASL, DSC, DCE perfusion MRI, and 18F-DOPA PET/CT in distinguishing tumor recurrence from post-treatment changes in patients with glioma. MATERIALS AND METHODS We prospectively enrolled patients with treated glioma (surgery plus chemoradiation) and a new enhancing lesion doubtful for recurrence or post-treatment changes. Each patient underwent a 1.5T MRI examination, including ASL, DSC, and DCE PWI, and an 18F-DOPA PET/CT examination. For each lesion, we measured ASL-derived CBF and normalized CBF, DSC-derived rCBV, DCE-derived Ktrans, Vp, Ve, Kep, and PET/CT-derived SUV maximum. Clinical and radiological follow-up determined the diagnosis of tumor recurrence or post-treatment changes. RESULTS We evaluated 29 lesions (5 low-grade gliomas and 24 high-grade gliomas); 14 were malignancies, and 15 were post-treatment changes. CBF ASL, nCBF ASL, rCBV DSC, and PET SUVmax were associated with tumor recurrence from post-treatment changes in patients with glioma through an univariable logistic regression. Whereas the multivariable logistic regression results showed only nCBF ASL (p = 0.008) was associated with tumor recurrence from post-treatment changes in patients with glioma with OR = 22.85, CI95%: (2.28-228.77). CONCLUSION In our study, ASL was the best technique, among the other two MRI PWI and the 18F-DOPA PET/CT PET, in distinguishing disease recurrence from post-treatment changes in treated glioma.
Collapse
Affiliation(s)
- Giulia Moltoni
- NESMOS, Department of Neuroradiology, S. Andrea Hospital, University Sapienza, Via di Grottarossa 1035/1039, 00189, Rome, Italy.
| | - Andrea Romano
- NESMOS, Department of Neuroradiology, S. Andrea Hospital, University Sapienza, Via di Grottarossa 1035/1039, 00189, Rome, Italy
| | - Gabriela Capriotti
- Department of Medical-Surgical Sciences and Translational Medicine, University of Rome "Sapienza", Rome, Italy
| | - Giuseppe Campagna
- Department of Medical-Surgical Sciences and Translational Medicine, University of Rome "Sapienza", Rome, Italy
| | - Anna Maria Ascolese
- SMCMT Department, Radiotherapy Oncology, S. Andrea Hospital, University Sapienza, Rome, Italy
| | - Allegra Romano
- NESMOS, Department of Neuroradiology, S. Andrea Hospital, University Sapienza, Via di Grottarossa 1035/1039, 00189, Rome, Italy
| | - Francesco Dellepiane
- NESMOS, Department of Neuroradiology, S. Andrea Hospital, University Sapienza, Via di Grottarossa 1035/1039, 00189, Rome, Italy
| | - Giuseppe Minniti
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, 00138, Rome, Italy
- IRCCS Neuromed, 86077, Pozzilli, Italy
| | - Alberto Signore
- Department of Medical-Surgical Sciences and Translational Medicine, University of Rome "Sapienza", Rome, Italy
| | - Alessandro Bozzao
- NESMOS, Department of Neuroradiology, S. Andrea Hospital, University Sapienza, Via di Grottarossa 1035/1039, 00189, Rome, Italy
| |
Collapse
|
13
|
Yadav P, Vengoji R, Jain M, Batra SK, Shonka N. Pathophysiological role of histamine signaling and its implications in glioblastoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189146. [PMID: 38955315 DOI: 10.1016/j.bbcan.2024.189146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Glioblastoma (GBM), an extremely aggressive and prevalent malignant brain tumor, remains a challenge to treat. Despite a multimodality treatment approach, GBM recurrence remains inevitable, particularly with the emergence of temozolomide (TMZ) resistance and limited treatment options. Surprisingly, previous studies show that a history of allergies, atopy, or asthma is inversely associated with GBM risk. Further, the electronic medical record at the University Hospital of Lausanne showed that the GBM patients taking antihistamine during treatment had better survival. Histamine is an essential neurotransmitter in the brain and plays a significant role in regulating sleep, hormonal balance, and cognitive functions. Elevated levels of histamine and increased histamine receptor expression have been found in different tumors and their microenvironments, including GBM. High histamine 1 receptor (HRH1) expression is inversely related to overall and progression-free survival in GBM patients, further emphasizing the role of histamine in disease progression. This review aims to provide insights into the challenges of GBM treatment, the role of histamine in GBM progression, and the rationale for considering antihistamines as targeted therapy. The review concludes by encouraging further investigation into antihistamine mechanisms and their impact on the tumor microenvironment.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA.
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-6840, USA.
| |
Collapse
|
14
|
Park S, Kim KH, Bae YH, Oh YT, Shin H, Kwon HJ, Kim CI, Kim SS, Choi HG, Park JB, Lee BD. Suppression of Glioblastoma Stem Cell Potency and Tumor Growth via LRRK2 Inhibition. Int J Stem Cells 2024; 17:319-329. [PMID: 38584542 PMCID: PMC11361845 DOI: 10.15283/ijsc24032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2), a large GTP-regulated serine/threonine kinase, is well-known for its mutations causing late-onset Parkinson's disease. However, the role of LRRK2 in glioblastoma (GBM) carcinogenesis has not yet been fully elucidated. Here, we discovered that LRRK2 was overexpressed in 40% of GBM patients, according to tissue microarray analysis, and high LRRK2 expression correlated with poor prognosis in GBM patients. LRRK2 and stemness factors were highly expressed in various patient-derived GBM stem cells, which are responsible for GBM initiation. Canonical serum-induced differentiation decreased the expression of both LRRK2 and stemness factors. Given that LRRK2 is a key regulator of glioma stem cell (GSC) stemness, we developed DNK72, a novel LRRK2 kinase inhibitor that penetrates the blood-brain barrier. DNK72 binds to the phosphorylation sites of active LRRK2 and dramatically reduced cell proliferation and stemness factors expression in in vitro studies. Orthotopic patient-derived xenograft mouse models demonstrated that LRRK2 inhibition with DNK72 effectively reduced tumor growth and increased survival time. We propose that LRRK2 plays a significant role in regulating the stemness of GSCs and that suppression of LRRK2 kinase activity leads to reduced GBM malignancy and proliferation. In the near future, targeting LRRK2 in patients with high LRRK2-expressing GBM could offer a superior therapeutic strategy and potentially replace current clinical treatment methods.
Collapse
Affiliation(s)
- Saewhan Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Kyung-Hee Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Proteomics Core Facility, Research Core Center, Research Institute, National Cancer Center, Goyang, Korea
| | - Yun-Hee Bae
- Department of Neuroscience, Kyung Hee University, Seoul, Korea
| | - Young Taek Oh
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hyemi Shin
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hyung Joon Kwon
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Chan Il Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Sung Soo Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hwan-Geun Choi
- Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), Daegu, Korea
| | - Jong Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Department of Clinical Research, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Byoung Dae Lee
- Department of Neuroscience, Kyung Hee University, Seoul, Korea
- Department of Physiology, Kyung Hee University School of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Pan J, Eskandar T, Ahmed Z, Agrawal DK. Biophysical and Biological Mechanisms of Tumor Treating Fields in Glioblastoma. JOURNAL OF CANCER SCIENCE AND CLINICAL THERAPEUTICS 2024; 8:265-270. [PMID: 39364266 PMCID: PMC11448370 DOI: 10.26502/jcsct.5079249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Glioblastoma (GBM) is one of the most aggressive forms of brain cancer that presents with a median survival rate of 14-30 months and along with a discouraging five-year survival rate of 4-5%. Standard treatment of newly diagnosed GBM, also known as the Stupp protocol, includes a maximally safe surgical resection followed by radiation and chemotherapy. Despite these treatment regimens, recurrence is almost inevitable, emphasizing the need for new therapies to combat the aggressive nature of GBMs. Tumor Treating Fields (TTFs) are a relatively new application to the treatment of GBMs, and results have been promising with both progression-free survival and overall survival when TTFs have been used in combination with temozolomide. This article critically reviews the biophysical and biological mechanisms of TTFs, their clinical efficacy, and discusses the results in clinical trials, including EF-11 and EF-14. Both trials have demonstrated that TTFs can enhance progression free survival and overall survival without compromising quality of life or causing severe adverse effects. Despite the high cost associated with TTFs and the need for further analysis to determine the most effective ways to integrate TTFs into GBM treatments, TTFs represent a significant advancement in GBM therapy and offer hope for improved patient prognosis.
Collapse
Affiliation(s)
- Jeremy Pan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Tony Eskandar
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Zubair Ahmed
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| |
Collapse
|
16
|
Guo G, Zhang Z, Zhang J, Wang D, Xu S, Liu G, Gao Y, Mei J, Yan Z, Zhao R, Wang M, Li T, Bu X. Predicting recurrent glioblastoma clinical outcome to immune checkpoint inhibition and low-dose bevacizumab with tumor in situ fluid circulating tumor DNA analysis. Cancer Immunol Immunother 2024; 73:193. [PMID: 39105794 PMCID: PMC11303371 DOI: 10.1007/s00262-024-03774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVE Most recurrent glioblastoma (rGBM) patients do not benefit from immune checkpoint inhibition, emphasizing the necessity for response biomarkers. This study evaluates whether tumor in situ fluid (TISF) circulating tumor DNA (ctDNA) could serve as a biomarker for response to low-dose bevacizumab (Bev) plus anti-PD-1 therapy in rGBM patients, aiming to enhance systemic responses to immunotherapy. METHODS In this phase II trial, 32 GBM patients with first recurrence after standard therapy were enrolled and then received tislelizumab plus low-dose Bev each cycle. TISF samples were analyzed for ctDNA using a 551-gene panel before each treatment. RESULTS The median progression-free survival (mPFS) and overall survival (mOS) were 8.2 months (95% CI, 5.2-11.1) and 14.3 months (95% CI, 6.5-22.1), respectively. The 12-month OS was 43.8%, and the objective response rate was 56.3%. Patients with more than 20% reduction in the mutant allele fraction and tumor mutational burden after treatment were significantly associated with better prognosis compared to baseline TISF-ctDNA. Among detectable gene mutations, patients with MUC16 mutation, EGFR mutation & amplification, SRSF2 amplification, and H3F3B amplification were significantly associated with worse prognosis. CONCLUSIONS Low-dose Bev plus anti-PD-1 therapy significantly improves OS in rGBM patients, offering guiding significance for future individualized treatment strategies. TISF-ctDNA can monitor rGBM patients' response to combination therapy and guide treatment. CLINICAL TRIAL REGISTRATION This trial is registered with ClinicalTrials.gov, NCT05540275.
Collapse
Affiliation(s)
- Guangzhong Guo
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Ziyue Zhang
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Jiubing Zhang
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Dayang Wang
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Sensen Xu
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Guanzheng Liu
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yushuai Gao
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Jie Mei
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zhaoyue Yan
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Ruijiao Zhao
- Department of Pathology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Meiyun Wang
- Department of Radiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Tianxiao Li
- Henan Provincial Neurointerventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, China
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Xingyao Bu
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
17
|
Zhao X, Jakobsson V, Tao Y, Zhao T, Wang J, Khong PL, Chen X, Zhang J. Targeted Radionuclide Therapy in Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39042829 DOI: 10.1021/acsami.4c07850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Despite the development of various novel therapies, glioblastoma (GBM) remains a devastating disease, with a median survival of less than 15 months. Recently, targeted radionuclide therapy has shown significant progress in treating solid tumors, with the approval of Lutathera for neuroendocrine tumors and Pluvicto for prostate cancer by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA). This achievement has shed light on the potential of targeted radionuclide therapy for other solid tumors, including GBM. This review presents the current status of targeted radionuclide therapy in GBM, highlighting the commonly used therapeutic radionuclides emitting alpha, beta particles, and Auger electrons that could induce potent molecular and cellular damage to treat GBM. We then explore a range of targeting vectors, including small molecules, peptides, and antibodies, which selectively target antigen-expressing tumor cells with minimal or no binding to healthy tissues. Considering that radiopharmaceuticals for GBM are often administered locoregionally to bypass the blood-brain barrier (BBB), we review prominent delivery methods such as convection-enhanced delivery, local implantation, and stereotactic injections. Finally, we address the challenges of this therapeutic approach for GBM and propose potential solutions.
Collapse
Affiliation(s)
- Xiaobin Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yucen Tao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jingyan Wang
- Xiamen University, School of Public Health, Xiang'an South Road, Xiamen 361102, China
| | - Pek-Lan Khong
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Departments of Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
18
|
Cheng HS, Chong YK, Lim EKY, Lee XY, Pang QY, Novera W, Marvalim C, Lee JXT, Ang BT, Tang C, Tan NS. Dual p38MAPK and MEK inhibition disrupts adaptive chemoresistance in mesenchymal glioblastoma to temozolomide. Neuro Oncol 2024; 26:1247-1261. [PMID: 38366847 PMCID: PMC11226874 DOI: 10.1093/neuonc/noae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Precision treatment of glioblastoma is increasingly focused on molecular subtyping, with the mesenchymal subtype particularly resistant to temozolomide. Here, we aim to develop a targeted therapy for temozolomide resensitization in the mesenchymal subtype. METHODS We integrated kinomic profiles and kinase inhibitor screens from patient-derived proneural and mesenchymal glioma-propagating cells and public clinical datasets to identify key protein kinases implicated in temozolomide resistance. RNAseq, apoptosis assays, and comet assays were used to examine the role of p38MAPK signaling and adaptive chemoresistance in mesenchymal cells. The efficacy of dual p38MAPK and MEK/ERK inhibition using ralimetinib (selective orally active p38MAPK inhibitor; phase I/II for glioblastoma) and binimetinib (approved MEK1/2 inhibitor for melanoma; phase II for high-grade glioma) in primary and recurrent mesenchymal tumors was evaluated using an intracranial patient-derived tumor xenograft model, focusing on survival analysis. RESULTS Our transcriptomic-kinomic integrative analysis revealed p38MAPK as the prime target whose gene signature enables patient stratification based on their molecular subtypes and provides prognostic value. Repurposed p38MAPK inhibitors synergize favorably with temozolomide to promote intracellular retention of temozolomide and exacerbate DNA damage. Mesenchymal cells exhibit adaptive chemoresistance to p38MAPK inhibition through a pH-/calcium-mediated MEK/ERK pathway. Dual p38MAPK and MEK inhibition effectively maintain temozolomide sensitivity in primary and recurrent intracranial mesenchymal glioblastoma xenografts. CONCLUSIONS Temozolomide resistance in mesenchymal glioblastoma is associated with p38MAPK activation. Adaptive chemoresistance in p38MAPK-resistant cells is mediated by MEK/ERK signaling. Adjuvant therapy with dual p38MAPK and MEK inhibition prolongs temozolomide sensitivity, which can be developed into a precision therapy for the mesenchymal subtype.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Yuk Kien Chong
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Eldeen Kai Yi Lim
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Xin Yi Lee
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Qing You Pang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Wisna Novera
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Charlie Marvalim
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Jeannie Xue Ting Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Beng Ti Ang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Carol Tang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Kamaludin AI, Sibtain N, Ashkan K. Tumor regression following autologous tumor lysate-loaded dendritic cell vaccination immunotherapy: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2024; 8:CASE24112. [PMID: 38976918 DOI: 10.3171/case24112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Despite years of research, the standard of care (SOC) treatment for grade 4 glioma has remained virtually unchanged for the last 2 decades. Autologous tumor lysate-loaded dendritic cell vaccination (DCVax-L), a novel immunotherapy, has demonstrated a significant survival benefit in a phase 3 trial. OBSERVATIONS A 34-year-old male presented with episodes of lightheadedness and was subsequently diagnosed with a large fronto-insulo-temporal tumor, likely to be high grade. He underwent an asleep craniotomy for debulking, with a residual tumor noted in the frontal lobe and amygdala. Tumor histopathology was reported as isocitrate dehydrogenase (IDH) mutant methylated grade 4 astrocytoma. He received SOC treatment, alongside a course of DCVax-L. Surveillance imaging showed cystic transformation followed by a reduction in size of the residual tumor in the frontal lobe; the residual in the amygdala had regressed entirely. The patient remained clinically well and had returned to his preoperative functionality. LESSONS The authors report a patient with grade 4 astrocytoma who received DCVax-L treatment in addition to SOC adjuvant therapy. The pattern and extent of tumor regression are highly unusual and atypical for what is seen or expected with adjuvant SOC treatment alone. The addition of DCVax-L to SOC opens new avenues in the management of this difficult disease. https://thejns.org/doi/10.3171/CASE24112.
Collapse
Affiliation(s)
- Ahmad I Kamaludin
- Departments of Neurosurgery, King's College Hospital, London, United Kingdom
| | - Naomi Sibtain
- Departments of Neuroradiology, King's College Hospital, London, United Kingdom
| | - Keyoumars Ashkan
- Departments of Neurosurgery, King's College Hospital, London, United Kingdom
| |
Collapse
|
20
|
Gersey ZC, Plute T, Jaman E, Zhang X, Mitha R, Zinn PO, Pearce TM, Amankulor NM. Cerebrospinal Fluid Seeding Versus Inflammation in Setting of Ventriculoperitoneal Shunt as a Potential Cause for Distant Recurrence of Glioblastoma. Brain Tumor Res Treat 2024; 12:181-185. [PMID: 39109619 PMCID: PMC11306840 DOI: 10.14791/btrt.2024.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults with a median survival of approximately 15 months, despite treatment, with most patients experiencing recurrence within 9 months of resection. The propensity of recurrence in GBM exemplifies the fatal course of the disease and remains an underlying area of study as novel instances of recurrence are encountered. The authors present a unique case of a 31-year-old male patient with a history of cerebellomedullary junction astrocytoma who later developed a supratentorial GBM followed by recurrence centered around a preexisting ventriculoperitoneal catheter and located in the hemisphere contralateral to his first GBM. Each of these lesions was initially thought to represent de novo glial neoplasms because of the absence of intervening T2 fluid-attenuated inversion recovery signal change between each lesion. However, next-generation sequencing using the GlioSeq™ platform revealed similar mutational profiles in both GBMs, suggesting an alternative method of migration of tumor cells to the shunt catheter site, and a local inflammatory environment likely triggering recurrence. This study concludes that in rare instances, in the presence of dormant glioma cells, intracranial foreign bodies may promote an inflammatory microenvironment that may activate tumorigenesis.
Collapse
Affiliation(s)
- Zachary C Gersey
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tritan Plute
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Emade Jaman
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xiaoran Zhang
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Rida Mitha
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Pascal O Zinn
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Thomas M Pearce
- Division of Anatomic Pathology, Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nduka M Amankulor
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Ling Z, Pan J, Zhang Z, Chen G, Geng J, Lin Q, Zhang T, Cao S, Chen C, Lin J, Yuan H, Ding W, Xiao F, Xu X, Li F, Wang G, Zhang Y, Li J. Small-molecule Molephantin induces apoptosis and mitophagy flux blockage through ROS production in glioblastoma. Cancer Lett 2024; 592:216927. [PMID: 38697460 DOI: 10.1016/j.canlet.2024.216927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Glioblastoma (GBM), one of the most malignant brain tumors in the world, has limited treatment options and a dismal survival rate. Effective and safe disease-modifying drugs for glioblastoma are urgently needed. Here, we identified a small molecule, Molephantin (EM-5), effectively penetrated the blood-brain barrier (BBB) and demonstrated notable antitumor effects against GBM with good safety profiles both in vitro and in vivo. Mechanistically, EM-5 not only inhibits the proliferation and invasion of GBM cells but also induces cell apoptosis through the reactive oxygen species (ROS)-mediated PI3K/Akt/mTOR pathway. Furthermore, EM-5 causes mitochondrial dysfunction and blocks mitophagy flux by impeding the fusion of mitophagosomes with lysosomes. It is noteworthy that EM-5 does not interfere with the initiation of autophagosome formation or lysosomal function. Additionally, the mitophagy flux blockage caused by EM-5 was driven by the accumulation of intracellular ROS. In vivo, EM-5 exhibited significant efficacy in suppressing tumor growth in a xenograft model. Collectively, our findings not only identified EM-5 as a promising, effective, and safe lead compound for treating GBM but also uncovered its underlying mechanisms from the perspective of apoptosis and mitophagy.
Collapse
Affiliation(s)
- Zhipeng Ling
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China; Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Junping Pan
- Guangdong Second Provincial General Hospital, Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, China
| | - Zhongfei Zhang
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Guisi Chen
- Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Jiayuan Geng
- Department of Microbial and Biochemical Pharmacy, College of Pharmacy, Jinan University, Guangzhou, China
| | - Qiang Lin
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Tao Zhang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuqin Cao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Cheng Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jinrong Lin
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Hongyao Yuan
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Weilong Ding
- Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Fei Xiao
- Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Xinke Xu
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Fangcheng Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Guocai Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
| | - Yubo Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China; Department of Pharmacology, School of Medicine, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China.
| | - Junliang Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.
| |
Collapse
|
22
|
Sharapova G, Sabirova S, Gomzikova M, Brichkina A, Barlev NA, Kalacheva NV, Rizvanov A, Markov N, Simon HU. Mitochondrial Protein Density, Biomass, and Bioenergetics as Predictors for the Efficacy of Glioma Treatments. Int J Mol Sci 2024; 25:7038. [PMID: 39000148 PMCID: PMC11241254 DOI: 10.3390/ijms25137038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The metabolism of glioma cells exhibits significant heterogeneity and is partially responsible for treatment outcomes. Given this variability, we hypothesized that the effectiveness of treatments targeting various metabolic pathways depends on the bioenergetic profiles and mitochondrial status of glioma cells. To this end, we analyzed mitochondrial biomass, mitochondrial protein density, oxidative phosphorylation (OXPHOS), and glycolysis in a panel of eight glioma cell lines. Our findings revealed considerable variability: mitochondrial biomass varied by up to 3.2-fold, the density of mitochondrial proteins by up to 2.1-fold, and OXPHOS levels by up to 7.3-fold across the cell lines. Subsequently, we stratified glioma cell lines based on their mitochondrial status, OXPHOS, and bioenergetic fitness. Following this stratification, we utilized 16 compounds targeting key bioenergetic, mitochondrial, and related pathways to analyze the associations between induced changes in cell numbers, proliferation, and apoptosis with respect to their steady-state mitochondrial and bioenergetic metrics. Remarkably, a significant fraction of the treatments showed strong correlations with mitochondrial biomass and the density of mitochondrial proteins, suggesting that mitochondrial status may reflect glioma cell sensitivity to specific treatments. Overall, our results indicate that mitochondrial status and bioenergetics are linked to the efficacy of treatments targeting metabolic pathways in glioma.
Collapse
Affiliation(s)
- Gulnaz Sharapova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.S.); (S.S.); (M.G.); (A.B.); (N.A.B.)
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (N.V.K.); (A.R.)
| | - Sirina Sabirova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.S.); (S.S.); (M.G.); (A.B.); (N.A.B.)
- Laboratory of Intercellular Communication, Kazan Federal University, 420111 Kazan, Russia
| | - Marina Gomzikova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.S.); (S.S.); (M.G.); (A.B.); (N.A.B.)
- Laboratory of Intercellular Communication, Kazan Federal University, 420111 Kazan, Russia
| | - Anna Brichkina
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.S.); (S.S.); (M.G.); (A.B.); (N.A.B.)
- Institute of Systems Immunology, Center for Tumor Biology and Immunology, Philipps University of Marburg, 35043 Marburg, Germany
| | - Nick A Barlev
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.S.); (S.S.); (M.G.); (A.B.); (N.A.B.)
- Gene Expression Program, Institute of Cytology RAS, 194064 Saint-Petersburg, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Natalia V Kalacheva
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (N.V.K.); (A.R.)
| | - Albert Rizvanov
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (N.V.K.); (A.R.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
- I.K. Akhunbaev Kyrgyz State Medical Academy, Bishkek 720020, Kyrgyzstan
| | - Nikita Markov
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Hans-Uwe Simon
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.S.); (S.S.); (M.G.); (A.B.); (N.A.B.)
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, 16816 Neuruppin, Germany
| |
Collapse
|
23
|
Xing Z, Wang C, Yang W, She D, Yang X, Cao D. Predicting glioblastoma recurrence using multiparametric MR imaging of non-enhancing peritumoral regions at baseline. Heliyon 2024; 10:e30411. [PMID: 38711642 PMCID: PMC11070862 DOI: 10.1016/j.heliyon.2024.e30411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Background To assess the feasibility of multiparametric magnetic resonance imaging in predicting tumor recurrence in nonenhancing peritumoral regions in patients with glioblastoma at baseline. Methods Fifty-eight patients with recurrent glioblastoma underwent multiparametric magnetic resonance imaging, including T2-weighted fluid-attenuated inversion recovery, diffusion-weighted imaging, and dynamic susceptibility contrast perfusion-weighted imaging. Nonenhancing peritumoral regions with glioblastoma recurrence were identified by coregistering preoperative and post-recurrent magnetic resonance images. Regions of interest were placed in nonenhancing peritumoral regions with and without tumor recurrence to calculate the apparent diffusion coefficient value, and relative ratios of T2-weighted fluid-attenuated inversion recovery signal intensity, apparent diffusion coefficient, and cerebral blood volume values. Results Significant lower relative T2-weighted fluid-attenuated inversion recovery signal intensity, apparent diffusion coefficient, and relative apparent diffusion coefficient but higher relative cerebral blood volume values were found in the nonenhancing peritumoral regions with tumor recurrence than without recurrence (all P < 0.05). The threshold values ≥ 0.89 for relative cerebral blood volume provide the optimal performance for predicting the nonenhancing peritumoral regions with future tumor recurrence, with the sensitivity, specificity, and accuracy of 84.7%, 83.6%, and 85.8%, respectively. The combination of relative T2-weighted fluid-attenuated inversion recovery signal intensity, apparent diffusion coefficient, and relative cerebral blood volume can provide better predictive performance than relative cerebral blood volume (P = 0.015). Conclusion The combined use of T2-weighted fluid-attenuated inversion recovery, diffusion-weighted imaging, and dynamic susceptibility contrast perfusion-weighted imaging can effectively estimate the risk of future tumor recurrence at baseline.
Collapse
Affiliation(s)
- Zhen Xing
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Cong Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Wen Yang
- The Webb Schools, Claremont, CA, 91711, USA
| | - Dejun She
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Xiefeng Yang
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Dairong Cao
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Department of Radiology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| |
Collapse
|
24
|
Thompson E, Prior S, Brüning-Richardson A. Traditional Plant-Derived Compounds Inhibit Cell Migration and Induce Novel Cytoskeletal Effects in Glioblastoma Cells. J Xenobiot 2024; 14:613-633. [PMID: 38804289 PMCID: PMC11130960 DOI: 10.3390/jox14020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024] Open
Abstract
Glioblastomas (GBMs) are aggressive and invasive cancers of the brain, associated with high rates of tumour recurrence and poor patient outcomes despite initial treatment. Targeting cell migration is therefore of interest in highly invasive cancers such as GBMs, to prevent tumour dissemination and regrowth. One current aim of GBM research focuses on assessing the anti-migratory properties of novel or repurposed inhibitors, including plant-based drugs which display anti-cancer properties. We investigated the potential anti-migratory activity of plant-based products with known cytotoxic effects in cancers, using a range of two-dimensional (2D) and three-dimensional (3D) migration and invasion assays as well as immunofluorescence microscopy to determine the specific anti-migratory and phenotypic effects of three plant-derived compounds, Turmeric, Indigo and Magnolia bark, on established glioma cell lines. Migrastatic activity was observed in all three drugs, with Turmeric exerting the most inhibitory effect on GBM cell migration into scratches and from the spheroid edge at all the timepoints investigated (p < 0.001). We also observed novel cytoskeletal phenotypes affecting actin and the focal adhesion dynamics. As our in vitro results determined that Turmeric, Indigo and Magnolia are promising migrastatic drugs, we suggest additional experimentation at the whole organism level to further validate these novel findings.
Collapse
Affiliation(s)
| | - Sally Prior
- Correspondence: (S.P.); (A.B.-R.); Tel.: +44-01484-472518 (A.B.-R.)
| | | |
Collapse
|
25
|
Turkarslan S, He Y, Hothi P, Murie C, Nicolas A, Kannan K, Park JH, Pan M, Awawda A, Cole ZD, Shapiro MA, Stuhlmiller TJ, Lee H, Patel AP, Cobbs C, Baliga NS. An atlas of causal and mechanistic drivers of interpatient heterogeneity in glioma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.05.24305380. [PMID: 38633778 PMCID: PMC11023657 DOI: 10.1101/2024.04.05.24305380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Grade IV glioma, formerly known as glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor, and its treatment remains challenging in part due to extensive interpatient heterogeneity in disease driving mechanisms and lack of prognostic and predictive biomarkers. Using mechanistic inference of node-edge relationship (MINER), we have analyzed multiomics profiles from 516 patients and constructed an atlas of causal and mechanistic drivers of interpatient heterogeneity in GBM (gbmMINER). The atlas has delineated how 30 driver mutations act in a combinatorial scheme to causally influence a network of regulators (306 transcription factors and 73 miRNAs) of 179 transcriptional "programs", influencing disease progression in patients across 23 disease states. Through extensive testing on independent patient cohorts, we share evidence that a machine learning model trained on activity profiles of programs within gbmMINER significantly augments risk stratification, identifying patients who are super-responders to standard of care and those that would benefit from 2 nd line treatments. In addition to providing mechanistic hypotheses regarding disease prognosis, the activity of programs containing targets of 2 nd line treatments accurately predicted efficacy of 28 drugs in killing glioma stem-like cells from 43 patients. Our findings demonstrate that interpatient heterogeneity manifests from differential activities of transcriptional programs, providing actionable strategies for mechanistically characterizing GBM from a systems perspective and developing better prognostic and predictive biomarkers for personalized medicine.
Collapse
|
26
|
Salvato I, Marchini A. Immunotherapeutic Strategies for the Treatment of Glioblastoma: Current Challenges and Future Perspectives. Cancers (Basel) 2024; 16:1276. [PMID: 38610954 PMCID: PMC11010873 DOI: 10.3390/cancers16071276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Despite decades of research and the best up-to-date treatments, grade 4 Glioblastoma (GBM) remains uniformly fatal with a patient median overall survival of less than 2 years. Recent advances in immunotherapy have reignited interest in utilizing immunological approaches to fight cancer. However, current immunotherapies have so far not met the anticipated expectations, achieving modest results in their journey from bench to bedside for the treatment of GBM. Understanding the intrinsic features of GBM is of crucial importance for the development of effective antitumoral strategies to improve patient life expectancy and conditions. In this review, we provide a comprehensive overview of the distinctive characteristics of GBM that significantly influence current conventional therapies and immune-based approaches. Moreover, we present an overview of the immunotherapeutic strategies currently undergoing clinical evaluation for GBM treatment, with a specific emphasis on those advancing to phase 3 clinical studies. These encompass immune checkpoint inhibitors, adoptive T cell therapies, vaccination strategies (i.e., RNA-, DNA-, and peptide-based vaccines), and virus-based approaches. Finally, we explore novel innovative strategies and future prospects in the field of immunotherapy for GBM.
Collapse
Affiliation(s)
- Ilaria Salvato
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg;
- Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Kim KH, Migliozzi S, Koo H, Hong JH, Park SM, Kim S, Kwon HJ, Ha S, Garofano L, Oh YT, D'Angelo F, Kim CI, Kim S, Lee JY, Kim J, Hong J, Jang EH, Mathon B, Di Stefano AL, Bielle F, Laurenge A, Nesvizhskii AI, Hur EM, Yin J, Shi B, Kim Y, Moon KS, Kwon JT, Lee SH, Lee SH, Gwak HS, Lasorella A, Yoo H, Sanson M, Sa JK, Park CK, Nam DH, Iavarone A, Park JB. Integrated proteogenomic characterization of glioblastoma evolution. Cancer Cell 2024; 42:358-377.e8. [PMID: 38215747 PMCID: PMC10939876 DOI: 10.1016/j.ccell.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/11/2023] [Accepted: 12/14/2023] [Indexed: 01/14/2024]
Abstract
The evolutionary trajectory of glioblastoma (GBM) is a multifaceted biological process that extends beyond genetic alterations alone. Here, we perform an integrative proteogenomic analysis of 123 longitudinal glioblastoma pairs and identify a highly proliferative cellular state at diagnosis and replacement by activation of neuronal transition and synaptogenic pathways in recurrent tumors. Proteomic and phosphoproteomic analyses reveal that the molecular transition to neuronal state at recurrence is marked by post-translational activation of the wingless-related integration site (WNT)/ planar cell polarity (PCP) signaling pathway and BRAF protein kinase. Consistently, multi-omic analysis of patient-derived xenograft (PDX) models mirror similar patterns of evolutionary trajectory. Inhibition of B-raf proto-oncogene (BRAF) kinase impairs both neuronal transition and migration capability of recurrent tumor cells, phenotypic hallmarks of post-therapy progression. Combinatorial treatment of temozolomide (TMZ) with BRAF inhibitor, vemurafenib, significantly extends the survival of PDX models. This study provides comprehensive insights into the biological mechanisms of glioblastoma evolution and treatment resistance, highlighting promising therapeutic strategies for clinical intervention.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea; Proteomics Core Facility, Research Core Center, Research Institute, National Cancer Center, Goyang, Korea
| | - Simona Migliozzi
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Harim Koo
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea; Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jun-Hee Hong
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Seung Min Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Sooheon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hyung Joon Kwon
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Seokjun Ha
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Luciano Garofano
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Young Taek Oh
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fulvio D'Angelo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chan Il Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Seongsoo Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Ji Yoon Lee
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jiwon Kim
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jisoo Hong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Eun-Hae Jang
- Laboratory of Neuroscience, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Bertrand Mathon
- Service de Neurochirurgie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
| | - Anna-Luisa Di Stefano
- Institut de Neurologie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Equipe labellisée LNCC, Paris, France; Onconeurotek, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France; Department of Neurology, Foch Hospital, Suresnes, France
| | - Franck Bielle
- Institut de Neurologie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Equipe labellisée LNCC, Paris, France; Onconeurotek, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Alice Laurenge
- Institut de Neurologie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Equipe labellisée LNCC, Paris, France; Onconeurotek, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | | | - Eun-Mi Hur
- Laboratory of Neuroscience, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea; BK21 Four Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jinlong Yin
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Youngwook Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
| | - Jeong Taik Kwon
- Department of Neurosurgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Shin Heon Lee
- Department of Neurosurgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seung Hoon Lee
- Department of Neurosurgery, Eulji University School of Medicine, Daejeon, Korea
| | - Ho Shin Gwak
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Anna Lasorella
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Biochemistry, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Heon Yoo
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Marc Sanson
- Institut de Neurologie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Equipe labellisée LNCC, Paris, France; Onconeurotek, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France.
| | - Jason K Sa
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea.
| | - Chul-Kee Park
- Deparment of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.
| | - Do-Hyun Nam
- Department of Neurosurgery and Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Antonio Iavarone
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery and Department of Biochemistry, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Jong Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea; Department of Clinical Research, Research Institute and Hospital, National Cancer Center, Goyang, Korea.
| |
Collapse
|
28
|
Hudson EM, Noutch S, Webster J, Brown SR, Boele FW, Al-Salihi O, Baines H, Bulbeck H, Currie S, Fernandez S, Hughes J, Lilley J, Smith A, Parbutt C, Slevin F, Short S, Sebag-Montefiore D, Murray L. Brain Re-Irradiation Or Chemotherapy: a phase II randomised trial of re-irradiation and chemotherapy in patients with recurrent glioblastoma (BRIOChe) - protocol for a multi-centre open-label randomised trial. BMJ Open 2024; 14:e078926. [PMID: 38458809 PMCID: PMC11145639 DOI: 10.1136/bmjopen-2023-078926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common adult primary malignant brain tumour. The condition is incurable and, despite aggressive treatment at first presentation, almost all tumours recur after a median of 7 months. The aim of treatment at recurrence is to prolong survival and maintain health-related quality of life (HRQoL). Chemotherapy is typically employed for recurrent GBM, often using nitrosourea-based regimens. However, efficacy is limited, with reported median survivals between 5 and 9 months from recurrence. Although less commonly used in the UK, there is growing evidence that re-irradiation may produce survival outcomes at least similar to nitrosourea-based chemotherapy. However, there remains uncertainty as to the optimum approach and there is a paucity of available data, especially with regards to HRQoL. Brain Re-Irradiation Or Chemotherapy (BRIOChe) aims to assess re-irradiation, as an acceptable treatment option for recurrent IDH-wild-type GBM. METHODS AND ANALYSIS BRIOChe is a phase II, multi-centre, open-label, randomised trial in patients with recurrent GBM. The trial uses Sargent's three-outcome design and will recruit approximately 55 participants from 10 to 15 UK radiotherapy sites, allocated (2:1) to receive re-irradiation (35 Gy in 10 daily fractions) or nitrosourea-based chemotherapy (up to six, 6-weekly cycles). The primary endpoint is overall survival rate for re-irradiation patients at 9 months. There will be no formal statistical comparison between treatment arms for the decision-making primary analysis. The chemotherapy arm will be used for calibration purposes, to collect concurrent data to aid interpretation of results. Secondary outcomes include HRQoL, dexamethasone requirement, anti-epileptic drug requirement, radiological response, treatment compliance, acute and late toxicities, progression-free survival. ETHICS AND DISSEMINATION BRIOChe obtained ethical approval from Office for Research Ethics Committees Northern Ireland (reference no. 20/NI/0070). Final trial results will be published in peer-reviewed journals and adhere to the ICMJE guidelines. TRIAL REGISTRATION NUMBER ISRCTN60524.
Collapse
Affiliation(s)
- Eleanor M Hudson
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Samantha Noutch
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Joanne Webster
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Sarah R Brown
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Florien W Boele
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | | | - Helen Baines
- National Radiotherapy Trials QA (RTTQA) Group, Mount Vernon Cancer Centre, Northwood, UK
| | | | - Stuart Currie
- Department of Radiology, Leeds General Infirmary, Leeds, UK
| | - Sharon Fernandez
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Jane Hughes
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - John Lilley
- Department of Medical Physics, Leeds Cancer Centre, Leeds, UK
| | - Alexandra Smith
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | | | - Finbar Slevin
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Department of Clinical Oncology, Leeds Cancer Centre, Leeds, UK
| | - Susan Short
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Department of Clinical Oncology, Leeds Cancer Centre, Leeds, UK
| | | | - Louise Murray
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Department of Clinical Oncology, Leeds Cancer Centre, Leeds, UK
| |
Collapse
|
29
|
Yan Y, Zhou S, Chen X, Yi Q, Feng S, Zhao Z, Liu Y, Liang Q, Xu Z, Li Z, Sun L. Suppression of ITPKB degradation by Trim25 confers TMZ resistance in glioblastoma through ROS homeostasis. Signal Transduct Target Ther 2024; 9:58. [PMID: 38438346 PMCID: PMC10912509 DOI: 10.1038/s41392-024-01763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
Temozolomide (TMZ) represents a standard-of-care chemotherapeutic agent in glioblastoma (GBM). However, the development of drug resistance constitutes a significant hurdle in the treatment of malignant glioma. Although specific innovative approaches, such as immunotherapy, have shown favorable clinical outcomes, the inherent invasiveness of most gliomas continues to make them challenging to treat. Consequently, there is an urgent need to identify effective therapeutic targets for gliomas to overcome chemoresistance and facilitate drug development. This investigation used mass spectrometry to examine the proteomic profiles of six pairs of GBM patients who underwent standard-of-care treatment and surgery for both primary and recurrent tumors. A total of 648 proteins exhibiting significant differential expression were identified. Gene Set Enrichment Analysis (GSEA) unveiled notable alterations in pathways related to METABOLISM_OF_LIPIDS and BIOLOGICAL_OXIDATIONS between the primary and recurrent groups. Validation through glioma tissue arrays and the Xiangya cohort confirmed substantial upregulation of inositol 1,4,5-triphosphate (IP3) kinase B (ITPKB) in the recurrence group, correlating with poor survival in glioma patients. In TMZ-resistant cells, the depletion of ITPKB led to an increase in reactive oxygen species (ROS) related to NADPH oxidase (NOX) activity and restored cell sensitivity to TMZ. Mechanistically, the decreased phosphorylation of the E3 ligase Trim25 at the S100 position in recurrent GBM samples accounted for the weakened ITPKB ubiquitination. This, in turn, elevated ITPKB stability and impaired ROS production. Furthermore, ITPKB depletion or the ITPKB inhibitor GNF362 effectively overcome TMZ chemoresistance in a glioma xenograft mouse model. These findings reveal a novel mechanism underlying TMZ resistance and propose ITPKB as a promising therapeutic target for TMZ-resistant GBM.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shangjun Zhou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Zhi Li
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China.
- Institute of Cancer Research, National Clinical Research Center for Geriatric Disorders (Xiangya), Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Lunquan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China.
- Institute of Cancer Research, National Clinical Research Center for Geriatric Disorders (Xiangya), Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
30
|
Luzzi S, Agosti A. Radiomics Multifactorial in Silico Model for Spatial Prediction of Glioblastoma Progression and Recurrence: A Proof-of-Concept. World Neurosurg 2024; 183:e677-e686. [PMID: 38184226 DOI: 10.1016/j.wneu.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND Radiomics-based prediction of glioblastoma spatial progression and recurrence may improve personalized strategies. However, most prototypes are based on limited monofactorial Gompertzian models of tumor growth. The present study consists of a proof of concept on the accuracy of a radiomics multifactorial in silico model in predicting short-term spatial growth and recurrence of glioblastoma. METHODS A radiomics-based biomathematical multifactorial in silico model was developed using magnetic resonance imaging (MRI) data from a 53-year-old patient with newly diagnosed glioblastoma of the right supramarginal gyrus. Raw and optimized models were derived from the MRI at diagnosis and matched to the preoperative MRI obtained 28 days after diagnosis to test the accuracy in predicting the short-term spatial growth of the tumor. An additional optimized model was derived from the early postoperative MRI and matched to the MRI documenting tumor recurrence to test spatial accuracy in predicting the location of recurrence. The spatial prediction accuracy of the model was reported as an average Jaccard index. RESULTS Optimized models yielded an average Jaccard index of 0.69 and 0.26 for short-term tumor growth and long-term recurrence site, respectively. CONCLUSIONS The present radiomics-based multifactorial in silico model was feasible, reliable, and accurate for short-term spatial prediction of glioblastoma progression. The predictive value for the spatial location of recurrence was still low, and refinements in the description of tissue reorganization in the peritumoral and resected areas may be critical to optimize accuracy further.
Collapse
Affiliation(s)
- Sabino Luzzi
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Abramo Agosti
- Department of Mathematics, University of Pavia, Pavia, Italy
| |
Collapse
|
31
|
McPhedran SJ, Carleton GA, Lum JJ. Metabolic engineering for optimized CAR-T cell therapy. Nat Metab 2024; 6:396-408. [PMID: 38388705 DOI: 10.1038/s42255-024-00976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
The broad effectiveness of T cell-based therapy for treating solid tumour cancers remains limited. This is partly due to the growing appreciation that immune cells must inhabit and traverse a metabolically demanding tumour environment. Accordingly, recent efforts have centred on using genome-editing technologies to augment T cell-mediated cytotoxicity by manipulating specific metabolic genes. However, solid tumours exhibit numerous characteristics restricting immune cell-mediated cytotoxicity, implying a need for metabolic engineering at the pathway level rather than single gene targets. This emerging concept has yet to be put into clinical practice as many questions concerning the complex interplay between metabolic networks and T cell function remain unsolved. This Perspective will highlight key foundational studies that examine the relevant metabolic pathways required for effective T cell cytotoxicity and persistence in the human tumour microenvironment, feasible strategies for metabolic engineering to increase the efficiency of chimeric antigen receptor T cell-based approaches, and the challenges lying ahead for clinical implementation.
Collapse
Affiliation(s)
- Sarah J McPhedran
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Gillian A Carleton
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada.
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
32
|
Lee SY, Choi SH, Kim Y, Ahn HS, Ko YG, Kim K, Chi SW, Kim H. Migrasomal autophagosomes relieve endoplasmic reticulum stress in glioblastoma cells. BMC Biol 2024; 22:23. [PMID: 38287397 PMCID: PMC10826056 DOI: 10.1186/s12915-024-01829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is more difficult to treat than other intractable adult tumors. The main reason that GBM is so difficult to treat is that it is highly infiltrative. Migrasomes are newly discovered membrane structures observed in migrating cells. Thus, they can be generated from GBM cells that have the ability to migrate along the brain parenchyma. However, the function of migrasomes has not yet been elucidated in GBM cells. RESULTS Here, we describe the composition and function of migrasomes generated along with GBM cell migration. Proteomic analysis revealed that LC3B-positive autophagosomes were abundant in the migrasomes of GBM cells. An increased number of migrasomes was observed following treatment with chloroquine (CQ) or inhibition of the expression of STX17 and SNAP29, which are involved in autophagosome/lysosome fusion. Furthermore, depletion of ITGA5 or TSPAN4 did not relieve endoplasmic reticulum (ER) stress in cells, resulting in cell death. CONCLUSIONS Taken together, our study suggests that increasing the number of autophagosomes, through inhibition of autophagosome/lysosome fusion, generates migrasomes that have the capacity to alleviate cellular stress.
Collapse
Affiliation(s)
- Seon Yong Lee
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sang-Hun Choi
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yoonji Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hee-Sung Ahn
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Gyu Ko
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Wook Chi
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea.
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Ware TMB, Luwor RB, Zhu HJ. A New Systemic Disease Mouse Model for Glioblastoma Capable of Single-Tumour-Cell Detection. Cells 2024; 13:192. [PMID: 38275817 PMCID: PMC10814551 DOI: 10.3390/cells13020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Glioblastoma is characterised by extensive infiltration into the brain parenchyma, leading to inevitable tumor recurrence and therapeutic failure. Future treatments will need to target the specific biology of tumour recurrence, but our current understanding of the underlying mechanisms is limited. Significantly, there is a lack of available methods and models that are tailored to the examination of tumour recurrence. METHODS NOD-SCID mice were orthotopically implanted with luciferase-labelled donor U87MG or MU20 glioblastoma cells. Four days later, an unlabelled recipient tumor was implanted on the contralateral side. The mice were euthanised at a humane end-point and tissue and blood samples were collected for ex vivo analyses. RESULTS The ex vivo analyses of the firefly-labelled MU20 tumours displayed extensive invasion at the primary tumour margins, whereas the firefly-labelled U87MG tumours exhibited expansive phenotypes with no evident invasions at the tumour margins. Luciferase signals were detected in the contralateral unlabelled recipient tumours for both the U87MG and MU20 tumours compared to the non-implanted control brain. Remarkably, tumour cells were uniformly detected in all tissue samples of the supratentorial brain region compared to the control tissue, with single tumour cells detected in some tissue samples. Circulating tumour cells were also detected in the blood samples of most of the xenografted mice. Moreover, tumour cells were detected in the lungs of all of the mice, a probable event related to haematogenous dissemination. Similar results were obtained when the U87MG cells were alternatively labelled with gaussian luciferase. CONCLUSIONS These findings describe a systemic disease model for glioblastoma which can be used to investigate recurrence biology and therapeutic efficacy towards recurrence.
Collapse
Affiliation(s)
- Thomas M. B. Ware
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia; (T.M.B.W.); (R.B.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| | - Rodney B. Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia; (T.M.B.W.); (R.B.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- Federation University, Ballarat, VIC 3350, Australia
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia; (T.M.B.W.); (R.B.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| |
Collapse
|
34
|
Wu SY, Yu WJ, Chien TY, Ren YA, Chen CS, Chiang CS. Microglia-mediated drug substance transfer promotes chemoresistance in brain tumors: insights from an in vitro co-culture model using GCV/Tk prodrug system. Cancer Cell Int 2024; 24:35. [PMID: 38238749 PMCID: PMC10795391 DOI: 10.1186/s12935-024-03213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND It is well known that tumor-associated macrophages (TAMs) play essential roles in brain tumor resistance to chemotherapy. However, the detailed mechanisms of how TAMs are involved in brain tumor resistance are still unclear and lack a suitable analysis model. METHODS A BV2 microglial cells with ALTS1C1 astrocytoma cells in vitro co-culture system was used to mimic the microglia dominating tumor stroma in the tumor invasion microenvironment and explore the interaction between microglia and brain tumor cells. RESULTS Our result suggested that microglia could form colonies with glioma cells under high-density culturing conditions and protect glioma cells from apoptosis induced by chemotherapeutic drugs. Moreover, this study demonstrates that microglia could hijack drug substances from the glioma cells and reduce the drug intensity of ALTS1C1 via direct contact. Inhibition of gap junction protein prevented microglial-glioma colony formation and microglia-mediated chemoresistance. CONCLUSIONS This study provides novel insights into how glioma cells acquire chemoresistance via microglia-mediated drug substance transferring, providing a new option for treating chemo-resistant brain tumors.
Collapse
Affiliation(s)
- Sheng-Yan Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wen-Jui Yu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ting-Yi Chien
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-An Ren
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chi-Shuo Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Frontier Research Center On Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
35
|
Teer L, Yaddanapudi K, Chen J. Biophysical Control of the Glioblastoma Immunosuppressive Microenvironment: Opportunities for Immunotherapy. Bioengineering (Basel) 2024; 11:93. [PMID: 38247970 PMCID: PMC10813491 DOI: 10.3390/bioengineering11010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
GBM is the most aggressive and common form of primary brain cancer with a dismal prognosis. Current GBM treatments have not improved patient survival, due to the propensity for tumor cell adaptation and immune evasion, leading to a persistent progression of the disease. In recent years, the tumor microenvironment (TME) has been identified as a critical regulator of these pro-tumorigenic changes, providing a complex array of biomolecular and biophysical signals that facilitate evasion strategies by modulating tumor cells, stromal cells, and immune populations. Efforts to unravel these complex TME interactions are necessary to improve GBM therapy. Immunotherapy is a promising treatment strategy that utilizes a patient's own immune system for tumor eradication and has exhibited exciting results in many cancer types; however, the highly immunosuppressive interactions between the immune cell populations and the GBM TME continue to present challenges. In order to elucidate these interactions, novel bioengineering models are being employed to decipher the mechanisms of immunologically "cold" GBMs. Additionally, these data are being leveraged to develop cell engineering strategies to bolster immunotherapy efficacy. This review presents an in-depth analysis of the biophysical interactions of the GBM TME and immune cell populations as well as the systems used to elucidate the underlying immunosuppressive mechanisms for improving current therapies.
Collapse
Affiliation(s)
- Landon Teer
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA;
| | - Kavitha Yaddanapudi
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
- Immuno-Oncology Program, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Joseph Chen
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA;
| |
Collapse
|
36
|
Darwish A, Pammer M, Gallyas F, Vígh L, Balogi Z, Juhász K. Emerging Lipid Targets in Glioblastoma. Cancers (Basel) 2024; 16:397. [PMID: 38254886 PMCID: PMC10814456 DOI: 10.3390/cancers16020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
GBM accounts for most of the fatal brain cancer cases, making it one of the deadliest tumor types. GBM is characterized by severe progression and poor prognosis with a short survival upon conventional chemo- and radiotherapy. In order to improve therapeutic efficiency, considerable efforts have been made to target various features of GBM. One of the targetable features of GBM is the rewired lipid metabolism that contributes to the tumor's aggressive growth and penetration into the surrounding brain tissue. Lipid reprogramming allows GBM to acquire survival, proliferation, and invasion benefits as well as supportive modulation of the tumor microenvironment. Several attempts have been made to find novel therapeutic approaches by exploiting the lipid metabolic reprogramming in GBM. In recent studies, various components of de novo lipogenesis, fatty acid oxidation, lipid uptake, and prostaglandin synthesis have been considered promising targets in GBM. Emerging data also suggest a significant role hence therapeutic potential of the endocannabinoid metabolic pathway in GBM. Here we review the lipid-related GBM characteristics in detail and highlight specific targets with their potential therapeutic use in novel antitumor approaches.
Collapse
Affiliation(s)
- Ammar Darwish
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Milán Pammer
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Ferenc Gallyas
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - László Vígh
- Institute of Biochemistry, HUN-REN Biological Research Center, 6726 Szeged, Hungary
| | - Zsolt Balogi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Kata Juhász
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
37
|
Gillard AG, Shin DH, Hampton LA, Lopez-Rivas A, Parthasarathy A, Fueyo J, Gomez-Manzano C. Targeting Innate Immunity in Glioma Therapy. Int J Mol Sci 2024; 25:947. [PMID: 38256021 PMCID: PMC10815900 DOI: 10.3390/ijms25020947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Currently, there is a lack of effective therapies for the majority of glioblastomas (GBMs), the most common and malignant primary brain tumor. While immunotherapies have shown promise in treating various types of cancers, they have had limited success in improving the overall survival of GBM patients. Therefore, advancing GBM treatment requires a deeper understanding of the molecular and cellular mechanisms that cause resistance to immunotherapy. Further insights into the innate immune response are crucial for developing more potent treatments for brain tumors. Our review provides a brief overview of innate immunity. In addition, we provide a discussion of current therapies aimed at boosting the innate immunity in gliomas. These approaches encompass strategies to activate Toll-like receptors, induce stress responses, enhance the innate immune response, leverage interferon type-I therapy, therapeutic antibodies, immune checkpoint antibodies, natural killer (NK) cells, and oncolytic virotherapy, and manipulate the microbiome. Both preclinical and clinical studies indicate that a better understanding of the mechanisms governing the innate immune response in GBM could enhance immunotherapy and reinforce the effects of chemotherapy and radiotherapy. Consequently, a more comprehensive understanding of the innate immune response against cancer should lead to better prognoses and increased overall survival for GBM patients.
Collapse
Affiliation(s)
- Andrew G. Gillard
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Dong Ho Shin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Lethan A. Hampton
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
| | - Andres Lopez-Rivas
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Akhila Parthasarathy
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.G.G.); (D.H.S.); (L.A.H.); (A.L.-R.); (A.P.)
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
38
|
Park SW, Lai JHC, Han X, Leung VWM, Xiao P, Huang J, Chan KWY. Preclinical Application of CEST MRI to Detect Early and Regional Tumor Response to Local Brain Tumor Treatment. Pharmaceutics 2024; 16:101. [PMID: 38258112 PMCID: PMC10820766 DOI: 10.3390/pharmaceutics16010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Treating glioblastoma and monitoring treatment response non-invasively remain challenging. Here, we developed a robust approach using a drug-loaded liposomal hydrogel that is mechanically compatible with the brain, and, simultaneously, we successfully monitored early tumor response using Chemical Exchange Saturation Transfer (CEST) MRI. This CEST-detectable liposomal hydrogel was optimized based on a sustainable drug release and a soft hydrogel for the brain tumor, which is unfavorable for tumor cell proliferation. After injecting the hydrogel next to the tumor, three distinctive CEST contrasts enabled the monitoring of tumor response and drug release longitudinally at 3T. As a result, a continuous tumor volume decrease was observed in the treatment group along with a significant decrease in CEST contrasts relating to the tumor response at 3.5 ppm (Amide Proton Transfer; APT) and at -3.5 ppm (relayed Nuclear Overhauser Effect; rNOE) when compared to the control group (p < 0.05). Interestingly, the molecular change at 3.5 ppm on day 3 (p < 0.05) was found to be prior to the significant decrease in tumor volume on day 5. An APT signal also showed a strong correlation with the number of proliferating cells in the tumors. This demonstrated that APT detected a distinctive decrease in mobile proteins and peptides in tumors before the change in tumor morphology. Moreover, the APT signal showed a regional response to the treatment, associated with proliferating and apoptotic cells, which allowed an in-depth evaluation and prediction of the tumor treatment response. This newly developed liposomal hydrogel allows image-guided brain tumor treatment to address clinical needs using CEST MRI.
Collapse
Affiliation(s)
- Se-Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Joseph H. C. Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
| | - Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
| | - Vivian W. M. Leung
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
| | - Peng Xiao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
| | - Jianpan Huang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China;
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
39
|
Zhang JF, Okai B, Iovoli A, Goulenko V, Attwood K, Lim J, Hess RM, Abad AP, Prasad D, Fenstermaker RA. Bevacizumab and gamma knife radiosurgery for first-recurrence glioblastoma. J Neurooncol 2024; 166:89-98. [PMID: 38175460 PMCID: PMC10824796 DOI: 10.1007/s11060-023-04524-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common central nervous system malignancy in adults. Despite decades of developments in surgical management, radiation treatment, chemotherapy, and tumor treating field therapy, GBM remains an ultimately fatal disease. There is currently no definitive standard of care for patients with recurrent glioblastoma (rGBM) following failure of initial management. OBJECTIVE In this retrospective cohort study, we set out to examine the relative effects of bevacizumab and Gamma Knife radiosurgery on progression-free survival (PFS) and overall survival (OS) in patients with GBM at first-recurrence. METHODS We conducted a retrospective review of all patients with rGBM who underwent treatment with bevacizumab and/or Gamma Knife radiosurgery at Roswell Park Comprehensive Cancer Center between 2012 and 2022. Mean PFS and OS were determined for each of our three treatment groups: Bevacizumab Only, Bevacizumab Plus Gamma Knife, and Gamma Knife Only. RESULTS Patients in the combined treatment group demonstrated longer post-recurrence median PFS (7.7 months) and median OS (11.5 months) compared to glioblastoma patients previously reported in the literature, and showed improvements in total PFS (p=0.015), total OS (p=0.0050), post-recurrence PFS (p=0.018), and post-recurrence OS (p=0.0082) compared to patients who received either bevacizumab or Gamma Knife as monotherapy. CONCLUSION This study demonstrates that the combined use of bevacizumab with concurrent stereotactic radiosurgery can have improve survival in patients with rGBM.
Collapse
Affiliation(s)
- Jeff F Zhang
- Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Bernard Okai
- Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Austin Iovoli
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Victor Goulenko
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jaims Lim
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Ryan M Hess
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Ajay P Abad
- Department of Neuro-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dheerendra Prasad
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Robert A Fenstermaker
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
40
|
Peña Pino I, Darrow DP, Chen CC. Magnetic Resonance Imaging-Aided SmartFlow Convection Delivery of DNX-2401: A Pilot, Prospective Case Series. World Neurosurg 2024; 181:e833-e840. [PMID: 37925150 DOI: 10.1016/j.wneu.2023.10.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND The Combination Adenovirus + Pembrolizumab to Trigger Immune Virus Effects (CAPTIVE) study is a phase II clinical trial testing the efficacy of a recombinant adenovirus DNX-2401 combined with the immune checkpoint inhibitor pembrolizumab. Here, we report the first patients in this study who underwent viral delivery through real-time magnetic resonance imaging (MRI) stereotaxis-guided SmartFlow convection delivery of DNX-2401. METHODS Patients who underwent real-time MRI-guided DNX-2401 delivery through the SmartFlow convection catheter were prospectively followed. RESULTS Precise catheter placement was achieved in all patients treated, and no adverse events were noted. Average radial error from target was 0.9 mm. Average procedural time was 3 hours 16 minutes and was comparable to other convection-enhanced delivery techniques. In 2 patients, delivery of DNX-2401 was visualized as >1 cm maximal diameter of T1 hypointensity infusate on MRI obtained immediately after completion of viral infusion. These patients exhibited partial response based on Response Assessment in Neuro-Oncology assessment. The remaining patient showed <1 cm maximal diameter of infusate on immediate postinfusion MRI and showed disease progression on subsequent MRI. CONCLUSIONS Our pilot case series supports compatibility of the SmartFlow system with oncolytic adenovirus delivery and provides the basis for future validation studies.
Collapse
Affiliation(s)
- Isabela Peña Pino
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - David P Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
41
|
Betancur MI, Case A, Ilich E, Mehta N, Meehan S, Pogrebivsky S, Keir ST, Stevenson K, Brahma B, Gregory S, Chen W, Ashley DM, Bellamkonda R, Mokarram N. A neural tract-inspired conduit for facile, on-demand biopsy of glioblastoma. Neurooncol Adv 2024; 6:vdae064. [PMID: 38813113 PMCID: PMC11135361 DOI: 10.1093/noajnl/vdae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Background A major hurdle to effectively treating glioblastoma (GBM) patients is the lack of longitudinal information about tumor progression, evolution, and treatment response. Methods In this study, we report the use of a neural tract-inspired conduit containing aligned polymeric nanofibers (i.e., an aligned nanofiber device) to enable on-demand access to GBM tumors in 2 rodent models. Depending on the experiment, a humanized U87MG xenograft and/or F98-GFP+ syngeneic rat tumor model was chosen to test the safety and functionality of the device in providing continuous sampling access to the tumor and its microenvironment. Results The aligned nanofiber device was safe and provided a high quantity of quality genomic materials suitable for omics analyses and yielded a sufficient number of live cells for in vitro expansion and screening. Transcriptomic and genomic analyses demonstrated continuity between material extracted from the device and that of the primary, intracortical tumor (in the in vivo model). Conclusions The results establish the potential of this neural tract-inspired, aligned nanofiber device as an on-demand, safe, and minimally invasive access point, thus enabling rapid, high-throughput, longitudinal assessment of tumor and its microenvironment, ultimately leading to more informed clinical treatment strategies.
Collapse
Affiliation(s)
| | - Ayden Case
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Ekaterina Ilich
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Nalini Mehta
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Sean Meehan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Sabrina Pogrebivsky
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Stephen T Keir
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Kevin Stevenson
- Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Barun Brahma
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | - Simon Gregory
- Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Wei Chen
- Center for Genomic and Computational Biology, Duke University, Durham, Georgia, USA
| | - David M Ashley
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Ravi Bellamkonda
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Nassir Mokarram
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
42
|
Shields LB, O'Dell P, Daniels MW, Sevak PR, Highfield HA, Sinicrope KD, Sun DA, Spalding AC. Impact of Reirradiation Utilizing Fractionated Stereotactic Radiotherapy for Recurrent Glioblastoma. Cureus 2024; 16:e53001. [PMID: 38406061 PMCID: PMC10894660 DOI: 10.7759/cureus.53001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Patients with recurrent glioblastoma (GBM) have limited treatment options. This study determined whether patients with recurrent GBM treated with initial radiation/temozolomide (TMZ) and reirradiation using fractionated stereotactic radiotherapy (FSRT) had improved outcomes. MATERIALS AND METHODS We identified 95 patients with recurrent GBM, 50 of whom underwent FSRT at recurrence and 45 who had systemic treatment only (control). The median total FSRT dose at the time of GBM recurrence was 30 Gy in five fractions of the gadolinium-enhanced tumor only. RESULTS With a median follow-up of 18 months, the progression-free survival (PFS) and overall survival (OS) following initial GBM diagnosis were longer in the reirradiation group compared to the control group (13.5 vs. 7.5 months [p=0.001] and 24.6 vs. 12.6 months [p<0.001], respectively). For patients who underwent reirradiation, the median time interval between the end of the initial radiation and reirradiation was 15.2 months. The median OS after GBM recurrence was longer in the reirradiation group versus the control group (9.9 vs. 3.5 months [p<0.001]), with a one-year OS survival rate of 22%. The hazard ratio for death of patients in the reirradiation group was 0.31 [0.19-0.50]. The reirradiation group had a higher percentage of patients who received bevacizumab (BEV, 62.0% vs. 28.9%, p=0.002) and a lower percentage of patients whose TMZ was discontinued due to toxicity (8.0% vs. 28.9%, p=0.017) compared to the control group. CONCLUSIONS Reirradiation utilizing FSRT was associated with improved PFS and OS after GBM recurrence compared to the control group who did not receive additional irradiation.
Collapse
Affiliation(s)
- Lisa B Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, USA
| | - Patrick O'Dell
- Norton Cancer Institute, Norton Healthcare, Louisville, USA
| | - Michael W Daniels
- Bioinformatics and Biostatistics, University of Louisville, Louisville, USA
| | - Parag R Sevak
- Norton Cancer Institute, Norton Healthcare, Louisville, USA
| | - Hilary A Highfield
- Clinical Pathology Accreditation (CPA) Laboratory, Norton Healthcare, Louisville, USA
| | | | - David A Sun
- Norton Neuroscience Institute, Norton Healthcare, Louisville, USA
| | | |
Collapse
|
43
|
Khakshour E, Bahreyni-Toossi MT, Anvari K, Shahram MA, Vaziri-Nezamdoust F, Azimian H. Evaluation of the effects of simulated hypoxia by CoCl 2 on radioresistance and change of hypoxia-inducible factors in human glioblastoma U87 tumor cell line. Mutat Res 2024; 828:111848. [PMID: 38154290 DOI: 10.1016/j.mrfmmm.2023.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
PURPOSE Glioblastoma (GBM) is considered the most common and lethal type of brain tumor with a poor prognosis. GBM treatment has challenges due to its aggressive nature, which often causes treatment failure and recurrence. Hypoxia is one of the characteristics of glioblastoma tumors that contribute to radioresistance and malignant phenotypes of GBM. In this study, we aimed to determine the effects of hypoxia on the radiosensitivity of U87 GBM cells by the hypoxia-mimicking model. METHODS Following the treatment of cells with different concentrations of CoCl2, an MTT assay was used to evaluate the cytotoxicity of CoCl2. To understand the effects of Ionizing radiation on CoCl2-treated groups, cells were exposed to irradiation after pretreating with 100 μM CoCl2, and a clonogenic survival assay was performed to determine the radiosensitivity of U87 cells. Also, the intracellular Reactive oxygen level was measured by 2',7'-dichlorofluorescein diacetate (DCFDA) probe staining. Additionally, the expression of hypoxia-associated genes, including HIF-1α, HIF-2α, and their target genes (GLUT-1), was monitored by reverse transcription polymerase chain reaction (RT-PCR). RESULTS Our study revealed that the cell viability of CoCl2-treated cells was decreased in a concentration-dependent manner. Also, CoCl2 did not cause any cytotoxicity on U87 cells at a concentration of 100 μM after treatment for 24 h. Colony formation assay showed that CoCl2 pretreatment induced radioresistance of tumor cells compared to non-treated cells. Also, CoCl2 can protect cells against irradiation by the clearance of ROS. Moreover, Real-time results showed that the mRNA expression of HIF-1α and GLUT-1 were significantly upregulated following hypoxia induction and/or irradiation condition. However, the level of HIF-2α mRNA did not change significantly in hypoxia or irradiation alone conditions, but it increased significantly only in hypoxia + irradiation conditions. CONCLUSION Taken together, our results indicated that simulating hypoxia by CoCl2 can effectively increase hypoxia-associated genes, specially HIF-1α and GLUT-1, but did not affect HIF-2α gene expression. Also, it can increase the clearance of ROS, respectively, and it leads to inducing radioresistance of U87 cells.
Collapse
Affiliation(s)
- Elham Khakshour
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taghi Bahreyni-Toossi
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Shahram
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
Shin E, Kim B, Kang H, Lee H, Park J, Kang J, Park E, Jo S, Kim HY, Lee JS, Lee JM, Youn H, Youn B. Mitochondrial glutamate transporter SLC25A22 uni-directionally export glutamate for metabolic rewiring in radioresistant glioblastoma. Int J Biol Macromol 2023; 253:127511. [PMID: 37866557 DOI: 10.1016/j.ijbiomac.2023.127511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Glioblastoma Multiforme (GBM) is a malignant primary brain tumor. Radiotherapy, one of the standard treatments for GBM patients, could induce GBM radioresistance via rewiring cellular metabolism. However, the precise mechanism attributing to GBM radioresistance or targeting strategies to overcome GBM radioresistance are lacking. Here, we demonstrate that SLC25A22, a mitochondrial bi-directional glutamate transporter, is upregulated and showed uni-directionality from mitochondria to cytosol in radioresistant GBM cells, resulting in accumulating cytosolic glutamate. However, mitochondrial glutaminolysis-mediated TCA cycle metabolites and OCR are maintained constantly. The accumulated cytosolic glutamate enhances the glutathione (GSH) production and proline synthesis in radioresistant GBM cells. Increased GSH protects cells against ionizing radiation (IR)-induced reactive oxygen species (ROS) whereas increased proline, a rate-limiting substrate for collagen biosynthesis, induces extracellular matrix (ECM) remodeling, leading to GBM invasive phenotypes. Finally, we discover that genetic inhibition of SLC25A22 using miR-184 mimic decreases GBM radioresistance and aggressiveness both in vitro and in vivo. Collectively, our study suggests that SLC25A22 upregulation confers GBM radioresistance by rewiring glutamate metabolism, and SLC25A22 could be a significant therapeutic target to overcome GBM radioresistance.
Collapse
Affiliation(s)
- Eunguk Shin
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Byeongsoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Haksoo Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Junhyung Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - JiHoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Sunmi Jo
- Department of Radiation Oncology, Haeundae Paik Hospital, Inje University School of Medicine, Busan 48108, Republic of Korea
| | - Hae Yu Kim
- Department of Neurosurgery, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Jae-Myung Lee
- Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; Nuclear Science Research Institute, Pusan National University, Busan 46241, Republic of Korea; Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
45
|
Shah S. Novel Therapies in Glioblastoma Treatment: Review of Glioblastoma; Current Treatment Options; and Novel Oncolytic Viral Therapies. Med Sci (Basel) 2023; 12:1. [PMID: 38249077 PMCID: PMC10801585 DOI: 10.3390/medsci12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
One of the most prevalent primary malignant brain tumors is glioblastoma (GB). About 6 incidents per 100,000 people are reported annually. Most frequently, these tumors are linked to a poor prognosis and poor quality of life. There has been little advancement in the treatment of GB. In recent years, some innovative medicines have been tested for the treatment of newly diagnosed cases of GB and recurrent cases of GB. Surgery, radiotherapy, and alkylating chemotherapy are all common treatments for GB. A few of the potential alternatives include immunotherapy, tumor-treating fields (TTFs), and medications that target specific cellular receptors. To provide new multimodal therapies that focus on the molecular pathways implicated in tumor initiation and progression in GB, novel medications, delivery technologies, and immunotherapy approaches are being researched. Of these, oncolytic viruses (OVs) are among the most recent. Coupling OVs with certain modern treatment approaches may have significant benefits for GB patients. Here, we discuss several OVs and how they work in conjunction with other therapies, as well as virotherapy for GB. The study was based on the PRISMA guidelines. Systematic retrieval of information was performed on PubMed. A total of 307 articles were found in a search on oncolytic viral therapies for glioblastoma. Out of these 83 articles were meta-analyses, randomized controlled trials, reviews, and systematic reviews. A total of 42 articles were from the years 2018 to 2023. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. One of the most prevalent malignant brain tumors is still GB. Significant promise and opportunity exist for oncolytic viruses in the treatment of GB and in boosting immune response. Making the most of OVs in the treatment of GB requires careful consideration and evaluation of a number of its application factors.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
46
|
Zarzuela L, Durán RV, Tomé M. Metabolism and signaling crosstalk in glioblastoma progression and therapy resistance. Mol Oncol 2023. [PMID: 38105543 DOI: 10.1002/1878-0261.13571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/09/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023] Open
Abstract
Glioblastoma is the most common form of primary malignant brain tumor in adults and one of the most lethal human cancers, with high recurrence and therapy resistance. Glioblastoma cells display extensive genetic and cellular heterogeneity, which precludes a unique and common therapeutic approach. The standard of care in glioblastoma patients includes surgery followed by radiotherapy plus concomitant temozolomide. As in many other cancers, cell signaling is deeply affected due to mutations or alterations in the so-called molecular drivers. Moreover, glioblastoma cells undergo metabolic adaptations to meet the new demands in terms of energy and building blocks, with an increasing amount of evidence connecting metabolic transformation and cell signaling deregulation in this type of aggressive brain tumor. In this review, we summarize some of the most common alterations both in cell signaling and metabolism in glioblastoma, presenting an integrative discussion about how they contribute to therapy resistance. Furthermore, this review aims at providing a comprehensive overview of the state-of-the-art of therapeutic approaches and clinical trials exploiting signaling and metabolism in glioblastoma.
Collapse
Affiliation(s)
- Laura Zarzuela
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Raúl V Durán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Mercedes Tomé
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
47
|
Mellor NG, Chung SA, Graham ES, Day BW, Unsworth CP. Eliciting calcium transients with UV nanosecond laser stimulation in adult patient-derived glioblastoma brain cancer cells in vitro. J Neural Eng 2023; 20:066026. [PMID: 37988746 DOI: 10.1088/1741-2552/ad0e7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Objective.Glioblastoma (GBM) is the most common and lethal type of high-grade adult brain cancer. The World Health Organization have classed GBM as an incurable disease because standard treatments have yielded little improvement with life-expectancy being 6-15 months after diagnosis. Different approaches are now crucial to discover new knowledge about GBM communication/function in order to establish alternative therapies for such an aggressive adult brain cancer. Calcium (Ca2+) is a fundamental cell molecular messenger employed in GBM being involved in a wide dynamic range of cellular processes. Understanding how the movement of Ca2+behaves and modulates activity in GBM at the single-cell level is relatively unexplored but holds the potential to yield opportunities for new therapeutic strategies and approaches for cancer treatment.Approach.In this article we establish a spatially and temporally precise method for stimulating Ca2+transients in three patient-derived GBM cell-lines (FPW1, RN1, and RKI1) such that Ca2+communication can be studied from single-cell to larger network scales. We demonstrate that this is possible by administering a single optimized ultra-violet (UV) nanosecond laser pulse to trigger GBM Ca2+transients.Main results.We determine that 1.58µJµm-2is the optimal UV nanosecond laser pulse energy density necessary to elicit a single Ca2+transient in the GBM cell-lines whilst maintaining viability, functionality, the ability to be stimulated many times in an experiment, and to trigger further Ca2+communication in a larger network of GBM cells.Significance.Using adult patient-derived mesenchymal GBM brain cancer cell-lines, the most aggressive form of GBM cancer, this work is the first of its kind as it provides a new effective modality of which to stimulate GBM cells at the single-cell level in an accurate, repeatable, and reliable manner; and is a first step toward Ca2+communication in GBM brain cancer cells and their networks being more effectively studied.
Collapse
Affiliation(s)
- Nicholas G Mellor
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Sylvia A Chung
- Adult Cancer Program, Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia
| | - E Scott Graham
- Department of Molecular Medicine and Pathology & The Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Charles P Unsworth
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
48
|
Olatunji G, Aderinto N, Adefusi T, Kokori E, Akinmoju O, Yusuf I, Olusakin T, Muzammil MA. Efficacy of tumour-treating fields therapy in recurrent glioblastoma: A narrative review of current evidence. Medicine (Baltimore) 2023; 102:e36421. [PMID: 38050252 PMCID: PMC10695547 DOI: 10.1097/md.0000000000036421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
Recurrent Glioblastoma presents a formidable challenge in oncology due to its aggressive nature and limited treatment options. Tumour-Treating Fields (TTFields) Therapy, a novel therapeutic modality, has emerged as a promising approach to address this clinical conundrum. This review synthesizes the current evidence surrounding the efficacy of TTFields Therapy in the context of recurrent Glioblastoma. Diverse academic databases were explored to identify relevant studies published within the last decade. Strategic keyword selection facilitated the inclusion of studies focusing on TTFields Therapy's efficacy, treatment outcomes, and patient-specific factors. The review reveals a growing body of evidence suggesting the potential clinical benefits of TTFields Therapy for patients with recurrent Glioblastoma. Studies consistently demonstrate its positive impact on overall survival (OS) and progression-free survival (PFS). The therapy's safety profile remains favorable, with mild to moderate skin reactions being the most commonly reported adverse events. Our analysis highlights the importance of patient selection criteria, with emerging biomarkers such as PTEN mutation status influencing therapy response. Additionally, investigations into combining TTFields Therapy with other treatments, including surgical interventions and novel approaches, offer promising avenues for enhancing therapeutic outcomes. The synthesis of diverse studies underscores the potential of TTFields Therapy as a valuable addition to the armamentarium against recurrent Glioblastoma. The narrative review comprehensively explains the therapy's mechanisms, clinical benefits, adverse events, and future directions. The insights gathered herein serve as a foundation for clinicians and researchers striving to optimize treatment strategies for patients facing the challenging landscape of recurrent Glioblastoma.
Collapse
Affiliation(s)
- Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | | | - Ismaila Yusuf
- Department of Medicine and Surgery, Obafemi Awolowo University, Ife, Nigeria
| | - Tobi Olusakin
- College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
49
|
Henn JG, Bernardes Ferro M, Lopes Alves GA, Pires Peña F, de Oliveira JVR, de Souza BM, da Silva LF, Rapack Jacinto Silva V, Silva Pinheiro AC, Steffens Reinhardt L, Morás AM, Nugent M, da Rosa RG, Silveira Aguirre TA, Moura DJ. Development and characterization of a temozolomide-loaded nanoemulsion and the effect of ferrocene pre and co-treatments in glioblastoma cell models. Pharmacol Rep 2023; 75:1597-1609. [PMID: 37837521 DOI: 10.1007/s43440-023-00537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Glioblastoma is a severe brain tumor that requires aggressive treatment involving surgery, radiotherapy, and chemotherapy, offering a survival rate of only 15 months. Fortunately, recent nanotechnology progress has enabled novel approaches and, alongside ferrocenes' unique properties of cytotoxicity, sensitization, and interaction with reactive oxygen species, have brought new possibilities to complement chemotherapy in nanocarrier systems, enhancing treatment results. METHODS In this work, we developed and characterized a temozolomide-loaded nanoemulsion and evaluated its cytotoxic potential in combination with ferrocene in the temozolomide-resistant T98G and temozolomide-sensitive U87 cell lines. The effects of the treatments were assessed through acute assays of cell viability, cell death, mitochondrial alterations, and a treatment protocol simulation based on different two-cycle regimens. RESULTS Temozolomide nanoemulsion showed a z-average diameter of 173.37 ± 0.86 nm and a zeta potential of - 6.53 ± 1.13 mV. Physicochemical characterization revealed that temozolomide is probably associated with nanoemulsion droplets instead of being entrapped within the nanostructure, allowing a rapid drug release. In combination with ferrocene, temozolomide nanoemulsion reduced glioblastoma cell viability in both acute and two-cycle regimen assays. The combined treatment approach also reversed T98G's temozolomide-resistant profile by altering the mitochondrial membrane potential of the cells, thus increasing reactive oxygen species generation, and ultimately inducing cell death. CONCLUSIONS Altogether, our results indicate that using nanoemulsion containing temozolomide in combination with ferrocene is an effective approach to improve glioblastoma therapy outcomes.
Collapse
Affiliation(s)
- Jeferson Gustavo Henn
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Co. Westmeath, N37HD68, Ireland
| | - Matheus Bernardes Ferro
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Gabriel Antonio Lopes Alves
- Laboratório de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Flávia Pires Peña
- Laboratório de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - João Vitor Raupp de Oliveira
- Laboratório de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Bárbara Müller de Souza
- Departamento de Química Inorgânica, Universidade Federal do Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Leonardo Fonseca da Silva
- Departamento de Química Inorgânica, Universidade Federal do Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Victória Rapack Jacinto Silva
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Ana Carolina Silva Pinheiro
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Luiza Steffens Reinhardt
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Ana Moira Morás
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Michael Nugent
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Co. Westmeath, N37HD68, Ireland
| | - Ricardo Gomes da Rosa
- Departamento de Química Inorgânica, Universidade Federal do Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Tanira Alessandra Silveira Aguirre
- Laboratório de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Dinara Jaqueline Moura
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil.
| |
Collapse
|
50
|
Lynes J, Khan I, Aguilera C, Rubino S, Thompson Z, Etame AB, Liu JKC, Beer-Furlan A, Tran ND, Macaulay RJB, Vogelbaum MA. Development of a "Geo-Tagged" tumor sample registry: intra-operative linkage of sample location to imaging. J Neurooncol 2023; 165:449-458. [PMID: 38015375 DOI: 10.1007/s11060-023-04493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/28/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE There is a growing body of literature documenting glioma heterogeneity in terms of radiographic, histologic, molecular, and genetic characteristics. Incomplete spatial specification of intraoperative tumor samples may contribute to variability in the results of pathological and biological investigations. We have developed a system, termed geo-tagging, for routine intraoperative linkage of each tumor sample to its location via neuronavigation. METHODS This is a single-institution, IRB approved, prospective database of undergoing clinically indicated surgery. We evaluated relevant factors affecting data collection by this registry, including tumor and surgical factors (e.g. tumor volume, location, grade and surgeon). RESULTS Over a 2-year period, 487 patients underwent craniotomy for an intra-axial tumor. Of those, 214 underwent surgery for a newly diagnosed or recurrent glioma. There was significant variation in the average number of samples collected per registered case, with a range of samples from 2.53 to 4.75 per tumor type. Histology and grade impacted on sampling with a range of 2.0 samples per tumor in Grade four, IDH-WT gliomas to 4.5 samples in grade four, IDH-mutant gliomas. The range of cases with sampling per surgeon was 6 to 99 with a mean of 47.6 cases and there was a statistically significant differences between surgeons. Tumor grade did not have a statistically significant impact on number of samples per case. No significant correlation was found between the number of samples collected and enhancing tumor volume, EOR, or volume of tumor resected. CONCLUSION We are using the results of this analysis to develop a prospective sample collection protocol.
Collapse
Affiliation(s)
- John Lynes
- Department of Neurosurgery, Medstar Georgetown Hospital, Washington, DC, USA
- Georgetown University School of Medicine, Washington, DC, USA
| | - Irfan Khan
- Georgetown University School of Medicine, Washington, DC, USA
| | - Carlos Aguilera
- Georgetown University School of Medicine, Washington, DC, USA
| | - Sebastian Rubino
- Northwell Health Physician Partners Neurosurgery at Seaview Avenue, Staten Island, NY, USA
| | - Zachary Thompson
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Arnold B Etame
- Department of NeuroOncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - James K C Liu
- Department of NeuroOncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Andre Beer-Furlan
- Department of NeuroOncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Nam D Tran
- Department of NeuroOncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Robert J B Macaulay
- Department of Pathology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Michael A Vogelbaum
- Department of NeuroOncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|