1
|
Jacobs SE, Chaturvedi V. CAF to the Rescue! Potential and Challenges of Combination Antifungal Therapy for Reducing Morbidity and Mortality in Hospitalized Patients With Serious Fungal Infections. Open Forum Infect Dis 2024; 11:ofae646. [PMID: 39544494 PMCID: PMC11561589 DOI: 10.1093/ofid/ofae646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
The global burden of invasive fungal disease is substantial and escalating. Combination antifungal therapy (CAF) may improve patient outcomes by reducing development of resistance, improving drug penetration and rate of fungal clearance, and allowing for lower and less toxic antifungal drug doses; yet, increased cost, antagonism, drug-drug interactions, and toxicity are concerns. Clinical practice guidelines recommend antifungal monotherapy, rather than CAF, for most invasive fungal diseases due to a lack of comparative randomized clinical trials. An examination of the existing body of CAF research should frame new hypotheses and determine priorities for future CAF clinical trials. We performed a systematic review of CAF clinical studies for invasive candidiasis, cryptococcosis, invasive aspergillosis, and mucormycosis. Additionally, we summarized findings from animal models of CAF and assessed laboratory methods available to evaluate CAF efficacy. Future CAF trials should be prioritized according to animal models showing improved survival and observational clinical data supporting efficacy and safety.
Collapse
Affiliation(s)
- Samantha E Jacobs
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vishnu Chaturvedi
- Microbiology and Molecular Biology Laboratories, Department of Pathology, Westchester Medical Center, Valhalla, New York, USA
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
2
|
Casalini G, Giacomelli A, Galimberti L, Colombo R, Milazzo L, Cattaneo D, Castelli A, Antinori S. Navigating Uncertainty: Managing Influenza-Associated Invasive Pulmonary Aspergillosis in an Intensive Care Unit. J Fungi (Basel) 2024; 10:639. [PMID: 39330399 PMCID: PMC11433123 DOI: 10.3390/jof10090639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
We present a challenging case of a patient admitted to an intensive care unit with influenza-associated pulmonary aspergillosis (IAPA). The clinical course was characterised by refractory fungal pneumonia and tracheobronchitis, suspected drug-induced liver injury due to triazole antifungals, and secondary bacterial infections with multidrug-resistant microorganisms, resulting in a fatal outcome despite the optimisation of antifungal treatment through therapeutic drug monitoring. This case underscores the complexity that clinicians face in managing critically ill patients with invasive fungal infections.
Collapse
Affiliation(s)
- Giacomo Casalini
- III Division of Infectious Diseases, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Andrea Giacomelli
- III Division of Infectious Diseases, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
- Department of Biomedical and Clinical Sciences, DIBIC, Università degli Studi di Milano, 20157 Milan, Italy
| | - Laura Galimberti
- III Division of Infectious Diseases, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Riccardo Colombo
- Anesthesia and Intensive Care Unit, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Laura Milazzo
- III Division of Infectious Diseases, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Dario Cattaneo
- Unit of Clinical Pathology, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy
| | - Antonio Castelli
- Anesthesia and Intensive Care Unit, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Spinello Antinori
- III Division of Infectious Diseases, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
- Department of Biomedical and Clinical Sciences, DIBIC, Università degli Studi di Milano, 20157 Milan, Italy
| |
Collapse
|
3
|
Liu A, Xiong L, Wang L, Zhuang H, Gan X, Zou M, Wang X. Compare the efficacy of antifungal agents as primary therapy for invasive aspergillosis: a network meta-analysis. BMC Infect Dis 2024; 24:581. [PMID: 38867163 PMCID: PMC11170913 DOI: 10.1186/s12879-024-09477-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Several antifungal agents are available for primary therapy in patients with invasive aspergillosis (IA). Although a few studies have compared the effectiveness of different antifungal agents in treating IA, there has yet to be a definitive agreement on the best choice. Herein, we perform a network meta-analysis comparing the efficacy of different antifungal agents in IA. METHODS We searched PubMed, Embase, and the Cochrane Central Register of Controlled Clinical Trials databases to find studies (both randomized controlled trials [RCTs] and observational) that reported on treatment outcomes with antifungal agents for patients with IA. The study quality was assessed using the revised tool for risk of bias and the Newcastle Ottawa scale, respectively. We performed a network meta-analysis (NMA) to summarize the evidence on antifungal agents' efficacy (favourable response and mortality). RESULTS We found 12 studies (2428 patients) investigating 11 antifungal agents in the primary therapy of IA. There were 5 RCTs and 7 observational studies. When treated with monotherapy, isavuconazole was associated with the best probability of favourable response (SUCRA, 77.9%; mean rank, 3.2) and the best reduction mortality against IA (SUCRA, 69.1%; mean rank, 4.1), followed by voriconazole and posaconazole. When treated with combination therapy, Liposomal amphotericin B plus caspofungin was the therapy associated with the best probability of favourable response (SUCRA, 84.1%; mean rank, 2.6) and the best reduction mortality (SUCRA, 88.2%; mean rank, 2.2) against IA. CONCLUSION These findings suggest that isavuconazole, voriconazole, and posaconazole may be the best antifungal agents as the primary therapy for IA. Liposomal amphotericin B plus caspofungin could be an alternative option.
Collapse
Affiliation(s)
- Ao Liu
- Department of Respiratory Medicine, Chengdu BOE hospital, Chengdu, Sichuan Province, 610000, China.
| | - Liubo Xiong
- Department of Respiratory Medicine, Chengdu BOE hospital, Chengdu, Sichuan Province, 610000, China
| | - Lian Wang
- Department of Respiratory Medicine, Chengdu BOE hospital, Chengdu, Sichuan Province, 610000, China
| | - Han Zhuang
- Department of Respiratory Medicine, Chengdu BOE hospital, Chengdu, Sichuan Province, 610000, China
| | - Xiao Gan
- Department of Respiratory Medicine, Chengdu BOE hospital, Chengdu, Sichuan Province, 610000, China
| | - Mengying Zou
- Department of Respiratory Medicine, Chengdu BOE hospital, Chengdu, Sichuan Province, 610000, China
| | - Xiaoming Wang
- Department of Respiratory Medicine, Chengdu BOE hospital, Chengdu, Sichuan Province, 610000, China
| |
Collapse
|
4
|
van Rhijn N, Zhao C, Al-Furaiji N, Storer ISR, Valero C, Gago S, Chown H, Baldin C, Grant RF, Bin Shuraym H, Ivanova L, Kniemeyer O, Krüger T, Bignell E, Goldman GH, Amich J, Delneri D, Bowyer P, Brakhage AA, Haas H, Bromley MJ. Functional analysis of the Aspergillus fumigatus kinome identifies a druggable DYRK kinase that regulates septal plugging. Nat Commun 2024; 15:4984. [PMID: 38862481 PMCID: PMC11166925 DOI: 10.1038/s41467-024-48592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 05/03/2024] [Indexed: 06/13/2024] Open
Abstract
More than 10 million people suffer from lung diseases caused by the pathogenic fungus Aspergillus fumigatus. Azole antifungals represent first-line therapeutics for most of these infections but resistance is rising, therefore the identification of antifungal targets whose inhibition synergises with the azoles could improve therapeutic outcomes. Here, we generate a library of 111 genetically barcoded null mutants of Aspergillus fumigatus in genes encoding protein kinases, and show that loss of function of kinase YakA results in hypersensitivity to the azoles and reduced pathogenicity. YakA is an orthologue of Candida albicans Yak1, a TOR signalling pathway kinase involved in modulation of stress responsive transcriptional regulators. We show that YakA has been repurposed in A. fumigatus to regulate blocking of the septal pore upon exposure to stress. Loss of YakA function reduces the ability of A. fumigatus to penetrate solid media and to grow in mouse lung tissue. We also show that 1-ethoxycarbonyl-beta-carboline (1-ECBC), a compound previously shown to inhibit C. albicans Yak1, prevents stress-mediated septal spore blocking and synergises with the azoles to inhibit A. fumigatus growth.
Collapse
Affiliation(s)
- Norman van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Can Zhao
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Narjes Al-Furaiji
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Pharmacology, College of Medicine, University of Kerbala, Kerbala, Iraq
| | - Isabelle S R Storer
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Clara Valero
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sara Gago
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Harry Chown
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Clara Baldin
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Rachael-Fortune Grant
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hajer Bin Shuraym
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, 11481, Riyadh, Saudi Arabia
| | - Lia Ivanova
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Elaine Bignell
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- MRC Centre for Medical Mycology, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jorge Amich
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Daniela Delneri
- Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Axel A Brakhage
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Michael J Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
5
|
Zhang Y, Shen B, Li Y, Zong H, Zhang X, Cao X, Liu F, Li Y. Drug-drug interaction between tacrolimus and caspofungin in Chinese kidney transplant patients with different CYP3A5 genotypes. Ther Adv Drug Saf 2024; 15:20420986241243165. [PMID: 38646424 PMCID: PMC11027596 DOI: 10.1177/20420986241243165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024] Open
Abstract
Background The effect of drug-drug interaction between tacrolimus and caspofungin on the pharmacokinetics of tacrolimus in different CYP3A5 genotypes has not been reported in previous studies. Objectives To investigate the effect of caspofungin on the blood concentration and dose of tacrolimus under different CYP3A5 genotypes. Design We conducted a retrospective cohort study in The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital from January 2015 to December 2022. All kidney transplant patients were divided into the combination or non-combination group based on whether tacrolimus was combined with caspofungin or not. Patients were subdivided into CYP3A5 expressers (CYP3A5*1/*1 or CYP3A5*1/*3) and CYP3A5 non-expressers (CYP3A5*3/*3). Methods Data from the combination and the non-combination groups were matched with propensity scores to reduce confounding by SPSS 22.0. A total of 200 kidney transplant patients receiving tacrolimus combined with caspofungin or not were enrolled in this study. Statistical analysis was conducted on the dose-corrected trough concentrations (C0/D) and dose requirements (D) of tacrolimus using independent sample two-sided t-test and nonparametric tests to investigate the impact on patients with different. Results In this study, the C0/D values of tacrolimus were not significantly different between the combination and non-combination groups (p = 0.054). For CYP3A5 expressers, there was no significant difference in tacrolimus C0/D or D values between the combination and non-combination groups (p = 0.359; p = 0.851). In CYP3A5 nonexpressers, the C0/D values of tacrolimus were significantly lower in the combination than in the non-combination groups (p = 0.039), and the required daily dose of tacrolimus was increased by 11.11% in the combination group. Conclusion Co-administration of caspofungin reduced tacrolimus blood levels and elevated the required daily dose of tacrolimus. In CYP3A5 non-expressers, co-administration of caspofungin had a significant effect on tacrolimus C0/D values. An approximate 10% increase in the weight-adjusted daily dose of tacrolimus in CYP3A5 non-expressers is recommended to ensure the safety of tacrolimus administration.
Collapse
Affiliation(s)
- Yundi Zhang
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Bowen Shen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Yue Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Huiying Zong
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xiaoming Zhang
- Urinary Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaohong Cao
- Urinary Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Fengxi Liu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Yan Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jingshi Road, Jinan City, Shandong Province 250014, China
| |
Collapse
|
6
|
Fernández-Ruiz M. Pharmacological management of invasive mold infections in solid organ transplant recipients. Expert Opin Pharmacother 2024; 25:239-254. [PMID: 38436619 DOI: 10.1080/14656566.2024.2326507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Solid organ transplant (SOT) recipients face an increased susceptibility to invasive fungal infection (IFI) due to filamentous fungi. Post-transplant invasive aspergillosis (IA) and mucormycosis are related to exceedingly high mortality rates and graft loss risk, and its management involve a unique range of clinical challenges. AREAS COVERED First, the current treatment recommendations for IA and mucormycosis among SOT recipients are critically reviewed, including the supporting evidence. Next, we discussed particular concerns in this patient population, such as drug-drug interactions (DDIs) between triazoles and post-transplant immunosuppression or treatment-related toxicity. The role for immunomodulatory and host-targeted therapies is also considered, as well as the theoretical impact of the intrinsic antifungal activity of calcineurin inhibitors. Finally, a personal opinion is made on future directions in the pharmacological approach to post-transplant IFI. EXPERT OPINION Despite relevant advances in the treatment of mold IFIs in the SOT setting, such as the incorporation of isavuconazole (with lower incidence of DDIs and better tolerability than voriconazole), there remains a large room for improvement in areas such as the position of combination therapy or the optimal strategy for the reduction of baseline immunosuppression. Importantly, future studies should define the specific contribution of newer antifungal agents and classes.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Farahani A, Ghiasvand F, Davoudi S, Ahmadinejad Z. Invasive aspergillosis in liver transplant recipients, an infectious complication with low incidence but significant mortality. World J Transplant 2023; 13:264-275. [PMID: 37746042 PMCID: PMC10514749 DOI: 10.5500/wjt.v13.i5.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Infections, including invasive fungal infections (IFIs), are among the leading causes of mortality in liver transplant recipients during the first year post-transplantation. AIM To investigate the epidemiology, clinical manifestations, risk factors, treatment outcomes, and mortality rate of post-liver transplantation invasive aspergillosis (IA). METHODS In this case-control study, 22 patients with IA were identified by reviewing the archived and electronic medical records of 850 patients who received liver transplants at the Imam Khomeini Hospital complex in Tehran, Iran, between 2014 and 2019. The control group comprised 38 patients without IA infection matched for age and sex. The information obtained included the baseline characteristics of liver transplant patients, operative reports, post-transplantation characteristics of both groups and information about the fungal infection of the patient group. RESULTS The prevalence rate of IA among liver transplant recipients at Imam Khomeini Hospital was 2.7%. The risk factors of IA among studied patients included high serum creatinine levels before and post-transplant, renal replacement therapy, antithymocyte globulin induction therapy, post-transplant bile leakage, post-transplant hepatic artery thrombosis, repeated surgery within 30 d after the transplant, bacterial pneumonia before the aspergillosis diagnosis, receiving systemic antibiotics before the aspergillus infection, cytomegalovirus infection, and duration of post-transplant hospitalization in the intensive care unit. The most prevalent form of infection was invasive pulmonary aspergillosis, and the most common chest computed tomography scan findings were nodules, pleural effusion, and the halo sign. In the case group, prophylactic antifungal therapy was administered more frequently than in the control group. The antifungal therapy response rate at 12 wk was 63.7%. The 3- and 12- mo mortality rates of the patients with IA were 36.4% and 45.4%, respectively (compared with the mortality rate of the control group in 12 mo, which was zero). CONCLUSION In this study, the prevalence of IA among liver transplant recipients was relatively low. However, it was one of the leading causes of mortality following liver transplantation. Targeted antifungal therapy may be a factor in the low incidence of infections at our facility. Identifying the risk factors of IFIs, maintaining an elevated level of clinical suspicion, and initiating early antifungal treatment may significantly improve the prognosis and reduce the mortality rate of liver transplant recipients.
Collapse
Affiliation(s)
- Azam Farahani
- Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1478714466, Iran
| | - Fereshteh Ghiasvand
- Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1478714466, Iran
| | - Setareh Davoudi
- Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1478714466, Iran
| | - Zahra Ahmadinejad
- Liver Transplantation Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1478714466, Iran
| |
Collapse
|
8
|
van Rhijn N, Zhao C, Al-Furaji N, Storer I, Valero C, Gago S, Chown H, Baldin C, Fortune-Grant R, Shuraym HB, Ivanova L, Kniemeyer O, Krüger T, Bignell E, Goldman G, Amich J, Delneri D, Bowyer P, Brakhage A, Haas H, Bromley M. Functional analysis of the Aspergillus fumigatus kinome reveals a DYRK kinase involved in septal plugging is a novel antifungal drug target. RESEARCH SQUARE 2023:rs.3.rs-2960526. [PMID: 37398159 PMCID: PMC10312919 DOI: 10.21203/rs.3.rs-2960526/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
More than 10 million people suffer from lung diseases caused by the pathogenic fungus Aspergillus fumigatus. The azole class of antifungals represent first line therapeutics for most of these infections however resistance is rising. Identification of novel antifungal targets that, when inhibited, synergise with the azoles will aid the development of agents that can improve therapeutic outcomes and supress the emergence of resistance. As part of the A. fumigatus genome-wide knockout program (COFUN), we have completed the generation of a library that consists of 120 genetically barcoded null mutants in genes that encode the protein kinase cohort of A. fumigatus. We have employed a competitive fitness profiling approach (Bar-Seq), to identify targets which when deleted result in hypersensitivity to the azoles and fitness defects in a murine host. The most promising candidate from our screen is a previously uncharacterised DYRK kinase orthologous to Yak1 of Candida albicans, a TOR signalling pathway kinase involved in modulation of stress responsive transcriptional regulators. Here we show that the orthologue YakA has been repurposed in A. fumigatus to regulate blocking of the septal pore upon exposure to stress via phosphorylation of the Woronin body tethering protein Lah. Loss of YakA function reduces the ability of A. fumigatus to penetrate solid media and impacts growth in murine lung tissue. We also show that 1-ethoxycarbonyl-beta-carboline (1-ECBC), a compound previously shown to inhibit Yak1 in C. albicans prevents stress mediated septal spore blocking and synergises with the azoles to inhibit A. fumigatus growth.
Collapse
Affiliation(s)
| | - Can Zhao
- Manchester Fungal Infection Group
| | | | | | | | | | | | | | | | | | - Lia Ivanova
- Leibniz Institute for Natural Product Research and Infection Biology
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology
| | - Thomas Krüger
- Leibniz Institute for Natural Product Research and Infection Biology
| | | | - Gustavo Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Bloco Q, Universidade de São Paulo
| | | | | | | | - Axel Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology - University of Jena
| | - Hubertus Haas
- Institute of Molecular Biology/Biocenter, Innsbruck Medical University
| | | |
Collapse
|
9
|
Escamilla JE, January SE, Vazquez Guillamet R. Diagnosis and Treatment of Fungal Infections in Lung Transplant Recipients. Pathogens 2023; 12:pathogens12050694. [PMID: 37242364 DOI: 10.3390/pathogens12050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Fungal infections are a significant source of morbidity in the lung transplant population via direct allograft damage and predisposing patients to the development of chronic lung allograft dysfunction. Prompt diagnosis and treatment are imperative to limit allograft damage. This review article discusses incidence, risk factors, and symptoms with a specific focus on diagnostic and treatment strategies in the lung transplant population for fungal infections caused by Aspergillus, Candida, Coccidioides, Histoplasma, Blastomyces, Scedosporium/Lomentospora, Fusarium, and Pneumocystis jirovecii. Evidence for the use of newer triazole and inhaled antifungals to treat isolated pulmonary fungal infections in lung transplant recipients is also discussed.
Collapse
Affiliation(s)
- Jesus E Escamilla
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, MO 63110, USA
| | - Spenser E January
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, MO 63110, USA
| | - Rodrigo Vazquez Guillamet
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Rodrigo Vazquez Guillamet, 4921 Parkview Place, Saint Louis, MO 63110, USA
| |
Collapse
|
10
|
Stemler J, Többen C, Lass-Flörl C, Steinmann J, Ackermann K, Rath PM, Simon M, Cornely OA, Koehler P. Diagnosis and Treatment of Invasive Aspergillosis Caused by Non- fumigatus Aspergillus spp. J Fungi (Basel) 2023; 9:500. [PMID: 37108955 PMCID: PMC10141595 DOI: 10.3390/jof9040500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
With increasing frequency, clinical and laboratory-based mycologists are consulted on invasive fungal diseases caused by rare fungal species. This review aims to give an overview of the management of invasive aspergillosis (IA) caused by non-fumigatus Aspergillus spp.-namely A. flavus, A. terreus, A. niger and A. nidulans-including diagnostic and therapeutic differences and similarities to A. fumigatus. A. flavus is the second most common Aspergillus spp. isolated in patients with IA and the predominant species in subtropical regions. Treatment is complicated by its intrinsic resistance against amphotericin B (AmB) and high minimum inhibitory concentrations (MIC) for voriconazole. A. nidulans has been frequently isolated in patients with long-term immunosuppression, mostly in patients with primary immunodeficiencies such as chronic granulomatous disease. It has been reported to disseminate more often than other Aspergillus spp. Innate resistance against AmB has been suggested but not yet proven, while MICs seem to be elevated. A. niger is more frequently reported in less severe infections such as otomycosis. Triazoles exhibit varying MICs and are therefore not strictly recommended as first-line treatment for IA caused by A. niger, while patient outcome seems to be more favorable when compared to IA due to other Aspergillus species. A. terreus-related infections have been reported increasingly as the cause of acute and chronic aspergillosis. A recent prospective international multicenter surveillance study showed Spain, Austria, and Israel to be the countries with the highest density of A. terreus species complex isolates collected. This species complex seems to cause dissemination more often and is intrinsically resistant to AmB. Non-fumigatus aspergillosis is difficult to manage due to complex patient histories, varying infection sites and potential intrinsic resistances to antifungals. Future investigational efforts should aim at amplifying the knowledge on specific diagnostic measures and their on-site availability, as well as defining optimal treatment strategies and outcomes of non-fumigatus aspergillosis.
Collapse
Affiliation(s)
- Jannik Stemler
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50923 Cologne, Germany
| | - Christina Többen
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50923 Cologne, Germany
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, European Diamond Excellence Center for Medical Mycology (ECMM), Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Jörg Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, 90419 Nuremberg, Germany
- Institute of Medical Microbiology, University Hospital Essen, European Diamond Excellence Center for Medical Mycology (ECMM), 45147 Essen, Germany
| | - Katharina Ackermann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, 90419 Nuremberg, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, University Hospital Essen, European Diamond Excellence Center for Medical Mycology (ECMM), 45147 Essen, Germany
| | - Michaela Simon
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Oliver Andreas Cornely
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50923 Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, 50935 Cologne, Germany
| | - Philipp Koehler
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), European Diamond Excellence Center for Medical Mycology (ECMM), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
| |
Collapse
|
11
|
Melenotte C, Aimanianda V, Slavin M, Aguado JM, Armstrong-James D, Chen YC, Husain S, Van Delden C, Saliba F, Lefort A, Botterel F, Lortholary O. Invasive aspergillosis in liver transplant recipients. Transpl Infect Dis 2023:e14049. [PMID: 36929539 DOI: 10.1111/tid.14049] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Liver transplantation is increasing worldwide with underlying pathologies dominated by metabolic and alcoholic diseases in developed countries. METHODS We provide a narrative review of invasive aspergillosis (IA) in liver transplant (LT) recipients. We searched PubMed and Google Scholar for references without language and time restrictions. RESULTS The incidence of IA in LT recipients is low (1.8%), while mortality is high (∼50%). It occurs mainly early (<3 months) after LT. Some risk factors have been identified before (corticosteroid, renal, and liver failure), during (massive transfusion and duration of surgical procedure), and after transplantation (intensive care unit stay, re-transplantation, re-operation). Diagnosis can be difficult and therefore requires full radiological and clinicobiological collaboration. Accurate identification of Aspergillus species is recommended due to the cryptic species, and susceptibility testing is crucial given the increasing resistance of Aspergillus fumigatus to azoles. It is recommended to reduce the dose of tacrolimus (50%) and to closely monitor the trough level when introducing voriconazole, isavuconazole, and posaconazole. Surgery should be discussed on a case-by-case basis. Antifungal prophylaxis is recommended in high-risk patients. Environmental preventative measures should be implemented to prevent outbreaks of nosocomial aspergillosis in LT recipient units. CONCLUSION IA remains a very serious disease in LT patients and should be promptly sought and, if possible, prevented by clinicians when risk factors are identified.
Collapse
Affiliation(s)
- Cléa Melenotte
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker Enfants-Malades, AP-HP, Paris, France.,Faculté de Médecine, Université Paris-Cité, Paris, France
| | - Vishukumar Aimanianda
- Institut Pasteur, CNRS, National Reference Center for Invasive Mycoses and Antifungals, Molecular Mycology Unit, UMR2000, Paris, France
| | - Monica Slavin
- Department of Infectious Diseases, National Center for Infections in Cancer, Sir Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Oncology, Sir Peter MacCallum Cancer Center, University of Melbourne, Melbourne, Australia
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Universidad Complutense, Madrid, Spain
| | | | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Shahid Husain
- Department of Transplant Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Christian Van Delden
- Transplant Infectious Diseases Unit, University Hospitals Geneva, Geneva, Switzerland
| | - Faouzi Saliba
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Agnès Lefort
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France.,Service de Médecine Interne, Hôpital Beaujon, AP-HP, Clichy, France
| | - Francoise Botterel
- EA Dynamyc 7380 UPEC, ENVA, Faculté de Médecine, Créteil, France.,Unité de Parasitologie-Mycologie, Département de Virologie, Bactériologie-Hygiène, Mycologie-Parasitologie, DHU VIC, CHU Henri Mondor, Créteil, France
| | - Olivier Lortholary
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker Enfants-Malades, AP-HP, Paris, France.,Faculté de Médecine, Université Paris-Cité, Paris, France.,Institut Pasteur, CNRS, National Reference Center for Invasive Mycoses and Antifungals, Molecular Mycology Unit, UMR2000, Paris, France.,Paris University, Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades Hospital, AP-HP, IHU Imagine, Paris, France
| |
Collapse
|
12
|
Ledoux MP, Herbrecht R. Invasive Pulmonary Aspergillosis. J Fungi (Basel) 2023; 9:jof9020131. [PMID: 36836246 PMCID: PMC9962768 DOI: 10.3390/jof9020131] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Invasive pulmonary aspergillosis is growing in incidence, as patients at risk are growing in diversity. Outside the classical context of neutropenia, new risk factors are emerging or newly identified, such as new anticancer drugs, viral pneumonias and hepatic dysfunctions. Clinical signs remain unspecific in these populations and the diagnostic work-up has considerably expanded. Computed tomography is key to assess the pulmonary lesions of aspergillosis, whose various features must be acknowledged. Positron-emission tomography can bring additional information for diagnosis and follow-up. The mycological argument for diagnosis is rarely fully conclusive, as biopsy from a sterile site is challenging in most clinical contexts. In patients with a risk and suggestive radiological findings, probable invasive aspergillosis is diagnosed through blood and bronchoalveolar lavage fluid samples by detecting galactomannan or DNA, or by direct microscopy and culture for the latter. Diagnosis is considered possible with mold infection in lack of mycological criterion. Nevertheless, the therapeutic decision should not be hindered by these research-oriented categories, that have been completed by better adapted ones in specific settings. Survival has been improved over the past decades with the development of relevant antifungals, including lipid formulations of amphotericin B and new azoles. New antifungals, including first-in-class molecules, are awaited.
Collapse
|
13
|
Yang Q, Liu Z, Wang Y, Xie J, Zhang K, Dong Y, Wang YF. In vitro synergistic antifungal activities with caspofungin plus fluconazole or voricanazole against Candida species determined by Etest method. Int J Infect Dis 2022; 122:982-990. [PMID: 35907476 DOI: 10.1016/j.ijid.2022.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022] Open
Abstract
OBJECTIVES Increased resistance of Candida species, especially C.glabrata is problematic. Combination antifungal therapies were studied to solve the problem. METHODS In this study, combinations of caspofungin with fluconazole and voricanazole were evaluated in 28 Candida species (included 15 C.glabrata and 12 with FKS mutation) at 24 and 48 h by two Etest methods (direct cover method and MIC/MIC method). RESULTS For Candida isolates, direct cover method showed synergy of caspofungin-fluconazole and caspofungin-voriconazole against 12/28 (43%) isolates at 24 h, and against 16/28 (57%) isolates at 48 h. MIC/MIC method showed synergy of caspofungin-fluconazole and caspofungin-voriconazole against 11/28 (39%) and 12/28 (43%) isolates at 24 h, and against 16/28 (57%) and 17/28 (61%) isolates at 48 h, respectively. For C.glabrata, direct cover method showed synergy of caspofungin-fluconazole and caspofungin-voriconazole against 11/15 (73%) and 10/15 (67%) isolates at 24 h, and 11/15 (73%) and 13/15 (87%) isolates at 48 h, respectively. MIC/MIC method showed synergy of caspofungin-fluconazole and caspofungin-voriconazole against both 11/15 (73%) isolates at 24 h, and 10/15 (67%) and 14/15 (93%) isolates at 48 h, respectively. CONCLUSION A combination of caspofungin and fluconazole or voriconazole might be effective in infections due to Candida species, especially for C.glabrata with FKS mutation.
Collapse
Affiliation(s)
- Qianting Yang
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhiyong Liu
- Department of Clinical Laboratory, Southwest Hospital, Chongqing, China
| | - Yan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jiao Xie
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Kanghuai Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Yun F Wang
- Pathology & Laboratory Medicine, Emory University School Medicine, Atlanta, GA 30303, USA.
| |
Collapse
|
14
|
Shivasabesan G, Logan B, Brennan X, Lau C, Vaze A, Bennet M, Gorrie N, Mirdad F, Deveza R, Koo CM, McCluskey P, Macdonald P, Marriott D, Muthiah K, Dharan N. Disseminated Aspergillus lentulus infection in a heart transplant recipient: a case report. Clin Infect Dis 2022; 75:1235-1238. [PMID: 35275984 DOI: 10.1093/cid/ciac205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
We present the first published case of successfully treated disseminated Aspergillus lentulus infection in a solid organ transplant recipient with invasive pulmonary disease, endophthalmitis, and a cerebral abscess. This case highlights important challenges associated with treating Aspergillus lentulus, particularly regarding antifungal resistance and toxicities associated with long-term antifungal therapy.
Collapse
Affiliation(s)
| | - Bentley Logan
- Sydney Eye Hospital, Sydney, New South Wales, Australia
| | - Xavier Brennan
- St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - Cindy Lau
- St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia.,School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Anagha Vaze
- Sydney Eye Hospital, Sydney, New South Wales, Australia.,Save Sight Institute, Faculty of Medicine & Health University of Sydney
| | - Michael Bennet
- St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia.,Department of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Natasha Gorrie
- St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - Feras Mirdad
- St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - Ricardo Deveza
- St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - Chung Mo Koo
- St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - Peter McCluskey
- Sydney Eye Hospital, Sydney, New South Wales, Australia.,Save Sight Institute, Faculty of Medicine & Health University of Sydney
| | - Peter Macdonald
- St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - Deborah Marriott
- St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - Kavitha Muthiah
- St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - Nila Dharan
- St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia.,Kirby Institute, University of New South Wales Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
16
|
Chen F, Zhao Y, Shen C, Han L, Chen X, Zhang J, Xia Q, Qian Y. Next generation sequencing for diagnosis of central nervous system aspergillosis in liver transplant recipients. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1071. [PMID: 34422983 PMCID: PMC8339870 DOI: 10.21037/atm-21-92] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/08/2021] [Indexed: 01/19/2023]
Abstract
Background Fungal encephalitis is uncommon and sometimes fatal in liver transplant (LT) recipients. Early diagnosis of central nervous system (CNS) fungal infections, especially aspergillosis, is difficult based on routine tests of cerebrospinal fluid (CSF) alone. Next-generation sequencing (NGS) as a new tool may help in this respect. Methods Shotgun metagenomics was used to detect pathogens in CSF of patients, who were clinically suspected of CNS infection. Sequencing was performed at BGIseq-50 platform (BGI, Shenzhen). Results NGS technique identified Aspergillus in CSF of 5 patients, who were suspected of CNS infection, although clinical symptoms of these patients varied dramatically. The resulting sequence reads corresponding to Aspergillus species ranged from 2 to 25, with genomic coverage ranging from 0.0003% to 0.0036%. Rapid identification of Aspergillus enabled early appropriate antifungal therapy, although 4 patients eventually died of severe infection. Conclusions This is the first study to highlight the utility of NGS in early diagnosis of CNS aspergillosis in LT recipients. This new tool may be helpful in improving the diagnosis of CNS aspergillosis.
Collapse
Affiliation(s)
- Fang Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yujing Zhao
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuan Shen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Longzhi Han
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaosong Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jianjun Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yongbing Qian
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
17
|
Preliver Transplant Aspergillus Colonization: An Ounce of Prevention. Transplantation 2021; 105:474-475. [PMID: 32301908 DOI: 10.1097/tp.0000000000003277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Wilmes D, Coche E, Rodriguez-Villalobos H, Kanaan N. Fungal pneumonia in kidney transplant recipients. Respir Med 2021; 185:106492. [PMID: 34139578 DOI: 10.1016/j.rmed.2021.106492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Fungal pneumonia is a dreaded complication encountered after kidney transplantation, complicated by increased mortality and often associated with graft failure. Diagnosis can be challenging because the clinical presentation is non-specific and diagnostic tools have limited sensitivity and specificity in kidney transplant recipients and must be interpreted in the context of the clinical setting. Management is difficult due to the increased risk of dissemination and severity, multiple comorbidities, drug interactions and reduced immunosuppression which should be applied as an important adjunct to therapy. This review will focus on the main causes of fungal pneumonia in kidney transplant recipients including Pneumocystis, Aspergillus, Cryptococcus, mucormycetes and Histoplasma. Epidemiology, clinical presentation, laboratory and radiographic features, specific characteristics will be discussed with an update on diagnostic procedures and treatment.
Collapse
Affiliation(s)
- D Wilmes
- Division of Internal Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - E Coche
- Division of Radiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - H Rodriguez-Villalobos
- Division of Microbiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - N Kanaan
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
19
|
Yang C, Xi Y, Chen WY, Sang L, Liu DD, Zhang R, Chen SB, Zhang J, Pan JY, Xv YH, Nong LB, Li YM, Liu XQ. Conversion ratio of tacrolimus switching from intravenous infusion to oral administration after lung transplantation. J Thorac Dis 2020; 12:4292-4298. [PMID: 32944341 PMCID: PMC7475590 DOI: 10.21037/jtd-20-1191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background To investigate the conversion ratio of tacrolimus switching from intravenous infusion to oral administration in patients after lung transplantation. Methods We retrospectively recruited patients received lung transplantation in the First Affiliated Hospital of Guangzhou Medical Hospital from January 2015 to June 2019. The blood concentration of tacrolimus administrated through intravenous infusion and oral administration were collected. The blood concentration, concentration/dose ratio (C/D), and (C/Dpo)/(C/Div) ratio were analyzed to explore the conversion ratio of tacrolimus switching from intravenous infusion to oral administration, as combined medication of tacrolimus and caspofungin were used. Results The concentration of intravenously administered tacrolimus was significantly higher than that of oral administration; the C/D ratio of intravenously administrated tacrolimus (C/Div) was significantly higher than that of the oral administration (C/Dpo). There was a significant correlation between C/Dpo and C/Div (R2 =0.774, P<0.001). The conversion ratio of tacrolimus from intravenous administration to oral administration was 1:7.4, as combined medication of tacrolimus and caspofungin were used. Conclusions The conversion ratio of tacrolimus switching from intravenous to oral administration is 1:7.4 in the combination treatment of tacrolimus and caspofungin after lung transplantation.
Collapse
Affiliation(s)
- Chun Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yin Xi
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen-Ying Chen
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Lin Sang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dong-Dong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Si-Bei Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie-Yi Pan
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yong-Hao Xv
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin-Bo Nong
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi-Min Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Qing Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Prophylaxis and Treatment of Invasive Aspergillosis: Who and How of Prophylaxis, Treatment, and New Therapies. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2020. [DOI: 10.1007/s40506-020-00213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Gundlach JP, Günther R, Fickenscher H, Both M, Röcken C, Becker T, Braun F. Lethal thrombosis of the iliac artery caused by Aspergillus fumigatus after liver transplantation: case report and review of the literature. BMC Surg 2019; 19:200. [PMID: 31881871 PMCID: PMC6935117 DOI: 10.1186/s12893-019-0668-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Background Aspergillus fumigatus infections frequently occur after solid organ transplantation. Yet, a fungal thrombosis after liver transplantation is an exceptional finding. Case presentation We report on a 44-year-old female with an aspergillosis after liver transplantation for autoimmune hepatitis. On postoperative day (pod) 7, seizures occurred and imaging diagnostics revealed an intracranial lesion. Anidulafungin was initiated in suspicion of mycosis and switched to voriconazole on suspicion of an Aspergillus spp. infection. Progression of the cerebral lesion prompted craniotomy (pod 48) and the aspergillosis was verified. The patient was discharged with oral voriconazole therapy. Re-admission was necessary with acute-on-chronic renal failure after a tacrolimus overdose on pod 130. The patient received a pelvic angiography due to a temperature difference in the legs. It showed a complete iliac artery thrombosis which was subsecutively surgically removed. The histopathological examination revealed an Aspergillus fumigatus conglomerate. The patient died on pod 210 due to systemic aspergillosis. Conclusion The acute development of focal neurologic deficits is common in patients with an aspergillosis of the brain. Nevertheless, arterial thrombosis after Aspergillus fumigatus is less frequent and, to the best of our knowledge, its occurrence after liver transplantation has not yet been reported so far. Due to its rarity, we added a review of the literature to this manuscript.
Collapse
Affiliation(s)
- Jan-Paul Gundlach
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, and Christian-Albrecht University (CAU), Arnold-Heller-Str. 3, 24105, Kiel, Germany.
| | - Rainer Günther
- Department of Internal Medicine I, UKSH and CAU, Campus Kiel, Kiel, Germany
| | - Helmut Fickenscher
- Department of Infection Medicine, UKSH and CAU, Campus Kiel, Kiel, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, UKSH and CAU, Campus Kiel, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, UKSH and CAU, Campus Kiel, Kiel, Germany
| | - Thomas Becker
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, and Christian-Albrecht University (CAU), Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - Felix Braun
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, and Christian-Albrecht University (CAU), Arnold-Heller-Str. 3, 24105, Kiel, Germany
| |
Collapse
|
22
|
Ebrahimi A, Dashti H, Mohammadpour Z, Ahmadinejad Z. Invasive Fungal Infections With Good Survival Following Liver Transplant: A Single-Center Experience From a Developing Country. EXP CLIN TRANSPLANT 2019; 18:196-200. [PMID: 31724926 DOI: 10.6002/ect.2019.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Invasive fungal infection following liver transplant is considered as one of the important factors influencing morbidity and mortality among liver transplant recipients. The aim of the present study was to describe the prevalence of invasive fungal infections and their predisposing factors in a singlecenter cohort of patients who received liver transplant. MATERIALS AND METHODS For this study, 250 adult patients undergoing orthotopic liver transplant between March 2010 and March 2015 were enrolled. All patients were followed prospectively for infections. RESULTS The diagnosis of invasive fungal infection was made in 15 patients (6%). One patient had 2 episodes of fungal infection, and reoperation was performed for 3 patients. Invasive aspergillosis developed in 8 patients (53.3%),followed by Candida species infection in 3 patients (20%) and cryptococcosis in 2 patients (13.3%).The main predisposing factors were renal failure (12/15) and positive history of rejection (11/15). Other risk factors for development of invasive fungal infections were choledochojejunostomy in 3 patients (20%), bile leaks in 3 patients (20%), and pretransplant steroid use in 2 patients (11.8%). Two patients (13.3%) died due to invasive fungal infections. CONCLUSIONS In this single-center series of liver transplant recipients, the incidence of invasive fungal infections was relatively low, probably due to the universal prophylaxis with fluconazole and limited use of the broad-spectrum antibiotics. Early diagnosis and treatment of invasive fungal infections could lead to a better prognosis for liver transplant recipients with invasive fungal infections.
Collapse
Affiliation(s)
- Amirpasha Ebrahimi
- >From the Liver Transplantation Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
23
|
Tavakoli M, Yazdani Charati J, Hedayati MT, Moosazadeh M, Badiee P, Seyedmousavi S, Denning DW. National trends in incidence, prevalence and disability-adjusted life years of invasive aspergillosis in Iran: a systematic review and meta-analysis. Expert Rev Respir Med 2019; 13:1121-1134. [PMID: 31426666 DOI: 10.1080/17476348.2019.1657835] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives: We aimed to study the epidemiology, prevalence, incidence, clinical manifestations, underlying diseases, treatments, outcomes, and societal impact through disability-adjusted life years (DALYs) of IA in Iran. Methods: A random-effect meta-analytic model was fitted to estimate the prevalence and incidence of IA in Iran. We also calculated DALYs. Results: Out of 79 published studies during the past 25 years from Iran, 23 met the inclusion criteria. A total of 2947 patients were included, of whom 396 (13.4%) patients were diagnosed with IA according to EORTC/MSG and ICU criteria. The main underlying condition for IA was hematologic disorders (39.4%). A. flavus 86 (43%) was the most common isolate. The pooled prevalence and incidence rates were 20.5 (95% CI 12.5 to 29.9) and 4.8 (95% CI 2.3-8.2) per 100,000 population, respectively. Total DALYs was estimated 164.13 per 100,000 population. YLLs constitute the majority of IA burden compared to YLDs (162.80 YLLs/100,000 population vs 1.33 YLDs per 100,000 population). The highest YLL rates were found in people aged 45-49 (62.9 YLLs/100,000 population) and 30-34 years (45.2 YLLs/100,000 population), respectively. Conclusion: This study indicates an increasing burden of IA in Iran, despite the extensive use of prophylaxis, challenging the public health, especially immunocompromised patients.
Collapse
Affiliation(s)
- Mahin Tavakoli
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences , Sari , Iran
| | - Jamshid Yazdani Charati
- Department of statistic, Faculty of Health, Mazandaran University of Medical Sciences , Sari , Iran
| | - Mohammad T Hedayati
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences , Sari , Iran.,Department of Medical mycology, Mazandaran University of Medical Sciences , Sari , Iran
| | - Mahmood Moosazadeh
- Health Sciences Research center, Addiction Institute, Mazandaran University of Medical Sciences , Sari , Iran
| | - Parisa Badiee
- Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Seyedmojtaba Seyedmousavi
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences , Sari , Iran.,Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health , Bethesda , MD , USA
| | | |
Collapse
|
24
|
Warris A, Lehrnbecher T, Roilides E, Castagnola E, Brüggemann RJM, Groll AH. ESCMID-ECMM guideline: diagnosis and management of invasive aspergillosis in neonates and children. Clin Microbiol Infect 2019; 25:1096-1113. [PMID: 31158517 DOI: 10.1016/j.cmi.2019.05.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 01/01/2023]
Abstract
SCOPE Presenting symptoms, distributions and patterns of diseases and vulnerability to invasive aspergillosis (IA) are similar between children and adults. However, differences exist in the epidemiology and underlying conditions, the usefulness of newer diagnostic tools, the pharmacology of antifungal agents and in the evidence from interventional phase 3 clinical trials. Therefore, the European Society for Clinical Microbiology and Infectious Diseases (ESCMID) and the European Confederation of Medical Mycology (ECMM) have developed a paediatric-specific guideline for the diagnosis and management of IA in neonates and children. METHODS Review and discussion of the scientific literature and grading of the available quality of evidence was performed by the paediatric subgroup of the ESCMID-ECMM-European Respiratory Society (ERS) Aspergillus disease guideline working group, which was assigned the mandate for the development of neonatal- and paediatric-specific recommendations. QUESTIONS Questions addressed by the guideline included the epidemiology of IA in neonates and children; which paediatric patients may benefit from antifungal prophylaxis; how to diagnose IA in neonates and children; which antifungal agents are available for use in neonates and children; which antifungal agents are suitable for prophylaxis and treatment of IA in neonates and children; what is the role of therapeutic drug monitoring of azole antifungals; and which management strategies are suitable to be used in paediatric patients. This guideline provides recommendations for the diagnosis, prevention and treatment of IA in the paediatric population, including neonates. The aim of this guideline is to facilitate optimal management of neonates and children at risk for or diagnosed with IA.
Collapse
Affiliation(s)
- A Warris
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands.
| | - T Lehrnbecher
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands
| | - E Roilides
- Infectious Diseases Unit, 3rd Department of Paediatrics, Faculty of Medicine, Aristotle University 96 School of Health Sciences, Thessaloniki, Greece; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands
| | - E Castagnola
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini Children's Hospital, Genoa, Italy; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG)
| | - R J M Brüggemann
- Radboud Center for Infectious Diseases, Radboud University Medical Centre, Center of Expertise in Mycology Radboudumc/CWZ, European Confederation of Medical Mycology (ECMM) Excellence Center of Medical Mycology, Nijmegen, the Netherlands; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG)
| | - A H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Paediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands
| |
Collapse
|
25
|
Husain S, Camargo JF. Invasive Aspergillosis in solid-organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13544. [PMID: 30900296 DOI: 10.1111/ctr.13544] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Abstract
These updated AST-IDCOP guidelines provide information on epidemiology, diagnosis, and management of Aspergillus after organ transplantation. Aspergillus is the most common invasive mold infection in solid-organ transplant (SOT) recipients, and it is the most common invasive fungal infection among lung transplant recipients. Time from transplant to diagnosis of invasive aspergillosis (IA) is variable, but most cases present within the first year post-transplant, with shortest time to onset among liver and heart transplant recipients. The overall 12-week mortality of IA in SOT exceeds 20%; prognosis is worse among those with central nervous system involvement or disseminated disease. Bronchoalveolar lavage galactomannan is preferred for the diagnosis of IA in lung and non-lung transplant recipients, in combination with other diagnostic modalities (eg, chest CT scan, culture). Voriconazole remains the drug of choice to treat IA, with isavuconazole and lipid formulations of amphotericin B regarded as alternative agents. The role of combination antifungals for primary therapy of IA remains controversial. Either universal prophylaxis or preemptive therapy is recommended in lung transplant recipients, whereas targeted prophylaxis is favored in liver and heart transplant recipients. In these guidelines, we also discuss newer antifungals and diagnostic tests, antifungal susceptibility testing, and special patient populations.
Collapse
Affiliation(s)
- Shahid Husain
- Division of Infectious Diseases, Multi-Organ Transplant Unit, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jose F Camargo
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
26
|
How We Approach Combination Antifungal Therapy for Invasive Aspergillosis and Mucormycosis in Transplant Recipients. Transplantation 2019; 102:1815-1823. [PMID: 29975240 DOI: 10.1097/tp.0000000000002353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Invasive aspergillosis and mucormycosis are life-threatening infections in solid organ and hematopoietic cell transplant recipients. Despite medical advancements in the care of these patients and the availability of new mold-active drugs, the outcomes remain suboptimal. Therefore, there has been increased interest in the use of combination antifungal therapy, in hopes that leveraging the possible in vitro synergy of these agents will improve the prognosis of invasive mold disease. However, there has been a large disconnect between the results of experimental and clinical investigations, as clinical studies have not unequivocally demonstrated the superiority of combination therapy over monotherapy. This is particularly true for mucormycosis, where the rarity of the condition has made it nearly impossible to prospectively study novel therapeutic strategies. We review the current standard of antifungal therapy and the preclinical and clinical data addressing the merit of combination therapy, and we provide guidance to optimize the management of these mycoses.
Collapse
|
27
|
Abstract
Mold infections carry a substantial clinical and economic burden in solid organ transplant (SOT) recipients with a high overall mortality of near 30%. The most important pathogens include Aspergillus, the Zygomycetes, Fusarium, Scedosporium/Pseudallescheria, and the dematiaceous (dark) molds. Risk factors for the infections vary by transplant type but include degree of immune suppression and loss of skin or mucosal integrity. Correct diagnosis usually requires histopathology and/or culture. Management often requires a multidisciplinary team approach with combined antifungal and surgical therapies. This article reviews the epidemiology, risk factors, microbiology, diagnostic, and treatment approach to mold infections in SOT recipients.
Collapse
|
28
|
A Case of Invasive Gastrointestinal Mycotypha Infection in a Patient with Neutropenia. Case Rep Infect Dis 2018; 2018:5864175. [PMID: 30245896 PMCID: PMC6139221 DOI: 10.1155/2018/5864175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/07/2018] [Indexed: 11/17/2022] Open
Abstract
Gastrointestinal mucormycosis is a rare life-threatening infection to which neutropenic patients are especially vulnerable. Mycotypha microspora is a mucormycete that has not been described as a human pathogen. We discuss the successful eradication of gastrointestinal Mycotypha microspora in a neutropenic patient with simultaneous pulmonary Aspergillus fumigatus infection.
Collapse
|
29
|
Jenks JD, Hoenigl M. Treatment of Aspergillosis. J Fungi (Basel) 2018; 4:jof4030098. [PMID: 30126229 PMCID: PMC6162797 DOI: 10.3390/jof4030098] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023] Open
Abstract
Infections caused by Aspergillus spp. remain associated with high morbidity and mortality. While mold-active antifungal prophylaxis has led to a decrease of occurrence of invasive aspergillosis (IA) in those patients most at risk for infection, breakthrough IA does occur and remains difficult to diagnose due to low sensitivities of mycological tests for IA. IA is also increasingly observed in other non-neutropenic patient groups, where clinical presentation is atypical and diagnosis remains challenging. Early and targeted systemic antifungal treatment remains the most important predictive factor for a successful outcome in immunocompromised individuals. Recent guidelines recommend voriconazole and/or isavuconazole for the primary treatment of IA, with liposomal amphotericin B being the first alternative, and posaconazole, as well as echinocandins, primarily recommended for salvage treatment. Few studies have evaluated treatment options for chronic pulmonary aspergillosis (CPA), where long-term oral itraconazole or voriconazole remain the treatment of choice.
Collapse
Affiliation(s)
- Jeffrey D Jenks
- Department of Medicine, University of California⁻San Diego, San Diego, CA 92103, USA.
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Medicine, University of California⁻San Diego, San Diego, CA 92103, USA.
- Section of Infectious Diseases and Tropical Medicine and Division of Pulmonology, Medical University of Graz, Graz 8036, Austria.
| |
Collapse
|
30
|
Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, Lass-Flörl C, Lewis RE, Munoz P, Verweij PE, Warris A, Ader F, Akova M, Arendrup MC, Barnes RA, Beigelman-Aubry C, Blot S, Bouza E, Brüggemann RJM, Buchheidt D, Cadranel J, Castagnola E, Chakrabarti A, Cuenca-Estrella M, Dimopoulos G, Fortun J, Gangneux JP, Garbino J, Heinz WJ, Herbrecht R, Heussel CP, Kibbler CC, Klimko N, Kullberg BJ, Lange C, Lehrnbecher T, Löffler J, Lortholary O, Maertens J, Marchetti O, Meis JF, Pagano L, Ribaud P, Richardson M, Roilides E, Ruhnke M, Sanguinetti M, Sheppard DC, Sinkó J, Skiada A, Vehreschild MJGT, Viscoli C, Cornely OA. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 2018; 24 Suppl 1:e1-e38. [PMID: 29544767 DOI: 10.1016/j.cmi.2018.01.002] [Citation(s) in RCA: 860] [Impact Index Per Article: 143.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
The European Society for Clinical Microbiology and Infectious Diseases, the European Confederation of Medical Mycology and the European Respiratory Society Joint Clinical Guidelines focus on diagnosis and management of aspergillosis. Of the numerous recommendations, a few are summarized here. Chest computed tomography as well as bronchoscopy with bronchoalveolar lavage (BAL) in patients with suspicion of pulmonary invasive aspergillosis (IA) are strongly recommended. For diagnosis, direct microscopy, preferably using optical brighteners, histopathology and culture are strongly recommended. Serum and BAL galactomannan measures are recommended as markers for the diagnosis of IA. PCR should be considered in conjunction with other diagnostic tests. Pathogen identification to species complex level is strongly recommended for all clinically relevant Aspergillus isolates; antifungal susceptibility testing should be performed in patients with invasive disease in regions with resistance found in contemporary surveillance programmes. Isavuconazole and voriconazole are the preferred agents for first-line treatment of pulmonary IA, whereas liposomal amphotericin B is moderately supported. Combinations of antifungals as primary treatment options are not recommended. Therapeutic drug monitoring is strongly recommended for patients receiving posaconazole suspension or any form of voriconazole for IA treatment, and in refractory disease, where a personalized approach considering reversal of predisposing factors, switching drug class and surgical intervention is also strongly recommended. Primary prophylaxis with posaconazole is strongly recommended in patients with acute myelogenous leukaemia or myelodysplastic syndrome receiving induction chemotherapy. Secondary prophylaxis is strongly recommended in high-risk patients. We strongly recommend treatment duration based on clinical improvement, degree of immunosuppression and response on imaging.
Collapse
Affiliation(s)
- A J Ullmann
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J M Aguado
- Infectious Diseases Unit, University Hospital Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - S Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D W Denning
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; European Confederation of Medical Mycology (ECMM)
| | - A H Groll
- Department of Paediatric Haematology/Oncology, Centre for Bone Marrow Transplantation, University Children's Hospital Münster, Münster, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - K Lagrou
- Department of Microbiology and Immunology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lass-Flörl
- Institute of Hygiene, Microbiology and Social Medicine, ECMM Excellence Centre of Medical Mycology, Medical University Innsbruck, Innsbruck, Austria; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R E Lewis
- Infectious Diseases Clinic, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - P Munoz
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - P E Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - A Warris
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - F Ader
- Department of Infectious Diseases, Hospices Civils de Lyon, Lyon, France; Inserm 1111, French International Centre for Infectious Diseases Research (CIRI), Université Claude Bernard Lyon 1, Lyon, France; European Respiratory Society (ERS)
| | - M Akova
- Department of Medicine, Section of Infectious Diseases, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M C Arendrup
- Department Microbiological Surveillance and Research, Statens Serum Institute, Copenhagen, Denmark; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R A Barnes
- Department of Medical Microbiology and Infectious Diseases, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; European Confederation of Medical Mycology (ECMM)
| | - C Beigelman-Aubry
- Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; European Respiratory Society (ERS)
| | - S Blot
- Department of Internal Medicine, Ghent University, Ghent, Belgium; Burns, Trauma and Critical Care Research Centre, University of Queensland, Brisbane, Australia; European Respiratory Society (ERS)
| | - E Bouza
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R J M Brüggemann
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG)
| | - D Buchheidt
- Medical Clinic III, University Hospital Mannheim, Mannheim, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Cadranel
- Department of Pneumology, University Hospital of Tenon and Sorbonne, University of Paris, Paris, France; European Respiratory Society (ERS)
| | - E Castagnola
- Infectious Diseases Unit, Istituto Giannina Gaslini Children's Hospital, Genoa, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - A Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India; European Confederation of Medical Mycology (ECMM)
| | - M Cuenca-Estrella
- Instituto de Salud Carlos III, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - G Dimopoulos
- Department of Critical Care Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; European Respiratory Society (ERS)
| | - J Fortun
- Infectious Diseases Service, Ramón y Cajal Hospital, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J-P Gangneux
- Univ Rennes, CHU Rennes, Inserm, Irset (Institut de Recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Garbino
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - W J Heinz
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R Herbrecht
- Department of Haematology and Oncology, University Hospital of Strasbourg, Strasbourg, France; ESCMID Fungal Infection Study Group (EFISG)
| | - C P Heussel
- Diagnostic and Interventional Radiology, Thoracic Clinic, University Hospital Heidelberg, Heidelberg, Germany; European Confederation of Medical Mycology (ECMM)
| | - C C Kibbler
- Centre for Medical Microbiology, University College London, London, UK; European Confederation of Medical Mycology (ECMM)
| | - N Klimko
- Department of Clinical Mycology, Allergy and Immunology, North Western State Medical University, St Petersburg, Russia; European Confederation of Medical Mycology (ECMM)
| | - B J Kullberg
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lange
- International Health and Infectious Diseases, University of Lübeck, Lübeck, Germany; Clinical Infectious Diseases, Research Centre Borstel, Leibniz Center for Medicine & Biosciences, Borstel, Germany; German Centre for Infection Research (DZIF), Tuberculosis Unit, Hamburg-Lübeck-Borstel-Riems Site, Lübeck, Germany; European Respiratory Society (ERS)
| | - T Lehrnbecher
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany; European Confederation of Medical Mycology (ECMM)
| | - J Löffler
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Lortholary
- Department of Infectious and Tropical Diseases, Children's Hospital, University of Paris, Paris, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Maertens
- Department of Haematology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Marchetti
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland; Department of Medicine, Ensemble Hospitalier de la Côte, Morges, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - L Pagano
- Department of Haematology, Universita Cattolica del Sacro Cuore, Roma, Italy; European Confederation of Medical Mycology (ECMM)
| | - P Ribaud
- Quality Unit, Pôle Prébloc, Saint-Louis and Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - M Richardson
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - E Roilides
- Infectious Diseases Unit, 3rd Department of Paediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece; Hippokration General Hospital, Thessaloniki, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Ruhnke
- Department of Haematology and Oncology, Paracelsus Hospital, Osnabrück, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Sanguinetti
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Rome, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D C Sheppard
- Division of Infectious Diseases, Department of Medicine, Microbiology and Immunology, McGill University, Montreal, Canada; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Sinkó
- Department of Haematology and Stem Cell Transplantation, Szent István and Szent László Hospital, Budapest, Hungary; ESCMID Fungal Infection Study Group (EFISG)
| | - A Skiada
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M J G T Vehreschild
- Department I of Internal Medicine, ECMM Excellence Centre of Medical Mycology, University Hospital of Cologne, Cologne, Germany; Centre for Integrated Oncology, Cologne-Bonn, University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; European Confederation of Medical Mycology (ECMM)
| | - C Viscoli
- Ospedale Policlinico San Martino and University of Genova (DISSAL), Genova, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O A Cornely
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; Clinical Trials Center Cologne, University Hospital of Cologne, Cologne, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM); ESCMID European Study Group for Infections in Compromised Hosts (ESGICH).
| |
Collapse
|
31
|
Esendagli D, Serifoglu I, Savas Bozbas S, Tepeoglu M, Akcay S, Haberal M. Radiologically Occult Invasive Pulmonary Aspergillosis in a Patient With Liver Transplant. EXP CLIN TRANSPLANT 2018. [PMID: 29528022 DOI: 10.6002/ect.tond-tdtd2017.p55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Invasive pulmonary aspergillosis is an infection seen in patients receiving intensive immunosuppressive regimens, such as transplant recipients. Some risk factors that increase the incidence of infection have been determined, and patients defined as having high risk are recommended to take antifungal prophylaxis and be monitored closely. Here, we present a liver transplant patient with mild respiratory symptoms and a normal chest radiography on day 26 posttransplant. However, he had acute renal failure and underwent hemodialysis, which are both defined to increase significantly the risk of aspergillosis. Although the radiographic scan was initially normal, thorax tomography and later bronchoscopy showed findings compatible with pulmonary aspergillosis, and the patient was started on antifungal treatment. The nonspecific mild symptoms and an initial normal radiology can make diagnosis of invasive fungal infections difficult; thus caution and close follow-up of high-risk patients should be performed.
Collapse
Affiliation(s)
- Dorina Esendagli
- Department of Pulmonary Diseases, Baskent University Faculty of Medicine, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
32
|
Blanchard E, Gabriel F, Jeanne-Leroyer C, Servant V, Dumas PY. [Invasive pulmonary aspergillosis]. Rev Mal Respir 2018; 35:171-187. [PMID: 29478757 DOI: 10.1016/j.rmr.2018.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/11/2017] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Invasive pulmonary aspergillosis (IPA) is an important cause of morbidity and mortality in a wide range of patients. Early recognition and diagnosis have become a major focus in improving the management and outcomes of this life-threatening disease. BACKGROUND IPA typically occurs during a period of severe and prolonged neutropenia. However, solid organ transplant recipients, patients under immunosuppressive therapy or hospitalized in intensive care units are also at risk. The diagnosis is suspected in the presence of a combination of clinical, biological and CT scan evidence. The microbiological diagnostic strategy should be adapted to the patient's profile. Conventional methods with culture and species identification remain the standard but early diagnosis has been improved by the use of biomarkers such as galactomannan antigen in serum or in bronchoalveolar lavage. OUTLOOK The epidemiology of IPA should change with the increased use of antifungal prophylactic regimens and the arrival of targeted therapies. Other microbiological tools, such as PCR and other biomarkers, are currently being assessed. CONCLUSIONS IPA must be considered in a wide range of patients. Its prognosis remains poor despite progress in the microbiological diagnosis and therapeutic management.
Collapse
Affiliation(s)
- E Blanchard
- Service des maladies respiratoires, CHU de Bordeaux, 33604 Bordeaux, France.
| | - F Gabriel
- Service de parasitologie et de mycologie, CHU de Bordeaux, 33604 Bordeaux, France
| | - C Jeanne-Leroyer
- Service d'hygiène hospitalière, CHU de Bordeaux, 33604 Bordeaux, France
| | - V Servant
- Service de pharmacie à usage intérieur, groupe hospitalier Sud, CHU de Bordeaux, 33604 Bordeaux, France
| | - P-Y Dumas
- Service d'hématologie clinique et de thérapie cellulaire, CHU de Bordeaux, 33604 Bordeaux, France
| |
Collapse
|
33
|
Job KM, Olson J, Stockmann C, Constance JE, Enioutina EY, Rower JE, Linakis MW, Balch AH, Yu T, Liu X, Thorell EA, Sherwin CMT. Pharmacodynamic studies of voriconazole: informing the clinical management of invasive fungal infections. Expert Rev Anti Infect Ther 2017; 14:731-46. [PMID: 27355512 DOI: 10.1080/14787210.2016.1207526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Voriconazole is a broad-spectrum antifungal agent commonly used to treat invasive fungal infections (IFI), including aspergillosis, candidiasis, Scedosporium infection, and Fusarium infection. IFI often occur in immunocompromised patients, leading to increased morbidity and mortality. AREAS COVERED The objective of this review is to summarize the pharmacodynamic properties of voriconazole and to provide considerations for potential optimal dosing strategies. Studies have demonstrated superior clinical response when an AUC/MIC >25 or Cmin/MIC >1 is attained in adult patients, correlating to a trough concentration range as narrow as 2-4.5 mg/L; however, these targets are poorly established in the pediatric population. Topics in this discussion include voriconazole use in multiple age groups, predisposing patient factors for IFI, and considerations for clinicians managing IFI. Expert commentary: The relationship between voriconazole dosing and exposure is not well defined due to the large inter- and intra-subject variability. Development of comprehensive decision support tools for individualizing dosing, particularly in children who require higher dosing, will help to increase the probability of achieving therapeutic efficacy and decrease sub-therapeutic dosing and adverse events.
Collapse
Affiliation(s)
- Kathleen M Job
- a Division of Clinical Pharmacology , University of Utah , Salt Lake City , UT , USA
| | - Jared Olson
- b Pharmacy, Primary Children's Hospital, Intermountain Healthcare , University of Utah , Salt Lake City , UT , USA
| | - Chris Stockmann
- c Division of Pediatric Infectious Diseases, Department of Pediatrics , University of Utah , Salt Lake City , UT , USA
| | - Jonathan E Constance
- a Division of Clinical Pharmacology , University of Utah , Salt Lake City , UT , USA
| | - Elena Y Enioutina
- a Division of Clinical Pharmacology , University of Utah , Salt Lake City , UT , USA.,d Division of Microbiology and Immunology, Department of Pathology , University of Utah , Salt Lake City , UT , USA
| | - Joseph E Rower
- a Division of Clinical Pharmacology , University of Utah , Salt Lake City , UT , USA
| | - Matthew W Linakis
- a Division of Clinical Pharmacology , University of Utah , Salt Lake City , UT , USA
| | - Alfred H Balch
- a Division of Clinical Pharmacology , University of Utah , Salt Lake City , UT , USA
| | - Tian Yu
- a Division of Clinical Pharmacology , University of Utah , Salt Lake City , UT , USA
| | - Xiaoxi Liu
- a Division of Clinical Pharmacology , University of Utah , Salt Lake City , UT , USA
| | - Emily A Thorell
- c Division of Pediatric Infectious Diseases, Department of Pediatrics , University of Utah , Salt Lake City , UT , USA
| | - Catherine M T Sherwin
- a Division of Clinical Pharmacology , University of Utah , Salt Lake City , UT , USA.,e Department of Pharmacology and Toxicology, College of Pharmacy , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|
34
|
Lohrmann GM, Vucicevic D, Lawrence R, Steidley DE, Scott RL, Kusne S, Blair JE. Single-center experience of antifungal prophylaxis for coccidioidomycosis in heart transplant recipients within an endemic area. Transpl Infect Dis 2017; 19. [PMID: 28695649 DOI: 10.1111/tid.12744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/27/2017] [Accepted: 04/19/2017] [Indexed: 11/29/2022]
Abstract
In endemic regions, coccidioidomycosis causes substantial morbidity and mortality for patients receiving solid organ transplants. We aimed to demonstrate the effect of antifungal coccidioidal prophylaxis in heart transplant (HT) recipients. We retrospectively reviewed the electronic health records of all patients who received HTs between October 19, 2005, and December 13, 2014. We collected information regarding antifungal regimens and determined whether patients subsequently developed infections. Our 174-person cohort all received antifungal prophylaxis for at least 6 months (mean follow-up, 53.8 months). One proven and one probable coccidioidal infection (each, 0.6%) occurred during the study period. The incidence of coccidioidomycosis was 0.6% at 1 year and 2.3% at 5 years. No cases of proven coccidioidomycosis occurred within 2 years after transplantation. No patients developed disseminated disease, and no sentinel events were attributed to coccidioidomycosis. Both fluconazole and voriconazole were well tolerated. In the absence of intolerance or contraindication, we suggest continuing a universal antifungal prophylactic regimen with fluconazole for at least 6-12 months in HT recipients residing in a coccidioidomycosis-endemic area.
Collapse
Affiliation(s)
- Graham M Lohrmann
- Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Darko Vucicevic
- Division of Cardiovascular Diseases, Mayo Clinic Hospital, Phoenix, AZ, USA
| | - Romy Lawrence
- Department of Internal Medicine, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa
| | - D Eric Steidley
- Division of Cardiovascular Diseases, Mayo Clinic Hospital, Phoenix, AZ, USA
| | - Robert L Scott
- Division of Cardiovascular Diseases, Mayo Clinic Hospital, Phoenix, AZ, USA
| | - Shimon Kusne
- Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, AZ, USA
| | - Janis E Blair
- Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, AZ, USA
| |
Collapse
|
35
|
Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: practical implications for optimized treatment of patients. Infection 2017; 45:737-779. [PMID: 28702763 PMCID: PMC5696449 DOI: 10.1007/s15010-017-1042-z] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/25/2017] [Indexed: 02/08/2023]
Abstract
Introduction Because of the high mortality of invasive fungal infections (IFIs), appropriate exposure to antifungals appears to be crucial for therapeutic efficacy and safety. Materials and methods This review summarises published pharmacokinetic data on systemically administered antifungals focusing on co-morbidities, target-site penetration, and combination antifungal therapy. Conclusions and discussion Amphotericin B is eliminated unchanged via urine and faeces. Flucytosine and fluconazole display low protein binding and are eliminated by the kidney. Itraconazole, voriconazole, posaconazole and isavuconazole are metabolised in the liver. Azoles are substrates and inhibitors of cytochrome P450 (CYP) isoenzymes and are therefore involved in numerous drug–drug interactions. Anidulafungin is spontaneously degraded in the plasma. Caspofungin and micafungin undergo enzymatic metabolism in the liver, which is independent of CYP. Although several drug–drug interactions occur during caspofungin and micafungin treatment, echinocandins display a lower potential for drug–drug interactions. Flucytosine and azoles penetrate into most of relevant tissues. Amphotericin B accumulates in the liver and in the spleen. Its concentrations in lung and kidney are intermediate and relatively low myocardium and brain. Tissue distribution of echinocandins is similar to that of amphotericin. Combination antifungal therapy is established for cryptococcosis but controversial in other IFIs such as invasive aspergillosis and mucormycosis.
Collapse
Affiliation(s)
- Romuald Bellmann
- Clinical Pharmacokinetics Unit, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine I, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Piotr Smuszkiewicz
- Department of Anesthesiology, Intensive Therapy and Pain Treatment, University Hospital, Poznań, Poland
| |
Collapse
|
36
|
Ledoux MP, Toussaint E, Denis J, Herbrecht R. New pharmacological opportunities for the treatment of invasive mould diseases. J Antimicrob Chemother 2017; 72:i48-i58. [PMID: 28355467 DOI: 10.1093/jac/dkx033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recently, several randomized studies have been published that will shape treatment decisions in the prevention and management of invasive mould infections. Liposomal amphotericin B is an option for empirical or targeted treatment of invasive aspergillosis or mucormycosis, but for prophylaxis therapy, the triazole class now predominates. The triazole voriconazole is currently regarded as a drug of choice for the treatment of proven or probable invasive aspergillosis, and has shown significantly higher response rates than amphotericin B deoxycholate in this setting, with fewer severe drug-related adverse events. Isavuconazole, the newest triazole agent, offers the advantages of once-daily dosing, a wider spectrum of antifungal activity than voriconazole, predictable pharmacokinetics and fewer CYP enzyme-mediated drug interactions. A recent large randomized clinical trial showed mortality to be similar under isavuconazole or voriconazole in patients with invasive mould disease, with fewer drug-related adverse events in isavuconazole-treated patients. Another study has indicated that isavuconazole is also effective in mucormycosis infections but patient numbers were small and confirmation is awaited. Experimental studies combining different drug classes with antimould activity have been promising, but the clinical database is limited. A large randomized trial of combination therapy compared voriconazole plus the echinocandin anidulafungin versus voriconazole monotherapy in patients with invasive aspergillosis. Results showed the overall response rate to be similar, but combination therapy improved survival for the subpopulation of patients in whom the diagnosis was confirmed by serum and/or bronchoalveolar lavage fluid galactomannan positivity. This active field of research is likely to continue evolving rapidly in the coming years.
Collapse
Affiliation(s)
- Marie-Pierre Ledoux
- Department of Oncology and Haematology, Hôpital de Hautepierre and Université de Strasbourg, Strasbourg, France
| | - Elise Toussaint
- Department of Oncology and Haematology, Hôpital de Hautepierre and Université de Strasbourg, Strasbourg, France
| | - Julie Denis
- Laboratoire de Parasitologie et de Mycologie Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Raoul Herbrecht
- Department of Oncology and Haematology, Hôpital de Hautepierre and Université de Strasbourg, Strasbourg, France
| |
Collapse
|
37
|
Activity of Combined Antifungal Agents Against Multidrug-Resistant Candida glabrata Strains. Mycopathologia 2017; 182:819-828. [PMID: 28493006 DOI: 10.1007/s11046-017-0141-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
In this study, we evaluated the in vitro activity of echinocandins, azoles, and amphotericin B alone and in combination against echinocandin/azole-sensitive and echinocandin/azole-resistant Candida glabrata isolates. Susceptibility tests were performed using the broth microdilution method in accordance with the Clinical and Laboratory Standards Institute document M27-A3. The checkerboard method was used to evaluate the fractional inhibitory concentration index of the interactions. Cross-resistance was observed among echinocandins; 15% of the isolates resistant to caspofungin were also resistant to anidulafungin and micafungin. Synergistic activity was observed in 70% of resistant C. glabrata when anidulafungin was combined with voriconazole or posaconazole. Higher (85%) synergism was found in the combination of caspofungin and voriconazole. The combinations of caspofungin with fluconazole, posaconazole and amphotericin B, micafungin with fluconazole, posaconazole and voriconazole, and anidulafungin with amphotericin B showed indifferent activities for the majority of the isolates. Anidulafungin combined with fluconazole showed the same percentage of synergism and indifference (45%). Antagonism was detected in 50% of isolates when micafungin was combined with amphotericin B. Combinations of echinocandins and antifungal azoles have great potential for in vivo assays which are required to evaluate the efficacy of these combinations against multidrug-resistant C. glabrata strains.
Collapse
|
38
|
Chang CC, Slavin MA, Chen SCA. New developments and directions in the clinical application of the echinocandins. Arch Toxicol 2017; 91:1613-1621. [DOI: 10.1007/s00204-016-1916-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/13/2016] [Indexed: 01/05/2023]
|
39
|
Babic JT, Sofjan A, Babin M, Echevarria K, Ikwuagwu JO, Lam WYM, Aitken SL, Perez KK. Significant publications on infectious diseases pharmacotherapy in 2015. Am J Health Syst Pharm 2017; 74:238-252. [PMID: 28082303 DOI: 10.2146/ajhp160090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE The most important articles on infectious diseases (ID) pharmacotherapy published in the peer-reviewed literature in 2015, as nominated and selected by panels of pharmacists and others with ID expertise, are summarized. SUMMARY Members of the Houston Infectious Diseases Network were asked to nominate articles published in prominent peer-reviewed journals in 2015 that were thought to have a major impact in the field of ID pharmacotherapy. A list of 55 nominated articles on general ID-related topics and 10 articles specifically related to human immunodeficiency virus (HIV) infection or acquired immunodeficiency syndrome (AIDS) was compiled. In a national online survey, members of the Society of Infectious Diseases Pharmacists (SIDP) were asked to select from the list 10 general ID articles believed to have made a significant contribution to the field of ID pharmacotherapy and 1 article contributing to HIV/AIDS pharmacotherapy. Of the 361 SIDP members surveyed, 153 (42%) and 76 (21%) participated in the selection of general ID-related articles and HIV/AIDS-related articles, respectively. The 11 highest-ranked publications (10 general ID-related articles and 1 HIV/AIDS-related article) are summarized here. CONCLUSION With the growing number of significant ID-related publications each year, it can be challenging to stay current with the literature. This review of important ID pharmacotherapy publications in 2015 may be helpful in identifying key articles and lessening this burden.
Collapse
Affiliation(s)
- Jessica T Babic
- CHI St. Luke's Health Baylor St. Luke's Medical Center, University of Houston College of Pharmacy, Houston, TX
| | - Amelia Sofjan
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX
| | | | | | | | | | - Samuel L Aitken
- Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX.,Center for Antimicrobial Resistance and Microbial Genomics, UTHealth McGovern Medical School, Houston, TX
| | - Katherine K Perez
- Department of Pathology and Genomic Medicine and Department of Pharmacy, Houston Methodist Hospital, Houston, TX
| |
Collapse
|
40
|
López-Medrano F, Fernández-Ruiz M, Silva JT, Carver PL, van Delden C, Merino E, Pérez-Saez MJ, Montero M, Coussement J, de Abreu Mazzolin M, Cervera C, Santos L, Sabé N, Scemla A, Cordero E, Cruzado-Vega L, Martín-Moreno PL, Len Ó, Rudas E, de León AP, Arriola M, Lauzurica R, David M, González-Rico C, Henríquez-Palop F, Fortún J, Nucci M, Manuel O, Paño-Pardo JR, Montejo M, Muñoz P, Sánchez-Sobrino B, Mazuecos A, Pascual J, Horcajada JP, Lecompte T, Moreno A, Carratalà J, Blanes M, Hernández D, Fariñas MC, Andrés A, Aguado JM. Clinical Presentation and Determinants of Mortality of Invasive Pulmonary Aspergillosis in Kidney Transplant Recipients: A Multinational Cohort Study. Am J Transplant 2016; 16:3220-3234. [PMID: 27105907 DOI: 10.1111/ajt.13837] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/24/2016] [Accepted: 04/17/2016] [Indexed: 01/25/2023]
Abstract
The prognostic factors and optimal therapy for invasive pulmonary aspergillosis (IPA) after kidney transplantation (KT) remain poorly studied. We included in this multinational retrospective study 112 recipients diagnosed with probable (75.0% of cases) or proven (25.0%) IPA between 2000 and 2013. The median interval from transplantation to diagnosis was 230 days. Cough, fever, and expectoration were the most common symptoms at presentation. Bilateral pulmonary involvement was observed in 63.6% of cases. Positivity rates for the galactomannan assay in serum and bronchoalveolar lavage samples were 61.3% and 57.1%, respectively. Aspergillus fumigatus was the most commonly identified species. Six- and 12-week survival rates were 68.8% and 60.7%, respectively, and 22.1% of survivors experienced graft loss. Occurrence of IPA within the first 6 months (hazard ratio [HR]: 2.29; p-value = 0.027) and bilateral involvement at diagnosis (HR: 3.00; p-value = 0.017) were independent predictors for 6-week all-cause mortality, whereas the initial use of a voriconazole-based regimen showed a protective effect (HR: 0.34; p-value = 0.007). The administration of antifungal combination therapy had no apparent impact on outcome. In conclusion, IPA entails a dismal prognosis among KT recipients. Maintaining a low clinical suspicion threshold is key to achieve a prompt diagnosis and to initiate voriconazole therapy.
Collapse
Affiliation(s)
- F López-Medrano
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain.
| | - M Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - J T Silva
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - P L Carver
- University of Michigan Health System, Ann Harbor, MI
| | - C van Delden
- Service of Infectious Diseases, Department of Medical Specialities, University Hospitals Geneva, Geneva, Switzerland
| | - E Merino
- Unit of Infectious Diseases, Hospital Universitario General, Alicante, Spain
| | - M J Pérez-Saez
- Department of Nephrology, Hospital del Mar, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - M Montero
- Department of Infectious Diseases, Hospital del Mar, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - J Coussement
- Department of Nephrology, Dialysis and Kidney Transplantation, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - M de Abreu Mazzolin
- Division of Nephology, Department of Medicine, Universidade Federal de São Paulo-UNIFESP and Hospital do Rim e Hipertensão, Fundação Oswaldo Ramos, São Paulo, Brazil
| | - C Cervera
- Department of Infectious Diseases, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Barcelona, Spain
| | - L Santos
- Unit of Renal Transplantation, Department of Urology and Kidney Transplantation, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - N Sabé
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - A Scemla
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Descartes Sorbonne Paris Cité, RTRS Centaure, Paris, France
| | - E Cordero
- Unit of Infectious Diseases, Hospitales Universitarios "Vigen del Rocío", Instituto de Biomedicina de Sevilla (IBIS), Seville, Spain
| | - L Cruzado-Vega
- Department of Nephrology, Hospital Universitario "La Fe", Valencia, Spain
| | - P L Martín-Moreno
- Department of Nephrology, Clínica Universitaria de Navarra, Pamplona, Spain
| | - Ó Len
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebrón, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - E Rudas
- Department of Nephrology, Hospital Universitario "Carlos Haya", Málaga, Spain
| | - A P de León
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", México DF, México
| | - M Arriola
- Clínica de Nefrología, Urología y Enfermedades Cardiovasculares, Santa Fe, Argentina
| | - R Lauzurica
- Department of Nephrology, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - M David
- Department of Microbiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - C González-Rico
- Department of Infectious Diseases, University Hospital "Marqués de Valdecilla", Santander, Spain
| | - F Henríquez-Palop
- Department of Nephrology, University Hospital "Doctor Negrín", Las Palmas de Gran Canaria, Spain
| | - J Fortún
- Department of Infectious Diseases, University Hospital "Ramón y Cajal", Madrid, Spain
| | - M Nucci
- Department of Internal Medicine, Hematology Service and Mycology Laboratory, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - O Manuel
- Department of Infectious Diseases and Transplantation Center, University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - J R Paño-Pardo
- Department of Internal Medicine, Hospital Universitario "La Paz", School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - M Montejo
- Department of Infectious Diseases, Hospital Universitario Cruces, Barakaldo, Bilbao, Spain
| | - P Muñoz
- Department of Microbiology and Infectious Diseases, Hospital General Universitario "Gregorio Marañón", Madrid, Spain
| | - B Sánchez-Sobrino
- Department of Nephrology, Hospital Universitario Puerta de Hierro-Majadahonda, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - A Mazuecos
- Department of Nephrology, Hospital Universitario "Puerta del Mar", Cádiz, Spain
| | - J Pascual
- Department of Nephrology, Hospital del Mar, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - J P Horcajada
- Department of Infectious Diseases, Hospital del Mar, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - T Lecompte
- Service of Infectious Diseases, Department of Medical Specialities, University Hospitals Geneva, Geneva, Switzerland
| | - A Moreno
- Department of Infectious Diseases, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Barcelona, Spain
| | - J Carratalà
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - M Blanes
- Unit of Infectious Diseases, Hospital Universitario "La Fe", Valencia, Spain
| | - D Hernández
- Department of Nephrology, Hospital Universitario "Carlos Haya", Málaga, Spain
| | - M C Fariñas
- Department of Infectious Diseases, University Hospital "Marqués de Valdecilla", Santander, Spain
| | - A Andrés
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - J M Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | | |
Collapse
|
41
|
Martin-Vicente A, Capilla J, Guarro J. Synergistic effect of anidulafungin combined with posaconazole in experimental aspergillosis. Med Mycol 2016; 55:457-460. [DOI: 10.1093/mmy/myw110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/30/2016] [Indexed: 11/13/2022] Open
|
42
|
Stewart ER, Thompson GR. Treatment of Primary Pulmonary Aspergillosis: An Assessment of the Evidence. J Fungi (Basel) 2016; 2:jof2030025. [PMID: 29376942 PMCID: PMC5753138 DOI: 10.3390/jof2030025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/25/2016] [Accepted: 09/01/2016] [Indexed: 11/16/2022] Open
Abstract
Aspergillus spp. are a group of filamentous molds that were first described due to a perceived similarity to an aspergillum, or liturgical device used to sprinkle holy water, when viewed under a microscope. Although commonly inhaled due to their ubiquitous nature within the environment, an invasive fungal infection (IFI) is a rare outcome that is often reserved for those patients who are immunocompromised. Given the potential for significant morbidity and mortality within this patient population from IFI due to Aspergillus spp., along with the rise in the use of therapies that confer immunosuppression, there is an increasing need for appropriate initial clinical suspicion leading to accurate diagnosis and effective treatment. Voriconazole remains the first line agent for therapy; however, the use of polyenes, novel triazole agents, or voriconazole in combination with an echinocandin may also be utilized. Consideration as to which particular agent and for what duration should be made in the individual context for each patient based upon underlying immunosuppression, comorbidities, and overall tolerance of therapy.
Collapse
Affiliation(s)
- Ethan R Stewart
- Department of Internal Medicine, Division of Infectious Diseases, Davis Medical Center, 4150 V Street, Suite G500, Sacramento, CA 95817, USA.
| | - George R Thompson
- Department of Internal Medicine, Division of Infectious Diseases, Davis Medical Center, 4150 V Street, Suite G500, Sacramento, CA 95817, USA.
- Department of Medical Microbiology and Immunology, University of California, Rm. 3138, Tupper Hall, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
43
|
Aguilar-Zapata D, Petraitiene R, Petraitis V. Echinocandins: The Expanding Antifungal Armamentarium. Clin Infect Dis 2016; 61 Suppl 6:S604-11. [PMID: 26567277 DOI: 10.1093/cid/civ814] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The echinocandins are large lipopeptide molecules that, since their discovery approximately 41 years ago, have emerged as important additions to the expanding armamentarium against invasive fungal diseases. Echinocandins exert in vitro and in vivo fungicidal action against most Candida species and fungistatic action against Aspergillus species. However, the population of patients at risk for developing invasive fungal infections continues to increase. New therapeutic strategies using echinocandins are needed to improve clinical outcomes in patients with invasive fungal disease.
Collapse
Affiliation(s)
- Daniel Aguilar-Zapata
- Division of Infectious Diseases and Internal Medicine, Fundación Clínica Médica Sur, Mexico City, Mexico Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical Center of Cornell University, New York, New York
| | - Ruta Petraitiene
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical Center of Cornell University, New York, New York
| | - Vidmantas Petraitis
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical Center of Cornell University, New York, New York
| |
Collapse
|
44
|
Patterson TF, Thompson GR, Denning DW, Fishman JA, Hadley S, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Nguyen MH, Segal BH, Steinbach WJ, Stevens DA, Walsh TJ, Wingard JR, Young JAH, Bennett JE. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 63:e1-e60. [PMID: 27365388 DOI: 10.1093/cid/ciw326] [Citation(s) in RCA: 1678] [Impact Index Per Article: 209.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 12/12/2022] Open
Abstract
It is important to realize that guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. IDSA considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances.
Collapse
Affiliation(s)
- Thomas F Patterson
- University of Texas Health Science Center at San Antonio and South Texas Veterans Health Care System
| | | | - David W Denning
- National Aspergillosis Centre, University Hospital of South Manchester, University of Manchester, United Kingdom
| | - Jay A Fishman
- Massachusetts General Hospital and Harvard Medical School
| | | | | | | | - Kieren A Marr
- Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Vicki A Morrison
- Hennepin County Medical Center and University of Minnesota, Minneapolis
| | | | - Brahm H Segal
- University at Buffalo Jacobs School of Medicine and Biomedical Sciences, and Roswell Park Cancer Institute, New York
| | | | | | - Thomas J Walsh
- New York-Presbyterian Hospital/Weill Cornell Medical Center, New York
| | | | | | - John E Bennett
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
45
|
Heinz WJ, Buchheidt D, Ullmann AJ. Clinical evidence for caspofungin monotherapy in the first-line and salvage therapy of invasiveAspergillusinfections. Mycoses 2016; 59:480-93. [DOI: 10.1111/myc.12477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/08/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Werner J. Heinz
- Medizinische Klinik and Poliklinik II; Infectious Diseases University of Würzburg Medical Center; Würzburg Germany
| | - Dieter Buchheidt
- Department of Hematology and Oncology; Mannheim University Hospital; University of Heidelberg; Mannheim Germany
| | - Andrew J. Ullmann
- Medizinische Klinik and Poliklinik II; Infectious Diseases University of Würzburg Medical Center; Würzburg Germany
| |
Collapse
|
46
|
Mikasa K, Aoki N, Aoki Y, Abe S, Iwata S, Ouchi K, Kasahara K, Kadota J, Kishida N, Kobayashi O, Sakata H, Seki M, Tsukada H, Tokue Y, Nakamura-Uchiyama F, Higa F, Maeda K, Yanagihara K, Yoshida K. JAID/JSC Guidelines for the Treatment of Respiratory Infectious Diseases: The Japanese Association for Infectious Diseases/Japanese Society of Chemotherapy - The JAID/JSC Guide to Clinical Management of Infectious Disease/Guideline-preparing Committee Respiratory Infectious Disease WG. J Infect Chemother 2016; 22:S1-S65. [PMID: 27317161 PMCID: PMC7128733 DOI: 10.1016/j.jiac.2015.12.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/14/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Keiichi Mikasa
- Center for Infectious Diseases, Nara Medical University, Nara, Japan.
| | | | - Yosuke Aoki
- Department of International Medicine, Division of Infectious Diseases, Faculty of Medicine, Saga University, Saga, Japan
| | - Shuichi Abe
- Department of Infectious Diseases, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Satoshi Iwata
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Kazunobu Ouchi
- Department of Pediatrics, Kawasaki Medical School, Okayama, Japan
| | - Kei Kasahara
- Center for Infectious Diseases, Nara Medical University, Nara, Japan
| | - Junichi Kadota
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Oita, Japan
| | | | | | - Hiroshi Sakata
- Department of Pediatrics, Asahikawa Kosei Hospital, Hokkaido, Japan
| | - Masahumi Seki
- Division of Respiratory Medicine and Infection Control, Tohoku Pharmaceutical University Hospital, Miyagi, Japan
| | - Hiroki Tsukada
- Department of Respiratory Medicine and Infectious Diseases, Niigata City General Hospital, Niigata, Japan
| | - Yutaka Tokue
- Infection Control and Prevention Center, Gunma University Hospital, Gunma, Japan
| | | | - Futoshi Higa
- Department of Respiratory Medicine, National Hospital Organization Okinawa National Hospital, Okinawa, Japan
| | - Koichi Maeda
- Center for Infectious Diseases, Nara Medical University, Nara, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | |
Collapse
|
47
|
Urbanowicz T, Żabicki B, Baszyńska-Wachowiak H, Straburzyńska-Migaj E, Juszkat R, Grajek S, Jemielity M. Invasive aspergillosis successfully treated by combined antifungal therapy and immunosuppressive monotherapy two months following heart transplantation. KARDIOCHIRURGIA I TORAKOCHIRURGIA POLSKA = POLISH JOURNAL OF CARDIO-THORACIC SURGERY 2016; 13:164-8. [PMID: 27516796 PMCID: PMC4971278 DOI: 10.5114/kitp.2016.61057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/28/2015] [Indexed: 11/17/2022]
Abstract
Invasive aspergillosis is becoming increasingly prevalent, especially following transplantation. Invasive aspergillosis is associated with mortality. Successful therapy is related to early diagnosis and proper therapy. We present the case of a 61-year-old man suffering from invasive aspergillosis 2 months following heart transplantation. He was suffering from hypertrophic cardiomyopathy and he underwent orthotropic heart transplantation. He was readmitted to the Department of Cardiology 69 days following transplantation due to symptoms of productive cough for 5 days. It was accompanied by chest pain, shortness of breath, and fever up to 39°C. He was slightly cyanotic and confused on physical examination. The patient's status deteriorated within the following 2 days. On bronchoscopic specimen examinations Aspergillus mould filaments were detected and the serum galactomannan index was 12.162. His blood saturation decreased to 85%. C-reactive protein serum level increased to 273 mg/l. The patient was admitted to the intensive care unit and intubated due to severe respiratory insufficiency. Computed tomography revealed massive, mostly homogeneous consolidation. The patient was treated with 200 mg of voriconazole and 50 mg of caspofungin daily. Caspofungin therapy was continued for 23 days and voriconazole was administered parenterally for 62 days. Voriconazole therapy was continued orally for 9 months. During combined antifungal therapy, the galactomannan serum index constantly decreased from 12.1 to 0.33 (end-point of caspofungin therapy) and to 0.23 (end-point of voriconazole parenteral administration). His immunosuppressive therapy was limited to calcineurin inhibitor (tacrolimus) monotherapy. Post-treatment imaging 9 months after diagnosis confirmed the efficacy of therapy as a lack of pulmonary infiltration associated with left apical peribronchial scarring as a result of treatment. The present case proved the efficiency of combined (voriconazole and caspofungin) antibiotic therapy in invasive pulmonary aspergillosis. Computed tomography findings followed by the serum galactomannan index are useful tools for early diagnosis. Additional modification of the immunosuppressive regimen can be performed safely in the early postoperative period in case of severe infection.
Collapse
Affiliation(s)
- Tomasz Urbanowicz
- Cardiac Surgery and Transplantology Department, Chair of Cardio-Thoracic Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartłomiej Żabicki
- Radiology Department, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Robert Juszkat
- Radiology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Stefan Grajek
- Cardiology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Jemielity
- Cardiac Surgery and Transplantology Department, Chair of Cardio-Thoracic Surgery, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
48
|
Husain S, Sole A, Alexander BD, Aslam S, Avery R, Benden C, Billaud EM, Chambers D, Danziger-Isakov L, Fedson S, Gould K, Gregson A, Grossi P, Hadjiliadis D, Hopkins P, Luong ML, Marriott DJ, Monforte V, Muñoz P, Pasqualotto AC, Roman A, Silveira FP, Teuteberg J, Weigt S, Zaas AK, Zuckerman A, Morrissey O. The 2015 International Society for Heart and Lung Transplantation Guidelines for the management of fungal infections in mechanical circulatory support and cardiothoracic organ transplant recipients: Executive summary. J Heart Lung Transplant 2016; 35:261-282. [DOI: 10.1016/j.healun.2016.01.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/10/2016] [Indexed: 01/10/2023] Open
|
49
|
In Vivo Synergy of Amphotericin B plus Posaconazole in Murine Aspergillosis. Antimicrob Agents Chemother 2015; 60:296-300. [PMID: 26503653 DOI: 10.1128/aac.01462-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/18/2015] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is the main mold causing invasive fungal infection that shows high mortality rates. Therapeutic failure and the increase in drug resistance make it necessary to explore alternative treatments for this infection. We have evaluated the efficacy of amphotericin B at 0.8 mg/kg or 0.3 mg/kg of body weight combined with 40 mg/kg of posaconazole against three A. fumigatus isolates in a murine model of disseminated infection. The combination of the polyene and the azole led to a greater increase in survival and a significantly greater reduction in tissue burden than monotherapies.
Collapse
|
50
|
Song JC, Stevens DA. Caspofungin: Pharmacodynamics, pharmacokinetics, clinical uses and treatment outcomes. Crit Rev Microbiol 2015; 42:813-46. [PMID: 26369708 DOI: 10.3109/1040841x.2015.1068271] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Over the past decade, echinocandins have emerged as first-line antifungal agents for many Candida infections. The echinocandins have a unique mechanism of action, inhibiting the synthesis of β-1,3-d-glucan polymers, key components of the cell wall in pathogenic fungi. Caspofungin was the first echinocandin antifungal agent to become licensed for use. The objectives of this review are to summarize the existing published data on caspofungin, under the subject headings of chemistry and mechanism of action, spectrum of activity, pharmacodynamics, pharmacokinetics, clinical studies, safety, drug interactions, dosing, and an overview of the drug's current place in therapy.
Collapse
Affiliation(s)
- Jessica C Song
- a Department of Pharmacy , Santa Clara Valley Medical Center , San Jose , CA , USA .,b California Institute for Medical Research , San Jose , CA , USA , and
| | - David A Stevens
- b California Institute for Medical Research , San Jose , CA , USA , and.,c Division of Infectious Diseases and Geographic Medicine , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|