1
|
Deville D, Kawai K, Fujita H, Umino T. Genetic divergences and hybridization within the Sebastes inermis complex. PeerJ 2023; 11:e16391. [PMID: 38025733 PMCID: PMC10656903 DOI: 10.7717/peerj.16391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
The Sebastes inermis complex includes three sympatric species (Sebastes cheni, viz Sebastes inermis, and Sebastes ventricosus) with clear ecomorphological differences, albeit incomplete reproductive isolation. The presence of putative morphological hybrids (PMH) with plausibly higher fitness than the parent species indicates the need to confirm whether hybridization occurs within the complex. In this sense, we assessed the dynamics of genetic divergence and hybridization within the species complex using a panel of 10 microsatellite loci, and sequences of the mitochondrial control region (D-loop) and the intron-free rhodopsin (RH1) gene. The analyses revealed the presence of three distinct genetic clusters, large genetic distances using D-loop sequences, and distinctive mutations within the RH1 gene. These results are consistent with the descriptions of the three species. Two microsatellite loci had signatures of divergent selection, indicating that they are linked to genomic regions that are crucial for speciation. Furthermore, nonsynonymous mutations within the RH1 gene detected in S. cheni and "Kumano" (a PMH) suggest dissimilar adaptations related to visual perception in dim-light environments. The presence of individuals with admixed ancestry between two species confirmed hybridization. The presence of nonsynonymous mutations within the RH1 gene and the admixed ancestry of the "Kumano" morphotype highlight the potential role of hybridization in generating novelties within the species complex. We discuss possible outcomes of hybridization within the species complex, considering hybrid fitness and assortative mating. Overall, our findings indicate that the genetic divergence of each species is maintained in the presence of hybridization, as expected in a scenario of speciation-with-gene-flow.
Collapse
Affiliation(s)
- Diego Deville
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japón
| | - Kentaro Kawai
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japón
| | - Hiroki Fujita
- Seto Marine Biological Laboratory, Field Science Education and Research Center, Kyoto University, Shirahama, Wakayama, Japan
| | - Tetsuya Umino
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japón
| |
Collapse
|
2
|
Glass JR, Harrington RC, Cowman PF, Faircloth BC, Near TJ. Widespread sympatry in a species-rich clade of marine fishes (Carangoidei). Proc Biol Sci 2023; 290:20230657. [PMID: 37909084 PMCID: PMC10618865 DOI: 10.1098/rspb.2023.0657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023] Open
Abstract
A universal paradigm describing patterns of speciation across the tree of life has been debated for decades. In marine organisms, inferring patterns of speciation using contemporary and historical patterns of biogeography is challenging due to the deficiency of species-level phylogenies and information on species' distributions, as well as conflicting relationships between species' dispersal, range size and co-occurrence. Most research on global patterns of marine fish speciation and biogeography has focused on coral reef or pelagic species. Carangoidei is an ecologically important clade of marine fishes that use coral reef and pelagic environments. We used sequence capture of 1314 ultraconserved elements (UCEs) from 154 taxa to generate a time-calibrated phylogeny of Carangoidei and its parent clade, Carangiformes. Age-range correlation analyses of the geographical distributions and divergence times of sister species pairs reveal widespread sympatry, with 73% of sister species pairs exhibiting sympatric geographical distributions, regardless of node age. Most species pairs coexist across large portions of their ranges. We also observe greater disparity in body length and maximum depth between sympatric relative to allopatric sister species. These and other ecological or behavioural attributes probably facilitate sympatry among the most closely related carangoids.
Collapse
Affiliation(s)
- Jessica R. Glass
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
- South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Richard C. Harrington
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Peter F. Cowman
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, Queensland 4810, Australia
| | - Brant C. Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Thomas J. Near
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Yale Peabody Museum of Natural History, Division of Vertebrate Zoology. New Haven, CT 06520, USA
| |
Collapse
|
3
|
Hebberecht L, Wainwright JB, Thompson C, Kershenbaum S, McMillan WO, Montgomery SH. Plasticity and genetic effects contribute to different axes of neural divergence in a community of mimetic Heliconius butterflies. J Evol Biol 2023; 36:1116-1132. [PMID: 37341138 DOI: 10.1111/jeb.14188] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/12/2023] [Accepted: 04/16/2023] [Indexed: 06/22/2023]
Abstract
Changes in ecological preference, often driven by spatial and temporal variation in resource distribution, can expose populations to environments with divergent information content. This can lead to adaptive changes in the degree to which individuals invest in sensory systems and downstream processes, to optimize behavioural performance in different contexts. At the same time, environmental conditions can produce plastic responses in nervous system development and maturation, providing an alternative route to integrating neural and ecological variation. Here, we explore how these two processes play out across a community of Heliconius butterflies. Heliconius communities exhibit multiple Mullerian mimicry rings, associated with habitat partitioning across environmental gradients. These environmental differences have previously been linked to heritable divergence in brain morphology in parapatric species pairs. They also exhibit a unique dietary adaptation, known as pollen feeding, that relies heavily on learning foraging routes, or trap-lines, between resources, which implies an important environmental influence on behavioural development. By comparing brain morphology across 133 wild-caught and insectary-reared individuals from seven Heliconius species, we find strong evidence for interspecific variation in patterns of neural investment. These largely fall into two distinct patterns of variation; first, we find consistent patterns of divergence in the size of visual brain components across both wild and insectary-reared individuals, suggesting genetically encoded divergence in the visual pathway. Second, we find interspecific differences in mushroom body size, a central component of learning and memory systems, but only among wild caught individuals. The lack of this effect in common-garden individuals suggests an extensive role for developmental plasticity in interspecific variation in the wild. Finally, we illustrate the impact of relatively small-scale spatial effects on mushroom body plasticity by performing experiments altering the cage size and structure experienced by individual H. hecale. Our data provide a comprehensive survey of community level variation in brain structure, and demonstrate that genetic effects and developmental plasticity contribute to different axes of interspecific neural variation.
Collapse
Affiliation(s)
- Laura Hebberecht
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | | | | | | | | | - Stephen H Montgomery
- School of Biological Sciences, University of Bristol, Bristol, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| |
Collapse
|
4
|
Friedman ST, Muñoz MM. A latitudinal gradient of deep-sea invasions for marine fishes. Nat Commun 2023; 14:773. [PMID: 36774385 PMCID: PMC9922314 DOI: 10.1038/s41467-023-36501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/03/2023] [Indexed: 02/13/2023] Open
Abstract
Although the tropics harbor the greatest species richness globally, recent work has demonstrated that, for many taxa, speciation rates are faster at higher latitudes. Here, we explore lability in oceanic depth as a potential mechanism for this pattern in the most biodiverse vertebrates - fishes. We demonstrate that clades with the highest speciation rates also diversify more rapidly along the depth gradient, drawing a fundamental link between evolutionary and ecological processes on a global scale. Crucially, these same clades also inhabit higher latitudes, creating a prevailing latitudinal gradient of deep-sea invasions concentrated in poleward regions. We interpret these findings in the light of classic ecological theory, unifying the latitudinal variation of oceanic features and the physiological tolerances of the species living there. This work advances the understanding of how niche lability sculpts global patterns of species distributions and underscores the vulnerability of polar ecosystems to changing environmental conditions.
Collapse
Affiliation(s)
- Sarah T Friedman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA. .,Yale Institute for Biospheric Studies, Yale University, New Haven, CT, 06511, USA.
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
5
|
Muto N, Kai Y. Allopatric origin, secondary contact and subsequent isolation of sympatric rockfishes (Sebastidae: Sebastes) in the north-western Pacific. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Understanding how speciation occurs is central to biology. Gene flow between diverging taxa is correlated with geography and other aspects of speciation; therefore, the examination of gene flow during divergence is a potent approach to understanding the nature of speciation. Here, we inferred the speciation process of the sympatric rockfishes Sebastes steindachneri and Sebastes wakiyai in the north-western Pacific and its marginal seas based on genome-wide single nucleotide polymorphism and mitochondrial DNA data. Model-based demographic inference showed that gene flow between the two species was absent in the initial and late stages of divergence and present only in the middle stage. Population expansion occurred before or during the period of gene flow. The estimated timings of the initial divergence and population expansion fell within the Pleistocene, during which the seas currently inhabited by the two species were repeatedly isolated and reconnected. Contemporary isolation was supported by the absence of hybrids and the shared mitochondrial DNA haplotypes. Our results suggest that the two species initially diverged in allopatry, followed by secondary contact and introgression and by the completion of reproductive isolation. Given that complete isolation following secondary contact has rarely been tested or documented in marine organisms, we highlight the importance of careful consideration of alternative divergence scenarios to be tested, which should take into account the geological and environmental settings.
Collapse
Affiliation(s)
- Nozomu Muto
- Department of Marine Biology and Sciences, School of Biological Sciences, Tokai University , 5-1-1-1 Minamisawa, Minami-Ku, Sapporo, Hokkaido 005-8601 , Japan
| | - Yoshiaki Kai
- Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University , Nagahama, Maizuru, Kyoto 625-0086 , Japan
| |
Collapse
|
6
|
Buckingham E, Streicher JW, Fisher‐Reid MC, Jezkova T, Wiens JJ. Population genomic analyses support sympatric origins of parapatric morphs in a salamander. Ecol Evol 2022; 12:e9537. [PMID: 36447598 PMCID: PMC9702563 DOI: 10.1002/ece3.9537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
In numerous clades, divergent sister species have largely non-overlapping geographic ranges. This pattern presumably arises because species diverged in allopatry or parapatry, prior to a subsequent contact. Here, we provide population-genomic evidence for the opposite scenario: previously sympatric ecotypes that have spatially separated into divergent monomorphic populations over large geographic scales (reverse sympatric scenario). We analyzed a North American salamander (Plethodon cinereus) with two color morphs that are broadly sympatric: striped (redback) and unstriped (leadback). Sympatric morphs can show considerable divergence in other traits, and many Plethodon species are fixed for a single morph. Long Island (New York) is unusual in having many pure redback and leadback populations that are spatially separated, with pure redback populations in the west and pure leadbacks in the east. Previous work showed that these pure-morph populations were genetically, morphologically, and ecologically divergent. Here, we performed a coalescent-based analysis of new data from 88,696 single-nucleotide polymorphisms to address the origins of these populations. This analysis strongly supports the monophyly of Long Island populations and their subsequent divergence into pure redback and pure leadback populations. Taken together, these results suggest that the formerly sympatric mainland morphs separated into parapatric populations on Long Island, reversing the conventional speciation scenario.
Collapse
Affiliation(s)
- Emily Buckingham
- Department of Life SciencesThe Natural History MuseumLondonUK
- Department of Life SciencesImperial College London (South Kensington)LondonUK
| | - Jeffrey W. Streicher
- Department of Life SciencesThe Natural History MuseumLondonUK
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | - M. Caitlin Fisher‐Reid
- Department of Biological SciencesBridgewater State UniversityBridgewaterMassachusettsUSA
| | | | - John J. Wiens
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
7
|
Olivares‐Zambrano D, Daane J, Hyde J, Sandel MW, Aguilar A. Speciation genomics and the role of depth in the divergence of rockfishes ( Sebastes) revealed through Pool-seq analysis of enriched sequences. Ecol Evol 2022; 12:e9341. [PMID: 36188524 PMCID: PMC9502067 DOI: 10.1002/ece3.9341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022] Open
Abstract
Speciation in the marine environment is challenged by the wide geographic distribution of many taxa and potential for high rates of gene flow through larval dispersal mechanisms. Depth has recently been proposed as a potential driver of ecological divergence in fishes, and yet it is unclear how adaptation along these gradients' shapes genomic divergence. The genus Sebastes contains numerous species pairs that are depth-segregated and can provide a better understanding of the mode and tempo of genomic diversification. Here, we present exome data on two species pairs of rockfishes that are depth-segregated and have different degrees of divergence: S. chlorostictus-S. rosenblatti and S. crocotulus-S. miniatus. We were able to reliably identify "islands of divergence" in the species pair with more recent divergence (S. chlorostictus-S. rosenblatti) and discovered a number of genes associated with neurosensory function, suggesting a role for this pathway in the early speciation process. We also reconstructed demographic histories of divergence and found the best supported model was isolation followed by asymmetric secondary contact for both species pairs. These results suggest past ecological/geographic isolation followed by asymmetric secondary contact of deep to shallow species. Our results provide another example of using rockfish as a model for studying speciation and support the role of depth as an important mechanism for diversification in the marine environment.
Collapse
Affiliation(s)
- Daniel Olivares‐Zambrano
- Department of Biological SciencesCalifornia State University Los AngelesLos AngelesCaliforniaUSA
- Present address:
Department of Marine and Environmental BiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jacob Daane
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - John Hyde
- National Oceanic and Atmospheric Administration, National Marine Fisheries ServiceNational Marine Fisheries ServiceSouthwest Fisheries Science CenterLa JollaCaliforniaUSA
| | - Michael W. Sandel
- Biological and Environmental SciencesUniversity of West AlabamaLivingstonAlabamaUSA
- Department of WIldlifeFisheries, and Aquaculture, Mississippi State UniversityMississippi StateMississippiUSA
| | - Andres Aguilar
- Department of Biological SciencesCalifornia State University Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
8
|
Slater GJ. Topographically distinct adaptive landscapes for teeth, skeletons, and size explain the adaptive radiation of Carnivora (Mammalia). Evolution 2022; 76:2049-2066. [PMID: 35880607 PMCID: PMC9546082 DOI: 10.1111/evo.14577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/08/2022] [Indexed: 01/22/2023]
Abstract
Models of adaptive radiation were originally developed to explain the early, rapid appearance of distinct modes of life within diversifying clades. Phylogenetic tests of this hypothesis have yielded limited support for temporally declining rates of phenotypic evolution across diverse clades, but the concept of an adaptive landscape that links form to fitness, while also crucial to these models, has received more limited attention. Using methods that assess the temporal accumulation of morphological variation and estimate the topography of the underlying adaptive landscape, I found evidence of an early partitioning of mandibulo-dental morphological variation in Carnivora (Mammalia) that occurs on an adaptive landscape with multiple peaks, consistent with classic ideas about adaptive radiation. Although strong support for this mode of adaptive radiation is present in traits related to diet, its signal is not present in body mass data or for traits related to locomotor behavior and substrate use. These findings suggest that adaptive radiations may occur along some axes of ecomorphological variation without leaving a signal in others and that their dynamics are more complex than simple univariate tests might suggest.
Collapse
Affiliation(s)
- Graham J. Slater
- Department of the Geophysical SciencesUniversity of ChicagoChicagoIllinois60637
| |
Collapse
|
9
|
Gaidropsarus gallaeciae (Gadiformes: Gaidropsaridae), a New Northeast Atlantic Rockling Fish, with Commentary on the Taxonomy of the Genus. BIOLOGY 2022; 11:biology11060860. [PMID: 35741381 PMCID: PMC9219912 DOI: 10.3390/biology11060860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022]
Abstract
A new species of rockling fish genus Gaidropsarus is described based on six specimens collected in Galicia and Porcupine Banks, in Atlantic European waters. An analysis of morphological characters has confirmed the specific status of specimens of a previously described clade by comparison of DNA sequences. Gaidropsarus gallaeciae sp. nov. it is distinguished from congeners by the following combination of characters: 43–44 vertebrae; 54–60 third dorsal fin rays; 44–52 anal fin rays; 21–23 pectoral fin rays; head length 21.1–25.2% of standard length (SL); length of the pelvic fin 16.2–19% SL; length of the first dorsal fin ray 15.8–27% of head length (%HL); eye diameter 15.8–20.5% HL; and interorbital space 21.7–28% HL. Using the nucleotide sequence of the 5’ end of the mitochondrial COI gene as a molecular marker, the genetic p-distance between the new species and its congeners far exceeds the usual 2%, granting the former the status of an independent taxon, which is in accordance with the morphological identification. A comparison with the other 12 valid species of the genus is presented. The study also highlights the morphological diversity resulting from the meristic and biometric variability of Gaidropsarus species and lays the groundwork for future taxonomic studies on this genus.
Collapse
|
10
|
Ritchie AM, Hua X, Bromham L. Diversification Rate is Associated with Rate of Molecular Evolution in Ray-Finned Fish (Actinopterygii). J Mol Evol 2022; 90:200-214. [PMID: 35262772 PMCID: PMC8975766 DOI: 10.1007/s00239-022-10052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/24/2022] [Indexed: 10/27/2022]
Abstract
Understanding the factors that drive diversification of taxa across the tree of life is a key focus of macroevolutionary research. While the effects of life history, ecology, climate and geography on diversity have been studied for many taxa, the relationship between molecular evolution and diversification has received less attention. However, correlations between rates of molecular evolution and diversification rate have been detected in a range of taxa, including reptiles, plants and birds. A correlation between rates of molecular evolution and diversification rate is a prediction of several evolutionary theories, including the evolutionary speed hypothesis which links variation in mutation rates to differences in speciation rates. If it is widespread, such correlations could also have significant practical impacts, if they are not adequately accounted for in phylogenetic inference of evolutionary rates and timescales. Ray-finned fish (Actinopterygii) offer a prime target to test for this relationship due to their extreme variation in clade size suggesting a wide range of diversification rates. We employ both a sister-pairs approach and a whole-tree approach to test for correlations between substitution rate and net diversification. We also collect life history and ecological trait data and account for potential confounding factors including body size, latitude, max depth and reef association. We find evidence to support a relationship between diversification and synonymous rates of nuclear evolution across two published backbone phylogenies, as well as weak evidence for a relationship between mitochondrial nonsynonymous rates and diversification at the genus level.
Collapse
Affiliation(s)
- Andrew M Ritchie
- Research School of Biological Sciences, Australian National University, Canberra, ACT 2600, Australia. .,Research School of Biological Sciences, Australian National University, Robertson Building, 134 Linnaeus Way, Canberra, ACT 2600, Australia.
| | - Xia Hua
- Research School of Biological Sciences, Australian National University, Canberra, ACT 2600, Australia.,Mathematical Sciences Institute, Australian National University, Canberra, ACT 2600, Australia
| | - Lindell Bromham
- Research School of Biological Sciences, Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
11
|
Goulding TC, Khalil M, Tan SH, Cumming RA, Dayrat B. Global diversification and evolutionary history of onchidiid slugs (Gastropoda, Pulmonata). Mol Phylogenet Evol 2021; 168:107360. [PMID: 34793980 DOI: 10.1016/j.ympev.2021.107360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/29/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022]
Abstract
Many marine species are specialized to specific parts of a habitat. In a mangrove forest, for instance, species may be restricted to the mud surface, the roots and trunks of mangrove trees, or rotting logs, which can be regarded as distinct microhabitats. Shifts to new microhabitats may be an important driver of sympatric speciation. However, the evolutionary history of these shifts is still poorly understood in most groups of marine organisms, because it requires a well-supported phylogeny with relatively complete taxon sampling. Onchidiid slugs are an ideal case study for the evolutionary history of habitat and microhabitat shifts because onchidiid species are specialized to different tidal zones and microhabitats in mangrove forests and rocky shores, and the taxonomy of the family in the Indo-West Pacific has been recently revised in a series of monographs. Here, DNA sequences for onchidiid species from the North and East Pacific, the Caribbean, and the Atlantic are used to reconstruct phylogenetic relationships among Onchidella species, and are combined with new data for Indo-West Pacific species to reconstruct a global phylogeny of the family. The phylogenetic relationships of onchidiid slugs are reconstructed based on three mitochondrial markers (COI, 12S, 16S) and three nuclear markers (28S, ITS2, H3) and nearly complete taxon sampling (all 13 genera and 62 of the 67 species). The highly-supported phylogeny presented here suggests that ancestral onchidiids most likely lived in the rocky intertidal, and that a lineage restricted to the tropical Indo-West Pacific colonized new habitats, including mudflats, mangrove forests, and high-elevation rainforests. Many onchidiid species in the Indo-West Pacific diverged during the Miocene, around the same time that a high diversity of mangrove plants appears in the fossil record, while divergence among Onchidella species occurred earlier, likely beginning in the Eocene. It is demonstrated that ecological specialization to microhabitats underlies the divergence between onchidiid genera, as well as the diversification through sympatric speciation in the genera Wallaconchis and Platevindex. The geographic distributions of onchidiid species also indicate that allopatric speciation played a key role in the diversification of several genera, especially Onchidella and Peronia. The evolutionary history of several morphological traits (penial gland, rectal gland, dorsal eyes, intestinal loops) is examined in relation to habitat and microhabitat evolutionary transitions and that the rectal gland of onchidiids is an adaptation to high intertidal and terrestrial habitats.
Collapse
Affiliation(s)
- Tricia C Goulding
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Munawar Khalil
- Department of Marine Science, Universitas Malikussaleh, Reuleut Main Campus, Kecamatan Muara Batu, North Aceh, Aceh 24355, Indonesia
| | - Shau Hwai Tan
- Centre for Marine and Coastal Studies, Universiti Sains Malaysia, 11800 Minden Penang, Malaysia; Marine Science Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden Penang, Malaysia
| | - Rebecca A Cumming
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Benoît Dayrat
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
12
|
Longo GC, Harms J, Hyde JR, Craig MT, Ramón-Laca A, Nichols KM. Genome-wide markers reveal differentiation between and within the cryptic sister species, sunset and vermilion rockfish. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe vermilion rockfish complex, which consists of the cryptic sister species vermilion and sunset rockfish, is one of the most valuable recreational fisheries on the U.S. West Coast. These species are currently managed as a single complex, and because of uncertainty surrounding the relative contribution of each species within existing data sources, the stock status of each species is not fully known. A reliable and cost-effective method is needed to disentangle these species that will allow for the development of abundance indices, life history profiles, and catch histories that may potentially support species-specific stock assessments. Using restriction-site associated DNA sequence (RADseq) markers we generated 10,003 polymorphic loci to characterize the vermilion rockfish complex. PCA and Bayesian clustering approaches based on these loci clearly distinguished between sunset and vermilion rockfishes and identified hybrid individuals. These loci included 203 highly differentiated (FST ≥ 0.99) single nucleotide polymorphisms, which we consider candidates in the planned development of a diagnostic assay capable of distinguishing between these cryptic species. In addition to clearly delineating to species, subsets of the interspecific markers allowed for insight into intraspecific differentiation in both species. Population genetic analyses for sunset rockfish identified two weakly divergent genetic groups with similar levels of genetic diversity. Vermilion rockfish, however, were characterized by three distinct genetic groups with much stronger signals of differentiation and significantly different genetic diversities. Collectively, these data will contribute to well-informed, species-specific management strategies to protect this valuable species complex.
Collapse
|
13
|
Stefanini MI, Gottschalk MS, Calvo NS, Soto IM. Evolution of male genitalia in the Drosophila repleta species group (Diptera: Drosophilidae). J Evol Biol 2021; 34:1488-1502. [PMID: 34378262 DOI: 10.1111/jeb.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022]
Abstract
The Drosophila repleta group comprises more than one hundred species that inhabit several environments in the Neotropics and use different hosts as rearing and feeding resources. Rather homogeneous in their external morphology, they are generally distinguished by the male genitalia, seemingly their fastest evolving morphological trait, constituting an excellent model to study patterns of genital evolution in the context of a continental adaptive radiation. Although much is known about the evolution of animal genitalia at population level, surveys on macroevolutionary scale of this phenomenon are scarce. This study used a suite of phylogenetic comparative methods to elucidate the macroevolutionary patterns of genital evolution through deep time and large continental scales. Our results indicate that male genital size and some aspects of shape have been evolving by speciational evolution, probably due to the microevolutionary processes involved in species mate recognition. In contrast, several features of the aedeagus shape seemed to have evolved in a gradual fashion, with heterogeneous evolutionary phenotypic rates among clades. In general, the tempo of the evolution of aedeagus morphology was constant from the origin of the group until the Pliocene, when it accelerated in some clades that diversified mainly in this period. The incidence of novel ecological conditions in the tempo of aedeagus evolution and the relationship between species mate recognition and speciation in the Drosophila repleta group are discussed.
Collapse
Affiliation(s)
- Manuel I Stefanini
- Departamento de Ecología, Genética y Evolución. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, Buenos Aires, Argentina
| | - Marco S Gottschalk
- Departamento de Ecología, Zoologia e Genética, Instituto de Biología, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Natalia S Calvo
- Instituto Nacional de Limnología (UNL-CONICET), Santa Fe, Argentina
| | - Ignacio M Soto
- Departamento de Ecología, Genética y Evolución. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, Buenos Aires, Argentina
| |
Collapse
|
14
|
Hays CG, Hanley TC, Hughes AR, Truskey SB, Zerebecki RA, Sotka EE. Local Adaptation in Marine Foundation Species at Microgeographic Scales. THE BIOLOGICAL BULLETIN 2021; 241:16-29. [PMID: 34436968 DOI: 10.1086/714821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractNearshore foundation species in coastal and estuarine systems (e.g., salt marsh grasses, mangroves, seagrasses, corals) drive the ecological functions of ecosystems and entire biomes by creating physical structure that alters local abiotic conditions and influences species interactions and composition. The resilience of foundation species and the ecosystem functions they provide depends on their phenotypic and genetic responses to spatial and temporal shifts in environmental conditions. In this review, we explore what is known about the causes and consequences of adaptive genetic differentiation in marine foundation species over spatial scales shorter than dispersal capabilities (i.e., microgeographic scales). We describe the strength of coupling field and laboratory experiments with population genetic techniques to illuminate patterns of local adaptation, and we illustrate this approach by using several foundation species. Among the major themes that emerge from our review include (1) adaptive differentiation of marine foundation species repeatedly evolves along vertical (i.e., elevation or depth) gradients, and (2) mating system and phenology may facilitate this differentiation. Microgeographic adaptation is an understudied mechanism potentially underpinning the resilience of many sessile marine species, and this evolutionary mechanism likely has particularly important consequences for the ecosystem functions provided by foundation species.
Collapse
|
15
|
Behrens KA, Girasek QL, Sickler A, Hyde J, Buonaccorsi VP. Regions of genetic divergence in depth-separated Sebastes rockfish species pairs: Depth as a potential driver of speciation. Mol Ecol 2021; 30:4259-4275. [PMID: 34181798 DOI: 10.1111/mec.16046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
Depth separation is a proposed driver of speciation in marine fishes, with marine rockfish (genus Sebastes) providing a potentially informative study system. Sebastes rockfishes are commercially and ecologically important. This genus encompasses more than one hundred species and the ecological and morphological variance between these species provides opportunity for identifying speciation-driving adaptations, particularly along a depth gradient. A reduced-representation sequencing method (ddRADseq) was used to compare 95 individuals encompassing six Sebastes species. In this study, we sought to identify regions of divergence between species that were indicative of divergent adaptation and reproductive barriers leading to speciation. A pairwise comparison of S. chrysomelas (black-and-yellow rockfish) and S. carnatus (gopher rockfish) FST values revealed three major regions of elevated genomic divergence, two of which were also present in the S. miniatus (vermilion rockfish) and S. crocotulus (sunset rockfish) comparison. These corresponded with regions of both elevated DXY values and reduced nucleotide diversity in two cases, suggesting a speciation-with-gene-flow evolutionary model followed by post-speciation selective sweeps within each species. Limited whole-genome resequencing was also performed to identify mutations with predicted effects between S. chrysomelas and S. carnatus. Within these islands, we identified important SNPs in genes involved in immune function and vision. This supports their potential role in speciation, as these are adaptive vectors noted in other organisms. Additionally, changes to genes involved in pigment expression and mate recognition shed light on how S. chrysomelas and S. carnatus may have become reproductively isolated.
Collapse
Affiliation(s)
- Kristen A Behrens
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, USA
| | - Quinn L Girasek
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, USA
| | - Alex Sickler
- Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John Hyde
- Fisheries Resources Division, Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, California, USA
| | | |
Collapse
|
16
|
Gerringer ME, Dias AS, von Hagel AA, Orr JW, Summers AP, Farina S. Habitat influences skeletal morphology and density in the snailfishes (family Liparidae). Front Zool 2021; 18:16. [PMID: 33863343 PMCID: PMC8052763 DOI: 10.1186/s12983-021-00399-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/14/2021] [Indexed: 12/23/2022] Open
Abstract
We tested the hypothesis that deep-sea fishes have poorly mineralized bone relative to shallower-dwelling species using data from a single family that spans a large depth range. The family Liparidae (snailfishes, Cottiformes) has representatives across the entire habitable depth range for bony fishes (0 m-> 8000 m), making them an ideal model for studying depth-related trends in a confined phylogeny. We used micro-computed tomography (micro-CT) scanning to test three aspects of skeletal reduction in snailfishes (50 species) across a full range of habitat depths: 1) reduction of structural dimensions, 2) loss of skeletal elements, and 3) reduction in bone density. Using depth data from the literature, we found that with increasing depth, the length of the dentary, neurocranium, and suborbital bones decreases. The ventral suction disk decreases width with increasing maximum habitat depth and is lost entirely in some deeper-living taxa, though not all. Although visual declines in bone density in deeper-living taxa were evident across full skeletons, individual densities of the lower jaw, vertebra, suction disk, hypural plate, and otoliths did not significantly decline with any depth metric. However, pelagic and polar taxa tended to show lower density bones compared to other species in the family. We propose that skeletal reductions allow snailfishes to maintain neutral buoyancy at great depths in the water column, while supporting efficient feeding and locomotion strategies. These findings suggest that changes in skeletal structure are non-linear and are driven not only by hydrostatic pressure, but by other environmental factors and by evolutionary ancestry, calling the existing paradigm into question.
Collapse
Affiliation(s)
- M E Gerringer
- State University of New York at Geneseo, Geneseo, NY, 14454, USA.
| | - A S Dias
- Whitman College, Walla Walla, WA, 99362, USA
| | | | - J W Orr
- Alaska Fisheries Science Center, RACE Division, NOAA Fisheries, Seattle, WA, 98115, USA
| | - A P Summers
- Friday Harbor Labs, Biology and SAFS, University of Washington, Friday Harbor, WA, 98250, USA
| | - S Farina
- Howard University, Washington, DC, 20059, USA
| |
Collapse
|
17
|
Hernández-Hernández T, Miller EC, Román-Palacios C, Wiens JJ. Speciation across the Tree of Life. Biol Rev Camb Philos Soc 2021; 96:1205-1242. [PMID: 33768723 DOI: 10.1111/brv.12698] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about speciation comes from detailed studies of well-known model systems. Although there have been several important syntheses on speciation, few (if any) have explicitly compared speciation among major groups across the Tree of Life. Here, we synthesize and compare what is known about key aspects of speciation across taxa, including bacteria, protists, fungi, plants, and major animal groups. We focus on three main questions. Is allopatric speciation predominant across groups? How common is ecological divergence of sister species (a requirement for ecological speciation), and on what niche axes do species diverge in each group? What are the reproductive isolating barriers in each group? Our review suggests the following patterns. (i) Based on our survey and projected species numbers, the most frequent speciation process across the Tree of Life may be co-speciation between endosymbiotic bacteria and their insect hosts. (ii) Allopatric speciation appears to be present in all major groups, and may be the most common mode in both animals and plants, based on non-overlapping ranges of sister species. (iii) Full sympatry of sister species is also widespread, and may be more common in fungi than allopatry. (iv) Full sympatry of sister species is more common in some marine animals than in terrestrial and freshwater ones. (v) Ecological divergence of sister species is widespread in all groups, including ~70% of surveyed species pairs of plants and insects. (vi) Major axes of ecological divergence involve species interactions (e.g. host-switching) and habitat divergence. (vii) Prezygotic isolation appears to be generally more widespread and important than postzygotic isolation. (viii) Rates of diversification (and presumably speciation) are strikingly different across groups, with the fastest rates in plants, and successively slower rates in animals, fungi, and protists, with the slowest rates in prokaryotes. Overall, our study represents an initial step towards understanding general patterns in speciation across all organisms.
Collapse
Affiliation(s)
- Tania Hernández-Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A.,Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821, Irapuato, Guanajuato, Mexico
| | - Elizabeth C Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - Cristian Román-Palacios
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| |
Collapse
|
18
|
Depth-dependent parental effects create invisible barriers to coral dispersal. Commun Biol 2021; 4:202. [PMID: 33589736 PMCID: PMC7884412 DOI: 10.1038/s42003-021-01727-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/19/2021] [Indexed: 01/02/2023] Open
Abstract
Historically, marine populations were considered to be interconnected across large geographic regions due to the lack of apparent physical barriers to dispersal, coupled with a potentially widely dispersive pelagic larval stage. Recent studies, however, are providing increasing evidence of small-scale genetic segregation of populations across habitats and depths, separated in some cases by only a few dozen meters. Here, we performed a series of ex-situ and in-situ experiments using coral larvae of three brooding species from contrasting shallow- and deep-water reef habitats, and show that their settlement success, habitat choices, and subsequent survival are substantially influenced by parental effects in a habitat-dependent manner. Generally, larvae originating from deep-water corals, which experience less variable conditions, expressed more specific responses than shallow-water larvae, with a higher settlement success in simulated parental-habitat conditions. Survival of juvenile corals experimentally translocated to the sea was significantly lower when not at parental depths. We conclude that local adaptations and parental effects alongside larval selectivity and phenotype-environment mismatches combine to create invisible semipermeable barriers to coral dispersal and connectivity, leading to habitat-dependent population segregation. Tom Shlesinger and Yossi Loya use ex-situ and in-situ experiments with coral larvae of three brooding species from contrasting shallow- and deep-water habitats and show that larvae originating from deep-water corals have narrower tolerances and higher habitat-specificity in simulated parental-habitat conditions. They also show that survival of juvenile corals experimentally translocated to the sea was significantly lower when not at parental depths. Together these results demonstrate that local adaptations and parental effects interact with larval selectivity and phenotype-environment mismatches to create semipermeable barriers to coral dispersal and connectivity.
Collapse
|
19
|
Shipley ON, Kelly JB, Bizzarro JJ, Olin JA, Cerrato RM, Power M, Frisk MG. Evolution of realized Eltonian niches across
Rajidae
species. Ecosphere 2021. [DOI: 10.1002/ecs2.3368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Oliver N. Shipley
- School of Marine and Atmospheric Sciences Stony Brook University Stony Brook New York11794USA
| | - Joseph B. Kelly
- Department for Ecology and Evolution Stony Brook University Stony Brook New York11794USA
| | - Joseph J. Bizzarro
- Moss Landing Marine Laboratories California State University 8272 Moss Landing Road Moss Landing California95039USA
- Cooperative Institute for Marine Ecosystems and Climate University of California, Santa Cruz 110 McAllister Way Santa Cruz California95060USA
| | - Jill A. Olin
- Great Lakes Research Center Michigan Technological University Houghton Michigan49931USA
| | - Robert M. Cerrato
- School of Marine and Atmospheric Sciences Stony Brook University Stony Brook New York11794USA
| | - Michael Power
- Department of Biology University of Waterloo 200 University Avenue West Waterloo OntarioN2L 3G1Canada
| | - Michael G. Frisk
- School of Marine and Atmospheric Sciences Stony Brook University Stony Brook New York11794USA
| |
Collapse
|
20
|
Benestan LM, Rougemont Q, Senay C, Normandeau E, Parent E, Rideout R, Bernatchez L, Lambert Y, Audet C, Parent GJ. Population genomics and history of speciation reveal fishery management gaps in two related redfish species ( Sebastes mentella and Sebastes fasciatus). Evol Appl 2021; 14:588-606. [PMID: 33664797 PMCID: PMC7896722 DOI: 10.1111/eva.13143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Understanding the processes shaping population structure and reproductive isolation of marine organisms can improve their management and conservation. Using genomic markers combined with estimation of individual ancestries, assignment tests, spatial ecology, and demographic modeling, we (i) characterized the contemporary population structure, (ii) assessed the influence of space, fishing depth, and sampling years on contemporary distribution, and (iii) reconstructed the speciation history of two cryptic redfish species, Sebastes mentella and S. fasciatus. We genotyped 860 individuals in the Northwest Atlantic Ocean using 24,603 filtered single nucleotide polymorphisms (SNPs). Our results confirmed the clear genetic distinctiveness of the two species and identified three ecotypes within S. mentella and five populations in S. fasciatus. Multivariate analyses highlighted the influence of spatial distribution and depth on the overall genomic variation, while demographic modeling revealed that secondary contact models best explained inter- and intragenomic divergence. These species, ecotypes, and populations can be considered as a rare and wide continuum of genomic divergence in the marine environment. This acquired knowledge pertaining to the evolutionary processes driving population divergence and reproductive isolation will help optimizing the assessment of demographic units and possibly to refine fishery management units.
Collapse
Affiliation(s)
- Laura M. Benestan
- CEFEUniv Montpellier, CNRS, EPHE‐PSL UniversityIRD, Univ Paul Valéry Montpellier 3MontpellierFrance
| | - Quentin Rougemont
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Caroline Senay
- Fisheries and Oceans CanadaMaurice‐Lamontagne InstituteMont‐JoliQCCanada
| | - Eric Normandeau
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Eric Parent
- Fisheries and Oceans CanadaMaurice‐Lamontagne InstituteMont‐JoliQCCanada
| | - Rick Rideout
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreN.L.St. John’sCanada
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Yvan Lambert
- Fisheries and Oceans CanadaMaurice‐Lamontagne InstituteMont‐JoliQCCanada
| | - Céline Audet
- Institut des sciences de la mer de RimouskiUniversité du Québec à RimouskiRimouskiQCCanada
| | | |
Collapse
|
21
|
Eastman JT, La Mesa M. Neuromorphological disparity in deep-living sister species of the Antarctic fish genus Trematomus. Polar Biol 2021. [DOI: 10.1007/s00300-020-02794-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Prada C, Hellberg ME. Speciation-by-depth on coral reefs: Sympatric divergence with gene flow or cryptic transient isolation? J Evol Biol 2021; 34:128-137. [PMID: 33140895 PMCID: PMC7894305 DOI: 10.1111/jeb.13731] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 12/30/2022]
Abstract
The distributions of many sister species in the sea overlap geographically but are partitioned along depth gradients. The genetic changes leading to depth segregation may evolve in geographic isolation as a prerequisite to coexistence or may emerge during primary divergence leading to new species. These alternatives can now be distinguished via the power endowed by the thousands of scorable loci provided by second-generation sequence data. Here, we revisit the case of two depth-segregated, genetically isolated ecotypes of the nominal Caribbean candelabrum coral Eunicea flexuosa. Previous analyses based on a handful of markers could not distinguish between models of genetic exchange after a period of isolation (consistent with secondary contact) and divergence with gene flow (consistent with primary divergence). Analyses of the history of isolation, genetic exchange and population size based on 15,640 new SNP markers derived from RNAseq data best support models where divergence began 800K BP and include epochs of divergence with gene flow, but with an intermediate period of transient isolation. Results also supported the previous conclusion that recent exchange between the ecotypes occurs asymmetrically from the Shallow lineage to the Deep. Parallel analyses of data from two other corals with depth-segregated populations (Agaricia fragilis and Pocillopora damicornis) suggest divergence leading to depth-segregated populations may begin with a period of symmetric exchange, but that an epoch of population isolation precedes more complete isolation marked by asymmetric introgression. Thus, while divergence-with-gene flow may account for much of the differentiation that separates closely related, depth-segregated species, it remains to be seen whether any critical steps in the speciation process only occur when populations are isolated.
Collapse
Affiliation(s)
- Carlos Prada
- Department of Biological SciencesUniversity of Rhode IslandKingstonRIUSA
| | | |
Collapse
|
23
|
Medina I, Kilner RM, Langmore NE. From micro- to macroevolution: brood parasitism as a driver of phenotypic diversity in birds. Curr Zool 2020; 66:515-526. [PMID: 33293930 PMCID: PMC7705515 DOI: 10.1093/cz/zoaa033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/17/2020] [Indexed: 11/14/2022] Open
Abstract
A fundamental question in biology is how diversity evolves and why some clades are more diverse than others. Phenotypic diversity has often been shown to result from morphological adaptation to different habitats. The role of behavioral interactions as a driver of broadscale phenotypic diversity has received comparatively less attention. Behavioral interactions, however, are a key agent of natural selection. Antagonistic behavioral interactions with predators or with parasites can have significant fitness consequences, and hence act as strong evolutionary forces on the phenotype of species, ultimately generating diversity between species of both victims and exploiters. Avian obligate brood parasites lay their eggs in the nests of other species, their hosts, and this behavioral interaction between hosts and parasites is often considered one of the best examples of coevolution in the natural world. In this review, we use the coevolution between brood parasites and their hosts to illustrate the potential of behavioral interactions to drive evolution of phenotypic diversity at different taxonomic scales. We provide a bridge between behavioral ecology and macroevolution by describing how this interaction has increased avian phenotypic diversity not only in the brood parasitic clades but also in their hosts.
Collapse
Affiliation(s)
- Iliana Medina
- School of BioSciences, University of Melbourne, Victoria, 3010, Australia
| | - Rebecca M Kilner
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Naomi E Langmore
- Division of Ecology and Evolution, Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
24
|
Anderson SAS, Weir JT. A Comparative Test for Divergent Adaptation: Inferring Speciation Drivers from Functional Trait Divergence. Am Nat 2020; 196:429-442. [PMID: 32970469 DOI: 10.1086/710338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractEcological differentiation between lineages is widely considered to be an important driver of speciation, but support for this hypothesis is mainly derived from the detailed study of a select set of model species pairs. Mounting evidence from nonmodel taxa, meanwhile, suggests that speciation often occurs with minimal differentiation in ecology or ecomorphology, calling into question the true contribution of divergent adaptation to species richness in nature. To better understand divergent ecological adaptation and its role in speciation generally, researchers require a comparative approach that can distinguish its signature from alternative processes, such as drift and parallel selection, in data sets containing many species pairs. Here we introduce new statistical models of divergent adaptation in the continuous traits of paired lineages. In these models, ecomorphological characters diverge as two lineages adapt toward alternative phenotypic optima following their departure from a common ancestor. The absolute distance between optima measures the extent of divergent selection and provides a basis for interpretation. We encode the models in the new R package diverge and extend them to allow the distance between optima to vary across continuous and categorical variables. We test model performance using simulation and demonstrate model application using published data sets of trait divergence in birds and mammals. Our framework provides the first explicit test for signatures of divergent selection in trait divergence data sets, and it will enable empiricists from a wide range of fields to better understand the dynamics of divergent adaptation and its prevalence in nature beyond just our best-studied model systems.
Collapse
|
25
|
Østbye K, Hagen Hassve M, Peris Tamayo AM, Hagenlund M, Vogler T, Præbel K. " And if you gaze long into an abyss, the abyss gazes also into thee": four morphs of Arctic charr adapting to a depth gradient in Lake Tinnsjøen. Evol Appl 2020; 13:1240-1261. [PMID: 32684957 PMCID: PMC7359846 DOI: 10.1111/eva.12983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022] Open
Abstract
The origin of species is a central topic in biology. Ecological speciation might be a driver in adaptive radiation, providing a framework for understanding mechanisms, level, and rate of diversification. The Arctic charr Salvelinus alpinus L. is a polymorphic species with huge morphological and life‐history diversity in Holarctic water systems. We studied adaptive radiation of Arctic charr in the 460‐m‐deep Lake Tinnsjøen to (a) document eco‐morphology and life‐history traits of morphs, (b) estimate reproductive isolation of morphs, and (c) illuminate Holarctic phylogeography and lineages colonizing Lake Tinnsjøen. We compared Lake Tinnsjøen with four Norwegian outgroup populations. Four field‐assigned morphs were identified in Lake Tinnsjøen: the planktivore morph in all habitats except deep profundal, the dwarf morph in shallow‐moderate profundal, the piscivore morph mainly in shallow‐moderate profundal, and a new undescribed abyssal morph in the deep profundal. Morphs displayed extensive life‐history variation in age and size. A moderate‐to‐high concordance was observed among morphs and four genetic clusters from microsatellites. mtDNA suggested two minor endemic clades in Lake Tinnsjøen originating from one widespread colonizing clade in the Holarctic. All morphs were genetically differentiated at microsatellites (FST: 0.12–0.20), associated with different mtDNA clade frequencies. Analyses of outgroup lakes implied colonization from a river below Lake Tinnsjøen. Our findings suggest postglacial adaptive radiation of one colonizing mtDNA lineage with niche specialization along a depth–temperature–productivity–pressure gradient. Concordance between reproductive isolation and habitats of morphs implies ecological speciation as a mechanism. Particularly novel is the extensive morph diversification with depth into the often unexplored deepwater profundal habitat, suggesting we may have systematically underestimated biodiversity in lakes. In a biological conservation framework, it is imperative to protect endemic below‐species‐level biodiversity, particularly so since within‐species variation comprises an extremely important component of the generally low total biodiversity observed in the northern freshwater systems.
Collapse
Affiliation(s)
- Kjartan Østbye
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology Inland Norway University of Applied Sciences Campus Evenstad Norway.,Department of Biosciences Centre for Ecological and Evolutionary Synthesis (CEES) University of Oslo Oslo Norway
| | - Marius Hagen Hassve
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology Inland Norway University of Applied Sciences Campus Evenstad Norway
| | - Ana-Maria Peris Tamayo
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology Inland Norway University of Applied Sciences Campus Evenstad Norway
| | - Mari Hagenlund
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology Inland Norway University of Applied Sciences Campus Evenstad Norway
| | - Thomas Vogler
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology Inland Norway University of Applied Sciences Campus Evenstad Norway
| | - Kim Præbel
- Faculty of Biosciences, Fisheries and Economics Norwegian College of Fishery Science UiT Arctic University of Norway Tromsø Norway
| |
Collapse
|
26
|
Heras J, Aguilar A. Comparative Transcriptomics Reveals Patterns of Adaptive Evolution Associated with Depth and Age Within Marine Rockfishes (Sebastes). J Hered 2020; 110:340-350. [PMID: 30602025 DOI: 10.1093/jhered/esy070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 12/31/2018] [Indexed: 01/21/2023] Open
Abstract
The genetic underpinnings that contribute to ecological adaptation and speciation are not completely understood, especially within marine ecosystems. These evolutionary processes can be elucidated by studying adaptive radiations, because they provide replicates of divergence within a given environment or time-frame. Marine rockfishes (genus Sebastes) are an adaptive radiation and unique model system for studying adaptive evolution in the marine realm. We investigated molecular evolution associated with ecological (depth) and life history (lifespan) divergence in 2 closely related clades of Sebastes. Brain transcriptomes were sequenced via RNA-Seq from 3 species within the subgenus Pteropodus and a pair of related congeners from the subgenus Sebastosomus in order to identify patterns of adaptive evolution. De novo assemblies from these transcriptomes were used to identify 3867 orthologous clusters, and genes subject to positive selection were identified based on all 5 species, depth, and lifespan. Within all our analyses, we identified hemoglobin subunit α to be under strong positive selection and is associated with the depth of occurrence. In our lifespan analysis we identified immune function genes under positive selection in association with maximum lifespan. This study provides insight on the molecular evolution of rockfishes and these candidate genes may provide a better understanding of how these subgenera radiated within the Northeast Pacific.
Collapse
Affiliation(s)
- Joseph Heras
- School of Natural Sciences and Graduate Group in Quantitative and Systems Biology, University of California, Merced, CA
| | - Andres Aguilar
- School of Natural Sciences and Graduate Group in Quantitative and Systems Biology, University of California, Merced, CA
| |
Collapse
|
27
|
Voje KL, Di Martino E, Porto A. Revisiting a Landmark Study System: No Evidence for a Punctuated Mode of Evolution in Metrarabdotos. Am Nat 2020; 195:899-917. [PMID: 32364786 DOI: 10.1086/707664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Is speciation generally a "special time" in morphological evolution, or are lineage-splitting events just "more of the same" where the end product happens to be two separate lineages? Data on evolutionary dynamics during anagenetic and cladogenetic events among closely related lineages within a clade are rare, but the fossil record of the bryozoan genus Metrarabdotos is considered a textbook example of a clade where speciation causes rapid evolutionary change against a backdrop of morphological stasis within lineages. Here, we point to some methodological and measurement theoretical issues in the original work on Metrarabdotos. We then reanalyze a subset of the original data that can be meaningfully investigated using quantitative statistical approaches similar to those used in the original studies. We consistently fail to find variation in the evolutionary process during within-lineage evolution compared with cladogenetic events: the rates of evolution, the strength of selection, and the directions traveled in multivariate morphospace are not different when comparing evolution within lineages and at speciation events in Metrarabdotos, and genetic drift cannot be excluded as a sufficient explanation for the morphological differentiation within lineages and during speciation. Although widely considered the best example of a punctuated mode of evolution, morphological divergence and speciation are not linked in Metrarabdotos.
Collapse
|
28
|
Modica MV, Gorson J, Fedosov AE, Malcolm G, Terryn Y, Puillandre N, Holford M. Macroevolutionary Analyses Suggest That Environmental Factors, Not Venom Apparatus, Play Key Role in Terebridae Marine Snail Diversification. Syst Biol 2020; 69:413-430. [PMID: 31504987 PMCID: PMC7164365 DOI: 10.1093/sysbio/syz059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
How species diversification occurs remains an unanswered question in predatory marine invertebrates, such as sea snails of the family Terebridae. However, the anatomical disparity found throughput the Terebridae provides a unique perspective for investigating diversification patterns in venomous predators. In this study, a new dated molecular phylogeny of the Terebridae is used as a framework for investigating diversification of the family through time, and for testing the putative role of intrinsic and extrinsic traits, such as shell size, larval ecology, bathymetric distribution, and anatomical features of the venom apparatus, as drivers of terebrid species diversification. Macroevolutionary analysis revealed that when diversification rates do not vary across Terebridae clades, the whole family has been increasing its global diversification rate since 25 Ma. We recovered evidence for a concurrent increase in diversification of depth ranges, while shell size appeared to have undergone a fast divergence early in terebrid evolutionary history. Our data also confirm that planktotrophy is the ancestral larval ecology in terebrids, and evolutionary modeling highlighted that shell size is linked to larval ecology of the Terebridae, with species with long-living pelagic larvae tending to be larger and have a broader size range than lecithotrophic species. Although we recovered patterns of size and depth trait diversification through time and across clades, the presence or absence of a venom gland (VG) did not appear to have impacted Terebridae diversification. Terebrids have lost their venom apparatus several times and we confirm that the loss of a VG happened in phylogenetically clustered terminal taxa and that reversal is extremely unlikely. Our findings suggest that environmental factors, and not venom, have had more influence on terebrid evolution.
Collapse
Affiliation(s)
- Maria Vittoria Modica
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- UMR5247, Université de Montpellier CC 1703, Place Eugène Bataillon 34095 Montpellier, France
| | - Juliette Gorson
- Department of Chemistry, Hunter College Belfer Research Center, 413 E. 69th Street, BRB 424, New York, NY 10021, USA
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
| | - Alexander E Fedosov
- Institute of Ecology and Evolution of Russian Academy of Sciences, Leninskiy Prospect, 33, Moscow 119071, Russia
| | - Gavin Malcolm
- Bird Hill, Barnes Lane, Milford on Sea, Hampshire, UK
| | - Yves Terryn
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antillles, 57 rue Cuvier, CP 26, 75005 Paris, France
| | - Nicolas Puillandre
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antillles, 57 rue Cuvier, CP 26, 75005 Paris, France
| | - Mandë Holford
- Department of Chemistry, Hunter College Belfer Research Center, 413 E. 69th Street, BRB 424, New York, NY 10021, USA
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
| |
Collapse
|
29
|
Simmonds SE, Fritts‐Penniman AL, Cheng SH, Mahardika GN, Barber PH. Genomic signatures of host-associated divergence and adaptation in a coral-eating snail, Coralliophila violacea (Kiener, 1836). Ecol Evol 2020; 10:1817-1837. [PMID: 32128119 PMCID: PMC7042750 DOI: 10.1002/ece3.5977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022] Open
Abstract
The fluid nature of the ocean, combined with planktonic dispersal of marine larvae, lowers physical barriers to gene flow. However, divergence can still occur despite gene flow if strong selection acts on populations occupying different ecological niches. Here, we examined the population genomics of an ectoparasitic snail, Coralliophila violacea (Kiener 1836), that specializes on Porites corals in the Indo-Pacific. Previous genetic analyses revealed two sympatric lineages associated with different coral hosts. In this study, we examined the mechanisms promoting and maintaining the snails' adaptation to their coral hosts. Genome-wide single nucleotide polymorphism (SNP) data from type II restriction site-associated DNA (2b-RAD) sequencing revealed two differentiated clusters of C. violacea that were largely concordant with coral host, consistent with previous genetic results. However, the presence of some admixed genotypes indicates gene flow from one lineage to the other. Combined, these results suggest that differentiation between host-associated lineages of C. violacea is occurring in the face of ongoing gene flow, requiring strong selection. Indeed, 2.7% of all SNP loci were outlier loci (73/2,718), indicative of divergence with gene flow, driven by adaptation of each C. violacea lineage to their specific coral hosts.
Collapse
Affiliation(s)
- Sara E. Simmonds
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCAUSA
| | | | - Samantha H. Cheng
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCAUSA
- Center for Biodiversity and ConservationAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Gusti Ngurah Mahardika
- Animal Biomedical and Molecular Biology LaboratoryFaculty of Veterinary MedicineUdayana University BaliDenpasarIndonesia
| | - Paul H. Barber
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCAUSA
| |
Collapse
|
30
|
Puttick MN, Ingram T, Clarke M, Thomas GH. MOTMOT: Models of trait macroevolution on trees (an update). Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Travis Ingram
- Department of Zoology University of Otago Dunedin New Zealand
| | - Magnus Clarke
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - Gavin H. Thomas
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| |
Collapse
|
31
|
Starko S, Soto Gomez M, Darby H, Demes KW, Kawai H, Yotsukura N, Lindstrom SC, Keeling PJ, Graham SW, Martone PT. A comprehensive kelp phylogeny sheds light on the evolution of an ecosystem. Mol Phylogenet Evol 2019; 136:138-150. [PMID: 30980936 DOI: 10.1016/j.ympev.2019.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022]
Abstract
Reconstructing phylogenetic topologies and divergence times is essential for inferring the timing of radiations, the appearance of adaptations, and the historical biogeography of key lineages. In temperate marine ecosystems, kelps (Laminariales) drive productivity and form essential habitat but an incomplete understanding of their phylogeny has limited our ability to infer their evolutionary origins and the spatial and temporal patterns of their diversification. Here, we reconstruct the diversification of habitat-forming kelps using a global genus-level phylogeny inferred primarily from organellar genome datasets, and investigate the timing of kelp radiation. We resolve several important phylogenetic features, including relationships among the morphologically simple kelp families and the broader radiation of complex kelps, demonstrating that the initial radiation of the latter resulted from an increase in speciation rate around the Eocene-Oligocene boundary. This burst in speciation rate is consistent with a possible role of recent climatic cooling in triggering the kelp radiation and pre-dates the origin of benthic-foraging carnivores. Historical biogeographical reconstructions point to a northeast Pacific origin of complex kelps, with subsequent colonization of new habitats likely playing an important role in driving their ecological diversification. We infer that complex morphologies associated with modern kelp forests (e.g. branching, pneumatocysts) evolved several times over the past 15-20 MY, highlighting the importance of morphological convergence in establishing modern upright kelp forests. Our phylogenomic findings provide new insights into the geographical and ecological proliferation of kelps and provide a timeline along which feedbacks between kelps and their food-webs could have shaped the structure of temperate ecosystems.
Collapse
Affiliation(s)
- Samuel Starko
- Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada; Bamfield Marine Sciences Centre, 100 Pachena Rd., Bamfield V0R 1B0, Canada; Hakai Institute, Heriot Bay, Quadra Island, Canada.
| | - Marybel Soto Gomez
- Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada
| | - Hayley Darby
- Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada
| | - Kyle W Demes
- Department of Zoology, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada
| | - Hiroshi Kawai
- Department of Biology, Kobe University, Rokkodaicho 657-8501, Japan
| | - Norishige Yotsukura
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo 060-0809, Japan
| | - Sandra C Lindstrom
- Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada
| | - Patrick J Keeling
- Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada; Department of Zoology, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada
| | - Sean W Graham
- Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada
| | - Patrick T Martone
- Department of Botany & Biodiversity Research Centre, The University of British Columbia, 6270 University Blvd., Vancouver V6T 1Z4, Canada; Bamfield Marine Sciences Centre, 100 Pachena Rd., Bamfield V0R 1B0, Canada; Hakai Institute, Heriot Bay, Quadra Island, Canada
| |
Collapse
|
32
|
Andrade-Restrepo M, Champagnat N, Ferrière R. Local adaptation, dispersal evolution, and the spatial eco-evolutionary dynamics of invasion. Ecol Lett 2019; 22:767-777. [PMID: 30887688 DOI: 10.1111/ele.13234] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/22/2018] [Accepted: 01/21/2019] [Indexed: 01/17/2023]
Abstract
Local adaptation and dispersal evolution are key evolutionary processes shaping the invasion dynamics of populations colonizing new environments. Yet their interaction is largely unresolved. Using a single-species population model along a one-dimensional environmental gradient, we show how local competition and dispersal jointly shape the eco-evolutionary dynamics and speed of invasion. From a focal introduction site, the generic pattern predicted by our model features a temporal transition from wave-like to pulsed invasion. Each regime is driven primarily by local adaptation, while the transition is caused by eco-evolutionary feedbacks mediated by dispersal. The interaction range and cost of dispersal arise as key factors of the duration and speed of each phase. Our results demonstrate that spatial eco-evolutionary feedbacks along environmental gradients can drive strong temporal variation in the rate and structure of population spread, and must be considered to better understand and forecast invasion rates and range dynamics.
Collapse
Affiliation(s)
- Martín Andrade-Restrepo
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Paris Cité Sorbonne, F-750205, Paris, France
| | - Nicolas Champagnat
- IECL, CNRS UMR 7502, Université de Lorraine, Vandœuvre-lès-Nancy, F-54506, Lorraine, France.,Inria, TOSCA team, Villers-lès-Nancy, F-54600, France
| | - Régis Ferrière
- Institut de Biologie de l'ENS, CNRS UMR 8197, INSERM U 1043, Ecole Normale Supérieure, Paris Sciences & Lettres University, Paris, F-75005, France.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.,Interdisciplinary Global Environmental Studies (iGLOBES), CNRS, UMI 3157, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
33
|
Stolyarova AV, Bazykin GA, Neretina TV, Kondrashov AS. Bursts of amino acid replacements in protein evolution. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181095. [PMID: 31031994 PMCID: PMC6458383 DOI: 10.1098/rsos.181095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Evolution can occur both gradually and through alternating episodes of stasis and rapid changes. However, the prevalence and magnitude of fluctuations of the rate of evolution remain obscure. Detecting a rapid burst of changes requires a detailed record of past evolution, so that events that occurred within a short time interval can be identified. Here, we use the phylogenies of the Baikal Lake amphipods and of Catarrhini, which contain very short internal edges which make this task feasible. We detect six salient bursts of evolution of individual proteins during such short time periods, each involving between six and 38 amino acid substitutions. These bursts were extremely unlikely to have occurred neutrally, and were apparently caused by positive selection. On average, in the course of a time interval required for one synonymous substitution per site, a protein undergoes a strong burst of rapid evolution with probability at least approximately 0.01.
Collapse
Affiliation(s)
| | - Georgii A. Bazykin
- Skolkovo Institute of Science and Technology, Skolkovo 143026, Russia
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow 127994, Russia
| | - Tatyana V. Neretina
- White Sea Biological Station, Biological Faculty, M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
- Department of Bioengineering and Bioinformatics, M. V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexey S. Kondrashov
- Department of Bioengineering and Bioinformatics, M. V. Lomonosov Moscow State University, Moscow 119234, Russia
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109-1048, USA
| |
Collapse
|
34
|
Tavera JJ, Wainwright PC. Geography of speciation affects rate of trait divergence in haemulid fishes. Proc Biol Sci 2019; 286:20182852. [PMID: 30963939 PMCID: PMC6408603 DOI: 10.1098/rspb.2018.2852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/23/2019] [Indexed: 11/12/2022] Open
Abstract
Speciation and the interactions between recently diverged species are thought to be major causes of ecological and morphological divergence in evolutionary radiations. Here, we explore the extent to which geographical overlap and time since speciation may promote divergence in marine species, which represent a small fraction of currently published studies about the patterns and processes of speciation. A time-calibrated molecular phylogeny of New World haemulid fishes, a major radiation of reef and shore fishes in the tropical West Atlantic and East Pacific, reveals 21 sister species pairs, of which eight are fully sympatric and 13 are allopatric. Sister species comparisons show a non-significant relation between most of the phenotypic traits and time since divergence in allopatric taxa. Additionally, we find no difference between sympatric and allopatric pairs in the rate of divergence in colour pattern, overall body shape, or functional morphological traits associated with locomotion or feeding. However, sympatric pairs show a significant decrease in the rate of divergence in all of these traits with increasing time since their divergence, suggesting an elevated rate of divergence at the time of speciation, the effect of which attenuates as divergence time increases. Our results are consistent with an important role for geographical overlap driving phenotypic divergence early in the speciation process, but the lack of difference in rates between sympatric and allopatric pairs indicates that the interactions between closely related species are not dominant drivers of this divergence.
Collapse
Affiliation(s)
- José J. Tavera
- Departamento de Biología, Universidad del Valle, Cali, Colombia
| | - Peter C. Wainwright
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| |
Collapse
|
35
|
Skeels A, Cardillo M. Reconstructing the Geography of Speciation from Contemporary Biodiversity Data. Am Nat 2019; 193:240-255. [DOI: 10.1086/701125] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Slater GJ, Friscia AR. Hierarchy in adaptive radiation: A case study using the Carnivora (Mammalia). Evolution 2019; 73:524-539. [DOI: 10.1111/evo.13689] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 01/13/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Graham J. Slater
- Department of the Geophysical SciencesUniversity of ChicagoChicago Illinois 60637
| | - Anthony R. Friscia
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos Angeles California 90095
| |
Collapse
|
37
|
Johnson AM, Chang CH, Fuller RC. Testing the potential mechanisms for the maintenance of a genetic color polymorphism in bluefin killifish populations. Curr Zool 2018; 64:733-743. [PMID: 30538733 PMCID: PMC6280095 DOI: 10.1093/cz/zoy017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/28/2018] [Indexed: 02/03/2023] Open
Abstract
The maintenance of genetic variation in the face of natural selection is a long-standing question in evolutionary biology. In the bluefin killifish Lucania goodei, male coloration is polymorphic. Males can produce either red or yellow coloration in their anal fins, and both color morphs are present in all springs. These 2 morphs are heritable and how they are maintained in nature is unknown. Here, we tested 2 mechanisms for the maintenance of the red/yellow color morphs. Negative frequency-dependent mating success predicts that rare males have a mating advantage over common males. Spatial variation in fitness predicts that different color morphs have an advantage in different microhabitat types. Using a breeding experiment, we tested these hypotheses by creating populations with different ratios of red to yellow males (5 red:1 yellow; 1 red:5 yellow) and determining male mating success on shallow and deep spawning substrates. We found no evidence of negative frequency-dependent mating success. Common morphs tended to have higher mating success, and this was particularly so on shallow spawning substrates. However, on deep substrates, red males enjoyed higher mating success than yellow males, particularly so when red males were rare. However, yellow males did not have an advantage at either depth nor when rare. We suggest that preference for red males is expressed in deeper water, possibly due to alterations in the lighting environment. Finally, male pigment levels were correlated with one another and predicted male mating success. Hence, pigmentation plays an important role in male mating success.
Collapse
Affiliation(s)
- Ashley M Johnson
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Chia-Hao Chang
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Rebecca C Fuller
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
38
|
Ramírez-Amaro S, Ordines F, Picornell A, Castro JA, Ramon C, Massutí E, Terrasa B. The evolutionary history of Mediterranean Batoidea (Chondrichthyes: Neoselachii). ZOOL SCR 2018. [DOI: 10.1111/zsc.12315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sergio Ramírez-Amaro
- Laboratori de Genètica; Universitat de les Illes Balears; Palma de Mallorca Spain
- Instituto Español de Oceanografía; Centre Oceanogràfic de les Balears; Palma de Mallorca Spain
| | - Francesc Ordines
- Instituto Español de Oceanografía; Centre Oceanogràfic de les Balears; Palma de Mallorca Spain
| | - Antònia Picornell
- Laboratori de Genètica; Universitat de les Illes Balears; Palma de Mallorca Spain
| | - José A. Castro
- Laboratori de Genètica; Universitat de les Illes Balears; Palma de Mallorca Spain
| | - Cori Ramon
- Laboratori de Genètica; Universitat de les Illes Balears; Palma de Mallorca Spain
| | - Enric Massutí
- Instituto Español de Oceanografía; Centre Oceanogràfic de les Balears; Palma de Mallorca Spain
| | - Bàrbara Terrasa
- Laboratori de Genètica; Universitat de les Illes Balears; Palma de Mallorca Spain
| |
Collapse
|
39
|
Li J, Huang JP, Sukumaran J, Knowles LL. Microevolutionary processes impact macroevolutionary patterns. BMC Evol Biol 2018; 18:123. [PMID: 30097006 PMCID: PMC6086068 DOI: 10.1186/s12862-018-1236-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/01/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Macroevolutionary modeling of species diversification plays important roles in inferring large-scale biodiversity patterns. It allows estimation of speciation and extinction rates and statistically testing their relationships with different ecological factors. However, macroevolutionary patterns are ultimately generated by microevolutionary processes acting at population levels, especially when speciation and extinction are considered protracted instead of point events. Neglecting the connection between micro- and macroevolution may hinder our ability to fully understand the underlying mechanisms that drive the observed patterns. RESULTS In this simulation study, we used the protracted speciation framework to demonstrate that distinct microevolutionary scenarios can generate very similar biodiversity patterns (e.g., latitudinal diversity gradient). We also showed that current macroevolutionary models may not be able to distinguish these different scenarios. CONCLUSIONS Given the compounded nature of speciation and extinction rates, one needs to be cautious when inferring causal relationships between ecological factors and macroevolutioanry rates. Future studies that incorporate microevolutionary processes into current modeling approaches are in need.
Collapse
Affiliation(s)
- Jingchun Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, USA. .,Museum of Natural History, University of Colorado Boulder, Boulder, USA. .,Museum of Zoology, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, USA.
| | - Jen-Pen Huang
- Integrative Research Center, The Field Museum, Chicago, USA.,Museum of Zoology, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, USA
| | - Jeet Sukumaran
- Museum of Zoology, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, USA
| | - L Lacey Knowles
- Museum of Zoology, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, USA
| |
Collapse
|
40
|
Singer D, Kosakyan A, Seppey CVW, Pillonel A, Fernández LD, Fontaneto D, Mitchell EAD, Lara E. Environmental filtering and phylogenetic clustering correlate with the distribution patterns of cryptic protist species. Ecology 2018; 99:904-914. [DOI: 10.1002/ecy.2161] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Affiliation(s)
- David Singer
- Laboratory of Soil Biodiversity; Institute of Biology; University of Neuchâtel; Rue Emile-Argand 11 CH-2000 Neuchâtel Switzerland
| | - Anush Kosakyan
- Laboratory of Soil Biodiversity; Institute of Biology; University of Neuchâtel; Rue Emile-Argand 11 CH-2000 Neuchâtel Switzerland
- Department of Zoology; Institute of Biosciences; University of São Paulo; São Paulo 05508 Brazil
- Institute of Parasitology, Biology Centre; Czech Academy of Sciences; Branisovska 31 České Budějovice 37005 Czech Republic
| | - Christophe V. W. Seppey
- Laboratory of Soil Biodiversity; Institute of Biology; University of Neuchâtel; Rue Emile-Argand 11 CH-2000 Neuchâtel Switzerland
- Microorganisms and Plants Group; Department of Arctic and Marine Biology; Faculty of Biosciences, Fisheries and Economics; University of Tromsø; Framstredet 39 9037 Tromsø Norway
| | - Amandine Pillonel
- Laboratory of Soil Biodiversity; Institute of Biology; University of Neuchâtel; Rue Emile-Argand 11 CH-2000 Neuchâtel Switzerland
| | - Leonardo D. Fernández
- Laboratory of Soil Biodiversity; Institute of Biology; University of Neuchâtel; Rue Emile-Argand 11 CH-2000 Neuchâtel Switzerland
- Laboratorio de Ecología Evolutiva y Filoinformática; Departamento de Zoología; Facultad de Ciencias Naturales y Oceanográficas; Universidad de Concepción; Barrio Universitario s/n, Casilla 160-C Concepción Chile
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS); Universidad Bernardo O'Higgins; Avenida Viel 1497 Santiago Chile
| | - Diego Fontaneto
- National Research Council of Italy; Institute of Ecosystem Study; 28922 Verbania Pallanza Italy
| | - Edward A. D. Mitchell
- Laboratory of Soil Biodiversity; Institute of Biology; University of Neuchâtel; Rue Emile-Argand 11 CH-2000 Neuchâtel Switzerland
- Jardin Botanique de Neuchâtel; Chemin du Perthuis-du-Sault 58 CH-2000 Neuchâtel Switzerland
| | - Enrique Lara
- Laboratory of Soil Biodiversity; Institute of Biology; University of Neuchâtel; Rue Emile-Argand 11 CH-2000 Neuchâtel Switzerland
- Real Jardín Botánico; CSIC; Plaza Murillo 2 ES 28014 Madrid Spain
| |
Collapse
|
41
|
Silva TFD, Schneider H, Sampaio I, Angulo A, Brito MFG, Santos ACDA, de Andrade Santos J, Carvalho-Filho A, Santos S. Phylogeny of the subfamily Stelliferinae suggests speciation in Ophioscion Gill, 1863 (Sciaenidae: Perciformes) in the western South Atlantic. Mol Phylogenet Evol 2018; 125:51-61. [PMID: 29567506 DOI: 10.1016/j.ympev.2018.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/19/2018] [Accepted: 03/17/2018] [Indexed: 11/17/2022]
Abstract
Phylogenies based on morphological and molecular data confirm the monophyly of the subfamily Stelliferinae; however, there is no consensus on the intergeneric and interspecific relationships in the group. Previous studies suggested the non-monophyly of Ophioscion and Stellifer, and possible cryptic species in Ophioscion punctatissimus. Therefore, we used mitochondrial (16S rDNA and COI) and nuclear (Rhodopsin, EGR1, and RAG1) regions to examine phylogenetic relationships among species of this subfamily. Our results confirmed the monophyly of Stelliferinae and supports the close relationship among Bardiella, Corvula and Odontoscion, which form a sister group to Stellifer and Ophioscion. Notwithstanding, all the results support the non-monophyly of Stellifer and Ophioscion and we suggest that a taxonomic revision should consider Ophioscion as a junior synonym of Stellifer. Moreover, O. punctatissimus was grouped into two clades, with the O. punctatissimus lineage I (LI) being closer to O. scierus from the eastern Pacific than to the O. punctatissimus lineage II (LII). The most recent common ancestor (TMRCA) for the O. scierus and O. punctatissimus LI and O. punctatissimus LII clade dates from 7.2 (HPD: 4.3-10.5) Ma, whereas TMRCA for the O. scierus and O. punctatissimus LI clade dates from 5.3 (HPD: 2.4-8.6) Ma, indicating that speciation processes may be related to the rise of the Isthmus of Panama. Phylogeographic analyses corroborate the hypothesis of speciation in O. punctatissimus. These results suggest that lineages of O. punctatissimus originated from distinct ancestors and, by morphological similarity, were considered the same taxon. A taxonomic revision should be performed to validate the species status of such lineages.
Collapse
Affiliation(s)
- Tárcia Fernanda da Silva
- Laboratório de Genética e Biologia Molecular, Universidade Federal do Pará, Instituto de Estudos Costeiros, Alameda Leandro Ribeiro s/n, 68600-000 Bragança, Pará, Brazil.
| | - Horacio Schneider
- Laboratório de Genética e Biologia Molecular, Universidade Federal do Pará, Instituto de Estudos Costeiros, Alameda Leandro Ribeiro s/n, 68600-000 Bragança, Pará, Brazil.
| | - Iracilda Sampaio
- Laboratório de Genética e Biologia Molecular, Universidade Federal do Pará, Instituto de Estudos Costeiros, Alameda Leandro Ribeiro s/n, 68600-000 Bragança, Pará, Brazil.
| | - Arturo Angulo
- Museo de Zoología and Centro de Investigación en Ciencias del Mar y Limnologia (CIMAR), Universidad de Costa Rica, 11501-2060, San Pedro de Montes de Oca, San José, Costa Rica.
| | - Marcelo Fulgêncio Guedes Brito
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Sergipe (UFS), Avenida Marechal Rondon, s/n, 49100-000 São Cristóvão, Sergipe, Brazil.
| | - Alexandre Clistenes de Alcântara Santos
- Laboratório de Ictiologia, Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana (UEFS), Avenida Transnordestina, s/n, 44036-900 Feira de Santana, Bahia, Brazil.
| | - Jonas de Andrade Santos
- Laboratório de Ictiologia, Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana (UEFS), Avenida Transnordestina, s/n, 44036-900 Feira de Santana, Bahia, Brazil.
| | | | - Simoni Santos
- Laboratório de Genética e Biologia Molecular, Universidade Federal do Pará, Instituto de Estudos Costeiros, Alameda Leandro Ribeiro s/n, 68600-000 Bragança, Pará, Brazil.
| |
Collapse
|
42
|
Bemis KE, Marcy-Quay B, Galbraith JK, Wuenschel MJ, Sullivan PJ, Bemis WE. Deep-Water Dragonets (Teleostei: Callionymidae: Foetorepus) of the Mid Atlantic Bight: A Little-Known Genus from the Edge of the Continental Shelf. COPEIA 2018. [DOI: 10.1643/ci-17-662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Ingram T, Harrison A, Mahler DL, Castañeda MDR, Glor RE, Herrel A, Stuart YE, Losos JB. Comparative tests of the role of dewlap size in Anolis lizard speciation. Proc Biol Sci 2017; 283:rspb.2016.2199. [PMID: 28003450 DOI: 10.1098/rspb.2016.2199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 11/17/2016] [Indexed: 02/01/2023] Open
Abstract
Phenotypic traits may be linked to speciation in two distinct ways: character values may influence the rate of speciation or diversification in the trait may be associated with speciation events. Traits involved in signal transmission, such as the dewlap of Anolis lizards, are often involved in the speciation process. The dewlap is an important visual signal with roles in species recognition and sexual selection, and dewlaps vary among species in relative size as well as colour and pattern. We compile a dataset of relative dewlap size digitized from photographs of 184 anole species from across the genus' geographical range. We use phylogenetic comparative methods to test two hypotheses: that larger dewlaps are associated with higher speciation rates, and that relative dewlap area diversifies according to a speciational model of evolution. We find no evidence of trait-dependent speciation, indicating that larger signals do not enhance any role the dewlap has in promoting speciation. Instead, we find a signal of mixed speciational and gradual trait evolution, with a particularly strong signal of speciational change in the dewlaps of mainland lineages. This indicates that dewlap size diversifies in association with the speciation process, suggesting that divergent selection may play a role in the macroevolution of this signalling trait.
Collapse
Affiliation(s)
- Travis Ingram
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Alexis Harrison
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - D Luke Mahler
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, 3031, Toronto, Ontario, Canada M5S 3B2
| | - María Del Rosario Castañeda
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Richard E Glor
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Anthony Herrel
- Département d'Ecologie et de Gestion de la Biodiversité, UMR 7179 C.N.R.S/M.N.H.N., 57 rue Cuvier, Case postale 55, 75231 Paris Cedex 5, France
| | - Yoel E Stuart
- Department of Integrative Biology, University of Texas at Austin, One University Station C0990, Austin, TX 78712, USA
| | - Jonathan B Losos
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
44
|
Li J, Ó Foighil D, Strong EE. Commensal associations and benthic habitats shape macroevolution of the bivalve clade Galeommatoidea. Proc Biol Sci 2017; 283:rspb.2016.1006. [PMID: 27383818 DOI: 10.1098/rspb.2016.1006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 06/13/2016] [Indexed: 11/12/2022] Open
Abstract
The great diversity of marine life has been shaped by the interplay between abiotic and biotic factors. Among different biotic interactions, symbiosis is an important yet less studied phenomenon. Here, we tested how symbiotic associations affected marine diversification, using the bivalve superfamily Galeommatoidea as a study system. This superfamily contains large numbers of obligate commensal as well as free-living species and is therefore amenable to comparative approaches. We constructed a global molecular phylogeny of Galeommatoidea and compared macroevolutionary patterns between free-living and commensal lineages. Our analyses inferred that commensalism/sediment-dwelling is likely to be the ancestral condition of Galeommatoidea and that secondary invasions of hard-bottom habitats linked to the loss of commensalism. One major clade containing most of the free-living species exhibits a 2-4 times higher diversification rate than that of the commensals, likely driven by frequent niche partitioning in highly heterogeneous hard-bottom habitats. However, commensal clades show much higher within-clade morphological disparity, likely promoted by their intimate associations with diverse hosts. Our study highlights the importance of interactions between different ecological factors in shaping marine macroevolution and that biotic factors cannot be ignored if we wish to fully understand processes that generate marine biodiversity.
Collapse
Affiliation(s)
- Jingchun Li
- Museum of Zoology and Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI, USA
| | - Diarmaid Ó Foighil
- Museum of Zoology and Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI, USA
| | - Ellen E Strong
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
45
|
Walter RP, Roy D, Hussey NE, Stelbrink B, Kovacs KM, Lydersen C, McMeans BC, Svavarsson J, Kessel ST, Biton Porsmoguer S, Wildes S, Tribuzio CA, Campana SE, Petersen SD, Grubbs RD, Heath DD, Hedges KJ, Fisk AT. Origins of the Greenland shark ( Somniosus microcephalus): Impacts of ice-olation and introgression. Ecol Evol 2017; 7:8113-8125. [PMID: 29043060 PMCID: PMC5632604 DOI: 10.1002/ece3.3325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/07/2017] [Accepted: 07/21/2017] [Indexed: 12/04/2022] Open
Abstract
Herein, we use genetic data from 277 sleeper sharks to perform coalescent‐based modeling to test the hypothesis of early Quaternary emergence of the Greenland shark (Somniosus microcephalus) from ancestral sleeper sharks in the Canadian Arctic‐Subarctic region. Our results show that morphologically cryptic somniosids S. microcephalus and Somniosus pacificus can be genetically distinguished using combined mitochondrial and nuclear DNA markers. Our data confirm the presence of genetically admixed individuals in the Canadian Arctic and sub‐Arctic, and temperate Eastern Atlantic regions, suggesting introgressive hybridization upon secondary contact following the initial species divergence. Conservative substitution rates fitted to an Isolation with Migration (IM) model indicate a likely species divergence time of 2.34 Ma, using the mitochondrial sequence DNA, which in conjunction with the geographic distribution of admixtures and Pacific signatures likely indicates speciation associated with processes other than the closing of the Isthmus of Panama. This time span coincides with further planetary cooling in the early Quaternary period followed by the onset of oscillating glacial‐interglacial cycles. We propose that the initial S. microcephalus–S. pacificus split, and subsequent hybridization events, were likely associated with the onset of Pleistocene glacial oscillations, whereby fluctuating sea levels constrained connectivity among Arctic oceanic basins, Arctic marginal seas, and the North Atlantic Ocean. Our data demonstrates support for the evolutionary consequences of oscillatory vicariance via transient oceanic isolation with subsequent secondary contact associated with fluctuating sea levels throughout the Quaternary period—which may serve as a model for the origins of Arctic marine fauna on a broad taxonomic scale.
Collapse
Affiliation(s)
- Ryan P Walter
- Department of Biological Science California State University Fullerton CA USA.,Great Lakes Institute for Environmental Research University of Windsor Windsor ON Canada
| | - Denis Roy
- Department of Natural Resources and the Environment Wildlife and Fisheries Conservation Center and Center for Environmental Sciences and Engineering University of Connecticut Storrs CT USA
| | - Nigel E Hussey
- Biological Sciences University of Windsor Windsor ON Canada
| | | | - Kit M Kovacs
- Fram Centre Norwegian Polar Institute Tromsø Norway
| | | | - Bailey C McMeans
- Great Lakes Institute for Environmental Research University of Windsor Windsor ON Canada.,Department of Biology University of Toronto Mississauga Mississauga ON Canada
| | - Jörundur Svavarsson
- Faculty of Life and Environmental Sciences University of Iceland Reykjavík Iceland
| | - Steven T Kessel
- Department of Fisheries and Wildlife Michigan State University East Lansing MI USA
| | - Sebastián Biton Porsmoguer
- Mediterranean Institute of Oceanography (MIO) UM 110 Aix-Marseille University CNRS/INSU Toulon University IRD Marseille France
| | - Sharon Wildes
- Auke Bay Laboratories AFSC/NMFS/NOAA/DOC Ted Stevens Marine Research Institute Juneau AK USA
| | - Cindy A Tribuzio
- Auke Bay Laboratories AFSC/NMFS/NOAA/DOC Ted Stevens Marine Research Institute Juneau AK USA
| | - Steven E Campana
- Faculty of Life and Environmental Sciences University of Iceland Reykjavík Iceland
| | - Stephen D Petersen
- Conservation and Research Department Assiniboine Park Zoo Winnipeg MB Canada
| | - R Dean Grubbs
- Coastal and Marine Laboratory Florida State University St. Teresa FL USA
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research University of Windsor Windsor ON Canada
| | - Kevin J Hedges
- Arctic Aquatic Research Division Fisheries and Oceans Canada Winnipeg MB Canada
| | - Aaron T Fisk
- Great Lakes Institute for Environmental Research University of Windsor Windsor ON Canada
| |
Collapse
|
46
|
Baalsrud HT, Voje KL, Tørresen OK, Solbakken MH, Matschiner M, Malmstrøm M, Hanel R, Salzburger W, Jakobsen KS, Jentoft S. Evolution of Hemoglobin Genes in Codfishes Influenced by Ocean Depth. Sci Rep 2017; 7:7956. [PMID: 28801564 PMCID: PMC5554263 DOI: 10.1038/s41598-017-08286-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/11/2017] [Indexed: 11/09/2022] Open
Abstract
Understanding the genetic basis of adaptation is one of the main enigmas of evolutionary biology. Among vertebrates, hemoglobin has been well documented as a key trait for adaptation to different environments. Here, we investigate the role of hemoglobins in adaptation to ocean depth in the diverse teleost order Gadiformes, with species distributed at a wide range of depths varying in temperature, hydrostatic pressure and oxygen levels. Using genomic data we characterized the full hemoglobin (Hb) gene repertoire for subset of species within this lineage. We discovered a correlation between expanded numbers of Hb genes and ocean depth, with the highest numbers in species occupying shallower, epipelagic regions. Moreover, we demonstrate that the Hb genes have functionally diverged through diversifying selection. Our results suggest that the more variable environment in shallower water has led to selection for a larger Hb gene repertoire and that Hbs have a key role in adaptive processes in marine environments.
Collapse
Affiliation(s)
- Helle Tessand Baalsrud
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Kjetil Lysne Voje
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Ole Kristian Tørresen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Monica Hongrø Solbakken
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Michael Matschiner
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway.,Institute of Fisheries Ecology, Johann Heinrich von Thünen-Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries, Hamburg, Germany
| | - Martin Malmstrøm
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Reinhold Hanel
- Zoological Institute, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway.,Institute of Fisheries Ecology, Johann Heinrich von Thünen-Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries, Hamburg, Germany
| | - Kjetill S Jakobsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway. .,Department of Natural Sciences, Centre for Coastal Research, University of Agder, Kristiansand, Norway.
| |
Collapse
|
47
|
|
48
|
Seeholzer GF, Claramunt S, Brumfield RT. Niche evolution and diversification in a Neotropical radiation of birds (Aves: Furnariidae). Evolution 2017; 71:702-715. [DOI: 10.1111/evo.13177] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 01/04/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Glenn F. Seeholzer
- Museum of Natural Science and Department of Biological Sciences Louisiana State University Baton Rouge Louisiana 70803
| | - Santiago Claramunt
- Museum of Natural Science and Department of Biological Sciences Louisiana State University Baton Rouge Louisiana 70803
- Department of Natural History Royal Ontario Museum 100 Queen's Park, Toronto Ontario M5S2C6 Canada
| | - Robb T. Brumfield
- Museum of Natural Science and Department of Biological Sciences Louisiana State University Baton Rouge Louisiana 70803
| |
Collapse
|
49
|
Clarke M, Thomas GH, Freckleton RP. Trait Evolution in Adaptive Radiations: Modeling and Measuring Interspecific Competition on Phylogenies. Am Nat 2017; 189:121-137. [DOI: 10.1086/689819] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Mason NA, Burns KJ, Tobias JA, Claramunt S, Seddon N, Derryberry EP. Song evolution, speciation, and vocal learning in passerine birds. Evolution 2017; 71:786-796. [DOI: 10.1111/evo.13159] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/17/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Nicholas A. Mason
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14853
- Fuller Evolutionary Biology Program Cornell Lab of Ornithology Ithaca New York 14850
| | - Kevin J. Burns
- Department of Biology San Diego State University San Diego California 92182
| | - Joseph A. Tobias
- Department of Life Sciences Imperial College London Silwood Park Ascot SL5 7PY United Kingdom
| | - Santiago Claramunt
- Department of Ornithology American Museum of Natural History New York New York 10024
| | - Nathalie Seddon
- Edward Grey Institute, Department of Zoology University of Oxford Oxford OX1 3PS United Kingdom
| | - Elizabeth P. Derryberry
- Department of Ecology and Evolutionary Biology Tulane University New Orleans Louisiana 70118
| |
Collapse
|