1
|
Tao J, Cheng J, Shi Y, Li B, Tang P, Jiao J, Liu H. NLRX1 Mediates the Disruption of Intestinal Mucosal Function Caused by Porcine Astrovirus Infection via the Extracellular Regulated Protein Kinases/Myosin Light-Chain Kinase (ERK/MLCK) Pathway. Cells 2024; 13:913. [PMID: 38891045 PMCID: PMC11171766 DOI: 10.3390/cells13110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Porcine astrovirus (PAstV) has a potential zoonotic risk, with a high proportion of co-infection occurring with porcine epidemic diarrhea virus (PEDV) and other diarrheal pathogens. Despite its high prevalence, the cellular mechanism of PAstV pathogenesis is ill-defined. Previous proteomics analyses have revealed that the differentially expressed protein NOD-like receptor X1 (NLRX1) located in the mitochondria participates in several important antiviral signaling pathways in PAstV-4 infection, which are closely related to mitophagy. In this study, we confirmed that PAstV-4 infection significantly up-regulated NLRX1 and mitophagy in Caco-2 cells, while the silencing of NLRX1 or the treatment of mitophagy inhibitor 3-MA inhibited PAstV-4 replication. Additionally, PAstV-4 infection triggered the activation of the extracellular regulated protein kinases/ myosin light-chain kinase (ERK/MLCK) pathway, followed by the down-regulation of tight-junction proteins (occludin and ZO-1) as well as MUC-2 expression. The silencing of NLRX1 or the treatment of 3-MA inhibited myosin light-chain (MLC) phosphorylation and up-regulated occludin and ZO-1 proteins. Treatment of the ERK inhibitor PD98059 also inhibited MLC phosphorylation, while MLCK inhibitor ML-7 mitigated the down-regulation of mucosa-related protein expression induced by PAstV-4 infection. Yet, adding PD98059 or ML-7 did not affect NLRX1 expression. In summary, this study preliminarily explains that NLRX1 plays an important role in the disruption of intestinal mucosal function triggered by PAstV-4 infection via the ERK/MLC pathway. It will be helpful for further antiviral drug target screening and disease therapy.
Collapse
Affiliation(s)
- Jie Tao
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Jinghua Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Ying Shi
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Benqiang Li
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Pan Tang
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Jiajie Jiao
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (J.C.); (Y.S.); (B.L.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| |
Collapse
|
2
|
Porto PS, Rivera A, Moonrinta R, Wobus CE. Entry and egress of human astroviruses. Adv Virus Res 2023; 117:81-119. [PMID: 37832992 DOI: 10.1016/bs.aivir.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Astroviruses encapsidate a positive-sense, single-stranded RNA genome into ∼30nm icosahedral particles that infect a wide range of mammalian and avian species, but their biology is not well understood. Human astroviruses (HAstV) are divided into three clades: classical HAstV serotypes 1-8, and novel or non-classical HAstV of the MLB and VA clades. These viruses are part of two genogroups and phylogenetically cluster with other mammalian astroviruses, highlighting their zoonotic potential. HAstV are a highly prevalent cause of nonbacterial gastroenteritis, primarily in children, the elderly and immunocompromised. Additionally, asymptomatic infections and extraintestinal disease (e.g., encephalitis), are also observed, mostly in immunocompetent or immunocompromised individuals, respectively. While these viruses are highly prevalent, no approved vaccines or antivirals are available to prevent or treat infections. This is in large part due to their understudied nature and the limited understanding of even very basic features of their life cycle and pathogenesis at the cellular and organismal level. This review will summarize molecular features of human astrovirus biology, pathogenesis, and tropism, and then focus on two stages of the viral life cycle, namely entry and egress, since these are proven targets for therapeutic interventions. We will further highlight gaps in knowledge in hopes of stimulating future research into these understudied viruses.
Collapse
Affiliation(s)
- Pedro Soares Porto
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states
| | - Andres Rivera
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states
| | - Rootjikarn Moonrinta
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states.
| |
Collapse
|
3
|
Complete genome sequence and phylogenetic analysis of a goose astrovirus isolate in China. Braz J Microbiol 2022; 54:427-434. [PMID: 36327040 PMCID: PMC9630819 DOI: 10.1007/s42770-022-00854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Astroviruses are considered the cause of gastroenteritis in humans and animals. Studies in recent years show avian astroviruses are also associated with duckling hepatitis, gosling gout, and chicken nephritis. In this study, a GAstV strain, designated as JS2019/China, was detected in dead goslings from a commercial goose farm in Jiangsu province of China. Viral strain was proliferated in goose embryos and sequence analysis showed the isolated strain had a classical structure arrangement and a series of conserved regions compared with other GAstVs. Sequence comparison and phylogenetic analysis of whole genome and ORF2 revealed that JS2019/China belongs to the GAstV-1 group, which consists of most of the GAstV strains. Amino acid analysis indicated that some mutants might have an impact on viral protease capacity, such as V505I and K736E of ORF1a and T107I, F342S, and S606P of ORF2. Taken together, a novel GAstV strain was isolated and genomic analysis and protein polymorphism analysis indicated that some amino acid mutants might affect the viral virulence.
Collapse
|
4
|
Zou J, Yu J, Mu Y, Xie X, Wang R, Wu H, Liu X, Xu F, Wang J, Wang Y. Development of a TaqMan-based multiplex real-time PCR for simultaneous detection of four feline diarrhea-associated viruses. Front Vet Sci 2022; 9:1005759. [PMID: 36406081 PMCID: PMC9669448 DOI: 10.3389/fvets.2022.1005759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/17/2022] [Indexed: 09/29/2023] Open
Abstract
Since their recent discovery, the prevalence of novel feline enteric viruses, including feline bocavirus 1 (FBoV-1), feline astrovirus (FeAstV), and feline kobuvirus (FeKoV), has been reported in China. Co-infections of these viruses with feline parvovirus (FPV) are common causes of diarrhea in cats. Viral co-infections are difficult to identify because of their non-specific clinical signs. To detect and identify these viruses, a quick and specific pathogen-testing approach is required. Here, we establish a real-time PCR (qPCR) based on multiple TaqMan probes for the simultaneous detection of FBoV-1, FeAstV, FeKoV, and FPV. Specific primers and TaqMan fluorescent probes were designed to ensure specificity. The results showed that the detection limit of single qPCR was up to 10 copies, and the detection limit of multiplex qPCR was up to 100 copies, with correlation coefficients >0.995 in all cases. Clinical sample detection revealed a 25.19% (34/135) total rate of co-infection among the viruses and a 1.48% (2/135) quadruple infection rate. Thus, this multiplex qPCR approach can serve as a quick, sensitive, and specific diagnostic tool for FBoV-1, FeAstV, FeKoV, and FPV identification, and it may be utilized for routine surveillance of these emerging and reemerging feline enteric viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Wang Z, Chen H, Gao S, Song M, Shi Z, Peng Z, Jin Q, Zhao L, Qiao H, Bian C, Yang X, Zhang X, Zhao J. Core antigenic advantage domain-based ELISA to detect antibody against novel goose astrovirus in breeding geese. Appl Microbiol Biotechnol 2022; 106:2053-2062. [PMID: 35254499 DOI: 10.1007/s00253-022-11852-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 11/02/2022]
Abstract
Goose astrovirus (GAstV), the major causative agent of visceral and joint gout in goslings, is a novel pathogen greatly threatening waterfowl industry. Importantly, the horizontal and vertical transmissibility of GAstV posed a great challenge for disease prevention and control. Given the absence of commercial vaccine, restricting vertical transmission and protecting susceptible goslings must be a priority. Although many detection methods have been established, there is no serological method to detect GAstV-specific antibody, greatly limiting inspection and elimination of infected breeding bird. In this study, the B-cell epitopes of GAstV capsid protein were predicted, and its core antigenic advantage domain (shCAP) was expressed and purified. After authenticating the antigenicity, the recombinant shCAP protein was taken as the coating antigen, and an easily accessible indirect enzyme-linked immunosorbent assay (ELISA) was established to detect GAstV-specific antibody. The working conditions, including antigen concentration, serum dilution and incubation time, blocking buffer concentration, and color developing time, were gradually optimized by checkerboard titration. The cut-off OD450 value of the indirect ELISA for positive sample was 0.379, and the analytical sensitivity was 1:800. There was no cross-reaction with sera against goose parvovirus (GPV), Tembusu virus (TUMV), H5 and H7 subtype avian influenza virus (AIV H5 + H7), and Newcastle disease virus (NDV). The assay was further applied to examine 73 breeding goose serum samples and shared excellent agreement of 93.5% (68/73) with western blot, which also suggested that GAstV is circulating in the goose population in China. In conclusion, the developed indirect ELISA is simple, specific, and sensitive, which will be greatly useful to screen GAstV infection and block vertical transmission. KEY POINTS: • B-cell epitopes of GAstV capsid protein were predicted and expressed as immunogen • A core antigenic advantage domain-based ELISA was established to detect GAstV-specific antibody • The established ELISA will contribute to inspection and elimination of infected breeding geese and provide a useful tool for large scale serological testing of GAstV in geese.
Collapse
Affiliation(s)
- Zeng Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Huayuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Shenyan Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Mingzhen Song
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Zicong Shi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Zhifeng Peng
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, People's Republic of China
| | - Qianyue Jin
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Li Zhao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, People's Republic of China
| | - Hongxing Qiao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, People's Republic of China
| | - Chuanzhou Bian
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, People's Republic of China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, People's Republic of China.
| | - Jun Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China.
| |
Collapse
|
6
|
Wang J, Xu C, Zeng M, Yue H, Tang C. Identification of a novel astrovirus in goats in China. INFECTION GENETICS AND EVOLUTION 2021; 96:105105. [PMID: 34619392 DOI: 10.1016/j.meegid.2021.105105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
In this study, a total of 143 fecal samples (107 diarrheic and 36 non-diarrheic) were collected from 11 goat farms in southwest China, and 3.7% of diarrheic and 8.3% of non-diarrheic samples were detected as astrovirus-positive by RT-PCR. A nearly complete astrovirus genomic sequence (SWUN/F4/2019) of 6278 nucleotides (nt), which contained a 6186 bp open reading frame, was successfully obtained. The genome of strain SWUN/F4/2019 shared the highest nt identity (77.0%) and the closest genetic relationship with CapAstV-G5.1. It is worth noting that in the nonstructural protein 1ab, strain SWUN/F4/2019 shared the highest amino acid (aa) identity (93.8%) with strain CapAstV-G5.1; however, its capsid protein shared the highest aa identity (72.7%) with the Sichuan takin astrovirus strain LLT03 and only shared 23.1-64.8% aa identities with all available ovine and caprine astrovirus strains. Interestingly, a region recombination event was predicted in the ORF2 gene of strain SWUN/F4/2019, with CapAstV-G5.1 as the putative major parental strain and CcAstV/roe_deer/SLO/D5-14/2014 as the possible minor parental strain. According to the species classification criteria of the International Committee on Taxonomy of Viruses (ICTV), SWUN/F4/2019 may represent a novel astrovirus in goats. To our knowledge, this is the first detection of astrovirus in goats in China and a novel astrovirus strain was identified in goats. These findings increase the understanding of the epidemic and the genetic evolution of astroviruses.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Chenxia Xu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Mengting Zeng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Hua Yue
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Chengdu, China
| | - Cheng Tang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Chengdu, China.
| |
Collapse
|
7
|
Pankovics P, Boros Á, László Z, Szekeres S, Földvári G, Altan E, Delwart E, Reuter G. Genome characterization, prevalence and tissue distribution of astrovirus, hepevirus and norovirus among wild and laboratory rats (Rattus norvegicus) and mice (Mus musculus) in Hungary. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 93:104942. [PMID: 34044191 DOI: 10.1016/j.meegid.2021.104942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Rodents including rats are reservoir of several pathogens capable of affecting human health. In this study, faecal and different organ specimens from free-living Norway rats (Rattus norvegicus) (N = 18) and faecal samples from laboratory rodents (rats N = 21 and mice N = 20) collected from different geographic areas in Hungary between 2017 and 2020 were investigated by viral metagenomics and conventional RT-PCR methods. The complete genome of three different RNA viruses, rat astrovirus, rat norovirus and rat hepevirus were characterized and analysed in detail. Rat norovirus was detected in faecal (17.6%, 3/17) and kidney (7.1%, 1/14) samples; rat astrovirus in faecal (23.5%, 4/17) and spleen (13.3%, 2/15) samples, and rat hepevirus in 43% to 67% the faecal, liver, kidney, lung, heart, muscle, brain and blood samples from Norway rats, respectively. Rat norovirus was also identifiable in 5% (1/21) of laboratory rats and rat astrovirus in 40% (8/20) of faecal samples from laboratory mice. Co-infections were found in 28% (5/18) wild Norway rats. The highest RNA viral load of astrovirus (1.81 × 108 copy/g) and norovirus (3.49 × 107 copy/g) were measured in faecal samples; while the highest RNA viral load of hepevirus (1.16 × 109 copy/g) was found in liver samples of Norway rats, respectively. This study confirms the wide geographic distribution and high prevalence of astrovirus, norovirus and hepevirus among wild rats in Hungary with confirmation of different organ involvement of as well as the detection of norovirus and astrovirus in laboratory rats and mice, respectively. This finding further strengthens the role of rodents in the spread of viral pathogens especially infecting human.
Collapse
Affiliation(s)
- Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán László
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Sándor Szekeres
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Gábor Földvári
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| | - Eda Altan
- Vitalant Research Institute, San Francisco, CA, USA
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
8
|
Molecular detection and characterization reveals circulation of multiple genotypes of porcine astrovirus in Haryana, India. Arch Virol 2021; 166:2847-2852. [PMID: 34363534 DOI: 10.1007/s00705-021-05195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/09/2021] [Indexed: 10/20/2022]
Abstract
Porcine astrovirus (PAstV) is distributed worldwide and has been reported to cause diarrhea in pigs. PAstV belongs to the family Astroviridae and genus Mamastrovirus. PAstVs are divided into five diverse genotypes (PAstV1-PAstV5) on the basis of phylogenetic analysis of a part of the RNA-dependent RNA polymerase (RdRp) gene and the capsid gene. However, knowledge regarding the clinical significance and molecular characteristics of PAstV in Haryana, India, is limited. In this study, we investigated the presence of PAstV by RT-PCR of the partial RdRp gene in 110 rectal swabs collected from diarrheic pigs in different parts of Haryana, India. Of these, 35 samples (31.8%) tested positive for PAstV, with the highest positivity observed among weaning piglets 3 to 9 weeks of age (47.7%, 21/44), followed by fattening pigs 9 to 24 weeks of age (28.5%, 8/28). Phylogenetic analysis of the partial RdRp gene revealed circulation of four different genotypes (PAstV1, PAstV2, PAstV4, and PAstV5) in Haryana, with PAstV1 being the predominant genotype. To the best of our knowledge, this is the first report of the presence of PAstV1 and PAstV5 in the pig population of India. The PAstV sequences revealed high genetic variability and genetic heterogeneity in a relatively confined area.
Collapse
|
9
|
Wildi N, Seuberlich T. Neurotropic Astroviruses in Animals. Viruses 2021; 13:1201. [PMID: 34201545 PMCID: PMC8310007 DOI: 10.3390/v13071201] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 11/16/2022] Open
Abstract
Astrovirus infections are among the main causes of diarrhea in children, but their significance for animal health has remained underestimated and largely unknown. This is changing due to the increasing amount of newly identified neurotropic astroviruses in cases of nonsuppurative encephalitis and neurological disease in humans, pigs, ruminant species and minks. Neurological cases in ruminants and humans usually occur sporadically and as isolated cases. This contrasts with the situation in pigs and minks, in which diseases associated with neurotropic astroviruses are endemic and occur on the herd level. Affected animals show neurological signs such as mild ataxia to tetraplegia, loss of orientation or trembling, and the outcome is often fatal. Non-suppurative inflammation with perivascular cuffing, gliosis and neuronal necrosis are typical histological lesions of astrovirus encephalitis. Since astroviruses primarily target the gastrointestinal tract, it is assumed that they infect the brain through the circulatory system or retrograde following the nerves. The phylogenetic analysis of neurotropic astroviruses has revealed that they are genetically closely related, suggesting the presence of viral determinants for tissue tropism and neuroinvasion. In this review, we summarize the current knowledge on neurotropic astrovirus infections in animals and propose future research activities.
Collapse
Affiliation(s)
| | - Torsten Seuberlich
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| |
Collapse
|
10
|
Rawal G, Linhares DCL. Scoping review on the epidemiology, diagnostics and clinical significance of porcine astroviruses. Transbound Emerg Dis 2021; 69:974-985. [PMID: 33900029 DOI: 10.1111/tbed.14123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022]
Abstract
Porcine astroviruses (PoAstVs) have been reported globally and are divided into at least five distinct lineages (PoAstV1-PoAsV5). The primary objective of this review was to summarize the scientific literature about the frequency of detection, associated clinical presentations and type of samples and diagnostic tools used for the detection of porcine astroviruses. The secondary objective was to summarize the body of knowledge about the causal role in disease of PoAstVs using the Bradford Hill framework. A search was conducted using Centre for Biosciences and Agriculture International (CABI), MEDLINE, American Association of Swine Veterinarians (AASV) Swine Information Library (SIL) abstracts, swine conferences including American College of Veterinary Pathologists (ACVP) and American Association of Veterinary Laboratory Diagnosticians (AAVLD). From 168 studies identified by the search, 29 studies were eligible. Results indicated that 69% (20/29) of the literature on PoAstVs have been published between 2011 and 2018. Of 29 papers, 52% were detection studies (15 of 29) and 48% (14 of 29) were case-control studies. Seventy-two per cent (21 of 29) reported differential diagnosis and 10% (3 of 29) reported histologic lesions, out of which 67% (2 of 3) associated the detection of PoAstV3 with development of polioencephalomyelitis. PCR-based assays were the most common diagnostic tools.
Collapse
Affiliation(s)
- Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Daniel C L Linhares
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
11
|
Li Y, Gordon E, Idle A, Hui A, Chan R, Seguin MA, Delwart E. Astrovirus Outbreak in an Animal Shelter Associated With Feline Vomiting. Front Vet Sci 2021; 8:628082. [PMID: 33644152 PMCID: PMC7905307 DOI: 10.3389/fvets.2021.628082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
An outbreak of cat vomiting was observed in an animal shelter. Testing for known enteric feline pathogens did not identify a causative agent. Viral metagenomics on four mini pools of feces from cases and controls housed in the same area revealed the presence of feline astrovirus in all pools. Also found with fewer reads in one pool each were rotavirus I, carnivore bocaparvovirus 3, norovirus (NoV) GVI, and a novel dependovirus. The genome of the highly prevalent astrovirus was sequenced and classified into mamastrovirus species two, also known as feline astrovirus. Real-time RT-PCR on longitudinally acquired fecal samples from 11 sick cases showed 10 (91%) to be shedding astrovirus for as long as 19 days. Affected cats were sick for an average of 9.8 days, with a median of 2.5 days (range = 1–31 days). Unaffected control cats housed in the same areas during the outbreak showed five out of nine (56%) to also be shedding astrovirus. Feline fecal samples collected from the same animal shelter ~1 year before (n = 8) and after (n = 10) showed none to be shedding astrovirus, indicating that this virus was temporarily associated with the vomiting outbreak and is not part of the commensal virome for cats in this shelter. Together with the absence of highly prevalent known pathogens, our results support a role for feline astrovirus infection, as well as significant asymptomatic shedding, in an outbreak of contagious feline vomiting.
Collapse
Affiliation(s)
- Yanpeng Li
- Vitalant Research Institute, San Francisco, CA, United States.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Emilia Gordon
- The British Columbia Society for the Prevention of Cruelty to Animals, Vancouver, BC, Canada
| | - Amanda Idle
- The British Columbia Society for the Prevention of Cruelty to Animals, Vancouver, BC, Canada
| | - Alvin Hui
- Vitalant Research Institute, San Francisco, CA, United States
| | - Roxanne Chan
- IDEXX Reference Laboratories, Inc., Markham, ON, Canada
| | - M Alexis Seguin
- IDEXX Reference Laboratories, Inc., Westbrook, ME, United States
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, United States.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
12
|
Boujon CL, Koch MC, Kauer RV, Keller-Gautschi E, Hierweger MM, Hoby S, Seuberlich T. Novel encephalomyelitis-associated astrovirus in a muskox (Ovibos moschatus): a surprise from the archives. Acta Vet Scand 2019; 61:31. [PMID: 31234899 PMCID: PMC6591865 DOI: 10.1186/s13028-019-0466-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/18/2019] [Indexed: 11/24/2022] Open
Abstract
Background The small, single-stranded positive-sense RNA astroviruses are mostly known to be enteric viruses. In recent years, though, different astroviruses were reported in association with neurological disease in various species. In cattle, two distinct neurotropic astrovirus genotype species were described in numerous cases of nonsuppurative encephalomyelitis, with one of these viruses also reported in similar circumstances in several sheep. Here, we retrieved archived formalin-fixed, paraffin-embedded brain tissues of a muskox diagnosed with a comparable disease pattern in 1982 and investigated them for the presence of neurotropic astroviruses with various techniques. Results Initially, tissue samples scored positive for both neurotropic astroviruses by immunohistochemistry; however, unexpected results with further immunohistochemical testing, in situ hybridization and qRT-PCR prompted us to submit an RNA extract from the animal’s brain material to next-generation sequencing. We were thus able to obtain the full genome of a novel astrovirus, muskox astrovirus CH18 (MOxAstV-CH18), whose closest relative is an enteric ovine astrovirus. Subsequently, viral RNA could be detected with a specific RT-PCR in the brain of the affected animal, but not in faecal samples from the current muskoxen herd of the animal park where the animal used to be kept. Conclusions We identified a novel astrovirus in a historical case of a captive muskox with nonsuppurative encephalomyelitis. Unfortunately, our results and the fact that no material from organs other than of the nervous system was available do not allow any assumption about the epidemiology or pathogenesis of the virus. Still, these findings are yet another piece of evidence that the tropism and species specificity of astroviruses could be more deceptive than generally assumed.
Collapse
|
13
|
Detection and characterization of a novel genotype of porcine astrovirus 4 from nasal swabs from pigs with acute respiratory disease. Arch Virol 2016; 161:2575-9. [PMID: 27329081 DOI: 10.1007/s00705-016-2937-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
Abstract
Metagenomic sequencing of three nasal swabs collected from 10- to 21-day-old pigs exhibiting unexplained acute respiratory disease from two different commercial production facilities in Oklahoma identified a novel genotype of porcine astrovirus 4 (PAstV-4). The genomes had only ~75 % nucleotide sequence identity to previously characterized PAstV-4 isolates, while the capsid-encoding ORF2 had only ~53 % amino acid sequence identity to reference strains. A TaqMan assay targeting the novel ORF2 gene found 21 % and 19 % incidence in nasal and fecal swabs, respectively, submitted for unrelated diagnostic testing. PAstV-4 RNA levels were significantly higher (P = 0.04) in nasal swabs, suggesting a possible atypical respiratory tropism.
Collapse
|
14
|
Cai Y, Yin W, Zhou Y, Li B, Ai L, Pan M, Guo W. Molecular detection of Porcine astrovirus in Sichuan Province, China. Virol J 2016; 13:6. [PMID: 26739067 PMCID: PMC4704384 DOI: 10.1186/s12985-015-0462-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/30/2015] [Indexed: 11/10/2022] Open
Abstract
Background Porcine astrovirus (PoAstV) is widely distributed worldwide, and is highly prevalent among piglets with or without diarrhea, existing as at least five distinct lineages (PoAstV1–PoAstV5) within the genus Mamastrovirus. However, our knowledge of the diversity and epidemiology of PoAstV in China is limited. Results In this study, fecal samples from 21/120 (17.5 %) domestic pigs, including 18/100 (18 %) diarrheic and 3/20 (15 %) healthy pigs, and from 1/9 (11.1 %) healthy wild boars tested in Sichuan Province were positive for PoAstV on reverse transcription–PCR. Of the 22 positive samples, 13.6 % were positive for PoAstV only, whereas 40.9 % also contained Porcine epidemic diarrhea virus (PEDV), 22.7 % also contained porcine group A rotavirus (PRoVA), and 22.7 % also contained PEDV and PRoVA. A phylogenetic analysis of the RdRp gene revealed genetic heterogeneity among the PoAstV sequences and two lineages were detected in this study, with PoAstV-2 predominant. PoAstV-5 was detected in wild boars for the first time. Conclusions PoAstV infections exist in Sichuan Province regardless of the disease status in the pig population, either alone or in combination with other enteric viruses, and may be associated with diarrhea. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0462-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuhan Cai
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China.,Veterinary Biologicals engineering and technology Research Center of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China.,Institute of Animal Nutrition, Sichuan Academy of Animal Science, Chengdu, 610299, China
| | - Wenqi Yin
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China.,Veterinary Biologicals engineering and technology Research Center of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China.,Institute of Animal Nutrition, Sichuan Academy of Animal Science, Chengdu, 610299, China
| | - Yuanchen Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China. .,Veterinary Biologicals engineering and technology Research Center of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China. .,Institute of Animal Nutrition, Sichuan Academy of Animal Science, Chengdu, 610299, China.
| | - Bi Li
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China.,Veterinary Biologicals engineering and technology Research Center of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China.,Institute of Animal Nutrition, Sichuan Academy of Animal Science, Chengdu, 610299, China
| | - Lun Ai
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China.,Veterinary Biologicals engineering and technology Research Center of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China
| | - Meng Pan
- Institute of Animal Nutrition, Sichuan Academy of Animal Science, Chengdu, 610299, China
| | - Wanzhu Guo
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China
| |
Collapse
|
15
|
Li JS, Li MZ, Zheng LS, Liu N, Li DD, Duan ZJ. Identification and genetic characterization of two porcine astroviruses from domestic piglets in China. Arch Virol 2015; 160:3079-84. [PMID: 26338091 DOI: 10.1007/s00705-015-2569-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 08/08/2015] [Indexed: 10/23/2022]
Abstract
Porcine astrovirus are divided into five genotypes. In this study, we identified two porcine astroviruses (AstV-LL-1 and AstV-LL-2) by using sequence-independent single-primer amplification (SISPA) on faecal specimens of healthy domestic piglets younger than 15 days. The detection rate for both was 2.82% (14/497). AstV-LLs were then sequenced and characterised. Phylogenetic analysis revealed that they have the characteristics of porcine astrovirus (PastV) 2 and 5 and have some unique genetic features. Our findings show that the two astroviruses are novel lineages of PAstV2 and 5. The findings may be helpful in evaluating the ecology and evolution of astroviruses in pigs.
Collapse
Affiliation(s)
- Jin-song Li
- National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xuan-Wu District, Beijing, 100052, China
| | - Mao-zhong Li
- National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xuan-Wu District, Beijing, 100052, China
| | - Li-shu Zheng
- National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xuan-Wu District, Beijing, 100052, China
| | - Na Liu
- National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xuan-Wu District, Beijing, 100052, China
| | - Dan-di Li
- National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xuan-Wu District, Beijing, 100052, China
| | - Zhao-jun Duan
- National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xuan-Wu District, Beijing, 100052, China.
| |
Collapse
|
16
|
Abstract
Diarrhoea in lambs and kids is often a complex, multi-factorial syndrome. Common infectious causes of diarrhoea in lambs and kids during the first month of life are of bacterial or parasite nature. However, despite appreciable improvements in management practices and prevention and treatment strategies over the last decades, diarrhoea is still a common and costly syndrome affecting newborn small ruminants. Recent advances in the diagnostics and metagenomic investigations of the enteric environment have allowed discovering a number of novel viruses, although their pathobiological properties remain largely unknown. Assessing more in depth the impact of these viruses on the health and productions of these livestock animals is necessary and requires the development of accurate diagnostic tools and updating of the diagnostic algorithms of enteric pathological conditions.
Collapse
|
17
|
Liao Q, Liu N, Wang X, Wang F, Zhang D. Genetic characterization of a novel astrovirus in Pekin ducks. INFECTION GENETICS AND EVOLUTION 2015; 32:60-7. [DOI: 10.1016/j.meegid.2015.02.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/12/2015] [Accepted: 02/24/2015] [Indexed: 11/25/2022]
|
18
|
Lee S, Jang G, Lee C. Complete genome sequence of a porcine astrovirus from South Korea. Arch Virol 2015; 160:1819-21. [PMID: 25916612 DOI: 10.1007/s00705-015-2436-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/18/2015] [Indexed: 11/29/2022]
Abstract
Porcine astrovirus (PAstV) is broadly distributed in pigs in several countries worldwide. PAstVs belong to the genus Mamastrovirus and are divided into five genetically divergent types. This study presents a molecular characterization of PAstV identified in diarrheic piglets in South Korea. The complete genome of the Korean PAstV strain KOR/KNU14-07/2014 was sequenced and analyzed to characterize PAstV circulating in South Korea. The full-length genomic sequence of KNU14-07 was determined to be 6,337 nucleotides in length and consisted of three major open reading frames (5'-ORF1a-ORF1b-ORF2-3'). The overall degree of nucleotide sequence identity was 40.8 to 72.5% between KUN14-07 and other reported PAstVs, indicating high heterogeneity among PAstVs. Genetic and phylogenetic analyses showed that the KNU14-07 strain was most closely related to the PAstV2 lineage, which is the second most common type in South Korea.
Collapse
Affiliation(s)
- Sunhee Lee
- Animal Virology Laboratory, School of Life Sciences, College of Natural Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | | | | |
Collapse
|
19
|
Alfred N, Liu H, Li ML, Hong SF, Tang HB, Wei ZZ, Chen Y, Li FK, Zhong YZ, Huang WJ. Molecular epidemiology and phylogenetic analysis of diverse bovine astroviruses associated with diarrhea in cattle and water buffalo calves in China. J Vet Med Sci 2015; 77:643-51. [PMID: 25716289 PMCID: PMC4488400 DOI: 10.1292/jvms.14-0252] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Astroviruses are the principal causative agents of gastroenteritis in humans and have been associated with diarrhea in other mammals as well as birds. However, astroviral infection of animals had been poorly studied. In the present study, 211 rectal swabs collected from cattle and water buffalo calves with mild to severe diarrhea were tested for bovine astrovirus (BAstV) by RT-PCR. Results: 92/211 (43.6%) samples were positive for BAstV, at a rate of 46.10% (71/154) in cattle and 36.84% (21/57) in water buffalo. Phylogenetic analysis based on the partial and full-length of 25 ORF2 amino acid sequences obtained in this study classified the Guangxi BAstVs isolates into five subgroups under the genus of Mamastrovirus, genotype MAstV33, which suggested that the water buffalo was a new host of this genogroup that previously included only cattle and roe deer. Despite the origin of the host, the Guangxi BAstV isolates were closely related to the BAstV Hong Kong isolates (B18/HK and B76-2/HK), but highly divergent from the BAstV NeuroS1 isolate previously associated with neurologic disease in cattle in the U.S.A. Nucleotide sequence-based characterization of the ORF1b/ORF2 junction and corresponding overlapping regions showed distinctive properties, which may be common to BAstVs. Our results suggested that cattle and water buffalo are prone to infection of closely related astroviruses, which probably evolved from the same ancestor. The current study described astroviruses in water buffalo for the first time and is thus far among the largest epidemiological investigations of BAstV infection in cattle conducted in China.
Collapse
Affiliation(s)
- Niyokwishimira Alfred
- Laboratory of Animal Infectious Diseases Prevention and Molecular Immunology, Guangxi University, Daxue Road 100, Nanning, Guangxi 530004, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu N, Wang F, Shi J, Zheng L, Wang X, Zhang D. Molecular characterization of a duck hepatitis virus 3-like astrovirus. Vet Microbiol 2014; 170:39-47. [DOI: 10.1016/j.vetmic.2014.01.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 11/28/2022]
|
21
|
Bidokhti MRM, Ullman K, Jensen TH, Chriél M, Mottahedin A, Munir M, Andersson AM, Detournay O, Hammer AS, Baule C. Establishment of stably transfected cells constitutively expressing the full-length and truncated antigenic proteins of two genetically distinct mink astroviruses. PLoS One 2013; 8:e82978. [PMID: 24376619 PMCID: PMC3871642 DOI: 10.1371/journal.pone.0082978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 11/01/2013] [Indexed: 01/06/2023] Open
Abstract
Astroviruses are becoming a growing concern in veterinary and public health. To date there are no registered vaccines against astrovirus-induced disease, mostly due to the difficulty to cultivate astroviruses to high titer for vaccine development using conventional techniques. As means to circumvent this drawback, we have developed stably transfected mink fetal cells and BHK21 cells constitutively expressing the full-length and truncated capsid proteins of two distinct genotypes of mink astrovirus. Protein expression in these stably transfected cells was demonstrated by strong signals as evaluated by in-situ PLA and IFA, and confirmed by Western blotting. The recombinant full-length and truncated proteins induced a high level of antibodies in mink, evaluated by ELISA, demonstrating their immunogenicity. In a challenge experiment in mink, a reduction in presentation clinical signs and virus shedding was observed in mink kits born from immunized females. The gene integration and protein expression were sustained through cell passage, showing that the used approach is robust and reliable for expression of functional capsid proteins for vaccine and diagnostic applications.
Collapse
Affiliation(s)
- Mehdi R. M. Bidokhti
- Joint R&D Division of Virology, Department of Virology, Immunobiology and Parasitology, The National Veterinary Institute (SVA), Uppsala, Sweden
| | - Karin Ullman
- Joint R&D Division of Virology, Department of Virology, Immunobiology and Parasitology, The National Veterinary Institute (SVA), Uppsala, Sweden
| | - Trine H. Jensen
- Division of Veterinary Diagnostics and Research, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Mariann Chriél
- Division of Veterinary Diagnostics and Research, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Amin Mottahedin
- Joint R&D Division of Virology, Department of Virology, Immunobiology and Parasitology, The National Veterinary Institute (SVA), Uppsala, Sweden
| | - Muhammad Munir
- Department of Biomedical Sciences and Veterinary Public Health, Division of Virology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Maria Andersson
- The National Veterinary Institute, Department of Animal Health and Antimicrobial Resistance, Uppsala, Sweden
| | - Olivier Detournay
- Joint R&D Division of Virology, Department of Virology, Immunobiology and Parasitology, The National Veterinary Institute (SVA), Uppsala, Sweden
| | - Anne Sofie Hammer
- Division of Veterinary Diagnostics and Research, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Claudia Baule
- Joint R&D Division of Virology, Department of Virology, Immunobiology and Parasitology, The National Veterinary Institute (SVA), Uppsala, Sweden
- * E-mail:
| |
Collapse
|
22
|
Amimo JO, Okoth E, Junga JO, Ogara WO, Njahira MN, Wang Q, Vlasova AN, Saif LJ, Djikeng A. Molecular detection and genetic characterization of kobuviruses and astroviruses in asymptomatic local pigs in East Africa. Arch Virol 2013; 159:1313-9. [PMID: 24327095 PMCID: PMC4094370 DOI: 10.1007/s00705-013-1942-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 11/29/2013] [Indexed: 12/14/2022]
Abstract
In this study, swine fecal specimens (n = 251) collected from nursing and weaned piglets raised under smallholder production systems were screened for the presence of kobuviruses by RT-PCR. Porcine kobuviruses were detected in 13.1 % (33/251) of the samples. We demonstrated that porcine kobuvirus infections exist in indigenous pigs in Kenya and Uganda and that the prevalence was higher in young piglets than older pigs: nursing piglets (15 %), post-weaning (3-month-old) pigs (17 %), 4-month-old pigs (10 %). Genetic analysis of the partial RNA-dependent RNA polymerase (RdRp) region (690 nt) revealed that kobuviruses circulating in East Africa are diverse, sharing nucleotide sequence identities ranging from 89.7 to 99.1 % and 88 to 92.3 % among them and with known porcine kobuviruses, respectively. The nucleotide sequence identities between our kobuvirus strains and those of human, bovine and canine kobuviruses were 69.4-70.7 %, 73.1-74.4 % and 67-70.7 %, respectively. Additionally, upon sequencing selected samples that showed consistent 720-bp RT-PCR bands while using the same primer set, we detected porcine astroviruses in our samples belonging to type 2 and type 3 mamastroviruses. To our knowledge, this study reports the first detection and molecular analysis of both porcine kobuviruses and astroviruses in an African region. Further studies are required to determine the role of these viruses in gastrointestinal infections of pigs in this region and to determine the genetic diversity of the circulating strains to develop accurate diagnostic tools and implement appropriate control strategies.
Collapse
Affiliation(s)
- Joshua O. Amimo
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, P.O Box 29053, Nairobi, 00625 Kenya
- Bioscience of Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O Box 30709, Nairobi, 00100 Kenya
| | - Edward Okoth
- Bioscience of Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O Box 30709, Nairobi, 00100 Kenya
| | - Joseph O. Junga
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, P.O Box 29053, Nairobi, 00625 Kenya
| | - William O. Ogara
- Department of Public Health Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, P.O Box 29053, Nairobi, 00625 Kenya
| | - Moses N. Njahira
- Bioscience of Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O Box 30709, Nairobi, 00100 Kenya
| | - Qiuhong Wang
- Food Animal Health Research Program, Veterinary Preventive Medicine Department, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Anastasia N. Vlasova
- Food Animal Health Research Program, Veterinary Preventive Medicine Department, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Linda J. Saif
- Food Animal Health Research Program, Veterinary Preventive Medicine Department, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Appolinaire Djikeng
- Bioscience of Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O Box 30709, Nairobi, 00100 Kenya
| |
Collapse
|
23
|
Abstract
Human astroviruses (HAstV) are a frequent cause of gastroenteritis in young children and immunocompromised patients. To understand the early steps of HAstV infection in the highly permissive Caco-2 cell line, the binding and entry processes of the virus were characterized. The half-time of virus binding to the cell surface was about 10 min, while virus decapsidation took around 130 min. Drugs affecting clathrin-mediated endocytosis, endosome acidification, and actin filament polymerization, as well as those that reduce the presence of cholesterol in the cell membrane, decreased the infectivity of the virus. The infection was also reduced by silencing the expression of the clathrin heavy chain (CHC) by RNA interference or by overexpression of dominant-negative mutants of dynamin 2 and Eps15. Furthermore, the entry of HAstV apparently depends on the maturation of endosomes, since the infection was reduced by silencing the expression of Rab7, a small GTPase involved in the early- to late-endosome maturation. Altogether, our results suggest that HAstV enters Caco-2 cells using a clathrin-dependent pathway and reaches late endosomes to enter cells. Here, we have characterized the mechanism used by human astroviruses, important agents of gastroenteritis in children, to gain entry into their host cells. Using a combination of biochemical and genetic tools, we found that these viruses enter Caco-2 cells using a clathrin-dependent endocytic pathway, where they most likely need to travel to late endosomes to reach the cytoplasm and begin their replication cycle.
Collapse
|
24
|
Abstract
A risk ranking process identified Toxoplasma gondii and pathogenic verocytotoxin-producing Escherichia coli (VTEC) as the most relevant biological hazards for meat inspection of sheep and goats. As these are not detected by traditional meat inspection, a meat safety assurance system using risk-based interventions was proposed. Further studies are required on T. gondii and pathogenic VTEC. If new information confirms these hazards as a high risk to public health from meat from sheep or goats, setting targets at carcass level should be considered. Other elements of the system are risk-categorisation of flocks/herds based on improved Food Chain Information (FCI), classification of abattoirs according to their capability to reduce faecal contamination, and use of improved process hygiene criteria. It is proposed to omit palpation and incision from post-mortem inspection in animals subjected to routine slaughter. For chemical hazards, dioxins and dioxin-like polychlorinated biphenyls were ranked as being of high potential concern. Monitoring programmes for chemical hazards should be more flexible and based on the risk of occurrence, taking into account FCI, which should be expanded to reflect the extensive production systems used, and the ranking of chemical substances, which should be regularly updated and include new hazards. Control programmes across the food chain, national residue control plans, feed control and monitoring of environmental contaminants should be better integrated. Meat inspection is a valuable tool for surveillance and monitoring of animal health and welfare conditions. Omission of palpation and incision would reduce detection effectiveness for tuberculosis and fasciolosis at animal level. Surveillance of tuberculosis at the slaughterhouse in small ruminants should be improved and encouraged, as this is in practice the only surveillance system available. Extended use of FCI could compensate for some, but not all, the information on animal health and welfare lost if only visual post-mortem inspection is applied.
Collapse
|
25
|
Abstract
Astroviruses are small, nonenveloped, single-stranded RNA viruses that cause diarrhea in a wide variety of mammals and birds. On the surface of the viral capsid are globular spikes that are thought to be involved in attachment to host cells. To understand the basis of species specificity, we investigated the structure of an avian astrovirus capsid spike and compared it to a previously reported human astrovirus capsid spike structure. Here we report the crystal structure of the turkey astrovirus 2 (TAstV-2) capsid surface spike domain, determined to 1.5-Å resolution, and identify three conserved patches on the surface of the spike that are candidate avian receptor-binding sites. Surprisingly, the overall TAstV-2 capsid spike structure is unique, with only distant structural similarities to the human astrovirus capsid spike and other viral capsid spikes. There is an absence of conserved putative receptor-binding sites between the human and avian spikes. However, there is evidence for carbohydrate-binding sites in both human and avian spikes, and studies with human astrovirus 1 (HAstV-1) suggest a minor role in infection for chondroitin sulfate but not heparin. Overall, our structural and functional studies provide new insights into astrovirus host cell entry, species specificity, and evolution.
Collapse
|
26
|
Brnić D, Prpić J, Keros T, Roić B, Starešina V, Jemeršić L. Porcine astrovirus viremia and high genetic variability in pigs on large holdings in Croatia. INFECTION GENETICS AND EVOLUTION 2013; 14:258-64. [PMID: 23313832 DOI: 10.1016/j.meegid.2012.12.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
Abstract
Astroviruses are emerging viral agents, primarily enteropathogenic in mammals, but recently have been acknowledged to have extra-intestinal implications in humans and mink. Porcine astrovirus is thought to be widely distributed and highly prevalent among pigs, nevertheless its clinical significance remains doubtful as it can be detected in diarrheic as well as in healthy pigs. Recent reports imply the immense genetic variability among porcine astrovirus strains with five distinct lineages being characterized so far. Herein, we report porcine astrovirus circulation in the blood of healthy pigs in different age categories bred on two large industrial holdings in Croatia, with viral RNA seroprevalence of 3.89%. These are the first extra-intestinal findings of astrovirus in pigs, indicating a more complex pathogenesis than previously thought. Partial polymerase sequences of serum-derived strains provisionally clustered into porcine astrovirus lineages 2 and 4, sharing high genetic identity with previously described porcine astrovirus strains. The results were supported by detecting porcine astrovirus strains in composite fecal samples, regardless of pig category or holding tested. Phylogenetic analysis of derived strains suggested the presence of porcine astrovirus lineages previously detected in pig sera with an additional highly genetically divergent lineage 5, reported for the first time in Europe. Moreover, the existence of possible sub lineages should not be excluded. The results obtained in the present study, contribute to knowledge of porcine astrovirus pathogenesis; even though it's possible clinical significance remains unclear. High fecal prevalence accompanied with vast genetic diversity on a relatively confined area, underscores the importance of pigs as porcine astrovirus reservoirs with eventual recombination events as a possible outcome.
Collapse
Affiliation(s)
- Dragan Brnić
- Croatian Veterinary Institute, Virology Department, Savska cesta 143, 10000 Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
27
|
Xiao CT, Giménez-Lirola LG, Gerber PF, Jiang YH, Halbur PG, Opriessnig T. Identification and characterization of novel porcine astroviruses (PAstVs) with high prevalence and frequent co-infection of individual pigs with multiple PAstV types. J Gen Virol 2012; 94:570-582. [PMID: 23223616 DOI: 10.1099/vir.0.048744-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many astrovirus (AstV) species are associated with enteric disease, although extraintestinal manifestations in mammalian and avian hosts have also been described. In this study, the prevalence rates of porcine AstV types 1-5 (PAstV1-PAstV5) were investigated using faecal samples from 509 pigs of which 488 (95.9%) came from farms with a history of diarrhoea. All of the five known PAstV types were found to circulate in pigs in the USA, and co-infection of a single pig with two or more PAstV types was frequently observed. A high overall prevalence of 64.0% (326/509) of PAstV RNA-positive samples was detected, with 97.2% (317/326) of the PAstV RNA-positive pigs infected with PAstV4. Further genomic sequencing and characterization of the selected isolates revealed low sequence identities (49.2-89.0%) with known PAstV strains, indicating novel types or genotypes of PAstV2, PAstV4 and PAstV5. Some new features of the genomes of the PAstVs were also discovered. The first complete genome of a PAstV3 isolate was obtained and showed identities of 50.5-55.3% with mink AstV and the novel human AstVs compared with 38.4-42.7% with other PAstV types. Phylogenetic analysis revealed that PAstV1, PAstV2 and PAstV3 were more closely related to AstVs from humans and other animals than to each other, indicating past cross-species transmission and the zoonotic potential of these PAstVs.
Collapse
Affiliation(s)
- Chao-Ting Xiao
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Priscilla F Gerber
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Yong-Hou Jiang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Patrick G Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
28
|
Ng TFF, Marine R, Wang C, Simmonds P, Kapusinszky B, Bodhidatta L, Oderinde BS, Wommack KE, Delwart E. High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage. J Virol 2012; 86:12161-75. [PMID: 22933275 PMCID: PMC3486453 DOI: 10.1128/jvi.00869-12] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/22/2012] [Indexed: 12/17/2022] Open
Abstract
Deep sequencing of untreated sewage provides an opportunity to monitor enteric infections in large populations and for high-throughput viral discovery. A metagenomics analysis of purified viral particles in untreated sewage from the United States (San Francisco, CA), Nigeria (Maiduguri), Thailand (Bangkok), and Nepal (Kathmandu) revealed sequences related to 29 eukaryotic viral families infecting vertebrates, invertebrates, and plants (BLASTx E score, <10(-4)), including known pathogens (>90% protein identities) in numerous viral families infecting humans (Adenoviridae, Astroviridae, Caliciviridae, Hepeviridae, Parvoviridae, Picornaviridae, Picobirnaviridae, and Reoviridae), plants (Alphaflexiviridae, Betaflexiviridae, Partitiviridae, Sobemovirus, Secoviridae, Tombusviridae, Tymoviridae, Virgaviridae), and insects (Dicistroviridae, Nodaviridae, and Parvoviridae). The full and partial genomes of a novel kobuvirus, salivirus, and sapovirus are described. A novel astrovirus (casa astrovirus) basal to those infecting mammals and birds, potentially representing a third astrovirus genus, was partially characterized. Potential new genera and families of viruses distantly related to members of the single-stranded RNA picorna-like virus superfamily were genetically characterized and named Picalivirus, Secalivirus, Hepelivirus, Nedicistrovirus, Cadicistrovirus, and Niflavirus. Phylogenetic analysis placed these highly divergent genomes near the root of the picorna-like virus superfamily, with possible vertebrate, plant, or arthropod hosts inferred from nucleotide composition analysis. Circular DNA genomes distantly related to the plant-infecting Geminiviridae family were named Baminivirus, Nimivirus, and Niminivirus. These results highlight the utility of analyzing sewage to monitor shedding of viral pathogens and the high viral diversity found in this common pollutant and provide genetic information to facilitate future studies of these newly characterized viruses.
Collapse
Affiliation(s)
- Terry Fei Fan Ng
- Blood Systems Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Rachel Marine
- Departments of Biological Sciences and Plant & Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Chunlin Wang
- Stanford Genome Technology Center, Stanford University, Stanford, California, USA
| | - Peter Simmonds
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Beatrix Kapusinszky
- Blood Systems Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Ladaporn Bodhidatta
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Bamidele Soji Oderinde
- WHO National Polio Laboratory, University of Maiduguri Teaching Hospital, Borno State, Nigeria
| | - K. Eric Wommack
- Departments of Biological Sciences and Plant & Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
29
|
Phylogenetic analysis of porcine astrovirus in domestic pigs and wild boars in South Korea. Virus Genes 2012; 46:175-81. [PMID: 22965450 PMCID: PMC7089313 DOI: 10.1007/s11262-012-0816-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 08/28/2012] [Indexed: 12/05/2022]
Abstract
Porcine astrovirus (PAstV) belongs to genetically divergent lineages within the genus Mamastrovirus. In this study, 25/129 (19.4 %) domestic pig and 1/146 (0.7 %) wild boar fecal samples tested in South Korea were positive for PAstV. Positive samples were mainly from pigs under 6 weeks old. Bayesian inference (BI) tree analysis for RNA-dependent RNA polymerase (RdRp) and capsid (ORF2) gene sequences, including Mamastrovirus and Avastrovirus, revealed a relatively geographically divergent lineage. The PAstVs of Hungary and America belong to lineage PAstV 4; those of Japan belong to PAstV 1; and those of Canada belong to PAstV 1, 2, 3, and 5, but not to 4. This study revealed that the PAstVs of Korea belong predominantly to lineage PAstV 4 and secondarily to PAstV 2. It was also observed that PAstV infections are widespread in South Korea regardless of the disease state in domestic pigs and in wild boars as well.
Collapse
|
30
|
Toffan A, Catania S, Salviato A, De Battisti C, Vascellari M, Toson M, Capua I, Cattoli G. Experimental infection of poults and guinea fowl with genetically distinct avian astroviruses. Avian Pathol 2012; 41:429-35. [PMID: 22900602 DOI: 10.1080/03079457.2012.704980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Avian astroviruses, of the genus Avastrovirus, are recognized as being the cause of enteritis in different bird species worldwide. In particular, turkeys are very susceptible and can be severely affected by this viral agent. More recently, astroviruses were detected in diseased guinea fowl in Italy but whether or not they were the causative agents of the clinical disease was not established. Despite the distribution and relevance of Avastrovirus infection, very little information on pathogenesis or factors influencing the pathogenicity of astroviruses is available. To increase available data on the pathogenesis of these viruses and to test the hypothesis of possible interspecies transmission, experimental infections were carried out in turkeys and guinea fowl with two genetically distinct avian astroviruses, namely TK-6363 and GF-5497, originating respectively from diseased turkey poults and guinea fowl. Data obtained in our study show that both of the viruses selected were able to infect young birds of the species in which they were originally detected. Additionally, these viruses were able to infect young birds of different species causing clinical signs, thus providing experimental evidence for the infection of distinct avian astroviruses in different avian species.
Collapse
Affiliation(s)
- Anna Toffan
- OIE/FAO and National Reference Laboratory for Avian Influenza and Newcastle Disease, OIE Collaborating Centre for Diseases at the Human Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Prevalence and risk factors of astrovirus infection in puppies from French breeding kennels. Vet Microbiol 2012; 157:214-9. [DOI: 10.1016/j.vetmic.2011.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 11/04/2011] [Accepted: 11/15/2011] [Indexed: 01/13/2023]
|
32
|
Genetic characterization of astroviruses detected in guinea fowl (Numida meleagris) reveals a distinct genotype and suggests cross-species transmission between turkey and guinea fowl. Arch Virol 2012; 157:1329-37. [PMID: 22527867 DOI: 10.1007/s00705-012-1311-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/17/2012] [Indexed: 10/28/2022]
Abstract
Astroviruses can infect mammalian and avian species and are often responsible for gastroenteric disease symptoms. In this study, the complete open reading frame (ORF) 2, the 3' end of ORF1b and the corresponding intergenic region of astroviruses identified in farmed guinea fowl (Numida meleagris) were sequenced and genetically analysed. Overall, the genetic sequence of guinea fowl astroviruses was related to turkey astrovirus type 2 (TastV2), although a marked genetic distance was revealed based on ORF2, which might indicate the circulation of a distinct virus genotype and serotype in guinea fowl. Furthermore, the genetic data presented herein suggest that either recombination between different astroviruses infecting distinct hosts or adaptation of a given astrovirus to a new host had occurred. In either case, direct or indirect interspecies transmission of astroviruses is likely to have occurred between turkey and guinea fowl, indicating the ability of viruses belonging to the family Astroviridae to cross species barriers.
Collapse
|
33
|
Reuter G, Nemes C, Boros A, Kapusinszky B, Delwart E, Pankovics P. Astrovirus in wild boars (Sus scrofa) in Hungary. Arch Virol 2012; 157:1143-7. [PMID: 22398915 PMCID: PMC3506007 DOI: 10.1007/s00705-012-1272-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 01/25/2012] [Indexed: 11/05/2022]
Abstract
The family Astroviridae consists of two genera, Avastrovirus and Mamastrovirus whose members are associated with gastroenteritis in avian and mammalian hosts, respectively. In this study, we report the first detection of astrovirus from fecal specimens of wild boars (Sus scrofa) using viral metagenomics and complete genome sequencing. The wild boar astrovirus (WBAstV-1/2011/HUN, JQ340310) genome is 6707 nucleotide long and had 76%, 95% and 56% amino acid (aa) identity in the ORF1a (852aa), ORF1b (522aa) and ORF2 (845aa) regions, respectively, to porcine astrovirus 4 (PAstV-4, JF713713), the closest match. This study indicates that wild boar could be a reservoir for astroviruses.
Collapse
Affiliation(s)
- Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.
| | | | | | | | | | | |
Collapse
|
34
|
Moschidou P, Martella V, Lorusso E, Desario C, Pinto P, Losurdo M, Catella C, Parisi A, Bányai K, Buonavoglia C. Mixed infection by Feline astrovirus and Feline panleukopenia virus in a domestic cat with gastroenteritis and panleukopenia. J Vet Diagn Invest 2012; 23:581-4. [PMID: 21908295 DOI: 10.1177/1040638711404149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Astroviruses are important pathogens of human beings and animals. Feline astroviruses have been identified by electron microscopy in the feces of either asymptomatic or symptomatic cats, and experimental infection with one isolate was shown to induce enteric clinical signs and virus excretion, thus suggesting a possible role as enteric pathogen. However, due to the lack of specific diagnostic assays, feline astroviruses are not included in the diagnostic algorithms of feline infectious diseases, and their role as feline pathogens remains unclear. The present report describes a dual infection by Feline astrovirus and Feline panleukopenia virus in a 4-month-old cat with severe gastroenteritis and panleukopenia. Upon sequence analysis, the Feline astrovirus strain was found to be genetically related to astroviruses identified in human beings and felids.
Collapse
Affiliation(s)
- Paschalina Moschidou
- Department of Veterinary Public Health, University of Bari, Strada per Casamassima Km 370010, Valenzano, Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Astrovirus infections cause gastroenteritis in mammals and have been identified as causative agents of diverse pathologies in birds such as hepatitis in ducks and poult enteritis mortality syndrome (PEMS), which causes enteritis and thymic and bursal atrophy in turkeys. Human astroviruses are recognized as the second leading cause of childhood viral gastroenteritis worldwide. Eight traditional astrovirus serotypes have been identified in humans, but recently novel astrovirus strains isolated from humans have been associated with diseases other than gastroenteritis. Herein we summarize our current knowledge of the astrovirus life cycle. Though there are gaps in our understanding of astrovirus replication, similarities can be drawn from Picornaviridae and Caliciviridae virus families. There are, however, unique characteristics of the astrovirus life cycle, including intracellular proteolytic processing of viral particles by cellular caspases, which has been shown to be required for the maturation and exit of viral progeny.
Collapse
Affiliation(s)
- Stacey Schultz-Cherry
- , Infectious Diseases, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, 38105 Tennessee USA
| |
Collapse
|
36
|
Abstract
The first reports of astroviruses in animals date back to the end of the 1970s, when infections in mammals such as lambs and calves suffering from diarrhea were reported for the first time. Since then, several mammalian species have been shown to be susceptible to astroviruses which appear to be genetically diverse and to have acquired host-specificity. To date, astroviruses have been detected in 16 different orders or species of mammals in addition to humans, and signs of infection range from unapparent infection or very mild disease to diarrhea, lethargy, and anorexia, mainly observed in young individuals. This chapter describes those astroviruses detected in nonhuman mammalian species worldwide, as well as their molecular and phenotypic characteristics and their role in diseases. The capacity of these viruses to cross-species barriers and their subsequent adaptation to novel hosts is also highlighted.
Collapse
Affiliation(s)
- Stacey Schultz-Cherry
- , Infectious Diseases, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, 38105 Tennessee USA
| |
Collapse
|
37
|
Shan T, Li L, Simmonds P, Wang C, Moeser A, Delwart E. The fecal virome of pigs on a high-density farm. J Virol 2011; 85:11697-708. [PMID: 21900163 PMCID: PMC3209269 DOI: 10.1128/jvi.05217-11] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/23/2011] [Indexed: 12/14/2022] Open
Abstract
Swine are an important source of proteins worldwide but are subject to frequent viral outbreaks and numerous infections capable of infecting humans. Modern farming conditions may also increase viral transmission and potential zoonotic spread. We describe here the metagenomics-derived virome in the feces of 24 healthy and 12 diarrheic piglets on a high-density farm. An average of 4.2 different mammalian viruses were shed by healthy piglets, reflecting a high level of asymptomatic infections. Diarrheic pigs shed an average of 5.4 different mammalian viruses. Ninety-nine percent of the viral sequences were related to the RNA virus families Picornaviridae, Astroviridae, Coronaviridae, and Caliciviridae, while 1% were related to the small DNA virus families Circoviridae, and Parvoviridae. Porcine RNA viruses identified, in order of decreasing number of sequence reads, consisted of kobuviruses, astroviruses, enteroviruses, sapoviruses, sapeloviruses, coronaviruses, bocaviruses, and teschoviruses. The near-full genomes of multiple novel species of porcine astroviruses and bocaviruses were generated and phylogenetically analyzed. Multiple small circular DNA genomes encoding replicase proteins plus two highly divergent members of the Picornavirales order were also characterized. The possible origin of these viral genomes from pig-infecting protozoans and nematodes, based on closest sequence similarities, is discussed. In summary, an unbiased survey of viruses in the feces of intensely farmed animals revealed frequent coinfections with a highly diverse set of viruses providing favorable conditions for viral recombination. Viral surveys of animals can readily document the circulation of known and new viruses, facilitating the detection of emerging viruses and prospective evaluation of their pathogenic and zoonotic potentials.
Collapse
Affiliation(s)
- Tongling Shan
- Blood Systems Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
- Zoonosis and Comparative Medicine Group, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Linlin Li
- Blood Systems Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | - Peter Simmonds
- Centre for Immunology, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Chunlin Wang
- Stanford Genome Technology Center, Stanford, California
| | - Adam Moeser
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| |
Collapse
|
38
|
Reuter G, Pankovics P, Delwart E, Boros Á. Identification of a novel astrovirus in domestic sheep in Hungary. Arch Virol 2011; 157:323-7. [PMID: 22033597 PMCID: PMC3518301 DOI: 10.1007/s00705-011-1151-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/13/2011] [Indexed: 11/27/2022]
Abstract
The family Astroviridae consists of two genera, Avastrovirus and Mamastrovirus, whose members are associated with gastroenteritis in avian and mammalian hosts, respectively. We serendipitously identified a novel ovine astrovirus in a fecal specimen from a domestic sheep (Ovis aries) in Hungary by viral metagenomic analysis. Sequencing of the fragment indicated that it was an ORF1b/ORF2/3'UTR sequence, and it has been submitted to the GenBank database as ovine astrovirus type 2 (OAstV-2/Hungary/2009) with accession number JN592482. The unique sequence characteristics and the phylogenetic position of OAstV-2 suggest that genetically divergent lineages of astroviruses exist in sheep.
Collapse
Affiliation(s)
- Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Szabadság út 7, 7623 Pécs, Hungary.
| | | | | | | |
Collapse
|
39
|
Screening of feral and wood pigeons for viruses harbouring a conserved mobile viral element: characterization of novel Astroviruses and Picornaviruses. PLoS One 2011; 6:e25964. [PMID: 22043297 PMCID: PMC3197151 DOI: 10.1371/journal.pone.0025964] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/13/2011] [Indexed: 01/23/2023] Open
Abstract
A highly conserved RNA-motif of yet unknown function, called stem-loop-2-like motif (s2m), has been identified in the 3′ end of the genomes of viruses belonging to different RNA virus families which infect a broad range of mammal and bird species, including Astroviridae, Picornaviridae, Coronaviridae and Caliciviridae. Since s2m is such an extremely conserved motif, it is an ideal target for screening for viruses harbouring it. In this study, we have detected and characterized novel viruses harbouring this motif in pigeons by using a s2m-specific amplification. 84% and 67% of the samples from feral pigeons and wood pigeons, respectively, were found to contain a virus harbouring s2m. Four novel viruses were identified and characterized. Two of the new viruses belong to the genus Avastrovirus in the Astroviridae family. We propose two novel species to be included in this genus, Feral pigeon astrovirus and Wood pigeon astrovirus. Two other novel viruses, Pigeon picornavirus A and Pigeon picornavirus B, belong to the Picornaviridae family, presumably to the genus Sapelovirus. Both of the novel picornaviruses harboured two adjacent s2m, called (s2m)2, suggesting a possible increased functional effect of s2m when present in two copies.
Collapse
|
40
|
Detection and genetic characterization of a novel pig astrovirus: relationship to other astroviruses. Arch Virol 2011; 156:2095-9. [PMID: 21935627 PMCID: PMC7086720 DOI: 10.1007/s00705-011-1088-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 07/30/2011] [Indexed: 11/02/2022]
Abstract
Emerging viruses represent a continuous threat to human health and to farmed animals, as evidenced on multiple occasions by outbreaks of influenza, henipavirus and SARS. Knowledge about the diversity of viromes present in reservoir species can lead to a better understanding of the origin of emerging pathogens. In this study, we extend the knowledge of astrovirus diversity in pigs by reporting the genetic characterization of an unknown astrovirus lineage. Phylogenetic analyses provided evidence that this porcine astrovirus lineage is unique and does not appear to share a recent common ancestor with any known mamastrovirus. The data reported in this study extend the number of porcine astrovirus lineages to a total of five, all of which most likely represent distinct species of different origins.
Collapse
|
41
|
Burbelo PD, Ching KH, Esper F, Iadarola MJ, Delwart E, Lipkin WI, Kapoor A. Serological studies confirm the novel astrovirus HMOAstV-C as a highly prevalent human infectious agent. PLoS One 2011; 6:e22576. [PMID: 21829634 PMCID: PMC3150362 DOI: 10.1371/journal.pone.0022576] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/24/2011] [Indexed: 02/05/2023] Open
Abstract
Molecular identification of a microbe is the first step in determining its prevalence of infection and pathogenic potential. Detection of specific adaptive immune responses can provide insights into whether a microbe is a human infectious agent and its epidemiology. Here we characterized human anti-IgG antibody responses by luciferase immunoprecipitation systems (LIPS) against two protein fragments derived from the capsid protein of the novel HMOAstV-C astrovirus. While antibodies to the N-terminal fragment were not informative, the C-terminal capsid fragment of HMOAstV-C showed a high frequency of immunoreactivity with serum from healthy blood donors. In contrast, a similar C-terminal capsid fragment from the related HMOAstV-A astrovirus failed to show immunoreactivity. Detailed analysis of adult serum from the United Sates using a standardized threshold demonstrated HMOAstV-C seropositivity in approximately 65% of the samples. Evaluation of serum samples from different pediatric age groups revealed that the prevalence of antibodies in 6-12 month, 1-2 year, 2-5 year and 5-10 year olds was 20%, 23%, 32% and 36%, respectively, indicating rising seroprevalence with age. Additionally, 50% (11/22) of the 0-6 month old children showed anti-HMOAstV-C antibody responses, likely reflecting maternal antibodies. Together these results document human humoral responses to HMOAstV-C and validate LIPS as a facile and effective approach for identifying humoral responses to novel infectious agents.
Collapse
Affiliation(s)
- Peter D Burbelo
- Neurobiology and Pain Therapeutics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | |
Collapse
|
42
|
Molecular characterization of a porcine astrovirus strain in China. Arch Virol 2011; 156:1869-75. [PMID: 21688105 PMCID: PMC7086730 DOI: 10.1007/s00705-011-1050-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/08/2011] [Indexed: 10/27/2022]
Abstract
Pigs are increasingly recognized to harbor a wide range of viruses that apparently establish long-term persistence in these animals. They serve as reservoirs for a number of human zoonotic diseases. In this study, a porcine astrovirus (PAstV) strain, designated as PAstV JWH-1, is identified from a diarrheal pig in China, and it is partially characterized genetically. Sequence analysis shows that the PAstV JWH-1 strain contains divergent nucleotide sequences in both the open reading frame (ORF)1b/ORF2 consensus and the 3'-UTR regions (s2m motif), which are usually highly conserved among members of the family Astroviridae. Phylogenetic analysis indicates that the JWH-1 strain clusters closely with newly identified strains PAstV 12-4 and 14-4 and forms a group of mamastroviruses with the proposed novel deer astrovirus. Further recombination analysis shows that two possible interspecies recombination events between porcine and deer astroviruses occurred in the genome of the JWH-1 strain. This study further confirms that multiple lineages are present among PAstVs, and each lineage likely represents an independent origin. Additionally, the possibility of interspecies transmission among PAstVs is also suggested.
Collapse
|
43
|
Luo Z, Roi S, Dastor M, Gallice E, Laurin MA, L'homme Y. Multiple novel and prevalent astroviruses in pigs. Vet Microbiol 2010; 149:316-23. [PMID: 21159453 PMCID: PMC7172684 DOI: 10.1016/j.vetmic.2010.11.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 11/16/2010] [Accepted: 11/17/2010] [Indexed: 01/18/2023]
Abstract
Knowledge of porcine astrovirus diversity and epidemiology remains limited. We used a broad range PCR approach to investigate the presence and diversity of astroviruses in healthy pigs of different ages on 20 farms and in 3 slaughterhouses situated in the province of Quebec, Canada between 2005 and 2007. Our study unexpectedly revealed remarkable levels of genetic diversity and high prevalence of astroviruses in pigs of this province. Astroviruses were detected on every farm investigated and in all age groups of pigs, from suckling piglets to adults. In addition, we found that nearly 80% of healthy finisher pigs harbour astroviruses in their intestine at slaughter. Phylogenetic evidence based on partial polymerase and complete capsid sequences, suggests that porcine astroviruses do not form a monophyletic group but are rather found on separate branches across the mamastrovirus tree. In addition to type species strains, we found highly divergent strains that form two additional lineages, one of which falls outside existing taxonomic groups. The presence of diverse astroviruses in a majority of healthy pigs likely represents a continuous source of infection to piglets and possibly to other animal species including humans. Porcine astrovirus strains appeared phylogenetically related not only to prototypical human astroviruses, as was already known, but also to novel human strains recently discovered suggesting multiple cross species transmission events between these hosts and other animal species. Overall, the findings reported in this study suggest an active role of pigs in the evolution and ecology of the Astroviridae.
Collapse
Affiliation(s)
- Zhiyao Luo
- Canadian Food Inspection Agency, St-Hyacinthe Laboratory, 3400 Blvd Casavant West, St-Hyacinthe, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Ulloa JC, Gutiérrez MF. Genomic analysis of two ORF2 segments of new porcine astrovirus isolates and their close relationship with human astroviruses. Can J Microbiol 2010; 56:569-77. [PMID: 20651856 DOI: 10.1139/w10-042] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Porcine astrovirus (PAstV) has been poorly studied and has been associated mainly with gastroenteritis. Computational analysis has revealed the close relationship of PAstV with astroviruses of humans (HAstV) and cats (FAstV). In this study, 105 and 171 stool specimens were collected from piglets and children under 5 years of age, respectively, in different Colombian regions during a 1-year period. The stool samples were examined for astroviruses by ELISA and RT-PCR; 23.8% and 4% were found to be positive for PAstV and HAstV, respectively. Additional sequence analysis with partial sequences obtained from ORF2 identified at least 2 probable groups of PAstVs and possible recombination events between porcine and human astroviruses. This study provides preliminary evidence of the high presence of PAstVs in pigs and proposes the existence of multiple PAstV types that are evolutionarily closely related to HAstVs.
Collapse
Affiliation(s)
- Juan Carlos Ulloa
- Department of Microbiology, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | | |
Collapse
|
45
|
Reuter G, Pankovics P, Boros A. Identification of a novel astrovirus in a domestic pig in Hungary. Arch Virol 2010; 156:125-8. [PMID: 20931250 PMCID: PMC7086753 DOI: 10.1007/s00705-010-0827-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/27/2010] [Indexed: 11/06/2022]
Abstract
The family Astroviridae consists of two genera, Avastrovirus and Mamastrovirus, whose members are associated with gastroenteritis in avian and mammalian hosts, respectively. We serendipitously identified a novel porcine astrovirus in a fecal specimen from a domestic pig (Sus scrofa domestica) in Hungary. Sequencing of a fragment indicated that it was an ORF1b/ORF2/3′UTR sequence, and it has been submitted to the database as porcine astrovirus type 2 (PAstV-2/Hungary/2007) with accession number GU562296. Its unique sequence characteristics and its phylogenetic position suggest that PAstV-2 could be an important link between previously reported astroviruses and that a genetically divergent lineage of astroviruses exist in piglets.
Collapse
Affiliation(s)
- Gábor Reuter
- ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.
| | | | | |
Collapse
|
46
|
Detection of a novel astrovirus in brain tissue of mink suffering from shaking mink syndrome by use of viral metagenomics. J Clin Microbiol 2010; 48:4392-6. [PMID: 20926705 DOI: 10.1128/jcm.01040-10] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 2000, farmed mink kits in Denmark were affected by a neurological disorder. The characteristic clinical signs included shaking, staggering gait, and ataxia. The disease, given the name shaking mink syndrome, was reproduced by the inoculation of brain homogenate from affected mink kits into healthy ones. However, the etiology remained unknown despite intensive efforts. In this study, random amplification and large-scale sequencing were used, and an astrovirus was detected in the brain tissue of three experimentally infected mink kits. This virus also was found in the brain of three mink kits naturally displaying the disease but not in the six healthy animals investigated. The complete coding region of the detected astrovirus was sequenced and compared to those of both a mink astrovirus associated with preweaning diarrhea and to a recently discovered human astrovirus associated with a case of encephalitis in a boy with x-linked agammaglobulinemia. The identities were 80.4 and 52.3%, respectively, showing that the virus described in this study was more similar to the preweaning diarrhea mink astrovirus. For the nonstructural coding regions the sequence identity was around 90% compared to that of the astrovirus, which is associated with preweaning diarrhea in mink. The region coding for the structural protein was more diverse, showing only 67% sequence identity. This finding is of interest not only because the detected virus may be the etiological agent of the shaking mink syndrome but also because this is one of the first descriptions of an astrovirus found in the central nervous system of animals.
Collapse
|
47
|
Banos-Lara MDR, Méndez E. Role of individual caspases induced by astrovirus on the processing of its structural protein and its release from the cell through a non-lytic mechanism. Virology 2010; 401:322-32. [PMID: 20347468 DOI: 10.1016/j.virol.2010.02.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/13/2009] [Accepted: 02/23/2010] [Indexed: 11/20/2022]
Abstract
Caspases (Casp) activity has been associated with the intracellular proteolytic processing of the structural protein to yield the mature capsid formed by VP70 and with the cell release of human astrovirus (HAstV). This work describes the role of individual Casp on these events. The activity of initiator (-8, -9) and executioner (-3/7) Casp was clearly detected at 12h post-infection. All these proteases were able to cleave VP90 in an in vitro assay, but this processing was blocked in cells transfected with siRNA against Casp-3, -9, but not against Casp-8. In contrast, virus release, observed in the absence of cell lysis, was more drastically affected by either silencing Casp-3 or in the presence of the inhibitor Ac-DEVD-CHO. Cleavage of VP90 to yield VP70 was mapped at motif TYVD(657). These data indicate that the processing of VP90 and the release of HAstV from the cell are two Casp-related, but apparently independent, events.
Collapse
Affiliation(s)
- Ma del Rocío Banos-Lara
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México
| | | |
Collapse
|
48
|
Rivera R, Nollens HH, Venn-Watson S, Gulland FMD, Wellehan JFX. Characterization of phylogenetically diverse astroviruses of marine mammals. J Gen Virol 2009; 91:166-73. [DOI: 10.1099/vir.0.015222-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
49
|
Kapoor A, Li L, Victoria J, Oderinde B, Mason C, Pandey P, Zaidi SZ, Delwart E. Multiple novel astrovirus species in human stool. J Gen Virol 2009; 90:2965-2972. [PMID: 19692544 DOI: 10.1099/vir.0.014449-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diarrhoea remains a significant cause of morbidity and mortality in developing countries where numerous cases remain without identified aetiology. Astroviruses are a recently identified cause of animal gastroenteritis which currently includes two species suspected of causing human diarrhoea. Using pan-astrovirus RT-PCR, we analysed human stool samples from different continents for astrovirus-related RNA sequences. We identified variants of the two known human astrovirus species plus, based on genetic distance criteria, three novel astrovirus species all distantly related to mink and ovine astroviruses, which we provisionally named HMOAstV species A-C. The complete genome of species A displayed all the conserved characteristics of mammalian astroviruses. Each of the now three groups of astroviruses found in human stool (HAstV, AstV-MLB and HMOAstV) were more closely related to animal astroviruses than to each other, indicating that human astroviruses may periodically emerge from zoonotic transmissions. Based on the pathogenic impact of their closest phylogenetic relatives in animals, further investigations of the role of HMOAstV, so far detected in Nigeria, Nepal and Pakistan, in human gastroenteritis are warranted.
Collapse
Affiliation(s)
- A Kapoor
- Department of Laboratory Medicine, University of California San Francisco, and Blood Systems Research Institute, San Francisco, CA, USA
| | - L Li
- Department of Laboratory Medicine, University of California San Francisco, and Blood Systems Research Institute, San Francisco, CA, USA
| | - J Victoria
- Department of Laboratory Medicine, University of California San Francisco, and Blood Systems Research Institute, San Francisco, CA, USA
| | - B Oderinde
- WHO National Polio Laboratory, University of Maiduguri Teaching Hospital, Borno State, Nigeria
| | - C Mason
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - P Pandey
- CIWEC Clinic Travel Medicine Center, Kathmandu, Nepal
| | - S Z Zaidi
- Department of Virology, National Institute of Health, Islamabad, Pakistan
| | - E Delwart
- Department of Laboratory Medicine, University of California San Francisco, and Blood Systems Research Institute, San Francisco, CA, USA
| |
Collapse
|
50
|
Toffan A, Jonassen CM, De Battisti C, Schiavon E, Kofstad T, Capua I, Cattoli G. Genetic characterization of a new astrovirus detected in dogs suffering from diarrhoea. Vet Microbiol 2009; 139:147-52. [PMID: 19477085 PMCID: PMC7126621 DOI: 10.1016/j.vetmic.2009.04.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/17/2009] [Accepted: 04/28/2009] [Indexed: 11/28/2022]
Abstract
Astroviruses have been described in several animals species frequently associated with diarrhoea, especially in young animals. In dogs, astrovirus-like particles have been observed sporadically and very little is known about their epidemiology and characteristics. In this paper, we describe the detection of astrovirus-like particles in symptomatic puppies. Furthermore, for the first time in this species, the presumptive identification made by electron microscopy was confirmed by genetic analysis of the viral RNA conducted directly on the clinical specimens. Genetic sequences of ORF2 (2443 nt), encoding for the capsid protein, and partial sequence of ORF1b (346 nt), encoding for the viral polymerase, identified the viruses as member of the family Astroviridae. The phylogenetic analysis clearly clustered canine astroviruses in the genus Mamastrovirus. Relative closest similarities were revealed with a cluster comprising human, porcine and feline astroviruses, based on the ORF2 sequences available. Based on the species definition for astroviruses and on the data obtained in this study, we suggest a new species of astrovirus – canine astrovirus, CaAstV – to be included in the genus Mamastrovirus.
Collapse
Affiliation(s)
- Anna Toffan
- Istituto Zooprofilattico Sperimentale delle Venezie, Research and Development Department, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|