1
|
Yang Q, Chen L, Zhang H, Li M, Sun L, Wu X, Zhao H, Qu X, An X, Wang T. DNMT1 regulates human erythropoiesis by modulating cell cycle and endoplasmic reticulum stress in a stage-specific manner. Cell Death Differ 2024; 31:999-1012. [PMID: 38719927 PMCID: PMC11303534 DOI: 10.1038/s41418-024-01305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 08/09/2024] Open
Abstract
The dynamic balance of DNA methylation and demethylation is required for erythropoiesis. Our previous transcriptomic analyses revealed that DNA methyltransferase 1 (DNMT1) is abundantly expressed in erythroid cells at all developmental stages. However, the role and molecular mechanisms of DNMT1 in human erythropoiesis remain unknown. Here we found that DNMT1 deficiency led to cell cycle arrest of erythroid progenitors which was partially rescued by treatment with a p21 inhibitor UC2288. Mechanically, this is due to decreased DNA methylation of p21 promoter, leading to upregulation of p21 expression. In contrast, DNMT1 deficiency led to increased apoptosis during terminal stage by inducing endoplasmic reticulum (ER) stress in a p21 independent manner. ER stress was attributed to the upregulation of RPL15 expression due to the decreased DNA methylation at RPL15 promoter. The upregulated RPL15 expression subsequently caused a significant upregulation of core ribosomal proteins (RPs) and thus ultimately activated all branches of unfolded protein response (UPR) leading to the excessive ER stress, suggesting a role of DNMT1 in maintaining protein homeostasis during terminal erythroid differentiation. Furthermore, the increased apoptosis was significantly rescued by the treatment of ER stress inhibitor TUDCA. Our findings demonstrate the stage-specific role of DNMT1 in regulating human erythropoiesis and provide new insights into regulation of human erythropoiesis.
Collapse
Affiliation(s)
- Qianqian Yang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Hengchao Zhang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Mengjia Li
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
- Department of Hematology, First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, China
| | - Lei Sun
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Xiuyun Wu
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Xiaoli Qu
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China.
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, 310 East, 67th Street, New York, NY, 10065, USA.
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Yokomizo-Nakano T, Hamashima A, Kubota S, Bai J, Sorin S, Sun Y, Kikuchi K, Iimori M, Morii M, Kanai A, Iwama A, Huang G, Kurotaki D, Takizawa H, Matsui H, Sashida G. Exposure to microbial products followed by loss of Tet2 promotes myelodysplastic syndrome via remodeling HSCs. J Exp Med 2023; 220:e20220962. [PMID: 37071125 PMCID: PMC10120406 DOI: 10.1084/jem.20220962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/11/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023] Open
Abstract
Aberrant innate immune signaling in myelodysplastic syndrome (MDS) hematopoietic stem/progenitor cells (HSPCs) has been implicated as a driver of the development of MDS. We herein demonstrated that a prior stimulation with bacterial and viral products followed by loss of the Tet2 gene facilitated the development of MDS via up-regulating the target genes of the Elf1 transcription factor and remodeling the epigenome in hematopoietic stem cells (HSCs) in a manner that was dependent on Polo-like kinases (Plk) downstream of Tlr3/4-Trif signaling but did not increase genomic mutations. The pharmacological inhibition of Plk function or the knockdown of Elf1 expression was sufficient to prevent the epigenetic remodeling in HSCs and diminish the enhanced clonogenicity and the impaired erythropoiesis. Moreover, this Elf1-target signature was significantly enriched in MDS HSPCs in humans. Therefore, prior infection stress and the acquisition of a driver mutation remodeled the transcriptional and epigenetic landscapes and cellular functions in HSCs via the Trif-Plk-Elf1 axis, which promoted the development of MDS.
Collapse
Affiliation(s)
- Takako Yokomizo-Nakano
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ai Hamashima
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Sho Kubota
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jie Bai
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Supannika Sorin
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yuqi Sun
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenta Kikuchi
- Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mihoko Iimori
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mariko Morii
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Gang Huang
- Department of Cell Systems & Anatomy, Department of Pathology and Laboratory Medicine, UT Health San Antonio, Joe R. and Teresa Lozano Long School of Medicine, Mays Cancer Center at UT Health San Antonio, San Antonio, TX, USA
| | - Daisuke Kurotaki
- Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
3
|
Kuzmina NS. Radiation-Induced DNA Methylation Disorders: In Vitro and In Vivo Studies. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Issah MA, Wu D, Zhang F, Zheng W, Liu Y, Fu H, Zhou H, Chen R, Shen J. Epigenetic modifications in acute myeloid leukemia: The emerging role of circular RNAs (Review). Int J Oncol 2021; 59:107. [PMID: 34792180 PMCID: PMC8651224 DOI: 10.3892/ijo.2021.5287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/13/2021] [Indexed: 11/06/2022] Open
Abstract
Canonical epigenetic modifications, which include histone modification, chromatin remodeling and DNA methylation, play key roles in numerous cellular processes. Epigenetics underlies how cells that posses DNA with similar sequences develop into different cell types with different functions in an organism. Earlier epigenetic research has primarily been focused at the chromatin level. However, the number of studies on epigenetic modifications of RNA, such as N1‑methyladenosine, 2'‑O‑ribosemethylation, inosine, 5‑methylcytidine, N6‑methyladenosine (m6A) and pseudouridine, has seen an increase. Circular RNAs (circRNAs), a type of RNA species that lacks a 5' cap or 3' poly(A) tail, are abundantly expressed in acute myeloid leukemia (AML) and may regulate disease progression. circRNAs possess various functions, including microRNA sponging, gene transcription regulation and RNA‑binding protein interaction. Furthermore, circRNAs are m6A methylated in other types of cancer, such as colorectal and hypopharyngeal squamous cell cancers. Therefore, the critical roles of circRNA epigenetic modifications, particularly m6A, and their possible involvement in AML are discussed in the present review. Epigenetic modification of circRNAs may become a diagnostic and therapeutic target for AML in the future.
Collapse
Affiliation(s)
- Mohammed Awal Issah
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fuzhou, Fujian 350001, P.R. China
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Dansen Wu
- Medical Intensive Care Unit, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Feng Zhang
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fuzhou, Fujian 350001, P.R. China
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Weili Zheng
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fuzhou, Fujian 350001, P.R. China
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yanquan Liu
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fuzhou, Fujian 350001, P.R. China
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Haiying Fu
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fuzhou, Fujian 350001, P.R. China
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Huarong Zhou
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fuzhou, Fujian 350001, P.R. China
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Rong Chen
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fuzhou, Fujian 350001, P.R. China
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jianzhen Shen
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fuzhou, Fujian 350001, P.R. China
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
5
|
DNA Methylation and Immune Memory Response. Cells 2021; 10:cells10112943. [PMID: 34831166 PMCID: PMC8616503 DOI: 10.3390/cells10112943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
The generation of memory is a cardinal feature of the adaptive immune response, involving different factors in a complex process of cellular differentiation. This process is essential for protecting the second encounter with pathogens and is the mechanism by which vaccines work. Epigenetic changes play important roles in the regulation of cell differentiation events. There are three types of epigenetic regulation: DNA methylation, histone modification, and microRNA expression. One of these epigenetic changes, DNA methylation, occurs in cytosine residues, mainly in CpG dinucleotides. This brief review aimed to analyse the literature to verify the involvement of DNA methylation during memory T and B cell development. Several studies have highlighted the importance of the DNA methyltransferases, enzymes that catalyse the methylation of DNA, during memory differentiation, maintenance, and function. The methylation profile within different subsets of naïve activated and memory cells could be an interesting tool to help monitor immune memory response.
Collapse
|
6
|
5-Azacytidine depletes HSCs and synergizes with an anti-CD117 antibody to augment donor engraftment in immunocompetent mice. Blood Adv 2021; 5:3900-3912. [PMID: 34448832 DOI: 10.1182/bloodadvances.2020003841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/29/2021] [Indexed: 11/20/2022] Open
Abstract
Depletion of hematopoietic stem cells (HSCs) is used therapeutically in many malignant and nonmalignant blood disorders in the setting of a hematopoietic cell transplantation (HCT) to eradicate diseased HSCs, thus allowing donor HSCs to engraft. Current treatments to eliminate HSCs rely on modalities that cause DNA strand breakage (ie, alkylators, radiation) resulting in multiple short-term and long-term toxicities and sometimes even death. These risks have severely limited the use of HCT to patients with few to no comorbidities and excluded many others with diseases that could be cured with an HCT. 5-Azacytidine (AZA) is a widely used hypomethylating agent that is thought to preferentially target leukemic cells in myeloid malignancies. Here, we reveal a previously unknown effect of AZA on HSCs. We show that AZA induces early HSC proliferation in vivo and exerts a direct cytotoxic effect on proliferating HSCs in vitro. When used to pretreat recipient mice for transplantation, AZA permitted low-level donor HSC engraftment. Moreover, by combining AZA with a monoclonal antibody (mAb) targeting CD117 (c-Kit) (a molecule expressed on HSCs), more robust HSC depletion and substantially higher levels of multilineage donor cell engraftment were achieved in immunocompetent mice. The enhanced effectiveness of this combined regimen correlated with increased apoptotic cell death in hematopoietic stem and progenitor cells. Together, these findings highlight a previously unknown therapeutic mechanism for AZA which may broaden its use in clinical practice. Moreover, the synergy we show between AZA and anti-CD117 mAb is a novel strategy to eradicate abnormal HSCs that can be rapidly tested in the clinical setting.
Collapse
|
7
|
Shen FL, Zhao YN, Yu XL, Wang BL, Wu XL, Lan GC, Gao RL. Chinese Medicine Regulates DNA Methylation to Treat Haematological Malignancies: A New Paradigm of "State-Target Medicine". Chin J Integr Med 2021; 28:560-566. [PMID: 34241803 DOI: 10.1007/s11655-021-3316-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Aberrant regulation of DNA methylation plays a crucial causative role in haematological malignancies (HMs). Targeted therapy, aiming for DNA methylation, is an effective mainstay of modern medicine; however, many issues remain to be addressed. The progress of epigenetic studies and the proposed theory of "state-target medicine" have provided conditions to form a new treatment paradigm that combines the "body state adjustment" of CM with targeted therapy. We discussed the correlation between Chinese medicine (CM) syndromes/states and DNA methylation in this paper. Additionally, the latest research findings on the intervention and regulation of DNA methylation in HMs, including the core targets, therapy status, CM compounds and active components of the Chinese materia medica were concisely summarized to establish a theoretical foundation of "state-target synchronous conditioning" pattern of integrative medicine for HMs, simultaneously leading a new perspective in clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Feng-Lin Shen
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Yan-Na Zhao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Xiao-Ling Yu
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Bo-Lin Wang
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Xiao-Long Wu
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Gao-Chen Lan
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Rui-Lan Gao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| |
Collapse
|
8
|
Banks KM, Lan Y, Evans T. Tet Proteins Regulate Neutrophil Granulation in Zebrafish through Demethylation of socs3b mRNA. Cell Rep 2021; 34:108632. [PMID: 33440144 PMCID: PMC7837371 DOI: 10.1016/j.celrep.2020.108632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/13/2020] [Accepted: 12/18/2020] [Indexed: 11/23/2022] Open
Abstract
Tet proteins (Tet1/2/3) convert 5-methylcytosine (5mC) to 5-hydroxy-methylcytosine (5hmC), initiating the process of active demethylation to regulate gene expression. Demethylation has been investigated primarily in the context of DNA, but recently Tet enzymes have also been shown to mediate demethylation of 5mC in RNA as an additional level of epitranscriptomic regulation. We analyzed compound tet2/3 mutant zebrafish and discovered a role for Tet enzymes in the maturation of primitive and definitive neutrophils during granulation. Transcript profiling showed dysregulation of cytokine signaling in tet mutant neutrophils, including upregulation of socs3b. We show that Tet normally demethylates socs3b mRNA during granulation, thereby destabilizing the transcript, leading to its downregulation. Failure of this process leads to accumulation of socs3b mRNA and repression of cytokine signaling at this crucial step of neutrophil maturation. This study provides further evidence for Tets as epitranscriptomic regulatory enzymes and implicates Tet2/3 in regulation of neutrophil maturation.
Collapse
Affiliation(s)
- Kelly M Banks
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yahui Lan
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
9
|
Yu B, Doni Jayavelu N, Battle SL, Mar JC, Schimmel T, Cohen J, Hawkins RD. Single-cell analysis of transcriptome and DNA methylome in human oocyte maturation. PLoS One 2020; 15:e0241698. [PMID: 33152014 PMCID: PMC7643955 DOI: 10.1371/journal.pone.0241698] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Oocyte maturation is a coordinated process that is tightly linked to reproductive potential. A better understanding of gene regulation during human oocyte maturation will not only answer an important question in biology, but also facilitate the development of in vitro maturation technology as a fertility treatment. We generated single-cell transcriptome and used our previously published single-cell methylome data from human oocytes at different maturation stages to investigate how genes are regulated during oocyte maturation, focusing on the potential regulatory role of non-CpG methylation. DNMT3B, a gene encoding a key non-CpG methylation enzyme, is one of the 1,077 genes upregulated in mature oocytes, which may be at least partially responsible for the increased non-CpG methylation as oocytes mature. Non-CpG differentially methylated regions (DMRs) between mature and immature oocytes have multiple binding motifs for transcription factors, some of which bind with DNMT3B and may be important regulators of oocyte maturation through non-CpG methylation. Over 98% of non-CpG DMRs locate in transposable elements, and these DMRs are correlated with expression changes of the nearby genes. Taken together, this data indicates that global non-CpG hypermethylation during oocyte maturation may play an active role in gene expression regulation, potentially through the interaction with transcription factors.
Collapse
Affiliation(s)
- Bo Yu
- Department of OBGYN, University of Washington School of Medicine, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Naresh Doni Jayavelu
- Departments of Medicine and Genome Sciences, University of Washington, School of Medicine, Seattle, Washington, United States of America
| | - Stephanie L. Battle
- Department of OBGYN, University of Washington School of Medicine, Seattle, Washington, United States of America
- Departments of Medicine and Genome Sciences, University of Washington, School of Medicine, Seattle, Washington, United States of America
| | - Jessica C. Mar
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Timothy Schimmel
- Reprogenetics LLC, Livingston, New Jersey, United States of America
| | - Jacques Cohen
- Reprogenetics LLC, Livingston, New Jersey, United States of America
| | - R. David Hawkins
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- Departments of Medicine and Genome Sciences, University of Washington, School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
10
|
Ong LTC, Parnell GP, Veale K, Stewart GJ, Liddle C, Booth DR. Regulation of the methylome in differentiation from adult stem cells may underpin vitamin D risk in MS. Genes Immun 2020; 21:335-347. [PMID: 33037402 DOI: 10.1038/s41435-020-00114-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 01/27/2023]
Abstract
Multiple lines of evidence indicate Multiple Sclerosis (MS) is affected by vitamin D. This effect may be mediated by methylation in immune cell progenitors. We aimed to determine (1) if haematopoietic stem cell methylation constrains methylation in daughter cells and is variable between individuals, and (2) the interaction of methylation with the vitamin D receptor binding sites. We interrogated genomic methylation levels from matching purified CD34+ haematopoietic stem cells and progeny CD14+ monocytes and CD56+ NK cells from 11 individuals using modified reduced representation bisulfite sequencing. Differential methylation of Vitamin D Receptor binding sites and MS risk genes was assessed from this and using pyrosequencing for the vitamin D regulated MS risk gene ZMIZ1. Although DNA methylation states at CpG islands and other sites are almost entirely recapitulated between progenitor and progeny immune cells, significant variation was detected at some regions between cell subsets and individuals; including around the MS risk genes HLA DRB1 and the vitamin D repressor NCOR2. Methylation of the vitamin D responsive MS risk gene ZMIZ1 was associated with risk SNP and disease. We conclude that DNA methylation settings in adult haematopoietic stem cells may contribute to individual variation in vitamin D responses in immune cells.
Collapse
Affiliation(s)
- Lawrence T C Ong
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia. .,Department of Immunology, Westmead Hospital, Cnr Darcy and Hawkesbury Rds, Westmead, NSW, 2145, Australia.
| | - Grant P Parnell
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia
| | - Kelly Veale
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia
| | - Graeme J Stewart
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia
| | - David R Booth
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia
| |
Collapse
|
11
|
Li S, Tollefsbol TO. DNA methylation methods: Global DNA methylation and methylomic analyses. Methods 2020; 187:28-43. [PMID: 33039572 DOI: 10.1016/j.ymeth.2020.10.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
DNA methylation provides a pivotal layer of epigenetic regulation in eukaryotes that has significant involvement for numerous biological processes in health and disease. The function of methylation of cytosine bases in DNA was originally proposed as a "silencing" epigenetic marker and focused on promoter regions of genes for decades. Improved technologies and accumulating studies have been extending our understanding of the roles of DNA methylation to various genomic contexts including gene bodies, repeat sequences and transcriptional start sites. The demand for comprehensively describing DNA methylation patterns spawns a diversity of DNA methylation profiling technologies that target its genomic distribution. These approaches have enabled the measurement of cytosine methylation from specific loci at restricted regions to single-base-pair resolution on a genome-scale level. In this review, we discuss the different DNA methylation analysis technologies primarily based on the initial treatments of DNA samples: bisulfite conversion, endonuclease digestion and affinity enrichment, involving methodology evolution, principles, applications, and their relative merits. This review may offer referable information for the selection of various platforms for genome-wide analysis of DNA methylation.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
12
|
Tu PS, Lin ECY, Chen HW, Chen SW, Lin TA, Gau JP, Chang YI. The extracellular signal-regulated kinase 1/2 modulates the intracellular localization of DNA methyltransferase 3A to regulate erythrocytic differentiation. Am J Transl Res 2020; 12:1016-1030. [PMID: 32269731 PMCID: PMC7137067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
DNA methylation, catalyzed by DNA methyltransferases (DNMTs), is a heritable epigenetic mark, participating in numerous physiological processes. DNMT3A is of particular relevance to hematopoietic differentiation, because DNMT3A mutations are strongly related to hematopoietic malignancies. Additionally, DNMT3A deficiency has been reported to increase the hematopoietic stem cell pool by limiting their differentiation. Our previous study demonstrated that complete loss of DNMT3A resulted in anemia, while DNMT3A haploinsufficiency caused an elevated population of erythrocytes in the content of oncogenic KRAS. Since erythropoiesis is tightly regulated via the erythropoietin (EPO)-mediated RAS-RAF-MEK-ERK1/2 pathway, the question arises whether DNMT3A cooperates with RAS signaling to modulate erythropoiesis. Human leukemia cell lines were used, with differentiation capabilities towards megakaryocyte and erythroid lineages. Overexpression of DNMT3A was found to enhance erythrocytic differentiation of K562 cells, while DNMT3A knockdown suppressed differentiation. Furthermore, higher DNMT3A expression was detected in late-stage mouse erythroblasts along with the DNMT3A translocation to the nucleus. Further studies demonstrated that both ERK1/2-DNMT3A interaction and serine-255 phosphorylation in DNMT3A led to DNMT3A translocation into the nucleus, and modulated erythrocytic differentiation. Our results not only explore the critical role of DNMT3A in erythropoiesis, but also provide a new insight into ERK1/2-DNMT3A interaction in the hematopoietic system.
Collapse
Affiliation(s)
- Po-Shu Tu
- Department and Institute of Physiology, National Yang-Ming UniversityTaipei 11221, Taiwan
| | - Eric Chang-Yi Lin
- Department and Institute of Physiology, National Yang-Ming UniversityTaipei 11221, Taiwan
| | - Hsiao-Wen Chen
- Department and Institute of Physiology, National Yang-Ming UniversityTaipei 11221, Taiwan
| | - Shuoh-Wen Chen
- Department and Institute of Physiology, National Yang-Ming UniversityTaipei 11221, Taiwan
| | - Ting-An Lin
- Department and Institute of Physiology, National Yang-Ming UniversityTaipei 11221, Taiwan
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General HospitalTaipei 11217, Taiwan
| | - Jyh-Pyng Gau
- Faculty of Medicine, National Yang-Ming UniversityTaipei 11221, Taiwan
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General HospitalTaipei 11217, Taiwan
| | - Yuan-I Chang
- Department and Institute of Physiology, National Yang-Ming UniversityTaipei 11221, Taiwan
| |
Collapse
|
13
|
Hou Y, Zhang R, Sun X. Enhancer LncRNAs Influence Chromatin Interactions in Different Ways. Front Genet 2019; 10:936. [PMID: 31681405 PMCID: PMC6807612 DOI: 10.3389/fgene.2019.00936] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
More than 98% of the human genome does not encode proteins, and the vast majority of the noncoding regions have not been well studied. Some of these regions contain enhancers and functional non-coding RNAs. Previous research suggested that enhancer transcripts could be potent independent indicators of enhancer activity, and some enhancer lncRNAs (elncRNAs) have been proven to play critical roles in gene regulation. Here, we identified enhancer–promoter interactions from high-throughput chromosome conformation capture (Hi-C) data. We found that elncRNAs were highly enriched surrounding chromatin loop anchors. Additionally, the interaction frequency of elncRNA-associated enhancer–promoter pairs was significantly higher than the interaction frequency of other enhancer–promoter pairs, suggesting that elncRNAs may reinforce the interactions between enhancers and promoters. We also found that elncRNA expression levels were positively correlated with the interaction frequency of enhancer–promoter pairs. The promoters interacting with elncRNA-associated enhancers were rich in RNA polymerase II and YY1 transcription factor binding sites. We clustered enhancer–promoter pairs into different groups to reflect the different ways in which elncRNAs could influence enhancer–promoter pairs. Interestingly, G-quadruplexes were found to potentially mediate some enhancer–promoter interaction pairs, and the interaction frequency of these pairs was significantly higher than that of other enhancer–promoter pairs. We also found that the G-quadruplexes on enhancers were highly related to the expression of elncRNAs. G-quadruplexes located in the promoters of elncRNAs led to high expression of elncRNAs, whereas G-quadruplexes located in the gene bodies of elncRNAs generally resulted in low expression of elncRNAs.
Collapse
Affiliation(s)
- Yue Hou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Rongxin Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
14
|
Aberrant DNA Methylation in Acute Myeloid Leukemia and Its Clinical Implications. Int J Mol Sci 2019; 20:ijms20184576. [PMID: 31527484 PMCID: PMC6770227 DOI: 10.3390/ijms20184576] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/31/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease that is characterized by distinct cytogenetic or genetic abnormalities. Recent discoveries in cancer epigenetics demonstrated a critical role of epigenetic dysregulation in AML pathogenesis. Unlike genetic alterations, the reversible nature of epigenetic modifications is therapeutically attractive in cancer therapy. DNA methylation is an epigenetic modification that regulates gene expression and plays a pivotal role in mammalian development including hematopoiesis. DNA methyltransferases (DNMTs) and Ten-eleven-translocation (TET) dioxygenases are responsible for the dynamics of DNA methylation. Genetic alterations of DNMTs or TETs disrupt normal hematopoiesis and subsequently result in hematological malignancies. Emerging evidence reveals that the dysregulation of DNA methylation is a key event for AML initiation and progression. Importantly, aberrant DNA methylation is regarded as a hallmark of AML, which is heralded as a powerful epigenetic marker in early diagnosis, prognostic prediction, and therapeutic decision-making. In this review, we summarize the current knowledge of DNA methylation in normal hematopoiesis and AML pathogenesis. We also discuss the clinical implications of DNA methylation and the current therapeutic strategies of targeting DNA methylation in AML therapy.
Collapse
|
15
|
Abstract
Renal cell carcinomas (RCCs) are a diverse set of malignancies that have recently been shown to harbour mutations in a number of chromatin modifier genes - including PBRM1, SETD2, BAP1, KDM5C, KDM6A, and MLL2 - through high-throughput sequencing efforts. Current research focuses on understanding the biological activities that chromatin modifiers employ to suppress tumorigenesis and on developing clinical approaches that take advantage of this knowledge. Unsurprisingly, several common themes unify the functions of these epigenetic modifiers, particularly regulation of histone post-translational modifications and nucleosome organization. Furthermore, chromatin modifiers also govern processes crucial for DNA repair and maintenance of genomic integrity as well as the regulation of splicing and other key processes. Many chromatin modifiers have additional non-canonical roles in cytoskeletal regulation, which further contribute to genomic stability, expanding the repertoire of functions that might be essential in tumorigenesis. Our understanding of how mutations in chromatin modifiers contribute to tumorigenesis in RCC is improving but remains an area of intense investigation. Importantly, elucidating the activities of chromatin modifiers offers intriguing opportunities for the development of new therapeutic interventions in RCC.
Collapse
Affiliation(s)
- Aguirre A de Cubas
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
16
|
Qian Y, Ji C, Yue S, Zhao M. Exposure of low-dose fipronil enantioselectively induced anxiety-like behavior associated with DNA methylation changes in embryonic and larval zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:362-371. [PMID: 30909129 DOI: 10.1016/j.envpol.2019.03.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Fipronil, a broad-spectrum chiral insecticide, has been documented to induce significant neurotoxicity to nontarget aquatic species; however, whether its neurotoxicity behaves enantioselectively and what molecular mechanisms correspond to the neurotoxicity remain unanswered. To date, few investigations have focused on the genomic mechanisms responsible for the enantioselective toxicity of chiral pesticides. The epigenetic modifications, especially DNA methylation, caused by the pesticides are also blind spot of the research works. Video tracking showed that R-fipronil exhibited more intense neurotoxicity, as well as the induction of more severe anxiety-like behavior, such as boosted swimming speed and dysregulated photoperiodic locomotion, to embryonic and larval zebrafish compared with S-fipronil. The MeDIP-Seq analysis, combined with Gene Ontology and KEGG, revealed that R-fipronil disrupted five signaling pathways (MAPK, Calcium signaling, Neuroactive ligand-receptor interaction, Purine metabolism, and Endocytosis) to a greater extent than S-fipronil through the hypermethylation of several important neuro-related genes, whereas no significant alterations of global DNA methylation were observed on the two enantiomers. To summarize, our data indicated that the fipronil-conducted enantioselective neurotoxicity likely applied its enantioselectivity by the dysregulation of DNA methylation. Our study also provided novel epigenetic insights into the study of enantioselective biological effects and the relevant underlying mechanisms of chiral insecticide.
Collapse
Affiliation(s)
- Yi Qian
- College of Life Science, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Chenyang Ji
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Siqing Yue
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
17
|
Huang K, Xhani S, Albrecht AV, Ha VLT, Esaki S, Poon GMK. Mechanism of cognate sequence discrimination by the ETS-family transcription factor ETS-1. J Biol Chem 2019; 294:9666-9678. [PMID: 31048376 DOI: 10.1074/jbc.ra119.007866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Indexed: 12/19/2022] Open
Abstract
Functional evidence increasingly implicates low-affinity DNA recognition by transcription factors as a general mechanism for the spatiotemporal control of developmental genes. Although the DNA sequence requirements for affinity are well-defined, the dynamic mechanisms that execute cognate recognition are much less resolved. To address this gap, here we examined ETS1, a paradigm developmental transcription factor, as a model for which cognate discrimination remains enigmatic. Using molecular dynamics simulations, we interrogated the DNA-binding domain of murine ETS1 alone and when bound to high-and low-affinity cognate sites or to nonspecific DNA. The results of our analyses revealed collective backbone and side-chain motions that distinguished cognate versus nonspecific as well as high- versus low-affinity cognate DNA binding. Combined with binding experiments with site-directed ETS1 mutants, the molecular dynamics data disclosed a triad of residues that respond specifically to low-affinity cognate DNA. We found that a DNA-contacting residue (Gln-336) specifically recognizes low-affinity DNA and triggers the loss of a distal salt bridge (Glu-343/Arg-378) via a large side-chain motion that compromises the hydrophobic packing of two core helices. As an intact Glu-343/Arg-378 bridge is the default state in unbound ETS1 and maintained in high-affinity and nonspecific complexes, the low-affinity complex represents a unique conformational adaptation to the suboptimization of developmental enhancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Gregory M K Poon
- From the Department of Chemistry and .,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
18
|
Human skin long noncoding RNA WAKMAR1 regulates wound healing by enhancing keratinocyte migration. Proc Natl Acad Sci U S A 2019; 116:9443-9452. [PMID: 31019085 PMCID: PMC6511036 DOI: 10.1073/pnas.1814097116] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although constituting the majority of the transcriptional output of the human genome, the functional importance of long noncoding RNAs (lncRNAs) has only recently been recognized. The role of lncRNAs in wound healing is virtually unknown. Our study focused on a skin-specific lncRNA, termed “wound and keratinocyte migration-associated lncRNA 1” (WAKMAR1), which is down-regulated in wound-edge keratinocytes of human chronic nonhealing wounds compared with normal wounds under reepithelialization. We identified WAKMAR1 as being critical for keratinocyte migration and its deficiency as impairing wound reepithelialization. Mechanistically, WAKMAR1 interacts with DNA methyltransferases and interferes with the promoter methylation of the E2F1 gene, which is a key transcription factor controlling a network of migratory genes. This line of evidence demonstrates that lncRNAs play an essential role in human skin wound healing. An increasing number of studies reveal the importance of long noncoding RNAs (lncRNAs) in gene expression control underlying many physiological and pathological processes. However, their role in skin wound healing remains poorly understood. Our study focused on a skin-specific lncRNA, LOC105372576, whose expression was increased during physiological wound healing. In human nonhealing wounds, however, its level was significantly lower compared with normal wounds under reepithelialization. We characterized LOC105372576 as a nuclear-localized, RNAPII-transcribed, and polyadenylated lncRNA. In keratinocytes, its expression was induced by TGF-β signaling. Knockdown of LOC105372576 and activation of its endogenous transcription, respectively, reduced and increased the motility of keratinocytes and reepithelialization of human ex vivo skin wounds. Therefore, LOC105372576 was termed “wound and keratinocyte migration-associated lncRNA 1” (WAKMAR1). Further study revealed that WAKMAR1 regulated a network of protein-coding genes important for cell migration, most of which were under the control of transcription factor E2F1. Mechanistically, WAKMAR1 enhanced E2F1 expression by interfering with E2F1 promoter methylation through the sequestration of DNA methyltransferases. Collectively, we have identified a lncRNA important for keratinocyte migration, whose deficiency may be involved in the pathogenesis of chronic wounds.
Collapse
|
19
|
Shin Y, Ghate NB, Moon B, Park K, Lu W, An W. DNMT and HDAC inhibitors modulate MMP-9-dependent H3 N-terminal tail proteolysis and osteoclastogenesis. Epigenetics Chromatin 2019; 12:25. [PMID: 30992059 PMCID: PMC6466663 DOI: 10.1186/s13072-019-0270-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/10/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND MMP-9-dependent proteolysis of histone H3 N-terminal tail (H3NT) is an important mechanism for activation of gene expression during osteoclast differentiation. Like other enzymes targeting their substrates within chromatin structure, MMP-9 enzymatic activity toward H3NT is tightly controlled by histone modifications such as H3K18 acetylation (H3K18ac) and H3K27 monomethylation (H3K27me1). Growing evidence indicates that DNA methylation is another epigenetic mechanism controlling osteoclastogenesis, but whether DNA methylation is also critical for regulating MMP-9-dependent H3NT proteolysis and gene expression remains unknown. RESULTS We show here that treating RANKL-induced osteoclast progenitor (OCP) cells with the DNMT inhibitor 5-Aza-2'-deoxycytidine (5-Aza-CdR) induces CpG island hypomethylation and facilitates MMP-9 transcription. This increase in MMP-9 expression results in a significant enhancement of H3NT proteolysis and OCP cell differentiation. On the other hand, despite an increase in levels of H3K18ac, treatment with the HDAC inhibitor trichostatin A (TSA) leads to impairment of osteoclastogenic gene expression. Mechanistically, TSA treatment of OCP-induced cells stimulates H3K27ac with accompanying reduction in H3K27me1, which is a key modification to facilitate stable interaction of MMP-9 with nucleosomes for H3NT proteolysis. Moreover, hypomethylated osteoclastogenic genes in 5-Aza-CdR-treated cells remain transcriptionally inactive after TSA treatment, because H3K27 is highly acetylated and cannot be modified by G9a. CONCLUSIONS These findings clearly indicate that DNA methylation and histone modification are important mechanisms in regulating osteoclastogenic gene expression and that their inhibitors can be used as potential therapeutic tools for treating bone disorders.
Collapse
Affiliation(s)
- Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089 USA
| | - Nikhil B. Ghate
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089 USA
| | - Byoungsan Moon
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90089 USA
| | - Kyungpyo Park
- Department of Physiology, School of Dentistry, Seoul National University, Seoul, 110-749 Korea
| | - Wange Lu
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90089 USA
| | - Woojin An
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
20
|
Mechanisms of establishment and functional significance of DNA demethylation during erythroid differentiation. Blood Adv 2019; 2:1833-1852. [PMID: 30061308 DOI: 10.1182/bloodadvances.2018015651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
Erythroid differentiation is associated with global DNA demethylation, but a complete methylome was lacking in the erythroid lineage. We have generated allele-specific base resolution methylomes of primary basophilic erythroblasts (BasoEs) and compared these with 8 other cell types. We found that DNA demethylation during differentiation from hematopoietic stem/progenitor cells (HSPCs) to BasoEs occurred predominantly in intergenic sequences and in inactive gene bodies causing the formation of partially methylated domains (PMDs) in 74% of the BasoE methylome. Moreover, differentially methylated regions (DMRs) between HSPCs and BasoEs occurred mostly in putative enhancer regions and were most often associated with GATA, EKLF, and AP1 binding motifs. Surprisingly, promoters silent in both HSPCs and BasoEs exhibited much more dramatic chromatin changes during differentiation than activated promoters. Unmethylated silent promoters were often associated with active chromatin states in highly methylated domains (HMDs) but with polycomb-repression in PMDs, indicating that silent promoters are generally regulated differently in HMDs and PMDs. We show that long PMDs replicate late, but that short PMDs replicate early and therefore that the partial methylation of DNA after replication during erythroid expansion occurs throughout S phase of the cell cycle. We propose that baseline maintenance methylation following replication decreases during erythroid differentiation resulting in PMD formation and that the presence of HMDs in the BasoE methylome results from transcription-associated DNA methylation of gene bodies. We detected ∼700 large allele-specific DMRs that were enriched in single-nucleotide polymorphisms, suggesting that primary DNA sequence might be a determinant of DNA methylation levels within PMDs.
Collapse
|
21
|
Stage-specific differential DNA methylation data analysis during human erythropoiesis in chromosome 16. Genet Res (Camb) 2018; 100:e5. [PMID: 30014809 DOI: 10.1017/s0016672318000022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Previous studies have generated controversial findings regarding the correlation between DNA methylation in the human genome and gene expression. Some reports have indicated that promoter methylation is negatively correlated with gene expression levels; however, in some cases, a poor or positive correlation was reported. Most previous findings were based on general trends observed with whole-genome data analysis. Here, we present a novel chromosome-specific statistical analysis design of empirical Bayes differential tests for five phases of erythroid development. To better understand the common methylation patterns of differentially methylated regions (DMRs) during specific stages, we defined differential phases for each CpG locus, based on a maximum log2 fold change. Analyzing hypermethylated and hypomethylated CpG loci separately showed variations in methylation patterns during erythropoiesis in the gene body, promoter and enhancer regions. Hypomethylated DMRs showed stronger associations with erythroid-specific enhancers at the differentiation start phase and with exons in the intermediate phase. To investigate the hypomethylated DMRs further, transcription factor binding site-enrichment analysis was conducted. This analysis highlighted novel transcription factors during each differentiation stage that were not detected by previous differential methylation data analysis. In contrast, hypermethylated DMRs showed a consistent methylation pattern over the different genomic regions. Thus, a closer examination of DNA methylation patterns in a single chromosome during each developmental stage can contribute to verify the association nature between gene expression and DNA methylation.
Collapse
|
22
|
Tejedor JR, Bueno C, Cobo I, Bayón GF, Prieto C, Mangas C, Pérez RF, Santamarina P, Urdinguio RG, Menéndez P, Fraga MF, Fernández AF. Epigenome-wide analysis reveals specific DNA hypermethylation of T cells during human hematopoietic differentiation. Epigenomics 2018; 10:903-923. [DOI: 10.2217/epi-2017-0163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: Epigenetic regulation plays an important role in cellular development and differentiation. A detailed map of the DNA methylation dynamics that occur during cell differentiation would contribute to decipher the molecular networks governing cell fate commitment. Methods: Illumina MethylationEPIC BeadChip platform was used to describe the genome-wide DNA methylation changes observed throughout hematopoietic maturation by analyzing multiple myeloid and lymphoid hematopoietic cell types. Results: We identified a plethora of DNA methylation changes that occur during human hematopoietic differentiation. We observed that T lymphocytes display substantial enhancement of de novo CpG hypermethylation as compared with other hematopoietic cell populations. T-cell-specific hypermethylated regions were strongly associated with open chromatin marks and enhancer elements, as well as binding sites of specific key transcription factors involved in hematopoietic differentiation, such as PU.1 and TAL1. Conclusion: These results provide novel insights into the role of DNA methylation at enhancer elements in T-cell development.
Collapse
Affiliation(s)
- J Ramón Tejedor
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Principado de Asturias, Spain
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Principado de Asturias, Spain
| | - Clara Bueno
- Department of Biomedicine, School of Medicine, Josep Carreras Leukemia Research Institute, University of Barcelona, Barcelona, Spain
| | - Isabel Cobo
- Department of Biomedicine, School of Medicine, Josep Carreras Leukemia Research Institute, University of Barcelona, Barcelona, Spain
| | - Gustavo F Bayón
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Principado de Asturias, Spain
| | - Cristina Prieto
- Department of Biomedicine, School of Medicine, Josep Carreras Leukemia Research Institute, University of Barcelona, Barcelona, Spain
| | - Cristina Mangas
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Principado de Asturias, Spain
| | - Raúl F Pérez
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Principado de Asturias, Spain
- Nanomaterials & Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Spain
| | - Pablo Santamarina
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Principado de Asturias, Spain
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Principado de Asturias, Spain
| | - Rocío G Urdinguio
- Nanomaterials & Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Spain
| | - Pablo Menéndez
- Department of Biomedicine, School of Medicine, Josep Carreras Leukemia Research Institute, University of Barcelona, Barcelona, Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Josep Carreras Leukemia Research Institute-Campus ICO, Research Institut Germans Trias i Pujol (IGTP), Badalona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, Barcelona, Spain
| | - Mario F Fraga
- Nanomaterials & Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Spain
| | - Agustín F Fernández
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Principado de Asturias, Spain
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Principado de Asturias, Spain
| |
Collapse
|
23
|
Hong Y, Hong SH, Oh YM, Shin SH, Choi SS, Kim WJ. Identification of lung cancer specific differentially methylated regions using genome-wide DNA methylation study. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0034-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Lichtenberg J, Elnitski L, Bodine DM. SigSeeker: a peak-calling ensemble approach for constructing epigenetic signatures. Bioinformatics 2018; 33:2615-2621. [PMID: 28449120 DOI: 10.1093/bioinformatics/btx276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/20/2017] [Indexed: 11/14/2022] Open
Abstract
Motivation Epigenetic data are invaluable when determining the regulatory programs governing a cell. Based on use of next-generation sequencing data for characterizing epigenetic marks and transcription factor binding, numerous peak-calling approaches have been developed to determine sites of genomic significance in these data. Such analyses can produce a large number of false positive predictions, suggesting that sites supported by multiple algorithms provide a stronger foundation for inferring and characterizing regulatory programs associated with the epigenetic data. Few methodologies integrate epigenetic based predictions of multiple approaches when combining profiles generated by different tools. Results The SigSeeker peak-calling ensemble uses multiple tools to identify peaks, and with user-defined thresholds for peak overlap and signal strength it retains only those peaks that are concordant across multiple tools. Peaks predicted to be co-localized by only a very small number of tools, discovered to be only marginally overlapping, or found to represent significant outliers to the approximation model are removed from the results, providing concise and high quality epigenetic datasets. SigSeeker has been validated using established benchmarks for transcription factor binding and histone modification ChIP-Seq data. These comparisons indicate that the quality of our ensemble technique exceeds that of single tool approaches, enhances existing peak-calling ensembles, and results in epigenetic profiles of higher confidence. Availability and implementation http://sigseeker.org. Contact lichtenbergj@mail.nih.gov. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jens Lichtenberg
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Elnitski
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David M Bodine
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Heuston EF, Keller CA, Lichtenberg J, Giardine B, Anderson SM, Hardison RC, Bodine DM. Establishment of regulatory elements during erythro-megakaryopoiesis identifies hematopoietic lineage-commitment points. Epigenetics Chromatin 2018; 11:22. [PMID: 29807547 PMCID: PMC5971425 DOI: 10.1186/s13072-018-0195-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Enhancers and promoters are cis-acting regulatory elements associated with lineage-specific gene expression. Previous studies showed that different categories of active regulatory elements are in regions of open chromatin, and each category is associated with a specific subset of post-translationally marked histones. These regulatory elements are systematically activated and repressed to promote commitment of hematopoietic stem cells along separate differentiation paths, including the closely related erythrocyte (ERY) and megakaryocyte (MK) lineages. However, the order in which these decisions are made remains unclear. RESULTS To characterize the order of cell fate decisions during hematopoiesis, we collected primary cells from mouse bone marrow and isolated 10 hematopoietic populations to generate transcriptomes and genome-wide maps of chromatin accessibility and histone H3 acetylated at lysine 27 binding (H3K27ac). Principle component analysis of transcriptional and open chromatin profiles demonstrated that cells of the megakaryocyte lineage group closely with multipotent progenitor populations, whereas erythroid cells form a separate group distinct from other populations. Using H3K27ac and open chromatin profiles, we showed that 89% of immature MK (iMK)-specific active regulatory regions are present in the most primitive hematopoietic cells, 46% of which contain active enhancer marks. These candidate active enhancers are enriched for transcription factor binding site motifs for megakaryopoiesis-essential proteins, including ERG and ETS1. In comparison, only 64% of ERY-specific active regulatory regions are present in the most primitive hematopoietic cells, 20% of which containing active enhancer marks. These regions were not enriched for any transcription factor consensus sequences. Incorporation of genome-wide DNA methylation identified significant levels of de novo methylation in iMK, but not ERY. CONCLUSIONS Our results demonstrate that megakaryopoietic profiles are established early in hematopoiesis and are present in the majority of the hematopoietic progenitor population. However, megakaryopoiesis does not constitute a "default" differentiation pathway, as extensive de novo DNA methylation accompanies megakaryopoietic commitment. In contrast, erythropoietic profiles are not established until a later stage of hematopoiesis, and require more dramatic changes to the transcriptional and epigenetic programs. These data provide important insights into lineage commitment and can contribute to ongoing studies related to diseases associated with differentiation defects.
Collapse
|
26
|
Jiang K, Wong L, Chen Y, Xing X, Li D, Wang T, Jarvis JN. Soluble inflammatory mediators induce transcriptional re-organization that is independent of dna methylation changes in cultured human chorionic villous trophoblasts. J Reprod Immunol 2018; 128:2-8. [PMID: 29800761 PMCID: PMC6086739 DOI: 10.1016/j.jri.2018.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 11/23/2022]
Abstract
The studies proposed here were undertaken to test the hypothesis that, under specific circumstances (e.g., a strong enough inflammatory stimulus), genes that are repressed at the maternal-fetal interface via DNA methylation might be de-methylated, allowing either a maternal immune response to the semi-allogenic fetus or the onset of early labor. Chorionic trophoblasts (CT) were isolated from fetal membranes, followed by incubation with medium from LPS-activated PBMC or resting PBMC medium for 2 h. RNA and DNA were isolated from the cells for RNA-seq and DNA methylation studies. Two hrs after being exposed to conditioned medium from LPS-activated PBMC, CT showed differential expression of 114 genes, all but 2 of which showed higher expression in the stimulated cells than is the unstimulated cells. We also identified 318 differentially methylated regions (DMRs) that associated with 306 genes (155 protein coding genes) in the two groups, but the observed methylation changes had negligible impact on the observed transcriptional changes in CT. CT display complex patterns of transcription in response to inflammation. DNA methylation does not appear to be an important regulator of the observed transcriptional changes.
Collapse
Affiliation(s)
- Kaiyu Jiang
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Laiping Wong
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Yanmin Chen
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Xiaoyun Xing
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Ave, St. Louis, MO, 63108, USA
| | - Daofeng Li
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Ave, St. Louis, MO, 63108, USA
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Ave, St. Louis, MO, 63108, USA
| | - James N Jarvis
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA; Genetics, Genomics, & Bioinformatics Program, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| |
Collapse
|
27
|
Li J, Song P, Jiang T, Dai D, Wang H, Sun J, Zhu L, Xu W, Feng L, Shin VY, Morrison H, Wang X, Jin H. Heat Shock Factor 1 Epigenetically Stimulates Glutaminase-1-Dependent mTOR Activation to Promote Colorectal Carcinogenesis. Mol Ther 2018; 26:1828-1839. [PMID: 29730197 DOI: 10.1016/j.ymthe.2018.04.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/01/2018] [Accepted: 04/10/2018] [Indexed: 01/05/2023] Open
Abstract
Heat shock factor 1 (HSF1) generally exhibits its properties under stress conditions. In tumors, HSF1 has a pleiotropic feature in regulating growth, survival, and aggressiveness of cancer cells. In this study, we found HSF1 was increased in colorectal cancer (CRC) and had a positive correlation with shorter disease-free survival (DFS). Knockdown of HSF1 in CRC cells attenuated their growth while inhibiting mTOR activation and glutamine metabolism. HSF1 inhibited the expression of microRNA137 (MIR137), which targeted GLS1 (glutaminase 1), thus stimulating GLS1 protein expression to promote glutaminolysis and mTOR activation. HSF1 bound DNA methyltransferase DNMT3a and recruited it to the promoter of lncRNA MIR137 host gene (MIR137HG), suppressing the generation of primary MIR137. The chemical inhibitor of HSF1 also reduced cell growth, increased apoptosis, and impaired glutamine metabolism in vitro. Moreover, both chemical inhibition and genetic knockout of HSF1 succeeded in increasing MIR137 expression, reducing GLS1 expression, and alleviating colorectal tumorigenesis in azoxymethane (AOM)/dextran sulfate sodium (DSS) mice. In conclusion, HSF1 expression was increased and associated with poor prognosis in CRC. By recruiting DNMT3a to suppress the expression of MIR137 that targets GLS1 mRNA, HSF1 stimulated GLS1-dependent mTOR activation to promote colorectal carcinogenesis. Therefore, targeting HSF1 to attenuate glutaminolysis and mTOR activation could be a promising approach for CRC treatment.
Collapse
Affiliation(s)
- Jiaqiu Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Ping Song
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Tingting Jiang
- Laboratory of Cancer Biology, Key Lab of Zhejiang Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Dongjun Dai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Hanying Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Jie Sun
- Laboratory of Cancer Biology, Key Lab of Zhejiang Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Liyuan Zhu
- Laboratory of Cancer Biology, Key Lab of Zhejiang Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Wenxia Xu
- Laboratory of Cancer Biology, Key Lab of Zhejiang Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Lab of Zhejiang Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Vivian Y Shin
- Department of Surgery, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Zhejiang Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
28
|
Aberg KA, Chan RF, Xie L, Shabalin AA, van den Oord EJCG. Methyl-CpG-Binding Domain Sequencing: MBD-seq. Methods Mol Biol 2018; 1708:171-189. [PMID: 29224145 DOI: 10.1007/978-1-4939-7481-8_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Detailed biological knowledge about the potential importance of the methylome is typically lacking for common diseases. Therefore, methylome-wide association studies (MWAS) are critical to detect disease relevant methylation sites. Methyl-CpG-binding domain sequencing (MBD-seq) offers potential advantages compared to antibody-based enrichment, but performance depends critically on using an optimal protocol. Using an optimized protocol, MBD-seq can approximate the sensitivity/specificity obtained with whole-genome bisulfite sequencing, but at a fraction of the costs and time to complete the project. Thus, MBD-seq offers a comprehensive first pass at the CpG methylome and is economically feasible with the samples sizes required for MWAS.
Collapse
Affiliation(s)
- Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, P. O. Box 980533, Richmond, VA, 23298, USA
| | - Robin F Chan
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, P. O. Box 980533, Richmond, VA, 23298, USA
| | - Linying Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, P. O. Box 980533, Richmond, VA, 23298, USA
| | - Andrey A Shabalin
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, P. O. Box 980533, Richmond, VA, 23298, USA
| | - Edwin J C G van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, P. O. Box 980533, Richmond, VA, 23298, USA.
| |
Collapse
|
29
|
Wijetunga NA, Pascual M, Tozour J, Delahaye F, Alani M, Adeyeye M, Wolkoff AW, Verma A, Greally JM. A pre-neoplastic epigenetic field defect in HCV-infected liver at transcription factor binding sites and polycomb targets. Oncogene 2017; 36:2030-2044. [PMID: 27721404 PMCID: PMC5383522 DOI: 10.1038/onc.2016.340] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 07/26/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
Abstract
The predisposition of patients with Hepatitis C virus (HCV) infection to hepatocellular carcinoma (HCC) involves components of viral infection, inflammation and time. The development of multifocal, genetically distinct tumours is suggestive of a field defect affecting the entire liver. The molecular susceptibility mediating such a field defect is not understood. One potential mediator of long-term cellular reprogramming is heritable (epigenetic) regulation of transcription, exemplified by DNA methylation. We studied epigenetic and transcriptional changes in HCV-infected livers in comparison with control, uninfected livers and HCC, allowing us to identify pre-neoplastic epigenetic and transcriptional events. We find the HCV-infected liver to have a pattern of acquisition of DNA methylation targeted to candidate enhancers active in liver cells, enriched for the binding sites of the FOXA1, FOXA2 and HNF4A transcription factors. These enhancers can be subdivided into those proximal to genes implicated in liver cancer or to genes involved in stem cell development, the latter distinguished by increased CG dinucleotide density and polycomb-mediated repression, manifested by the additional acquisition of histone H3 lysine 27 trimethylation (H3K27me3). Transcriptional studies on our samples showed that the increased DNA methylation at enhancers was associated with decreased local gene expression, results validated in independent samples from The Cancer Genome Atlas. Pharmacological depletion of H3K27me3 using the EZH2 inhibitor GSK343 in HepG2 cells suppressed cell growth and also revealed that local acquired DNA methylation was not dependent upon the presence of polycomb-mediated repression. The results support a model of HCV infection influencing the binding of transcription factors to cognate sites in the genome, with consequent local acquisition of DNA methylation, and the added repressive influence of polycomb at a subset of CG-dense cis-regulatory sequences. These epigenetic events occur before neoplastic transformation, resulting in what may be a pharmacologically reversible epigenetic field defect in HCV-infected liver.
Collapse
Affiliation(s)
- N A Wijetunga
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
| | - M Pascual
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
- Centro de Investigación Médica Aplicada (CIMA), IDISNA, Oncohematology Department, Pamplona, Spain
| | - J Tozour
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
| | - F Delahaye
- Department of Obstetrics, Gynecology and Women's Health, Bronx, NY, USA
| | - M Alani
- Department of Medicine (Division of Gastroenterology and Liver Diseases), Bronx, NY, USA
- Marion Bessin Liver Research Center, Bronx, NY, USA
| | - M Adeyeye
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
| | - A W Wolkoff
- Department of Medicine (Division of Gastroenterology and Liver Diseases), Bronx, NY, USA
- Marion Bessin Liver Research Center, Bronx, NY, USA
| | - A Verma
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - J M Greally
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
- Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx NY 10461, USA. E-mail:
| |
Collapse
|
30
|
Abstract
The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation.
Collapse
Affiliation(s)
- Gregory M K Poon
- a Department of Chemistry , Georgia State University , Atlanta , GA , USA.,b Center for Diagnostics and Therapeutics, Georgia State University , Atlanta , GA , USA
| | - Hye Mi Kim
- a Department of Chemistry , Georgia State University , Atlanta , GA , USA
| |
Collapse
|
31
|
Neri F, Rapelli S, Krepelova A, Incarnato D, Parlato C, Basile G, Maldotti M, Anselmi F, Oliviero S. Intragenic DNA methylation prevents spurious transcription initiation. Nature 2017; 543:72-77. [PMID: 28225755 DOI: 10.1038/nature21373] [Citation(s) in RCA: 463] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/05/2017] [Indexed: 12/12/2022]
Abstract
In mammals, DNA methylation occurs mainly at CpG dinucleotides. Methylation of the promoter suppresses gene expression, but the functional role of gene-body DNA methylation in highly expressed genes has yet to be clarified. Here we show that, in mouse embryonic stem cells, Dnmt3b-dependent intragenic DNA methylation protects the gene body from spurious RNA polymerase II entry and cryptic transcription initiation. Using different genome-wide approaches, we demonstrate that this Dnmt3b function is dependent on its enzymatic activity and recruitment to the gene body by H3K36me3. Furthermore, the spurious transcripts can either be degraded by the RNA exosome complex or capped, polyadenylated, and delivered to the ribosome to produce aberrant proteins. Elongating RNA polymerase II therefore triggers an epigenetic crosstalk mechanism that involves SetD2, H3K36me3, Dnmt3b and DNA methylation to ensure the fidelity of gene transcription initiation, with implications for intragenic hypomethylation in cancer.
Collapse
Affiliation(s)
- Francesco Neri
- Human Genetics Foundation (HuGeF), via Nizza 52, 10126 Torino, Italy
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Stefania Rapelli
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, via Accademia Albertina 13, 10123 Torino, Italy
| | - Anna Krepelova
- Human Genetics Foundation (HuGeF), via Nizza 52, 10126 Torino, Italy
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, via Accademia Albertina 13, 10123 Torino, Italy
| | - Danny Incarnato
- Human Genetics Foundation (HuGeF), via Nizza 52, 10126 Torino, Italy
| | - Caterina Parlato
- Human Genetics Foundation (HuGeF), via Nizza 52, 10126 Torino, Italy
| | - Giulia Basile
- Human Genetics Foundation (HuGeF), via Nizza 52, 10126 Torino, Italy
| | - Mara Maldotti
- Human Genetics Foundation (HuGeF), via Nizza 52, 10126 Torino, Italy
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, via Accademia Albertina 13, 10123 Torino, Italy
| | - Francesca Anselmi
- Human Genetics Foundation (HuGeF), via Nizza 52, 10126 Torino, Italy
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, via Accademia Albertina 13, 10123 Torino, Italy
| | - Salvatore Oliviero
- Human Genetics Foundation (HuGeF), via Nizza 52, 10126 Torino, Italy
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, via Accademia Albertina 13, 10123 Torino, Italy
| |
Collapse
|
32
|
Sugiyama D, Joshi A, Kulkeaw K, Tan KS, Yokoo-Inoue T, Mizuochi-Yanagi C, Yasuda K, Doi A, Iino T, Itoh M, Nagao-Sato S, Tani K, Akashi K, Hayashizaki Y, Suzuki H, Kawaji H, Carninci P, Forrest ARR. A Transcriptional Switch Point During Hematopoietic Stem and Progenitor Cell Ontogeny. Stem Cells Dev 2017; 26:314-327. [PMID: 27848279 DOI: 10.1089/scd.2016.0194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
During mammalian embryogenesis, hematopoietic stem and progenitor cells (HSPCs) originate from mesoderm-derived endothelial cells in the aorta-gonad-mesonephros (AGM) region and placenta (PL). Later, HSPCs expand in fetal liver (FL) and migrate to bone marrow (BM) shortly before birth. Understanding global transcriptional regulation governing HSPC emergence from embryonic stem/induced pluripotent stem cells is necessary to devise clinical applications, such as novel transplantation approaches. In this study, to assess transcriptional dynamics during development, we performed cap analysis of gene expression on 10 developmental murine HSPC populations isolated from the AGM region, PL, FL, and BM and identified 15,681 transcripts across HSPC ontogeny. We performed microarray analysis of AGM-derived HSPCs at 9.5 and 10.5 days postcoitum (dpc) and identified 40 differentially expressed genes, 23 confirmed as significantly changed by real-time polymerase chain reaction. We conclude that a transcriptional switch point occurs in HSPC ontogeny between 9.5 and 10.5 dpc in the AGM region.
Collapse
Affiliation(s)
- Daisuke Sugiyama
- 1 Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University , Fukuoka, Japan .,2 Center for Clinical and Translational Research, Kyushu University , Fukuoka, Japan .,3 Department of Clinical Study, Center for Advanced Medical Innovation, Kyushu University , Fukuoka, Japan
| | - Anagha Joshi
- 4 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Easter Bush Campus, Midlothian, United Kingdom
| | - Kasem Kulkeaw
- 1 Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University , Fukuoka, Japan
| | - Keai Sinn Tan
- 1 Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University , Fukuoka, Japan
| | - Tomoko Yokoo-Inoue
- 1 Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University , Fukuoka, Japan
| | - Chiyo Mizuochi-Yanagi
- 1 Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University , Fukuoka, Japan
| | | | | | - Tadafumi Iino
- 3 Department of Clinical Study, Center for Advanced Medical Innovation, Kyushu University , Fukuoka, Japan
| | - Masayoshi Itoh
- 6 RIKEN Preventive Medicine and Diagnosis Innovation Program , Yokohama, Japan .,7 RIKEN Center for Life Science Technologies , Division of Genomic Technologies, Yokohama, Japan .,8 RIKEN Yokohama Institute , Omics Science Center, Yokohama, Kanagawa, Japan
| | - Sayaka Nagao-Sato
- 8 RIKEN Yokohama Institute , Omics Science Center, Yokohama, Kanagawa, Japan
| | - Kenzaburo Tani
- 9 Division of Molecular and Clinical Genetics, Medical Institute of Bioregulation, Kyushu University , Fukuoka, Japan
| | - Koichi Akashi
- 10 Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences , Fukuoka, Japan
| | - Yoshihide Hayashizaki
- 6 RIKEN Preventive Medicine and Diagnosis Innovation Program , Yokohama, Japan .,7 RIKEN Center for Life Science Technologies , Division of Genomic Technologies, Yokohama, Japan
| | - Harukazu Suzuki
- 7 RIKEN Center for Life Science Technologies , Division of Genomic Technologies, Yokohama, Japan
| | - Hideya Kawaji
- 6 RIKEN Preventive Medicine and Diagnosis Innovation Program , Yokohama, Japan .,7 RIKEN Center for Life Science Technologies , Division of Genomic Technologies, Yokohama, Japan .,8 RIKEN Yokohama Institute , Omics Science Center, Yokohama, Kanagawa, Japan
| | - Piero Carninci
- 6 RIKEN Preventive Medicine and Diagnosis Innovation Program , Yokohama, Japan .,7 RIKEN Center for Life Science Technologies , Division of Genomic Technologies, Yokohama, Japan .,8 RIKEN Yokohama Institute , Omics Science Center, Yokohama, Kanagawa, Japan
| | - Alistair R R Forrest
- 7 RIKEN Center for Life Science Technologies , Division of Genomic Technologies, Yokohama, Japan
| |
Collapse
|
33
|
Latchney SE, Calvi LM. The aging hematopoietic stem cell niche: Phenotypic and functional changes and mechanisms that contribute to hematopoietic aging. Semin Hematol 2016; 54:25-32. [PMID: 28088984 DOI: 10.1053/j.seminhematol.2016.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 11/11/2022]
Abstract
The hematopoietic system has the remarkable ability to provide a lifelong supply of mature cells that make up the entire blood and immune system. However, similar to other adult stem cell niches, the hematopoietic system is vulnerable to the detrimental effects of aging. This is a substantial health concern as the trend for population aging continues to increase. Identifying mechanisms that underlie hematopoietic aging is vital for understanding hematopoietic-related diseases. In this review, we first discuss the cellular hierarchy of the hematopoietic system and the components that make up the surrounding hematopoietic niche. We then provide an overview of the major phenotypes associated with hematopoietic aging and discuss recent research investigating cell-intrinsic and cell-extrinsic mechanisms of hematopoietic stem cell (HSCs) aging. We end by discussing the exciting new concept of possibly reversing the HSC aging process along with outstanding questions that remain to be answered.
Collapse
Affiliation(s)
- Sarah E Latchney
- Endocrine Metabolism Division, University of Rochester School of Medicine and Dentistry, Rochester NY
| | - Laura M Calvi
- Endocrine Metabolism Division, University of Rochester School of Medicine and Dentistry, Rochester NY; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester NY.
| |
Collapse
|
34
|
Schwartz AM, Putlyaeva LV, Covich M, Klepikova AV, Akulich KA, Vorontsov IE, Korneev KV, Dmitriev SE, Polanovsky OL, Sidorenko SP, Kulakovskiy IV, Kuprash DV. Early B-cell factor 1 (EBF1) is critical for transcriptional control of SLAMF1 gene in human B cells. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:1259-68. [PMID: 27424222 DOI: 10.1016/j.bbagrm.2016.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/01/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Signaling lymphocytic activation molecule family member 1 (SLAMF1)/CD150 is a co-stimulatory receptor expressed on a variety of hematopoietic cells, in particular on mature lymphocytes activated by specific antigen, costimulation and cytokines. Changes in CD150 expression level have been reported in association with autoimmunity and with B-cell chronic lymphocytic leukemia. We characterized the core promoter for SLAMF1 gene in human B-cell lines and explored binding sites for a number of transcription factors involved in B cell differentiation and activation. Mutations of SP1, STAT6, IRF4, NF-kB, ELF1, TCF3, and SPI1/PU.1 sites resulted in significantly decreased promoter activity of varying magnitude, depending on the cell line tested. The most profound effect on the promoter strength was observed upon mutation of the binding site for Early B-cell factor 1 (EBF1). This mutation produced a 10-20 fold drop in promoter activity and pinpointed EBF1 as the master regulator of human SLAMF1 gene in B cells. We also identified three potent transcriptional enhancers in human SLAMF1 locus, each containing functional EBF1 binding sites. Thus, EBF1 interacts with specific binding sites located both in the promoter and in the enhancer regions of the SLAMF1 gene and is critical for its expression in human B cells.
Collapse
Affiliation(s)
- Anton M Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lidia V Putlyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Milica Covich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Klepikova
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya A Akulich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ilya E Vorontsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V Korneev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey E Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Oleg L Polanovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana P Sidorenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
35
|
Papageorgiou DN, Karkoulia E, Amaral-Psarris A, Burda P, Kolodziej K, Demmers J, Bungert J, Stopka T, Strouboulis J. Distinct and overlapping DNMT1 interactions with multiple transcription factors in erythroid cells: Evidence for co-repressor functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1515-1526. [PMID: 27693117 DOI: 10.1016/j.bbagrm.2016.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 01/14/2023]
Abstract
DNMT1 is the maintenance DNA methyltransferase shown to be essential for embryonic development and cellular growth and differentiation in many somatic tissues in mammals. Increasing evidence has also suggested a role for DNMT1 in repressing gene expression through interactions with specific transcription factors. Previously, we identified DNMT1 as an interacting partner of the TR2/TR4 nuclear receptor heterodimer in erythroid cells, implicated in the developmental silencing of fetal β-type globin genes in the adult stage of human erythropoiesis. Here, we extended this work by using a biotinylation tagging approach to characterize DNMT1 protein complexes in mouse erythroleukemic cells. We identified novel DNMT1 interactions with several hematopoietic transcription factors with essential roles in erythroid differentiation, including GATA1, GFI-1b and FOG-1. We provide evidence for DNMT1 forming distinct protein subcomplexes with specific transcription factors and propose the existence of a "core" DNMT1 complex with the transcription factors ZBP-89 and ZNF143, which is also present in non-hematopoietic cells. Furthermore, we identified the short (17a.a.) PCNA Binding Domain (PBD) located near the N-terminus of DNMT1 as being necessary for mediating interactions with the transcription factors described herein. Lastly, we provide evidence for DNMT1 serving as a co-repressor of ZBP-89 and GATA1 acting through upstream regulatory elements of the PU.1 and GATA1 gene loci.
Collapse
Affiliation(s)
- Dimitris N Papageorgiou
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Elena Karkoulia
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Alexandra Amaral-Psarris
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Pavel Burda
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Katarzyna Kolodziej
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jeroen Demmers
- Proteomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Tomas Stopka
- Biocev, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | - John Strouboulis
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
| |
Collapse
|
36
|
Ntziachristos P, Abdel-Wahab O, Aifantis I. Emerging concepts of epigenetic dysregulation in hematological malignancies. Nat Immunol 2016; 17:1016-24. [PMID: 27478938 PMCID: PMC5134743 DOI: 10.1038/ni.3517] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022]
Abstract
The past decade brought a revolution in understanding of the structure, topology and disease-inducing lesions of RNA and DNA, fueled by unprecedented progress in next-generation sequencing. This technological revolution has also affected understanding of the epigenome and has provided unique opportunities for the analysis of DNA and histone modifications, as well as the first map of the non-protein-coding genome and three-dimensional (3D) chromosomal interactions. Overall, these advances have facilitated studies that combine genetic, transcriptomics and epigenomics data to address a wide range of issues ranging from understanding the role of the epigenome in development to targeting the transcription of noncoding genes in human cancer. Here we describe recent insights into epigenetic dysregulation characteristic of the malignant differentiation of blood stem cells based on studies of alterations that affect epigenetic complexes, enhancers, chromatin, long noncoding RNAs (lncRNAs), RNA splicing, nuclear topology and the 3D conformation of chromatin.
Collapse
Affiliation(s)
- Panagiotis Ntziachristos
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Iannis Aifantis
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
37
|
Liao Q, Wang Y, Cheng J, Dai D, Zhou X, Zhang Y, Li J, Yin H, Gao S, Duan S. DNA methylation patterns of protein-coding genes and long non-coding RNAs in males with schizophrenia. Mol Med Rep 2016; 12:6568-76. [PMID: 26503909 PMCID: PMC4626154 DOI: 10.3892/mmr.2015.4249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 04/20/2015] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia (SCZ) is one of the most complex mental illnesses affecting ~1% of the population worldwide. SCZ pathogenesis is considered to be a result of genetic as well as epigenetic alterations. Previous studies have aimed to identify the causative genes of SCZ. However, DNA methylation of long non-coding RNAs (lncRNAs) involved in SCZ has not been fully elucidated. In the present study, a comprehensive genome-wide analysis of DNA methylation was conducted using samples from two male patients with paranoid and undifferentiated SCZ, respectively. Methyl-CpG binding domain protein-enriched genome sequencing was used. In the two patients with paranoid and undifferentiated SCZ, 1,397 and 1,437 peaks were identified, respectively. Bioinformatic analysis demonstrated that peaks were enriched in protein-coding genes, which exhibited nervous system and brain functions. A number of these peaks in gene promoter regions may affect gene expression and, therefore, influence SCZ-associated pathways. Furthermore, 7 and 20 lncRNAs, respectively, in the Refseq database were hypermethylated. According to the lncRNA dataset in the NONCODE database, ~30% of intergenic peaks overlapped with novel lncRNA loci. The results of the present study demonstrated that aberrant hypermethylation of lncRNA genes may be an important epigenetic factor associated with SCZ. However, further studies using larger sample sizes are required.
Collapse
|
38
|
Kushwaha G, Dozmorov M, Wren JD, Qiu J, Shi H, Xu D. Hypomethylation coordinates antagonistically with hypermethylation in cancer development: a case study of leukemia. Hum Genomics 2016; 10 Suppl 2:18. [PMID: 27461342 PMCID: PMC4965721 DOI: 10.1186/s40246-016-0071-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Methylation changes are frequent in cancers, but understanding how hyper- and hypomethylated region changes coordinate, associate with genomic features, and affect gene expression is needed to better understand their biological significance. The functional significance of hypermethylation is well studied, but that of hypomethylation remains limited. Here, with paired expression and methylation samples gathered from a patient/control cohort, we attempt to better characterize the gene expression and methylation changes that take place in cancer from B cell chronic lymphocyte leukemia (B-CLL) samples. Results Across the dataset, we found that consistent differentially hypomethylated regions (C-DMRs) across samples were relatively few compared to the many poorly consistent hypo- and highly conserved hyper-DMRs. However, genes in the hypo-C-DMRs tended to be associated with functions antagonistic to those in the hyper-C-DMRs, like differentiation, cell-cycle regulation and proliferation, suggesting coordinated regulation of methylation changes. Hypo-C-DMRs in B-CLL were found enriched in key signaling pathways like B cell receptor and p53 pathways and genes/motifs essential for B lymphopoiesis. Hypo-C-DMRs tended to be proximal to genes with elevated expression in contrast to the transcription silencing-mechanism imposed by hypermethylation. Hypo-C-DMRs tended to be enriched in the regions of activating H4K4me1/2/3, H3K79me2, and H3K27ac histone modifications. In comparison, the polycomb repressive complex 2 (PRC2) signature, marked by EZH2, SUZ12, CTCF binding-sites, repressive H3K27me3 marks, and “repressed/poised promoter” states were associated with hyper-C-DMRs. Most hypo-C-DMRs were found in introns (36 %), 3′ untranslated regions (29 %), and intergenic regions (24 %). Many of these genic regions also overlapped with enhancers. The methylation of CpGs from 3′UTR exons was found to have weak but positive correlation with gene expression. In contrast, methylation in the 5′UTR was negatively correlated with expression. To better characterize the overlap between methylation and expression changes, we identified correlation modules that associate with “apoptosis” and “leukocyte activation”. Conclusions Despite clinical heterogeneity in disease presentation, a number of methylation changes, both hypo and hyper, appear to be common in B-CLL. Hypomethylation appears to play an active, targeted, and complementary role in cancer progression, and it interplays with hypermethylation in a coordinated fashion in the cancer process. Electronic supplementary material The online version of this article (doi:10.1186/s40246-016-0071-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Garima Kushwaha
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Informatics Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23225, USA
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Jing Qiu
- Department of Applied Economics & Statistics, University of Delaware, Newark, DE, 19716, USA
| | - Huidong Shi
- GRU Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA. .,Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA, 30912, USA.
| | - Dong Xu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA. .,Informatics Institute, University of Missouri, Columbia, MO, 65211, USA. .,Department of Computer Science, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
39
|
Zhao Y, Sun H, Wang H. Long noncoding RNAs in DNA methylation: new players stepping into the old game. Cell Biosci 2016; 6:45. [PMID: 27408682 PMCID: PMC4940868 DOI: 10.1186/s13578-016-0109-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/02/2016] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are being discovered as a novel family of regulators of gene expression at the epigenetic level. Emerging lines of evidence demonstrate that interplays between lncRNAs and DNA methylation machinery are an important layer of epigenetic regulation. Here in this mini-review we summarize the current findings in the field and focus particularly on the interactions mediated through direct physical association between lncRNAs and DNA methyltransferases (DNMTs).
Collapse
Affiliation(s)
- Yu Zhao
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Sun
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China ; Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China ; Department of Orthopedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
40
|
van den Oord EJCG, Clark SL, Xie LY, Shabalin AA, Dozmorov MG, Kumar G, Vladimirov VI, Magnusson PKE, Aberg KA. A Whole Methylome CpG-SNP Association Study of Psychosis in Blood and Brain Tissue. Schizophr Bull 2016; 42:1018-26. [PMID: 26656881 PMCID: PMC4903046 DOI: 10.1093/schbul/sbv182] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Mutated CpG sites (CpG-SNPs) are potential hotspots for human diseases because in addition to the sequence variation they may show individual differences in DNA methylation. We performed methylome-wide association studies (MWAS) to test whether methylation differences at those sites were associated with schizophrenia. We assayed all common CpG-SNPs with methyl-CpG binding domain protein-enriched genome sequencing (MBD-seq) using DNA extracted from 1408 blood samples and 66 postmortem brain samples (BA10) of schizophrenia cases and controls. Seven CpG-SNPs passed our FDR threshold of 0.1 in the blood MWAS. Of the CpG-SNPs methylated in brain, 94% were also methylated in blood. This significantly exceeded the 46.2% overlap expected by chance (P-value < 1.0×10(-8)) and justified replicating findings from blood in brain tissue. CpG-SNP rs3796293 in IL1RAP replicated (P-value = .003) with the same direction of effects. This site was further validated through targeted bisulfite pyrosequencing in 736 independent case-control blood samples (P-value < 9.5×10(-4)). Our top result in the brain MWAS (P-value = 8.8×10(-7)) was CpG-SNP rs16872141 located in the potential promoter of ENC1. Overall, our results suggested that CpG-SNP methylation may reflect effects of environmental insults and can provide biomarkers in blood that could potentially improve disease management.
Collapse
Affiliation(s)
- Edwin J C G van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA;
| | - Shaunna L Clark
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA
| | - Lin Ying Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA
| | - Andrey A Shabalin
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA
| | - Gaurav Kumar
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA
| | - Vladimir I Vladimirov
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA; Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA; Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
41
|
Stephens DC, Poon GMK. Differential sensitivity to methylated DNA by ETS-family transcription factors is intrinsically encoded in their DNA-binding domains. Nucleic Acids Res 2016; 44:8671-8681. [PMID: 27270080 PMCID: PMC5062964 DOI: 10.1093/nar/gkw528] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 05/30/2016] [Indexed: 01/25/2023] Open
Abstract
Transactivation by the ETS family of transcription factors, whose members share structurally conserved DNA-binding domains, is variably sensitive to methylation of their target genes. The mechanism by which DNA methylation controls ETS proteins remains poorly understood. Uncertainly also pervades the effects of hemi-methylated DNA, which occurs following DNA replication and in response to hypomethylating agents, on site recognition by ETS proteins. To address these questions, we measured the affinities of two sequence-divergent ETS homologs, PU.1 and Ets-1, to DNA sites harboring a hemi- and fully methylated CpG dinucleotide. While the two proteins bound unmethylated DNA with indistinguishable affinity, their affinities to methylated DNA are markedly heterogeneous and exhibit major energetic coupling between the two CpG methylcytosines. Analysis of simulated DNA and existing co-crystal structures revealed that hemi-methylation induced non-local backbone and groove geometries that were not conserved in the fully methylated state. Indirect readout of these perturbations was differentially achieved by the two ETS homologs, with the distinctive interfacial hydration in PU.1/DNA binding moderating the inhibitory effects of DNA methylation on binding. This data established a biophysical basis for the pioneering properties associated with PU.1, which robustly bound fully methylated DNA, but not Ets-1, which was substantially inhibited.
Collapse
Affiliation(s)
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
42
|
Guryanova OA, Lieu YK, Garrett-Bakelman FE, Spitzer B, Glass JL, Shank K, Valencia Martinez AB, Rivera SA, Durham BH, Rapaport F, Keller MD, Pandey S, Bastian L, Tovbin D, Weinstein AR, Teruya-Feldstein J, Abdel-Wahab O, Santini V, Mason CE, Melnick AM, Mukherjee S, Levine RL. Dnmt3a regulates myeloproliferation and liver-specific expansion of hematopoietic stem and progenitor cells. Leukemia 2016; 30:1133-42. [PMID: 26710888 PMCID: PMC4856586 DOI: 10.1038/leu.2015.358] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 12/22/2022]
Abstract
DNA methyltransferase 3A (DNMT3A) mutations are observed in myeloid malignancies, including myeloproliferative neoplasms (MPN), myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Transplantation studies have elucidated an important role for Dnmt3a in stem cell self-renewal and in myeloid differentiation. Here, we investigated the impact of conditional hematopoietic Dnmt3a loss on disease phenotype in primary mice. Mx1-Cre-mediated Dnmt3a ablation led to the development of a lethal, fully penetrant MPN with myelodysplasia (MDS/MPN) characterized by peripheral cytopenias and by marked, progressive hepatomegaly. We detected expanded stem/progenitor populations in the liver of Dnmt3a-ablated mice. The MDS/MPN induced by Dnmt3a ablation was transplantable, including the marked hepatomegaly. Homing studies showed that Dnmt3a-deleted bone marrow cells preferentially migrated to the liver. Gene expression and DNA methylation analyses of progenitor cell populations identified differential regulation of hematopoietic regulatory pathways, including fetal liver hematopoiesis transcriptional programs. These data demonstrate that Dnmt3a ablation in the hematopoietic system leads to myeloid transformation in vivo, with cell-autonomous aberrant tissue tropism and marked extramedullary hematopoiesis (EMH) with liver involvement. Hence, in addition to the established role of Dnmt3a in regulating self-renewal, Dnmt3a regulates tissue tropism and limits myeloid progenitor expansion in vivo.
Collapse
Affiliation(s)
- Olga A. Guryanova
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yen K. Lieu
- Department of Medicine and Irving Cancer Research Center, Columbia University, New York, NY
| | | | - Barbara Spitzer
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jacob L. Glass
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kaitlyn Shank
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Sharon A. Rivera
- Department of Medicine and Irving Cancer Research Center, Columbia University, New York, NY
| | - Benjamin H. Durham
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Franck Rapaport
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Matthew D. Keller
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Suveg Pandey
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lennart Bastian
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel Tovbin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Abby R. Weinstein
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Julie Teruya-Feldstein
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY
| | - Ari M. Melnick
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Siddhartha Mukherjee
- Department of Medicine and Irving Cancer Research Center, Columbia University, New York, NY
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
43
|
Tetteh PW, Basak O, Farin HF, Wiebrands K, Kretzschmar K, Begthel H, van den Born M, Korving J, de Sauvage F, van Es JH, van Oudenaarden A, Clevers H. Replacement of Lost Lgr5-Positive Stem Cells through Plasticity of Their Enterocyte-Lineage Daughters. Cell Stem Cell 2016; 18:203-13. [PMID: 26831517 DOI: 10.1016/j.stem.2016.01.001] [Citation(s) in RCA: 405] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 11/03/2015] [Accepted: 01/04/2016] [Indexed: 01/30/2023]
Abstract
Intestinal crypts display robust regeneration upon injury. The relatively rare secretory precursors can replace lost stem cells, but it is unknown if the abundant enterocyte progenitors that express the Alkaline phosphate intestinal (Alpi) gene also have this capacity. We created an Alpi-IRES-CreERT2 (Alpi(CreER)) knockin allele for lineage tracing. Marked clones consist entirely of enterocytes and are all lost from villus tips within days. Genetic fate-mapping of Alpi(+) cells before or during targeted ablation of Lgr5-expressing stem cells generated numerous long-lived crypt-villus "ribbons," indicative of dedifferentiation of enterocyte precursors into Lgr5(+) stems. By single-cell analysis of dedifferentiating enterocytes, we observed the generation of Paneth-like cells and proliferative stem cells. We conclude that the highly proliferative, short-lived enterocyte precursors serve as a large reservoir of potential stem cells during crypt regeneration.
Collapse
Affiliation(s)
- Paul W Tetteh
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Onur Basak
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Henner F Farin
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Kay Wiebrands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Kai Kretzschmar
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Maaike van den Born
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Frederic de Sauvage
- Molecular Oncology Department, Genentech, South San Francisco, CA 94080, USA
| | - Johan H van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Alexander van Oudenaarden
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
44
|
Vento-Tormo R, Company C, Rodríguez-Ubreva J, de la Rica L, Urquiza JM, Javierre BM, Sabarinathan R, Luque A, Esteller M, Aran JM, Álvarez-Errico D, Ballestar E. IL-4 orchestrates STAT6-mediated DNA demethylation leading to dendritic cell differentiation. Genome Biol 2016; 17:4. [PMID: 26758199 PMCID: PMC4711003 DOI: 10.1186/s13059-015-0863-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/29/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The role of cytokines in establishing specific transcriptional programmes in innate immune cells has long been recognized. However, little is known about how these extracellular factors instruct innate immune cell epigenomes to engage specific differentiation states. Human monocytes differentiate under inflammatory conditions into effector cells with non-redundant functions, such as dendritic cells and macrophages. In this context, interleukin 4 (IL-4) and granulocyte macrophage colony-stimulating factor (GM-CSF) drive dendritic cell differentiation, whereas GM-CSF alone leads to macrophage differentiation. RESULTS Here, we investigate the role of IL-4 in directing functionally relevant dendritic-cell-specific DNA methylation changes. A comparison of DNA methylome dynamics during differentiation from human monocytes to dendritic cells and macrophages identified gene sets undergoing dendritic-cell-specific or macrophage-specific demethylation. Demethylation is TET2-dependent and is essential for acquiring proper dendritic cell and macrophage identity. Most importantly, activation of the JAK3-STAT6 pathway, downstream of IL-4, is required for the acquisition of the dendritic-cell-specific demethylation and expression signature, following STAT6 binding. A constitutively activated form of STAT6 is able to bypass IL-4 upstream signalling and instruct dendritic-cell-specific functional DNA methylation changes. CONCLUSIONS Our study is the first description of a cytokine-mediated sequence of events leading to direct gene-specific demethylation in innate immune cell differentiation.
Collapse
Affiliation(s)
- Roser Vento-Tormo
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Carlos Company
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain. .,Present address: Bioinformatics Core, Centre for Genomic Regulation (CRG), 08003, Barcelona, Spain.
| | - Javier Rodríguez-Ubreva
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Lorenzo de la Rica
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain. .,Present address: Barts and The London School of Medicine and Dentistry, Centre for Neuroscience & Trauma, Blizard Institute, 4 Newark Street, London, E1 2AT, UK.
| | - José M Urquiza
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Biola M Javierre
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain. .,Present address: Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
| | - Radhakrishnan Sabarinathan
- Department of Experimental and Health Sciences, Barcelona Biomedical Research Park, Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
| | - Ana Luque
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Josep M Aran
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Damiana Álvarez-Errico
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
45
|
High density methylation QTL analysis in human blood via next-generation sequencing of the methylated genomic DNA fraction. Genome Biol 2015; 16:291. [PMID: 26699738 PMCID: PMC4699364 DOI: 10.1186/s13059-015-0842-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/20/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Genetic influence on DNA methylation is potentially an important mechanism affecting individual differences in humans. We use next-generation sequencing to assay blood DNA methylation at approximately 4.5 million loci, each comprising 2.9 CpGs on average, in 697 normal subjects. Methylation measures at each locus are tested for association with approximately 4.5 million single nucleotide polymorphisms (SNPs) to exhaustively screen for methylation quantitative trait loci (meQTLs). RESULTS Using stringent false discovery rate control, 15 % of methylation sites show genetic influence. Most meQTLs are local, where the associated SNP and methylation site are in close genomic proximity. Distant meQTLs and those spanning different chromosomes are less common. Most local meQTLs encompass common SNPs that alter CpG sites (CpG-SNPs). Local meQTLs encompassing CpG-SNPs are enriched in regions of inactive chromatin in blood cells. In contrast, local meQTLs lacking CpG-SNPs are enriched in regions of active chromatin and transcription factor binding sites. Of 393 local meQTLs that overlap disease-associated regions from genome-wide studies, a high percentage encompass common CpG-SNPs. These meQTLs overlap active enhancers, differentiating them from CpG-SNP meQTLs in inactive chromatin. CONCLUSIONS Genetic influence on the human blood methylome is common, involves several heterogeneous processes and is predominantly dependent on local sequence context at the meQTL site. Most meQTLs involve CpG-SNPs, while sequence-dependent effects on chromatin binding are also important in regions of active chromatin. An abundance of local meQTLs resulting from methylation of CpG-SNPs in inactive chromatin suggests that many meQTLs lack functional consequence. Integrating meQTL and Roadmap Epigenomics data could assist fine-mapping efforts.
Collapse
|
46
|
Lichtenberg J, Heuston EF, Mishra T, Keller CA, Hardison RC, Bodine DM. SBR-Blood: systems biology repository for hematopoietic cells. Nucleic Acids Res 2015; 44:D925-31. [PMID: 26590403 PMCID: PMC4702891 DOI: 10.1093/nar/gkv1263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/04/2015] [Indexed: 12/14/2022] Open
Abstract
Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles.
Collapse
Affiliation(s)
- Jens Lichtenberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elisabeth F Heuston
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tejaswini Mishra
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - David M Bodine
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
47
|
Glait-Santar C, Desmond R, Feng X, Bat T, Chen J, Heuston E, Mizukawa B, Mulloy JC, Bodine DM, Larochelle A, Dunbar CE. Functional Niche Competition Between Normal Hematopoietic Stem and Progenitor Cells and Myeloid Leukemia Cells. Stem Cells 2015; 33:3635-42. [PMID: 26388434 DOI: 10.1002/stem.2208] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 07/23/2015] [Accepted: 08/24/2015] [Indexed: 12/23/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) reside in a specialized niche that regulates their proliferative capacity and their fate. There is increasing evidence for similar roles of marrow niches on controlling the behavior of leukemic cells; however, whether normal hematopoietic stem cell (HSC) and leukemic cells reside in or functionally compete for the same marrow niche is unclear. We used the mixed lineage leukemia-AF9 (MLL-AF9) murine acute myeloid leukemia (AML) in a competitive repopulation model to investigate whether normal HSPC and leukemic cells functionally compete for the same marrow niches. Irradiated recipient mice were transplanted with fixed numbers of MLL-AF9 cells mixed with increasing doses of normal syngeneic whole bone marrow (WBM) or with purified HSPC (LSK). Survival was significantly increased and leukemic progression was delayed proportional to increasing doses of normal WBM or normal LSK cells in multiple independent experiments, with all doses of WBM or LSK cells studied above the threshold for rapid and complete hematopoietic reconstitution in the absence of leukemia. Confocal microscopy demonstrated nests of either leukemic cells or normal hematopoietic cells but not both in the marrow adjacent to endosteum. Early following transplantation, leukemic cells from animals receiving lower LSK doses were cycling more actively than in those receiving higher doses. These results suggest that normal HSPC and AML cells compete for the same functional niche. Manipulation of the niche could impact on response to antileukemic therapies, and the numbers of normal HSPC could impact on leukemia outcome, informing approaches to cell dose in the context of stem cell transplantation.
Collapse
Affiliation(s)
- Chen Glait-Santar
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ronan Desmond
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.,Department of Haematology, Tallaght Hospital, Dublin, Ireland
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Taha Bat
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jichun Chen
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elisabeth Heuston
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Benjamin Mizukawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - David M Bodine
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andre Larochelle
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Cynthia E Dunbar
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
48
|
Almamun M, Levinson BT, Gater ST, Schnabel RD, Arthur GL, Davis JW, Taylor KH. Genome-wide DNA methylation analysis in precursor B-cells. Epigenetics 2015; 9:1588-95. [PMID: 25484143 PMCID: PMC4622941 DOI: 10.4161/15592294.2014.983379] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is responsible for regulating gene expression and cellular differentiation and for maintaining genomic stability during normal human development. Furthermore, it plays a significant role in the regulation of hematopoiesis. In order to elucidate the influence of DNA methylation during B-cell development, genome-wide DNA methylation status of pro-B, pre-BI, pre-BII, and naïve-B-cells isolated from human umbilical cord blood was determined using the methylated CpG island recovery assay followed by next generation sequencing. On average, 182–200 million sequences were generated for each precursor B-cell subset in 10 biological replicates. An overall decrease in methylation was observed during the transition from pro-B to pre-BI, whereas no differential methylation was observed in the pre-BI to pre-BII transition or in the pre-BII to naïve B-cell transition. Most of the methylated regions were located within intergenic and intronic regions not present in a CpG island context. Putative novel enhancers were identified in these regions that were differentially methylated between pro-B and pre-BI cells. The genome-wide methylation profiles are publically available and may be used to gain a better understanding of the involvement of atypical DNA methylation in the pathogenesis of malignancies associated with precursor B-cells.
Collapse
Key Words
- CG dinucleotide
- CLP, common lymphoid progenitor cells
- CpGI, CpG island
- DMRs, differentially methylated regions
- DNA methylation
- FDR, false discovery rate.
- H3K27ac, histone H3 lysine 27 acetylation
- H3K4me1, histone H3 lysine 4 monomethylation
- HCB, human umbilical cord blood
- HSCs, haematopoietic stem cells
- MBDs, methyl CpG binding domains
- MIRA-seq, methylated CpG island recovery assay (MIRA) followed by next generation sequencing
- MeCP2, methyl CpG binding protein 2
- Pre-B, precursor B-cell; CD
- Pro-B, progenitor B-cell
- ROIs, regions of interest
- TFs, transcription factors
- acute lymphoblastic leukemia; CpG
- cluster of differentiation; ALL
- enhancer
- next-generation sequencing
- precursor B-cell
- umbilical cord blood
Collapse
Affiliation(s)
- Md Almamun
- a Department of Pathology and Anatomical Sciences ; University of Missouri-Columbia ; Columbia , MO USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Aberg KA, Xie L, Chan RF, Zhao M, Pandey AK, Kumar G, Clark SL, van den Oord EJCG. Evaluation of Methyl-Binding Domain Based Enrichment Approaches Revisited. PLoS One 2015; 10:e0132205. [PMID: 26177298 PMCID: PMC4503759 DOI: 10.1371/journal.pone.0132205] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/13/2015] [Indexed: 11/28/2022] Open
Abstract
Methyl-binding domain (MBD) enrichment followed by deep sequencing (MBD-seq), is a robust and cost efficient approach for methylome-wide association studies (MWAS). MBD-seq has been demonstrated to be capable of identifying differentially methylated regions, detecting previously reported robust associations and producing findings that replicate with other technologies such as targeted pyrosequencing of bisulfite converted DNA. There are several kits commercially available that can be used for MBD enrichment. Our previous work has involved MethylMiner (Life Technologies, Foster City, CA, USA) that we chose after careful investigation of its properties. However, in a recent evaluation of five commercially available MBD-enrichment kits the performance of the MethylMiner was deemed poor. Given our positive experience with MethylMiner, we were surprised by this report. In an attempt to reproduce these findings we here have performed a direct comparison of MethylMiner with MethylCap (Diagenode Inc, Denville, NJ, USA), the best performing kit in that study. We find that both MethylMiner and MethylCap are two well performing MBD-enrichment kits. However, MethylMiner shows somewhat better enrichment efficiency and lower levels of background “noise”. In addition, for the purpose of MWAS where we want to investigate the majority of CpGs, we find MethylMiner to be superior as it allows tailoring the enrichment to the regions where most CpGs are located. Using targeted bisulfite sequencing we confirmed that sites where methylation was detected by either MethylMiner or by MethylCap indeed were methylated.
Collapse
Affiliation(s)
- Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Linying Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Robin F Chan
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Min Zhao
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Ashutosh K Pandey
- Center for Integrative and Translational Genomics and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Gaurav Kumar
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Shaunna L Clark
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Edwin J C G van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| |
Collapse
|
50
|
Cooper CDO, Newman JA, Aitkenhead H, Allerston CK, Gileadi O. Structures of the Ets Protein DNA-binding Domains of Transcription Factors Etv1, Etv4, Etv5, and Fev: DETERMINANTS OF DNA BINDING AND REDOX REGULATION BY DISULFIDE BOND FORMATION. J Biol Chem 2015; 290:13692-709. [PMID: 25866208 PMCID: PMC4447949 DOI: 10.1074/jbc.m115.646737] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 12/31/2022] Open
Abstract
Ets transcription factors, which share the conserved Ets DNA-binding domain, number nearly 30 members in humans and are particularly involved in developmental processes. Their deregulation following changes in expression, transcriptional activity, or by chromosomal translocation plays a critical role in carcinogenesis. Ets DNA binding, selectivity, and regulation have been extensively studied; however, questions still arise regarding binding specificity outside the core GGA recognition sequence and the mode of action of Ets post-translational modifications. Here, we report the crystal structures of Etv1, Etv4, Etv5, and Fev, alone and in complex with DNA. We identify previously unrecognized features of the protein-DNA interface. Interactions with the DNA backbone account for most of the binding affinity. We describe a highly coordinated network of water molecules acting in base selection upstream of the GGAA core and the structural features that may account for discrimination against methylated cytidine residues. Unexpectedly, all proteins crystallized as disulfide-linked dimers, exhibiting a novel interface (distant to the DNA recognition helix). Homodimers of Etv1, Etv4, and Etv5 could be reduced to monomers, leading to a 40–200-fold increase in DNA binding affinity. Hence, we present the first indication of a redox-dependent regulatory mechanism that may control the activity of this subset of oncogenic Ets transcription factors.
Collapse
Affiliation(s)
- Christopher D O Cooper
- From the Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Joseph A Newman
- From the Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Hazel Aitkenhead
- From the Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Charles K Allerston
- From the Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Opher Gileadi
- From the Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|