1
|
Peddireddy KR, McGorty R, Robertson-Anderson RM. Mapping deformation dynamics to composition of topologically-active DNA blends. SOFT MATTER 2024; 20:8909-8923. [PMID: 39492746 DOI: 10.1039/d4sm01065e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Blends of circular and linear polymers have fascinated researchers for decades, and the role of topology on their stress response and dynamics remains fervently debated. While linear polymers adopt larger coil sizes and form stronger, more pervasive entanglements than their circular counterparts, threading of circular polymers by linear chains can introduce persistent constraints that dramatically decrease mobility, leading to emergent rheological properties in blends. However, the complex interplay between topology-dependent polymer overlap and threading propensity, along with the large amounts of material required to sample many compositions, has limited the ability to experimentally map stress response to composition with high resolution. Moreover, the role of supercoiling on the response of circular-linear blends remains poorly understood. Here, we leverage in situ enzymatic topological conversion to map the deformation dynamics of DNA blends with over 70 fractions of linear, ring and supercoiled molecules that span the phase space of possible topological compositions. We use OpTiDDM (optical tweezers integrating differential dynamic microscopy) to map strain-induced deformation dynamics to composition, revealing that strain-coupling, quantified by superdiffusive dynamics that are aligned with the strain, is maximized for blends with comparable fractions of ring and linear polymers. Increasing the supercoiled fraction dramatically reduces strain-coupling, while converting rings to linear chains offers more modest coupling reduction. We demonstrate that these results are a direct consequence of the interplay between increasing polymer overlap and decreasing threading probability as circular molecules are converted to linear chains, with a careful balance achieved for blends with ample ring fractions but devoid of supercoiled molecules.
Collapse
Affiliation(s)
- Karthik R Peddireddy
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | - Ryan McGorty
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| |
Collapse
|
2
|
Peddireddy KR, McGorty R, Robertson-Anderson RM. Topological DNA blends exhibit resonant deformation fields and strain propagation dynamics tuned by steric constraints. Acta Biomater 2024:S1742-7061(24)00634-2. [PMID: 39481624 DOI: 10.1016/j.actbio.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Understanding how polymers deform in response to local stresses and strains, and how strains propagate from a local disturbance, are grand challenges in wide-ranging fields from materials manufacturing to cell mechanics. These dynamics are particularly complex for blends of polymers of distinct topologies, for which several different species-dependent mechanisms may contribute. Here, we use OpTiDDM (Optical Tweezers integrating Differential Dynamic Microscopy) to elucidate deformation fields and propagation dynamics of binary blends of linear, ring and supercoiled DNA of varying sizes. We reveal robust non-monotonic dependence of strain alignment and superdiffusive transport with strain rate. However, peak alignment and superdiffusivity are surprisingly decoupled, occurring at different strain rates resonant with the distinct relaxation rates of the different topologies. Despite this universal resonance, we find that strain propagation of ring-linear blends is dictated by entanglements while supercoiled-ring blends are governed by Rouse dynamics. Our results capture critical subtleties in propagation and deformation dynamics of topological blends, shedding new light on the governing physics and offering a route towards decoupled tuning of response features. We anticipate our approach to be broadly generalizable to mapping the deformation dynamics of polymer blends, with an eye towards bottom-up bespoke materials design. STATEMENT OF SIGNIFICANCE: In biology and in manufacturing, biomaterials are often subject to localized and spatially nonuniform strains and stresses. Yet, understanding the extent to which strains are absorbed, distributed, or propagated across different spatiotemporal scales remains a grand challenge. Here, we combine optical tweezers with differential dynamic microscopy to elucidate deformation fields and propagation dynamics of blends of linear, ring and supercoiled DNA, revealing robust non-monotonic trends and decoupling of strain alignment and superdiffusivity, and capturing critical subtleties in propagation and deformation dynamics. Our results, shedding important new physical insight to guide decoupled tuning of response features, may be leveraged to map the deformation dynamics of wide-ranging systems of biopolymers and other macromolecules, with an eye towards bottom-up bespoke biomaterials design.
Collapse
Affiliation(s)
- Karthik R Peddireddy
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| | - Ryan McGorty
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States.
| |
Collapse
|
3
|
Cho C, Kim JM. Scaling Relationships of the Structural and Rheological Behavior of Tadpole Polymer Chains in Dilute Solution Systems Using Brownian Dynamics Simulations. Polymers (Basel) 2024; 16:2871. [PMID: 39458699 PMCID: PMC11510819 DOI: 10.3390/polym16202871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Tadpole polymers, also known as lasso polymers, feature molecular structures that combine a single ring with a single linear side branch, leading to distinct conformational, dynamical, and rheological characteristics compared to their corresponding counterparts, particularly pure linear and pure ring polymers. To elucidate the mechanisms underlying these distinctive behaviors, comprehensive mesoscopic Brownian dynamics (BD) simulations of dilute solution systems of tadpole polymers were conducted using a bead-rod chain model under both equilibrium and flow conditions. Three types of tadpole polymer chains were prepared by varying the ring-to-linear ratio within the tadpole chain and comparing them with the corresponding linear and ring chains. Depending on this ratio, tadpole polymer chains exhibit entirely different structural properties and rotational dynamics, both in equilibrium and under shear flow. As the linear proportion within the tadpole chain increased, the structural, dynamic, and rheological properties of the tadpole polymer chains became more similar to those of pure linear polymers. Conversely, with an increasing ring proportion, these properties began to resemble those of pure ring polymers. Based on these observed tendencies, a simple general scaling expression is proposed for tadpole polymer properties that integrates scaling expressions for both pure linear and pure ring polymers. Our results indicate that the conformational, dynamic, and rheological properties of tadpole polymers, as predicted by these simple scaling expressions, are in good agreement with the simulated values, a result we consider statistically significant.
Collapse
Affiliation(s)
| | - Jun Mo Kim
- Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Kyonggi-do, Republic of Korea;
| |
Collapse
|
4
|
Paiva WA, Alakwe SD, Marfai J, Jennison-Henderson MV, Achong RA, Duche T, Weeks AA, Robertson-Anderson RM, Oldenhuis NJ. From Bioreactor to Bulk Rheology: Achieving Scalable Production of Highly Concentrated Circular DNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405490. [PMID: 38935929 PMCID: PMC11955860 DOI: 10.1002/adma.202405490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/10/2024] [Indexed: 06/29/2024]
Abstract
DNA serves as a model system in polymer physics due to its ability to be obtained as a uniform polymer with controllable topology and nonequilibrium behavior. Currently, a major obstacle in the widespread adoption of DNA is obtaining it on a scale and cost basis that accommodates bulk rheology and high-throughput screening. To address this, recent advancements in bioreactor-based plasmid DNA production is coupled with anion exchange chromatography producing a unified approach to generating gram-scale quantities of monodisperse DNA. With this method, 1.1 grams of DNA is obtained per batch to generate solutions with concentrations up to 116 mg mL-1. This solution of uniform supercoiled and relaxed circular plasmid DNA, is roughly 69 times greater than the overlap concentration. The utility of this method is demonstrated by performing bulk rheology measurements at sample volumes up to 1 mL on DNA of different lengths, topologies, and concentrations. The measured elastic moduli are orders of magnitude larger than those previously reported for DNA and allowed for the construction of a time-concentration superposition curve that spans 12 decades of frequency. Ultimately, these results can provide important insights into the dynamics of ring polymers and the nature of highly condensed DNA dynamics.
Collapse
Affiliation(s)
- Wynter A Paiva
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| | - Somkene D Alakwe
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| | - Juexin Marfai
- Department of Physics and Biophysics, College of Arts and Sciences, University of San Diego, Shiley Center for Science and Technology, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Madigan V Jennison-Henderson
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| | - Rachel A Achong
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| | - Tinotenda Duche
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| | - April A Weeks
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, College of Arts and Sciences, University of San Diego, Shiley Center for Science and Technology, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Nathan J Oldenhuis
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| |
Collapse
|
5
|
Schußmann MG, Wilhelm M, Hirschberg V. Predicting maximum strain hardening factor in elongational flow of branched pom-pom polymers from polymer architecture. Nat Commun 2024; 15:3545. [PMID: 38670947 PMCID: PMC11053115 DOI: 10.1038/s41467-024-47782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
We present a model-driven predictive scheme for the uniaxial extensional viscosity and strain hardening of branched polymer melts, specifically for the pom-pom architecture, using the small amplitude oscillatory shear mastercurve and the polymer architecture. A pom-pom shaped polymer is the simplest architecture with at least two branching points, needed to induce strain hardening. It consists of two stars, each with q arms of the molecular weightM w , a , connected by a backbone ofM w , b . Despite the pom-pom constitutive model, experimental data of systematic investigations lack due to synthetic complexity. With an optimized approach, we synthesized polystyrene pom-pom model systems with systematically variedM w , a andM w , b . Experimentally, we identify four characteristic strain rate dependent regimes of the extensional viscosity, which can be predicted from the rheological mastercurve. Furthermore, we find that the industrially important maximum strain hardening factor depends only on the arm number by [ q 2 / ln ( 3 q ) ] . This framework offers a model-based design of branched polymers with predictable melt flow behavior.
Collapse
Affiliation(s)
- Max G Schußmann
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76131, Karlsruhe, Germany
| | - Manfred Wilhelm
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76131, Karlsruhe, Germany
| | - Valerian Hirschberg
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76131, Karlsruhe, Germany.
- Institute for Technical Chemistry, Technical University Clausthal, Arnold-Sommerfeld-Str. 4, 38678, Clausthal-Zellerfeld, Germany.
| |
Collapse
|
6
|
Schneck C, Smrek J, Likos CN, Zöttl A. Supercoiled ring polymers under shear flow. NANOSCALE 2024. [PMID: 38639709 DOI: 10.1039/d3nr04258h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
We apply monomer-resolved computer simulations of supercoiled ring polymers under shear, taking full account of the hydrodynamic interactions, accompanied, in parallel, by simulations in which these are switched off. The combination of bending and torsional rigidities inherent in these polymers, in conjunction with hydrodynamics, has a profound impact on their flow properties. In contrast to their flexible counterparts, which dramatically deform and inflate under shear [Liebetreu et al., Commun. Mater. 2020, 1, 4], supercoiled rings undergo only weak changes in their overall shape and they display both a reduced propensity to tumbling (at fixed Weissenberg number) and a much stronger orientational resistance with respect to their flexible counterparts. In the presence of hydrodynamic interactions, the coupling of the polymer to solvent flow is capable of bringing about a topological transformation of writhe to twist at strong shear upon conservation of the overall linking number.
Collapse
Affiliation(s)
- Christoph Schneck
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Jan Smrek
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | - Andreas Zöttl
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| |
Collapse
|
7
|
Farimani RA, Ahmadian Dehaghani Z, Likos CN, Ejtehadi MR. Effects of Linking Topology on the Shear Response of Connected Ring Polymers: Catenanes and Bonded Rings Flow Differently. PHYSICAL REVIEW LETTERS 2024; 132:148101. [PMID: 38640389 DOI: 10.1103/physrevlett.132.148101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/09/2023] [Accepted: 02/15/2024] [Indexed: 04/21/2024]
Abstract
We perform computer simulations of mechanically linked (poly[2]catenanes, PC) and chemically bonded (bonded rings, BR) pairs of self-avoiding ring polymers in steady shear. We find that BRs develop a novel motif, termed gradient tumbling, rotating around the gradient axis. For the PCs the rings are stretched and display another new pattern, termed slip tumbling. The dynamics of BRs is continuous and oscillatory, whereas that of PCs is intermittent between slip-tumbling attempts. Our findings demonstrate the interplay between topology and hydrodynamics in dilute solutions of connected polymers.
Collapse
Affiliation(s)
- Reyhaneh A Farimani
- Department of Physics, Sharif University of Technology, Tehran, Iran
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | | | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | | |
Collapse
|
8
|
Neill P, Crist N, McGorty R, Robertson-Anderson R. Enzymatic cleaving of entangled DNA rings drives scale-dependent rheological trajectories. SOFT MATTER 2024; 20:2750-2766. [PMID: 38440846 DOI: 10.1039/d3sm01641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
DNA, which naturally occurs in linear, ring, and supercoiled topologies, frequently undergoes enzyme-driven topological conversion and fragmentation in vivo, enabling it to perform a variety of functions within the cell. In vitro, highly concentrated DNA polymers form entanglements that yield viscoelastic properties dependent on the topologies and lengths of the DNA. Enzyme-driven alterations of DNA size and shape therefore offer a means of designing active materials with programmable viscoelastic properties. Here, we incorporate multi-site restriction endonucleases into dense DNA solutions to linearize and fragment circular DNA molecules. We pair optical tweezers microrheology with differential dynamic microscopy and single-molecule tracking to measure the linear and nonlinear viscoelastic response and transport properties of entangled DNA solutions over a wide range of spatiotemporal scales throughout the course of enzymatic digestion. We show that, at short timescales, relative to the relaxation timescales of the polymers, digestion of these 'topologically-active' fluids initially causes an increase in elasticity and relaxation times followed by a gradual decrease. Conversely, for long timescales, linear viscoelastic moduli exhibit signatures of increasing elasticity. DNA diffusion, likewise, becomes increasingly slowed, in direct opposition to the short-time behavior. We hypothesize that this scale-dependent rheology arises from the population of small DNA fragments, which increases as digestion proceeds, driving self-association of larger fragments via depletion interactions, giving rise to slow relaxation modes of clusters of entangled chains, interspersed among shorter unentangled fragments. While these slow modes likely dominate at long times, they are presumably frozen out in the short-time limit, which instead probes the faster relaxation modes of the unentangled population.
Collapse
Affiliation(s)
- Philip Neill
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92104, USA.
| | - Natalie Crist
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92104, USA.
| | - Ryan McGorty
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92104, USA.
| | - Rae Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92104, USA.
| |
Collapse
|
9
|
Micheletti C, Chubak I, Orlandini E, Smrek J. Topology-Based Detection and Tracking of Deadlocks Reveal Aging of Active Ring Melts. ACS Macro Lett 2024:124-129. [PMID: 38198592 PMCID: PMC10883035 DOI: 10.1021/acsmacrolett.3c00567] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Connecting the viscoelastic behavior of stressed ring melts to the various forms of entanglement that can emerge in such systems is still an open challenge. Here, we consider active ring melts, where stress is generated internally, and introduce a topology-based method to detect and track consequential forms of ring entanglements, namely, deadlocks. We demonstrate that, as stress accumulates, more and more rings are co-opted in a growing web of deadlocks that entrap many other rings by threading, bringing the system to a standstill. The method ought to help the study of topological aging in more general polymer contexts.
Collapse
Affiliation(s)
- Cristian Micheletti
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
| | - Iurii Chubak
- Sorbonne Université CNRS, Physico-Chimie des électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
| | - Enzo Orlandini
- Università degli studi di Padova, Dipartimento di Fisica "G. Galilei", Via Marzolo 8, I-35100 Padova, Italy
| | - Jan Smrek
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| |
Collapse
|
10
|
Marfai J, McGorty RJ, Robertson-Anderson RM. Cooperative Rheological State-Switching of Enzymatically-Driven Composites of Circular DNA And Dextran. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305824. [PMID: 37500570 DOI: 10.1002/adma.202305824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Polymer topology, which plays a principal role in the rheology of polymeric fluids, and non-equilibrium materials, which exhibit time-varying rheological properties, are topics of intense investigation. Here, composites of circular DNA and dextran are pushed out-of-equilibrium via enzymatic digestion of DNA rings to linear fragments. These time-resolved rheology measurements reveal discrete state-switching, with composites undergoing abrupt transitions between dissipative and elastic-like states. The gating time and lifetime of the elastic-like states, and the magnitude and sharpness of the transitions, are surprisingly decorrelated from digestion rates and non-monotonically depend on the DNA fraction. These results are modeled using sigmoidal two-state functions to show that bulk state-switching can arise from continuous molecular-level activity due to the necessity for cooperative percolation of entanglements to support macroscopic stresses. This platform, coupling the tunability of topological composites with the power of enzymatic reactions, may be leveraged for diverse material applications from wound-healing to self-repairing infrastructure.
Collapse
Affiliation(s)
- Juexin Marfai
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | - Ryan J McGorty
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | | |
Collapse
|
11
|
Staňo R, Likos CN, Egorov SA. Mixing Linear Polymers with Rings and Catenanes: Bulk and Interfacial Behavior. Macromolecules 2023; 56:8168-8182. [PMID: 37900098 PMCID: PMC10601540 DOI: 10.1021/acs.macromol.3c01267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/11/2023] [Indexed: 10/31/2023]
Abstract
We derive and parameterize effective interaction potentials between a multitude of different types of ring polymers and linear chains, varying the bending rigidity and solvent quality for the former species. We further develop and apply a density functional treatment for mixtures of both disconnected (chain-ring) and connected (chain-polycatenane) mixtures of the same, drawing coexistence binodals and exploring the ensuing response functions as well as the interface and wetting behavior of the mixtures. We show that worsening of the solvent quality for the rings brings about a stronger propensity for macroscopic phase separation in the linear-polycatenane mixtures, which is predominantly of the demixing type between phases of similar overall particle density. We formulate a simple criterion based on the effective interactions, allowing us to determine whether any specific linear-ring mixture will undergo a demixing phase separation.
Collapse
Affiliation(s)
- Roman Staňo
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Vienna
Doctoral School in Physics, University of
Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Christos N. Likos
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Sergei A. Egorov
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
- Erwin
Schrödinger International Institute for Mathematics and Physics, Boltzmanngasse 9, 1090 Vienna, Austria
| |
Collapse
|
12
|
Tu M, Davydovich O, Mei B, Singh PK, Grest GS, Schweizer KS, O’Connor TC, Schroeder CM. Unexpected Slow Relaxation Dynamics in Pure Ring Polymers Arise from Intermolecular Interactions. ACS POLYMERS AU 2023; 3:307-317. [PMID: 37576713 PMCID: PMC10416323 DOI: 10.1021/acspolymersau.2c00069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023]
Abstract
Ring polymers have fascinated scientists for decades, but experimental progress has been challenging due to the presence of linear chain contaminants that fundamentally alter dynamics. In this work, we report the unexpected slow stress relaxation behavior of concentrated ring polymers that arises due to ring-ring interactions and ring packing structure. Topologically pure, high molecular weight ring polymers are prepared without linear chain contaminants using cyclic poly(phthalaldehyde) (cPPA), a metastable polymer chemistry that rapidly depolymerizes from free ends at ambient temperatures. Linear viscoelastic measurements of highly concentrated cPPA show slow, non-power-law stress relaxation dynamics despite the lack of linear chain contaminants. Experiments are complemented by molecular dynamics (MD) simulations of unprecedentedly high molecular weight rings, which clearly show non-power-law stress relaxation in good agreement with experiments. MD simulations reveal substantial ring-ring interpenetrations upon increasing ring molecular weight or local backbone stiffness, despite the global collapsed nature of single ring conformation. A recently proposed microscopic theory for unconcatenated rings provides a qualitative physical mechanism associated with the emergence of strong inter-ring caging which slows down center-of-mass diffusion and long wavelength intramolecular relaxation modes originating from ring-ring interpenetrations, governed by the onset variable N/ND, where the crossover degree of polymerization ND is qualitatively predicted by theory. Our work overcomes challenges in achieving ring polymer purity and by characterizing dynamics for high molecular weight ring polymers. Overall, these results provide a new understanding of ring polymer physics.
Collapse
Affiliation(s)
- Michael
Q. Tu
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Oleg Davydovich
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Baicheng Mei
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Piyush K. Singh
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Gary S. Grest
- Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Kenneth S. Schweizer
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Thomas C. O’Connor
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Charles M. Schroeder
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Zhu L, Li J, Li H, Liu B, Chen J, Jiang S. Crystallization and melting of unentangled poly(ε-caprolactone) cycles containing pendants. SOFT MATTER 2023. [PMID: 37470097 DOI: 10.1039/d3sm00591g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The Rouse model provides a basic framework to understand the chain dynamics of polymers, which is confirmed to be more suitable for exploring the linear dynamics of unentangled polymers. The crystalline morphology governed by chain dynamics and crystallization kinetics is expected to differ in linear and cyclic polymers. Cyclic poly(ε-caprolactone)s (c-PCLs) containing two bi-anthracenyl group pendants with molecular weights close to the critical molecular weight (Mc) were synthesized to investigate the chain dynamics based crystallization and melting behavior by DSC, POM, and in situ simultaneous small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) investigations during heating of the isothermally crystallized samples. Double endothermic peaks were observed in the DSC curves with a low heating rate of c-PCLs without entanglement after isothermal crystallization, especially for c-PCLs with Mc. The structure evolution of the crystalline structures observed from the in situ investigations during the heating and double endothermic peaks in DSC heating curves of the c-PCLs indicate the role of pendants in the chain dynamics, which leads to the reorganization of the metastable structures. Banded spherulites of c-PCL without entanglement were observed for the first time, and the uneven growth of spherulites along the radial direction may be caused by the mismatch between chain dynamics and crystallization kinetics.
Collapse
Affiliation(s)
- Liuyong Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jingqing Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hongfei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Binyuan Liu
- Hebei Key Laboratory of Functional Polymer Materials, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin 300130, China.
| | - Jizhong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shichun Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Ohkuma T, Hagita K, Murashima T, Deguchi T. Miscibility and exchange chemical potential of ring polymers in symmetric ring-ring blends. SOFT MATTER 2023; 19:3818-3827. [PMID: 37191220 DOI: 10.1039/d3sm00108c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Generally, differences of polymer topologies may affect polymer miscibility even with the same repeated units. In this study, the topological effect of ring polymers on miscibility was investigated by comparing symmetric ring-ring and linear-linear polymer blends. To elucidate the topological effect of ring polymers on mixing free energy, the exchange chemical potential of binary blends was numerically evaluated as a function of composition ϕ by performing semi-grand canonical Monte Carlo and molecular dynamics simulations of a bead-spring model. For ring-ring blends, an effective miscibility parameter was evaluated by comparing the exchange chemical potential with that of the Flory-Huggins model for linear-linear polymer blends. It was confirmed that in the mixed states satisfying χN > 0, ring-ring blends are more miscible and stable than the linear-linear blends with the same molecular weight. Furthermore, we investigated finite molecular weight dependence on the miscibility parameter, which reflected the statistical probability of interchain interactions in the blends. The simulation results revealed that the molecular weight dependence on the miscibility parameter was smaller in ring-ring blends. The effect of the ring polymers on miscibility was verified to be consistent with the change in the interchain radial distribution function. In ring-ring blends, it was indicated that the topology affected miscibility by reducing the effect of the direct interaction between the components of the blends.
Collapse
Affiliation(s)
- Takahiro Ohkuma
- Digital Engineering Division, Bridgestone Corporation, Kodaira, 187-8531, Japan.
| | - Katsumi Hagita
- Department of Applied Physics, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka, 239-8686, Japan
| | - Takahiro Murashima
- Department of Physics, Tohoku University, 6-3, Aramaki-aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Tetsuo Deguchi
- Department of Physics, Faculty of Core Research, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
15
|
Molnar K, Sasidharan Pillai A, Chen D, Kaszas G, McKenna GB, Kornfield JA, Puskas JE. Investigation of the Structure, Filler Interaction and Degradation of Disulfide Elastomers made by Reversible Radical Recombination Polymerization (R3P). Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
16
|
The Elasticity of Polymer Melts and Solutions in Shear and Extension Flows. Polymers (Basel) 2023; 15:polym15041051. [PMID: 36850333 PMCID: PMC9961469 DOI: 10.3390/polym15041051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
This review is devoted to understanding the role of elasticity in the main flow modes of polymeric viscoelastic liquids-shearing and extension. The flow through short capillaries is the central topic for discussing the input of elasticity to the effects, which are especially interesting for shear. An analysis of the experimental data made it possible to show that the energy losses in such flows are determined by the Deborah and Weissenberg numbers. These criteria are responsible for abnormally high entrance effects, as well as for mechanical losses in short capillaries. In addition, the Weissenberg number determines the threshold of the flow instability due to the liquid-to-solid transition. In extension, this criterion shows whether deformation takes place as flow or as elastic strain. However, the stability of a free jet in extension depends not only on the viscoelastic properties of a polymeric substance but also on the driving forces: gravity, surface tension, etc. An analysis of the influence of different force combinations on the shape of the stretched jet is presented. The concept of the role of elasticity in the deformation of polymeric liquids is crucial for any kind of polymer processing.
Collapse
|
17
|
Chen D, Molnar K, Kim H, Helfer CA, Kaszas G, Puskas JE, Kornfield JA, McKenna GB. Linear Viscoelastic Properties of Putative Cyclic Polymers Synthesized by Reversible Radical Recombination Polymerization (R3P). Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Dongjie Chen
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas79409, United States
| | - Kristof Molnar
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest1089, Hungary
| | - Hojin Kim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Carin A. Helfer
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
| | - Gabor Kaszas
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
| | - Judit E. Puskas
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
| | - Julia A. Kornfield
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Gregory B. McKenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas79409, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
| |
Collapse
|
18
|
Staňo R, Likos CN, Smrek J. To thread or not to thread? Effective potentials and threading interactions between asymmetric ring polymers. SOFT MATTER 2022; 19:17-30. [PMID: 36477247 PMCID: PMC9768673 DOI: 10.1039/d2sm01177h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
We use computer simulations to study a system of two unlinked ring polymers, whose length and bending stiffness are systematically varied. We derive the effective potentials between the rings, calculate the areas of minimal surfaces of the same, and characterize the threading between them. When the two rings are of the same kind, threading of a one ring through the surface of the other is immanent for small ring-ring separations. Flexible rings pierce the surface of the other ring several times but only shallowly, as compared to the stiff rings which pierce less frequently but deeply. Typically, the ring that is being threaded swells and flattens up into an oblate-like conformation, while the ring that is threading the other takes a shape of an elongated prolate. The roles of the threader and the threaded ring are being dynamically exchanged. If, on the other hand, the rings are of different kinds, the symmetry is broken and the rings tend to take up roles of the threader and the threaded ring with unequal probabilities. We propose a method how to predict these probabilities based on the parameters of the individual rings. Ultimately, our work captures the interactions between ring polymers in a coarse-grained fashion, opening the way to large-scale modelling of materials such as kinetoplasts, catenanes or topological brushes.
Collapse
Affiliation(s)
- Roman Staňo
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
- Vienna Doctoral School in Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | - Jan Smrek
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| |
Collapse
|
19
|
Ubertini MA, Smrek J, Rosa A. Entanglement Length Scale Separates Threading from Branching of Unknotted and Non-concatenated Ring Polymers in Melts. Macromolecules 2022; 55:10723-10736. [PMID: 36530522 PMCID: PMC9753756 DOI: 10.1021/acs.macromol.2c01264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/14/2022] [Indexed: 11/30/2022]
Abstract
Current theories on the conformation and dynamics of unknotted and non-concatenated ring polymers in melt conditions describe each ring as a tree-like double-folded object. While evidence from simulations supports this picture on a single ring level, other works show pairs of rings also thread each other, a feature overlooked in the tree theories. Here we reconcile this dichotomy using Monte Carlo simulations of the ring melts with different bending rigidities. We find that rings are double-folded (more strongly for stiffer rings) on and above the entanglement length scale, while the threadings are localized on smaller scales. The different theories disagree on the details of the tree structure, i.e., the fractal dimension of the backbone of the tree. In the stiffer melts we find an indication of a self-avoiding scaling of the backbone, while more flexible chains do not exhibit such a regime. Moreover, the theories commonly neglect threadings and assign different importance to the impact of the progressive constraint release (tube dilation) on single ring relaxation due to the motion of other rings. Despite that each threading creates only a small opening in the double-folded structure, the threading loops can be numerous and their length can exceed substantially the entanglement scale. We link the threading constraints to the divergence of the relaxation time of a ring, if the tube dilation is hindered by pinning a fraction of other rings in space. Current theories do not predict such divergence and predict faster than measured diffusion of rings, pointing at the relevance of the threading constraints in unpinned systems as well. Revision of the theories with explicit threading constraints might elucidate the validity of the conjectured existence of topological glass.
Collapse
Affiliation(s)
- Mattia Alberto Ubertini
- Scuola
Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136Trieste, Italy
| | - Jan Smrek
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, A-1090Vienna, Austria
| | - Angelo Rosa
- Scuola
Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136Trieste, Italy
| |
Collapse
|
20
|
Zhou X, Yang J, Yin JF, Liu-Fu W, Huang J, Li M, Liu Y, Cai L, Sun TL, Yin P. Dimerization of sub-nanoscale molecular clusters affords broadly tuneable viscoelasticity above the glass transition temperature. Chem Sci 2022; 13:11633-11638. [PMID: 36320389 PMCID: PMC9557216 DOI: 10.1039/d2sc03651g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
Materials with promising mechanical performance generally demonstrate requirements for the critical sizes of their key building units, e.g. entanglements and crystal grains. Herein, only with van der Waals interaction, viscoelasticity with broad tunability has been facilely achieved below the critical size limits: the dimers of ∼1 nm polyhedral oligomeric silsesquioxane (POSS) with M w < 4 kD and size < 5 nm, which demonstrate distinct material physics compared to that of polymer nanocomposites of POSS. The dimeric POSSs are confirmed by scattering and calorimetrical measurements to be intrinsic glassy materials with glass transition temperatures (T gs) lower than room temperature. From rheological studies, their viscoelasticity can be broadly tuned through the simple tailoring of the dimer linker structures above their T g. In dimer bulks, each POSS cluster is spatially confined by the POSSs from other dimers and therefore, the correlation of the dynamics of the two linked POSS clusters, which, as indicated by dynamics analysis, is regulated by the length and flexibilities of linkers, contributes to the caging dynamics of POSS confined by their neighbours and the resulting unique viscoelasticity. Our discoveries update the understanding of the structural origin of viscoelasticity and open avenues to fabricate structural materials from the design of sub-nanoscale building blocks.
Collapse
Affiliation(s)
- Xin Zhou
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology Guangzhou 510640 China
| | - Junsheng Yang
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology Guangzhou 510640 China
| | - Jia-Fu Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology Guangzhou 510640 China
| | - Wei Liu-Fu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology Guangzhou 510640 China
| | - Jiayi Huang
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology Guangzhou 510640 China
| | - Mu Li
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology Guangzhou 510640 China
| | - Yuan Liu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology Guangzhou 510640 China
| | - Linkun Cai
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology Guangzhou 510640 China
| | - Tao Lin Sun
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology Guangzhou 510640 China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
21
|
Wang J, O'Connor TC, Grest GS, Ge T. Superstretchable Elastomer from Cross-linked Ring Polymers. PHYSICAL REVIEW LETTERS 2022; 128:237801. [PMID: 35749195 DOI: 10.1103/physrevlett.128.237801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The stretchability of polymeric materials is critical to many applications such as flexible electronics and soft robotics, yet the stretchability of conventional cross-linked linear polymers is limited by the entanglements between polymer chains. We show using molecular dynamics simulations that cross-linked ring polymers are significantly more stretchable than cross-linked linear polymers. Compared to linear polymers, the entanglements between ring polymers do not act as effective cross-links. As a result, the stretchability of cross-linked ring polymers is determined by the maximum extension of polymer strands between cross-links, rather than between trapped entanglements as in cross-linked linear polymers. The more compact conformation of ring polymers before deformation also contributes to the increase in stretchability.
Collapse
Affiliation(s)
- Jiuling Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Thomas C O'Connor
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Ting Ge
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
22
|
Parisi D, Coppola S, Righi S, Gagliardi G, Grasso FS, Bacchelli F. ALTERNATIVE USE OF THE SENTMANAT EXTENSIONAL RHEOMETER TO INVESTIGATE THE RHEOLOGICAL BEHAVIOR OF INDUSTRIAL RUBBERS AT VERY LARGE DEFORMATIONS. RUBBER CHEMISTRY AND TECHNOLOGY 2022. [DOI: 10.5254/rct.21.77948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
Extensional deformations represent an effective stimulus to explore the rich rheological response of branched polymers and elastomers, enabling the design of polymers with specific molecular structure. However, probing the polymer behavior at large deformations is often limited by the experimental devices. We here present an alternative use of the Sentmanat Extensional Rheometer (SER) that allows Hencky strain units much larger than the maximum value achievable, ∼3.6. The proposed procedure consists of an oblique positioning of the sample in the measuring area. If a small inclination of the sample is used, the departure from the ideal uniaxial flow is negligible at Hencky strains <1, and nearly zero for larger values. Experimental results in the linear viscoelastic regime are compared with the double reptation model in order to discern polydispersity and branching effects, whereas the extensional rheology data are contrasted with the molecular stress function theory (MSF), revealing important information about the polymer structure, especially on the long-chain branching (LCB). Finally, the analysis of sample failure upon elongation allowed us to correlate the polymer structure to the rheological behavior during mixing processes.
Collapse
Affiliation(s)
- Daniele Parisi
- Department of Chemical Engineering, Product Technology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Salvatore Coppola
- Ravenna/Ferrara Research Center, Versalis S.p.A. (Eni), Ravenna, Italy
| | - Sandra Righi
- Ravenna/Ferrara Research Center, Versalis S.p.A. (Eni), Ravenna, Italy
| | - Giacomo Gagliardi
- Ravenna/Ferrara Research Center, Versalis S.p.A. (Eni), Ravenna, Italy
| | | | | |
Collapse
|
23
|
Yamamoto T, Campbell JA, Panyukov S, Rubinstein M. Scaling Theory of Swelling and Deswelling of Polymer Networks. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Jonathan A. Campbell
- Department of Mathematics, Duke University, 120 Science Drive, Durham, North Carolina 27708, United States
| | - Sergey Panyukov
- P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow, Russia 117924
| | - Michael Rubinstein
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Departments of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
24
|
Stretching-induced Nucleation and Crystallization of Cyclic Polyethylene: Insights from Molecular Dynamics Simulation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
The Role of Structure in Polymer Rheology: Review. Polymers (Basel) 2022; 14:polym14061262. [PMID: 35335592 PMCID: PMC8951770 DOI: 10.3390/polym14061262] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 12/10/2022] Open
Abstract
The review is devoted to the analysis of the current state of understanding relationships among the deformation-induced structure transformations, observed rheological properties, and the occurrence of non-linear effects for polymer liquids (melts, solutions, and composites). Three levels of non-linearity are the base for consideration. The first one concerns changes in the relaxation spectra of viscoelastic liquids, which are responsible for weak non-linear phenomena. The second one refers to the strong non-linearity corresponding to such changes in the structure of a medium that leads to the emergence of a new relaxation state of a matter. Finally, the third one describes the deformation-induced changes in the phase state and/or the occurring of bifurcations and instability in flow and reflects the thermodynamic non-linear behavior. From a structure point of view, a common cause of the non-linear effects is the orientation of macromolecules and changes in intermolecular interaction, while a dominant factor in describing fluid dynamics of polymer liquids is their elasticity. The modern understanding of thixotropic effects, yielding viscoplastic materials, deformation-induced phase transition, and the experimental observations, demonstrating direct correlations between the structure and rheology of polymer liquids, are the main objects for discussion. All these topics are reviewed and discussed mainly on the basis of the latest five-year publications.
Collapse
|
26
|
Mo J, Wang J, Wang Z, Lu Y, An L. Size and Dynamics of a Tracer Ring Polymer Embedded in a Linear Polymer Chain Melt Matrix. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiangyang Mo
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Jian Wang
- College of Chemistry and Chemical Engineering, Cangzhou Normal University, Cangzhou 061001, P.R. China
| | - Zhenhua Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Lijia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
27
|
Affiliation(s)
- Qian Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, 610065 Chengdu, China
| |
Collapse
|
28
|
Molnar K, Kim H, Chen D, Helfer CA, Kaszas G, McKenna GB, Kornfield JA, Yuan C, Puskas JE. PolyDODT: a macrocyclic elastomer with unusual properties. Polym Chem 2022. [DOI: 10.1039/d1py01426a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reversible Radical Recombination Polymerization (R3P) using triethylamine (TEA), H2O2 and air is a scalable and green method for the synthesis of biodegradable polysulfides.
Collapse
Affiliation(s)
- Kristof Molnar
- The Ohio State University, College of Food, Agricultural, and Environmental Sciences, Department of Food, Agricultural and Biological Engineering, 220 FABE, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Hojin Kim
- California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, CA 91125, USA
| | - Dongjie Chen
- Texas Tech University, Department of Chemical Engineering, Lubbock, TX 79409-3121, USA
| | - Carin A. Helfer
- The Ohio State University, College of Food, Agricultural, and Environmental Sciences, Department of Food, Agricultural and Biological Engineering, 220 FABE, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Gabor Kaszas
- The Ohio State University, College of Food, Agricultural, and Environmental Sciences, Department of Food, Agricultural and Biological Engineering, 220 FABE, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Gregory B. McKenna
- Texas Tech University, Department of Chemical Engineering, Lubbock, TX 79409-3121, USA
- North Carolina State University, Department of Chemical and Biomolecular Engineering, Raleigh, NC 27695-7905, USA
| | - Julia A. Kornfield
- California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, CA 91125, USA
| | - Chunhua Yuan
- The Ohio State University, Campus Chemical Instrument Center, 496 W 12th Ave, Columbus, OH 43210, USA
| | - Judit E. Puskas
- The Ohio State University, College of Food, Agricultural, and Environmental Sciences, Department of Food, Agricultural and Biological Engineering, 220 FABE, 1680 Madison Avenue, Wooster, OH 44691, USA
| |
Collapse
|
29
|
Peddireddy KR, Michieletto D, Aguirre G, Garamella J, Khanal P, Robertson-Anderson RM. DNA Conformation Dictates Strength and Flocculation in DNA-Microtubule Composites. ACS Macro Lett 2021; 10:1540-1548. [PMID: 35549144 PMCID: PMC9239750 DOI: 10.1021/acsmacrolett.1c00638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymer topology has been shown to play a key role in tuning the dynamics of complex fluids and gels. At the same time, polymer composites, ubiquitous in everyday life, have been shown to exhibit emergent desirable mechanical properties not attainable in single-species systems. Yet, how topology impacts the dynamics and structure of polymer composites remains poorly understood. Here, we create composites of rigid rods (microtubules) polymerized within entangled solutions of flexible linear and ring polymers (DNA) of equal length. We couple optical tweezers microrheology with confocal microscopy and scaled particle theory to show that composites with linear DNA exhibit a strongly nonmonotonic dependence of elasticity and stiffness on microtubule concentration due to depletion-driven polymerization and flocculation of microtubules. In contrast, composites containing ring DNA show a much more modest monotonic increase in elastic strength with microtubule concentration, which we demonstrate arises from the decreased conformational size and increased miscibility of rings.
Collapse
Affiliation(s)
- Karthik R Peddireddy
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Gina Aguirre
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Jonathan Garamella
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Pawan Khanal
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| |
Collapse
|
30
|
Kim J, Kim JM, Baig C. Intrinsic structure and dynamics of monolayer ring polymer melts. SOFT MATTER 2021; 17:10703-10715. [PMID: 34783328 DOI: 10.1039/d1sm01192h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present the general structural and dynamical characteristics of flexible ring polymers in narrowly confined two-dimensional (2D) melt systems using atomistic molecular dynamics simulations. The results are further analyzed via direct comparison with the 2D linear analogue as well as the three-dimensional (3D) ring and linear melt systems. It is observed that dimensional restriction in 2D confined systems results in an increase in the intrinsic chain stiffness of the ring polymer. Fundamentally, this arises from an entropic penalty on polymer chains along with a reduction in the available chain configuration states in phase space and spatial choices for individual segmental walks. This feature in combination with the intermolecular interactions between neighboring ring chains leads to an overall extended interpenetrated chain configuration for the 2D ring melt. In contrast to the generally large differences in structural and dynamical properties between ring and linear polymers in 3D melt systems, relatively similar local-to-global chain structures and dynamics are observed for the 2D ring and linear melts. This is attributed to the general structural similarity (i.e., extended double-stranded chain conformations), the less effective role of the chain ends, and the absence of complex topological constraints between chains (i.e., interchain entanglement and mutual ring threading) in the 2D confined systems compared with the corresponding 3D bulk systems.
Collapse
Affiliation(s)
- Jinseong Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea.
| | - Jun Mo Kim
- Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, Kyonggi-do 16227, South Korea
| | - Chunggi Baig
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea.
| |
Collapse
|
31
|
Choi JH, Kwon T, Sung BJ. Relative Chain Flexibility Determines the Spatial Arrangement and the Diffusion of a Single Ring Chain in Linear Chain Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jong Ho Choi
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Taejin Kwon
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Bong June Sung
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
32
|
Jeong SH, Ha TY, Cho S, Roh EJ, Kim JM, Baig C. Melt Rheology of Short-Chain Branched Ring Polymers in Shear Flow. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seung Heum Jeong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, South Korea
| | - Tae Yong Ha
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, South Korea
| | - Soowon Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, South Korea
| | - Eun Jung Roh
- KOLON Advanced Research Cluster, KOLON One & Only Tower, 110, Magokdong-ro, Gangseo-gu, Seoul 07793, South Korea
| | - Jun Mo Kim
- Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Kyeonggi-do, South Korea
| | - Chunggi Baig
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, South Korea
| |
Collapse
|
33
|
Affiliation(s)
- Jiuling Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ting Ge
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
34
|
Parisi D, Kaliva M, Costanzo S, Huang Q, Lutz PJ, Ahn J, Chang T, Rubinstein M, Vlassopoulos D. Nonlinear rheometry of entangled polymeric rings and ring-linear blends. JOURNAL OF RHEOLOGY 2021; 65:695-711. [PMID: 35250122 PMCID: PMC8896906 DOI: 10.1122/8.0000186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/06/2021] [Indexed: 06/14/2023]
Abstract
We present a comprehensive experimental rheological dataset for purified entangled ring polystyrenes and their blends with linear chains in nonlinear shear and elongation. In particular, data for shear stress growth coefficient, steady-state shear viscosity, and first and second normal stress differences are obtained and discussed as functions of shear rate as well as molecular parameters (molar mass, blend composition and decreasing molar mass of linear component in blend). Over the extended parameter range investigated, rings do not exhibit clear transient undershoot in shear, in contrast to their linear counterparts and ring-linear blends. For the latter, the size of the undershoot and respective strain appear to increase with shear rate. Universal scaling of strain at overshoot and fractional overshoot (ratio of maximum to steady-state shear stress growth coefficient) indicates subtle differences in the shear-rate dependence between rings and linear polymers or their blends. The shear thinning behaviour of pure rings yields a slope nearly identical to predictions (-4/7) of a recent shear slit model and molecular dynamics simulations. Data for the second normal stress difference are reported for rings and ring-linear blends. While N 2 is negative and its absolute value stays below that of N 1 , as for linear polymers, the ratio -N 2 /N 1 is unambiguously larger for rings compared to linear polymer solutions with the same number of entanglements (almost by factor of two), in agreement with recent non-equilibrium molecular dynamics simulations. Further, -N 2 exhibits slightly weaker shear rate dependence compared to N 1 at high rates, and the respective power-law exponents can be rationalized in view of the slit model (3/7) and simulations (0.6), although further work is needed to unravel the molecular original of the observed behaviour. The comparison of shear and elongational stress growth coefficients for blends reflects the effect of ring-linear threading which leads to significant viscosity enhancement in elongation. Along the same lines, the elongational stress is much larger than the first normal stress in shear, and their ratio is much larger for rings and ring-linear blends compared to linear polymers. This conforms the interlocking scenario of rings and their important role in mechanically reinforcing linear matrices.
Collapse
Affiliation(s)
- Daniele Parisi
- Institute of Electronic Structure & Laser, Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete 70013, Greece
- Department of Materials Science & Technology, University of Crete, Heraklion, Crete 71003, Greece
| | - Maria Kaliva
- Institute of Electronic Structure & Laser, Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete 70013, Greece
- Department of Materials Science & Technology, University of Crete, Heraklion, Crete 71003, Greece
| | - Salvatore Costanzo
- Department of Chemical, Materials, and Production Engineering, Federico II University, 80125 Naples, Italy
| | - Qian Huang
- Department of Chemical and Biochemical Engineering, Technical University of Denmark 2800 Kgs. Lyngby, Denmark
| | - Pierre J Lutz
- Institut Charles Sadron, CNRS UPR 22, University of Strasbourg, 67034, Strasbourg, France
| | - Junyoung Ahn
- Division of Advanced Materials Science and Department of Chemistry, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Taihyun Chang
- Division of Advanced Materials Science and Department of Chemistry, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Michael Rubinstein
- Departments of Mechanical Engineering and Materials Science, Biomedical Engineering, Chemistry, and Physics, Duke University, Durham, NC 27708, USA
| | - Dimitris Vlassopoulos
- Institute of Electronic Structure & Laser, Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete 70013, Greece
- Department of Materials Science & Technology, University of Crete, Heraklion, Crete 71003, Greece
| |
Collapse
|
35
|
Schaefer C, Laity PR, Holland C, McLeish TCB. Stretching of Bombyx mori Silk Protein in Flow. Molecules 2021; 26:molecules26061663. [PMID: 33809814 PMCID: PMC8002474 DOI: 10.3390/molecules26061663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/31/2022] Open
Abstract
The flow-induced self-assembly of entangled Bombyx mori silk proteins is hypothesised to be aided by the ‘registration’ of aligned protein chains using intermolecularly interacting ‘sticky’ patches. This suggests that upon chain alignment, a hierarchical network forms that collectively stretches and induces nucleation in a precisely controlled way. Through the lens of polymer physics, we argue that if all chains would stretch to a similar extent, a clear correlation length of the stickers in the direction of the flow emerges, which may indeed favour such a registration effect. Through simulations in both extensional flow and shear, we show that there is, on the other hand, a very broad distribution of protein–chain stretch, which suggests the registration of proteins is not directly coupled to the applied strain, but may be a slow statistical process. This qualitative prediction seems to be consistent with the large strains (i.e., at long time scales) required to induce gelation in our rheological measurements under constant shear. We discuss our perspective of how the flow-induced self-assembly of silk may be addressed by new experiments and model development.
Collapse
Affiliation(s)
- Charley Schaefer
- Department of Physics, University of York, Heslington, York YO10 5DD, UK;
- Correspondence:
| | - Peter R. Laity
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK; (P.R.L.); (C.H.)
| | - Chris Holland
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK; (P.R.L.); (C.H.)
| | - Tom C. B. McLeish
- Department of Physics, University of York, Heslington, York YO10 5DD, UK;
| |
Collapse
|
36
|
André A, Shahid T, Oosterlinck F, Clasen C, van Ruymbeke E. Investigating the Transition between Polymer Melts and Solutions in Nonlinear Elongational Flow. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Alexis André
- Bio and Soft Matter, Institute on Condensed Matter and Nano-science, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, Leuven 3001, Belgium
| | - Taisir Shahid
- Bio and Soft Matter, Institute on Condensed Matter and Nano-science, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
- DSM Materials Science Center, P.O. Box 18, Geleen NL-6160 MD, The Netherlands
| | - Filip Oosterlinck
- DSM Materials Science Center, P.O. Box 18, Geleen NL-6160 MD, The Netherlands
| | - Christian Clasen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, Leuven 3001, Belgium
| | - Evelyne van Ruymbeke
- Bio and Soft Matter, Institute on Condensed Matter and Nano-science, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| |
Collapse
|
37
|
Parisi D, Costanzo S, Jeong Y, Ahn J, Chang T, Vlassopoulos D, Halverson JD, Kremer K, Ge T, Rubinstein M, Grest GS, Srinin W, Grosberg AY. Nonlinear Shear Rheology of Entangled Polymer Rings. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02839] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Daniele Parisi
- FORTH and University of Crete, Heraklion 71110, Greece
- Penn State University, State College, Pennsylvania 16801, United States
| | - Salvatore Costanzo
- FORTH and University of Crete, Heraklion 71110, Greece
- University of Naples Federico II, Naples 80125, Italy
| | - Youncheol Jeong
- Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Junyoung Ahn
- Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Taihyun Chang
- Pohang University of Science and Technology, Pohang 790-784, South Korea
| | | | | | - Kurt Kremer
- Max Planck Institute for Polymer Research, Mainz 55021, Germany
| | - Ting Ge
- University of South Carolina, Columbia, South Carolina 29208-0001, United States
| | - Michael Rubinstein
- Duke University, Durham, North Carolina 27708-9976, United States
- Hokkaido University, Sapporo, Hokkaido 060-0808, Japan
| | - Gary S. Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Watee Srinin
- Naresuan University, Mueang Phitsanulok, Phitsanulok 65000, Thailand
| | | |
Collapse
|
38
|
Doi Y, Takano A, Takahashi Y, Matsushita Y. Viscoelastic Properties of Dumbbell-Shaped Polystyrenes in Bulk and Solution. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Yoshiaki Takahashi
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Yushu Matsushita
- Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
39
|
Matsumiya Y, Watanabe H. Non-Universal Features in Uniaxially Extensional Rheology of Linear Polymer Melts and Concentrated Solutions: A Review. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2020.101325] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Molnar K, Helfer CA, Kaszas G, Krisch E, Chen D, McKenna GB, Kornfield JA, Puskas JE. Liquid chromatography at critical conditions (LCCC): Capabilities and limitations for polymer analysis. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Matsumiya Y, Watanabe H. Non-Universal Features in Uniaxially Extensional Rheology of Linear Polymer Melts and Concentrated Solutions: A Review. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2020.101325 10.1016/j.progpolymsci.2020.101325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Jeong SH, Cho S, Roh EJ, Ha TY, Kim JM, Baig C. Intrinsic Surface Characteristics and Dynamic Mechanisms of Ring Polymers in Solution and Melt under Shear Flow. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seung Heum Jeong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, South Korea
| | - Soowon Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, South Korea
| | - Eun Jung Roh
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, South Korea
| | - Tae Yong Ha
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, South Korea
| | - Jun Mo Kim
- Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Kyeonggi-do, South Korea
| | - Chunggi Baig
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, South Korea
| |
Collapse
|
43
|
Tu MQ, Lee M, Robertson-Anderson RM, Schroeder CM. Direct Observation of Ring Polymer Dynamics in the Flow-Gradient Plane of Shear Flow. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michael Q. Tu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Megan Lee
- Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, United States
| | - Rae M. Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, United States
| | - Charles M. Schroeder
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
44
|
Borger A, Wang W, O'Connor TC, Ge T, Grest GS, Jensen GV, Ahn J, Chang T, Hassager O, Mortensen K, Vlassopoulos D, Huang Q. Threading-Unthreading Transition of Linear-Ring Polymer Blends in Extensional Flow. ACS Macro Lett 2020; 9:1452-1457. [PMID: 35653662 DOI: 10.1021/acsmacrolett.0c00607] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adding small amounts of ring polymers to a matrix of their linear counterparts is known to increase the zero-shear-rate viscosity because of linear-ring threading. Uniaxial extensional rheology measurements show that, unlike its pure linear and ring constituents, the blend exhibits an overshoot in the stress growth coefficient. By combining these measurements with ex-situ small-angle neutron scattering and nonequilibrium molecular dynamics simulations, this overshoot is shown to be driven by a transient threading-unthreading transition of rings embedded within the linear entanglement network. Prior to unthreading, embedded rings deform affinely with the linear entanglement network and produce a measurably stronger elongation of the linear chains in the blend compared to the pure linear melt. Thus, rings uniquely alter the mechanisms of transient elongation in linear polymers.
Collapse
Affiliation(s)
- Anine Borger
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Wendi Wang
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Thomas C O'Connor
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Ting Ge
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Grethe V Jensen
- The NIST Center for Neutron Research, Gaithersburg, Maryland 20899, United States.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Junyoung Ahn
- Division of Advanced Materials Science and Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Taihyun Chang
- Division of Advanced Materials Science and Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Ole Hassager
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Dimitris Vlassopoulos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete 70013, Greece.,Department of Materials Science and Technology, University of Crete, Heraklion, Crete 71003, Greece
| | - Qian Huang
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
45
|
Doi Y, Takano A, Takahashi Y, Matsushita Y. Melt rheology of tadpole-shaped polystyrenes with different ring sizes. SOFT MATTER 2020; 16:8720-8724. [PMID: 32996540 DOI: 10.1039/d0sm01098g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, linear melt rheology of a single-tail tadpole-shaped polystyrene, ST-30/80, having ring and linear sizes of MR ∼ 30 kg mol-1 and ML ∼ 80 kg mol-1, respectively, was examined, and the effect of the ring size on rheological properties of tadpole polymers was discussed by comparing with the data of the previously reported tadpole samples having MR ∼ 60 kg mol-1. ST-30/80 exhibits an entanglement plateau and shows a clearly slower terminal relaxation than that of its component ring and linear polymers. When the zero-shear viscosity η0 for ST-30/80 is plotted against the molecular weight of a linear tail chain, the data point lies on the single curve of η0 for 4- and 6-arm star polymers and the single-tail tadpoles with MR ∼ 60 kg mol-1. These results suggest that the tadpole molecule in this study spontaneously forms a characteristic entanglement network, i.e., the intermolecular ring-linear threading, in the same manner as the previous tadpole samples, even though the size of the ring part is just slightly larger than the entanglement molecular weight (i.e., MR ∼ 1.8Me).
Collapse
Affiliation(s)
- Yuya Doi
- Department of Molecular and Macromolecular Chemistry, Nagoya University, Nagoya 4648603, Japan.
| | - Atsushi Takano
- Department of Molecular and Macromolecular Chemistry, Nagoya University, Nagoya 4648603, Japan.
| | - Yoshiaki Takahashi
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 8168580, Japan
| | - Yushu Matsushita
- Department of Molecular and Macromolecular Chemistry, Nagoya University, Nagoya 4648603, Japan.
| |
Collapse
|
46
|
Noda T, Doi Y, Ohta Y, Takata S, Takano A, Matsushita Y. Preparation, characterization, and dilute solution properties of four‐branched cage‐shaped poly(ethylene oxide). JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takashi Noda
- Department of Molecular and Macromolecular ChemistryNagoya University Nagoya Aichi Japan
| | - Yuya Doi
- Venture Business LaboratoryNagoya University Nagoya Aichi Japan
| | - Yutaka Ohta
- Scientific Instruments Division, Shoko Science Co., Ltd. Yokohama Kanagawa Japan
| | | | - Atsushi Takano
- Department of Molecular and Macromolecular ChemistryNagoya University Nagoya Aichi Japan
| | - Yushu Matsushita
- Department of Molecular and Macromolecular ChemistryNagoya University Nagoya Aichi Japan
| |
Collapse
|
47
|
Rauscher PM, Schweizer KS, Rowan SJ, de Pablo JJ. Dynamics of poly[n]catenane melts. J Chem Phys 2020; 152:214901. [PMID: 32505155 DOI: 10.1063/5.0007573] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inspired by advances in the chemical synthesis of interlocking polymer architectures, extensive molecular dynamics simulations have been conducted to study the dynamical properties of poly[n]catenanes-polymers composed entirely of interlocking rings-in the melt state. Both the degree of polymerization (number of links) and the number of beads per ring are systematically varied, and the results are compared to linear and ring polymers. A simple Rouse-like model is presented, and its analytical solution suggests a decomposition of the dynamics into "ring-like" and "linear-like" regimes at short and long times, respectively. In agreement with this picture, multiple sub-diffusive regimes are observed in the monomer mean-squared-displacements even though interchain entanglement is not prevalent in the system. However, the Rouse-type model does not account for the topological effects of the mechanical bonds, which significantly alter the dynamics at intermediate length scales both within the rings and at the chain segment scales. The stress relaxation in the system is extremely rapid and may be conveniently separated into ring-like and linear-like contributions, again in agreement with the Rouse picture. However, the viscosity has a non-monotonic dependence on the ring size for long chains, which disagrees strongly with theoretical predictions. This unexpected observation cannot be explained in terms of chain disentanglement and is inconsistent with other measures of polymer relaxation. Possible mechanisms for this behavior are proposed and implications for materials design are discussed.
Collapse
Affiliation(s)
- Phillip M Rauscher
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801-3028, USA
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA
| |
Collapse
|
48
|
Abstract
AbstractThe self-assembly of Janus ring polymers is studied via a coarse-grained molecular dynamics employing a bead spring model including bending rigidity contributions to the Hamiltonian. We examine the formation and the morphology of amphiphilicity-driven clusters in the system using the number density ρN, the temperature T, the fraction of solvophobic monomers α, and the stiffness of the polymer rings κ as control parameters. We present a quantitative analysis of several characteristics for the formed clusters of Janus rings. Measured quantities include the distribution of the cluster size MC and the shape of the clusters in the form of the prolate/oblate factor Q and shape factors sf. We demonstrate Janus rings form polymorphic micelles that vary from a spherical shape, akin to that known for linear block copolymers, to a novel type of toroidal shape, and we highlight the role played by the key physical parameters leading to the stabilization of such structures.
Collapse
|
49
|
Tsalikis DG, Mavrantzas VG. Size and Diffusivity of Polymer Rings in Linear Polymer Matrices: The Key Role of Threading Events. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02099] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dimitrios G. Tsalikis
- Department of Chemical Engineering, University of Patras and FORTH-ICE/HT, GR 26504 Patras, Greece
| | - Vlasis G. Mavrantzas
- Department of Chemical Engineering, University of Patras and FORTH-ICE/HT, GR 26504 Patras, Greece
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
50
|
O’Connor TC, Ge T, Rubinstein M, Grest GS. Topological Linking Drives Anomalous Thickening of Ring Polymers in Weak Extensional Flows. PHYSICAL REVIEW LETTERS 2020; 124:027801. [PMID: 32004030 PMCID: PMC7190399 DOI: 10.1103/physrevlett.124.027801] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 05/28/2023]
Abstract
Molecular dynamics simulations confirm recent extensional flow experiments showing ring polymer melts exhibit strong extension-rate thickening of the viscosity at Weissenberg numbers Wi≪1. Thickening coincides with the extreme elongation of a minority population of rings that grows with Wi. The large susceptibility of some rings to extend is due to a flow-driven formation of topological links that connect multiple rings into supramolecular chains. Links form spontaneously with a longer delay at lower Wi and are pulled tight and stabilized by the flow. Once linked, these composite objects experience larger drag forces than individual rings, driving their strong elongation. The fraction of linked rings depends nonmonotonically on Wi, increasing to a maximum when Wi∼1 before rapidly decreasing when the strain rate approaches 1/τ_{e}.
Collapse
Affiliation(s)
| | - Ting Ge
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, 27708, USA
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, 27708, USA
| | - Gary S. Grest
- Sandia National Laboratories, Albuquerque, New Mexico, 87185, USA
| |
Collapse
|