1
|
Schroën K, Shen X, Hasyyati FI, Deshpande S, van der Gucht J. From theoretical aspects to practical food Pickering emulsions: Formation, stabilization, and complexities linked to the use of colloidal food particles. Adv Colloid Interface Sci 2024; 334:103321. [PMID: 39486347 DOI: 10.1016/j.cis.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
We noticed that in literature, the term Pickering emulsion (PE) is used as soon as ingredients contain particles, and in this review, we ask ourselves if that is done rightfully so. The basic behavior taking place in particle-stabilized emulsions leads to the conclusion that the desorption energy of particles is generally high making particles highly suited to physically stabilize emulsions. Exceptions are particles with extreme contact angles or systems with very low interfacial tension. Particles used in food and biobased applications are soft, can deform when adsorbed, and most probably have molecules extending into both phases thus increasing desorption energy. Besides, surface-active components will be present either in the ingredients or generated by the emulsification process used, which will reduce the energy of desorption, either by reduced interfacial tension, or changes in the contact angle. In this paper, we describe the relative relevance of these aspects, and how to distinguish them in practice. Practical food emulsions may derive part of their stability from the presence of particles, but most likely have mixed interfaces, and are thus not PEs. Especially when small particles are used to stabilize (sub)micrometer droplets, emulsions may become unstable upon receiving a heat treatment. Stability can be enhanced by connecting the particles or creating network that spans the product, albeit this goes beyond classical Pickering stabilization. Through the architecture of PEs, special functionalities can be created, such as reduction of lipid oxidation, and controlled release features.
Collapse
Affiliation(s)
- Karin Schroën
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Food Process Engineering, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands..
| | - Xuefeng Shen
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Physical Chemistry and Soft Matter, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Fathinah Islami Hasyyati
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Food Process Engineering, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Siddharth Deshpande
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Physical Chemistry and Soft Matter, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Jasper van der Gucht
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Physical Chemistry and Soft Matter, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
2
|
Hagemans F, Hazra N, Lovasz VD, Awad AJ, Frenken M, Babenyshev A, Laukkanen OV, Braunmiller D, Richtering W, Crassous JJ. Soft and Deformable Thermoresponsive Hollow Rod-Shaped Microgels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2401376. [PMID: 39252647 DOI: 10.1002/smll.202401376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Depending on their aspect ratio, rod-shaped particles exhibit a much richer 2D and 3D phase behavior than their spherical counterparts, with additional nematic and smectic phases accompanied by defined orientational ordering. While the phase diagram of colloidal hard rods is extensively explored, little is known about the influence of softness in such systems, partly due to the absence of appropriate model systems. Additionally, investigating higher volume fractions for long rods is usually complicated because non-equilibrium dynamical arrest is likely to precede the formation of more defined states. This has motivated us to develop micrometric rod-like microgels with limited sedimentation that can respond to temperature and reversibly reorganize into defined phases via annealing and seeding procedures. A detailed procedure is presented for synthesizing rod-shaped hollow poly(N-isopropylacrylamide) microgels using micrometric silica rods as sacrificial templates. Their morphological characterization is conducted through a combination of microscopy and light scattering techniques, evidencing the unconstrained swelling of rod-shaped hollow microgels compared to core-shell microgel rods. Different aspects of their assembly in dispersion and at interfaces are further tested to illustrate the opportunities and challenges offered by such systems that combine softness, anisotropy, and thermoresponsivity.
Collapse
Affiliation(s)
- Fabian Hagemans
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074, Aachen, Germany
| | - Nabanita Hazra
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074, Aachen, Germany
| | - Viktoria D Lovasz
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074, Aachen, Germany
| | - Alexander J Awad
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074, Aachen, Germany
| | - Martin Frenken
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074, Aachen, Germany
| | - Andrey Babenyshev
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074, Aachen, Germany
| | - Olli-Ville Laukkanen
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074, Aachen, Germany
- VTT Technical Research Centre of Finland Ltd, Koivurannantie 1, Jyväskylä, 40400, Finland
| | - Dominik Braunmiller
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074, Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074, Aachen, Germany
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074, Aachen, Germany
| |
Collapse
|
3
|
Eatson JL, Morgan SO, Horozov TS, A. Buzza DM. Programmable 2D materials through shape-controlled capillary forces. Proc Natl Acad Sci U S A 2024; 121:e2401134121. [PMID: 39163335 PMCID: PMC11363311 DOI: 10.1073/pnas.2401134121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/14/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, self-assembly has emerged as a powerful tool for fabricating functional materials. Since self-assembly is fundamentally determined by the particle interactions in the system, if we can gain full control over these interactions, it would open the door for creating functional materials by design. In this paper, we exploit capillary interactions between colloidal particles at liquid interfaces to create two-dimensional (2D) materials where particle interactions and self-assembly can be fully programmed using particle shape alone. Specifically, we consider colloidal particles which are polygonal plates with homogeneous surface chemistry and undulating edges as this particle geometry gives us precise and independent control over both short-range hard-core repulsions and longer-range capillary interactions. To illustrate the immense potential provided by our system for programming self-assembly, we use minimum energy calculations and Monte Carlo simulations to show that polygonal plates with different in-plane shapes (hexagons, truncated triangles, triangles, squares) and edge undulations of different multipolar order (hexapolar, octopolar, dodecapolar) can be used to create a rich variety of 2D structures, including hexagonal close-packed, honeycomb, Kagome, and quasicrystal lattices. Since the required particle shapes can be readily fabricated experimentally, we can use our colloidal system to control the entire process chain for materials design, from initial design and fabrication of the building blocks, to final assembly of the emergent 2D material.
Collapse
Affiliation(s)
- Jack L. Eatson
- Department of Physics and Astrophysics, George William Gray Centre for Advanced Materials, University of Hull, HullHU6 7RX, United Kingdom
| | - Scott O. Morgan
- Department of Physics and Astrophysics, George William Gray Centre for Advanced Materials, University of Hull, HullHU6 7RX, United Kingdom
| | - Tommy S. Horozov
- Department of Chemistry and Biochemistry, George William Gray Centre for Advanced Materials, University of Hull, HullHU6 7RX, United Kingdom
| | - D. Martin A. Buzza
- Department of Physics and Astrophysics, George William Gray Centre for Advanced Materials, University of Hull, HullHU6 7RX, United Kingdom
| |
Collapse
|
4
|
Rahman MA, Beltramo PJ. The Paradoxical Behavior of Rough Colloids at Fluid Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35834-35840. [PMID: 38924501 DOI: 10.1021/acsami.4c07099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Colloidal particles adsorb and remain trapped at immiscible fluid interfaces due to strong interfacial adsorption energy with a contact angle defined by the chemistry of the particle and fluid phases. An undulated contact line may appear due to either particle surface roughness or shape anisotropy, which results in a quadrupolar interfacial deformation and strong long-range capillary interaction between neighboring particles. While each effect has been observed separately, here we report the paradoxical impact of surface roughness on spherical and anisotropic ellipsoidal polymer colloids. Using a seeded emulsion polymerization technique, we synthesize spherical and ellipsoidal particles with controlled roughness magnitudes and topography (convex/concave). Via in situ measurement of the interfacial deformation around colloids at an air-water interface, we find that while surface roughness strengthens the quadrupolar deformation in spheres as expected by theory, in stark contrast, it weakens the same in ellipsoids. As roughness increases, particles of both shapes become more hydrophilic, and their apparent contact angle decreases. Using numerical predictions, we show that this partially explains the decreased interfacial deformation and capillary interactions between the ellipsoids. Therefore, particle surface engineering has the potential to decrease the capillary deformation by asymmetric particles via changing their capillary pinning, as well as wetting behavior at fluid interfaces.
Collapse
Affiliation(s)
- Md Anisur Rahman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Peter J Beltramo
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
5
|
Li X, Maki KL, Schertzer MJ. Characterization of Particle Transport and Deposition Due to Heterogeneous Dewetting on Low-Cost Inkjet-Printed Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16843-16853. [PMID: 37962525 DOI: 10.1021/acs.langmuir.3c02224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
This work investigates the deposition patterns left by evaporating particle-laden droplets on heterogeneous surfaces with spatially varying wettability. Spatial differences in receding contact angles give rise to scalloped-shaped contact lines. During evaporation, the contact line recedes in one location and remains pinned in another. This nonuniform contact line recession results in particle self-assembly above areas where the contact line remains pinned but not where it recedes. This behavior is fairly robust across a variety of particle sizes, concentrations, and device geometries. We hypothesize that particle self-assembly in these cases is due to the competition between particle diffusion and evaporative-driven advective flow. Diffusion appears to be more pronounced in regions where the contact line recedes, while advection appears to be more pronounced near the pinned portion of the contact line. As such, particles appear to diffuse away from receding areas and toward pinned areas, where advection transports them to the contact line. The distribution of particle deposition above the pinned regions was influenced by the particle size and the concentration of particles in the droplet. Similar to homogeneous surfaces, deposition was more prevalent at the pinned portion of the contact line for smaller particles and lower concentrations and more uniformly distributed across the entire pinned region for larger particles and higher concentrations. A better understanding of this process may be beneficial in a wide variety of particle separation applications, such as printing, cell patterning, biosensing, and anti-icing.
Collapse
Affiliation(s)
- Xi Li
- Department of Mechanical Engineering, Rochester Institute of Technology, 1 Lomb Memorial Drive, Rochester, New York 14623, United States
| | - Kara L Maki
- School of Mathematics and Statistics, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, New York 14623, United States
| | - Michael J Schertzer
- Department of Mechanical Engineering, Rochester Institute of Technology, 1 Lomb Memorial Drive, Rochester, New York 14623, United States
| |
Collapse
|
6
|
Trevenen S, Rahman MA, Hamilton HS, Ribbe AE, Bradley LC, Beltramo PJ. Nanoscale Porosity in Microellipsoids Cloaks Interparticle Capillary Attraction at Fluid Interfaces. ACS NANO 2023; 17:11892-11904. [PMID: 37272708 PMCID: PMC10312195 DOI: 10.1021/acsnano.3c03301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Anisotropic particles pinned at fluid interfaces tend toward disordered multiparticle configurations due to large, orientationally dependent, capillary forces, which is a significant barrier to exploiting these particles to create functional self-assembled materials. Therefore, current interfacial assembly methods typically focus on isotropic spheres, which have minimal capillary attraction and no dependence on orientation in the plane of the interface. In order to create long-range ordered structures with complex configurations via interfacially trapped anisotropic particles, control over the interparticle interaction energy via external fields and/or particle engineering is necessary. Here, we synthesize colloidal ellipsoids with nanoscale porosity and show that their interparticle capillary attraction at a water-air interface is reduced by an order of magnitude compared to their smooth counterparts. This is accomplished by comparing the behavior of smooth, rough, and porous ellipsoids at a water-air interface. By monitoring the dynamics of two particles approaching one another, we show that the porous particles exhibit a much shorter-range capillary interaction potential, with scaling intriguingly different than theory describing the behavior of smooth ellipsoids. Further, interferometry measurements of the fluid deformation surrounding a single particle shows that the interface around porous ellipsoids does not possess the characteristic quadrupolar symmetry of smooth ellipsoids, and quantitatively confirms the decrease in capillary interaction energy. By engineering nanostructured surface features in this fashion, the interfacial capillary interactions between particles may be controlled, informing an approach for the self-assembly of complex two-dimensional microstructures composed of anisotropic particles.
Collapse
Affiliation(s)
- Samuel Trevenen
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Md Anisur Rahman
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Heather S.C. Hamilton
- Department
of Polymer Science and Engineering, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Alexander E. Ribbe
- Department
of Polymer Science and Engineering, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Laura C. Bradley
- Department
of Polymer Science and Engineering, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Peter J. Beltramo
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
7
|
Liu Y, Lin S, Zhu Y, Gao X, Wang Z, Yang S, Liu J. Three-Dimensional Coffee-Ring Effect Induced Deposition on Foam Surface for Enhanced Photothermal Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207822. [PMID: 36866509 DOI: 10.1002/smll.202207822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/28/2023] [Indexed: 06/02/2023]
Abstract
Uniformly depositing a thin layer of functional constituents on porous foam is attractive to realize their concentrated interfacial application. Here, a simple but robust polyvinyl alcohol (PVA)-mediated evaporation drying strategy to achieve uniform surface deposition on melamine foam (MF) is introduced. Solutes can be accumulated homogeneously to the surface periphery of MF due to the enhanced coffee-ring effect of PVA and its stabilizing effect on various functional constituents, including molecules and colloidal particles. The deposition thickness is positively correlated with the feeding amounts of PVA but seems to be independent of drying temperature. 3D outward capillary flow driven by the combination of contact surface pinning and continual interfacial evaporation induces the forming of core-shell foams. The enhanced interfacial photothermal effect and solar desalination performance using PVA/polypyrrole-coated MF as a Janus solar evaporator are demonstrated.
Collapse
Affiliation(s)
- Yunjia Liu
- Institute of Advanced Materials, State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Si Lin
- Institute of Advanced Materials, State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Yali Zhu
- Institute of Advanced Materials, State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiaoying Gao
- Institute of Advanced Materials, State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhipeng Wang
- Institute of Advanced Materials, State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Shenghong Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jian Liu
- Institute of Advanced Materials, State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
8
|
Eatson JL, Gordon JR, Cegielski P, Giesecke AL, Suckow S, Rao A, Silvestre OF, Liz-Marzán LM, Horozov TS, Buzza DMA. Capillary Assembly of Anisotropic Particles at Cylindrical Fluid-Fluid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6006-6017. [PMID: 37071832 PMCID: PMC10157885 DOI: 10.1021/acs.langmuir.3c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The unique behavior of colloids at liquid interfaces provides exciting opportunities for engineering the assembly of colloidal particles into functional materials. The deformable nature of fluid-fluid interfaces means that we can use the interfacial curvature, in addition to particle properties, to direct self-assembly. To this end, we use a finite element method (Surface Evolver) to study the self-assembly of rod-shaped particles adsorbed at a simple curved fluid-fluid interface formed by a sessile liquid drop with cylindrical geometry. Specifically, we study the self-assembly of single and multiple rods as a function of drop curvature and particle properties such as shape (ellipsoid, cylinder, and spherocylinder), contact angle, aspect ratio, and chemical heterogeneity (homogeneous and triblock patchy). We find that the curved interface allows us to effectively control the orientation of the rods, allowing us to achieve parallel, perpendicular, or novel obliquely orientations with respect to the cylindrical drop. In addition, by tuning particle properties to achieve parallel alignment of the rods, we show that the cylindrical drop geometry favors tip-to-tip assembly of the rods, not just for cylinders, but also for ellipsoids and triblock patchy rods. Finally, for triblock patchy rods with larger contact line undulations, we can achieve strong spatial confinement of the rods transverse to the cylindrical drop due to the capillary repulsion between the contact line undulations of the particle and the pinned contact lines of the sessile drop. Our capillary assembly method allows us to manipulate the configuration of single and multiple rod-like particles and therefore offers a facile strategy for organizing such particles into useful functional materials.
Collapse
Affiliation(s)
- Jack L Eatson
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, U.K
| | - Jacob R Gordon
- Department of Chemistry & Biochemistry, University of Hull, Hull HU6 7RX, U.K
| | | | - Anna L Giesecke
- AMO GmbH, Otto-Blumenthal-Str. 25, Aachen 52074, Germany
- University of Duisburg-Essen, Bismarckstr. 81, Duisburg 47057, Germany
| | - Stephan Suckow
- AMO GmbH, Otto-Blumenthal-Str. 25, Aachen 52074, Germany
| | - Anish Rao
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | - Oscar F Silvestre
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | - Luis M Liz-Marzán
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | - Tommy S Horozov
- Department of Chemistry & Biochemistry, University of Hull, Hull HU6 7RX, U.K
| | - D Martin A Buzza
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, U.K
| |
Collapse
|
9
|
Jeong HW, Park JW, Lee HM, Choi KH, Lee SJ, Kim JW, Park BJ. Retardation of Capillary Force between Janus Particles at the Oil-Water Interface. J Phys Chem Lett 2022; 13:10018-10024. [PMID: 36264142 DOI: 10.1021/acs.jpclett.2c02499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Interactions among colloidal particles govern the hierarchical microstructure and its physical properties. Here, optical laser tweezers and Monte Carlo simulations are used to evaluate the effects of azimuthal rotation of Janus particles at the oil-water interface on interparticle interactions. We find that the capillary-induced attractive force between two Janus particles at the interface can be relaxed by azimuthal rotation around the critical separation region, at which the capillary force is ∼0.053 pN. Force relaxation leads to a decrease in capillary force around the critical separation region, resulting in a slight increase in the scaling exponent, compared to the theoretical prediction.
Collapse
Affiliation(s)
- Hye Won Jeong
- Department of Chemical Engineering (BK21 Four Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi17104, South Korea
| | - Ju Won Park
- Department of Polymer Engineering, The University of Suwon, Hwaseong, Gyeonggi18323, South Korea
| | - Hyang Mi Lee
- Department of Chemical Engineering (BK21 Four Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi17104, South Korea
| | - Kyu Hwan Choi
- Department of Chemical Engineering (BK21 Four Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi17104, South Korea
| | - Seong Jae Lee
- Department of Polymer Engineering, The University of Suwon, Hwaseong, Gyeonggi18323, South Korea
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi16419, South Korea
| | - Bum Jun Park
- Department of Chemical Engineering (BK21 Four Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi17104, South Korea
| |
Collapse
|
10
|
Ma X, Nguyen NN, Nguyen AV. A review on quantifying the influence of lateral capillary interactions on the particle floatability and stability of particle-laden interfaces. Adv Colloid Interface Sci 2022; 307:102731. [DOI: 10.1016/j.cis.2022.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
|
11
|
Wang Y, Hu D, Chang X, Zhu Y. Temperature-Driven Reversible Shape Transformation of Polymeric Nanoparticles from Emulsion Confined Coassembly of Block Copolymers and Poly( N-isopropylacrylamide). Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yaping Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| | - Dengwen Hu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| | - Xiaohua Chang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| | - Yutian Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| |
Collapse
|
12
|
Li W, Jiao B, Li S, Faisal S, Shi A, Fu W, Chen Y, Wang Q. Recent Advances on Pickering Emulsions Stabilized by Diverse Edible Particles: Stability Mechanism and Applications. Front Nutr 2022; 9:864943. [PMID: 35600821 PMCID: PMC9121063 DOI: 10.3389/fnut.2022.864943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023] Open
Abstract
Pickering emulsions, which are stabilized by particles, have gained considerable attention recently because of their extreme stability and functionality. A food-grade particle is preferred by the food or pharmaceutical industries because of their noteworthy natural benefits (renewable resources, ease of preparation, excellent biocompatibility, and unique interfacial properties). Different edible particles are reported by recent publications with distinct shapes resulting from the inherent properties of raw materials and fabrication methods. Furthermore, they possess distinct interfacial properties and functionalities. Therefore, this review provides a comprehensive overview of the recent advances in the stabilization of Pickering emulsions using diverse food-grade particles, as well as their possible applications in the food industry.
Collapse
Affiliation(s)
- Wei Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Sisheng Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shah Faisal
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Weiming Fu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yiying Chen
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
13
|
Morgan SO, Muravitskaya A, Lowe C, Adawi AM, Bouillard JSG, Horozov TS, Stasiuk GJ, Buzza DMA. Using adsorption kinetics to assemble vertically aligned nanorods at liquid interfaces for metamaterial applications. Phys Chem Chem Phys 2022; 24:11000-11013. [PMID: 35467675 DOI: 10.1039/d1cp05484h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vertically aligned monolayers of metallic nanorods have a wide range of applications as metamaterials or in surface enhanced Raman spectroscopy. However the fabrication of such structures using current top-down methods or through assembly on solid substrates is either difficult to scale up or have limited possibilities for further modification after assembly. The aim of this paper is to use the adsorption kinetics of cylindrical nanorods at a liquid interface as a novel route for assembling vertically aligned nanorod arrays that overcomes these problems. Specifically, we model the adsorption kinetics of the particle using Langevin dynamics coupled to a finite element model, accurately capturing the deformation of the liquid meniscus and particle friction coefficients during adsorption. We find that the final orientation of the cylindrical nanorod is determined by their initial attack angle when they contact the liquid interface, and that the range of attack angles leading to the end-on state is maximised when nanorods approach the liquid interface from the bulk phase that is more energetically favorable. In the absence of an external field, only a fraction of adsorbing nanorods end up in the end-on state (≲40% even for nanorods approaching from the energetically favourable phase). However, by pre-aligning the metallic nanorods with experimentally achievable electric fields, this fraction can be effectively increased to 100%. Using nanophotonic calculations, we also demonstrate that the resultant vertically aligned structures can be used as epsilon-near-zero and hyperbolic metamaterials. Our kinetic assembly method is applicable to nanorods with a range of diameters, aspect ratios and materials and therefore represents a versatile, low-cost and powerful platform for fabricating vertically aligned nanorods for metamaterial applications.
Collapse
Affiliation(s)
- S O Morgan
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, UK.
| | - A Muravitskaya
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, UK.
| | - C Lowe
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, UK.
| | - A M Adawi
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, UK.
| | - J-S G Bouillard
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, UK.
| | - T S Horozov
- Department of Chemistry & Biochemistry, University of Hull, Hull HU6 7RX, UK
| | - G J Stasiuk
- Imaging Chemistry & Biology, King's College London, Strand, London WC2R 2LS, UK
| | - D M A Buzza
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
14
|
Acter S, Vidallon MLP, King JP, Teo BM, Tabor RF. Photothermally responsive Pickering emulsions stabilised by polydopamine nanobowls. J Mater Chem B 2021; 9:8962-8970. [PMID: 34569589 DOI: 10.1039/d1tb01796a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pickering emulsions with stimuli responsive properties have attracted mounting research attention owing to their potential for on-demand destabilisation of emulsions. However, a combination of biocompatibility and long-term stability are essential to efficiently apply such systems in biomedical applications, and this remains a significant challenge. To address current limitations, here we report the formation of photothermally responsive oil-in-water (o/w) Pickering emulsions fabricated using biocompatible stabilisers and showing prolonged stability. For the first time, we explore polydopamine (PDA) bowl-shaped mesoporous nanoparticles (PDA nanobowls) as a Pickering stabiliser without any surface modification or other stabiliser present. As-prepared PDA nanobowl-stabilised Pickering emulsions are shown to be pH responsive, and more significantly show high photothermal efficiency under near-infrared illumination due the incorporation of PDA into the system, which has remarkable photothermal response. These biocompatible, photothermally responsive o/w Pickering emulsion systems show potential in controlled drug release applications stimulated by NIR illumination.
Collapse
Affiliation(s)
- Shahinur Acter
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| | | | - Joshua P King
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
15
|
Kim J, Yun H, Lee YJ, Lee J, Kim SH, Ku KH, Kim BJ. Photoswitchable Surfactant-Driven Reversible Shape- and Color-Changing Block Copolymer Particles. J Am Chem Soc 2021; 143:13333-13341. [PMID: 34379395 DOI: 10.1021/jacs.1c06377] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polymer particles that switch their shape and color in response to light are of great interest for the development of programmable smart materials. Herein, we report block copolymer (BCP) particles with reversible shapes and colors activated by irradiation with ultraviolet (UV) and visible lights. This shape transformation of the BCP particles is achieved by a spiropyran-dodecyltrimethylammoium bromide (SP-DTAB) surfactant that changes its amphiphilicity upon photoisomerization. Under UV light (365 nm) irradiation, the hydrophilic ring-opened merocyanine form of the SP-DTAB surfactant affords the formation of spherical, onion-like BCP particles. In contrast, when exposed to visible light, surfactants with the ring-closed form yield prolate or oblate BCP ellipsoids with axially stacked nanostructures. Importantly, the change in BCP particle morphology between spheres and ellipsoids is reversible over multiple UV and visible light irradiation cycles. In addition, the shape- and color-switchable BCP particles are integrated to form a composite hydrogel, demonstrating their potential as high-resolution displays with reversible patterning capabilities.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hongseok Yun
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Young Jun Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junhyuk Lee
- Packaging Center, Korea Institute of Industrial Technology (KITECH), Bucheon, Gyeonggi 14449, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kang Hee Ku
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Wang C, Zhong W, Peng S, Zhang J, Shu R, Tian Z, Song Q, Chen Y. Robust Hydrogen Production via Pickering Interfacial Catalytic Photoreforming of n-Octanol-Water Biphasic System. Front Chem 2021; 9:712453. [PMID: 34368083 PMCID: PMC8339705 DOI: 10.3389/fchem.2021.712453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Pickering emulsion offers a promising platform for conducting interfacial reactions between immiscible reagents; it is particularly suitable for hydrogen production by photoreforming of non-water soluble biomass liquid and water. Herein, Pt-promoted (001)-facet-dominated anatase TiO2 nanosheets were synthesized by a hydrothermal route associated with microfluidic technology for high activity and metal dispersion, and selective surface modification was carried out for preparing Janus particles. Photoreforming hydrogen production through n-octanol and water that formed O/W microemulsion with an average diameter of 540 µm was achieved to obtain amphiphilic catalyst. The as-prepared 2D Janus-type catalysts exhibited remarkably stable emulsification performance as well as photocatalytic activity. This finding indicates that triethoxyfluorosilane had negligible impact on the catalytic performance, yet provided a remarkable benefit to large specific surface area at microemulsion interface, thereby enhancing the H2 yield up to 2003 μmol/g. The cyclic experiments indicate that the decrease in cyclic performance was more likely to be caused by the coalescence of the microemulsion rather than the decrease in catalytic activity, and the microemulsion could be easily recovered by simply hand shaking to more than 96% of the initial performance.
Collapse
Affiliation(s)
- Chao Wang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, China
| | - Weilin Zhong
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, China
| | - Suqing Peng
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, China
| | - Jingtao Zhang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, China
| | - Riyang Shu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, China
| | - Zhipeng Tian
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, China
| | - Qingbin Song
- Macau Environmental Research Institute, Macau University of Science and Technology, Macau, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
17
|
Poty M, Vandewalle N. Equilibrium distances for the capillary interaction between floating objects. SOFT MATTER 2021; 17:6718-6727. [PMID: 34198317 DOI: 10.1039/d1sm00447f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
When small objects are placed at a water-air interface, attractive and repulsive interactions appear due to liquid deformations. Although it is commonly admitted that two floating objects deforming the liquid interface in the same way are only attracting, we show that in the case of objects whose height does not vary during the interaction, the situation is much more complex than expected. In fact, attraction and repulsion can coexist at different ranges, so that equilibrium distances are observed. A 1D model based on the capillary interaction between vertical plates immersed in water is used to illustrate and calculate these situations, giving a picture of capillary interactions. We show that the wetting condition plays a determinant role in the behaviour of the interaction between floating objects. We also demonstrate that the equilibrium distance is given by the logarithm of the capillary charge ratio, using the right capillary charge definition. We also discuss the particular case of the existence of an interaction with a zero-capillary charge. A general equation of the equilibrium distance is proposed. An experimental confirmation of this relation is also given.
Collapse
Affiliation(s)
- Martin Poty
- GRASP, CESAM Research Unit, Institute of Physics B5a, University of Liège, B4000 Liège, Belgium.
| | - Nicolas Vandewalle
- GRASP, CESAM Research Unit, Institute of Physics B5a, University of Liège, B4000 Liège, Belgium.
| |
Collapse
|
18
|
Morgan SO, Fox J, Lowe C, Adawi AM, Bouillard JSG, Stasiuk GJ, Horozov TS, Buzza DMA. Adsorption trajectories of nonspherical particles at liquid interfaces. Phys Rev E 2021; 103:042604. [PMID: 34005913 DOI: 10.1103/physreve.103.042604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/22/2021] [Indexed: 11/07/2022]
Abstract
The adsorption of colloidal particles at liquid interfaces is of great importance scientifically and industrially, but the dynamics of the adsorption process is still poorly understood. In this paper we use a Langevin model to study the adsorption dynamics of ellipsoidal colloids at a liquid interface. Interfacial deformations are included by coupling our Langevin dynamics to a finite element model while transient contact line pinning due to nanoscale defects on the particle surface is encoded into our model by renormalizing particle friction coefficients and using dynamic contact angles relevant to the adsorption timescale. Our simple model reproduces the monotonic variation of particle orientation with time that is observed experimentally and is also able to quantitatively model the adsorption dynamics for some experimental ellipsoidal systems but not others. However, even for the latter case, our model accurately captures the adsorption trajectory (i.e., particle orientation versus height) of the particles. Our study clarifies the subtle interplay between capillary, viscous, and contact line forces in determining the wetting dynamics of micron-scale objects, allowing us to design more efficient assembly processes for complex particles at liquid interfaces.
Collapse
Affiliation(s)
- S O Morgan
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, United Kingdom
| | - J Fox
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, United Kingdom.,School of Physics & Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - C Lowe
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, United Kingdom
| | - A M Adawi
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, United Kingdom
| | - J-S G Bouillard
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, United Kingdom
| | - G J Stasiuk
- Imaging Chemistry & Biology, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - T S Horozov
- Department of Chemistry & Biochemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | - D M A Buzza
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, United Kingdom
| |
Collapse
|
19
|
Barakat JM, Squires TM. Capillary force on an 'inert' colloid: a physical analogy to dielectrophoresis. SOFT MATTER 2021; 17:3417-3442. [PMID: 33645603 PMCID: PMC8323820 DOI: 10.1039/d0sm02143a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/09/2021] [Indexed: 06/08/2023]
Abstract
"Inert" colloids are μm-scale particles that create no distortion when trapped at a planar fluid-fluid interface. When placed in a curved interface, however, such colloids can create interfacial distortions of quadrupolar symmetry - so-called "induced capillary quadrupoles." The present work explores the analogy between capillary quadrupoles and electric dipoles, and the forces exerted on them by a symmetry-breaking gradient. In doing so, we weigh in on an outstanding debate as to whether a curvature gradient can induce a capillary force on an inert colloid. We argue that this force exists, for the opposite would imply that all dielectrophoretic forces vanish in two dimensions (2D). We justify our claim by solving 2D Laplace problems of electrostatics and capillary statics involving a single particle placed within a large circular shell with an imposed gradient. We show that the static boundary condition on the outer shell must be considered when applying the principle of virtual work to compute the force on the particle, as verified by a direct calculation of this force through integration of the particle stresses. Our investigation highlights some of the subtleties that emerge in virtual work calculations of capillary statics and electrostatics, thereby clarifying and extending previous results in the field. The broader implication of our results is that inert particles - including particles with planar, pinned contact lines and equilibrium contact angles - interact through interparticle capillary forces that scale quadratically with the deviatoric curvature of the host interface, contrary to recent claims made in the literature.
Collapse
Affiliation(s)
- Joseph M Barakat
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.
| | | |
Collapse
|
20
|
Marangoni circulation in evaporating droplets in the presence of soluble surfactants. J Colloid Interface Sci 2021; 584:622-633. [PMID: 33129516 DOI: 10.1016/j.jcis.2020.10.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/18/2020] [Indexed: 11/21/2022]
Abstract
HYPOTHESIS Soluble surfactants in evaporating sessile droplets can cause a circulatory Marangoni flow. However, it is not straightforward to predict for what cases this vortical flow arises. It is hypothesized that the occurrence of Marangoni circulation can be predicted from the values of a small number of dimensionless parameters. SIMULATIONS A numerical model for the drop evolution is developed using lubrication theory. Surfactant transport is implemented by means of convection-diffusion-adsorption equations. Results are compared to literature. FINDINGS It is shown that stronger evaporation, slower adsorption kinetics and lower solubility of the surfactants all tend to increasingly suppress Marangoni circulation. These results are found to be consistent with both experimental and numerical results from literature and can explain qualitative differences in flow behavior of surfactant-laden droplets. Furthermore, diffusion also tends to counteract Marangoni flow, where bulk diffusion has a more significant influence than surface diffusion. Also, the formation of micelles is found to slightly suppress Marangoni circulation. Experimental results from literature, however, show that in some cases circulatory behavior is enhanced by micelles, possibly even resulting in qualitative changes in the flow. Potential explanations for these differences are given and extensions to the model are suggested to improve its consistency with experiments.
Collapse
|
21
|
Xie Q, Harting J. Controllable Capillary Assembly of Magnetic Ellipsoidal Janus Particles into Tunable Rings, Chains and Hexagonal Lattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006390. [PMID: 33448100 PMCID: PMC11468573 DOI: 10.1002/adma.202006390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Colloidal assembly at fluid interfaces has a great potential for the bottom-up fabrication of novel structured materials. However, challenges remain in realizing controllable and tunable assembly of particles into diverse structures. Herein, the capillary assembly of magnetic ellipsoidal Janus particles at a fluid-fluid interface is reported. Depending on their tilt angle, that is, the angle the particle main axis forms with the fluid interface, these particles deform the interface and generate capillary dipoles or hexapoles. Driven by capillary interactions, multiple particles thus assemble into chain-, hexagonal-lattice-, and ring-like structures, which can be actively controlled by applying an external magnetic field. A field-strength phase diagram is predicted in which various structures are present as stable states. Owing to the diversity, controllability, and tunability of assembled structures, magnetic ellipsoidal Janus particles at fluid interfaces could therefore serve as versatile building blocks for novel materials.
Collapse
Affiliation(s)
- Qingguang Xie
- Department of Applied PhysicsEindhoven University of TechnologyP.O. Box 5135600MBEindhovenThe Netherlands
| | - Jens Harting
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)Forschungszentrum JülichFürther Str. 24890429NürnbergGermany
- Department of Chemical and Biological Engineering and Department of PhysicsFriedrich‐Alexander‐Universität Erlangen‐NürnbergFürther Str. 24890429NürnbergGermany
| |
Collapse
|
22
|
Hunter SJ, Armes SP. Pickering Emulsifiers Based on Block Copolymer Nanoparticles Prepared by Polymerization-Induced Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15463-15484. [PMID: 33325720 PMCID: PMC7884006 DOI: 10.1021/acs.langmuir.0c02595] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/27/2020] [Indexed: 05/28/2023]
Abstract
Block copolymer nanoparticles prepared via polymerization-induced self-assembly (PISA) represent an emerging class of organic Pickering emulsifiers. Such nanoparticles are readily prepared by chain-extending a soluble homopolymer precursor using a carefully selected second monomer that forms an insoluble block in the chosen solvent. As the second block grows, it undergoes phase separation that drives in situ self-assembly to form sterically stabilized nanoparticles. Conducting such PISA syntheses in aqueous solution leads to hydrophilic nanoparticles that enable the formation of oil-in-water emulsions. Alternatively, hydrophobic nanoparticles can be prepared in non-polar media (e.g., n-alkanes), which enables water-in-oil emulsions to be produced. In this review, the specific advantages of using PISA to prepare such bespoke Pickering emulsifiers are highlighted, which include fine control over particle size, copolymer morphology, and surface wettability. This has enabled various fundamental scientific questions regarding Pickering emulsions to be addressed. Moreover, block copolymer nanoparticles can be used to prepare Pickering emulsions over various length scales, with mean droplet diameters ranging from millimeters to less than 200 nm.
Collapse
Affiliation(s)
- Saul J. Hunter
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
23
|
Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nat Rev Chem 2020; 5:21-45. [PMID: 37118104 DOI: 10.1038/s41570-020-00232-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Shape and size play powerful roles in determining the properties of a material; controlling these aspects with precision is therefore an important, fundamental goal of the chemical sciences. In particular, the introduction of shape anisotropy at the nanoscale has emerged as a potent way to access new properties and functionality, enabling the exploration of complex nanomaterials across a range of applications. Recent advances in DNA and protein nanotechnology, inorganic crystallization techniques, and precision polymer self-assembly are now enabling unprecedented control over the synthesis of anisotropic nanoparticles with a variety of shapes, encompassing one-dimensional rods, dumbbells and wires, two-dimensional and three-dimensional platelets, rings, polyhedra, stars, and more. This has, in turn, enabled much progress to be made in our understanding of how anisotropy and particle dimensions can be tuned to produce materials with unique and optimized properties. In this Review, we bring these recent developments together to critically appraise the different methods for the bottom-up synthesis of anisotropic nanoparticles enabling exquisite control over morphology and dimensions. We highlight the unique properties of these materials in arenas as diverse as electron transport and biological processing, illustrating how they can be leveraged to produce devices and materials with otherwise inaccessible functionality. By making size and shape our focus, we aim to identify potential synergies between different disciplines and produce a road map for future research in this crucial area.
Collapse
|
24
|
Villa S, Boniello G, Stocco A, Nobili M. Motion of micro- and nano- particles interacting with a fluid interface. Adv Colloid Interface Sci 2020; 284:102262. [PMID: 32956958 DOI: 10.1016/j.cis.2020.102262] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022]
Abstract
In this article, we review both theoretical models and experimental results on the motion of micro- and nano- particles that are close to a fluid interface or move in between two fluids. Viscous drags together with dissipations due to fluctuations of the fluid interface and its physicochemical properties affect strongly the translational and rotational drags of colloidal particles, which are subjected to Brownian motion in thermal equilibrium. Even if many theoretical and experimental investigations have been carried out, additional scientific efforts in hydrodynamics, statistical physics, wetting and colloid science are still needed to explain unexpected experimental results and to measure particle motion in time and space scales, which are not accessible so far.
Collapse
Affiliation(s)
- Stefano Villa
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20090 Segrate, Italy
| | - Giuseppe Boniello
- Surface du Verre et Interfaces (SVI), UMR 125 CNRS/Saint-Gobain Recherche, 93303 Aubervilliers, France
| | - Antonio Stocco
- Institut Charles Sadron (ICS), CNRS, University of Strasbourg, Strasbourg, France.
| | - Maurizio Nobili
- Laboratoire Charles Coulomb (L2C), CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
25
|
Mao C, Huang Y, Qiao Y, Zhang J, Kong M, Yang Q, Li G. Vorticity-Aligned Droplet Bands in Sheared Immiscible Polymer Blends Induced by Solid Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4383-4395. [PMID: 32239954 DOI: 10.1021/acs.langmuir.0c00511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The spatiotemporal organization of complex fluids under flow can be strongly affected by incorporating solid particles. Here, we report that a monolayer of interfacially active microspheres preferentially wetted by the matrix phase can bridge droplets into vorticity-aligned bands in immiscible polymer blends at intermediate particle concentrations and low shear rates. Strong particle bridging ability and the formation of rigid anisotropic droplet bands with a negligible inertia effect in the Newtonian matrix are suggested to be responsible for the vorticity orientation of droplet bands during slow shear flow, which could be understood based on Jeffery orbit theory in the framework of fluid mechanics and strong confinement effect acted by shear walls and adjacent bands. However, increasing the aspect ratio of particles could restrain the formation of anisotropic bands because of reduced particle coverage and promoted droplet coalescence induced by sharp particle corners, increased and uneven distribution of particle aggregates in the matrix phase, and weakened particle bridging ability.
Collapse
Affiliation(s)
- Chaoying Mao
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Yajiang Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Yunjiao Qiao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Jiayao Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Miqiu Kong
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Qi Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Guangxian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| |
Collapse
|
26
|
Flores-Tandy LM, García-Monjaraz AV, van Nierop EA, Vázquez-Martínez EA, Ruiz-Garcia J, Mejía-Rosales S. Fractal aggregates formed by ellipsoidal colloidal particles at the air/water interface. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Ha Eun L, Kyu Hwan C, Xia M, Dong Woo K, Bum Jun P. Interactions between polystyrene particles with diameters of several tens to hundreds of micrometers at the oil-water interface. J Colloid Interface Sci 2020; 560:838-848. [PMID: 31708257 DOI: 10.1016/j.jcis.2019.10.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS The charged spherical colloidal particles at the fluid-fluid interface experience considerably strong and long-ranged electrostatic and capillary interactions. The contribution of capillary force becomes more significant as the particle size increases beyond a certain limit. The relative strengths of the two competing interactions between the spherical polystyrene particles at the oil-water interface are quantified depending on their size. EXPERIMENTS The studied particles, obtained using the microfluidic method, have diameters of tens to hundreds of micrometers. The scaling behaviors of the commercially available colloidal particles with diameters of ~3 μm are also compared. An optical laser tweezer apparatus is used to directly or indirectly measure the interparticle force. Subsequently, the capillary force that can be attributed to the gravity-induced interface deformation and contact line undulation is calculated and compared with the measured interaction force. FINDINGS Regardless of the particle diameter (~3-330 μm), the measured force is observed to decay as r-4, where r denotes the center-to-center separation, demonstrating that the dipolar electrostatic interaction is important and that the gravity-induced capillary interaction is negligible. Furthermore, numerical calculations with respect to the undulated meniscus confirm that the magnitude of capillary interaction is significantly smaller than that of the measured electrostatic interaction.
Collapse
Affiliation(s)
- Lee Ha Eun
- Department of Chemical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, South Korea
| | - Choi Kyu Hwan
- Department of Chemical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, South Korea
| | - Ming Xia
- Department of Chemical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, South Korea
| | - Kang Dong Woo
- Department of Chemical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, South Korea
| | - Park Bum Jun
- Department of Chemical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, South Korea.
| |
Collapse
|
28
|
Goggin DM, Zhang H, Miller EM, Samaniuk JR. Interference Provides Clarity: Direct Observation of 2D Materials at Fluid-Fluid Interfaces. ACS NANO 2020; 14:777-790. [PMID: 31820924 DOI: 10.1021/acsnano.9b07776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Monolayer particles of two-dimensional (2D) materials represent a scientifically and technologically interesting class of anisotropic particles with colloidal-scale lateral sizes but sub-nanometer thicknesses. This atomic-scale thickness leads to interesting phenomena that can be exploited in next-generation thin-film technologies, and fluid-fluid interfaces provide a potentially scalable platform to confine, assemble, and deposit functional thin films of 2D materials. However, directly observing how these materials interact and assemble into a given film morphology is experimentally challenging because of their sub-nanometer thicknesses. Here, we demonstrate the ability to directly observe graphene, molybdenum disulfide (MoS2), and hexagonal boron nitride (h-BN) particles at fluid-fluid interfaces using interference reflection microscopy (IRM). Monolayer MoS2 and graphene particles demonstrated >10% optical contrast at an air-water interface, which allowed us to quantitatively analyze in situ images of self-assembled MoS2 particles and to map trajectories of interacting graphene particles. Additionally, the Brownian motion of a graphene particle was tracked and analyzed in the context of passive microrheology theory for 2D particle probes. Our results demonstrate how IRM can be used to obtain quantitative spatiotemporal information regarding the self-assembly and dynamics of 2D materials at fluid-fluid interfaces. It will have a significant impact on our ability to investigate systems of atomically thin particles at fluid-fluid interfaces, an area that has fundamental scientific importance and materials science applications but has suffered from a lack of direct, in situ observation techniques.
Collapse
Affiliation(s)
- David M Goggin
- Department of Chemical and Biological Engineering , Colorado School of Mines , Golden , Colorado 80401 , United States
| | - Hanyu Zhang
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Elisa M Miller
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Joseph R Samaniuk
- Department of Chemical and Biological Engineering , Colorado School of Mines , Golden , Colorado 80401 , United States
| |
Collapse
|
29
|
Scherz LF, Schroyen B, Pepicelli M, Schlüter DA, Vermant J, Vlassopoulos D. Molecularly Designed Interfacial Viscoelasticity by Dendronized Polymers: From Flexible Macromolecules to Colloidal Objects. ACS NANO 2019; 13:14217-14229. [PMID: 31743645 DOI: 10.1021/acsnano.9b07142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The thermodynamic and rheological properties of densely packed dendronized polymers (DPs) at water-air interfaces were studied here for first- and fourth-generation DPs (PG1, PG4) with both small (Pn ≈ 50) and large (Pn ≈ 500) backbone degrees of polymerization. The excellent control over the structural characteristics of these polymers enabled us to investigate how the interfacial properties change as we go from thin, flexible macromolecules toward thicker molecular objects that display colloidal features. The effects of the dendron generation, affecting the persistence length, as well as the degree of polymerization and surface pressure on the formation of DP layers at the water-air interface were studied. Surface pressure measurements and interfacial rheology suggest the existence of significant attractive interactions between the molecules of the higher generation DPs. While all DPs featured reproducible Π-A diagrams, successive compression-expansion cycles and surface pressure relaxation experiments revealed differences in the stability of the formed films, which are consistent with the variations in shape persistence and interactions between the studied DPs. Atomic force microscopy after Langmuir-Blodgett transfer of the films displayed a nanostructuring that can be attributed to the increase in attractive forces with increasing polymer generation and anisotropy. The importance of such structures on the surface properties was probed by interfacial shear rheology, which validated the existence of strong albeit brittle structures for fourth-generation DPs. Ultimately, we demonstrate how in particular rod-like DPs can be used as robust foam stabilizers.
Collapse
Affiliation(s)
- Leon F Scherz
- Department of Materials , ETH Zürich , 8093 Zürich , Switzerland
| | - Bram Schroyen
- Department of Materials , ETH Zürich , 8093 Zürich , Switzerland
| | | | | | - Jan Vermant
- Department of Materials , ETH Zürich , 8093 Zürich , Switzerland
| | - Dimitris Vlassopoulos
- Institute of Electronic Structure and Laser , FORTH, 70013 Heraklion , Greece
- Department of Materials Science and Technology , University of Crete , 70013 Heraklion , Greece
| |
Collapse
|
30
|
Lee J, Ku KH, Kim J, Lee YJ, Jang SG, Kim BJ. Light-Responsive, Shape-Switchable Block Copolymer Particles. J Am Chem Soc 2019; 141:15348-15355. [DOI: 10.1021/jacs.9b07755] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Junhyuk Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kang Hee Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Jinwoo Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young Jun Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Se Gyu Jang
- Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
31
|
Forth J, Kim PY, Xie G, Liu X, Helms BA, Russell TP. Building Reconfigurable Devices Using Complex Liquid-Fluid Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806370. [PMID: 30828869 DOI: 10.1002/adma.201806370] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Liquid-fluid interfaces provide a platform both for structuring liquids into complex shapes and assembling dimensionally confined, functional nanomaterials. Historically, attention in this area has focused on simple emulsions and foams, in which surface-active materials such as surfactants or colloids stabilize structures against coalescence and alter the mechanical properties of the interface. In recent decades, however, a growing body of work has begun to demonstrate the full potential of the assembly of nanomaterials at liquid-fluid interfaces to generate functionally advanced, biomimetic systems. Here, a broad overview is given, from fundamentals to applications, of the use of liquid-fluid interfaces to generate complex, all-liquid devices with a myriad of potential applications.
Collapse
Affiliation(s)
- Joe Forth
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Ganhua Xie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Conte Center for Polymer Research, Amherst, MA, 01003, USA
| | - Xubo Liu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Conte Center for Polymer Research, Amherst, MA, 01003, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| |
Collapse
|
32
|
Lee J, Ku KH, Park CH, Lee YJ, Yun H, Kim BJ. Shape and Color Switchable Block Copolymer Particles by Temperature and pH Dual Responses. ACS NANO 2019; 13:4230-4237. [PMID: 30856312 DOI: 10.1021/acsnano.8b09276] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein, we report a simple and robust strategy for preparing dual-responsive shape-switchable block copolymer (BCP) particles, which respond to subtle temperature and pH changes near physiological conditions (i.e., human body temperature and neutral pH). The shape transition of polystyrene- b-poly(4-vinylpyridine) BCP particles between lens and football shapes occurs in very narrow temperature and pH ranges: no temperature-based transition for pH 6.0, 40-50 °C transition for pH 6.5, and 25-35 °C for pH 7.0. To achieve these shape transitions, temperature/pH-responsive polymer surfactants of poly( N-(2-(diethylamino)ethyl)acrylamide- r- N-isopropylacrylamide) are designed to induce dramatic changes in relative solubility and their location in response to temperature and pH changes near physiological conditions. In addition, the BCP particles exhibit reversible shape-transforming behavior according to orthogonal temperature and pH changes. Colorimetric measurements of temperature and pH changes are enabled by shape-transforming properties combined with selective positioning of dyes, suggesting promising potential for these particles in clinical and biomedical applications.
Collapse
Affiliation(s)
- Junhyuk Lee
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , Daejeon 34141 , Republic of Korea
| | - Kang Hee Ku
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , Daejeon 34141 , Republic of Korea
| | - Chan Ho Park
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , Daejeon 34141 , Republic of Korea
| | - Young Jun Lee
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , Daejeon 34141 , Republic of Korea
| | - Hongseok Yun
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , Daejeon 34141 , Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , Daejeon 34141 , Republic of Korea
| |
Collapse
|
33
|
Kang DW, Choi KH, Lee SJ, Park BJ. Mapping Anisotropic and Heterogeneous Colloidal Interactions via Optical Laser Tweezers. J Phys Chem Lett 2019; 10:1691-1697. [PMID: 30907597 DOI: 10.1021/acs.jpclett.9b00232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Heterogeneity among particles is an inherent feature that allows nondeterministic prediction of the properties of assembled structures and materials composed of many particles. Here, we report a promising strategy to quantify the heterogeneous and anisotropic interactions between ellipsoid particles using optical laser tweezers. The configuration and separation between two particles at an oil-water interface were optically controlled, and the capillary interaction behaviors were directly observed and measured. As a result, the optimal particle configurations at energetically favorable states were obtained, and the interaction forces between the particles were identified accurately by determining the trap stiffness in the direction of major and minor axes of the particle. Visualization of the capillary field around individual particles confirmed that the capillary interactions were quadrupolar, anisotropic, and heterogeneous. The measurement method presented here can be widely used to quantify interaction fields for various types of anisotropic particles.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Chemical Engineering , Kyung Hee University , Yongin 17104 , South Korea
| | - Kyu Hwan Choi
- Department of Chemical Engineering , Kyung Hee University , Yongin 17104 , South Korea
| | - Seong Jae Lee
- Department of Polymer Engineering , The University of Suwon , Hwaseong , Gyeonggi 18323 , South Korea
| | - Bum Jun Park
- Department of Chemical Engineering , Kyung Hee University , Yongin 17104 , South Korea
| |
Collapse
|
34
|
Aloi A, Vilanova N, Isa L, de Jong AM, Voets IK. Super-resolution microscopy on single particles at fluid interfaces reveals their wetting properties and interfacial deformations. NANOSCALE 2019; 11:6654-6661. [PMID: 30896703 DOI: 10.1039/c8nr08633h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Solid particles adsorbed at fluid interfaces are crucial for the mechanical stability of Pickering emulsions. The key parameter which determines the kinetic and thermodynamic properties of these colloids is the particle contact angle, θ. Several methods have recently been developed to measure the contact angle of individual particles adsorbed at liquid-liquid interfaces, as morphological and chemical heterogeneities at the particle surface can significantly affect θ. However, none of these techniques enables the simultaneous visualization of the nanoparticles and the reconstruction of the fluid interface to which they are adsorbed, in situ. To tackle this challenge, we utilize a newly developed super-resolution microscopy method, called iPAINT, which exploits non-covalent and continuous labelling of interfaces with photo-activatable fluorescent probes. Herewith, we resolve with nanometer accuracy both the position of individual nanoparticles at a water-octanol interface and the location of the interface itself. First, we determine single particle contact angles for both hydrophobic and hydrophilic spherical colloids. These experiments reveal a non-negligible dependence of θ on particle size, from which we infer an effective line tension, τ. Next, we image elliptical particles at a water-decane interface, showing that the corresponding interfacial deformations can be clearly captured by iPAINT microscopy.
Collapse
Affiliation(s)
- A Aloi
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Post Office Box 513, 5600 MB Eindhoven, The Netherlands. and Laboratory of Self-Organizing Soft Matter, Department of Chemistry and Chemical Engineering, Eindhoven University of Technology, Post Office Box 513, 5600 MB Eindhoven, The Netherlands and Laboratory of Macromolecular and Organic Chemistry, Department of Chemistry and Chemical Engineering, Eindhoven University of Technology, Post Office Box 513, 5600 MB Eindhoven, The Netherlands
| | - N Vilanova
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Post Office Box 513, 5600 MB Eindhoven, The Netherlands. and Laboratory of Macromolecular and Organic Chemistry, Department of Chemistry and Chemical Engineering, Eindhoven University of Technology, Post Office Box 513, 5600 MB Eindhoven, The Netherlands
| | - L Isa
- Laboratory for Interfaces, Soft Matter and Assembly, Department of Materials, ETH Zurich, Vladimir-Prelog Weg 5, 8093 Zürich, Switzerland
| | - A M de Jong
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Post Office Box 513, 5600 MB Eindhoven, The Netherlands. and Laboratory of Molecular Biosensing, Department of Applied Physics, Eindhoven University of Technology, Post Office Box 513, 5600 MB Eindhoven, The Netherlands
| | - I K Voets
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Post Office Box 513, 5600 MB Eindhoven, The Netherlands. and Laboratory of Self-Organizing Soft Matter, Department of Chemistry and Chemical Engineering, Eindhoven University of Technology, Post Office Box 513, 5600 MB Eindhoven, The Netherlands and Laboratory of Macromolecular and Organic Chemistry, Department of Chemistry and Chemical Engineering, Eindhoven University of Technology, Post Office Box 513, 5600 MB Eindhoven, The Netherlands and Laboratory of Physical Chemistry, Department of Chemistry and Chemical Engineering, Eindhoven University of Technology, Post Office Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
35
|
Al-Milaji KN, Zhao H. Probing the Colloidal Particle Dynamics in Drying Sessile Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2209-2220. [PMID: 30630314 DOI: 10.1021/acs.langmuir.8b03406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Particle deposition and assembly in the vicinity of contact lines of evaporative sessile droplets have been intensively investigated during the past decade. Yet little is known about particle arrangement in the contact-line region initiated by the self-assembled particles at the air-liquid interface and how the particle pinning behaves differently compared with that when particles are transported from the bulk of the sessile droplet to the three-phase contact line. We utilized the dual-droplet inkjet printing process to elucidate the versatility in particle deposition and assembly generated near the contact-line region and demonstrated the influence of such printing technique on particle pinning at the contact line after solvent evaporation. Wetting droplets containing sulfate-functionalized polystyrene (sulfate-PS) nanoparticles were jetted over the supporting droplets with carboxyl-PS nanoparticles, where the interplay between the solvent evaporation and particle transport dictates the final morphology of particle deposition. Depending on the particle size and concentration used in the supporting droplet, different morphologies of particle depositions near the periphery of the supporting droplet have been obtained such as stratified rings, blended rings, and rings of particles mainly from the air-liquid interface. Three characteristic times are considered in this study, namely, total time for solvent evaporation ( tevp), time required for the colloidal particles in the supporting droplet to reach the contact line and form the first layers of deposition ( tps), and time needed for the particles at the interface to reach the contact line ( tpw). The ratios of characteristic times ( tps/ tevp) and ( tps/ tpw) determine the final particle assembly near the contact-line region. The ability to control such particle deposition and assembly could have a direct implication on developing facile, cost-effective technologies essential for patterning heterogeneous structured coatings and devices.
Collapse
Affiliation(s)
- Karam Nashwan Al-Milaji
- Department of Mechanical and Nuclear Engineering , Virginia Commonwealth University , BioTech One, 800 East Leigh Street , Richmond , Virginia 23219 , United States
| | - Hong Zhao
- Department of Mechanical and Nuclear Engineering , Virginia Commonwealth University , BioTech One, 800 East Leigh Street , Richmond , Virginia 23219 , United States
| |
Collapse
|
36
|
Anjali TG, Basavaraj MG. Shape-Anisotropic Colloids at Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3-20. [PMID: 29986588 DOI: 10.1021/acs.langmuir.8b01139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Research in the 1980s demonstrated the formation of monolayers of particles achieved by interfacial particle trapping as a model system for investigating colloids in two dimensions. Since then, microscopy visualization of two-dimensional particle monolayers and quantification of the microstructure have led to significant fundamental understanding of a number of phenomena such as crystallization, freezing and melting transitions, dislocation dynamics, aggregation kinetics, and others. On the application front, particles at curved interfaces, as often the case in particle-stabilized emulsions and foams, have received considerable attention in the last few decades. The growing interest in the search for novel particles and new strategies to effect emulsion stabilization stems from their application in several disciplines. Moreover, particle-stabilized Pickering emulsions and foams can also be used to derive a number of advanced functional materials. Compared to several accounts of research on spherical colloids at fluid-fluid interfaces, investigations of the behavior of shape-anisotropic particles at interfaces, albeit receiving considerable attention in recent years, are still in a nascent stage. The objective of this feature article is to highlight our recent work in this area. In particular, the adsorption of shape-anisotropic particles to interfaces, wetting behavior, interfacial self-assembly, the response of nonspherical-particle-coated interfaces to compression and shear, and their ability to stabilize emulsions are discussed.
Collapse
Affiliation(s)
- Thriveni G Anjali
- Polymer Engineering and Colloid Science (PECS) Laboratory, Department of Chemical Engineering , Indian Institute of Technology Madras , Chennai 600 036 , India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloid Science (PECS) Laboratory, Department of Chemical Engineering , Indian Institute of Technology Madras , Chennai 600 036 , India
| |
Collapse
|
37
|
Luo AM, Vermant J, Ilg P, Zhang Z, Sagis LM. Self-assembly of ellipsoidal particles at fluid-fluid interfaces with an empirical pair potential. J Colloid Interface Sci 2019; 534:205-214. [DOI: 10.1016/j.jcis.2018.08.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 11/25/2022]
|
38
|
Newton B, Mohammed R, Davies GB, Botto L, Buzza DMA. Capillary Interaction and Self-Assembly of Tilted Magnetic Ellipsoidal Particles at Liquid Interfaces. ACS OMEGA 2018; 3:14962-14972. [PMID: 31458162 PMCID: PMC6644019 DOI: 10.1021/acsomega.8b01818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/24/2018] [Indexed: 05/04/2023]
Abstract
Magnetic ellipsoidal particles adsorbed at a liquid interface provide exciting opportunities for creating switchable functional materials, where self-assembly can be switched on and off using an external field [Davies et al., Adv. Mater., 2014, 26, 6715]. In order to gain a deeper understanding of this novel system in the presence of an external field, we study the capillary interaction and self-assembly of tilted ellipsoids using analytical theory and finite element simulations. We derive an analytical expression for the dipolar capillary interaction between tilted ellipsoids in elliptical polar coordinates, which exhibits a 1/r 2 power law dependence in the far field (i.e., large particle separations r) and correctly captures the orientational dependence of the capillary interactions in the near field. Using this dipole potential and finite element simulations, we further analyze the energy landscape of particle clusters consisting of up to eight tilted ellipsoids in contact. For clusters of two particles, we find that the side-to-side configuration is stable, whereas the tip-to-tip configuration is unstable. However, for clusters of more than three particles, we find that circular loops of side-to-side particles become globally stable, whereas linear chains of side-to-side particles become metastable. Furthermore, the energy barrier for the linear-to-loop transition decreases with increasing particle number. Our results explain both thermodynamically and kinetically why tilted ellipsoids assemble side-to-side locally but have a strong tendency to form loops on larger length scales.
Collapse
Affiliation(s)
- Bethany
J. Newton
- Nano3
Group, School of Mathematics & Physical Sciences, University of Hull, Hull HU6 7RX, U.K.
| | - Rizwaan Mohammed
- Nano3
Group, School of Mathematics & Physical Sciences, University of Hull, Hull HU6 7RX, U.K.
- Clare
College, Trinity Lane, Cambridge CB2 1TL, U.K.
| | - Gary B. Davies
- Institute
for Computational Physics, Allmandring 3, 70569 Stuttgart, Germany
| | - Lorenzo Botto
- School
of Engineering and Materials Science, Queen
Mary, University of London, London E1 4NS, U.K.
| | - D. Martin A. Buzza
- Nano3
Group, School of Mathematics & Physical Sciences, University of Hull, Hull HU6 7RX, U.K.
- E-mail: (D.M.A.B.)
| |
Collapse
|
39
|
Roller J, Pfleiderer P, Meijer JM, Zumbusch A. Detection and tracking of anisotropic core-shell colloids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:395903. [PMID: 30141415 DOI: 10.1088/1361-648x/aadcbf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Optical microscopy techniques with three dimensional (3D) resolution are powerful tools for the real-space imaging of the structure and dynamics of colloidal systems. While real-space imaging of spherical particles is well established, the observation of shape anisotropic particles has only recently met a lot of interest. Apart from translation, shape anisotropic particles also possess additional rotational degrees of freedom. In this manuscript, we introduce a novel technique to find the position and the orientation of anisotropic particles in 3D. It is based on an algorithm which is applicable to core-shell particles consisting of a spherical core and a shell with arbitrary shape. We demonstrate the performance of this algorithm using PMMA/PMMA (polymethyl methacrylate) core-shell ellipsoids. The algorithm is tested on artificial images and on experimental data. The correct identification of particle positions with subpixel accuracy and of their orientations with high angular precision in dilute and dense systems is shown. In addition, we developed an advanced particle tracking algorithm that takes both translational and rotational movements of the anisotropic particles into account. We show that our 3D detection and tracking technique is suitable for the accurate and reliable detection of large and dense colloidal systems containing several thousands of particles.
Collapse
Affiliation(s)
- J Roller
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
40
|
Maestro A, Santini E, Guzmán E. Physico-chemical foundations of particle-laden fluid interfaces. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:97. [PMID: 30141087 DOI: 10.1140/epje/i2018-11708-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Particle-laden interfaces are ubiquitous nowadays. The understanding of their properties and structure is essential for solving different problems of technological and industrial relevance; e.g. stabilization of foams, emulsions and thin films. These rely on the response of the interface to mechanical perturbations. The complex mechanical response appearing in particle-laden interfaces requires deepening on the understanding of physico-chemical mechanisms underlying the assembly of particles at interface which plays a central role in the distribution of particles at the interface, and in the complex interfacial dynamics appearing in these systems. Therefore, the study of particle-laden interfaces deserves attention to provide a comprehensive explanation on the complex relaxation mechanisms involved in the stabilization of fluid interfaces.
Collapse
Affiliation(s)
- Armando Maestro
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042, Grenoble, Cedex 9, France
| | - Eva Santini
- Istituto di Chimica della Materia Condensata e di Tecnologia per l'Energia (ICMATE), U.O.S. Genova-Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, 16149, Genova, Italy
| | - Eduardo Guzmán
- Departamento de Química Física I, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 1, 28040, Madrid, Spain.
| |
Collapse
|
41
|
Lo YC, Tseng HF, Chiu YJ, Wu BH, Li JW, Chen JT. Solvent-Induced Shape Recovery of Anisotropic Polymer Particles Prepared by a Modified Thermal Stretching Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8326-8332. [PMID: 29924616 DOI: 10.1021/acs.langmuir.8b01479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anisotropic polymer particles have attracted great attention because of their unique properties and potential applications in various areas, such as microelectronics, drug delivery, and medical imaging. The fabrication and morphology control, especially the shape recovery, of anisotropic polymer particles, however, remains a challenging task. In this work, we develop a novel strategy to fabricate anisotropic polymer particles by thermally stretching poly(vinyl alcohol) (PVA) films embedding polystyrene (PS) microspheres using a weight. Depending on the preannealing condition, anisotropic PS particles with two different shapes, sharp-headed and blunt-headed PS particles, can be obtained. The PVA films can be selectively removed by isopropanol/water, releasing the anisotropic PS particles. By adding tetrahydrofuran (THF), a good solvent for PS, into the PS particle-containing solutions, the anisotropic particles gradually transform back to spheres to reduce the total interfacial energies. The shape recovery rates of the polymer particles can be controlled by the amount of the added THF. This work not only provides a simple and feasible route to fabricate anisotropic polymer particles but also contributes to a deeper understanding in the solvent-induced shape recovery process from anisotropic polymer particles to polymer spheres.
Collapse
Affiliation(s)
- Yu-Ching Lo
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 30010 , Taiwan
| | - Hsiao-Fan Tseng
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 30010 , Taiwan
| | - Yu-Jing Chiu
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 30010 , Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program , Academia Sinica and National Chiao Tung University , Hsinchu 30010 , Taiwan
| | - Bo-Hao Wu
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 30010 , Taiwan
| | - Jia-Wei Li
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 30010 , Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 30010 , Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University , Hsinchu 30010 , Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program , Academia Sinica and National Chiao Tung University , Hsinchu 30010 , Taiwan
| |
Collapse
|
42
|
Tao R, Fang Z, Zhang J, Ning H, Chen J, Yang C, Zhou Y, Yao R, Lin W, Peng J. Critical Impact of Solvent Evaporation on the Resolution of Inkjet Printed Nanoparticles Film. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22883-22888. [PMID: 29939008 DOI: 10.1021/acsami.8b06519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We first verify the critical role of solvent evaporation on the resolution of inkjet printing. To confirm our hypothesis, we adjusted the evaporation rate gradient along the surface of adjacent droplets by controlling the drying microenvironment. Uneven solvent evaporation flux caused thermocapillary surface flow inward the space of micrometer-sized droplets and increase the air pressure, which prevented the neighboring droplets from coalescence. When reducing the droplet distance by the solvent evaporation-based method, a uniform profile could be obtained at the same time. This work brings us a step closer to resolving one of the critical bottlenecks to commercializing printed electronic goods.
Collapse
Affiliation(s)
| | | | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education , Shanghai University , Shanghai 200072 , China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Grosjean G, Hubert M, Vandewalle N. Magnetocapillary self-assemblies: Locomotion and micromanipulation along a liquid interface. Adv Colloid Interface Sci 2018; 255:84-93. [PMID: 28754380 DOI: 10.1016/j.cis.2017.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 07/03/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
This paper presents an overview and discussion of magnetocapillary self-assemblies. New results are presented, in particular concerning the possible development of future applications. These self-organizing structures possess the notable ability to move along an interface when powered by an oscillatory, uniform magnetic field. The system is constructed as follows. Soft magnetic particles are placed on a liquid interface, and submitted to a magnetic induction field. An attractive force due to the curvature of the interface around the particles competes with an interaction between magnetic dipoles. Ordered structures can spontaneously emerge from these conditions. Furthermore, time-dependent magnetic fields can produce a wide range of dynamic behaviours, including non-time-reversible deformation sequences that produce translational motion at low Reynolds number. In other words, due to a spontaneous breaking of time-reversal symmetry, the assembly can turn into a surface microswimmer. Trajectories have been shown to be precisely controllable. As a consequence, this system offers a way to produce microrobots able to perform different tasks. This is illustrated in this paper by the capture, transport and release of a floating cargo, and the controlled mixing of fluids at low Reynolds number.
Collapse
|
44
|
Parsa M, Harmand S, Sefiane K. Mechanisms of pattern formation from dried sessile drops. Adv Colloid Interface Sci 2018; 254:22-47. [PMID: 29628116 DOI: 10.1016/j.cis.2018.03.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/06/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
The formation of patterns after the evaporation of colloidal droplets deposited on a solid surface is an everyday natural phenomenon. During the past two decades, this topic has gained broader audience due to its numerous applications in biomedicine, nanotechnology, printing, coating, etc. This paper presents a detailed review of the experimental studies related to the formation of various deposition patterns from dried droplets of complex fluids (i.e., nanofluids, polymers). First, this review presents the fundamentals of sessile droplet evaporation including evaporation modes and internal flow fields. Then, the most observed dried patterns are presented and the mechanisms behind them are discussed. The review ends with the categorisation and exhaustive investigation of a wide range of factors affecting pattern formation.
Collapse
|
45
|
Kim PY, Dinsmore AD, Hoagland DA, Russell TP. Wetting, meniscus structure, and capillary interactions of microspheres bound to a cylindrical liquid interface. SOFT MATTER 2018; 14:2131-2141. [PMID: 29488991 DOI: 10.1039/c7sm02454a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Wetting, meniscus structure, and capillary interactions for polystyrene microspheres deposited on constant curvature cylindrical liquid interfaces, constructed from nonvolatile ionic or oligomeric liquids, were studied by optical interferometry and optical microscopy. The liquid interface curvature resulted from the preferential wetting of finite width lines patterned onto planar silicon substrates. Key variables included sphere diameter, nominal (or average) contact angle, and deviatoric interfacial curvature. Menisci adopted the quadrupolar symmetry anticipated by theory, with interfacial deformation closely following predicted dependences on sphere diameter and nominal contact angle. Unexpectedly, the contact angle was not constant locally around the contact line, the nominal contact angle varied among seemingly identical spheres, and the maximum interface deviation did not follow the predicted dependence on deviatoric interfacial curvature. Instead, this deviation was up to an order-of-magnitude larger than predicted. Trajectories of neighboring microspheres visually manifested quadrupole-quadrupole interactions, eventually producing square sphere packings that foreshadow interfacial assembly as a potential route to hierarchical 2D particle structures.
Collapse
Affiliation(s)
- Paul Y Kim
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | | | | | | |
Collapse
|
46
|
Lim JH, Kim JY, Kang DW, Choi KH, Lee SJ, Im SH, Park BJ. Heterogeneous Capillary Interactions of Interface-Trapped Ellipsoid Particles Using the Trap-Release Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:384-394. [PMID: 29232143 DOI: 10.1021/acs.langmuir.7b03882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Heterogeneous capillary interactions between ellipsoid particles at the oil-water interface were measured via optical laser tweezers. Two trapped particles were aligned in either tip-to-tip (tt) or side-to-side (ss) configurations via the double-trap method and were released from the optical traps, leading to particle-particle attractions due to the capillary forces caused by quadrupolar interface deformation. On the basis of image analysis and calculations of the Stokes drag force, the capillary interactions between two ellipsoid particles with the same aspect ratio (E) were found to vary with the particle pairs that were measured, indicating that the interactions were nondeterministic or heterogeneous. Heterogeneous capillary interactions could be attributed to undulation of the interface meniscus due to chemical and/or geometric particle heterogeneity. The power law exponent for the capillary interaction Ucap ≈ r-β was found to be β ≈ 4 and was independent of the aspect ratio and particle configuration in long-range separations. Additionally, with regard to the tt configuration, the magnitude of the capillary force proportionally increased with the E value (E > 1) when two ellipsoid particles approached each other in the tt configuration.
Collapse
Affiliation(s)
- Jin Hyun Lim
- Department of Chemical Engineering, Kyung Hee University , Yongin 17104, South Korea
| | - Jun Young Kim
- Department of Polymer Engineering, The University of Suwon , Hwaseong, Gyeonggi 18323, South Korea
| | - Dong Woo Kang
- Department of Chemical Engineering, Kyung Hee University , Yongin 17104, South Korea
| | - Kyu Hwan Choi
- Department of Chemical Engineering, Kyung Hee University , Yongin 17104, South Korea
| | - Seong Jae Lee
- Department of Polymer Engineering, The University of Suwon , Hwaseong, Gyeonggi 18323, South Korea
| | - Sang Hyuk Im
- Department of Chemical and Biological Engineering, Korea University , Seoul 02841, South Korea
| | - Bum Jun Park
- Department of Chemical Engineering, Kyung Hee University , Yongin 17104, South Korea
| |
Collapse
|
47
|
Metzmacher J, Poty M, Lumay G, Vandewalle N. Self-assembly of smart mesoscopic objects. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:108. [PMID: 29230563 DOI: 10.1140/epje/i2017-11599-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Self-assembly due to capillary forces is a common method for generating 2D mesoscale structures made of identical particles floating at some liquid-air interface. We show herein how to create soft entities that deform or not the liquid interface as a function of the strength of some applied magnetic field. These smart floating objects self-assemble or not depending on the application of an external field. Moreover, we show that the self-assembling process can be reversed opening ways to rearrange structures.
Collapse
Affiliation(s)
- J Metzmacher
- GRASP, CESAM Research Unit, Institute of Physics B5a, University of Liège, B4000, Liège, Belgium.
| | - M Poty
- GRASP, CESAM Research Unit, Institute of Physics B5a, University of Liège, B4000, Liège, Belgium
| | - G Lumay
- GRASP, CESAM Research Unit, Institute of Physics B5a, University of Liège, B4000, Liège, Belgium
| | - N Vandewalle
- GRASP, CESAM Research Unit, Institute of Physics B5a, University of Liège, B4000, Liège, Belgium
| |
Collapse
|
48
|
Şenbil N, Dinsmore AD. Deformation of the contact line around spherical particles bound at anisotropic fluid interfaces. SOFT MATTER 2017; 13:8234-8239. [PMID: 29067385 DOI: 10.1039/c7sm01548h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
When a particle adsorbs at a liquid interface, the 3-phase contact line geometry depends on the shape of the particle and of the liquid interface. The shape of the contact line is the key to controlling capillary forces among particles, and is therefore a useful means to direct assembly of interfacial particles. We measured the shape of the contact line around millimeter-sized PDMS-coated glass spheres at water/air interfaces with anisotropic shapes. We studied the advancing and receding conditions separately. We focused on interfaces with a cylindrical shape, where the predominant deformation of the meniscus and the contact line both have quadrupolar cos(2ϕ) symmetry. We related the measured magnitude of the quadrupolar deformation to the applied vertical force on the sphere and the interface's deviatoric curvature, D0. For modest curvature (D0 < 0.1 × sphere radius), our results agree with the theoretical prediction for free particles. At higher curvature, the measurements exceed the theory. The theory appears to apply even when there is contact-angle hysteresis, as long as the measured contact angle is used rather than the equilibrium (Young-Dupré) angle. The magnitude of the quadrupolar deformation depends on the applied force. Together, these results show the range of validity of the theory.
Collapse
Affiliation(s)
- Nesrin Şenbil
- Department of Physics, Univ. of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
49
|
Mao C, Huang Y, Yang J, Kong M, Wang Y, Yang Q, Li G. Controlling the Orientation of Droplets in Ellipsoid-Filled Polymeric Emulsions with Particle Parameters and Flow Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10577-10587. [PMID: 28930633 DOI: 10.1021/acs.langmuir.7b02240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effect of particle parameters [aspect ratio (AR) and concentration] and flow conditions (gap spacing and shear rate) on droplet orientation deformation behavior in polystyrene (PS) particle-filled binary polymeric emulsions is investigated by using a rheo-optical technique and confocal microscopy. Interesting vorticity orientation behavior is achieved by tailoring experimental conditions to yield rigid anisotropic droplets during slow confined shear flow. PS ellipsoids with a high AR are found to reside both at the fluid interface in a monolayer side-on state and inside droplets, leading to the formation of rigid anisotropic droplets because of the interfacial/bulk jamming effect at appropriate particle concentrations. In unconfined bulk samples, droplets with a vorticity orientation can also be observed under the wall migration effect and confinement effect arising from nearby droplets. However, the overly strong wall confinement effect remarkably facilitates the coalescence of vorticity-aligned droplets during slow shear, eventually leading to the formation of a long stringlike phase aligning along the flow direction. High shear rates generate refined droplets with lower particle coverage and weak rigidity, which restrain the formation of anisotropic droplets and thus suppress the droplet vorticity orientation.
Collapse
Affiliation(s)
- Chaoying Mao
- College of polymer science and engineering, State key laboratory of polymer materials engineering of China, Sichuan University , No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yajiang Huang
- College of polymer science and engineering, State key laboratory of polymer materials engineering of China, Sichuan University , No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Junlong Yang
- College of polymer science and engineering, State key laboratory of polymer materials engineering of China, Sichuan University , No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Miqiu Kong
- School of Aeronautics and Astronautics, Sichuan University , No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yuan Wang
- College of Chemical Engineering, Sichuan University , No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Qi Yang
- College of polymer science and engineering, State key laboratory of polymer materials engineering of China, Sichuan University , No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Guangxian Li
- College of polymer science and engineering, State key laboratory of polymer materials engineering of China, Sichuan University , No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
50
|
Dasgupta S, Auth T, Gompper G. Nano- and microparticles at fluid and biological interfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:373003. [PMID: 28608781 PMCID: PMC7104866 DOI: 10.1088/1361-648x/aa7933] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/12/2017] [Accepted: 06/13/2017] [Indexed: 05/05/2023]
Abstract
Systems with interfaces are abundant in both technological applications and biology. While a fluid interface separates two fluids, membranes separate the inside of vesicles from the outside, the interior of biological cells from the environment, and compartmentalize cells into organelles. The physical properties of interfaces are characterized by interface tension, those of membranes are characterized by bending and stretching elasticity. Amphiphilic molecules like surfactants that are added to a system with two immiscible fluids decrease the interface tension and induce a bending rigidity. Lipid bilayer membranes of vesicles can be stretched or compressed by osmotic pressure; in biological cells, also the presence of a cytoskeleton can induce membrane tension. If the thickness of the interface or the membrane is small compared with its lateral extension, both can be described using two-dimensional mathematical surfaces embedded in three-dimensional space. We review recent work on the interaction of particles with interfaces and membranes. This can be micrometer-sized particles at interfaces that stabilise emulsions or form colloidosomes, as well as typically nanometer-sized particles at membranes, such as viruses, parasites, and engineered drug delivery systems. In both cases, we first discuss the interaction of single particles with interfaces and membranes, e.g. particles in external fields, non-spherical particles, and particles at curved interfaces, followed by interface-mediated interaction between two particles, many-particle interactions, interface and membrane curvature-induced phenomena, and applications.
Collapse
Affiliation(s)
- S Dasgupta
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institut Curie, CNRS, UMR 168, 75005 Paris, France
- Present address: Department of Physics, University of Toronto, Toronto, Ontario M5S1A7, Canada
| | - T Auth
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - G Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|