1
|
Kim Y, Lučić A, Lenz C, Farges F, Schwalm MP, Saxena K, Hanke T, Marples PG, Aschenbrenner JC, Fearon D, von Delft F, Krämer A, Knapp S. Crystallographic fragment screening reveals ligand hotspots in TRIM21 PRY-SPRY domain. Commun Chem 2025; 8:185. [PMID: 40514378 PMCID: PMC12166061 DOI: 10.1038/s42004-025-01574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 05/28/2025] [Indexed: 06/16/2025] Open
Abstract
Tripartite motif-containing protein 21 (TRIM21), and particularly its PRY-SPRY protein interaction domain, plays a critical role in the immune response by recognizing intracellular antibodies targeting them for degradation. In this study, we performed a crystallographic fragment screening (CFS) campaign to identify potential small molecule binders targeting the PRY-SPRY domain of TRIM21. Our screen identified a total of 109 fragments binding to TRIM21 that were distributed across five distinct binding sites. These fragments have been designed to facilitate straightforward follow-up chemistry, making them ideal starting points for further chemical optimization. A subsequent fragment merging approach demonstrated improved activity. To enable functional validation of compounds with full length human TRIM21, we established a NanoBRET assay suitable for measuring target engagement to the main Fc binding site in life cells. The high-resolution structural data and observed binding modes across the different sites highlight the versatility of the PRY-SPRY domain as a target for small-molecule intervention. The presented data provide a solid foundation for structure-guided ligand design, enabling the rational design of more potent and selective compounds, with the goal to develop bivalent molecules such as Proteolysis Targeting Chimeras (PROTACs).
Collapse
Affiliation(s)
- Yeojin Kim
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute of Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | - Aleksandar Lučić
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute of Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | - Christopher Lenz
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute of Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | - Frederic Farges
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute of Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | - Martin P Schwalm
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute of Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
- German Translational Cancer Consortium (DKTK), Frankfurt am Main, Germany
| | - Krishna Saxena
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute of Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute of Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | - Peter G Marples
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, UK
| | - Jasmin C Aschenbrenner
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, UK
| | - Daren Fearon
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, UK
| | - Frank von Delft
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, UK
- Centre for Medicines Discovery, NDM Research Building, University of Oxford, Oxford, UK
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany.
- Structural Genomics Consortium, Buchmann Institute of Molecular Life Sciences (BMLS), Frankfurt am Main, Germany.
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany.
- Structural Genomics Consortium, Buchmann Institute of Molecular Life Sciences (BMLS), Frankfurt am Main, Germany.
- German Translational Cancer Consortium (DKTK), Frankfurt am Main, Germany.
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Dunnett L, Das S, Venditti V, Prischi F. Enhanced identification of small molecules binding to hnRNPA1 via cryptic pockets mapping coupled with X-ray fragment screening. J Biol Chem 2025; 301:108335. [PMID: 39984046 PMCID: PMC11979464 DOI: 10.1016/j.jbc.2025.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025] Open
Abstract
The human heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is a prototypical RNA-binding protein essential for regulating a wide range of post-transcriptional events in cells. As a multifunctional protein with a key role in RNA metabolism, deregulation of its functions has been linked to neurodegenerative diseases, tumor aggressiveness, and chemoresistance, which has fuelled efforts to develop novel therapeutics that modulate its RNA-binding activities. Here, using a combination of molecular dynamics simulations and graph neural network pocket predictions, we showed that hnRNPA1 N-terminal RNA-binding domain (unwinding protein 1 [UP1]) contains several cryptic pockets capable of binding small molecules. To identify chemical entities for the development of potent drug candidates and experimentally validate identified druggable hotspots, we carried out a large fragment screening on UP1 protein crystals. Our screen identified 36 hits that extensively sample UP1 functional regions involved in RNA recognition and binding as well as map hotspots onto novel protein interaction surfaces. We observed a wide range of ligand-induced conformational variation by stabilization of dynamic protein regions. Our high-resolution structures, the first of an hnRNP in complex with a fragment or small molecule, provide rapid routes for the rational development of a range of different inhibitors and chemical tools for studying molecular mechanisms of hnRNPA1-mediated splicing regulation.
Collapse
Affiliation(s)
- Louise Dunnett
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Sayan Das
- Department of Chemistry, Iowa State University, Ames, Iowa, United States; Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States
| | - Vincenzo Venditti
- Department of Chemistry, Iowa State University, Ames, Iowa, United States; Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States
| | - Filippo Prischi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
3
|
Chen Y, Bhattacharya S, Bergmann L, Correy GJ, Tan S, Hou K, Biel J, Lu L, Bakanas I, Polizzi NF, Fraser JS, DeGrado WF. Emergence of specific binding and catalysis from a designed generalist binding protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635804. [PMID: 39975260 PMCID: PMC11838529 DOI: 10.1101/2025.01.30.635804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The evolution of binding and catalysis played a central role in the emergence of life. While natural proteins have finely tuned affinities for their primary ligands, they also bind weakly and promiscuously to other molecules, which serve as starting points for stepwise, incremental evolution of entirely new specificities. Thus, modern proteins emerged from the joint exploration of sequence and structural space. The ability of natural proteins to bind promiscuously to small molecule fragments has been widely evaluated using methods including crystallographic fragment screening. However, this approach had not been applied to de novo proteins. Here, we apply this method to explore the promiscuity of a de novo small molecule-binding protein ABLE. As in Nature, we found ABLE was capable of forming weak complexes, which were found to be excellent starting points for evolving entirely new functions, including a binder of a turn-on fluorophore and a highly efficient and specific Kemp eliminase enzyme. This work shows how Nature and protein designers can take advantage of promiscuous binding interactions to evolve new proteins with specialized functions.
Collapse
Affiliation(s)
- Yuda Chen
- Department of Pharmaceutical Chemistry & Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Sagar Bhattacharya
- Department of Pharmaceutical Chemistry & Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Lena Bergmann
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Sophia Tan
- Department of Pharmaceutical Chemistry & Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Kaipeng Hou
- Department of Pharmaceutical Chemistry & Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Justin Biel
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Lei Lu
- Department of Pharmaceutical Chemistry & Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Ian Bakanas
- Department of Pharmaceutical Chemistry & Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Nicholas F. Polizzi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry & Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Oberthür D, Hakanpää J, Chatziefthymiou S, Pompidor G, Bean R, Chapman HN, Weckert E. Present and future structural biology activities at DESY and the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:474-485. [PMID: 39964790 PMCID: PMC11892905 DOI: 10.1107/s1600577525000669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025]
Abstract
Structural biology investigations using synchrotron radiation have a long history at the photon science facilities at DESY. Presently, EMBL and DESY operate state-of-the-art macromolecular crystallography and biological SAXS stations at the synchrotron radiation source PETRA III for the international user community. New experimental opportunities for experiments with femtosecond temporal resolution and for extremely small macromolecular crystals have become available with the advent of X-ray free-electron lasers (XFELs) such as the European XFEL. Within large international collaborations, groups at DESY and the European XFEL have contributed significantly to the development of experimental and data analysis methods to enable serial crystallography experiments at both XFELs and high-brilliance synchrotron radiation sources. The available portfolio of analytical infrastructure in photon science at DESY has attracted several campus partners to contribute to the development of instruments and methods and provide their own complementary experimental techniques, thereby establishing a fruitful scientific environment to make significant contributions to present and future societal challenges in the field of life sciences.
Collapse
Affiliation(s)
- Dominik Oberthür
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | - Johanna Hakanpää
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | | | | | | | - Henry N. Chapman
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
- Centre for Ultrafast Imaging, Luruper Chausee 149, 22761Hamburg, Germany
- Department of PhysicsUniversity of HamburgLuruper Chausee 14922761HamburgGermany
| | - Edgar Weckert
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| |
Collapse
|
5
|
Huang L, Wang W, Zhu Z, Li Q, Li M, Zhou H, Xu Q, Wen W, Wang Q, Yu F. Novel starting points for fragment-based drug design against human heat-shock protein 90 identified using crystallographic fragment screening. IUCRJ 2025; 12:177-187. [PMID: 39819741 PMCID: PMC11878448 DOI: 10.1107/s2052252524012247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025]
Abstract
Heat-shock protein 90 (HSP90) is a highly active molecular chaperone that plays a crucial role in cellular function. It facilitates the folding, assembly and stability of various oncogenic proteins, particularly kinases and transcription factors involved in regulating tumor growth and maintenance signaling pathways. Consequently, HSP90 inhibitors are being explored as drugs for cancer therapy. Crystallographic fragment screening is a novel screening method that has been developed in recent years for fragment-based drug discovery and is known for its high hit rate and its ability to provide direct insights into the complex structures of proteins and compounds. In this paper, high-diffraction-resolution crystals of the N-terminal domain of human HSP90α were employed in crystallographic fragment screening to discover binding fragments and binding sites. A diverse library of 800 structurally distinct fragments was screened, yielding 91 starting points for the fragment-based drug design of new HSP90α N-terminal inhibitors. Nearly a thousand crystals were measured, with 738 being processed and phased using a highly automated data-processing pipeline including data reduction and phasing, refinement and hit identification via PanDDA multi-data-set analysis. The 91 identified compounds bind to eight distinct regions of the HSP90α N-terminus, with 63 fragments located in the ATP-binding pocket and its surroundings, thus demonstrating the potential for the development of HSP90α- and ATP-binding inhibitors. This study emphasizes crystallographic fragment screening as a powerful method that can effectively identify fragment molecules and inhibitors that bind to HSP90α, contributing to ongoing efforts in cancer drug discovery.
Collapse
Affiliation(s)
- Liqing Huang
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghai201800People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Weiwei Wang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of SciencesShanghai201204People’s Republic of China
| | - Zhimin Zhu
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghai201800People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Qianhui Li
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghai201800People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Minjun Li
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of SciencesShanghai201204People’s Republic of China
| | - Huan Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghai201800People’s Republic of China
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of SciencesShanghai201204People’s Republic of China
| | - Qin Xu
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghai201800People’s Republic of China
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of SciencesShanghai201204People’s Republic of China
| | - Wen Wen
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghai201800People’s Republic of China
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of SciencesShanghai201204People’s Republic of China
| | - Qisheng Wang
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghai201800People’s Republic of China
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of SciencesShanghai201204People’s Republic of China
| | - Feng Yu
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghai201800People’s Republic of China
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of SciencesShanghai201204People’s Republic of China
| |
Collapse
|
6
|
Watt J, Martin MP, Endicott JA, Noble MEM. Different applications and differentiated libraries for crystallographic fragment screening. Curr Opin Struct Biol 2025; 90:102982. [PMID: 39827710 DOI: 10.1016/j.sbi.2024.102982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Macromolecular X-ray crystallography allows detection and characterisation of the binding of small, low-affinity chemical fragments. Here we review the utility of fragment screening for drug discovery, its potential for use in discovery science, as well as some of the distinct types of fragments that have been compiled into libraries.
Collapse
Affiliation(s)
- Jessica Watt
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle Upon Tyne, NE2 4HH, UK; Cancer Research Horizons Therapeutic Innovation, Newcastle Drug Discovery Group, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle Upon Tyne, NE2 4HH, UK
| | - Mathew P Martin
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle Upon Tyne, NE2 4HH, UK; Cancer Research Horizons Therapeutic Innovation, Newcastle Drug Discovery Group, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle Upon Tyne, NE2 4HH, UK
| | - Jane A Endicott
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle Upon Tyne, NE2 4HH, UK; Cancer Research Horizons Therapeutic Innovation, Newcastle Drug Discovery Group, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle Upon Tyne, NE2 4HH, UK
| | - Martin E M Noble
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle Upon Tyne, NE2 4HH, UK; Cancer Research Horizons Therapeutic Innovation, Newcastle Drug Discovery Group, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
7
|
Dubianok Y, Kumar A, Rak A. Structural Biology for Target Identification and Validation. Methods Mol Biol 2025; 2905:17-49. [PMID: 40163296 DOI: 10.1007/978-1-0716-4418-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Structural biology is catalyzing a paradigm shift in drug discovery towards rational approaches in target identification and validation. Leveraging structural insights obtained through cryo-EM or X-ray crystallography not only enhances the efficiency of drug discovery projects in terms of time and cost, but also significantly improves the likelihood of achieving market approval.Initiating a successful project necessitates more than just a robust package for target credentialing; it demands a comprehensive strategy for the identification and optimization of potential drugs. The critical evaluation of target druggability is markedly enhanced when supported by experimentally derived structural information. This nuanced approach ensures a more thorough understanding of the technical feasibility of drug development from the project's inception.
Collapse
Affiliation(s)
- Yuliya Dubianok
- Sanofi R&D, Bio Structure and Biophysics at Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Anand Kumar
- Sanofi R&D, Bio Structure and Biophysics at Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Alexey Rak
- Sanofi R&D, Bio Structure and Biophysics at Integrated Drug Discovery, Vitry-sur-Seine, France.
| |
Collapse
|
8
|
Dunnett L, Das S, Venditti V, Prischi F. Enhanced identification of small molecules binding to hnRNPA1 via cryptic pockets mapping coupled with X-Ray fragment screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628909. [PMID: 39763864 PMCID: PMC11702612 DOI: 10.1101/2024.12.17.628909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The human heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is a prototypical RNA-binding protein essential in regulating a wide range of post-transcriptional events in cells. As a multifunctional protein with a key role in RNA metabolism, deregulation of its functions has been linked to neurodegenerative diseases, tumour aggressiveness and chemoresistance, which has fuelled efforts to develop novel therapeutics that modulates its RNA binding activities. Here, using a combination of Molecular Dynamics (MD) simulations and graph neural network pockets predictions, we showed that hnRNPA1 N-terminal RNA binding domain (UP1) contains several cryptic pockets capable of binding small molecules. To identify chemical entities for development of potent drug candidates and experimentally validate identified druggable hotspots, we carried out a large fragment screening on UP1 protein crystals. Our screen identified 36 hits which extensively samples UP1 functional regions involved in RNA recognition and binding, as well as mapping hotspots onto novel protein interaction surfaces. We observed a wide range of ligand-induced conformational variation, by stabilisation of dynamic protein regions. Our high-resolution structures, the first of an hnRNP in complex with a fragment or small molecule, provides rapid routes for the rational development of a range of different inhibitors and chemical tools for studying molecular mechanisms of hnRNPA1 mediated splicing regulation.
Collapse
Affiliation(s)
- Louise Dunnett
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - Sayan Das
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Vincenzo Venditti
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Filippo Prischi
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, SE1 1UL, UK
| |
Collapse
|
9
|
Li F, Liu R, Li W, Xie M, Qin S. Synchrotron Radiation: A Key Tool for Drug Discovery. Bioorg Med Chem Lett 2024; 114:129990. [PMID: 39406298 DOI: 10.1016/j.bmcl.2024.129990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/22/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Synchrotron radiation is extensively utilized in the domains of materials science, physical chemistry, and life science, resulting from its high intensity, exceptional monochromaticity, superior collimation, and broad wave spectrum. This top-notch light source has also made significant contributions to the progress of biomedicine. The advancement of synchrotron radiation-based X-ray and protein crystallography technologies has created new prospects for drug discovery. These innovative techniques have opened up exciting avenues in the field. The investigation of protein crystal structures and the elucidation of the spatial configuration of biological macromolecules have revealed intricate details regarding the modes of protein binding. Furthermore, the screening of crystal polymorphs and ligands has laid the groundwork for rational drug modification and the improvement of drug physicochemical properties. As science and technology continue to advance, the techniques for analyzing structures using synchrotron radiation sources and the design of corresponding crystallographic beamline stations are undergoing continuous enhancement. These cutting-edge tools and facilities are expected to expedite the drug development process and rectify the current situation of a lack of targeted drugs.
Collapse
Affiliation(s)
- Fengcheng Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Mingyuan Xie
- Institute of Advanced Science Facilities, Shenzhen, Guangdong 518107, China.
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
10
|
Flowers J, Echols N, Correy G, Jaishankar P, Togo T, Renslo AR, van den Bedem H, Fraser JS, Wankowicz SA. Expanding Automated Multiconformer Ligand Modeling to Macrocycles and Fragments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.613996. [PMID: 39386683 PMCID: PMC11463535 DOI: 10.1101/2024.09.20.613996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Small molecule ligands exhibit a diverse range of conformations in solution. Upon binding to a target protein, this conformational diversity is generally reduced. However, ligands can retain some degree of conformational flexibility even when bound to a receptor. In the Protein Data Bank (PDB), a small number of ligands have been modeled with distinct alternative conformations that are supported by X-ray crystallography density maps. However, the vast majority of structural models are fit to a single ligand conformation, potentially ignoring the underlying conformational heterogeneity present in the sample. We previously developed qFit-ligand to sample diverse ligand conformations and to select a parsimonious ensemble consistent with the density. While this approach indicated that many ligands populate alternative conformations, limitations in our sampling procedures often resulted in non-physical conformations and could not model complex ligands like macrocycles. Here, we introduce several improvements to qFit-ligand, including the use of routines within RDKit for stochastic conformational sampling. This new sampling method greatly enriches low energy conformations of small molecules and macrocycles. We further extended qFit-ligand to identify alternative conformations in PanDDA-modified density maps from high throughput X-ray fragment screening experiments. The new version of qFit-ligand improves fit to electron density and reduces torsional strain relative to deposited single conformer models and our previous version of qFit-ligand. These advances enhance the analysis of residual conformational heterogeneity present in ligand-bound structures, which can provide important insights for the rational design of therapeutic agents.
Collapse
Affiliation(s)
- Jessica Flowers
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Nathaniel Echols
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Galen Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Priya Jaishankar
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Takaya Togo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Henry van den Bedem
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
- Atomwise Inc, San Francisco, CA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Stephanie A. Wankowicz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
- Current Address: Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
11
|
Suryawanshi RK, Jaishankar P, Correy GJ, Rachman MM, O’Leary PC, Taha TY, Zapatero-Belinchón FJ, McCavittMalvido M, Doruk YU, Stevens MGV, Diolaiti ME, Jogalekar MP, Richards AL, Montano M, Rosecrans J, Matthay M, Togo T, Gonciarz RL, Gopalkrishnan S, Neitz RJ, Krogan NJ, Swaney DL, Shoichet BK, Ott M, Renslo AR, Ashworth A, Fraser JS. The Mac1 ADP-ribosylhydrolase is a Therapeutic Target for SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606661. [PMID: 39149230 PMCID: PMC11326214 DOI: 10.1101/2024.08.08.606661] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
SARS-CoV-2 continues to pose a threat to public health. Current therapeutics remain limited to direct acting antivirals that lack distinct mechanisms of action and are already showing signs of viral resistance. The virus encodes an ADP-ribosylhydrolase macrodomain (Mac1) that plays an important role in the coronaviral lifecycle by suppressing host innate immune responses. Genetic inactivation of Mac1 abrogates viral replication in vivo by potentiating host innate immune responses. However, it is unknown whether this can be achieved by pharmacologic inhibition and can therefore be exploited therapeutically. Here we report a potent and selective lead small molecule, AVI-4206, that is effective in an in vivo model of SARS-CoV-2 infection. Cellular models indicate that AVI-4206 has high target engagement and can weakly inhibit viral replication in a gamma interferon- and Mac1 catalytic activity-dependent manner; a stronger antiviral effect for AVI-4206 is observed in human airway organoids. In an animal model of severe SARS-CoV-2 infection, AVI-4206 reduces viral replication, potentiates innate immune responses, and leads to a survival benefit. Our results provide pharmacological proof of concept that Mac1 is a valid therapeutic target via a novel immune-restoring mechanism that could potentially synergize with existing therapies targeting distinct, essential aspects of the coronaviral life cycle. This approach could be more widely used to target other viral macrodomains to develop antiviral therapeutics beyond COVID-19.
Collapse
Affiliation(s)
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Moira M. Rachman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Patrick C. O’Leary
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Taha Y. Taha
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
| | | | | | - Yagmur U. Doruk
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Maisie G. V. Stevens
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Morgan E. Diolaiti
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Alicia L. Richards
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA
- Data Science and Biotechnology Institute, Gladstone Institutes, San Francisco, CA
| | - Mauricio Montano
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
| | - Julia Rosecrans
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
| | - Michael Matthay
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Takaya Togo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Ryan L. Gonciarz
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Saumya Gopalkrishnan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
| | - R. Jeffrey Neitz
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA
| | - Nevan J. Krogan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
- Data Science and Biotechnology Institute, Gladstone Institutes, San Francisco, CA
| | - Danielle L. Swaney
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA
- Data Science and Biotechnology Institute, Gladstone Institutes, San Francisco, CA
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Melanie Ott
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
- Department of Medicine, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub- San Francisco, San Francisco, CA
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| |
Collapse
|
12
|
Aschenbrenner JC, de Godoy AS, Fairhead M, Tomlinson CW, Winokan M, Balcomb BH, Capkin E, Chandran AV, Golding M, Koekemoer L, Lithgo RM, Marples PG, Ni X, Thompson W, Wild C, Xavier MAE, Fearon D, von Delft F. Identifying novel chemical matter against the Chikungunya virus nsP3 macrodomain through crystallographic fragment screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609196. [PMID: 39229067 PMCID: PMC11370605 DOI: 10.1101/2024.08.23.609196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Chikungunya virus (CHIKV) causes severe fever, rash and debilitating joint pain that can last for months1,2or even years. Millions of people have been infected with CHIKV, mostly in low and middle-income countries, and the virus continues to spread into new areas due to the geographical expansion of its mosquito hosts. Its genome encodes a macrodomain, which functions as an ADP-ribosyl hydrolase, removing ADPr from viral and host-cell proteins interfering with the innate immune response. Mutational studies have shown that the CHIKV nsP3 macrodomain is necessary for viral replication, making it a potential target for the development of antiviral therapeutics. We, therefore, performed a high-throughput crystallographic fragment screen against the CHIKV nsP3 macrodomain, yielding 109 fragment hits covering the ADPr-binding site and two adjacent subsites that are absent in the homologous macrodomain of SARS-CoV-2 but may be present in other alphaviruses, such as Venezuelan equine encephalitis virus (VEEV) and eastern equine encephalitis virus (EEEV). Finally, a subset of overlapping fragments was used to manually design three fragment merges covering the adenine and oxyanion subsites. The rich dataset of chemical matter and structural information discovered from this fragment screen is publicly available and can be used as a starting point for developing a CHIKV nsP3 macrodomain inhibitor.
Collapse
Affiliation(s)
- Jasmin C. Aschenbrenner
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | | | - Michael Fairhead
- Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Charles W.E. Tomlinson
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Max Winokan
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Blake H. Balcomb
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Eda Capkin
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Anu V. Chandran
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Mathew Golding
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Lizbe Koekemoer
- Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Ryan M. Lithgo
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Peter G. Marples
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Xiaomin Ni
- Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Warren Thompson
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Conor Wild
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Mary-Ann E. Xavier
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Daren Fearon
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Frank von Delft
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
13
|
Metz A, Stegmann DP, Panepucci EH, Buehlmann S, Huang CY, McAuley KE, Wang M, Wojdyla JA, Sharpe ME, Smith KML. HEIDI: an experiment-management platform enabling high-throughput fragment and compound screening. Acta Crystallogr D Struct Biol 2024; 80:328-335. [PMID: 38606665 PMCID: PMC11066879 DOI: 10.1107/s2059798324002833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
The Swiss Light Source facilitates fragment-based drug-discovery campaigns for academic and industrial users through the Fast Fragment and Compound Screening (FFCS) software suite. This framework is further enriched by the option to utilize the Smart Digital User (SDU) software for automated data collection across the PXI, PXII and PXIII beamlines. In this work, the newly developed HEIDI webpage (https://heidi.psi.ch) is introduced: a platform crafted using state-of-the-art software architecture and web technologies for sample management of rotational data experiments. The HEIDI webpage features a data-review tab for enhanced result visualization and provides programmatic access through a representational state transfer application programming interface (REST API). The migration of the local FFCS MongoDB instance to the cloud is highlighted and detailed. This transition ensures secure, encrypted and consistently accessible data through a robust and reliable REST API tailored for the FFCS software suite. Collectively, these advancements not only significantly elevate the user experience, but also pave the way for future expansions and improvements in the capabilities of the system.
Collapse
Affiliation(s)
- A. Metz
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - D. P. Stegmann
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - E. H. Panepucci
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - S. Buehlmann
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - C.-Y. Huang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - K. E. McAuley
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - M. Wang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - J. A. Wojdyla
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - M. E. Sharpe
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - K. M. L. Smith
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
14
|
Lithgo RM, Tomlinson CWE, Fairhead M, Winokan M, Thompson W, Wild C, Aschenbrenner JC, Balcomb BH, Marples PG, Chandran AV, Golding M, Koekemoer L, Williams EP, Wang S, Ni X, MacLean E, Giroud C, Godoy AS, Xavier MA, Walsh M, Fearon D, von Delft F. Crystallographic Fragment Screen of Coxsackievirus A16 2A Protease identifies new opportunities for the development of broad-spectrum anti-enterovirals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591684. [PMID: 38746446 PMCID: PMC11092469 DOI: 10.1101/2024.04.29.591684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Enteroviruses are the causative agents of paediatric hand-foot-and-mouth disease, and a target for pandemic preparedness due to the risk of higher order complications in a large-scale outbreak. The 2A protease of these viruses is responsible for the self-cleavage of the poly protein, allowing for correct folding and assembly of capsid proteins in the final stages of viral replication. These 2A proteases are highly conserved between Enterovirus species, such as Enterovirus A71 and Coxsackievirus A16 . Inhibition of the 2A protease deranges capsid folding and assembly, preventing formation of mature virions in host cells and making the protease a valuable target for antiviral activity. Herein, we describe a crystallographic fragment screening campaign that identified 75 fragments which bind to the 2A protease including 38 unique compounds shown to bind within the active site. These fragments reveal a path for the development of non-peptidomimetic inhibitors of the 2A protease with broad-spectrum anti-enteroviral activity.
Collapse
|
15
|
Bradshaw WJ, Kennedy EC, Moreira T, Smith LA, Chalk R, Katis VL, Benesch JLP, Brennan PE, Murphy EJ, Gileadi O. Regulation of inositol 5-phosphatase activity by the C2 domain of SHIP1 and SHIP2. Structure 2024; 32:453-466.e6. [PMID: 38309262 PMCID: PMC10997489 DOI: 10.1016/j.str.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
SHIP1, an inositol 5-phosphatase, plays a central role in cellular signaling. As such, it has been implicated in many conditions. Exploiting SHIP1 as a drug target will require structural knowledge and the design of selective small molecules. We have determined apo, and magnesium and phosphate-bound structures of the phosphatase and C2 domains of SHIP1. The C2 domains of SHIP1 and the related SHIP2 modulate the activity of the phosphatase domain. To understand the mechanism, we performed activity assays, hydrogen-deuterium exchange mass spectrometry, and molecular dynamics on SHIP1 and SHIP2. Our findings demonstrate that the influence of the C2 domain is more pronounced for SHIP2 than SHIP1. We determined 91 structures of SHIP1 with fragments bound, with some near the interface between the two domains. We performed a mass spectrometry screen and determined four structures with covalent fragments. These structures could act as starting points for the development of potent, selective probes.
Collapse
Affiliation(s)
- William J Bradshaw
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK.
| | - Emma C Kennedy
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Tiago Moreira
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Luke A Smith
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Rod Chalk
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Vittorio L Katis
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Justin L P Benesch
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Paul E Brennan
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Emma J Murphy
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Opher Gileadi
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK.
| |
Collapse
|
16
|
Khan O, Jones G, Lazou M, Joseph-McCarthy D, Kozakov D, Beglov D, Vajda S. Expanding FTMap for Fragment-Based Identification of Pharmacophore Regions in Ligand Binding Sites. J Chem Inf Model 2024; 64:2084-2100. [PMID: 38456842 PMCID: PMC11694573 DOI: 10.1021/acs.jcim.3c01969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The knowledge of ligand binding hot spots and of the important interactions within such hot spots is crucial for the design of lead compounds in the early stages of structure-based drug discovery. The computational solvent mapping server FTMap can reliably identify binding hot spots as consensus clusters, free energy minima that bind a variety of organic probe molecules. However, in its current implementation, FTMap provides limited information on regions within the hot spots that tend to interact with specific pharmacophoric features of potential ligands. E-FTMap is a new server that expands on the original FTMap protocol. E-FTMap uses 119 organic probes, rather than the 16 in the original FTMap, to exhaustively map binding sites, and identifies pharmacophore features as atomic consensus sites where similar chemical groups bind. We validate E-FTMap against a set of 109 experimentally derived structures of fragment-lead pairs, finding that highly ranked pharmacophore features overlap with the corresponding atoms in both fragments and lead compounds. Additionally, comparisons of mapping results to ensembles of bound ligands reveal that pharmacophores generated with E-FTMap tend to sample highly conserved protein-ligand interactions. E-FTMap is available as a web server at https://eftmap.bu.edu.
Collapse
Affiliation(s)
- Omeir Khan
- Department of Chemistry, Boston University, Boston, MA 02215
| | - George Jones
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794
| | - Maria Lazou
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | | | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794
| | - Dmitri Beglov
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
- Acpharis Inc, Holliston, MA 01746
| | - Sandor Vajda
- Department of Chemistry, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| |
Collapse
|
17
|
Stegmann DP, Steuber J, Fritz G, Wojdyla JA, Sharpe ME. Fast fragment and compound screening pipeline at the Swiss Light Source. Methods Enzymol 2023; 690:235-284. [PMID: 37858531 DOI: 10.1016/bs.mie.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Crystallography-based fragment screening is a highly effective technique employed in structure-based drug discovery to expand the range of lead development opportunities. It allows screening and sorting of weakly binding, low molecular mass fragments, which can be developed into larger high-affinity lead compounds. Technical improvements at synchrotron beamlines, design of innovative libraries mapping chemical space efficiently, effective soaking methods and enhanced data analysis have enabled the implementation of high-throughput fragment screening pipelines at multiple synchrotron facilities. This widened access to CBFS beyond the pharma industry has allowed academic users to rapidly screen large quantities of fragment-soaked protein crystals. The positive outcome of a CBFS campaign is a set of structures that present the three-dimensional arrangement of fragment-protein complexes in detail, thereby providing information on the location and the mode of interaction of bound fragments. Through this review, we provide users with a comprehensive guide that sets clear expectations before embarking on a crystallography-based fragment screening campaign. We present a list of essential pre-requirements that must be assessed, including the suitability of your current crystal system for a fragment screening campaign. Furthermore, we extensively discuss the available methodological options, addressing their limitations and providing strategies to overcome them. Additionally, we provide a brief perspective on how to proceed once hits are obtained. Notably, we emphasize the solutions we have implemented for instrumentation and software development within our Fast Fragment and Compound Screening pipeline. We also highlight third-party software options that can be utilized for rapid refinement and hit assessment.
Collapse
Affiliation(s)
| | - Julia Steuber
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Stuttgart, Germany
| | - Günter Fritz
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Stuttgart, Germany.
| | | | | |
Collapse
|
18
|
Martin MP, Endicott JA, Noble MEM, Tatum NJ. Crystallographic fragment screening in academic cancer drug discovery. Methods Enzymol 2023; 690:211-234. [PMID: 37858530 DOI: 10.1016/bs.mie.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Fragment-based drug discovery (FBDD) has brought several drugs to the clinic, notably to target proteins once considered to be challenging, or even undruggable. Screening in FBDD relies upon observing and/or measuring weak (millimolar-scale) binding events using biophysical techniques or crystallographic fragment screening. This latter structural approach provides no information about binding affinity but can reveal binding mode and atomic detail on protein-fragment interactions to accelerate hit-to-lead development. In recent years, high-throughput platforms have been developed at synchrotron facilities to screen thousands of fragment-soaked crystals. However, using accessible manual techniques it is possible to run informative, smaller-scale screens within an academic lab setting. This chapter describes general protocols for home laboratory-scale fragment screening, from fragment soaking through to structure solution and, where appropriate, signposts to background, protocols or alternatives elsewhere.
Collapse
Affiliation(s)
- Mathew P Martin
- Cancer Research Horizons Therapeutic Innovation, Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Translation and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Jane A Endicott
- Cancer Research Horizons Therapeutic Innovation, Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Translation and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Martin E M Noble
- Cancer Research Horizons Therapeutic Innovation, Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Translation and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Natalie J Tatum
- Cancer Research Horizons Therapeutic Innovation, Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Translation and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
19
|
Godoy AS, Nakamura AM, Douangamath A, Song Y, Noske GD, Gawriljuk VO, Fernandes RS, Pereira H, Oliveira K, Fearon D, Dias A, Krojer T, Fairhead M, Powell A, Dunnet L, Brandao-Neto J, Skyner R, Chalk R, Bajusz D, Bege M, Borbás A, Keserű GM, von Delft F, Oliva G. Allosteric regulation and crystallographic fragment screening of SARS-CoV-2 NSP15 endoribonuclease. Nucleic Acids Res 2023; 51:5255-5270. [PMID: 37115000 PMCID: PMC10250223 DOI: 10.1093/nar/gkad314] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). The NSP15 endoribonuclease enzyme, known as NendoU, is highly conserved and plays a critical role in the ability of the virus to evade the immune system. NendoU is a promising target for the development of new antiviral drugs. However, the complexity of the enzyme's structure and kinetics, along with the broad range of recognition sequences and lack of structural complexes, hampers the development of inhibitors. Here, we performed enzymatic characterization of NendoU in its monomeric and hexameric form, showing that hexamers are allosteric enzymes with a positive cooperative index, and with no influence of manganese on enzymatic activity. Through combining cryo-electron microscopy at different pHs, X-ray crystallography and biochemical and structural analysis, we showed that NendoU can shift between open and closed forms, which probably correspond to active and inactive states, respectively. We also explored the possibility of NendoU assembling into larger supramolecular structures and proposed a mechanism for allosteric regulation. In addition, we conducted a large fragment screening campaign against NendoU and identified several new allosteric sites that could be targeted for the development of new inhibitors. Overall, our findings provide insights into the complex structure and function of NendoU and offer new opportunities for the development of inhibitors.
Collapse
Affiliation(s)
- Andre Schutzer Godoy
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Aline Minalli Nakamura
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Alice Douangamath
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Yun Song
- Electron Bio-imaging Centre, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - Gabriela Dias Noske
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Victor Oliveira Gawriljuk
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Rafaela Sachetto Fernandes
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Humberto D Muniz Pereira
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Ketllyn Irene Zagato Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Daren Fearon
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Alexandre Dias
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Tobias Krojer
- BioMAX, MAX IV Laboratory, Fotongatan 2, Lund 224 84, Sweden
| | - Michael Fairhead
- Centre for Medicines Discovery, Oxford University, Oxford OX1 3QU, UK
| | - Alisa Powell
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Louise Dunnet
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Jose Brandao-Neto
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Rachael Skyner
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Rod Chalk
- Centre for Medicines Discovery, Oxford University, Oxford OX1 3QU, UK
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- National Laboratory of Virology, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - György Miklós Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Frank von Delft
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
- Centre for Medicines Discovery, Oxford University, Oxford OX1 3QU, UK
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | - Glaucius Oliva
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| |
Collapse
|
20
|
Skaist Mehlman T, Biel JT, Azeem SM, Nelson ER, Hossain S, Dunnett L, Paterson NG, Douangamath A, Talon R, Axford D, Orins H, von Delft F, Keedy DA. Room-temperature crystallography reveals altered binding of small-molecule fragments to PTP1B. eLife 2023; 12:84632. [PMID: 36881464 PMCID: PMC9991056 DOI: 10.7554/elife.84632] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/12/2023] [Indexed: 03/08/2023] Open
Abstract
Much of our current understanding of how small-molecule ligands interact with proteins stems from X-ray crystal structures determined at cryogenic (cryo) temperature. For proteins alone, room-temperature (RT) crystallography can reveal previously hidden, biologically relevant alternate conformations. However, less is understood about how RT crystallography may impact the conformational landscapes of protein-ligand complexes. Previously, we showed that small-molecule fragments cluster in putative allosteric sites using a cryo crystallographic screen of the therapeutic target PTP1B (Keedy et al., 2018). Here, we have performed two RT crystallographic screens of PTP1B using many of the same fragments, representing the largest RT crystallographic screens of a diverse library of ligands to date, and enabling a direct interrogation of the effect of data collection temperature on protein-ligand interactions. We show that at RT, fewer ligands bind, and often more weakly - but with a variety of temperature-dependent differences, including unique binding poses, changes in solvation, new binding sites, and distinct protein allosteric conformational responses. Overall, this work suggests that the vast body of existing cryo-temperature protein-ligand structures may provide an incomplete picture, and highlights the potential of RT crystallography to help complete this picture by revealing distinct conformational modes of protein-ligand systems. Our results may inspire future use of RT crystallography to interrogate the roles of protein-ligand conformational ensembles in biological function.
Collapse
Affiliation(s)
- Tamar Skaist Mehlman
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
- PhD Program in Biochemistry, CUNY Graduate CenterNew YorkUnited States
| | - Justin T Biel
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Syeda Maryam Azeem
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
| | | | - Sakib Hossain
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
| | - Louise Dunnett
- Diamond Light SourceDidcotUnited Kingdom
- Research Complex at Harwell, Harwell Science and Innovation CampusDidcotUnited Kingdom
| | | | - Alice Douangamath
- Diamond Light SourceDidcotUnited Kingdom
- Research Complex at Harwell, Harwell Science and Innovation CampusDidcotUnited Kingdom
| | | | | | - Helen Orins
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
| | - Frank von Delft
- Diamond Light SourceDidcotUnited Kingdom
- Research Complex at Harwell, Harwell Science and Innovation CampusDidcotUnited Kingdom
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Department of Biochemistry, University of JohannesburgJohannesburgSouth Africa
| | - Daniel A Keedy
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
- Department of Chemistry and Biochemistry, City College of New YorkNew YorkUnited States
- PhD Programs in Biochemistry, Biology, and Chemistry, CUNY Graduate CenterNew YorkUnited States
| |
Collapse
|
21
|
Hough MA, Prischi F, Worrall JAR. Perspective: Structure determination of protein-ligand complexes at room temperature using X-ray diffraction approaches. Front Mol Biosci 2023; 10:1113762. [PMID: 36756363 PMCID: PMC9899996 DOI: 10.3389/fmolb.2023.1113762] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
The interaction between macromolecular proteins and small molecule ligands is an essential component of cellular function. Such ligands may include enzyme substrates, molecules involved in cellular signalling or pharmaceutical drugs. Together with biophysical techniques used to assess the thermodynamic and kinetic properties of ligand binding to proteins, methodology to determine high-resolution structures that enable atomic level interactions between protein and ligand(s) to be directly visualised is required. Whilst such structural approaches are well established with high throughput X-ray crystallography routinely used in the pharmaceutical sector, they provide only a static view of the complex. Recent advances in X-ray structural biology methods offer several new possibilities that can examine protein-ligand complexes at ambient temperature rather than under cryogenic conditions, enable transient binding sites and interactions to be characterised using time-resolved approaches and combine spectroscopic measurements from the same crystal that the structures themselves are determined. This Perspective reviews several recent developments in these areas and discusses new possibilities for applications of these advanced methodologies to transform our understanding of protein-ligand interactions.
Collapse
Affiliation(s)
- Michael A. Hough
- School of Life Sciences, University of Essex, Colchester, United Kingdom
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Filippo Prischi
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | | |
Collapse
|
22
|
Osipov EM, Munawar AH, Beelen S, Fearon D, Douangamath A, Wild C, Weeks SD, Van Aerschot A, von Delft F, Strelkov SV. Discovery of novel druggable pockets on polyomavirus VP1 through crystallographic fragment-based screening to develop capsid assembly inhibitors. RSC Chem Biol 2022; 3:1013-1027. [PMID: 35974998 PMCID: PMC9347357 DOI: 10.1039/d2cb00052k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/24/2022] [Indexed: 11/21/2022] Open
Abstract
Polyomaviruses are a family of ubiquitous double-stranded DNA viruses many of which are human pathogens. These include BK polyomavirus which causes severe urinary tract infection in immunocompromised patients and Merkel cell polyomavirus associated with aggressive cancers. The small genome of polyomaviruses lacks conventional drug targets, and no specific drugs are available at present. Here we focus on the main structural protein VP1 of BK polyomavirus which is responsible for icosahedral capsid formation. To provide a foundation towards rational drug design, we crystallized truncated VP1 pentamers and subjected them to a high-throughput screening for binding drug-like fragments through a direct X-ray analysis. To enable a highly performant screening, rigorous optimization of the crystallographic pipeline and processing with the latest generation PanDDA2 software were necessary. As a result, a total of 144 binding hits were established. Importantly, the hits are well clustered in six surface pockets. Three pockets are located on the outside of the pentamer and map on the regions where the 'invading' C-terminal arm of another pentamer is attached upon capsid assembly. Another set of three pockets is situated within the wide pore along the five-fold axis of the VP1 pentamer. These pockets are situated at the interaction interface with the minor capsid protein VP2 which is indispensable for normal functioning of the virus. Here we systematically analyse the three outside pockets which are highly conserved across various polyomaviruses, while point mutations in these pockets are detrimental for viral replication. We show that one of the pockets can accommodate antipsychotic drug trifluoperazine. For each pocket, we derive pharmacophore features which enable the design of small molecules preventing the interaction between VP1 pentamers and therefore inhibiting capsid assembly. Our data lay a foundation towards a rational development of first-in-class drugs targeting polyomavirus capsid.
Collapse
Affiliation(s)
| | - Ali H Munawar
- Biocrystallography, KU Leuven Herestraat 49 Leuven Belgium
- Orthogon Therapeutics LLC 45 Dan Road Suite 126 Canton MA 02021 USA
- Pledge Tx B.V. Gaston Geenslaan 1 Leuven Belgium
| | - Steven Beelen
- Biocrystallography, KU Leuven Herestraat 49 Leuven Belgium
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - Conor Wild
- Centre for Medicines Discovery, University of Oxford South Parks Road Headington OX3 7DQ UK
- Department of Statistics, University of Oxford 29 St Giles' Oxford OX1 3LB UK
| | - Stephen D Weeks
- Biocrystallography, KU Leuven Herestraat 49 Leuven Belgium
- Pledge Tx B.V. Gaston Geenslaan 1 Leuven Belgium
| | - Arthur Van Aerschot
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven Herestraat 49 Leuven Belgium
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
- Centre for Medicines Discovery, University of Oxford South Parks Road Headington OX3 7DQ UK
- Structural Genomics Consortium, University of Oxford Old Road Campus Roosevelt Drive Headington OX3 7DQ UK
- Department of Biochemistry, University of Johannesburg Auckland Park 2006 South Africa
| | | |
Collapse
|
23
|
Huang CY, Aumonier S, Engilberge S, Eris D, Smith KML, Leonarski F, Wojdyla JA, Beale JH, Buntschu D, Pauluhn A, Sharpe ME, Metz A, Olieric V, Wang M. Probing ligand binding of endothiapepsin by `temperature-resolved' macromolecular crystallography. Acta Crystallogr D Struct Biol 2022; 78:964-974. [PMID: 35916221 PMCID: PMC9344481 DOI: 10.1107/s205979832200612x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/09/2022] [Indexed: 12/03/2022] Open
Abstract
Continuous developments in cryogenic X-ray crystallography have provided most of our knowledge of 3D protein structures, which has recently been further augmented by revolutionary advances in cryoEM. However, a single structural conformation identified at cryogenic temperatures may introduce a fictitious structure as a result of cryogenic cooling artefacts, limiting the overview of inherent protein physiological dynamics, which play a critical role in the biological functions of proteins. Here, a room-temperature X-ray crystallographic method using temperature as a trigger to record movie-like structural snapshots has been developed. The method has been used to show how TL00150, a 175.15 Da fragment, undergoes binding-mode changes in endothiapepsin. A surprising fragment-binding discrepancy was observed between the cryo-cooled and physiological temperature structures, and multiple binding poses and their interplay with DMSO were captured. The observations here open up new promising prospects for structure determination and interpretation at physiological temperatures with implications for structure-based drug discovery.
Collapse
Affiliation(s)
- Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Sylvain Aumonier
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Sylvain Engilberge
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Deniz Eris
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Kate Mary Louise Smith
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Filip Leonarski
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Justyna Aleksandra Wojdyla
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - John H. Beale
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Dominik Buntschu
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Anuschka Pauluhn
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - May Elizabeth Sharpe
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Alexander Metz
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, 4123 Allschwil, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| |
Collapse
|
24
|
Gahbauer S, Correy GJ, Schuller M, Ferla MP, Doruk YU, Rachman M, Wu T, Diolaiti M, Wang S, Neitz RJ, Fearon D, Radchenko D, Moroz Y, Irwin JJ, Renslo AR, Taylor JC, Gestwicki JE, von Delft F, Ashworth A, Ahel I, Shoichet BK, Fraser JS. Iterative computational design and crystallographic screening identifies potent inhibitors targeting the Nsp3 Macrodomain of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.27.497816. [PMID: 35794891 PMCID: PMC9258288 DOI: 10.1101/2022.06.27.497816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small molecule inhibitors of Mac1 have great therapeutic potential, at the outset of the COVID-19 pandemic there were no well-validated inhibitors for this protein nor, indeed, the macrodomain enzyme family, making this target a pharmacological orphan. Here, we report the structure-based discovery and development of several different chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high resolution protein crystallography, and binding evaluation. Potent scaffolds were designed with in silico fragment linkage and by ultra-large library docking of over 450 million molecules. Both techniques leverage the computational exploration of tangible chemical space and are applicable to other pharmacological orphans. Overall, 160 ligands in 119 different scaffolds were discovered, and 152 Mac1-ligand complex crystal structures were determined, typically to 1 Å resolution or better. Our analyses discovered selective and cell-permeable molecules, unexpected ligand-mediated protein dynamics within the active site, and key inhibitor motifs that will template future drug development against Mac1.
Collapse
Affiliation(s)
- Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Matteo P. Ferla
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, OX4 2PG, UK
| | - Yagmur Umay Doruk
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Moira Rachman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Taiasean Wu
- Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA 94158, USA
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Morgan Diolaiti
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Siyi Wang
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - R. Jeffrey Neitz
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco, California 94158, USA
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Dmytro Radchenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Yurii Moroz
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
- Chemspace, Chervonotkatska Street 78, Kyiv, 02094, Ukraine
| | - John J. Irwin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Adam R. Renslo
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco, California 94158, USA
| | - Jenny C. Taylor
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, OX4 2PG, UK
| | - Jason E. Gestwicki
- Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco, California 94158, USA
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington, OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
- Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
25
|
Zhao Y, Mahy W, Willis NJ, Woodward HL, Steadman D, Bayle ED, Atkinson BN, Sipthorp J, Vecchia L, Ruza RR, Harlos K, Jeganathan F, Constantinou S, Costa A, Kjær S, Bictash M, Salinas PC, Whiting P, Vincent JP, Fish PV, Jones EY. Structural Analysis and Development of Notum Fragment Screening Hits. ACS Chem Neurosci 2022; 13:2060-2077. [PMID: 35731924 PMCID: PMC9264368 DOI: 10.1021/acschemneuro.2c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Wnt signaling suppressor Notum is a promising target for osteoporosis, Alzheimer's disease, and colorectal cancers. To develop novel Notum inhibitors, we used an X-ray crystallographic fragment screen with the Diamond-SGC Poised Library (DSPL) and identified 59 fragment hits from the analysis of 768 data sets. Fifty-eight of the hits were found bound at the enzyme catalytic pocket with potencies ranging from 0.5 to >1000 μM. Analysis of the fragments' diverse binding modes, enzymatic inhibitory activities, and chemical properties led to the selection of six hits for optimization, and five of these resulted in improved Notum inhibitory potencies. One hit, 1-phenyl-1,2,3-triazole 7, and its related cluster members, have shown promising lead-like properties. These became the focus of our fragment development activities, resulting in compound 7d with IC50 0.0067 μM. The large number of Notum fragment structures and their initial optimization provided an important basis for further Notum inhibitor development.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - William Mahy
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Nicky J. Willis
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Hannah L. Woodward
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - David Steadman
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Elliott D. Bayle
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Benjamin N. Atkinson
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - James Sipthorp
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Luca Vecchia
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Reinis R. Ruza
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Karl Harlos
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Fiona Jeganathan
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Stefan Constantinou
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Artur Costa
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Svend Kjær
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Magda Bictash
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Patricia C. Salinas
- Department
of Cell and Developmental Biology, Laboratory for Molecular and Cellular
Biology, University College London, London WC1E 6BT, U.K.
| | - Paul Whiting
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Jean-Paul Vincent
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Paul V. Fish
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - E. Yvonne Jones
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| |
Collapse
|
26
|
Gildea RJ, Beilsten-Edmands J, Axford D, Horrell S, Aller P, Sandy J, Sanchez-Weatherby J, Owen CD, Lukacik P, Strain-Damerell C, Owen RL, Walsh MA, Winter G. xia2.multiplex: a multi-crystal data-analysis pipeline. Acta Crystallogr D Struct Biol 2022; 78:752-769. [PMID: 35647922 PMCID: PMC9159281 DOI: 10.1107/s2059798322004399] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/25/2022] [Indexed: 11/11/2022] Open
Abstract
In macromolecular crystallography, radiation damage limits the amount of data that can be collected from a single crystal. It is often necessary to merge data sets from multiple crystals; for example, small-wedge data collections from micro-crystals, in situ room-temperature data collections and data collection from membrane proteins in lipidic mesophases. Whilst the indexing and integration of individual data sets may be relatively straightforward with existing software, merging multiple data sets from small wedges presents new challenges. The identification of a consensus symmetry can be problematic, particularly in the presence of a potential indexing ambiguity. Furthermore, the presence of non-isomorphous or poor-quality data sets may reduce the overall quality of the final merged data set. To facilitate and help to optimize the scaling and merging of multiple data sets, a new program, xia2.multiplex, has been developed which takes data sets individually integrated with DIALS and performs symmetry analysis, scaling and merging of multi-crystal data sets. xia2.multiplex also performs analysis of various pathologies that typically affect multi-crystal data sets, including non-isomorphism, radiation damage and preferential orientation. After the description of a number of use cases, the benefit of xia2.multiplex is demonstrated within a wider autoprocessing framework in facilitating a multi-crystal experiment collected as part of in situ room-temperature fragment-screening experiments on the SARS-CoV-2 main protease.
Collapse
Affiliation(s)
- Richard J. Gildea
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - James Beilsten-Edmands
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Danny Axford
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Sam Horrell
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
| | - Pierre Aller
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - James Sandy
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Juan Sanchez-Weatherby
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - C. David Owen
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
| | - Petra Lukacik
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
| | - Claire Strain-Damerell
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
| | - Robin L. Owen
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Martin A. Walsh
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
| | - Graeme Winter
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
27
|
Okumura H, Sakai N, Murakami H, Mizuno N, Nakamura Y, Ueno G, Masunaga T, Kawamura T, Baba S, Hasegawa K, Yamamoto M, Kumasaka T. In situ crystal data-collection and ligand-screening system at SPring-8. Acta Crystallogr F Struct Biol Commun 2022; 78:241-251. [PMID: 35647681 PMCID: PMC9158660 DOI: 10.1107/s2053230x22005283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
An in situ X-ray diffraction measurement system using a crystallization plate has been constructed at the SPring-8 protein crystallography beamline. Utilizing small-wedge measurements and incorporating a liquid dispenser to prepare protein–ligand complex crystals, this system will make ligand screening possible. In situ diffraction data collection using crystallization plates has been utilized for macromolecules to evaluate crystal quality without requiring additional sample treatment such as cryocooling. Although it is difficult to collect complete data sets using this technique due to the mechanical limitation of crystal rotation, recent advances in methods for data collection from multiple crystals have overcome this issue. At SPring-8, an in situ diffraction measurement system was constructed consisting of a goniometer for a plate, an articulated robot and plate storage. Using this system, complete data sets were obtained utilizing the small-wedge measurement method. Combining this system with an acoustic liquid handler to prepare protein–ligand complex crystals by applying fragment compounds to trypsin crystals for in situ soaking, binding was confirmed for seven out of eight compounds. These results show that the system functioned properly to collect complete data for structural analysis and to expand the capability for ligand screening in combination with a liquid dispenser.
Collapse
|
28
|
Pearce NM, Skyner R, Krojer T. Experiences From Developing Software for Large X-Ray Crystallography-Driven Protein-Ligand Studies. Front Mol Biosci 2022; 9:861491. [PMID: 35480897 PMCID: PMC9035521 DOI: 10.3389/fmolb.2022.861491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The throughput of macromolecular X-ray crystallography experiments has surged over the last decade. This remarkable gain in efficiency has been facilitated by increases in the availability of high-intensity X-ray beams, (ultra)fast detectors and high degrees of automation. These developments have in turn spurred the development of several dedicated centers for crystal-based fragment screening which enable the preparation and collection of hundreds of single-crystal diffraction datasets per day. Crystal structures of target proteins in complex with small-molecule ligands are of immense importance for structure-based drug design (SBDD) and their rapid turnover is a prerequisite for accelerated development cycles. While the experimental part of the process is well defined and has by now been established at several synchrotron sites, it is noticeable that software and algorithmic aspects have received far less attention, as well as the implications of new methodologies on established paradigms for structure determination, analysis, and visualization. We will review three key areas of development of large-scale protein-ligand studies. First, we will look into new software developments for batch data processing, followed by a discussion of the methodological changes in the analysis, modeling, refinement and deposition of structures for SBDD, and the changes in mindset that these new methods require, both on the side of depositors and users of macromolecular models. Finally, we will highlight key new developments for the presentation and analysis of the collections of structures that these experiments produce, and provide an outlook for future developments.
Collapse
Affiliation(s)
- Nicholas M. Pearce
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, Netherlands
| | - Rachael Skyner
- OMass Therapeutics, The Oxford Science Park, Oxford, United Kingdom
| | | |
Collapse
|
29
|
Bellini D. A drug-discovery-oriented non-invasive protocol for protein crystal cryoprotection by dehydration, with application for crystallization screening. J Appl Crystallogr 2022; 55:370-379. [PMID: 35497658 PMCID: PMC8985602 DOI: 10.1107/s1600576722002382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022] Open
Abstract
In X-ray macromolecular crystallography, cryoprotection of crystals mounted on harvesting loops is achieved when the water in the sample solvent transitions to vitreous ice before crystalline ice forms. This is achieved by rapid cooling in liquid nitro-gen or propane. Protocols for protein crystal cryoprotection are based on either increasing the environmental pressure or reducing the water fraction in the solvent. This study presents a new protocol for cryoprotecting crystals. It is based on vapour diffusion dehydration of the crystal drop to reduce the water fraction in the solvent by adding a highly concentrated salt solution, 13 M potassium formate (KF13), directly to the reservoir. Several salt solutions were screened to identify KF13 as optimal. Cryoprotection using the KF13 protocol is non-invasive to the crystal, high throughput and easy to implement, can benefit diffraction resolution and ligand binding, and is very useful in cases with high redundancy such as drug-discovery projects which use very large compound or fragment libraries. An application of KF13 to discover new crystal hits from clear drops of equilibrated crystallization screening plates is also shown.
Collapse
Affiliation(s)
- Dom Bellini
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, Cambridgeshire CB2 0QH, United Kingdom
| |
Collapse
|
30
|
Grosjean H, Işık M, Aimon A, Mobley D, Chodera J, von Delft F, Biggin PC. SAMPL7 protein-ligand challenge: A community-wide evaluation of computational methods against fragment screening and pose-prediction. J Comput Aided Mol Des 2022; 36:291-311. [PMID: 35426591 PMCID: PMC9010448 DOI: 10.1007/s10822-022-00452-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/22/2022] [Indexed: 11/01/2022]
Abstract
A novel crystallographic fragment screening data set was generated and used in the SAMPL7 challenge for protein-ligands. The SAMPL challenges prospectively assess the predictive power of methods involved in computer-aided drug design. Application of various methods to fragment molecules are now widely used in the search for new drugs. However, there is little in the way of systematic validation specifically for fragment-based approaches. We have performed a large crystallographic high-throughput fragment screen against the therapeutically relevant second bromodomain of the Pleckstrin-homology domain interacting protein (PHIP2) that revealed 52 different fragments bound across 4 distinct sites, 47 of which were bound to the pharmacologically relevant acetylated lysine (Kac) binding site. These data were used to assess computational screening, binding pose prediction and follow-up enumeration. All submissions performed randomly for screening. Pose prediction success rates (defined as less than 2 Å root mean squared deviation against heavy atom crystal positions) ranged between 0 and 25% and only a very few follow-up compounds were deemed viable candidates from a medicinal-chemistry perspective based on a common molecular descriptors analysis. The tight deadlines imposed during the challenge led to a small number of submissions suggesting that the accuracy of rapidly responsive workflows remains limited. In addition, the application of these methods to reproduce crystallographic fragment data still appears to be very challenging. The results show that there is room for improvement in the development of computational tools particularly when applied to fragment-based drug design.
Collapse
Affiliation(s)
- Harold Grosjean
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, South Parks Road, OX1 3QU, Oxford, UK
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, OX11 0QX, Didcot, UK
| | - Mehtap Işık
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA
| | - Anthony Aimon
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, OX11 0QX, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA, Didcot, UK
| | - David Mobley
- Department of Pharmaceutical Sciences, Department of Chemistry, University of California, 92617, Irvine, California, USA
| | - John Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA
| | - Frank von Delft
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, OX11 0QX, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA, Didcot, UK
- Centre for Medicines Discovery, University of Oxford, Old Road Campus, Roosevelt Drive, OX3 7DQ, Headington, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, OX3 7DQ, Headington, UK
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, South Parks Road, OX1 3QU, Oxford, UK.
| |
Collapse
|
31
|
Arif SM, Floto RA, Blundell TL. Using Structure-guided Fragment-Based Drug Discovery to Target Pseudomonas aeruginosa Infections in Cystic Fibrosis. Front Mol Biosci 2022; 9:857000. [PMID: 35433835 PMCID: PMC9006449 DOI: 10.3389/fmolb.2022.857000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is progressive genetic disease that predisposes lungs and other organs to multiple long-lasting microbial infections. Pseudomonas aeruginosa is the most prevalent and deadly pathogen among these microbes. Lung function of CF patients worsens following chronic infections with P. aeruginosa and is associated with increased mortality and morbidity. Emergence of multidrug-resistant, extensively drug-resistant and pandrug-resistant strains of P. aeruginosa due to intrinsic and adaptive antibiotic resistance mechanisms has failed the current anti-pseudomonal antibiotics. Hence new antibacterials are urgently needed to treat P. aeruginosa infections. Structure-guided fragment-based drug discovery (FBDD) is a powerful approach in the field of drug development that has succeeded in delivering six FDA approved drugs over the past 20 years targeting a variety of biological molecules. However, FBDD has not been widely used in the development of anti-pseudomonal molecules. In this review, we first give a brief overview of our structure-guided FBDD pipeline and then give a detailed account of FBDD campaigns to combat P. aeruginosa infections by developing small molecules having either bactericidal or anti-virulence properties. We conclude with a brief overview of the FBDD efforts in our lab at the University of Cambridge towards targeting P. aeruginosa infections.
Collapse
Affiliation(s)
| | - R. Andres Floto
- Molecular Immunity Unit, Department of Medicine University of Cambridge, MRC-Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Tom L. Blundell,
| |
Collapse
|
32
|
Kaminski JW, Vera L, Stegmann DP, Vering J, Eris D, Smith KML, Huang CY, Meier N, Steuber J, Wang M, Fritz G, Wojdyla JA, Sharpe ME. Fast fragment- and compound-screening pipeline at the Swiss Light Source. Acta Crystallogr D Struct Biol 2022; 78:328-336. [PMID: 35234147 PMCID: PMC8900825 DOI: 10.1107/s2059798322000705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/19/2022] [Indexed: 11/10/2022] Open
Abstract
Over the last two decades, fragment-based drug discovery (FBDD) has emerged as an effective and efficient method to identify new chemical scaffolds for the development of lead compounds. X-ray crystallography can be used in FBDD as a tool to validate and develop fragments identified as binders by other methods. However, it is also often used with great success as a primary screening technique. In recent years, technological advances at macromolecular crystallography beamlines in terms of instrumentation, beam intensity and robotics have enabled the development of dedicated platforms at synchrotron sources for FBDD using X-ray crystallography. Here, the development of the Fast Fragment and Compound Screening (FFCS) platform, an integrated next-generation pipeline for crystal soaking, handling and data collection which allows crystallography-based screening of protein crystals against hundreds of fragments and compounds, at the Swiss Light Source is reported.
Collapse
Affiliation(s)
- Jakub W. Kaminski
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Laura Vera
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Dennis P. Stegmann
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Jonatan Vering
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Deniz Eris
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Kate M. L. Smith
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Nathalie Meier
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Julia Steuber
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Günter Fritz
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Justyna A. Wojdyla
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - May E. Sharpe
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
33
|
Caputo AT, Ibba R, Le Cornu JD, Darlot B, Hensen M, Lipp CB, Marcianò G, Vasiljević S, Zitzmann N, Roversi P. Crystal polymorphism in fragment-based lead discovery of ligands of the catalytic domain of UGGT, the glycoprotein folding quality control checkpoint. Front Mol Biosci 2022; 9:960248. [PMID: 36589243 PMCID: PMC9794592 DOI: 10.3389/fmolb.2022.960248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
None of the current data processing pipelines for X-ray crystallography fragment-based lead discovery (FBLD) consults all the information available when deciding on the lattice and symmetry (i.e., the polymorph) of each soaked crystal. Often, X-ray crystallography FBLD pipelines either choose the polymorph based on cell volume and point-group symmetry of the X-ray diffraction data or leave polymorph attribution to manual intervention on the part of the user. Thus, when the FBLD crystals belong to more than one crystal polymorph, the discovery pipeline can be plagued by space group ambiguity, especially if the polymorphs at hand are variations of the same lattice and, therefore, difficult to tell apart from their morphology and/or their apparent crystal lattices and point groups. In the course of a fragment-based lead discovery effort aimed at finding ligands of the catalytic domain of UDP-glucose glycoprotein glucosyltransferase (UGGT), we encountered a mixture of trigonal crystals and pseudotrigonal triclinic crystals-with the two lattices closely related. In order to resolve that polymorphism ambiguity, we have written and described here a series of Unix shell scripts called CoALLA (crystal polymorph and ligand likelihood-based assignment). The CoALLA scripts are written in Unix shell and use autoPROC for data processing, CCP4-Dimple/REFMAC5 and BUSTER for refinement, and RHOFIT for ligand docking. The choice of the polymorph is effected by carrying out (in each of the known polymorphs) the tasks of diffraction data indexing, integration, scaling, and structural refinement. The most likely polymorph is then chosen as the one with the best structure refinement Rfree statistic. The CoALLA scripts further implement a likelihood-based ligand assignment strategy, starting with macromolecular refinement and automated water addition, followed by removal of the water molecules that appear to be fitting ligand density, and a final round of refinement after random perturbation of the refined macromolecular model, in order to obtain unbiased difference density maps for automated ligand placement. We illustrate the use of CoALLA to discriminate between H3 and P1 crystals used for an FBLD effort to find fragments binding to the catalytic domain of Chaetomium thermophilum UGGT.
Collapse
Affiliation(s)
- Alessandro T. Caputo
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
- Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - Roberta Ibba
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - James D. Le Cornu
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Scotland, United Kingdom
| | - Benoit Darlot
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Mario Hensen
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Colette B. Lipp
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Gabriele Marcianò
- Biochemistry Department, University of Oxford, Oxford, United Kingdom
| | - Snežana Vasiljević
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Nicole Zitzmann
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
- *Correspondence: Nicole Zitzmann, ; Pietro Roversi,
| | - Pietro Roversi
- IBBA-CNR Unit of Milano, Institute of Agricultural Biology and Biotechnology, Milano, Italy
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
- *Correspondence: Nicole Zitzmann, ; Pietro Roversi,
| |
Collapse
|
34
|
Singh AK, Martinez SE, Gu W, Nguyen H, Schols D, Herdewijn P, De Jonghe S, Das K. Sliding of HIV-1 reverse transcriptase over DNA creates a transient P pocket - targeting P-pocket by fragment screening. Nat Commun 2021; 12:7127. [PMID: 34880240 PMCID: PMC8654897 DOI: 10.1038/s41467-021-27409-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/17/2021] [Indexed: 11/09/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) slides over an RNA/DNA or dsDNA substrate while copying the viral RNA to a proviral DNA. We report a crystal structure of RT/dsDNA complex in which RT overstepped the primer 3'-end of a dsDNA substrate and created a transient P-pocket at the priming site. We performed a high-throughput screening of 300 drug-like fragments by X-ray crystallography that identifies two leads that bind the P-pocket, which is composed of structural elements from polymerase active site, primer grip, and template-primer that are resilient to drug-resistance mutations. Analogs of a fragment were synthesized, two of which show noticeable RT inhibition. An engineered RT/DNA aptamer complex could trap the transient P-pocket in solution, and structures of the RT/DNA complex were determined in the presence of an inhibitory fragment. A synthesized analog bound at P-pocket is further analyzed by single-particle cryo-EM. Identification of the P-pocket within HIV RT and the developed structure-based platform provide an opportunity for the design new types of polymerase inhibitors.
Collapse
Affiliation(s)
- Abhimanyu K Singh
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sergio E Martinez
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Weijie Gu
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Hoai Nguyen
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Piet Herdewijn
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Steven De Jonghe
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Kalyan Das
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
35
|
Sutanto F, Shaabani S, Oerlemans R, Eris D, Patil P, Hadian M, Wang M, Sharpe ME, Groves MR, Dömling A. Combining High-Throughput Synthesis and High-Throughput Protein Crystallography for Accelerated Hit Identification. Angew Chem Int Ed Engl 2021; 60:18231-18239. [PMID: 34097796 PMCID: PMC8456925 DOI: 10.1002/anie.202105584] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/31/2021] [Indexed: 12/24/2022]
Abstract
Protein crystallography (PX) is widely used to drive advanced stages of drug optimization or to discover medicinal chemistry starting points by fragment soaking. However, recent progress in PX could allow for a more integrated role into early drug discovery. Here, we demonstrate for the first time the interplay of high throughput synthesis and high throughput PX. We describe a practical multicomponent reaction approach to acrylamides and -esters from diverse building blocks suitable for mmol scale synthesis on 96-well format and on a high-throughput nanoscale format in a highly automated fashion. High-throughput PX of our libraries efficiently yielded potent covalent inhibitors of the main protease of the COVID-19 causing agent, SARS-CoV-2. Our results demonstrate, that the marriage of in situ HT synthesis of (covalent) libraires and HT PX has the potential to accelerate hit finding and to provide meaningful strategies for medicinal chemistry projects.
Collapse
Affiliation(s)
- Fandi Sutanto
- University of GroningenDepartment of Drug DesignA. Deusinglaan 19713AVGroningenThe Netherlands
| | - Shabnam Shaabani
- University of GroningenDepartment of Drug DesignA. Deusinglaan 19713AVGroningenThe Netherlands
| | - Rick Oerlemans
- University of GroningenDepartment of Drug DesignA. Deusinglaan 19713AVGroningenThe Netherlands
| | - Deniz Eris
- Photon Science DivisionPaul Scherrer InstituteSwitzerland
| | - Pravin Patil
- University of GroningenDepartment of Drug DesignA. Deusinglaan 19713AVGroningenThe Netherlands
| | - Mojgan Hadian
- University of GroningenDepartment of Drug DesignA. Deusinglaan 19713AVGroningenThe Netherlands
| | - Meitian Wang
- Photon Science DivisionPaul Scherrer InstituteSwitzerland
| | | | - Matthew R. Groves
- University of GroningenDepartment of Drug DesignA. Deusinglaan 19713AVGroningenThe Netherlands
| | - Alexander Dömling
- University of GroningenDepartment of Drug DesignA. Deusinglaan 19713AVGroningenThe Netherlands
| |
Collapse
|
36
|
Sutanto F, Shaabani S, Oerlemans R, Eris D, Patil P, Hadian M, Wang M, Sharpe ME, Groves MR, Dömling A. Combining High‐Throughput Synthesis and High‐Throughput Protein Crystallography for Accelerated Hit Identification. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fandi Sutanto
- University of Groningen Department of Drug Design A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Shabnam Shaabani
- University of Groningen Department of Drug Design A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Rick Oerlemans
- University of Groningen Department of Drug Design A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Deniz Eris
- Photon Science Division Paul Scherrer Institute Switzerland
| | - Pravin Patil
- University of Groningen Department of Drug Design A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Mojgan Hadian
- University of Groningen Department of Drug Design A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Meitian Wang
- Photon Science Division Paul Scherrer Institute Switzerland
| | | | - Matthew R. Groves
- University of Groningen Department of Drug Design A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Alexander Dömling
- University of Groningen Department of Drug Design A. Deusinglaan 1 9713 AV Groningen The Netherlands
| |
Collapse
|
37
|
Sui S, Mulichak A, Kulathila R, McGee J, Filiatreault D, Saha S, Cohen A, Song J, Hung H, Selway J, Kirby C, Shrestha OK, Weihofen W, Fodor M, Xu M, Chopra R, Perry SL. A capillary-based microfluidic device enables primary high-throughput room-temperature crystallographic screening. J Appl Crystallogr 2021; 54:1034-1046. [PMID: 34429718 PMCID: PMC8366422 DOI: 10.1107/s1600576721004155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/18/2021] [Indexed: 11/10/2022] Open
Abstract
A novel capillary-based microfluidic strategy to accelerate the process of small-molecule-compound screening by room-temperature X-ray crystallography using protein crystals is reported. The ultra-thin microfluidic devices are composed of a UV-curable polymer, patterned by cleanroom photolithography, and have nine capillary channels per chip. The chip was designed for ease of sample manipulation, sample stability and minimal X-ray background. 3D-printed frames and cassettes conforming to SBS standards are used to house the capillary chips, providing additional mechanical stability and compatibility with automated liquid- and sample-handling robotics. These devices enable an innovative in situ crystal-soaking screening workflow, akin to high-throughput compound screening, such that quantitative electron density maps sufficient to determine weak binding events are efficiently obtained. This work paves the way for adopting a room-temperature microfluidics-based sample delivery method at synchrotron sources to facilitate high-throughput protein-crystallography-based screening of compounds at high concentration with the aim of discovering novel binding events in an automated manner.
Collapse
Affiliation(s)
- Shuo Sui
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Anne Mulichak
- IMCA-CAT, Argonne National Laboratory, Lemont, IL, USA
| | | | - Joshua McGee
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Sarthak Saha
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Aina Cohen
- Macromolecular Crystallography Group, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, USA
| | - Jinhu Song
- Macromolecular Crystallography Group, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, USA
| | | | - Jonathan Selway
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Christina Kirby
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Om K. Shrestha
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Michelle Fodor
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Mei Xu
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Rajiv Chopra
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
38
|
Ross B, Krapp S, Geiss-Friedlander R, Littmann W, Huber R, Kiefersauer R. Aerosol-based ligand soaking of reservoir-free protein crystals. J Appl Crystallogr 2021; 54:895-902. [PMID: 34188616 PMCID: PMC8202026 DOI: 10.1107/s1600576721003551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/01/2021] [Indexed: 11/10/2022] Open
Abstract
Soaking of macromolecular crystals allows the formation of complexes via diffusion of molecules into a preformed crystal for structural analysis. Soaking offers various advantages over co-crystallization, e.g. small samples and high-throughput experimentation. However, this method has disadvantages, such as inducing mechanical stress on crystals and reduced success rate caused by low affinity/solubility of the ligand. To bypass these issues, the Picodropper was previously developed in the authors' laboratory. This technique aimed to deliver small volumes of compound solution in response to crystal dehydration supported by the Free Mounting System humidity control or by IR-laser-induced protein crystal transformation. Herein, a new related soaking development, the Aerosol-Generator, is introduced. This device delivers compounds onto the solution-free surface of protein crystals using an ultrasonic technique. The produced aerosol stream enables an easier and more accurate control of solution volumes, reduced crystal handling, and crystal-size-independent soaking. The Aerosol-Generator has been used to produce complexes of DPP8 crystals, where otherwise regular soaking did not achieve complex formation. These results demonstrate the potential of this device in challenging ligand-binding scenarios and contribute to further understanding of DPP8 inhibitor binding.
Collapse
Affiliation(s)
- Breyan Ross
- Max Planck Institut für Biochemie, D-82152 Martinsried, Germany
- Proteros Biostructures GmbH, D-82152 Martinsried, Germany
| | - Stephan Krapp
- Proteros Biostructures GmbH, D-82152 Martinsried, Germany
| | - Ruth Geiss-Friedlander
- Center of Biochemistry and Molecular Cell Research, Albert-Ludwigs-Universität, D-79104 Freiburg, Germany
| | - Walter Littmann
- ATHENA Technologie Beratung GmbH, Technologiepark 13, D-33100 Paderborn, Germany
| | - Robert Huber
- Max Planck Institut für Biochemie, D-82152 Martinsried, Germany
- Zentrum für Medizinische Biotechnologie, Universität Duisburg-Essen, D-45147 Essen, Germany
- Fakultät für Chemie, Technische Universität München, D-85747 Garching, Germany
| | - Reiner Kiefersauer
- Max Planck Institut für Biochemie, D-82152 Martinsried, Germany
- Proteros Biostructures GmbH, D-82152 Martinsried, Germany
| |
Collapse
|
39
|
Bajusz D, Wade WS, Satała G, Bojarski AJ, Ilaš J, Ebner J, Grebien F, Papp H, Jakab F, Douangamath A, Fearon D, von Delft F, Schuller M, Ahel I, Wakefield A, Vajda S, Gerencsér J, Pallai P, Keserű GM. Exploring protein hotspots by optimized fragment pharmacophores. Nat Commun 2021; 12:3201. [PMID: 34045440 PMCID: PMC8159961 DOI: 10.1038/s41467-021-23443-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/29/2021] [Indexed: 02/04/2023] Open
Abstract
Fragment-based drug design has introduced a bottom-up process for drug development, with improved sampling of chemical space and increased effectiveness in early drug discovery. Here, we combine the use of pharmacophores, the most general concept of representing drug-target interactions with the theory of protein hotspots, to develop a design protocol for fragment libraries. The SpotXplorer approach compiles small fragment libraries that maximize the coverage of experimentally confirmed binding pharmacophores at the most preferred hotspots. The efficiency of this approach is demonstrated with a pilot library of 96 fragment-sized compounds (SpotXplorer0) that is validated on popular target classes and emerging drug targets. Biochemical screening against a set of GPCRs and proteases retrieves compounds containing an average of 70% of known pharmacophores for these targets. More importantly, SpotXplorer0 screening identifies confirmed hits against recently established challenging targets such as the histone methyltransferase SETD2, the main protease (3CLPro) and the NSP3 macrodomain of SARS-CoV-2.
Collapse
Affiliation(s)
- Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | | | - Grzegorz Satała
- Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Janez Ilaš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Jessica Ebner
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Henrietta Papp
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Centre for Medicines Discovery, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Amanda Wakefield
- Department of Chemistry, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sándor Vajda
- Department of Chemistry, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | | | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
40
|
Gao K, Shaabani S, Xu R, Zarganes-Tzitzikas T, Gao L, Ahmadianmoghaddam M, Groves MR, Dömling A. Nanoscale, automated, high throughput synthesis and screening for the accelerated discovery of protein modifiers. RSC Med Chem 2021; 12:809-818. [PMID: 34124680 PMCID: PMC8152715 DOI: 10.1039/d1md00087j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/14/2021] [Indexed: 11/26/2022] Open
Abstract
Hit finding in early drug discovery is often based on high throughput screening (HTS) of existing and historical compound libraries, which can limit chemical diversity, is time-consuming, very costly, and environmentally not sustainable. On-the-fly compound synthesis and in situ screening in a highly miniaturized and automated format has the potential to greatly reduce the medicinal chemistry environmental footprint. Here, we used acoustic dispensing technology to synthesize a library in a 1536 well format based on the Groebcke-Blackburn-Bienaymé reaction (GBB-3CR) on a nanomole scale. The unpurified library was screened by differential scanning fluorimetry (DSF) and cross-validated using microscale thermophoresis (MST) against the oncogenic protein-protein interaction menin-MLL. Several GBB reaction products were found as μM menin binder, and the structural basis of the interactions with menin was elucidated by co-crystal structure analysis. Miniaturization and automation of the organic synthesis and screening process can lead to an acceleration in the early drug discovery process, which is an alternative to classical HTS and a step towards the paradigm of continuous manufacturing.
Collapse
Affiliation(s)
- Kai Gao
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Shabnam Shaabani
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Ruixue Xu
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Tryfon Zarganes-Tzitzikas
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Li Gao
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Maryam Ahmadianmoghaddam
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Matthew R Groves
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Alexander Dömling
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| |
Collapse
|
41
|
Sprenger J, Carey J, Schulz A, Drouard F, Lawson CL, von Wachenfeldt C, Linse S, Lo Leggio L. Guest-protein incorporation into solvent channels of a protein host crystal (hostal). Acta Crystallogr D Struct Biol 2021; 77:471-485. [PMID: 33825708 PMCID: PMC8025882 DOI: 10.1107/s2059798321001078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/29/2021] [Indexed: 11/10/2022] Open
Abstract
Soaking small molecules into the solvent channels of protein crystals is the most common method of obtaining crystalline complexes with ligands such as substrates or inhibitors. The solvent channels of some protein crystals are large enough to allow the incorporation of macromolecules, but soaking of protein guests into protein crystals has not been reported. Such protein host crystals (here given the name hostals) incorporating guest proteins may be useful for a wide range of applications in biotechnology, for example as cargo systems or for diffraction studies analogous to the crystal sponge method. The present study takes advantage of crystals of the Escherichia coli tryptophan repressor protein (ds-TrpR) that are extensively domain-swapped and suitable for incorporating guest proteins by diffusion, as they are robust and have large solvent channels. Confocal fluorescence microscopy is used to follow the migration of cytochrome c and fluorophore-labeled calmodulin into the solvent channels of ds-TrpR crystals. The guest proteins become uniformly distributed in the crystal within weeks and enriched within the solvent channels. X-ray diffraction studies on host crystals with high concentrations of incorporated guests demonstrate that diffraction limits of ∼2.5 Å can still be achieved. Weak electron density is observed in the solvent channels, but the guest-protein structures could not be determined by conventional crystallographic methods. Additional approaches that increase the ordering of guests in the host crystal are discussed that may support protein structure determination using the hostal system in the future. This host system may also be useful for biotechnological applications where crystallographic order of the guest is not required.
Collapse
Affiliation(s)
- Janina Sprenger
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Center for Molecular Protein Science, Lund University, SE-221 00 Lund, Sweden
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Jannette Carey
- Chemistry Department, Princeton University, Princeton, NJ 08544, USA
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Fleur Drouard
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Catherine L. Lawson
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Sara Linse
- Center for Molecular Protein Science, Lund University, SE-221 00 Lund, Sweden
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
42
|
Schuller M, Correy GJ, Gahbauer S, Fearon D, Wu T, Díaz RE, Young ID, Carvalho Martins L, Smith DH, Schulze-Gahmen U, Owens TW, Deshpande I, Merz GE, Thwin AC, Biel JT, Peters JK, Moritz M, Herrera N, Kratochvil HT, Aimon A, Bennett JM, Brandao Neto J, Cohen AE, Dias A, Douangamath A, Dunnett L, Fedorov O, Ferla MP, Fuchs MR, Gorrie-Stone TJ, Holton JM, Johnson MG, Krojer T, Meigs G, Powell AJ, Rack JGM, Rangel VL, Russi S, Skyner RE, Smith CA, Soares AS, Wierman JL, Zhu K, O'Brien P, Jura N, Ashworth A, Irwin JJ, Thompson MC, Gestwicki JE, von Delft F, Shoichet BK, Fraser JS, Ahel I. Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking. SCIENCE ADVANCES 2021; 7:eabf8711. [PMID: 33853786 PMCID: PMC8046379 DOI: 10.1126/sciadv.abf8711] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/24/2021] [Indexed: 05/19/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) macrodomain within the nonstructural protein 3 counteracts host-mediated antiviral adenosine diphosphate-ribosylation signaling. This enzyme is a promising antiviral target because catalytic mutations render viruses nonpathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of 2533 diverse fragments resulted in 214 unique macrodomain-binders. An additional 60 molecules were selected from docking more than 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several fragment hits were confirmed by solution binding using three biophysical techniques (differential scanning fluorimetry, homogeneous time-resolved fluorescence, and isothermal titration calorimetry). The 234 fragment structures explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.
Collapse
Affiliation(s)
- Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Galen J Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Taiasean Wu
- Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA 94158, USA
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Roberto Efraín Díaz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Iris D Young
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Luan Carvalho Martins
- Biochemistry Department, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Dominique H Smith
- Helen Diller Family Comprehensive Cancer, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ursula Schulze-Gahmen
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Tristan W Owens
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ishan Deshpande
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Gregory E Merz
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Aye C Thwin
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Justin T Biel
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jessica K Peters
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michelle Moritz
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nadia Herrera
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Huong T Kratochvil
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Anthony Aimon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - James M Bennett
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington OX3 7DQ, UK
| | - Jose Brandao Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Alexandre Dias
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Louise Dunnett
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Oleg Fedorov
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington OX3 7DQ, UK
| | - Matteo P Ferla
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Martin R Fuchs
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Tyler J Gorrie-Stone
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - James M Holton
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Tobias Krojer
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
| | - George Meigs
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ailsa J Powell
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | | | - Victor L Rangel
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Rachael E Skyner
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Clyde A Smith
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Alexei S Soares
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jennifer L Wierman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Peter O'Brien
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Natalia Jura
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer, University of California San Francisco, San Francisco, CA 94158, USA
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michael C Thompson
- Department of Chemistry and Biochemistry, University of California Merced, Merced, CA 95343, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA 94158, USA
| | - Frank von Delft
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
- Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA.
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
43
|
Guo Q, Su X, Zhang X, Shao M, Yu H, Li D. A review on acoustic droplet ejection technology and system. SOFT MATTER 2021; 17:3010-3021. [PMID: 33710210 DOI: 10.1039/d0sm02193h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The pace of change in chemical and biological research enabled by improved detection systems demands fundamental liquid handling and sample preparation changes. The acoustic droplet ejection (ADE)-based liquid handling method has the advantages of improving precision and data reproducibility, reducing costs, hands-on time, and eliminating waste. ADE gradually replaced traditional aspiration-and-dispense liquid-handling robots in applications such as synthetic biology, genotyping, personalized medicine, and next-generation sequencing. This review emphatically introduces the setup of the ADE system and the critical technologies of each part, including acoustic droplet generation, optimized design of the source fluid wells, droplet coalescence, and power control. The advantages and disadvantages of these technologies are discussed, and the future development of acoustic droplet ejection technology is also predicted.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | |
Collapse
|
44
|
Wright ND, Collins P, Koekemoer L, Krojer T, Talon R, Nelson E, Ye M, Nowak R, Newman J, Ng JT, Mitrovich N, Wiggers H, von Delft F. The low-cost Shifter microscope stage transforms the speed and robustness of protein crystal harvesting. Acta Crystallogr D Struct Biol 2021; 77:62-74. [PMID: 33404526 PMCID: PMC7787106 DOI: 10.1107/s2059798320014114] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 10/22/2020] [Indexed: 12/05/2022] Open
Abstract
Despite the tremendous success of X-ray cryo-crystallography in recent decades, the transfer of crystals from the drops in which they are grown to diffractometer sample mounts remains a manual process in almost all laboratories. Here, the Shifter, a motorized, interactive microscope stage that transforms the entire crystal-mounting workflow from a rate-limiting manual activity to a controllable, high-throughput semi-automated process, is described. By combining the visual acuity and fine motor skills of humans with targeted hardware and software automation, it was possible to transform the speed and robustness of crystal mounting. Control software, triggered by the operator, manoeuvres crystallization plates beneath a clear protective cover, allowing the complete removal of film seals and thereby eliminating the tedium of repetitive seal cutting. The software, either upon request or working from an imported list, controls motors to position crystal drops under a hole in the cover for human mounting at a microscope. The software automatically captures experimental annotations for uploading to the user's data repository, removing the need for manual documentation. The Shifter facilitates mounting rates of 100-240 crystals per hour in a more controlled process than manual mounting, which greatly extends the lifetime of the drops and thus allows a dramatic increase in the number of crystals retrievable from any given drop without loss of X-ray diffraction quality. In 2015, the first in a series of three Shifter devices was deployed as part of the XChem fragment-screening facility at Diamond Light Source, where they have since facilitated the mounting of over 120 000 crystals. The Shifter was engineered to have a simple design, providing a device that could be readily commercialized and widely adopted owing to its low cost. The versatile hardware design allows use beyond fragment screening and protein crystallography.
Collapse
Affiliation(s)
- Nathan David Wright
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Patrick Collins
- I04-1, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
| | - Lizbé Koekemoer
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Tobias Krojer
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Romain Talon
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- I04-1, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
| | - Elliot Nelson
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Mingda Ye
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Radosław Nowak
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Joseph Newman
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Jia Tsing Ng
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Nick Mitrovich
- Oxford Lab Technologies Ltd, Kemp House, 160 City Road, London EC1V 2N, United Kingdom
| | - Helton Wiggers
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Frank von Delft
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- I04-1, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
- Faculty of Science, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
45
|
A comprehensive approach to X-ray crystallography for drug discovery at a synchrotron facility - The example of Diamond Light Source. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 37:83-92. [PMID: 34895658 DOI: 10.1016/j.ddtec.2020.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 11/21/2022]
Abstract
A detailed understanding of the interactions between drugs and their targets is crucial to develop the best possible therapeutic agents. Structure-based drug design relies on the availability of high-resolution structures obtained primarily through X-ray crystallography. Collecting and analysing quickly a large quantity of structural data is crucial to accelerate drug discovery pipelines. Researchers from academia and industry can access the highly automated macromolecular crystallography (MX) beamlines of Diamond Light Source, the UK national synchrotron, to rapidly collect diffraction data from large numbers of crystals. With seven beamlines dedicated to MX, Diamond offers bespoke solutions for a wide variety of user requirements. Working in synergy with state-of-the-art laboratories and other life science instruments to provide an integrated offering, the MX beamlines provide innovative and multidisciplinary approaches to the determination of structures of new pharmacological targets as well as the efficient study of protein-ligand complexes.
Collapse
|
46
|
Schuller M, Correy GJ, Gahbauer S, Fearon D, Wu T, Díaz RE, Young ID, Martins LC, Smith DH, Schulze-Gahmen U, Owens TW, Deshpande I, Merz GE, Thwin AC, Biel JT, Peters JK, Moritz M, Herrera N, Kratochvil HT, QCRG Structural Biology Consortium, Aimon A, Bennett JM, Neto JB, Cohen AE, Dias A, Douangamath A, Dunnett L, Fedorov O, Ferla MP, Fuchs M, Gorrie-Stone TJ, Holton JM, Johnson MG, Krojer T, Meigs G, Powell AJ, Johannes Gregor Matthias Rack, Rangel VL, Russi S, Skyner RE, Smith CA, Soares AS, Wierman JL, Zhu K, Jura N, Ashworth A, Irwin J, Thompson MC, Gestwicki JE, von Delft F, Shoichet BK, Fraser JS, Ahel I. Fragment Binding to the Nsp3 Macrodomain of SARS-CoV-2 Identified Through Crystallographic Screening and Computational Docking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.24.393405. [PMID: 33269349 PMCID: PMC7709169 DOI: 10.1101/2020.11.24.393405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The SARS-CoV-2 macrodomain (Mac1) within the non-structural protein 3 (Nsp3) counteracts host-mediated antiviral ADP-ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses non-pathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of diverse fragment libraries resulted in 214 unique macrodomain-binding fragments, out of 2,683 screened. An additional 60 molecules were selected from docking over 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several crystallographic and docking fragment hits were validated for solution binding using three biophysical techniques (DSF, HTRF, ITC). Overall, the 234 fragment structures presented explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.
Collapse
Affiliation(s)
- Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, CA, USA
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco, CA, USA
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Taiasean Wu
- Institute for Neurodegenerative Disease, University of California San Francisco, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, CA, USA
| | - Roberto Efraín Díaz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, CA, USA
- Tetrad Graduate Program, University of California San Francisco, CA, USA
| | - Iris D. Young
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Luan Carvalho Martins
- Biochemistry Department, Institute for Biological Sciences, Federal University of Minas Gerais. Belo Horizonte, Brazil
| | - Dominique H. Smith
- Helen Diller Family Comprehensive Cancer, University of California San Francisco, CA, USA
| | - Ursula Schulze-Gahmen
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Tristan W. Owens
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Ishan Deshpande
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Gregory E. Merz
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Aye C. Thwin
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Justin T. Biel
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Jessica K. Peters
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Michelle Moritz
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Nadia Herrera
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Huong T. Kratochvil
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - QCRG Structural Biology Consortium
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Anthony Aimon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - James M. Bennett
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington, OX3 7DQ, UK
| | - Jose Brandao Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Alexandre Dias
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Louise Dunnett
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Oleg Fedorov
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington, OX3 7DQ, UK
| | - Matteo P. Ferla
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Martin Fuchs
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Tyler J. Gorrie-Stone
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - James M. Holton
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, CA, USA
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Tobias Krojer
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington, OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
| | - George Meigs
- Department of Biochemistry and Biophysics, University of California San Francisco, CA, USA
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ailsa J. Powell
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | | | - Victor L Rangel
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington, OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Rachael E. Skyner
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Clyde A. Smith
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | | | - Jennifer L. Wierman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Natalia Jura
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer, University of California San Francisco, CA, USA
| | - John Irwin
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco, CA, USA
| | - Michael C. Thompson
- Department of Chemistry and Chemical Biology, University of California Merced, CA, USA
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco, CA, USA
- Institute for Neurodegenerative Disease, University of California San Francisco, CA, USA
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington, OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco, CA, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, CA, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
47
|
Douangamath A, Fearon D, Gehrtz P, Krojer T, Lukacik P, Owen CD, Resnick E, Strain-Damerell C, Aimon A, Ábrányi-Balogh P, Brandão-Neto J, Carbery A, Davison G, Dias A, Downes TD, Dunnett L, Fairhead M, Firth JD, Jones SP, Keeley A, Keserü GM, Klein HF, Martin MP, Noble MEM, O'Brien P, Powell A, Reddi RN, Skyner R, Snee M, Waring MJ, Wild C, London N, von Delft F, Walsh MA. Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease. Nat Commun 2020; 11:5047. [PMID: 33028810 PMCID: PMC7542442 DOI: 10.1038/s41467-020-18709-w] [Citation(s) in RCA: 356] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments were progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease.
Collapse
Affiliation(s)
- Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Paul Gehrtz
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tobias Krojer
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Petra Lukacik
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - C David Owen
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Efrat Resnick
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Claire Strain-Damerell
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Anthony Aimon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - José Brandão-Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Anna Carbery
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
- Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
| | - Gemma Davison
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer, Chemistry, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Alexandre Dias
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Thomas D Downes
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Louise Dunnett
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Michael Fairhead
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - James D Firth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - S Paul Jones
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Aaron Keeley
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - György M Keserü
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Hanna F Klein
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Mathew P Martin
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4AD, UK
| | - Martin E M Noble
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4AD, UK
| | - Peter O'Brien
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Ailsa Powell
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Rambabu N Reddi
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Rachael Skyner
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Matthew Snee
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Michael J Waring
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer, Chemistry, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Conor Wild
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Nir London
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK.
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK.
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK.
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa.
| | - Martin A Walsh
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK.
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK.
| |
Collapse
|
48
|
Lawrence JM, Orlans J, Evans G, Orville AM, Foadi J, Aller P. High-throughput in situ experimental phasing. Acta Crystallogr D Struct Biol 2020; 76:790-801. [PMID: 32744261 PMCID: PMC7397491 DOI: 10.1107/s2059798320009109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/03/2020] [Indexed: 11/10/2022] Open
Abstract
In this article, a new approach to experimental phasing for macromolecular crystallography (MX) at synchrotrons is introduced and described for the first time. It makes use of automated robotics applied to a multi-crystal framework in which human intervention is reduced to a minimum. Hundreds of samples are automatically soaked in heavy-atom solutions, using a Labcyte Inc. Echo 550 Liquid Handler, in a highly controlled and optimized fashion in order to generate derivatized and isomorphous crystals. Partial data sets obtained on MX beamlines using an in situ setup for data collection are processed with the aim of producing good-quality anomalous signal leading to successful experimental phasing.
Collapse
Affiliation(s)
- Joshua M. Lawrence
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Julien Orlans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i); Institut National des Sciences Appliquées de Lyon (INSA Lyon); Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - James Foadi
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Pierre Aller
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
49
|
Guo J, Douangamath A, Song W, Coker AR, Chan AE, Wood SP, Cooper JB, Resnick E, London N, Delft FV. In crystallo-screening for discovery of human norovirus 3C-like protease inhibitors. J Struct Biol X 2020; 4:100031. [PMID: 32743543 PMCID: PMC7365090 DOI: 10.1016/j.yjsbx.2020.100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/15/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022] Open
Abstract
Outbreaks of human epidemic nonbacterial gastroenteritis are mainly caused by noroviruses. Viral replication requires a 3C-like cysteine protease (3CLpro) which processes the 200 kDa viral polyprotein into six functional proteins. The 3CLpro has attracted much interest due to its potential as a target for antiviral drugs. A system for growing high-quality crystals of native Southampton norovirus 3CLpro (SV3CP) has been established, allowing the ligand-free crystal structure to be determined to 1.3 Å in a tetrameric state. This also allowed crystal-based fragment screening to be performed with various compound libraries, ultimately to guide drug discovery for SV3CP. A total of 19 fragments were found to bind to the protease out of the 844 which were screened. Two of the hits were located at the active site of SV3CP and showed good inhibitory activity in kinetic assays. Another 5 were found at the enzyme's putative RNA-binding site and a further 11 were located in the symmetric central cavity of the tetramer.
Collapse
Affiliation(s)
- Jingxu Guo
- Division of Medicine, UCL, Gower Street, London WC1E 6BT, UK
| | - Alice Douangamath
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Weixiao Song
- Division of Medicine, UCL, Gower Street, London WC1E 6BT, UK
| | - Alun R. Coker
- Division of Medicine, UCL, Gower Street, London WC1E 6BT, UK
| | - A.W. Edith Chan
- Division of Medicine, UCL, Gower Street, London WC1E 6BT, UK
| | - Steve P. Wood
- Division of Medicine, UCL, Gower Street, London WC1E 6BT, UK
| | - Jonathan B. Cooper
- Division of Medicine, UCL, Gower Street, London WC1E 6BT, UK
- Department of Biological Sciences, Birkbeck, University of London, Malet Street, Bloomsbury, London WC1E 7HX, UK
| | - Efrat Resnick
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nir London
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Frank von Delft
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, OX3 7DQ, UK
- Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| |
Collapse
|
50
|
Nichols C, Ng J, Keshu A, Kelly G, Conte MR, Marber MS, Fraternali F, De Nicola GF. Mining the PDB for Tractable Cases Where X-ray Crystallography Combined with Fragment Screens Can Be Used to Systematically Design Protein-Protein Inhibitors: Two Test Cases Illustrated by IL1β-IL1R and p38α-TAB1 Complexes. J Med Chem 2020; 63:7559-7568. [PMID: 32543856 DOI: 10.1021/acs.jmedchem.0c00403] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nowadays, it is possible to combine X-ray crystallography and fragment screening in a medium throughput fashion to chemically probe the surfaces used by proteins to interact and use the outcome of the screens to systematically design protein-protein inhibitors. To prove it, we first performed a bioinformatics analysis of the Protein Data Bank protein complexes, which revealed over 400 cases where the crystal lattice of the target in the free form is such that large portions of the interacting surfaces are free from lattice contacts and therefore accessible to fragments during soaks. Among the tractable complexes identified, we then performed single fragment crystal screens on two particular interesting cases: the Il1β-ILR and p38α-TAB1 complexes. The result of the screens showed that fragments tend to bind in clusters, highlighting the small-molecule hotspots on the surface of the target protein. In most of the cases, the hotspots overlapped with the binding sites of the interacting proteins.
Collapse
Affiliation(s)
- Charlie Nichols
- British Heart Foundation Centre of Excellence, Department of Cardiology, The Rayne Institute, St Thomas' Hospital, King's College London, London SE1 7EH, U.K.,The Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, U.K
| | - Joseph Ng
- The Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, U.K
| | - Annika Keshu
- The Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, U.K
| | - Geoff Kelly
- NMR Facility, The Francis Crick Institute, London NW1 1AT, U.K
| | - Maria R Conte
- The Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, U.K
| | - Michael S Marber
- British Heart Foundation Centre of Excellence, Department of Cardiology, The Rayne Institute, St Thomas' Hospital, King's College London, London SE1 7EH, U.K
| | - Franca Fraternali
- The Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, U.K
| | - Gian F De Nicola
- British Heart Foundation Centre of Excellence, Department of Cardiology, The Rayne Institute, St Thomas' Hospital, King's College London, London SE1 7EH, U.K.,The Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, U.K
| |
Collapse
|