1
|
Alejandro-Navarreto X, Freitag NE. Revisiting old friends: updates on the role of two-component signaling systems in Listeria monocytogenes survival and pathogenesis. Infect Immun 2024; 92:e0034523. [PMID: 38591895 PMCID: PMC11003226 DOI: 10.1128/iai.00345-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Listeria monocytogenes is well recognized for both its broad resistance to stress conditions and its ability to transition from a soil bacterium to an intracellular pathogen of mammalian hosts. The bacterium's impressive ability to adapt to changing environments and conditions requires the rapid sensing of environmental cues and the coordinated response of gene products that enable bacterial growth and survival. Two-component signaling systems (TCSs) have been long recognized for their ability to detect environmental stimuli and transmit those signals into transcriptional responses; however, often the precise nature of the stimulus triggering TCS responses can be challenging to define. L. monocytogenes has up to 16 TCSs that have been recognized based on homology and included in this list are several whose functions remain poorly described. This review highlights the current understanding of the breadth and scope of L. monocytogenes TCS as relates to stress resistance and pathogenesis. Precise signals still often remain elusive, but the gene networks associated with TCSs are providing clues into possible functions.
Collapse
Affiliation(s)
| | - Nancy E Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Hugon AM, Golos TG. Listeria monocytogenes infection in intestinal epithelial Caco-2 cells with exposure to progesterone and estradiol-17beta in a gestational infection model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550068. [PMID: 37503025 PMCID: PMC10370168 DOI: 10.1101/2023.07.21.550068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Listeria monocytogenes (Lm) is a food-borne pathogen associated with serious pregnancy complications, including miscarriage, stillbirth, preterm birth, neonatal sepsis, and meningitis. Although Lm infection within the gastrointestinal (GI) tract is well studied, little is known about the influence sex hormones may have on listeriosis. Estradiol (E2) and progesterone (P4) not only have receptors within the GI tract but are significantly increased during pregnancy. The presence of these hormones may play a role in susceptibility to listeriosis during pregnancy. Caco-2 cell monolayers were grown on trans-well inserts in the presence of E2, P4, both E2 and P4, or no hormones (control). Cells were inoculated with Lm for 1 hour, before rinsing with gentamycin and transfer to fresh media. Trans-epithelial resistance was recorded hourly, and bacterial burden of the apical media, intracellular lysates, and basal media were assessed at 6 hours post inoculation. There were no significant differences in bacterial replication when directly exposed to sex steroids, and Caco-2 cell epithelial barrier function was not impacted during culture with Lm. Addition of P4 significantly reduced intracellular bacterial burden compared to E2 only and no hormone controls. Interestingly, E2 only treatment was associated with significantly increased Lm within the basal compartment, compared to reduction in the intracellular and apical layers. These data indicate that increased circulating sex hormones alone do not significantly impact intestinal epithelial barrier integrity during listeriosis, but that addition of P4 and E2, alone or in combination, was associated with reduced epithelial cell bacterial burden and apical release of Lm.
Collapse
Affiliation(s)
- Anna Marie Hugon
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Influence of Hurdle Technology on Foodborne Pathogen Survival in the Human Gastrointestinal Tract. Microorganisms 2023; 11:microorganisms11020405. [PMID: 36838370 PMCID: PMC9960521 DOI: 10.3390/microorganisms11020405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The application of several sublethal stresses in hurdle technology can exert microbial stress resistance, which, in turn, might enable foodborne pathogens to overcome other types of lethal stresses, such as the gastrointestinal barriers. The present study evaluated the survival of Salmonella Typhimurium and Listeria monocytogenes during simulated digestion, following exposure to combinations of water activity (aw), pH and storage temperature stresses. The results revealed that both pathogens survived their passage through the simulated gastrointestinal tract (GIT) with their previous habituation to certain hurdle combinations inducing stress tolerance. More specifically, the habituation to a low temperature or to a high pH resulted in the increased stress tolerance of Salmonella, while for Listeria, the cells appeared stress tolerant after exposure to a high temperature or to a low pH. Nonetheless, both pathogens expressed increased sensitivity after habituation to growth-limiting hurdle combinations. The survival of stress-tolerant pathogenic cells in the human GIT poses major public health issues, since it can lead to host infection. Consequently, further research is required to obtain a deeper understanding of the adaptive stress responses of foodborne bacteria after exposure to combinations of sublethal hurdles to improve the existing food safety systems.
Collapse
|
4
|
Akritidou T, Akkermans S, Smet C, Delens V, Van Impe JFM. Effect of food structure and buffering capacity on pathogen survival during in vitro digestion. Food Res Int 2023; 164:112305. [PMID: 36737908 DOI: 10.1016/j.foodres.2022.112305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Even though a plethora of barriers are employed by the human gastrointestinal tract (GIT) to cope with invading pathogens, foodborne diseases are still a common problem. The survival of food pathogens in the GIT is known to depend on food carrier properties. The aim of this study was to investigate the influence of food buffering capacity and food structure on the survival of Salmonella Typhimurium and Listeria monocytogenes during simulated digestion, following contamination of different food model systems that had different combinations of fat and protein content. The results illustrated the strong protective properties of proteins, acting either as a strong buffering agent or as a physical barrier against gastric acidity, for both pathogens. In comparison, fat manifested a lower buffering capacity and weaker protective effects against the two pathogens. Intriguingly, a low fat content was often linked with increased microbial resistance. Nonetheless, both pathogens survived their transit through the simulated GIT in all cases, with S. Typhimurium exhibiting growth during intestinal digestion and L.monocytogenes demonstrating a healthy residual population at the end of the intestinal phase. These results corroborate the need for a deeper understanding regarding the mechanisms with which food affects bacterial survival in the human GIT.
Collapse
Affiliation(s)
- Theodora Akritidou
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Valérie Delens
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Jan F M Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium.
| |
Collapse
|
5
|
Polese P, Del Torre M, Stecchini ML. Impact of multiple hurdles on Listeria monocytogenes dispersion of survivors. Food Microbiol 2022; 107:104088. [DOI: 10.1016/j.fm.2022.104088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
|
6
|
Salazar-Sánchez A, Baztarrika I, Alonso R, Fernández-Astorga A, Martínez-Ballesteros I, Martinez-Malaxetxebarria I. Arcobacter butzleri Biofilms: Insights into the Genes Beneath Their Formation. Microorganisms 2022; 10:1280. [PMID: 35888999 PMCID: PMC9324650 DOI: 10.3390/microorganisms10071280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022] Open
Abstract
Arcobacter butzleri, the most prevalent species of the genus, has the demonstrated ability to adhere to various surfaces through biofilm production. The biofilm formation capability has been related to the expression of certain genes, which have not been characterized in A. butzleri. In order to increase the knowledge of this foodborne pathogen, the aim of this study was to assess the role of six biofilm-associated genes in campylobacteria (flaA, flaB, fliS, luxS, pta and spoT) in the biofilm formation ability of A. butzleri. Knockout mutants were constructed from different foodborne isolates, and static biofilm assays were conducted on polystyrene (PS), reinforced glass and stainless steel. Additionally, motility and Congo red binding assays were performed. In general, mutants in flaAB, fliS and luxS showed a decrease in the biofilm production irrespective of the surface; mutants in spoT showed an increase on stainless steel, and mutants in pta and spoT showed a decrease on reinforced glass but an increase on PS. Our work sheds light on the biofilm-related pathogenesis of A. butzleri, although future studies are necessary to achieve a satisfactory objective.
Collapse
Affiliation(s)
- Adrián Salazar-Sánchez
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Itsaso Baztarrika
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Rodrigo Alonso
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Aurora Fernández-Astorga
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Ilargi Martínez-Ballesteros
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Irati Martinez-Malaxetxebarria
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
7
|
Wu J, NicAogáin K, McAuliffe O, Jordan K, O’Byrne C. Phylogenetic and Phenotypic Analyses of a Collection of Food and Clinical Listeria monocytogenes Isolates Reveal Loss of Function of Sigma B from Several Clonal Complexes. Appl Environ Microbiol 2022; 88:e0005122. [PMID: 35481758 PMCID: PMC9128516 DOI: 10.1128/aem.00051-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
To understand the molecular mechanisms that contribute to the stress responses of the important foodborne pathogen Listeria monocytogenes, we collected 139 strains (meat, n = 25; dairy, n = 10; vegetable, n = 8; seafood, n = 14; mixed food, n = 4; and food processing environments, n = 78), mostly isolated in Ireland, and subjected them to whole-genome sequencing. These strains were compared to 25 Irish clinical isolates and 4 well-studied reference strains. Core genome and pan-genome analysis confirmed a highly clonal and deeply branched population structure. Multilocus sequence typing showed that this collection contained a diverse range of strains from L. monocytogenes lineages I and II. Several groups of isolates with highly similar genome content were traced to single or multiple food business operators, providing evidence of strain persistence or prevalence, respectively. Phenotypic screening assays for tolerance to salt stress and resistance to acid stress revealed variants within several clonal complexes that were phenotypically distinct. Five of these phenotypic outliers were found to carry mutations in the sigB operon, which encodes the stress-inducible sigma factor sigma B. Transcriptional analysis confirmed that three of the strains that carried mutations in sigB, rsbV, or rsbU had reduced SigB activity, as predicted. These strains exhibited increased tolerance to salt stress and displayed decreased resistance to low pH stress. Overall, this study shows that loss-of-function mutations in the sigB operon are comparatively common in field isolates, probably reflecting the cost of the general stress response to reproductive fitness in this pathogen. IMPORTANCE The bacterial foodborne pathogen Listeria monocytogenes frequently contaminates various categories of food products and is able to cause life-threatening infections when ingested by humans. Thus, it is important to control the growth of this bacterium in food by understanding the mechanisms that allow its proliferation under suboptimal conditions. In this study, intraspecies heterogeneity in stress response was observed across a collection consisting of mainly Irish L. monocytogenes isolates. Through comparisons of genome sequence and phenotypes observed, we identified three strains with impairment of the general stress response regulator SigB. Two of these strains are used widely in food challenge studies for evaluating the growth potential of L. monocytogenes. Given that loss of SigB function is associated with atypical phenotypic properties, the use of these strains in food challenge studies should be re-evaluated.
Collapse
Affiliation(s)
- Jialun Wu
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| | - Kerrie NicAogáin
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| | | | - Kieran Jordan
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Conor O’Byrne
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
8
|
Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-del Portillo F, Pucciarelli MG, Ortega AD. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021; 12:2509-2545. [PMID: 34612177 PMCID: PMC8496543 DOI: 10.1080/21505594.2021.1975526] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in food-processing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host's gastrointestinal tract. Then we dissect host-pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes.
Collapse
Affiliation(s)
- Juan J. Quereda
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Alvaro Morón-García
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
| | - Carla Palacios-Gorba
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Charlotte Dessaux
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - M. Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa’. Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid. Madrid, Spain
| | - Alvaro D. Ortega
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
9
|
Chen Q, Li Q, Guo A, Liu L, Gu L, Liu W, Zhang X, Ruan Y. Transcriptome analysis of suspended aggregates formed by Listeria monocytogenes co-cultured with Ralstonia insidiosa. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Halsey CR, Glover RC, Thomason MK, Reniere ML. The redox-responsive transcriptional regulator Rex represses fermentative metabolism and is required for Listeria monocytogenes pathogenesis. PLoS Pathog 2021; 17:e1009379. [PMID: 34398937 PMCID: PMC8389512 DOI: 10.1371/journal.ppat.1009379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/26/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022] Open
Abstract
The Gram-positive bacterium Listeria monocytogenes is the causative agent of the foodborne disease listeriosis, one of the deadliest bacterial infections known. In order to cause disease, L. monocytogenes must properly coordinate its metabolic and virulence programs in response to rapidly changing environments within the host. However, the mechanisms by which L. monocytogenes senses and adapts to the many stressors encountered as it transits through the gastrointestinal (GI) tract and disseminates to peripheral organs are not well understood. In this study, we investigated the role of the redox-responsive transcriptional regulator Rex in L. monocytogenes growth and pathogenesis. Rex is a conserved canonical transcriptional repressor that monitors the intracellular redox state of the cell by sensing the ratio of reduced and oxidized nicotinamide adenine dinucleotides (NADH and NAD+, respectively). Here, we demonstrated that L. monocytogenes Rex represses fermentative metabolism and is therefore required for optimal growth in the presence of oxygen. We also show that in vitro, Rex represses the production of virulence factors required for survival and invasion of the GI tract, as a strain lacking rex was more resistant to acidified bile and invaded host cells better than wild type. Consistent with these results, Rex was dispensable for colonizing the GI tract and disseminating to peripheral organs in an oral listeriosis model of infection. However, Rex-dependent regulation was required for colonizing the spleen and liver, and L. monocytogenes lacking the Rex repressor were nearly sterilized from the gallbladder. Taken together, these results demonstrated that Rex functions as a repressor of fermentative metabolism and suggests a role for Rex-dependent regulation in L. monocytogenes pathogenesis. Importantly, the gallbladder is the bacterial reservoir during listeriosis, and our data suggest redox sensing and Rex-dependent regulation are necessary for bacterial survival and replication in this organ. Listeriosis is a foodborne illness caused by Listeria monocytogenes and is one of the deadliest bacterial infections known, with a mortality rate of up to 30%. Following ingestion of contaminated food, L. monocytogenes disseminates from the gastrointestinal (GI) tract to peripheral organs, including the spleen, liver, and gallbladder. In this work, we investigated the role of the redox-responsive regulator Rex in L. monocytogenes growth and pathogenesis. We demonstrated that alleviation of Rex repression coordinates expression of genes necessary in the GI tract during infection, including fermentative metabolism, bile resistance, and invasion of host cells. Accordingly, Rex was dispensable for colonizing the GI tract of mice during an oral listeriosis infection. Interestingly, Rex-dependent regulation was required for bacterial replication in the spleen, liver, and gallbladder. Taken together, our results demonstrate that Rex-mediated redox sensing and transcriptional regulation are important for L. monocytogenes metabolic adaptation and virulence.
Collapse
Affiliation(s)
- Cortney R. Halsey
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Rochelle C. Glover
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Maureen K. Thomason
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Michelle L. Reniere
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
11
|
Dula S, Ajayeoba TA, Ijabadeniyi OA. Bacterial biofilm formation on stainless steel in the food processing environment and its health implications. Folia Microbiol (Praha) 2021; 66:293-302. [PMID: 33768506 DOI: 10.1007/s12223-021-00864-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/22/2021] [Indexed: 12/01/2022]
Abstract
Biofilm formation (BF) and production in the food processing industry (FPI) is a continual threat to food safety and quality. Various bacterial pathogens possess the ability to adhere and produce biofilms on stainless steel (SS) in the FPI due to flagella, curli, pili, fimbrial adhesins, extra polymeric substances, and surface proteins. The facilitating environmental conditions (temperature, pressure, variations in climatic conditions), SS properties (surface energy, hydrophobicity, surface roughness, topography), type of raw food materials, pre-processing, and processing conditions play a significant role in the enhancement of bacterial adhesion and favorable condition for BF. Furthermore, biofilm formers can tolerate different sanitizers and cleaning agents due to the constituents, concentration, contact time, bacterial cluster distribution, and composition of bacteria within the biofilm. Also, bacterial biofilms' ability to produce various endotoxins and exotoxins when consumed cause food infections and intoxications with serious health implications. It is thus crucial to understand BF's repercussions and develop effective interventions against these phenomena that make persistent pathogens difficult to remove in the food processing environment.
Collapse
Affiliation(s)
- Stanley Dula
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Titilayo Adenike Ajayeoba
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa. .,Department of Microbiology, Faculty of Science, Adeleke University, Ede, Nigeria.
| | | |
Collapse
|
12
|
Identification of Listeria monocytogenes Genes Contributing to Oxidative Stress Resistance under Conditions Relevant to Host Infection. Infect Immun 2021; 89:IAI.00700-20. [PMID: 33495274 DOI: 10.1128/iai.00700-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 01/10/2023] Open
Abstract
The Gram-positive bacterium Listeria monocytogenes survives in environments ranging from the soil to the cytosol of infected host cells. Key to L. monocytogenes intracellular survival is the activation of PrfA, a transcriptional regulator that is required for the expression of multiple bacterial virulence factors. Mutations that constitutively activate prfA (prfA* mutations) result in high-level expression of multiple bacterial virulence factors as well as the physiological adaptation of L. monocytogenes for optimal replication within host cells. Here, we demonstrate that L. monocytogenes prfA* mutants exhibit significantly enhanced resistance to oxidative stress in comparison to that of wild-type strains. Transposon mutagenesis of L. monocytogenes prfA* strains resulted in the identification of three novel gene targets required for full oxidative stress resistance only in the context of PrfA activation. One gene, lmo0779, predicted to encode an uncharacterized protein, and two additional genes known as cbpA and ygbB, encoding a cyclic di-AMP binding protein and a 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase, respectively, contribute to the enhanced oxidative stress resistance of prfA* strains while exhibiting no significant contribution in wild-type L. monocytogenes Transposon inactivation of cbpA and lmo0779 in a prfA* background led to reduced virulence in the liver of infected mice. These results indicate that L. monocytogenes calls upon specific bacterial factors for stress resistance in the context of PrfA activation and thus under conditions favorable for bacterial replication within infected mammalian cells.
Collapse
|
13
|
Spinelli E, Requena T, Caruso M, Parisi A, Capozzi L, Difato L, Normanno G. Fate of Methicillin-resistant Staphylococcus aureus (MRSA) under simulated acidic conditions of the human stomach. Food Sci Nutr 2020; 8:4739-4745. [PMID: 32994935 PMCID: PMC7500784 DOI: 10.1002/fsn3.1698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 01/09/2023] Open
Abstract
A known amount (107 cfu/ml) of animal origin Methicillin-resistant Staphylococcus aureus (MRSA) ST398/t011/V and of human origin MRSA ST1/t127/IVa strains were individually inoculated into ricotta cheese and hamburger samples. The pH of each food matrix was gradually decreased from 6.0 down to 2.0 during a period of about 2 hr, under conditions simulating the mechanical digestion of the human stomach. Afterward, the MRSA strains were recovered by using a MRSA-specific plating medium. Although both strains showed a certain acidic resistance, they showed different responses at low pH values during the experiment: ST398 survived unharmed during the course of the experiments to the last stage at pH 2 where counts of 6.4 cfu/g for the hamburger and 7.5 log cfu/g for ricotta cheese assays were obtained. In contrast, the ST1 population was no longer detectable at pH 3 in the hamburger and at pH 2 in the ricotta cheese assays. To the best of our knowledge, this is the first study that investigates the ability of MRSA to overcome the acidic conditions of the human stomach and that adds new evidence that might contribute to expand the scientific knowledge on the significance of MRSA in the food safety debate.
Collapse
Affiliation(s)
- Elisa Spinelli
- Department of Science of Agriculture, Food and the Environment (SAFE) University of Foggia Foggia Italy
| | - Teresa Requena
- Research Institute of Food Science CIAL (CSIC-UAM) Madrid Spain
| | - Marta Caruso
- Experimental Zooprophylactic Institute of Apulia and Basilicata Matera Italy
| | - Antonio Parisi
- Experimental Zooprophylactic Institute of Apulia and Basilicata Putignano Italy
| | - Loredana Capozzi
- Experimental Zooprophylactic Institute of Apulia and Basilicata Putignano Italy
| | - Laura Difato
- Experimental Zooprophylactic Institute of Apulia and Basilicata Matera Italy
| | - Giovanni Normanno
- Department of Science of Agriculture, Food and the Environment (SAFE) University of Foggia Foggia Italy
| |
Collapse
|
14
|
Clemente-Carazo M, Cebrián G, Garre A, Palop A. Variability in the heat resistance of Listeria monocytogenes under dynamic conditions can be more relevant than that evidenced by isothermal treatments. Food Res Int 2020; 137:109538. [PMID: 33233166 DOI: 10.1016/j.foodres.2020.109538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
Abstract
Heterogeneity in the response of microbial cells to environmental conditions is inherent to every biological system and can be very relevant for food safety, potentially being as important as intrinsic and extrinsic factors. However, previous studies analyzing variability in the microbial response to thermal treatments were limited to data obtained under isothermal conditions, whereas in the reality, environmental conditions are dynamic. In this article we analyse both empirically and through mathematical modelling the variability in the microbial response to thermal treatments under isothermal and dynamic conditions. Heat resistance was studied for four strains of Listeria monocytogenes (Scott A, CECT 4031, CECT 4032 and 12MOB052), in three different matrices (buffered peptone water, pH 7 Mcllvaine buffer and semi-skimmed milk). Under isothermal conditions, between-strain and between-media variability had no impact in the heat resistance, whereas it was very relevant for dynamic conditions. Therefore, the differences observed under dynamic conditions can be attributed to the variability in the ability for developing stress acclimation. The highest acclimation was observed in strain CECT 4031 (10-fold increase of the D-value), while the lowest acclimation was observed in strain CECT 4032 (50% increase of the D-value). Concerning the different media, acclimation was higher in buffered peptone water and semi-skimmed milk than in Mcllvaine buffer of pH 7.0. To the knowledge of the authors, this is the first research work that specifically analyses the variability of microbial adaptation processes that take place under dynamic conditions. It highlights that microbial heat resistance under dynamic conditions are sometimes determined by mechanisms that cannot be observed when cells are treated in isothermal conditions (e.g. acclimation) and can also be affected by variability. Consequently, empirical evidence on variability gathered under isothermal conditions should be extrapolated with care for dynamic conditions.
Collapse
Affiliation(s)
- Marta Clemente-Carazo
- Dpto. Ingeniería Agronómica, Instituto de Biotecnología Vegetal, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Spain
| | - Guillermo Cebrián
- Tecnología de los Alimentos, Facultad de Veterinaria de Zaragoza, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Alberto Garre
- Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Alfredo Palop
- Dpto. Ingeniería Agronómica, Instituto de Biotecnología Vegetal, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Spain.
| |
Collapse
|
15
|
Alves Â, Magalhães R, Brandão TR, Pimentel L, Rodríguez-Alcalá LM, Teixeira P, Ferreira V. Impact of exposure to cold and cold-osmotic stresses on virulence-associated characteristics of Listeria monocytogenes strains. Food Microbiol 2020; 87:103351. [DOI: 10.1016/j.fm.2019.103351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/08/2019] [Accepted: 10/18/2019] [Indexed: 11/26/2022]
|
16
|
Strain Variability of Listeria monocytogenes under NaCl Stress Elucidated by a High-Throughput Microbial Growth Data Assembly and Analysis Protocol. Appl Environ Microbiol 2020; 86:AEM.02378-19. [PMID: 31900307 DOI: 10.1128/aem.02378-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Listeria monocytogenes causes the severe foodborne illness listeriosis and survives in food-associated environments due to its high stress tolerance. A data assembly and analysis protocol for microbial growth experiments was compiled to elucidate the strain variability of L. monocytogenes stress tolerance. The protocol includes measurement of growth ability under stress (step 1), selection of a suitable method for growth parameter calculation (step 2), comparison of growth patterns between strains (step 3), and biological interpretation of the discovered differences (step 4). In step 1, L. monocytogenes strains (n = 388) of various serovars and origins grown on media with 9.0% NaCl were measured using a Bioscreen C microbiology reader. Technical variability of the growth measurements was assessed and eliminated. In step 2, the growth parameters determined by Gompertz, modified-Gompertz, logistic, and Richards models and model-free splines were compared, illustrating differences in the suitability of these methods to describe the experimental data. In step 3, hierarchical clustering was used to describe the NaCl tolerance of L. monocytogenes measured by strain-specific variation in growth ability; tolerant strains had higher growth rates and maximum optical densities and shorter lag phases than susceptible strains. The spline parameter area under the curve best classified "poor," "average," and "good" growers. In step 4, the tested L. monocytogenes lineage I strains (serovars 4b and 1/2b) proved to be significantly more tolerant toward 9.0% NaCl than lineage II strains (serovars 1/2a, 1/2c, and 3a). Our protocol provides systematic tools to gain comparable data for investigating strain-specific variation of bacterial growth under stress.IMPORTANCE The pathogen Listeria monocytogenes causes the foodborne disease listeriosis, which can be fatal in immunocompromised individuals. L. monocytogenes tolerates several environmental stressors and can persist in food-processing environments and grow in foodstuffs despite traditional control measures such as high salt content. Nonetheless, L. monocytogenes strains differ in their ability to withstand stressors. Elucidating the intraspecies strain variability of L. monocytogenes stress tolerance is crucial for the identification of particularly tolerant strains. To enhance reliable identification of variability in bacterial stress tolerance phenotypes, we compiled a large-scale protocol for the entire data assembly and analysis of microbial growth experiments, providing a systematic approach and checklist for experiments on strain-specific growth ability. Our study illustrated the diversity and strain-specific variation of L. monocytogenes stress tolerance with an unprecedented scope and discovered biologically relevant serovar- and lineage-dependent phenotypes of NaCl tolerance.
Collapse
|
17
|
Tavares RDM, Silva DALD, Camargo AC, Yamatogi RS, Nero LA. Interference of the acid stress on the expression of llsX by Listeria monocytogenes pathogenic island 3 (LIPI-3) variants. Food Res Int 2020; 132:109063. [PMID: 32331684 DOI: 10.1016/j.foodres.2020.109063] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/13/2022]
Abstract
Listeria monocytogenes harbor different virulence factors, with a highly heterogeneous distribution between distinct lineages and serotypes. The Listeria Pathogenicity Island 3 (LIPI-3), mainly described in lineage I, encodes for Listeriolysin S (LLS), a virulence factor expressed by L. monocytogenes in the gastrointestinal tract during in vivo infections. The aim of this study was to carry out a comparative genotypic analysis of LIPI-3 identified in L. monocytogenes isolates obtained in Brazil and subjected to whole genomic sequencing (WGS). In addition, transcription of llsX expression under different acid stress conditions was evaluated by RT-PCR. Homologues of the eight LIPI-3 genes (llsAGHXBYDP) were identified in 15 isolates (all from lineage I) representative of different sequence types: ST1 (n = 3), ST3 (n = 6), ST218 (n = 5) and ST288 (n = 1). Single nucleotide polymorphism (SNP) analysis revealed that genetic variation resulted in modification of the final peptide LLS for ST218 (serogroup IVb-v1) and ST288 (serogroup IIb). Selected strains from ST3 and ST288 were subjected to acid stress conditions and the expression of llsX, a LIPI-3 gene, was observed: only F2365 (4b/ST1) presented llsX expression after six hours of acid stress, indicating relevant differences when compared to isolates IIb (ST3 and 288). The results highlight the presence of genomic variations on LIPI-3 and llsX expression under acid stress conditions, demanding further studies to evaluate if these mutations have an impact on L. monocytogenes virulence in vivo.
Collapse
Affiliation(s)
- Rafaela de Melo Tavares
- Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Inspeção de Produtos de Origem Animal, Campus UFV, Centro, 36570 900, Viçosa, MG, Brazil
| | - Danilo Augusto Lopes da Silva
- Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Inspeção de Produtos de Origem Animal, Campus UFV, Centro, 36570 900, Viçosa, MG, Brazil
| | - Anderson Carlos Camargo
- Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Inspeção de Produtos de Origem Animal, Campus UFV, Centro, 36570 900, Viçosa, MG, Brazil
| | - Ricardo Seiti Yamatogi
- Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Inspeção de Produtos de Origem Animal, Campus UFV, Centro, 36570 900, Viçosa, MG, Brazil
| | - Luís Augusto Nero
- Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Inspeção de Produtos de Origem Animal, Campus UFV, Centro, 36570 900, Viçosa, MG, Brazil.
| |
Collapse
|
18
|
Cross Talk between SigB and PrfA in Listeria monocytogenes Facilitates Transitions between Extra- and Intracellular Environments. Microbiol Mol Biol Rev 2019; 83:83/4/e00034-19. [PMID: 31484692 DOI: 10.1128/mmbr.00034-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes can modulate its transcriptome and proteome to ensure its survival during transmission through vastly differing environmental conditions. While L. monocytogenes utilizes a large array of regulators to achieve survival and growth in different intra- and extrahost environments, the alternative sigma factor σB and the transcriptional activator of virulence genes protein PrfA are two key transcriptional regulators essential for responding to environmental stress conditions and for host infection. Importantly, emerging evidence suggests that the shift from extrahost environments to the host gastrointestinal tract and, subsequently, to intracellular environments requires regulatory interplay between σB and PrfA at transcriptional, posttranscriptional, and protein activity levels. Here, we review the current evidence for cross talk and interplay between σB and PrfA and their respective regulons and highlight the plasticity of σB and PrfA cross talk and the role of this cross talk in facilitating successful transition of L. monocytogenes from diverse extrahost to diverse extra- and intracellular host environments.
Collapse
|
19
|
Tiensuu T, Guerreiro DN, Oliveira AH, O’Byrne C, Johansson J. Flick of a switch: regulatory mechanisms allowing Listeria monocytogenes to transition from a saprophyte to a killer. Microbiology (Reading) 2019; 165:819-833. [DOI: 10.1099/mic.0.000808] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Teresa Tiensuu
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS); Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Duarte N. Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Ana H. Oliveira
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS); Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Conor O’Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Jörgen Johansson
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS); Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
20
|
Jun SH, Lee T, Lee JC, Shin JH. Different epithelial cell response to membrane vesicles produced by Listeria monocytogenes cultured with or without salt stress. Microb Pathog 2019; 133:103554. [PMID: 31121271 DOI: 10.1016/j.micpath.2019.103554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 11/16/2022]
Abstract
We have previously shown that Listeria monocytogenes, a causative agent of listeriosis, can produce membrane vesicles (MVs) during in vitro culture. The aim of this study was to investigate the ability of MVs from L. monocytogenes cultured with or without salt stress to induce cytotoxicity and pro-inflammatory responses in colon epithelial Caco-2 cells. MVs were purified from wild-type L. monocytogenes 10403S strain and an isogenic ΔsigB mutant strain. MVs from both wild-type and ΔsigB mutant strains increased viability of Caco-2 cells regardless of salt stress. Both MVs from wild-type and ΔsigB mutant strains stimulated expression of pro-inflammatory cytokine and chemokine genes in Caco-2 cells. Expression levels of pro-inflammatory cytokine genes in cells treated with MVs from bacteria cultured without salt stress were significantly higher than those in cells treated with MVs from bacteria cultured with salt stress. However, expression levels of chemokine genes in cells treated with MVs from bacteria cultured with salt stress were significantly higher than those in cells treated with MVs from bacteria cultured without salt stress. In addition, expression levels of interleukin (IL)-1β and IL-8 genes were partially inhibited by either lysozyme-treated MVs or ethylenediaminetetraacetic acid-treated MVs compared to those after treatment with intact MVs. Our results suggest that salt stress can affect the production of L. monocytogenes MVs, thus causing different pro-inflammatory responses in host cells.
Collapse
Affiliation(s)
- So-Hyun Jun
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Taewon Lee
- Division of Applied Mathematical Sciences, Korea University College of Science and Technology, Sejong, Republic of Korea
| | - Je-Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Ji-Hyun Shin
- Institute of Science and Technology, Korea University College of Science and Technology, Sejong, Republic of Korea.
| |
Collapse
|
21
|
Skowron K, Wiktorczyk N, Grudlewska K, Wałecka-Zacharska E, Paluszak Z, Kruszewski S, Gospodarek-Komkowska E. Phenotypic and genotypic evaluation of Listeria monocytogenes strains isolated from fish and fish processing plants. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-018-1432-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
22
|
Yao H, Kang M, Wang Y, Feng Y, Kong S, Cai X, Ling Z, Chen S, Jiao X, Yin Y. An essential role for hfq involved in biofilm formation and virulence in serotype 4b Listeria monocytogenes. Microbiol Res 2018; 215:148-154. [DOI: 10.1016/j.micres.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/22/2018] [Accepted: 07/07/2018] [Indexed: 11/28/2022]
|
23
|
Fan Q, Zhang Y, Yang H, Wu Q, Shi C, Zhang C, Xia X, Wang X. Effect of Coenzyme Q0 on biofilm formation and attachment-invasion efficiency of Listeria monocytogenes. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Al-Ali HJ, Al-Rodhan MA, Al-Hilali SA, Al-Charrakh AH, Al-Mohana AM, Hadi ZJ. Molecular detection ofserotype groups of Listeria monocytogenes isolated from gallbladder of cattle and sheep in Iraq. Vet World 2018; 11:431-436. [PMID: 29805206 PMCID: PMC5960780 DOI: 10.14202/vetworld.2018.431-436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/27/2018] [Indexed: 11/16/2022] Open
Abstract
Aim This study was designed to investigate the occurrence of serotypes of Listeria monocytogenes, an important food-borne pathogen, in gallbladder samples from cattle and sheep. Materials and Methods Three hundred samples were collected and screened for the presence of L. monocytogenes. The identification of the isolates was confirmed by API-Listeria system and by the presence of hemolysin (hyl) gene. The isolates were subjected to polymerase chain reaction-based serotype identification with d1 (division 1), d2 (division 2), glt, mama (mismatch amplification mutation assay), and flaA (flagellin protein) genes. Results A total of 8 (2.7%) L. monocytogenes were recovered from 6 (4.0%) samples of sheep and 2 (1.3%) samples of cattle. All isolates showed positive results with Hly primers. Four isolates carried d1 gene, did not possess glt gene and harbored mama gene. The serotypes of these isolates were identified as 4a or 4c. The other 4 isolates carried d2 gene, 3 of them were positive with the FlaA primers, and hence, determined to be a 1/2a or 3a serotype, and 1 isolate was determined to be 1/2c or 3c serotype. Conclusion This study concluded that the presence of 1/2a serotype in gallbladder samples indicates public health risk through cross-contamination of meat at slaughterhouses.
Collapse
Affiliation(s)
| | - Mohsen Abd Al-Rodhan
- Department of Clinical and Laboratory Science, College of Pharmacy, University of Al-Qadisiyah, Diwaniyah, Iraq
| | | | - Alaa Hani Al-Charrakh
- Department of Microbiology, College of Medicine, Babylon University, Hillah, Babylon Governorate, Iraq
| | | | - Zainab Jaber Hadi
- Department of Microbiology, College of Medicine, University of Kufa, Kufa, Iraq
| |
Collapse
|
25
|
Zilelidou EA, Skandamis PN. Growth, detection and virulence of Listeria monocytogenes in the presence of other microorganisms: microbial interactions from species to strain level. Int J Food Microbiol 2018; 277:10-25. [PMID: 29677551 DOI: 10.1016/j.ijfoodmicro.2018.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 01/28/2023]
Abstract
Like with all food microorganisms, many basic aspects of L. monocytogenes life are likely to be influenced by its interactions with bacteria living in close proximity. This pathogenic bacterium is a major concern both for the food industry and health organizations since it is ubiquitous and able to withstand harsh environmental conditions. Due to the ubiquity of Listeria monocytogenes, various strains may contaminate foods at different stages of the supply chain. Consequently, simultaneous exposure of consumers to multiple strains is also possible. In this context even strain-to-strain interactions of L. monocytogenes play a significant role in fundamental processes for the life of the pathogen, such as growth or virulence, and subsequently compromise food safety, affect the evolution of a potential infection, or even introduce bias in the detection by classical enrichment techniques. This article summarizes the impact of microbial interactions on the growth and detection of L. monocytogenes primarily in foods and food-associated environments. Furthermore it provides an overview of L. monocytogenes virulence in the presence of other microorganisms.
Collapse
Affiliation(s)
- Evangelia A Zilelidou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Iera odos 75, 11855 Athens, Greece
| | - Panagiotis N Skandamis
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Iera odos 75, 11855 Athens, Greece.
| |
Collapse
|
26
|
|
27
|
Multifaceted Defense against Listeria monocytogenes in the Gastro-Intestinal Lumen. Pathogens 2017; 7:pathogens7010001. [PMID: 29271903 PMCID: PMC5874727 DOI: 10.3390/pathogens7010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can cause febrile gastroenteritis in healthy subjects and systemic infections in immunocompromised individuals. Despite the high prevalence of L. monocytogenes in the environment and frequent contamination of uncooked meat and poultry products, infections with this pathogen are relatively uncommon, suggesting that protective defenses in the general population are effective. In the mammalian gastrointestinal tract, a variety of defense mechanisms prevent L. monocytogenes growth, epithelial penetration and systemic dissemination. Among these defenses, colonization resistance mediated by the gut microbiota is crucial in protection against a range of intestinal pathogens, including L. monocytogenes. Here we review defined mechanisms of defense against L. monocytogenes in the lumen of the gastro-intestinal tract, with particular emphasis on protection conferred by the autochthonous microbiota. We suggest that selected probiotic species derived from the microbiota may be developed for eventual clinical use to enhance resistance against L. monocytogenes infections.
Collapse
|
28
|
Ur Rahman S, Stanton M, Casey PG, Spagnuolo A, Bensi G, Hill C, Francis KP, Tangney M, Gahan CGM. Development of a Click Beetle Luciferase Reporter System for Enhanced Bioluminescence Imaging of Listeria monocytogenes: Analysis in Cell Culture and Murine Infection Models. Front Microbiol 2017; 8:1797. [PMID: 29018414 PMCID: PMC5622934 DOI: 10.3389/fmicb.2017.01797] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/05/2017] [Indexed: 01/22/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that is widely used as a model organism for the analysis of infection biology. In this context, there is a current need to develop improved reporters for enhanced bioluminescence imaging (BLI) of the pathogen in infection models. We have developed a click beetle red luciferase (CBR-luc) based vector (pPL2CBRopt) expressing codon optimized CBR-luc under the control of a highly expressed Listerial promoter (PHELP) for L. monocytogenes and have compared this to a lux-based system expressing bacterial luciferase for BLI of the pathogen using in vitro growth experiments and in vivo models. The CBR-luc plasmid stably integrates into the L. monocytogenes chromosome and can be used to label field isolates and laboratory strains of the pathogen. Growth experiments revealed that CBR-luc labeled L. monocytogenes emits a bright signal in exponential phase that is maintained during stationary phase. In contrast, lux-labeled bacteria produced a light signal that peaked during exponential phase and was significantly reduced during stationary phase. Light from CBR-luc labeled bacteria was more efficient than the signal from lux-labeled bacteria in penetrating an artificial tissue depth assay system. A cell invasion assay using C2Bbe1 cells and a systemic murine infection model revealed that CBR-luc is suited to BLI approaches and demonstrated enhanced sensitivity relative to lux in the context of Listeria infection models. Overall, we demonstrate that this novel CBR reporter system provides efficient, red-shifted light production relative to lux and may have significant applications in the analysis of L. monocytogenes pathogenesis.
Collapse
Affiliation(s)
- Sadeeq Ur Rahman
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Michael Stanton
- Cork Cancer Research Centre, University College Cork, Cork, Ireland
| | - Pat G Casey
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | | | | | - Colin Hill
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | | | - Mark Tangney
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Cork Cancer Research Centre, University College Cork, Cork, Ireland.,SynBio Centre, University College Cork, Cork, Ireland
| | - Cormac G M Gahan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,SynBio Centre, University College Cork, Cork, Ireland.,School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
29
|
Sternkopf Lillebæk EM, Lambert Nielsen S, Scheel Thomasen R, Færgeman NJ, Kallipolitis BH. Antimicrobial medium- and long-chain free fatty acids prevent PrfA-dependent activation of virulence genes in Listeria monocytogenes. Res Microbiol 2017; 168:547-557. [DOI: 10.1016/j.resmic.2017.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/13/2017] [Indexed: 12/11/2022]
|
30
|
Özogul F, Hamed I. The importance of lactic acid bacteria for the prevention of bacterial growth and their biogenic amines formation: A review. Crit Rev Food Sci Nutr 2017; 58:1660-1670. [PMID: 28128651 DOI: 10.1080/10408398.2016.1277972] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Foodborne pathogens (FBP) represent an important threat to the consumers' health as they are able to cause different foodborne diseases. In order to eliminate the potential risk of those pathogens, lactic acid bacteria (LAB) have received a great attention in the food biotechnology sector since they play an essential function to prevent bacterial growth and reduce the biogenic amines (BAs) formation. The foodborne illnesses (diarrhea, vomiting, and abdominal pain, etc.) caused by those microbial pathogens is due to various reasons, one of them is related to the decarboxylation of available amino acids that lead to BAs production. The formation of BAs by pathogens in foods can cause the deterioration of their nutritional and sensory qualities. BAs formation can also have toxicological impacts and lead to different types of intoxications. The growth of FBP and their BAs production should be monitored and prevented to avoid such problems. LAB is capable of improving food safety by preventing foods spoilage and extending their shelf-life. LAB are utilized by the food industries to produce fermented products with their antibacterial effects as bio-preservative agents to extent their storage period and preserve their nutritive and gustative characteristics. Besides their contribution to the flavor for fermented foods, LAB secretes various antimicrobial substances including organic acids, hydrogen peroxide, and bacteriocins. Consequently, in this paper, the impact of LAB on the growth of FBP and their BAs formation in food has been reviewed extensively.
Collapse
Affiliation(s)
- Fatih Özogul
- a Department of Seafood Processing Technology, Faculty of Fisheries , Cukurova University , Adana , Turkey
| | - Imen Hamed
- b Biotechnology Centre , Cukurova University , Adana , Turkey
| |
Collapse
|
31
|
Rolhion N, Cossart P. How the study of Listeria monocytogenes has led to new concepts in biology. Future Microbiol 2017; 12:621-638. [PMID: 28604108 DOI: 10.2217/fmb-2016-0221] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The opportunistic intracellular bacterial pathogen Listeria monocytogenes has in 30 years emerged as an exceptional bacterial model system in infection biology. Research on this bacterium has provided considerable insight into how pathogenic bacteria adapt to mammalian hosts, invade eukaryotic cells, move intracellularly, interfere with host cell functions and disseminate within tissues. It also contributed to unveil features of normal host cell pathways and unsuspected functions of previously known cellular proteins. This review provides an updated overview of our knowledge on this pathogen. In many examples, findings on L. monocytogenes provided the basis for new concepts in bacterial regulation, cell biology and infection processes.
Collapse
Affiliation(s)
- Nathalie Rolhion
- Département de Biologie Cellulaire et Infection, Unité des Interactions Bactéries-Cellules, Institut Pasteur, F-75015 Paris, France.,INSERM, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| | - Pascale Cossart
- Département de Biologie Cellulaire et Infection, Unité des Interactions Bactéries-Cellules, Institut Pasteur, F-75015 Paris, France.,INSERM, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| |
Collapse
|
32
|
Becattini S, Littmann ER, Carter RA, Kim SG, Morjaria SM, Ling L, Gyaltshen Y, Fontana E, Taur Y, Leiner IM, Pamer EG. Commensal microbes provide first line defense against Listeria monocytogenes infection. J Exp Med 2017; 214:1973-1989. [PMID: 28588016 PMCID: PMC5502438 DOI: 10.1084/jem.20170495] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/06/2017] [Accepted: 04/19/2017] [Indexed: 01/22/2023] Open
Abstract
Becattini et al. provide evidence that a diverse gut microbiota antagonizes the foodborne pathogen Listeria monocytogenes in the intestinal lumen, thereby reducing bloodstream invasion. Microbiota perturbation by antibiotic treatment increases susceptibility to listeriosis, with dramatic effects in immunocompromised hosts. Listeria monocytogenes is a foodborne pathogen that causes septicemia, meningitis and chorioamnionitis and is associated with high mortality. Immunocompetent humans and animals, however, can tolerate high doses of L. monocytogenes without developing systemic disease. The intestinal microbiota provides colonization resistance against many orally acquired pathogens, and antibiotic-mediated depletion of the microbiota reduces host resistance to infection. Here we show that a diverse microbiota markedly reduces Listeria monocytogenes colonization of the gut lumen and prevents systemic dissemination. Antibiotic administration to mice before low dose oral inoculation increases L. monocytogenes growth in the intestine. In immunodeficient or chemotherapy-treated mice, the intestinal microbiota provides nonredundant defense against lethal, disseminated infection. We have assembled a consortium of commensal bacteria belonging to the Clostridiales order, which exerts in vitro antilisterial activity and confers in vivo resistance upon transfer into germ free mice. Thus, we demonstrate a defensive role of the gut microbiota against Listeria monocytogenes infection and identify intestinal commensal species that, by enhancing resistance against this pathogen, represent potential probiotics.
Collapse
Affiliation(s)
- Simone Becattini
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Eric R Littmann
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Rebecca A Carter
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Sohn G Kim
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Sejal M Morjaria
- Infectious Diseases Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Lilan Ling
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Yangtsho Gyaltshen
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Emily Fontana
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ying Taur
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY.,Infectious Diseases Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ingrid M Leiner
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Eric G Pamer
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY .,Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY.,Infectious Diseases Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
33
|
Assessing the capacity of growth, survival, and acid adaptive response of Listeria monocytogenes during storage of various cheeses and subsequent simulated gastric digestion. Int J Food Microbiol 2017; 246:50-63. [DOI: 10.1016/j.ijfoodmicro.2017.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 01/22/2017] [Accepted: 01/24/2017] [Indexed: 11/19/2022]
|
34
|
Luthe SK, Sato R, Maeda T, Takahashi K. Listeria monocytogenes meningitis preceded by acute cholangitis. BMJ Case Rep 2017; 2017:bcr-2017-219251. [PMID: 28320704 DOI: 10.1136/bcr-2017-219251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Listeria monocytogenes is a well-known cause of meningitis in immunocompromised patients. This organism has a growing significance for community-acquired meningitis, which should have ampicillin added to the usual regimen. We describe a case of L. monocytogenes meningitis preceded by cholangitis. This case suggests gastrointestinal symptoms preceding meningitis may be a clue of listeriosis. It is important for physicians to consider L. monocytogenes as a cause of bacterial meningitis in patients with altered mental status preceded by gastrointestinal symptoms, especially in the immunocompromised population.
Collapse
Affiliation(s)
| | - Ryota Sato
- Department of Emergency and Critical Care, Urasoe General Hospital, Urasoe, Japan
| | - Tetsuro Maeda
- Kobe City Medical Center General Hospital, Kobe, Japan
| | | |
Collapse
|
35
|
Cheng C, Dong Z, Han X, Sun J, Wang H, Jiang L, Yang Y, Ma T, Chen Z, Yu J, Fang W, Song H. Listeria monocytogenes 10403S Arginine Repressor ArgR Finely Tunes Arginine Metabolism Regulation under Acidic Conditions. Front Microbiol 2017; 8:145. [PMID: 28217122 PMCID: PMC5291005 DOI: 10.3389/fmicb.2017.00145] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/19/2017] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is able to colonize human and animal intestinal tracts and to subsequently cross the intestinal barrier, causing systemic infection. For successful establishment of infection, L. monocytogenes must survive the low pH environment of the stomach. L. monocytogenes encodes a functional ArgR, a transcriptional regulator belonging to the ArgR/AhrC arginine repressor family. We aimed at clarifying the specific functions of ArgR in arginine metabolism regulation, and more importantly, in acid tolerance of L. monocytogenes. We showed that ArgR in the presence of 10 mM arginine represses transcription and expression of the argGH and argCJBDF operons, indicating that L. monocytogenes ArgR plays the classical role of ArgR/AhrC family proteins in feedback inhibition of the arginine biosynthetic pathway. Notably, transcription and expression of arcA (encoding arginine deiminase) and sigB (encoding an alternative sigma factor B) were also markedly repressed by ArgR when bacteria were exposed to pH 5.5 in the absence of arginine. However, addition of arginine enabled ArgR to derepress the transcription and expression of these two genes. Electrophoretic mobility shift assays showed that ArgR binds to the putative ARG boxes in the promoter regions of argC, argG, arcA, and sigB. Reporter gene analysis with gfp under control of the argG promoter demonstrated that ArgR was able to activate the argG promoter. Unexpectedly, deletion of argR significantly increased bacterial survival in BHI medium adjusted to pH 3.5 with lactic acid. We conclude that this phenomenon is due to activation of arcA and sigB. Collectively, our results show that L. monocytogenes ArgR finely tunes arginine metabolism through negative transcriptional regulation of the arginine biosynthetic operons and of the catabolic arcA gene in an arginine-independent manner during lactic acid-induced acid stress. ArgR also appears to activate catabolism as well as sigB transcription by anti-repression in an arginine-dependent way.
Collapse
Affiliation(s)
- Changyong Cheng
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Zhimei Dong
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Xiao Han
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Jing Sun
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Hang Wang
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Li Jiang
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Yongchun Yang
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Tiantian Ma
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Zhongwei Chen
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Jing Yu
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Weihuan Fang
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F UniversityLin'an, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang UniversityHangzhou, China
| | - Houhui Song
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| |
Collapse
|
36
|
Zilelidou E, Karmiri CV, Zoumpopoulou G, Mavrogonatou E, Kletsas D, Tsakalidou E, Papadimitriou K, Drosinos E, Skandamis P. Listeria monocytogenes Strains Underrepresented during Selective Enrichment with an ISO Method Might Dominate during Passage through Simulated Gastric Fluid and In Vitro Infection of Caco-2 Cells. Appl Environ Microbiol 2016; 82:6846-6858. [PMID: 27637880 PMCID: PMC5103084 DOI: 10.1128/aem.02120-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/08/2016] [Indexed: 11/20/2022] Open
Abstract
Various Listeria monocytogenes strains may contaminate a single food product, potentially resulting in simultaneous exposure of consumers to multiple strains. However, due to bias in strain recovery, L. monocytogenes strains isolated from foods by selective enrichment (SE) might not always represent those that can better survive the immune system of a patient. We investigated the effect of cocultivation in tryptic soy broth with 0.6% yeast extract (TSB-Y) at 10°C for 8 days on (i) the detection of L. monocytogenes strains during SE with the ISO 11290-1:1996/Amd 1:2004 protocol and (ii) the in vitro virulence of strains toward the Caco-2 human colon epithelial cancer cell line following exposure to simulated gastric fluid (SGF; pH 2.0)-HCl (37°C). We determined whether the strains which were favored by SE would be effective competitors under the conditions of challenges related to gastrointestinal passage of the pathogen. Interstrain competition of L. monocytogenes in TSB-Y determined the relative population of each strain at the beginning of SE. This in turn impacted the outcome of SE (i.e., favoring survival of competitors with better fitness) and the levels exposed subsequently to SGF. However, strong growth competitors could be outcompeted after SGF exposure and infection of Caco-2 cells by strains outgrown in TSB-Y and underdetected (or even missed) during enrichment. Our data demonstrate a preferential selection of certain L. monocytogenes strains during enrichments, often not reflecting a selective advantage of strains during infection. These findings highlight a noteworthy scenario associated with the difficulty of matching the source of infection (food) with the L. monocytogenes isolate appearing to be the causative agent during listeriosis outbreak investigations.IMPORTANCE This report is relevant to understanding the processes involved in selection and prevalence of certain L. monocytogenes strains in different environments (i.e., foods or sites of humans exposed to the pathogen). It highlights the occurrence of multiple strains in the same food as an important aspect contributing to mismatches between clinical isolates and infection sources during listeriosis outbreak investigations.
Collapse
Affiliation(s)
- Evangelia Zilelidou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Athens, Greece
| | - Christina-Vasiliki Karmiri
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Athens, Greece
| | - Georgia Zoumpopoulou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Dairy Research, Athens, Greece
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Effie Tsakalidou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Dairy Research, Athens, Greece
| | - Konstantinos Papadimitriou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Dairy Research, Athens, Greece
| | - Eleftherios Drosinos
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Athens, Greece
| | - Panagiotis Skandamis
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Athens, Greece
| |
Collapse
|
37
|
Virulence Gene-Associated Mutant Bacterial Colonies Generate Differentiating Two-Dimensional Laser Scatter Fingerprints. Appl Environ Microbiol 2016; 82:3256-3268. [PMID: 26994085 DOI: 10.1128/aem.04129-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/16/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In this study, we investigated whether a laser scatterometer designated BARDOT (bacterial rapid detection using optical scattering technology) could be used to directly screen colonies of Listeria monocytogenes, a model pathogen, with mutations in several known virulence genes, including the genes encoding Listeria adhesion protein (LAP; lap mutant), internalin A (ΔinlA strain), and an accessory secretory protein (ΔsecA2 strain). Here we show that the scatter patterns of lap mutant, ΔinlA, and ΔsecA2 colonies were markedly different from that of the wild type (WT), with >95% positive predictive values (PPVs), whereas for the complemented mutant strains, scatter patterns were restored to that of the WT. The scatter image library successfully distinguished the lap mutant and ΔinlA mutant strains from the WT in mixed-culture experiments, including a coinfection study using the Caco-2 cell line. Among the biophysical parameters examined, the colony height and optical density did not reveal any discernible differences between the mutant and WT strains. We also found that differential LAP expression in L. monocytogenes serotype 4b strains also affected the scatter patterns of the colonies. The results from this study suggest that BARDOT can be used to screen and enumerate mutant strains separately from the WT based on differential colony scatter patterns. IMPORTANCE In studies of microbial pathogenesis, virulence-encoding genes are routinely disrupted by deletion or insertion to create mutant strains. Screening of mutant strains is an arduous process involving plating on selective growth media, replica plating, colony hybridization, DNA isolation, and PCR or immunoassays. We applied a noninvasive laser scatterometer to differentiate mutant bacterial colonies from WT colonies based on forward optical scatter patterns. This study demonstrates that BARDOT can be used as a novel, label-free, real-time tool to aid researchers in screening virulence gene-associated mutant colonies during microbial pathogenesis, coinfection, and genetic manipulation studies.
Collapse
|
38
|
Polanco TO, Alothman S, Depaz H, Ramcharan A. A rare case of listeriosis, acute cholecystitis and multiple myeloma. J Surg Case Rep 2016; 2016:rjw080. [PMID: 27170703 PMCID: PMC4863235 DOI: 10.1093/jscr/rjw080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes (LM) is an aerobic, motile, intracellular gram-positive bacterium. Most invasive systemic infections caused by LM are commonly seen in patients at both extremes of age, during pregnancy or in immunocompromised hosts. Common clinical manifestations of LM infection in immunocompromised adults are bacteremia, infections of central nervous system, such as meningitis, and self-limiting febrile gastroenteritis. Focal infections of listeria are rare, especially cholecystitis, with only few cases reported in the last 33 years. A 62-year-old man presented with multiple myeloma, cholecystitis and LM bacteremia. Due to prompt surgical treatment and antibiotics (amoxicillin plus clavulanic acid and gentamycin), this high-risk patient recovered without any complications.
Collapse
Affiliation(s)
- Thais O Polanco
- Department of Surgery, Harlem Hospital Center, New York, NY, USA
| | - Sara Alothman
- Department of Surgery, Harlem Hospital Center, New York, NY, USA
| | - Hector Depaz
- Department of Surgery, Harlem Hospital Center, New York, NY, USA
| | | |
Collapse
|
39
|
Bifidobacteria-host interactions--an update on colonisation factors. BIOMED RESEARCH INTERNATIONAL 2014; 2014:960826. [PMID: 25295282 PMCID: PMC4177770 DOI: 10.1155/2014/960826] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 01/10/2023]
Abstract
Bifidobacteria are one of the predominant bacterial groups of the human intestinal microbiota and have important functional properties making them interesting for the food and dairy industries. Numerous in vitro and preclinical studies have shown beneficial effects of particular bifidobacterial strains or strain combinations on various health parameters of their hosts. This indicates the potential of bifidobacteria in alternative or supplementary therapeutic approaches in a number of diseased states. Based on these observations, bifidobacteria have attracted considerable interest by the food, dairy, and pharmaceutical industries and they are widely used as so-called probiotics. As a consequence of the rapidly increasing number of available bifidobacterial genome sequences and their analysis, there has been substantial progress in the identification of bifidobacterial structures involved in colonisation of and interaction with the host. With the present review, we aim to provide an update on the current knowledge on the mechanisms by which bifidobacteria colonise their hosts and exert health promoting effects.
Collapse
|
40
|
Dussurget O, Bierne H, Cossart P. The bacterial pathogen Listeria monocytogenes and the interferon family: type I, type II and type III interferons. Front Cell Infect Microbiol 2014; 4:50. [PMID: 24809023 PMCID: PMC4009421 DOI: 10.3389/fcimb.2014.00050] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/04/2014] [Indexed: 12/14/2022] Open
Abstract
Interferons (IFNs) are secreted proteins of the cytokine family that regulate innate and adaptive immune responses to infection. Although the importance of IFNs in the antiviral response has long been appreciated, their role in bacterial infections is more complex and is currently a major focus of investigation. This review summarizes our current knowledge of the role of these cytokines in host defense against the bacterial pathogen Listeria monocytogenes and highlights recent discoveries on the molecular mechanisms evolved by this intracellular bacterium to subvert IFN responses.
Collapse
Affiliation(s)
- Olivier Dussurget
- Unité des Interactions Bactéries-Cellules, Institut PasteurParis, France
- Inserm, U604Paris, France
- INRA, USC2020Paris, France
- University of Paris Diderot, Sorbonne Paris CitéParis, France
| | - Hélène Bierne
- Unité des Interactions Bactéries-Cellules, Institut PasteurParis, France
- Inserm, U604Paris, France
- INRA, USC2020Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut PasteurParis, France
- Inserm, U604Paris, France
- INRA, USC2020Paris, France
| |
Collapse
|
41
|
Dare K, Shepherd J, Roy H, Seveau S, Ibba M. LysPGS formation in Listeria monocytogenes has broad roles in maintaining membrane integrity beyond antimicrobial peptide resistance. Virulence 2014; 5:534-46. [PMID: 24603093 DOI: 10.4161/viru.28359] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Listeria monocytogenes is an intracellular, foodborne gastrointestinal pathogen that is primarily responsible for causing listeriosis or food poisoning in otherwise healthy individuals. Infections that arise during pregnancy or within immune compromised individuals are much more serious resulting in the risk of fetal termination or fetal fatality postpartum in the former and septicemia or meningitis with a 20% fatality rate in the latter. While the roles of internalin proteins and listeriolysin-O in the infection process are well characterized, the specific roles of lysine-modified phospholipids in the membrane of L. monocytogenes are not. Investigation into the lipid bilayer composition of L. monocytogenes indicated that the overall proportions of lipids, including lysylcardiolipin and lysylphosphatidylglycerol (LysPG), vary with growth temperature and growth phase. In addition, we demonstrate that LysPG formation is essential for L. monocytogenes survival in the presence of increased osmolytic stress but has no effect on bacterial adherence, invasion or survival in the presence of physiologically relevant concentrations of human neutrophil peptide (HNP-1). In the absence of LysPG synthesis, L. monocytogenes unexpectedly retained flagellum-mediated motility at 37 °C. Taken together, these findings show that LysPG formation in L. monocytogenes has broader functions in virulence and survival beyond its known role in the modification of membrane potential previously observed in other bacteria.
Collapse
Affiliation(s)
- Kiley Dare
- Department of Microbiology; The Ohio State University; Columbus, OH USA
| | - Jennifer Shepherd
- Department of Microbiology; The Ohio State University; Columbus, OH USA
| | - Hervé Roy
- Department of Microbiology; The Ohio State University; Columbus, OH USA
| | - Stephanie Seveau
- Department of Microbiology; The Ohio State University; Columbus, OH USA
| | - Michael Ibba
- Department of Microbiology; The Ohio State University; Columbus, OH USA; Ohio State Biochemistry Program; Center for RNA Biology; The Ohio State University; Columbus, OH USA
| |
Collapse
|
42
|
Gahan CGM, Hill C. Listeria monocytogenes: survival and adaptation in the gastrointestinal tract. Front Cell Infect Microbiol 2014; 4:9. [PMID: 24551601 PMCID: PMC3913888 DOI: 10.3389/fcimb.2014.00009] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/18/2014] [Indexed: 12/27/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes has the capacity to survive and grow in a diverse range of natural environments. The transition from a food environment to the gastrointestinal tract begins a process of adaptation that may culminate in invasive systemic disease. Here we describe recent advances in our understanding of how L. monocytogenes adapts to the gastrointestinal environment prior to initiating systemic infection. We will discuss mechanisms used by the pathogen to survive encounters with acidic environments (which include the glutamate decarboxylase and arginine deiminase systems), and those which enable the organism to cope with bile acids (including bile salt hydrolase) and competition with the resident microbiota. An increased understanding of how the pathogen survives in this environment is likely to inform the future design of novel prophylactic approaches that exploit specific pharmabiotics; including probiotics, prebiotics, or phages.
Collapse
Affiliation(s)
- Cormac G M Gahan
- Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland ; School of Microbiology, University College Cork Cork, Ireland ; School of Pharmacy, University College Cork Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland ; School of Microbiology, University College Cork Cork, Ireland
| |
Collapse
|
43
|
Wang G, Ning J, Zhao J, Hang F, Tian F, Zhao J, Chen Y, Zhang H, Chen W. Partial characterisation of an anti-listeria substance produced by Pediococcus acidilactici P9. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2013.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Han Y, Liu L, Fang N, Yang R, Zhou D. Regulation of pathogenicity by noncoding RNAs in bacteria. Future Microbiol 2013; 8:579-91. [PMID: 23642114 DOI: 10.2217/fmb.13.20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regulatory noncoding RNAs (ncRNAs) play important roles in bacterial gene regulation, primarily at the post-transcriptional level. There are four broad categories of regulatory ncRNAs including trans-encoded ncRNAs, cis-encoded ncRNAs, RNA thermometers and riboswitches, and they can influence the translation and/or stability of mRNAs by binding to the base-pairing sites in their target transcripts. In pathogenic bacteria, numerous ncRNAs are involved in the coordinated expression of virulence determinants to facilitate the pathogenicity in a concerted manner. This review discusses the modes of action of different regulatory ncRNAs and, furthermore, exemplifies their roles in regulating bacterial pathogenicity.
Collapse
Affiliation(s)
- Yanping Han
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | | | | | | | | |
Collapse
|
45
|
Cummins J, Casey PG, Joyce SA, Gahan CGM. A mariner transposon-based signature-tagged mutagenesis system for the analysis of oral infection by Listeria monocytogenes. PLoS One 2013; 8:e75437. [PMID: 24069416 PMCID: PMC3771922 DOI: 10.1371/journal.pone.0075437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/14/2013] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive foodborne pathogen and the causative agent of listerosis a disease that manifests predominately as meningitis in the non-pregnant individual or infection of the fetus and spontaneous abortion in pregnant women. Common-source outbreaks of foodborne listeriosis are associated with significant morbidity and mortality. However, relatively little is known concerning the mechanisms that govern infection via the oral route. In order to aid functional genetic analysis of the gastrointestinal phase of infection we designed a novel signature-tagged mutagenesis (STM) system based upon the invasive L. monocytogenes 4b serotype H7858 strain. To overcome the limitations of gastrointestinal infection by L. monocytogenes in the mouse model we created a H7858 strain that is genetically optimised for oral infection in mice. Furthermore our STM system was based upon a mariner transposon to favour numerous and random transposition events throughout the L. monocytogenes genome. Use of the STM bank to investigate oral infection by L. monocytogenes identified 21 insertion mutants that demonstrated significantly reduced potential for infection in our model. The sites of transposon insertion included lmOh7858_0671 (encoding an internalin homologous to Lmo0610), lmOh7858_0898 (encoding a putative surface-expressed LPXTG protein homologous to Lmo0842), lmOh7858_2579 (encoding the HupDGC hemin transport system) and lmOh7858_0399 (encoding a putative fructose specific phosphotransferase system). We propose that this represents an optimised STM system for functional genetic analysis of foodborne/oral infection by L. monocytogenes.
Collapse
Affiliation(s)
- Joanne Cummins
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Pat G. Casey
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Susan A. Joyce
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Cormac G. M. Gahan
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
46
|
Chan RH, Lewis JW, Bogomolni RA. Photocycle of the LOV-STAS protein from the pathogen Listeria monocytogenes. Photochem Photobiol 2012; 89:361-9. [PMID: 23025752 DOI: 10.1111/php.12004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 09/21/2012] [Indexed: 01/06/2023]
Abstract
Listeria monocytogenes, a food-borne bacterial pathogen causing significant human mortality, propagates by expressing genes in response to environmental signals, such as temperature and pH. Listeria gene (lmo0799) encodes a protein homologous to the Bacillus subtilis YtvA, which has a flavin-light, oxygen or voltage (LOV) domain and a Sulfate Transporters Anti-Sigma factor antagonist (STAS) output domain that regulates transcription-initiation factor Sigma B in the bacterial stress response upon exposure to light. This could be significant for the pathogenesis of listeriosis because Sigma B has been linked to virulence of Listeria, and the Listeria Lmo0799 protein has recently been identified as a virulence factor activated by blue light. We have cloned, expressed heterologously in Escherichia coli and purified the full-length LM-LOV-STAS protein. Although it exhibits photochemical activity similar to that of YtvA, LM-LOV-STAS lacks an almost universally conserved arginine in the flavin-binding site, as well as another positively charged residue, a lysine in YtvA. The absence of these positive charges was found to destabilize retention of the flavin mononucleotide (FMN) chromophore in the LM-LOV-STAS protein, particularly at higher temperatures. The unusual sequence of the LM-LOV-STAS protein alters both spectral features and activation/deactivation kinetics, potentially expanding the sensory capacity of this LOV domain, e.g. to detect light plus cold.
Collapse
Affiliation(s)
- Ruby H Chan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | | | | |
Collapse
|
47
|
Free AL, Duoss HA, Bergeron LV, Shields-Menard SA, Ward E, Callaway TR, Carroll JA, Schmidt TB, Donaldson JR. Survival of O157:H7 and non-O157 serogroups of Escherichia coli in bovine rumen fluid and bile salts. Foodborne Pathog Dis 2012; 9:1010-4. [PMID: 22957973 DOI: 10.1089/fpd.2012.1208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While Shiga toxin-producing Escherichia coli (STEC) reside asymptomatically within ruminants, particularly cattle, these strains pose a serious health risk to humans. Research related to STEC has historically focused upon O157:H7. However, with an increase in foodborne outbreaks of non-O157 origin and recent changes in testing for non-O157 by the U.S. Department of Agriculture Food Safety and Inspection Service (USDA-FSIS), there is now a critical need to understand the biological activity of non-O157 serogroups. The focus of this study was to determine whether variations exist in the ability of different serotypes of STEC to survive within bovine rumen fluid medium and bile salts. The results of this study demonstrated through viable plate count analysis that the five serotypes tested (O157:H7, O111:H8, O103:K.:H8, O145:H28, and O26:H11) were capable of growing in rumen fluid medium. However, the concentrations of the serotypes O103:K.:H8 and O26:H11 after 24 h were significantly less (p < 0.05) than that observed for the other serotypes tested. A significant decrease (p = 0.03) in the survival of O103:K.:H8 in 50 mg/mL of bovine bile salts in comparison to the other STEC strains tested was also observed. Collectively, these data suggest that non-O157 serogroups of E. coli respond differently to the environment of the bovine gastrointestinal tract. Further research is needed to elucidate how these differential physiological variations correlate with alterations in colonization success within ruminants and how they may impact human illnesses.
Collapse
Affiliation(s)
- Angela L Free
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Studies on the pathogenesis and survival of different culture forms of Listeria monocytogenes to pulsed UV-light irradiation after exposure to mild-food processing stresses. Food Microbiol 2012; 30:330-9. [DOI: 10.1016/j.fm.2011.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 12/22/2022]
|
49
|
Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes. Proc Natl Acad Sci U S A 2011; 108:19484-91. [PMID: 22114192 DOI: 10.1073/pnas.1112371108] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes has, in 25 y, become a model in infection biology. Through the analysis of both its saprophytic life and infectious process, new concepts in microbiology, cell biology, and pathogenesis have been discovered. This review will update our knowledge on this intracellular pathogen and highlight the most recent breakthroughs. Promising areas of investigation such as the increasingly recognized relevance for the infectious process, of RNA-mediated regulations in the bacterium, and the role of bacterially controlled posttranslational and epigenetic modifications in the host will also be discussed.
Collapse
|
50
|
Velge P, Roche SM. Variability of Listeria monocytogenes virulence: a result of the evolution between saprophytism and virulence? Future Microbiol 2011; 5:1799-821. [PMID: 21155663 DOI: 10.2217/fmb.10.134] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The genus Listeria consists of eight species but only two are pathogenic. Human listeriosis due to Listeria monocytogenes is a foodborne disease. L. monocytogenes is widespread in the environment living as a saprophyte, but is also capable of making the transition into a pathogen following its ingestion by susceptible humans or animals. It is now known that many distinct strains of L. monocytogenes differ in their virulence and epidemic potential. Unfortunately, there is currently no standard definition of virulence levels and no complete comprehensive overview of the evolution of Listeria species and L. monocytogenes strains taking into account the presence of both epidemic and low-virulence strains. This article focuses on the methods and genes allowing us to determine the pathogenic potential of Listeria strains, and the evolution of Listeria virulence. The presence of variable levels of virulence within L. monocytogenes has important consequences on detection of Listeria strains and risk analysis but also on our comprehension of how certain pathogens will behave in a population over evolutionary time.
Collapse
Affiliation(s)
- Philippe Velge
- INRA de tours, UR1282, Infectiologie Animale et Santé Publique, 37380 Nouzilly, France.
| | | |
Collapse
|