1
|
Little JI, Singh PK, Zhao J, Dunn S, Matz H, Donnenberg MS. Type IV pili of Enterobacteriaceae species. EcoSal Plus 2024:eesp00032023. [PMID: 38294234 DOI: 10.1128/ecosalplus.esp-0003-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024]
Abstract
Type IV pili (T4Ps) are surface filaments widely distributed among bacteria and archaea. T4Ps are involved in many cellular functions and contribute to virulence in some species of bacteria. Due to the diversity of T4Ps, different properties have been observed for homologous proteins that make up T4Ps in various organisms. In this review, we highlight the essential components of T4Ps, their functions, and similarities to related systems. We emphasize the unique T4Ps of enteric pathogens within the Enterobacteriaceae family, which includes pathogenic strains of Escherichia coli and Salmonella. These include the bundle-forming pilus (BFP) of enteropathogenic E. coli (EPEC), longus (Lng) and colonization factor III (CFA/III) of enterotoxigenic E. coli (ETEC), T4P of Salmonella enterica serovar Typhi, Colonization Factor Citrobacter (CFC) of Citrobacter rodentium, T4P of Yersinia pseudotuberculosis, a ubiquitous T4P that was characterized in enterohemorrhagic E. coli (EHEC), and the R64 plasmid thin pilus. Finally, we highlight areas for further study.
Collapse
Affiliation(s)
- Janay I Little
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Pradip K Singh
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jinlei Zhao
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shakeera Dunn
- Internal Medicine Residency, Bayhealth Medical Center, Dover, Delaware, USA
| | - Hanover Matz
- Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
2
|
Host-specific signal perception by PsaR2 LuxR solo induces Pseudomonas syringae pv. actinidiae virulence traits. Microbiol Res 2022; 260:127048. [DOI: 10.1016/j.micres.2022.127048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/23/2022] [Accepted: 04/19/2022] [Indexed: 11/19/2022]
|
3
|
Rubio-Gómez JM, Santiago CM, Udaondo Z, Garitaonaindia MT, Krell T, Ramos JL, Daddaoua A. Full Transcriptomic Response of Pseudomonas aeruginosa to an Inulin-Derived Fructooligosaccharide. Front Microbiol 2020; 11:202. [PMID: 32153524 PMCID: PMC7044273 DOI: 10.3389/fmicb.2020.00202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa is an ubiquitous gram-negative opportunistic human pathogen which is not considered part of the human commensal gut microbiota. However, depletion of the intestinal microbiota (Dysbiosis) following antibiotic treatment facilitates the colonization of the intestinal tract by Multidrug-Resistant P. aeruginosa. One possible strategy is based on the use of functional foods with prebiotic activity. The bifidogenic effect of the prebiotic inulin and its hydrolyzed form (fructooligosaccharide: FOS) is well established since they promote the growth of specific beneficial (probiotic) gut bacteria such as bifidobacteria. Previous studies of the opportunistic nosocomial pathogen Pseudomonas aeruginosa PAO1 have shown that inulin and to a greater extent FOS reduce growth and biofilm formation, which was found to be due to a decrease in motility and exotoxin secretion. However, the transcriptional basis for these phenotypic alterations remains unclear. To address this question we conducted RNA-sequence analysis. Changes in the transcript level induced by inulin and FOS were similar, but a set of transcript levels were increased in response to inulin and reduced in the presence of FOS. In the presence of inulin or FOS, 260 and 217 transcript levels, respectively, were altered compared to the control to which no polysaccharide was added. Importantly, changes in transcript levels of 57 and 83 genes were found to be specific for either inulin or FOS, respectively, indicating that both compounds trigger different changes. Gene pathway analyses of differentially expressed genes (DEG) revealed a specific FOS-mediated reduction in transcript levels of genes that participate in several canonical pathways involved in metabolism and growth, motility, biofilm formation, β-lactamase resistance, and in the modulation of type III and VI secretion systems; results that have been partially verified by real time quantitative PCR measurements. Moreover, we have identified a genomic island formed by a cluster of 15 genes, encoding uncharacterized proteins, which were repressed in the presence of FOS. The analysis of isogenic mutants has shown that genes of this genomic island encode proteins involved in growth, biofilm formation and motility. These results indicate that FOS selectively modulates bacterial pathogenicity by interfering with different signaling pathways.
Collapse
Affiliation(s)
- José Manuel Rubio-Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Carlos Molina Santiago
- Department of Microbiology, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", University of Málaga, Málaga, Spain
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mireia Tena Garitaonaindia
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan-Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
4
|
Leighton TL, Mok MC, Junop MS, Howell PL, Burrows LL. Conserved, unstructured regions in Pseudomonas aeruginosa PilO are important for type IVa pilus function. Sci Rep 2018; 8:2600. [PMID: 29422606 PMCID: PMC5805733 DOI: 10.1038/s41598-018-20925-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/25/2018] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas aeruginosa uses long, thin fibres called type IV pili (T4P) for adherence to surfaces, biofilm formation, and twitching motility. A conserved subcomplex of PilMNOP is required for extension and retraction of T4P. To better understand its function, we attempted to co-crystallize the soluble periplasmic portions of PilNOP, using reductive surface methylation to promote crystal formation. Only PilOΔ109 crystallized; its structure was determined to 1.7 Å resolution using molecular replacement. This new structure revealed two novel features: a shorter N-terminal α1-helix followed by a longer unstructured loop, and a discontinuous β-strand in the second αββ motif, mirroring that in the first motif. PISA analysis identified a potential dimer interface with striking similarity to that of the PilO homolog EpsM from the Vibrio cholerae type II secretion system. We identified highly conserved residues within predicted unstructured regions in PilO proteins from various Pseudomonads and performed site-directed mutagenesis to assess their role in T4P function. R169D and I170A substitutions decreased surface piliation and twitching motility without disrupting PilO homodimer formation. These residues could form important protein-protein interactions with PilN or PilP. This work furthers our understanding of residues critical for T4aP function.
Collapse
Affiliation(s)
- T L Leighton
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - M C Mok
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry, Western University, London, ON, Canada
| | - M S Junop
- Department of Biochemistry, Western University, London, ON, Canada
| | - P L Howell
- Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| | - L L Burrows
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
5
|
McCallum M, Tammam S, Little DJ, Robinson H, Koo J, Shah M, Calmettes C, Moraes TF, Burrows LL, Howell PL. PilN Binding Modulates the Structure and Binding Partners of the Pseudomonas aeruginosa Type IVa Pilus Protein PilM. J Biol Chem 2016; 291:11003-15. [PMID: 27022027 DOI: 10.1074/jbc.m116.718353] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that expresses type IVa pili. The pilus assembly system, which promotes surface-associated twitching motility and virulence, is composed of inner and outer membrane subcomplexes, connected by an alignment subcomplex composed of PilMNOP. PilM binds to the N terminus of PilN, and we hypothesize that this interaction causes functionally significant structural changes in PilM. To characterize this interaction, we determined the crystal structures of PilM and a PilM chimera where PilM was fused to the first 12 residues of PilN (PilM·PilN(1-12)). Structural analysis, multiangle light scattering coupled with size exclusion chromatography, and bacterial two-hybrid data revealed that PilM forms dimers mediated by the binding of a novel conserved motif in the N terminus of PilM, and binding PilN abrogates this binding interface, resulting in PilM monomerization. Structural comparison of PilM with PilM·PilN(1-12) revealed that upon PilN binding, there is a large domain closure in PilM that alters its ATP binding site. Using biolayer interferometry, we found that the association rate of PilN with PilM is higher in the presence of ATP compared with ADP. Bacterial two-hybrid data suggested the connectivity of the cytoplasmic and inner membrane components of the type IVa pilus machinery in P. aeruginosa, with PilM binding to PilB, PilT, and PilC in addition to PilN. Pull-down experiments demonstrated direct interactions of PilM with PilB and PilT. We propose a working model in which dynamic binding of PilN facilitates functionally relevant structural changes in PilM.
Collapse
Affiliation(s)
- Matthew McCallum
- From the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada, the Program in Molecular Structure and Function, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Stephanie Tammam
- the Program in Molecular Structure and Function, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Dustin J Little
- From the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada, the Program in Molecular Structure and Function, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Howard Robinson
- the Photon Sciences Division, Brookhaven National Laboratory, Upton, New York 11973-5000, and
| | - Jason Koo
- the Program in Molecular Structure and Function, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Megha Shah
- From the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Charles Calmettes
- From the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Trevor F Moraes
- From the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lori L Burrows
- the Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - P Lynne Howell
- From the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada, the Program in Molecular Structure and Function, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada,
| |
Collapse
|
6
|
Divergence of a strain of Pseudomonas aeruginosa during an outbreak of ovine mastitis. Vet Microbiol 2015; 175:105-13. [DOI: 10.1016/j.vetmic.2014.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/04/2014] [Accepted: 11/12/2014] [Indexed: 12/30/2022]
|
7
|
Parker JK, Cruz LF, Evans MR, De La Fuente L. Presence of calcium-binding motifs in PilY1 homologs correlates with Ca-mediated twitching motility and evolutionary history across diverse bacteria. FEMS Microbiol Lett 2014; 362:fnu063. [PMID: 25688068 DOI: 10.1093/femsle/fnu063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Twitching motility, involving type IV pili, is essential for host colonization and virulence of many pathogenic bacteria. Studies of PilY1, a tip-associated type IV pili protein, indicate that PilY1 functions as a switch between pilus extension and retraction, resulting in twitching motility. Recent work detected a calcium-binding motif in PilY1 of some animal bacterial pathogens and demonstrated that binding of calcium to PilY1 with this motif regulates twitching. Though studies of PilY1 in non-animal pathogens are limited, our group demonstrated that twitching motility in the plant pathogen Xylella fastidiosa, which contains three PilY1 homologs, is increased by calcium supplementation. A study was conducted to investigate the phylogenetic relationship between multiple PilY1 homologs, the presence of calcium-binding motifs therein, and calcium-mediated twitching motility across diverse bacteria. Strains analyzed contained one to three PilY1 homologs, but phylogenetic analyses indicated that PilY1 homologs containing the calcium-binding motif Dx[DN]xDGxxD are phylogenetically divergent from other PilY1 homologs. Plant-associated bacteria included in these analyses were then examined for a calcium-mediated twitching response. Results indicate that bacteria must have at least one PilY1 homolog containing the Dx[DN]xDGxxD motif to display a calcium-mediated increase in twitching motility, which likely reflects an adaption to environmental calcium concentrations.
Collapse
Affiliation(s)
- Jennifer K Parker
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Luisa F Cruz
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Michael R Evans
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
8
|
Ossa Henao DM, Vicentini R, Rodrigues VD, Bevilaqua D, Ottoboni LMM. Differential gene expression in Acidithiobacillus ferrooxidans LR planktonic and attached cells in the presence of chalcopyrite. J Basic Microbiol 2014; 54:650-7. [PMID: 24523248 DOI: 10.1002/jobm.201300871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/25/2013] [Indexed: 11/06/2022]
Abstract
Acidithiobacillus ferrooxidans is commonly used in bioleaching operations to recover copper from sulfide ores. It is commonly accepted that A. ferrooxidans attaches to mineral surfaces by means of extracellular polymeric substances (EPS), however the role of type IV pili and tight adherence genes in this process is poorly understood. Genes related to the formation of type IV pili and tight adherence were identified in the genome of the bacterium, and in this work, we show that A. ferrooxidans actively expresses these genes, as demonstrated by quantitative real-time PCR analysis using cells incubated with chalcopyrite for 2 h. Significant differences in gene expression were observed between planktonic and adhered cells, with the level of expression being much greater in planktonic cells. These results might indicate that planktonic cells can actively adhere to the substrate. A bioinformatics analysis of interaction networks of the tight adherence and type IV pilus assembly genes revealed a strong relationship between conjugation systems (tra operon) and regulatory systems (PilR, PilS).
Collapse
Affiliation(s)
- Diana Marcela Ossa Henao
- Departamento de Bioquímica e Química Tecnológica, Instituto de Química, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, Araraquara, SP, Brazil; Laboratorio de Gestión Ambiental, Departamento de Ingeniería Industrial, Universidad Autónoma del Caribe - UAC, Barranquilla, Colombia
| | | | | | | | | |
Collapse
|
9
|
Facincani AP, Moreira LM, Soares MR, Ferreira CB, Ferreira RM, Ferro MIT, Ferro JA, Gozzo FC, de Oliveira JCF. Comparative proteomic analysis reveals that T3SS, Tfp, and xanthan gum are key factors in initial stages of Citrus sinensis infection by Xanthomonas citri subsp. citri. Funct Integr Genomics 2013; 14:205-17. [PMID: 24676796 DOI: 10.1007/s10142-013-0340-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/18/2013] [Accepted: 09/26/2013] [Indexed: 01/02/2023]
Abstract
The bacteria Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus canker. The disease symptoms are characterized by localized host cell hyperplasia followed by tissue necrosis at the infected area. An arsenal of bacterial pathogenicity- and virulence-related proteins is expressed to ensure a successful infection process. At the post-genomic stage of Xac, we used a proteomic approach to analyze the proteins that are displayed differentially over time when the pathogen attacks the host plant. Protein extracts were prepared from infectious Xac grown in inducing medium (XAM1) for 24 h or from host citrus plants for 3 or 5 days after infection, detached times to evaluate the adaptation and virulence of the pathogen. The protein extracts were proteolyzed, and the peptides derived from tryptic digestion were investigated using liquid chromatography and tandem mass spectrometry. Changes in the protein expression profile were compared with the Xac genome and the proteome recently described under non-infectious conditions. An analysis of the proteome of Xac under infectious conditions revealed proteins directly involved in virulence such as the type III secretion system (T3SS) and effector proteins (T3SS-e), the type IV pilus (Tfp), and xanthan gum biosynthesis. Moreover, four new mutants related to proteins detected in the proteome and with different functions exhibited reduced virulence relative to the wild-type proteins. The results of the proteome analysis of infectious Xac define the processes of adaptation to the host and demonstrate the induction of the virulence factors of Xac involved in plant-pathogen interactions.
Collapse
Affiliation(s)
- Agda P Facincani
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, Departamento de Tecnologia, UNESP-Universidade Estadual Paulista, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Background Coxiella burnetii is a Gram-negative intracellular bacterial pathogen that replicates within a phagolysosome-like parasitophorous vacuole (PV) of macrophages. PV formation requires delivery of effector proteins directly into the host cell cytoplasm by a type IVB secretion system. However, additional secretion systems are likely responsible for modification of the PV lumen microenvironment that promote pathogen replication. Results To assess the potential of C. burnetii to secrete proteins into the PV, we analyzed the protein content of modified acidified citrate cysteine medium for the presence of C. burnetii proteins following axenic (host cell-free) growth. Mass spectrometry generated a list of 105 C. burnetii proteins that could be secreted. Based on bioinformatic analysis, 55 proteins were selected for further study by expressing them in C. burnetii with a C-terminal 3xFLAG-tag. Secretion of 27 proteins by C. burnetii transformants was confirmed by immunoblotting culture supernatants. Tagged proteins expressed by C. burnetii transformants were also found in the soluble fraction of infected Vero cells, indicating secretion occurs ex vivo. All secreted proteins contained a signal sequence, and deletion of this sequence from selected proteins abolished secretion. These data indicate protein secretion initially requires translocation across the inner-membrane into the periplasm via the activity of the Sec translocase. Conclusions C. burnetii secretes multiple proteins, in vitro and ex vivo, in a Sec-dependent manner. Possible roles for secreted proteins and secretion mechanisms are discussed.
Collapse
|
11
|
Combined genomics and experimental analyses of respiratory characteristics of Shewanella putrefaciens W3-18-1. Appl Environ Microbiol 2013; 79:5250-7. [PMID: 23811511 DOI: 10.1128/aem.00619-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has previously been shown that the Shewanella putrefaciens W3-18-1 strain produces remarkably high current in microbial fuel cells (MFCs) and can form magnetite at 0°C. To explore the underlying mechanisms, we developed a genetic manipulation method by deleting the restriction-modification system genes of the SGI1 (Salmonella genome island 1)-like prophage and analyzed the key genes involved in bacterial respiration. W3-18-1 has less respiratory flexibility than the well-characterized S. oneidensis MR-1 strain, as it possesses fewer cytochrome c genes and lacks the ability to oxidize sulfite or reduce dimethyl sulfoxide (DMSO) and timethylamine oxide (TMAO). W3-18-1 lacks the hydrogen-producing Fe-only hydrogenase, and the hydrogen-oxidizing Ni-Fe hydrogenase genes were split into two separate clusters. Two periplasmic nitrate reductases (NapDAGHB and NapDABC) were functionally redundant in anaerobic growth of W3-18-1 with nitrate as the electron acceptor, though napDABC was not regulated by Crp. Moreover, nitrate respiration started earlier in W3-18-1 than in MR-1 (with NapDAGHB only) under microoxic conditions. These results indicate that Shewanella putrefaciens W3-18-1 is well adapted to habitats with higher oxygen levels. Taken together, the results of this study provide valuable insights into bacterial genome evolution.
Collapse
|
12
|
Seventeen Sxy-dependent cyclic AMP receptor protein site-regulated genes are needed for natural transformation in Haemophilus influenzae. J Bacteriol 2012; 194:5245-54. [PMID: 22821979 DOI: 10.1128/jb.00671-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Natural competence is the ability of bacteria to actively take up extracellular DNA. This DNA can recombine with the host chromosome, transforming the host cell and altering its genotype. In Haemophilus influenzae, natural competence is induced by energy starvation and the depletion of nucleotide pools. This induces a 26-gene competence regulon (Sxy-dependent cyclic AMP receptor protein [CRP-S] regulon) whose expression is controlled by two regulators, CRP and Sxy. The role of most of the CRP-S genes in DNA uptake and transformation is not known. We have therefore created in-frame deletions of each CRP-S gene and studied their competence phenotypes. All but one gene (ssb) could be deleted. Although none of the remaining CRP-S genes were required for growth in rich medium or survival under starvation conditions, DNA uptake and transformation were abolished or reduced in most of the mutants. Seventeen genes were absolutely required for transformation, with 14 of these genes being specifically required for the assembly and function of the type IV pilus DNA uptake machinery. Only five genes were dispensable for both competence and transformation. This is the first competence regulon for which all genes have been mutationally characterized.
Collapse
|
13
|
Abstract
Gallibacterium anatis is a pathogen of poultry. Very little is known about its genetics and pathogenesis. To enable the study of gene function in G. anatis, we have established methods for transformation and targeted mutagenesis. The genus Gallibacterium belongs to the Pasteurellaceae, a group with several naturally transformable members, including Haemophilus influenzae. Bioinformatics analysis identified G. anatis homologs of the H. influenzae competence genes, and natural competence was induced in G. anatis by the procedure established for H. influenzae: transfer from rich medium to the starvation medium M-IV. This procedure gave reproducibly high transformation frequencies with G. anatis chromosomal DNA and with linearized plasmid DNA carrying G. anatis sequences. Both DNA types integrated into the G. anatis chromosome by homologous recombination. Targeted mutagenesis gave transformation frequencies of >2 × 10(-4) transformants CFU(-1). Transformation was also efficient with circular plasmid containing no G. anatis DNA; this resulted in the establishment of a self-replicating plasmid. Nine diverse G. anatis strains were found to be naturally transformable by this procedure, suggesting that natural competence is common and the M-IV transformation procedure widely applicable for this species. The G. anatis genome is only slightly enriched for the uptake signal sequences identified in other pasteurellaceaen genomes, but G. anatis did preferentially take up its own DNA over that of Escherichia coli. Transformation by electroporation was not effective for chromosomal integration but could be used to introduce self-replicating plasmids. The findings described here provide important tools for the genetic manipulation of G. anatis.
Collapse
|
14
|
Tammam S, Sampaleanu LM, Koo J, Sundaram P, Ayers M, Chong PA, Forman-Kay JD, Burrows LL, Howell PL. Characterization of the PilN, PilO and PilP type IVa pilus subcomplex. Mol Microbiol 2011; 82:1496-514. [PMID: 22053789 DOI: 10.1111/j.1365-2958.2011.07903.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Type IVa pili are bacterial nanomachines required for colonization of surfaces, but little is known about the organization of proteins in this system. The Pseudomonas aeruginosa pilMNOPQ operon encodes five key members of the transenvelope complex facilitating pilus function. While PilQ forms the outer membrane secretin pore, the functions of the inner membrane-associated proteins PilM/N/O/P are less well defined. Structural characterization of a stable C-terminal fragment of PilP (PilP(Δ71)) by NMR revealed a modified β-sandwich fold, similar to that of Neisseria meningitidis PilP, although complementation experiments showed that the two proteins are not interchangeable likely due to divergent surface properties. PilP is an inner membrane putative lipoprotein, but mutagenesis of the putative lipobox had no effect on the localization and function of PilP. A larger fragment, PilP(Δ18-6His), co-purified with a PilN(Δ44)/PilO(Δ51) heterodimer as a stable complex that eluted from a size exclusion chromatography column as a single peak with a molecular weight equivalent to two heterotrimers with 1:1:1 stoichiometry. Although PilO forms both homodimers and PilN-PilO heterodimers, PilP(Δ18-6His) did not interact stably with PilO(Δ51) alone. Together these data demonstrate that PilN/PilO/PilP interact directly to form a stable heterotrimeric complex, explaining the dispensability of PilP's lipid anchor for localization and function.
Collapse
Affiliation(s)
- S Tammam
- Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Scheurwater EM, Burrows LL. Maintaining network security: how macromolecular structures cross the peptidoglycan layer. FEMS Microbiol Lett 2011; 318:1-9. [DOI: 10.1111/j.1574-6968.2011.02228.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
16
|
Kirkpatrick CL, Viollier PH. Poles apart: prokaryotic polar organelles and their spatial regulation. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a006809. [PMID: 21084387 DOI: 10.1101/cshperspect.a006809] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While polar organelles hold the key to understanding the fundamentals of cell polarity and cell biological principles in general, they have served in the past merely for taxonomical purposes. Here, we highlight recent efforts in unraveling the molecular basis of polar organelle positioning in bacterial cells. Specifically, we detail the role of members of the Ras-like GTPase superfamily and coiled-coil-rich scaffolding proteins in modulating bacterial cell polarity and in recruiting effector proteins to polar sites. Such roles are well established for eukaryotic cells, but not for bacterial cells that are generally considered diffusion-limited. Studies on spatial regulation of protein positioning in bacterial cells, though still in their infancy, will undoubtedly experience a surge of interest, as comprehensive localization screens have yielded an extensive list of (polarly) localized proteins, potentially reflecting subcellular sites of functional specialization predicted for organelles.
Collapse
Affiliation(s)
- Clare L Kirkpatrick
- Department of Microbiology and Molecular Medicine, Centre Médicale Universitaire, Faculty of Medicine, University of Geneva, Switzerland
| | | |
Collapse
|
17
|
Ayers M, Howell PL, Burrows LL. Architecture of the type II secretion and type IV pilus machineries. Future Microbiol 2010; 5:1203-18. [PMID: 20722599 DOI: 10.2217/fmb.10.76] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Motility and protein secretion are key processes contributing to bacterial virulence. A wealth of phylogenetic, biochemical and structural evidence support the hypothesis that the widely distributed type IV pilus (T4P) system, involved in twitching motility, and the type II secretion (T2S) system, involved in exoprotein release, are descended from a common progenitor. Both are composed of dedicated but dynamic assemblages, which have been proposed to function through alternate polymerization and depolymerization or degradation of pilin-like subunits. While ongoing studies aimed at understanding the details of assembly and function of these systems are leading to new insights, there are still large knowledge gaps with respect to several fundamental aspects of their biology, including the localization and stoichiometry of critical assembly components, and the nature of their interactions. This article highlights recent advances in understanding the architectures of the T4P and T2S systems, and the organization of their inner and outer membrane components. As structural data accumulates, it is becoming increasingly apparent that even components with little-to-no sequence similarity have similar folds, further supporting the idea that both systems function by a similar mechanism.
Collapse
Affiliation(s)
- Melissa Ayers
- Department of Biochemistry & Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada
| | | | | |
Collapse
|
18
|
The peptidoglycan-binding protein FimV promotes assembly of the Pseudomonas aeruginosa type IV pilus secretin. J Bacteriol 2010; 193:540-50. [PMID: 21097635 DOI: 10.1128/jb.01048-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Pseudomonas aeruginosa inner membrane protein FimV is among several proteins of unknown function required for type IV pilus-mediated twitching motility, arising from extension and retraction of pili from their site of assembly in the inner membrane. The pili transit the periplasm and peptidoglycan (PG) layer, ultimately exiting the cell through the PilQ secretin. Although fimV mutants are nonmotile, they are susceptible to killing by pilus-specific bacteriophage, a hallmark of retractable surface pili. Here we show that levels of recoverable surface pili were markedly decreased in fimV pilT retraction-deficient mutants compared with levels in the pilT control, demonstrating that FimV acts at the level of pilus assembly. Levels of inner membrane assembly subcomplex proteins PilM/N/O/P were decreased in fimV mutants, but supplementation of these components in trans did not restore pilus assembly or motility. Loss of FimV dramatically reduced the levels of the PilQ secretin multimer through which pili exit the cell, in part due to decreased levels of PilQ monomers, while PilF pilotin levels were unchanged. Expression of pilQ in trans in the wild type or fimV mutants increased total PilQ monomer levels but did not alter secretin multimer levels or motility. PG pulldown assays showed that the N terminus of FimV bound PG in a LysM motif-dependent manner, and a mutant with an in-frame chromosomal deletion of the LysM motif had reduced motility, secretin levels, and surface piliation. Together, our data show that FimV's role in pilus assembly is to promote secretin formation and that this function depends upon its PG-binding domain.
Collapse
|
19
|
Giltner CL, Rana N, Lunardo MN, Hussain AQ, Burrows LL. Evolutionary and functional diversity of the Pseudomonas type IVa pilin island. Environ Microbiol 2010; 13:250-264. [PMID: 20738375 DOI: 10.1111/j.1462-2920.2010.02327.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In Pseudomonas aeruginosa, most proteins involved in type IVa pilus (T4aP) biogenesis are highly conserved except for the major pilin PilA and the minor pilins involved in pilus assembly. Here we show that each of the five major pilin alleles is associated with a specific set of minor pilins, and unrelated strains with the same major pilin type have identical minor pilin genes. The sequences of the minor pilin genes of strains with group III and V pilins are identical, suggesting that these groups diverged recently through further evolution of the major pilin cluster. Both gene clusters are localized on a single 'pilin island' containing putative tRNA recombinational hotspots, and a similar organization of pilin genes was identified in other Pseudomonas species. To address the biological significance of group-specific differences, cross-complementation studies using group II (PAO1) and group III (PA14) minor pilins were performed. Heterologous minor pilins complemented twitching motility to various extents except in the case of PilX, which was non-functional in non-native backgrounds. A recombinant PA14 strain expressing the PAO1 minor pilins regained motility only upon co-introduction of the PA14 pilX gene. Comparison of PilX and PilQ secretin sequences from group II, III and V genomes revealed discrete regions of sequence that co-varied between groups. Our data suggest that changes in PilX sequence have led to compensatory changes in the PilQ secretin monomer such that heterologous PilX proteins are no longer able to promote opening of the secretin to allow pili to appear on the cell surface.
Collapse
Affiliation(s)
- Carmen L Giltner
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada
| | - Navpreet Rana
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada
| | - Michael N Lunardo
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada
| | - Anne Q Hussain
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
20
|
Giraud C, Bernard C, Ruer S, De Bentzmann S. Biological 'glue' and 'Velcro': molecular tools for adhesion and biofilm formation in the hairy and gluey bug Pseudomonas aeruginosa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:343-358. [PMID: 23766107 DOI: 10.1111/j.1758-2229.2009.00070.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pseudomonas aeruginosa contains an extraordinarily large number of loci encoding systems facilitating a communal lifestyle and binding to supports of various natures. These P. aeruginosa systems are reviewed here and may be categorized as classical or non-classical systems. They highlight the panoply of strategies that this hairy and gluey bacterium has developed for dealing with the diverse environments with which it is faced during various types of infection, involving complex regulatory networks that have not yet been fully elucidated but several aspects of which are discussed here.
Collapse
Affiliation(s)
- Caroline Giraud
- UPR9027-CNRS-IFR88 Institut de Microbiologie de la Méditerrannée, 31 Chemin Joseph Aiguier, 13402 Marseille cédex 20, France
| | | | | | | |
Collapse
|
21
|
Giltner CL, Habash M, Burrows LL. Pseudomonas aeruginosa minor pilins are incorporated into type IV pili. J Mol Biol 2010; 398:444-61. [PMID: 20338182 DOI: 10.1016/j.jmb.2010.03.028] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/23/2010] [Accepted: 03/16/2010] [Indexed: 11/17/2022]
Abstract
Type IV pili are long filamentous appendages required for both adhesion and a unique form of motility known as twitching. Twitching motility involves the extension and retraction of the pilus and requires a number of gene products, including five conserved pilin-like proteins of unknown function (FimU, PilV, PilW, PilX, and PilE in Pseudomonas aeruginosa), termed 'minor' pilins. Maintenance of a specific stoichiometric ratio among the minor pilins was important for function, as loss or overexpression of any component impaired motility. Disruption of individual minor pilin genes, or of the AlgR positive regulator of minor pilin operon expression in a strain where pilus retraction was blocked by inactivation of the PilT retraction ATPase, revealed that pili were produced, although levels of piliation were reduced relative to pilT positive control. Differences in the levels of piliation of complemented strains pointed to specific roles for each protein in the assembly process, with FimU and PilX being implicated as key promoters of pilus assembly on the cell surface. Using specific antibodies for each protein, we showed that the minor pilins FimU, PilV, PilW, PilX, and PilE were processed by the pre-pilin peptidase PilD and incorporated throughout the growing pilus filament. This is the first study to demonstrate that the minor pilins, conserved among bacteria expressing type IVa pili, are incorporated into the fiber and support a role for them in the initiation, but not termination, of pilus assembly.
Collapse
Affiliation(s)
- Carmen L Giltner
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | | | |
Collapse
|
22
|
Ayers M, Sampaleanu LM, Tammam S, Koo J, Harvey H, Howell PL, Burrows LL. PilM/N/O/P proteins form an inner membrane complex that affects the stability of the Pseudomonas aeruginosa type IV pilus secretin. J Mol Biol 2009; 394:128-42. [PMID: 19857645 DOI: 10.1016/j.jmb.2009.09.034] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/09/2009] [Accepted: 09/12/2009] [Indexed: 01/16/2023]
Abstract
The highly conserved pilM/N/O/P/Q gene cluster is among the core set of genes required for cell surface expression of type IV pili and associated twitching motility. With the exception of the outer membrane secretin, a multimer of PilQ subunits, the specific functions of the products encoded by this gene cluster are poorly characterized. Orthologous proteins in the related bacterial type II secretion system have been shown to interact to form an inner membrane complex required for protein secretion. In this study, we provide evidence that the PilM/N/O/P proteins form a functionally equivalent type IVa pilus complex. Using Pseudomonas aeruginosa as model organism, we found that all four proteins, including the nominally cytoplasmic PilM, colocalized to the inner membrane. Stability studies via Western blot analyses revealed that loss of one component has a negative impact on the levels of other members of the putative complex. Furthermore, complementation studies revealed that the stoichiometry of the components is important for the correct formation of a stable complex in vivo. We provide evidence that an intact inner membrane complex is required for optimal formation of the outer membrane complex of the type IVa pilus system in P. aeruginosa, as PilQ stability is negatively affected in its absence. Finally, we show that, in the absence of the pilin subunit, the levels of membrane-bound components of the inner membrane complex are negatively regulated by the PilR/S two-component system, suggesting a role for PilR/S in sensing the piliation status of the cell.
Collapse
Affiliation(s)
- M Ayers
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | | | | | | | |
Collapse
|
23
|
Sampaleanu LM, Bonanno JB, Ayers M, Koo J, Tammam S, Burley SK, Almo SC, Burrows LL, Howell PL. Periplasmic domains of Pseudomonas aeruginosa PilN and PilO form a stable heterodimeric complex. J Mol Biol 2009; 394:143-59. [PMID: 19857646 DOI: 10.1016/j.jmb.2009.09.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/09/2009] [Accepted: 09/17/2009] [Indexed: 11/18/2022]
Abstract
Type IV pili (T4P) are bacterial virulence factors responsible for attachment to surfaces and for twitching motility, a motion that involves a succession of pilus extension and retraction cycles. In the opportunistic pathogen Pseudomonas aeruginosa, the PilM/N/O/P proteins are essential for T4P biogenesis, and genetic and biochemical analyses strongly suggest that they form an inner-membrane complex. Here, we show through co-expression and biochemical analysis that the periplasmic domains of PilN and PilO interact to form a heterodimer. The structure of residues 69-201 of the periplasmic domain of PilO was determined to 2.2 A resolution and reveals the presence of a homodimer in the asymmetric unit. Each monomer consists of two N-terminal coiled coils and a C-terminal ferredoxin-like domain. This structure was used to generate homology models of PilN and the PilN/O heterodimer. Our structural analysis suggests that in vivo PilN/O heterodimerization would require changes in the orientation of the first N-terminal coiled coil, which leads to two alternative models for the role of the transmembrane domains in the PilN/O interaction. Analysis of PilN/O orthologues in the type II secretion system EpsL/M revealed significant similarities in their secondary structures and the tertiary structures of PilO and EpsM, although the way these proteins interact to form inner-membrane complexes appears to be different in T4P and type II secretion. Our analysis suggests that PilN interacts directly, via its N-terminal tail, with the cytoplasmic protein PilM. This work shows a direct interaction between the periplasmic domains of PilN and PilO, with PilO playing a key role in the proper folding of PilN. Our results suggest that PilN/O heterodimers form the foundation of the inner-membrane PilM/N/O/P complex, which is critical for the assembly of a functional T4P complex.
Collapse
Affiliation(s)
- L M Sampaleanu
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The facultative pathogen Vibrio cholerae is the causative agent of the human intestinal disease cholera. Both motility and chemotaxis of V. cholerae have been shown to contribute to the virulence and spread of cholera. The flagellar gene operons are organized into a hierarchy composed of four classes (I to IV) based on their temporal expression patterns. Some regulatory elements involved in flagellar gene expression have been elucidated, but regulation is complex and flagellar biogenesis in V. cholerae is not completely understood. In this study, we determined that the virulence defect of a V. cholerae cheW1 deletion mutant was due to polar effects on the downstream open reading frame VC2058 (flrD). Expression of flrD in trans restored the virulence defect of the cheW1 deletion mutant, and deletion of flrD resulted in a V. cholerae strain attenuated for virulence, as determined by using the infant mouse intestinal colonization model. The flrD mutant strain exhibited decreased transcription of class III and IV flagellar genes and reduced motility. Transcription of the flrD promoter, which lies within the coding sequence of cheW1, is independent of the flagellar transcriptional activators FlrA and RpoN, which activate class II genes, indicating that flrD does not fit into any of the four flagellar gene classes. Genetic epistasis studies revealed that the two-component system FlrBC, which is required for class III and IV flagellar gene transcription, acts downstream of flrD. We hypothesize that the inner membrane protein FlrD interacts with the cytoplasmic FlrBC complex to activate class III and IV gene transcription.
Collapse
|
25
|
Salomonsson E, Forsberg Å, Roos N, Holz C, Maier B, Koomey M, Winther-Larsen HC. Functional analyses of pilin-like proteins from Francisella tularensis: complementation of type IV pilus phenotypes in Neisseria gonorrhoeae. Microbiology (Reading) 2009; 155:2546-2559. [DOI: 10.1099/mic.0.028183-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accumulating evidence from a number of studies strongly suggests that proteins orthologous to those involved in type IV pili (Tfp) assembly and function are required for Francisella pathogenicity. However, the molecular mechanisms by which the components exert their influence on virulence remain poorly understood. Owing to the conservation and promiscuity of Tfp biogenesis machineries, expression of Tfp pilins in heterologous species has been used successfully to analyse organelle structure–function relationships. In this study we expressed a number of Francisella pilin genes in the Tfp-expressing pathogen Neisseria gonorrhoeae lacking its endogenous pilin subunit. Two gene products, the orthologous PilA proteins from Francisella tularensis subspecies tularensis and novicida, were capable of restoring the expression of Tfp-like appendages that were shown to be dependent upon the neisserial Tfp biogenesis machinery for surface localization. Expression of Francisella PilA pilins also partially restored competence for natural transformation in N. gonorrhoeae. This phenotype was not complemented by expression of the PulG and XcpT proteins, which are equivalent components of the related type II protein secretion system. Taken together, these findings provide compelling, although indirect, evidence of the potential for Francisella PilA proteins to express functional Tfp.
Collapse
Affiliation(s)
- Emelie Salomonsson
- Umeå Centre for Microbial Research (UCMR) and Laboratory for Molecular Infection Medicine, Sweden (MIMS), Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- CBRN Defence and Security, FOI Swedish Defence Research Agency, Cementvägen 20, 901 82 Umeå, Sweden
| | - Åke Forsberg
- Umeå Centre for Microbial Research (UCMR) and Laboratory for Molecular Infection Medicine, Sweden (MIMS), Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- CBRN Defence and Security, FOI Swedish Defence Research Agency, Cementvägen 20, 901 82 Umeå, Sweden
| | - Norbert Roos
- Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Claudia Holz
- Westfälische Wilhelms-Universität Münster, Institut für Allgemeine Zoologie und Genetik, 48149 Münster, Germany
| | - Berenike Maier
- Westfälische Wilhelms-Universität Münster, Institut für Allgemeine Zoologie und Genetik, 48149 Münster, Germany
| | - Michael Koomey
- Centre for Molecular Biology and Neuroscience, University of Oslo, 0316 Oslo, Norway
- Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Hanne C. Winther-Larsen
- Centre for Molecular Biology and Neuroscience, University of Oslo, 0316 Oslo, Norway
- Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
26
|
Abstract
Escherichia coli is not considered naturally competent, yet it has homologues of the genes that most competent bacteria use for DNA uptake and processing. In Haemophilus influenzae and Vibrio cholerae, these genes are regulated by the Sxy and cyclic AMP receptor (CRP) proteins. We used microarrays to find out whether similar regulation occurs in E. coli. Expression of sxy strongly induced 63 transcriptional units, 34 of which required CRP for transcriptional activation and had promoter sites resembling the Sxy- and CRP-dependent CRP-S motif previously characterized in H. influenzae. As previously reported, sxy expression also induced the sigma-H regulon. Flagellar operons were downregulated by sxy expression, although motility remained unaffected. The CRP-S regulon included all of E. coli's known competence gene homologues, so we investigated Sxy's effect on competence-associated phenotypes. A sxy knockout reduced both "natural" plasmid transformation and competitive fitness in long-term culture. In addition, expression of plasmid-borne sxy led to production of type IV pilin, the main subunit of the DNA uptake machinery of most bacteria. Although H. influenzae Sxy only weakly activated the E. coli Sxy regulon, induction was dramatically improved when it was coexpressed with its cognate CRP, suggesting that intimate interactions between Sxy and CRP are required for transcriptional activation at CRP-S sites.
Collapse
|
27
|
Schwarzenlander C, Haase W, Averhoff B. The role of single subunits of the DNA transport machinery of Thermus thermophilus HB27 in DNA binding and transport. Environ Microbiol 2009; 11:801-8. [PMID: 19396940 DOI: 10.1111/j.1462-2920.2008.01801.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermus thermophilus HB27 is well known for its extraordinary trait of high frequencies of natural transformation, which is considered a major mechanism of horizontal gene transfer. We show that the DNA translocator of T. thermophilus binds and transports DNA from members of all three domains. These results, together with the data obtained from genome comparisons, suggest that the DNA translocator of T. thermophilus has a major impact in adaptation of Thermus to thermal stress conditions and interdomain DNA transfer in extreme hot environments. DNA transport in T. thermophilus is mediated by a macromolecular transport machinery that consists of at least 16 subunits and spans the cytoplasmic membrane and the entire cell periphery. Here, we have addressed the role of single subunits in DNA binding and transport. PilQ is involved in DNA binding, ComEA, PilF and PilA4 are involved in transport of DNA through the outer membrane and PilM, PilN, PilO, PilA1-3, PilC and ComEC are essential for the transport of DNA through the thick cell wall layers and/or through the inner membrane. These data are discussed in the light of the subcellular localization of the proteins. A topological model for DNA transport across the cell wall is presented.
Collapse
Affiliation(s)
- Cornelia Schwarzenlander
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | | | | |
Collapse
|
28
|
Averhoff B. Shuffling genes around in hot environments: the unique DNA transporter ofThermus thermophilus. FEMS Microbiol Rev 2009; 33:611-26. [DOI: 10.1111/j.1574-6976.2008.00160.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
29
|
Novel proteins that modulate type IV pilus retraction dynamics in Pseudomonas aeruginosa. J Bacteriol 2008; 190:7022-34. [PMID: 18776014 DOI: 10.1128/jb.00938-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa uses type IV pili to colonize various materials and for surface-associated twitching motility. We previously identified five phylogenetically distinct alleles of pilA in P. aeruginosa, four of which occur in genetic cassettes with specific accessory genes (J. V. Kus, E. Tullis, D. G. Cvitkovitch, and L. L. Burrows, Microbiology 150:1315-1326, 2004). Each of the five pilin alleles, with and without its associated pilin accessory gene, was used to complement a group II PAO1 pilA mutant. Expression of group I or IV pilA genes restored twitching motility to the same extent as the PAO1 group II pilin. In contrast, poor twitching resulted from complementation with group III or group V pilA genes but increased significantly when the cognate tfpY or tfpZ accessory genes were cointroduced. The enhanced motility was linked to an increase in recoverable surface pili and not to alterations in total pilin pools. Expression of the group III or V pilins in a PAO1 pilA-pilT double mutant yielded large amounts of surface pili, regardless of the presence of the accessory genes. Therefore, poor piliation in the absence of the TfpY and TfpZ accessory proteins results from a net increase in PilT-mediated retraction. Similar phenotypes were observed for tfpY single and tfpY-pilT double knockout mutants of group III strain PA14. A PilAV-TfpY chimera produced few surface pili, showing that the accessory proteins are specific for their cognate pilin. The genetic linkage between specific pilin and accessory genes may be evolutionarily conserved because the accessory proteins increase pilus expression on the cell surface, thereby enhancing function.
Collapse
|
30
|
Novel candidate virulence factors in rice pathogen Xanthomonas oryzae pv. oryzicola as revealed by mutational analysis. Appl Environ Microbiol 2007; 73:8023-7. [PMID: 17981946 DOI: 10.1128/aem.01414-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial leaf streak, caused by Xanthomonas oryzae pv. oryzicola, is an important disease of rice. Transposon-mediated mutational analysis of the pathogen with a quantitative assay revealed candidate virulence factors including genes involved in the pathogenesis of other phytopathogenic bacteria, virulence factors of animal pathogens, and genes not previously associated with virulence.
Collapse
|
31
|
Li Y, Hao G, Galvani CD, Meng Y, Fuente LDL, Hoch HC, Burr TJ. Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell-cell aggregation. MICROBIOLOGY-SGM 2007; 153:719-726. [PMID: 17322192 DOI: 10.1099/mic.0.2006/002311-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Xylella fastidiosa, an important phytopathogenic bacterium, causes serious plant diseases including Pierce's disease of grapevine. It is reported here that type I and type IV pili of X. fastidiosa play different roles in twitching motility, biofilm formation and cell-cell aggregation. Type I pili are particularly important for biofilm formation and aggregation, whereas type IV pili are essential for motility, and also function in biofilm formation. Thirty twitching-defective mutants were generated with an EZ : : TN transposome system, and several type-IV-pilus-associated genes were identified, including fimT, pilX, pilY1, pilO and pilR. Mutations in fimT, pilX, pilO or pilR resulted in a twitch-minus phenotype, whereas the pilY1 mutant was twitching reduced. A mutation in fimA resulted in a biofilm-defective and twitching-enhanced phenotype. A fimA/pilO double mutant was twitch minus, and produced almost no visible biofilm. Transmission electron microscopy revealed that the pili, when present, were localized to one pole of the cell. Both type I and type IV pili were present in the wild-type isolate and the pilY1 mutant, whereas only type I pili were present in the twitch-minus mutants. The fimA mutant produced no type I pili. The fimA/pilO double mutant produced neither type I nor type IV pili.
Collapse
Affiliation(s)
- Yaxin Li
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Guixia Hao
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Cheryl D Galvani
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Yizhi Meng
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Leonardo De La Fuente
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - H C Hoch
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Thomas J Burr
- Department of Plant Pathology, Cornell University - New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| |
Collapse
|
32
|
Balasingham SV, Collins RF, Assalkhou R, Homberset H, Frye SA, Derrick JP, Tønjum T. Interactions between the lipoprotein PilP and the secretin PilQ in Neisseria meningitidis. J Bacteriol 2007; 189:5716-27. [PMID: 17526700 PMCID: PMC1951802 DOI: 10.1128/jb.00060-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neisseria meningitidis can be the causative agent of meningitis or septicemia. This bacterium expresses type IV pili, which mediate a variety of functions, including autoagglutination, twitching motility, biofilm formation, adherence, and DNA uptake during transformation. The secretin PilQ supports type IV pilus extrusion and retraction, but it also requires auxiliary proteins for its assembly and localization in the outer membrane. Here we have studied the physical properties of the lipoprotein PilP and examined its interaction with PilQ. We found that PilP was an inner membrane protein required for pilus expression and transformation, since pilP mutants were nonpiliated and noncompetent. These mutant phenotypes were restored by the expression of PilP in trans. The pilP gene is located upstream of pilQ, and analysis of their transcripts indicated that pilP and pilQ were cotranscribed. Furthermore, analysis of the level of PilQ expression in pilP mutants revealed greatly reduced amounts of PilQ only in the deletion mutant, exhibiting a polar effect on pilQ transcription. In vitro experiments using recombinant fragments of PilP and PilQ showed that the N-terminal region of PilP interacted with the middle part of the PilQ polypeptide. A three-dimensional reconstruction of the PilQ-PilP interacting complex was obtained at low resolution by transmission electron microscopy, and PilP was shown to localize around the cap region of the PilQ oligomer. These findings suggest a role for PilP in pilus biogenesis. Although PilQ does not need PilP for its stabilization or membrane localization, the specific interaction between these two proteins suggests that they might have another coordinated activity in pilus extrusion/retraction or related functions.
Collapse
Affiliation(s)
- Seetha V Balasingham
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
33
|
Han X, Kennan RM, Parker D, Davies JK, Rood JI. Type IV fimbrial biogenesis is required for protease secretion and natural transformation in Dichelobacter nodosus. J Bacteriol 2007; 189:5022-33. [PMID: 17513472 PMCID: PMC1951885 DOI: 10.1128/jb.00138-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to develop an understanding of the molecular mechanisms by which type IV fimbrial biogenesis, natural transformation, and protease secretion are linked in the ovine foot rot pathogen, Dichelobacter nodosus. We have shown that like the D. nodosus fimbrial subunit FimA, the pilin-like protein PilE and the FimN, FimO, and FimP proteins, which are homologs of PilB, PilC, and PilD from Pseudomonas aeruginosa, are essential for fimbrial biogenesis and natural transformation, indicating that transformation requires an intact type IV fimbrial apparatus. The results also showed that extracellular protease secretion in the fimN, fimO, fimP, and pilE mutants was significantly reduced, which represents the first time that PilB, PilC, and PilE homologs have been shown to be required for the secretion of unrelated extracellular proteins in a type IV fimbriate bacterium. Quantitative real-time PCR analysis of the three extracellular protease genes aprV2, aprV5, and bprV showed that the effects on protease secretion were not mediated at the transcriptional level. Bioinformatic analysis did not identify a classical type II secretion system, and the putative fimbrial biogenesis gene pilQ was the only outer membrane secretin gene identified. Based on these results, it is postulated that in D. nodosus, protease secretion occurs by a type II secretion-related process that directly involves components of the type IV fimbrial biogenesis machinery, which represents the only type II secretion system encoded by the small genome of this highly evolved pathogen.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Dichelobacter nodosus/genetics
- Dichelobacter nodosus/metabolism
- Dichelobacter nodosus/ultrastructure
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Fimbriae Proteins/analysis
- Fimbriae Proteins/genetics
- Fimbriae Proteins/metabolism
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/metabolism
- Fimbriae, Bacterial/ultrastructure
- Gene Order
- Genes, Bacterial
- Immunoblotting
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Multigene Family
- Mutation
- Peptide Hydrolases/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Xiaoyan Han
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
34
|
Duggan PS, Gottardello P, Adams DG. Molecular analysis of genes in Nostoc punctiforme involved in pilus biogenesis and plant infection. J Bacteriol 2007; 189:4547-51. [PMID: 17416648 PMCID: PMC1913353 DOI: 10.1128/jb.01927-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hormogonia are the infective agents in many cyanobacterium-plant symbioses. Pilus-like appendages are expressed on the hormogonium surface, and mutations in pil-like genes altered surface piliation and reduced symbiotic competency. This is the first molecular evidence that pilus biogenesis in a filamentous cyanobacterium requires a type IV pilus system.
Collapse
Affiliation(s)
- Paula S Duggan
- Institute of Integrative and Comparative Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | | |
Collapse
|
35
|
Kanack KJ, Runyen-Janecky LJ, Ferrell EP, Suh SJ, West SEH. Characterization of DNA-binding specificity and analysis of binding sites of the Pseudomonas aeruginosa global regulator, Vfr, a homologue of the Escherichia coli cAMP receptor protein. MICROBIOLOGY (READING, ENGLAND) 2006; 152:3485-3496. [PMID: 17159200 DOI: 10.1099/mic.0.29008-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vfr, a global regulator of Pseudomonas aeruginosa virulence factors, is a homologue of the Escherichia coli cAMP receptor protein, CRP. Vfr is 91% similar to CRP and maintains many residues important for CRP to bind cAMP, bind DNA, and interact with RNA polymerase at target promoters. While vfr can complement an E. coli crp mutant in beta-galactosidase production, tryptophanase production and catabolite repression, crp can only complement a subset of Vfr-dependent phenotypes in P. aeruginosa. Using specific CRP binding site mutations, it is shown that Vfr requires the same nucleotides as CRP for optimal transcriptional activity from the E. coli lac promoter. In contrast, CRP did not bind Vfr target sequences in the promoters of the toxA and regA genes. Footprinting analysis revealed Vfr protected sequences upstream of toxA, regA, and the quorum sensing regulator lasR, that are similar to but significantly divergent from the CRP consensus binding sequence, and Vfr causes similar DNA bending to CRP in bound target sequences. Using a preliminary Vfr consensus binding sequence deduced from the Vfr-protected sites, Vfr target sequences were identified upstream of the virulence-associated genes plcN, plcHR, pbpG, prpL and algD, and in the vfr/orfX, argH/fimS, pilM/ponA intergenic regions. From these sequences the Vfr consensus binding sequence, 5'-ANWWTGNGAWNY : AGWTCACAT-3', was formulated. This study suggests that Vfr shares many of the same functions as CRP, but has specialized functions, at least in terms of DNA target sequence binding, required for regulation of a subset of genes in its regulon.
Collapse
Affiliation(s)
- Kristen J Kanack
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Laura J Runyen-Janecky
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Evan P Ferrell
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Sang-Jin Suh
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Susan E H West
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
36
|
Dalisay DS, Webb JS, Scheffel A, Svenson C, James S, Holmström C, Egan S, Kjelleberg S. A mannose-sensitive haemagglutinin (MSHA)-like pilus promotes attachment of Pseudoalteromonas tunicata cells to the surface of the green alga Ulva australis. Microbiology (Reading) 2006; 152:2875-2883. [PMID: 17005969 DOI: 10.1099/mic.0.29158-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study demonstrates that attachment of the marine bacterium Pseudoalteromonas tunicata to the cellulose-containing surface of the green alga Ulva australis is mediated by a mannose-sensitive haemagglutinin (MSHA-like) pilus. We have identified an MSHA pilus biogenesis gene locus in P. tunicata, termed mshI1I2JKLMNEGFBACDOPQ, which shows significant homology, with respect to its genetic characteristics and organization, to the MSHA pilus biogenesis gene locus of Vibrio cholerae. Electron microscopy studies revealed that P. tunicata wild-type cells express flexible pili peritrichously arranged on the cell surface. A P. tunicata mutant (SM5) with a transposon insertion in the mshJ region displayed a non-piliated phenotype. Using SM5, it has been demonstrated that the MSHA pilus promotes attachment of P. tunicata wild-type cells in polystyrene microtitre plates, as well as to microcrystalline cellulose and to the living surface of U. australis. P. tunicata also demonstrated increased pilus production in response to cellulose and its monomer constituent cellobiose. The MSHA pilus thus functions as a determinant of attachment in P. tunicata, and it is proposed that an understanding of surface sensing mechanisms displayed by P. tunicata will provide insight into specific ecological interactions that occur between this bacterium and higher marine organisms.
Collapse
MESH Headings
- Bacterial Adhesion/genetics
- Bacterial Proteins/genetics
- Cellulose/metabolism
- DNA Transposable Elements
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Fimbriae Proteins/genetics
- Fimbriae Proteins/metabolism
- Fimbriae Proteins/physiology
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/physiology
- Fimbriae, Bacterial/ultrastructure
- Gene Deletion
- Gene Expression Regulation, Bacterial
- Mannose/metabolism
- Mannose-Binding Lectin/genetics
- Mannose-Binding Lectin/metabolism
- Mannose-Binding Lectin/physiology
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Molecular Sequence Data
- Multigene Family
- Mutagenesis, Insertional
- Polystyrenes/metabolism
- Pseudoalteromonas/genetics
- Pseudoalteromonas/physiology
- Sequence Analysis, DNA
- Ulva/microbiology
Collapse
Affiliation(s)
- Doralyn S Dalisay
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jeremy S Webb
- Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - André Scheffel
- Max-Planck-Institute for Marine Microbiology, Celsiusstraße 1 28359, Bremen, Germany
| | - Charles Svenson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sally James
- Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Carola Holmström
- Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Suhelen Egan
- Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Staffan Kjelleberg
- Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
37
|
Varga JJ, Nguyen V, O'Brien DK, Rodgers K, Walker RA, Melville SB. Type IV pili-dependent gliding motility in the Gram-positive pathogen Clostridium perfringens and other Clostridia. Mol Microbiol 2006; 62:680-94. [PMID: 16999833 DOI: 10.1111/j.1365-2958.2006.05414.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteria can swim in liquid media by flagellar rotation and can move on surfaces via gliding or twitching motility. One type of gliding motility involves the extension, attachment and retraction of type IV pili (TFP), which pull the bacterium towards the site of attachment. TFP-dependent gliding motility has been seen in many Gram-negative bacteria but not in Gram-positive bacteria. Recently, the genome sequences of three strains of Clostridium perfringens have been completed and we identified gene products involved in producing TFP in each strain. Here we show that C. perfringens produces TFP and moves with an unusual form of gliding motility involving groups of densely packed cells moving away from the edge of a colony in curvilinear flares. Mutations introduced into the pilT and pilC genes of C. perfringens abolished motility and surface localization of TFP. Genes encoding TFP are also found in the genomes of all nine Clostridium species sequenced thus far and we demonstrated that Clostridium beijerinckii can move via gliding motility. It has recently been proposed that the Clostridia are the oldest Eubacterial class and the ubiquity of TFP in this class suggests that a Clostridia-like ancestor possessed TFP, which evolved into the forms seen in many Gram-negative species.
Collapse
Affiliation(s)
- John J Varga
- Department of Biological Sciences, 2119 Derring Hall, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | | | | | |
Collapse
|
38
|
Seshadri R, Joseph SW, Chopra AK, Sha J, Shaw J, Graf J, Haft D, Wu M, Ren Q, Rosovitz MJ, Madupu R, Tallon L, Kim M, Jin S, Vuong H, Stine OC, Ali A, Horneman AJ, Heidelberg JF. Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades. J Bacteriol 2006; 188:8272-82. [PMID: 16980456 PMCID: PMC1698176 DOI: 10.1128/jb.00621-06] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete genome of Aeromonas hydrophila ATCC 7966(T) was sequenced. Aeromonas, a ubiquitous waterborne bacterium, has been placed by the Environmental Protection Agency on the Contaminant Candidate List because of its potential to cause human disease. The 4.7-Mb genome of this emerging pathogen shows a physiologically adroit organism with broad metabolic capabilities and considerable virulence potential. A large array of virulence genes, including some identified in clinical isolates of Aeromonas spp. or Vibrio spp., may confer upon this organism the ability to infect a wide range of hosts. However, two recognized virulence markers, a type III secretion system and a lateral flagellum, that are reported in other A. hydrophila strains are not identified in the sequenced isolate, ATCC 7966(T). Given the ubiquity and free-living lifestyle of this organism, there is relatively little evidence of fluidity in terms of mobile elements in the genome of this particular strain. Notable aspects of the metabolic repertoire of A. hydrophila include dissimilatory sulfate reduction and resistance mechanisms (such as thiopurine reductase, arsenate reductase, and phosphonate degradation enzymes) against toxic compounds encountered in polluted waters. These enzymes may have bioremediative as well as industrial potential. Thus, the A. hydrophila genome sequence provides valuable insights into its ability to flourish in both aquatic and host environments.
Collapse
Affiliation(s)
- Rekha Seshadri
- The Institute for Genomic Research, Division of J. Craig Venter Institute, Rockville, MD 20850,USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rumszauer J, Schwarzenlander C, Averhoff B. Identification, subcellular localization and functional interactions of PilMNOWQ and PilA4 involved in transformation competency and pilus biogenesis in the thermophilic bacterium Thermus thermophilus HB27. FEBS J 2006; 273:3261-72. [PMID: 16857013 DOI: 10.1111/j.1742-4658.2006.05335.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The natural transformation system of the thermophilic bacterium Thermus thermophilus HB27 comprises at least 16 distinct competence proteins encoded by seven distinct loci. In this article, we present for the first time biochemical analyses of the Thermus thermophilus competence proteins PilMNOWQ and PilA4, and demonstrate that the pilMNOWQ genes are each essential for natural transformation. We identified three different forms of PilA4, one with an apparent molecular mass of 14 kDa, which correlates with that of the deduced protein, an 18-kDa form and a 23-kDa form; the last was found to be glycosylated. We demonstrate that PilM, PilN and PilO are located in the inner membrane, whereas PilW, PilQ and PilA4 are located in the inner and outer membranes. These data show that PilMNOWQ and PilA4 are components of a DNA translocator structure that spans the inner and outer membranes. We further show that PilA4 and PilQ both copurify with pilus structures. Possible functions of PilQ and PilA4 in DNA translocation and in pilus biogenesis are discussed. Comparative mutant studies revealed that mutations in either pilW or pilQ significantly affect the location of the other protein in the outer membrane. Furthermore, no PilA4 was present in the outer membranes of these mutants. From these findings, we conclude that the abilities of PilW, PilQ and PilA4 to stably localize or accumulate in the outer membrane fraction are strongly dependent on one another, which is in accord with an outer membrane DNA translocator complex comprising PilW, PilQ, and PilA4.
Collapse
Affiliation(s)
- Judit Rumszauer
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Germany
| | | | | |
Collapse
|
40
|
Abstract
The type IV pilus filament of Myxococcus xanthus penetrates the outer membrane through a gated channel--the PilQ secretin. Assembly of the channel and formation of PilQ multimeric complexes that resist disassembly in heated detergent is correlated with the release of a 50 kDa fragment of PilQ. Tgl lipoprotein is required for PilQ assembly in M. xanthus, because PilQ monomers but no heat and detergent-resistant complexes are present in a strain from which tgl has been deleted. PilQ protein is often found in single patches at both poles of the cell. Tgl, however, is found in a patch at only one pole that most likely identifies the piliated cell pole. Tgl protein that has been transferred from another cell by contact stimulation leads to secretin assembly in the recipient. Pilus proteins PilQ, PilG, PilM, PilN, PilO and PilP are also required for the donation of Tgl by contact stimulation to a stimulation recipient. We suggest that these proteins are parts of a polar superstructure that holds PilQ monomers in a cluster and ready for Tgl to bring about secretin assembly.
Collapse
Affiliation(s)
- Eric Nudleman
- Department of Developmental Biology, Stanford University School of Medicine, B300 Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | | | | |
Collapse
|
41
|
Palchevskiy V, Finkel SE. Escherichia coli competence gene homologs are essential for competitive fitness and the use of DNA as a nutrient. J Bacteriol 2006; 188:3902-10. [PMID: 16707682 PMCID: PMC1482900 DOI: 10.1128/jb.01974-05] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 03/01/2006] [Indexed: 11/20/2022] Open
Abstract
Natural genetic competence is the ability of cells to take up extracellular DNA and is an important mechanism for horizontal gene transfer. Another potential benefit of natural competence is that exogenous DNA can serve as a nutrient source for starving bacteria because the ability to "eat" DNA is necessary for competitive survival in environments containing limited nutrients. We show here that eight Escherichia coli genes, identified as homologs of com genes in Haemophilus influenzae and Neisseria gonorrhoeae, are necessary for the use of extracellular DNA as the sole source of carbon and energy. These genes also confer a competitive advantage to E. coli during long-term stationary-phase incubation. We also show that homologs of these genes are found throughout the proteobacteria, suggesting that the use of DNA as a nutrient may be a widespread phenomenon.
Collapse
Affiliation(s)
- Vyacheslav Palchevskiy
- Molecular and Computational Biology Program, Department of Biological Sciences, MCB 201B, University of Southern California, Los Angeles, CA 90089-2910, USA
| | | |
Collapse
|
42
|
Kresse AU, Blöcker H, Römling U. ISPa20 advances the individual evolution of Pseudomonas aeruginosa clone C subclone C13 strains isolated from cystic fibrosis patients by insertional mutagenesis and genomic rearrangements. Arch Microbiol 2006; 185:245-54. [PMID: 16474952 DOI: 10.1007/s00203-006-0089-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 01/03/2006] [Accepted: 01/16/2006] [Indexed: 01/07/2023]
Abstract
Pseudomonas aeruginosa clone C strains, which chronically colonize the lungs of cystic fibrosis patients reorganize their genome structure. In this study, a novel member of the IS3 subfamily of IS elements, ISPa20, was detected which was specific for clone C subclone C13 strains. ISPa20, which was present in high copy number, mediated events of genomic reorganization. ISPa20 was inserted into P. aeruginosa backbone genes leading to adaptation to the cystic fibrosis lung habitat and into DNA acquired through horizontal gene transfer. Further on, large chromosomal inversions were mediated by ISPa20. In contrast to strains of other subclonal linages high rates of genomic rearrangements of subclone C13 strains were observed in vitro. The acquisition of mobile elements by P. aeruginosa clone C strains in the lungs of cystic fibrosis patients supports the chronic colonization by insertional mutagenesis and chromosome restructuring leading to microevolution within clone C that reflects macroevolution observed on the species level.
Collapse
Affiliation(s)
- Andreas U Kresse
- Research Group Clonal Variability, Division of Cell- and Immune Biology, GBF - German Research Centre for Biotechnology, Mascheroder Weg 1, 38124, Braunschweig, Germany
| | | | | |
Collapse
|
43
|
Abstract
Twitching motility is a unique form of bacterial propulsion on solid surfaces associated with cycles of extension, tethering and retraction of type IV pili (T4P). Although investigations over the last two decades in a number of species have identified the majority of the genes involved in this process, we are still learning how these pili are assembled and the mechanics by which bacteria use T4P to drag themselves from one place to another. Among the puzzles that remain to be solved is the mechanism by which hydrolysis of ATP is coupled to pilus assembly and disassembly, and how the cell envelope structure is modified to accommodate the passage of the pilus through the periplasm. Unravelling of these and other enigmas in the T4P system will not only teach us more about these important colonization and virulence factors, but also help us to understand related processes such as type II secretion, which relies on a set of proteins homologous to those in the T4P system, and bacterial conjugation, involving retractable pili belonging to the F-like subgroup of the type IV secretion family. This review focuses on recent discoveries relating to the assembly and function of T4P in generation of twitching motility.
Collapse
Affiliation(s)
- Lori L Burrows
- Department of Surgery, University of Toronto and Programme in Infection, Immunity, Injury and Repair, Hospital for Sick Children Research Institute, Toronto, ON, Canada.
| |
Collapse
|
44
|
Chen Y, Shiue SJ, Huang CW, Chang JL, Chien YL, Hu NT, Chan NL. Structure and function of the XpsE N-terminal domain, an essential component of the Xanthomonas campestris type II secretion system. J Biol Chem 2005; 280:42356-63. [PMID: 16162504 DOI: 10.1074/jbc.m506843200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secretion of fully folded extracellular proteins across the outer membrane of Gram-negative bacteria is mainly assisted by the ATP-dependent type II secretion system (T2SS). Depending on species, 12-15 proteins are usually required for the function of T2SS by forming a trans-envelope multiprotein secretion complex. Here we report crystal structures of an essential component of the Xanthomonas campestris T2SS, the 21-kDa N-terminal domain of cytosolic secretion ATPase XpsE (XpsEN), in two conformational states. By mediating interaction between XpsE and the cytoplasmic membrane protein XpsL, XpsEN anchors XpsE to the membrane-associated secretion complex to allow the coupling between ATP utilization and exoprotein secretion. The structure of XpsEN observed in crystal form P4(3)2(1)2 is composed of a 90-residue alpha/beta sandwich core domain capped by a 62-residue N-terminal helical region. The core domain exhibits structural similarity with the NifU-like domain, suggesting that XpsE(N) may be involved in the regulation of XpsE ATPase activity. Surprisingly, although a similar core domain structure was observed in crystal form I4(1)22, the N-terminal 36 residues of the helical region undergo a large structural rearrangement. Deletion analysis indicates that these residues are required for exoprotein secretion by mediating the XpsE/XpsL interaction. Site-directed mutagenesis study further suggests the more compact conformation observed in the P4(3)2(1)2 crystal likely represents the XpsL binding-competent state. Based on these findings, we speculate that XpsE might function in T2SS by cycling between two conformational states. As a closely related protein to XpsE, secretion ATPase PilB may function similarly in the type IV pilus assembly.
Collapse
Affiliation(s)
- Yeh Chen
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung City 402, Taiwan
| | | | | | | | | | | | | |
Collapse
|
45
|
Tzeng YL, Ambrose KD, Zughaier S, Zhou X, Miller YK, Shafer WM, Stephens DS. Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 2005; 187:5387-96. [PMID: 16030233 PMCID: PMC1196002 DOI: 10.1128/jb.187.15.5387-5396.2005] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 05/04/2005] [Indexed: 11/20/2022] Open
Abstract
Cationic antimicrobial peptides (CAMPs) are important components of the innate host defense system against microbial infections and microbial products. However, the human pathogen Neisseria meningitidis is intrinsically highly resistant to CAMPs, such as polymyxin B (PxB) (MIC > or = 512 microg/ml). To ascertain the mechanisms by which meningococci resist PxB, mutants that displayed increased sensitivity (> or =4-fold) to PxB were identified from a library of mariner transposon mutants generated in a meningococcal strain, NMB. Surprisingly, more than half of the initial PxB-sensitive mutants had insertions within the mtrCDE operon, which encodes proteins forming a multidrug efflux pump. Additional PxB-sensitive mariner mutants were identified from a second round of transposon mutagenesis performed in an mtr efflux pump-deficient background. Further, a mutation in lptA, the phosphoethanolamine (PEA) transferase responsible for modification of the lipid A head groups, was identified to cause the highest sensitivity to PxB. Mutations within the mtrD or lptA genes also increased meningococcal susceptibility to two structurally unrelated CAMPs, human LL-37 and protegrin-1. Consistently, PxB neutralized inflammatory responses elicited by the lptA mutant lipooligosaccharide more efficiently than those induced by wild-type lipooligosaccharide. mariner mutants with increased resistance to PxB were also identified in NMB background and found to contain insertions within the pilMNOPQ operon involved in pilin biogenesis. Taken together, these data indicated that meningococci utilize multiple mechanisms including the action of the MtrC-MtrD-MtrE efflux pump and lipid A modification as well as the type IV pilin secretion system to modulate levels of CAMP resistance. The modification of meningococcal lipid A head groups with PEA also prevents neutralization of the biological effects of endotoxin by CAMP.
Collapse
Affiliation(s)
- Yih-Ling Tzeng
- Department of Veterans Affairs Medical Center, Research 151, Room 5A188, 1670 Clairmont Road, Decatur, GA 30033, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Bose N, Taylor RK. Identification of a TcpC-TcpQ outer membrane complex involved in the biogenesis of the toxin-coregulated pilus of Vibrio cholerae. J Bacteriol 2005; 187:2225-32. [PMID: 15774863 PMCID: PMC1065220 DOI: 10.1128/jb.187.7.2225-2232.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The toxin-coregulated pilus (TCP) of Vibrio cholerae and the soluble TcpF protein that is secreted via the TCP biogenesis apparatus are essential for intestinal colonization. The TCP biogenesis apparatus is composed of at least nine proteins but is largely uncharacterized. TcpC is an outer membrane lipoprotein required for TCP biogenesis that is a member of the secretin protein superfamily. In the present study, analysis of TcpC in a series of strains deficient in each of the TCP biogenesis proteins revealed that TcpC was absent specifically in a tcpQ mutant. TcpQ is a predicted periplasmic protein required for TCP biogenesis. Fractionation studies revealed that the protein is not localized to the periplasm but is associated predominantly with the outer membrane fraction. An analysis of the amount of TcpQ present in the series of tcp mutants demonstrated the inverse of the TcpC result (absence of TcpQ in a tcpC deletion strain). Complementation of the tcpQ deletion restored TcpC levels and TCP formation, and similarly, complementation of tcpC restored TcpQ. Metal affinity pull-down experiments performed using His-tagged TcpC or TcpQ demonstrated a direct interaction between TcpC and TcpQ. In the presence of TcpQ, TcpC was found to form a high-molecular-weight complex that is stable in 2% sodium dodecyl sulfate and at temperatures below 65 degrees C, a characteristic of secretin complexes. Fractionation studies in which TcpC was overexpressed in the absence of TcpQ showed that TcpQ is also required for proper localization of TcpC to the outer membrane.
Collapse
Affiliation(s)
- Niranjan Bose
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
47
|
Chiang P, Habash M, Burrows LL. Disparate subcellular localization patterns of Pseudomonas aeruginosa Type IV pilus ATPases involved in twitching motility. J Bacteriol 2005; 187:829-39. [PMID: 15659660 PMCID: PMC545728 DOI: 10.1128/jb.187.3.829-839.2005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa expresses polar type IV pili (TFP), which are responsible for adhesion to various materials and twitching motility on surfaces. Twitching occurs by alternate extension and retraction of TFP, which arise from assembly and disassembly of pilin subunits at the base of the pilus. The ATPase PilB promotes pilin assembly, while the ATPase PilT or PilU or both promote pilin dissociation. Fluorescent fusions to two of the three ATPases (PilT and PilU) were functional, as shown by complementation of the corresponding mutants. PilB and PilT fusions localized to both poles, while PilU fusions localized only to the piliated pole. To identify the portion of the ATPases required for localization, sequential C-terminal deletions of PilT and PilU were generated. The conserved His and Walker B boxes were dispensable for polar localization but were required for twitching motility, showing that localization and function could be uncoupled. Truncated fusions that retained polar localization maintained their distinctive distribution patterns. To dissect the cellular factors involved in establishing polarity, fusion protein localization was monitored with a panel of TFP mutants. The localization of yellow fluorescent protein (YFP)-PilT and YFP-PilU was independent of the subunit PilA, other TFP ATPases, and TFP-associated proteins previously shown to be associated with the membrane or exhibiting polar localization. In contrast, YFP-PilB exhibited diffuse cytoplasmic localization in a pilC mutant, suggesting that PilC is required for polar localization of PilB. Finally, localization studies performed with fluorescent ATPase chimeras of PilT and PilU demonstrated that information responsible for the characteristic localization patterns of the ATPases likely resides in their N termini.
Collapse
Affiliation(s)
- Poney Chiang
- Centre for Infection and Biomaterials Research, 7142A Elm Wing, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | |
Collapse
|
48
|
Luke NR, Howlett AJ, Shao J, Campagnari AA. Expression of type IV pili by Moraxella catarrhalis is essential for natural competence and is affected by iron limitation. Infect Immun 2004; 72:6262-70. [PMID: 15501752 PMCID: PMC523052 DOI: 10.1128/iai.72.11.6262-6270.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV pili, filamentous surface appendages primarily composed of a single protein subunit termed pilin, play a crucial role in the initiation of disease by a wide range of pathogenic bacteria. Although previous electron microscopic studies suggested that pili might be present on the surface of Moraxella catarrhalis isolates, detailed molecular and phenotypic analyses of these structures have not been reported to date. We identified and cloned the M. catarrhalis genes encoding PilA, the major pilin subunit, PilQ, the outer membrane secretin through which the pilus filament is extruded, and PilT, the NTPase that mediates pilin disassembly and retraction. To initiate investigation of the role of this surface organelle in pathogenesis, isogenic pilA, pilT, and pilQ mutants were constructed in M. catarrhalis strain 7169. Comparative analyses of the wild-type 7169 strain and three isogenic pil mutants demonstrated that M. catarrhalis expresses type IV pili that are essential for natural genetic transformation. Our studies suggest type IV pilus production by M. catarrhalis is constitutive and ubiquitous, although pilin expression was demonstrated to be iron responsive and Fur regulated. These data indicate that additional studies aimed at elucidating the prevalence and role of type IV pili in the pathogenesis and host response to M. catarrhalis infections are warranted.
Collapse
Affiliation(s)
- Nicole R Luke
- Department of Microbiology and Immunology, State University of New York at Buffalo, 14214, USA
| | | | | | | |
Collapse
|
49
|
Functional clues for hypothetical proteins based on genomic context analysis in prokaryotes. Nucleic Acids Res 2004; 32:6321-6. [PMID: 15576358 DOI: 10.1093/nar/gkh973] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Three integrated genomic context methods were used to annotate uncharacterized proteins in 102 bacterial genomes. Of 7853 orthologous groups with unknown function containing 45,110 proteins, 1738 groups could be linked to functionally associated partners. In many cases, those partners are uncharacterized themselves (hinting at newly identified modules) or have been described in general terms only. However, we were able to assign pathways, cellular processes or physical complexes for 273 groups (encompassing 3624 previously functionally uncharacterized proteins).
Collapse
|
50
|
Matsukawa M, Greenberg EP. Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol 2004; 186:4449-56. [PMID: 15231776 PMCID: PMC438629 DOI: 10.1128/jb.186.14.4449-4456.2004] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An analysis of the Pseudomonas aeruginosa genomic sequence revealed three gene clusters, PA1381-1393, PA2231-2240, and PA3552-3558, in addition to the alginate biosynthesis gene cluster, which appeared to encode functions for exopolysaccharide (EPS) biosynthesis. Recent evidence indicates that alginate is not a significant component of the extracellular matrix in biofilms of the sequenced P. aeruginosa strain PAO1. We hypothesized that at least one of the three potential EPS gene clusters revealed by genomic sequencing is an important component of P. aeruginosa PAO1 biofilms. Thus, we constructed mutants with chromosomal insertions in PA1383, PA2231, and PA3552. The mutant with a PA2231 defect formed thin unstructured abnormal biofilms. The PA3552 mutant formed structured biofilms that appeared different from those formed by the parent, and the PA1383 mutant formed structured biofilms that were indistinguishable from those formed by the parent. Consistent with a previous report, we found that polysaccharides were one component of the extracellular matrix, which also contained DNA. We suggest that the genes that were inactivated in our PA2231 mutant are required for the production of an EPS, which, although it may be a minor constituent of the matrix, is critical for the formation of P. aeruginosa PAO1 biofilms.
Collapse
Affiliation(s)
- Masanori Matsukawa
- Department of Microbiology, 540 F Eckstein Medical Research Building, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|