1
|
Mavroudis I, Petridis F, Ciobica A, Kamal FZ, Padurariu M, Kazis D. Advancements in diagnosing Post-concussion Syndrome: insights into epidemiology, pathophysiology, neuropathology, neuroimaging, and salivary biomarkers. Acta Neurol Belg 2025:10.1007/s13760-024-02695-7. [PMID: 39776059 DOI: 10.1007/s13760-024-02695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Post-Concussion Syndrome (PCS) represents a complex constellation of symptoms that persist following a concussion or mild traumatic brain injury (mTBI), with significant implications for patient care and outcomes. Despite its prevalence, diagnosing PCS presents considerable challenges due to the subjective nature of symptoms, the absence of specific diagnostic tests, and the overlap with other neurological and psychiatric conditions. This review explores the multifaceted diagnostic challenges associated with PCS, including the heterogeneity of symptom presentation, the limitations of current neuroimaging techniques, and the overlap of PCS symptoms with other disorders. We also discuss the potential of emerging biomarkers and advanced imaging modalities to enhance diagnostic accuracy and provide a more objective basis for PCS identification. Additionally, the review highlights the importance of a multidisciplinary approach in the diagnosis and management of PCS, integrating clinical evaluation with innovative diagnostic tools to improve patient outcomes. Through a comprehensive analysis of current practices and future directions, this review aims to shed light on the complexities of PCS diagnosis and pave the way for improved strategies in the identification and treatment of this condition.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
- Leeds University, Leeds, UK
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I nr. 20A, Iasi, 700505, Romania
- Centre of Biomedical Research, Romanian Academy, Bd. Carol I, no. 8, Iasi, 700506, Romania
- Academy of Romanian Scientists, Str. Splaiul Independentei no. 54, Sector 5, Bucharest, 050094, Romania
- Preclinical Department, Apollonia University, Păcurari Street 11, Iasi, 700511, Romania
| | - Fatima Zahra Kamal
- Laboratory of Physical Chemistry of Processes, Faculty of Sciences and Techniques, Hassan First University, B.P. 539, Settat, 26000, Morocco.
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech, Morocco.
| | - Manuela Padurariu
- Socola Institute of Psychiatry, Șoseaua Bucium 36, Iași, 700282, Romania
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
2
|
Jana AK, Güven Ö, Yaşar F. The stability and dynamics of the Aβ40/Aβ42 interlaced mixed fibrils. J Biomol Struct Dyn 2025; 43:277-290. [PMID: 37964619 DOI: 10.1080/07391102.2023.2280765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023]
Abstract
The accumulation of fibrillar amyloid-β (Aβ) aggregates in the brain, predominantly comprising 40- and 42-residue amyloid-β (Aβ40 and Aβ42), is a major pathological hallmark of Alzheimer's disease (AD). Aβ40 and Aβ42 naturally coexist in the brain under normal physiological conditions, and their interplay is generally considered to be a critical factor in the progression of AD. In addition to forming homogeneous oligomers and fibrils, Aβ40 and Aβ42 are also reported to co-assemble into hetero-oligomers and interlaced mixed fibrils, as evidenced by solid-state nuclear magnetic resonance spectroscopy (NMR), high molecular weight mass spectrometry and cross-seeding experiments. However, the exact molecular mechanisms underlying these processes remain unclear. In this study, we have used a recently resolved structurally uniform 1:1 mixture of Aβ40/Aβ42 interlaced mixed fibril as a prototype to gain insights into the molecular-level interactions between Aβ40 and Aβ42. We employed fully atomistic molecular dynamics simulation and compared the results with a homogeneous U-shaped Aβ40 fibrillar model. Our simulations using two different force fields provide conclusive evidence that the Aβ40/Aβ42 interlaced mixed fibril is energetically more favorable than the homogeneous Aβ40 fibrillar model. Furthermore, we also show that the increase in stability observed in the mixed model stems primarily from the packing interfaces and the stacking interfaces between C-termini. Our simulation results provide valuable mechanistic insights that are not readily accessible in experiment and could have significant implications for both the pathogenesis of AD and the development of current therapeutic strategies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Asis K Jana
- Department of Microbiology and Biotechnology, Sister Nivedita University, Kolkata, West Bengal, India
| | - Özgür Güven
- Department of Physics Engineering, Hacettepe University, Ankara, Türkiye
| | - Fatih Yaşar
- Department of Physics Engineering, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
3
|
Katsumata Y, Wu X, Aung KZ, Fardo DW, Woodworth DC, Sajjadi SA, Tomé SO, Thal DR, Troncoso JC, Chang K, Mock C, Nelson PT. Pure LATE-NC: Frequency, clinical impact, and the importance of considering APOE genotype when assessing this and other subtypes of non-Alzheimer's pathologies. Acta Neuropathol 2024; 148:66. [PMID: 39546031 PMCID: PMC11568059 DOI: 10.1007/s00401-024-02821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Pure limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (pure LATE-NC) is a term used to describe brains with LATE-NC but lacking intermediate or severe levels of Alzheimer's disease neuropathologic changes (ADNC). Focusing on pure LATE-NC, we analyzed data from the National Alzheimer's Coordinating Center (NACC) Neuropathology Data Set, comprising clinical and pathological information aggregated from 32 NIH-funded Alzheimer's Disease Research Centers (ADRCs). After excluding subjects dying with unusual conditions, n = 1,926 autopsied subjects were included in the analyses. For > 90% of these participants, apolipoprotein E (APOE) allele status was known; 46.5% had at least one APOE 4 allele. In most human populations, only 15-25% of people are APOE ε4 carriers. ADRCs with higher documented AD risk allele (APOE or BIN1) rates had fewer participants lacking ADNC, and correspondingly low rates of pure LATE-NC. Among APOE ε4 non-carries, 5.3% had pure LATE-NC, 37.0% had pure ADNC, and 3.6% had pure neocortical Lewy body pathology. In terms of clinical impact, participants with pure LATE-NC tended to die after having received a diagnosis of dementia: 56% died with dementia among APOE ε4 non-carrier participants, comparable to 61% with pure ADNC. LATE-NC was associated with increased Clinical Dementia Rating Sum of Boxes (CDR-SOB) scores, i.e. worsened global cognitive impairments, in participants with no/low ADNC and no neocortical Lewy body pathology (p = 0.0023). Among pure LATE-NC cases, there was a trend for higher LATE-NC stages to be associated with worse CDR-SOB scores (p = 0.026 for linear trend of LATE-NC stages). Pure LATE-NC was not associated with clinical features of disinhibition or primary progressive aphasia. In summary, LATE-NC with no or low levels of ADNC was less frequent than pure ADNC but was not rare, particularly among individuals who lacked the APOE 4 allele, and in study cohorts with APOE 4 frequencies similar to those in most human populations.
Collapse
Affiliation(s)
- Yuriko Katsumata
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536-0679, USA
- Sanders-Brown Center On Aging, University of Kentucky, U. Kentucky, Rm 575 Lee Todd Bldg 789 S. Limestone Ave, Lexington, KY, 40536, USA
| | - Xian Wu
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536-0679, USA
- Sanders-Brown Center On Aging, University of Kentucky, U. Kentucky, Rm 575 Lee Todd Bldg 789 S. Limestone Ave, Lexington, KY, 40536, USA
| | - Khine Zin Aung
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536-0679, USA
- Sanders-Brown Center On Aging, University of Kentucky, U. Kentucky, Rm 575 Lee Todd Bldg 789 S. Limestone Ave, Lexington, KY, 40536, USA
| | - David W Fardo
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536-0679, USA
- Sanders-Brown Center On Aging, University of Kentucky, U. Kentucky, Rm 575 Lee Todd Bldg 789 S. Limestone Ave, Lexington, KY, 40536, USA
| | - Davis C Woodworth
- Department of Neurology, University of California, Irvine, CA, 92,697, USA
| | - S Ahmad Sajjadi
- Department of Neurology, University of California, Irvine, CA, 92,697, USA
- Department of Pathology, University of California, Irvine, CA, 92,697, USA
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Juan C Troncoso
- Departments of Pathology and Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Koping Chang
- Departments of Pathology and Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles Mock
- National Alzheimer's Coordinating Center (NACC), University of Washington, Seattle, WA, USA
| | - Peter T Nelson
- Sanders-Brown Center On Aging, University of Kentucky, U. Kentucky, Rm 575 Lee Todd Bldg 789 S. Limestone Ave, Lexington, KY, 40536, USA.
- Department of Pathology, Division of Neuropathology, University of Kentucky, Rm 575 Lee Todd Bldg, U. Kentucky, 789 S. Limestone Ave., Lexington, KY, 40536-0230, USA.
| |
Collapse
|
4
|
Tomé SO, Gawor K, Thal DR. LATE-NC in Alzheimer's disease: Molecular aspects and synergies. Brain Pathol 2024; 34:e13213. [PMID: 37793659 PMCID: PMC11189776 DOI: 10.1111/bpa.13213] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Alzheimer's disease (AD) is classically characterized by senile plaques and neurofibrillary tangles (NFTs). However, multiple copathologies can be observed in the AD brain and contribute to the development of cognitive decline. Limbic-predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC) accumulates in the majority of AD cases and leads to more severe cognitive decline compared with AD pathology alone. In this review, we focus on the synergistic relationship between LATE-NC and tau in AD, highlighting the aggravating role of TDP-43 aggregates on tau pathogenesis and its impact on the clinical picture and therapeutic strategies. Additionally, we discuss to what extent the molecular patterns of LATE-NC in AD differ from frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) neuropathological changes. Thus, we highlight the importance of tau and TDP-43 synergies for subtyping AD patients, which may respond differently to therapeutic interventions depending on the presence of comorbid LATE-NC.
Collapse
Grants
- 10810 Alzheimer Forschung Initiative (Germany)
- 13803 Alzheimer Forschung Initiative (Germany)
- 22-AAIIA-963171 Alzheimer's Association (USA)
- A2022019F BrightFocus Foundation (USA)
- TH-624-4-1 Deutsche Forschungsgemeinschaft (DFG, Germany)
- 4-2 Deutsche Forschungsgemeinschaft (DFG, Germany)
- 6-1 Deutsche Forschungsgemeinschaft (DFG, Germany)
- G065721N Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- G0F8516N Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- 2020/017 Stichting Alzheimer Onderzoek (SAO/FRA, Belgium)
- C3/20/057 Onderzoeksraad, KU Leuven (Belgium)
- PDMT2/21/069 Onderzoeksraad, KU Leuven (Belgium)
- IWT 135043 Vlaamse Impulsfinanciering voor Netwerken voor Dementie-onderzoek (Belgium)
- Alzheimer Forschung Initiative (Germany)
- Alzheimer's Association (USA)
- BrightFocus Foundation (USA)
- Deutsche Forschungsgemeinschaft (DFG, Germany)
- Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- Onderzoeksraad, KU Leuven (Belgium)
Collapse
Affiliation(s)
- Sandra O. Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Department of PathologyUniversity Hospitals of LeuvenLeuvenBelgium
| |
Collapse
|
5
|
Cheng F, Chapman T, Zhang S, Morsch M, Chung R, Lee A, Rayner SL. Understanding age-related pathologic changes in TDP-43 functions and the consequence on RNA splicing and signalling in health and disease. Ageing Res Rev 2024; 96:102246. [PMID: 38401571 DOI: 10.1016/j.arr.2024.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
TAR DNA binding protein-43 (TDP-43) is a key component in RNA splicing which plays a crucial role in the aging process. In neurodegenerative diseases such as amyotrophic lateral sclerosis, frontotemporal dementia and limbic-predominant age-related TDP-43 encephalopathy, TDP-43 can be mutated, mislocalised out of the nucleus of neurons and glial cells and form cytoplasmic inclusions. These TDP-43 alterations can lead to its RNA splicing dysregulation and contribute to mis-splicing of various types of RNA, such as mRNA, microRNA, and circular RNA. These changes can result in the generation of an altered transcriptome and proteome within cells, ultimately changing the diversity and quantity of gene products. In this review, we summarise the findings of novel atypical RNAs resulting from TDP-43 dysfunction and their potential as biomarkers or targets for therapeutic development.
Collapse
Affiliation(s)
- Flora Cheng
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia.
| | - Tyler Chapman
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Selina Zhang
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Marco Morsch
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Roger Chung
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Stephanie L Rayner
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia.
| |
Collapse
|
6
|
Nicks R, Clement NF, Alvarez VE, Tripodis Y, Baucom ZH, Huber BR, Mez J, Alosco ML, Aytan N, Cherry JD, Cormier KA, Kubilius C, Mathias R, Svirsky SE, Pothast MJ, Hildebrandt AM, Chung J, Han X, Crary JF, McKee AC, Frosch MP, Stein TD. Repetitive head impacts and chronic traumatic encephalopathy are associated with TDP-43 inclusions and hippocampal sclerosis. Acta Neuropathol 2023; 145:395-408. [PMID: 36681782 PMCID: PMC11360224 DOI: 10.1007/s00401-023-02539-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Hippocampal sclerosis (HS) is associated with advanced age as well as transactive response DNA-binding protein with 43 kDa (TDP-43) deposits. Both hippocampal sclerosis and TDP-43 proteinopathy have also been described in chronic traumatic encephalopathy (CTE), a neurodegenerative disease linked to exposure to repetitive head impacts (RHI). However, the prevalence of HS in CTE, the pattern of TDP-43 pathology, and associations of HS and TDP-43 with RHI are unknown. A group of participants with a history of RHI and CTE at autopsy (n = 401) as well as a group with HS-aging without CTE (n = 33) was examined to determine the prevalence of HS and TDP-43 inclusions in CTE and to compare the clinical and pathological features of HS and TDP-43 inclusions in CTE to HS-aging. In CTE, HS was present in 23.4%, and TDP-43 inclusions were present in 43.3% of participants. HS in CTE occurred at a relatively young age (mean 77.0 years) and was associated with a greater number of years of RHI than CTE without HS adjusting for age (p = 0.029). In CTE, TDP-43 inclusions occurred frequently in the frontal cortex and occurred both with and without limbic TDP-43. Additionally, structural equation modeling demonstrated that RHI exposure years were associated with hippocampal TDP-43 inclusions (p < 0.001) through increased CTE stage (p < 0.001). Overall, RHI and the development of CTE pathology may contribute to TDP-43 deposition and hippocampal sclerosis.
Collapse
Affiliation(s)
- Raymond Nicks
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
| | - Nathan F Clement
- C.S. Kubik Laboratory for Neuropathology, Pathology Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Services, Brooke Army Medical Center, Fort Sam Houston, San Antonio, TX, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Zachery H Baucom
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Bertrand R Huber
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Nurgul Aytan
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Kerry A Cormier
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- VA Boston Healthcare System, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Carol Kubilius
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
| | - Rebecca Mathias
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
| | - Sarah E Svirsky
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
| | - Morgan J Pothast
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
| | | | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Xudong Han
- Boston University Bioinformatics Graduate Program, Boston, MA, USA
| | - John F Crary
- Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence and Human Health, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Matthew P Frosch
- C.S. Kubik Laboratory for Neuropathology, Pathology Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA.
- VA Boston Healthcare System, Boston, MA, USA.
- VA Bedford Healthcare System, Bedford, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
7
|
McKee AC, Stein TD, Huber BR, Crary JF, Bieniek K, Dickson D, Alvarez VE, Cherry JD, Farrell K, Butler M, Uretsky M, Abdolmohammadi B, Alosco ML, Tripodis Y, Mez J, Daneshvar DH. Chronic traumatic encephalopathy (CTE): criteria for neuropathological diagnosis and relationship to repetitive head impacts. Acta Neuropathol 2023; 145:371-394. [PMID: 36759368 PMCID: PMC10020327 DOI: 10.1007/s00401-023-02540-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/11/2023]
Abstract
Over the last 17 years, there has been a remarkable increase in scientific research concerning chronic traumatic encephalopathy (CTE). Since the publication of NINDS-NIBIB criteria for the neuropathological diagnosis of CTE in 2016, and diagnostic refinements in 2021, hundreds of contact sport athletes and others have been diagnosed at postmortem examination with CTE. CTE has been reported in amateur and professional athletes, including a bull rider, boxers, wrestlers, and American, Canadian, and Australian rules football, rugby union, rugby league, soccer, and ice hockey players. The pathology of CTE is unique, characterized by a pathognomonic lesion consisting of a perivascular accumulation of neuronal phosphorylated tau (p-tau) variably alongside astrocytic aggregates at the depths of the cortical sulci, and a distinctive molecular structural configuration of p-tau fibrils that is unlike the changes observed with aging, Alzheimer's disease, or any other tauopathy. Computational 3-D and finite element models predict the perivascular and sulcal location of p-tau pathology as these brain regions undergo the greatest mechanical deformation during head impact injury. Presently, CTE can be definitively diagnosed only by postmortem neuropathological examination; the corresponding clinical condition is known as traumatic encephalopathy syndrome (TES). Over 97% of CTE cases published have been reported in individuals with known exposure to repetitive head impacts (RHI), including concussions and nonconcussive impacts, most often experienced through participation in contact sports. While some suggest there is uncertainty whether a causal relationship exists between RHI and CTE, the preponderance of the evidence suggests a high likelihood of a causal relationship, a conclusion that is strengthened by the absence of any evidence for plausible alternative hypotheses. There is a robust dose-response relationship between CTE and years of American football play, a relationship that remains consistent even when rigorously accounting for selection bias. Furthermore, a recent study suggests that selection bias underestimates the observed risk. Here, we present the advances in the neuropathological diagnosis of CTE culminating with the development of the NINDS-NIBIB criteria, the multiple international studies that have used these criteria to report CTE in hundreds of contact sports players and others, and the evidence for a robust dose-response relationship between RHI and CTE.
Collapse
Affiliation(s)
- Ann C McKee
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA.
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
- VA Bedford Healthcare System, Bedford, MA, USA.
| | - Thor D Stein
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Bertrand R Huber
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - John F Crary
- Departments of Pathology, Neuroscience, and Artificial Intelligence and Human Health, Neuropathology Brain Bank and Research Core, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin Bieniek
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Dennis Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Victor E Alvarez
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Jonathan D Cherry
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Kurt Farrell
- Departments of Pathology, Neuroscience, and Artificial Intelligence and Human Health, Neuropathology Brain Bank and Research Core, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Morgane Butler
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
| | - Madeline Uretsky
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
| | - Bobak Abdolmohammadi
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Daniel H Daneshvar
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Sekar D, Tusubira D, Ross K. TDP-43 and NEAT long non-coding RNA: Roles in neurodegenerative disease. Front Cell Neurosci 2022; 16:954912. [PMID: 36385948 PMCID: PMC9650703 DOI: 10.3389/fncel.2022.954912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/11/2022] [Indexed: 01/03/2023] Open
Abstract
Understanding and ameliorating neurodegenerative diseases represents a key challenge for supporting the health span of the aging population. Diverse protein aggregates have been implicated in such neurodegenerative disorders, including amyloid-β, α-synuclein, tau, fused in sarcoma (FUS), and transactivation response element (TAR) DNA-binding protein 43 (TDP-43). Recent years have seen significant growth in our mechanistic knowledge of relationships between these proteins and some of the membrane-less nuclear structures that fulfill key roles in the cell function. These include the nucleolus, nuclear speckles, and paraspeckles. The ability of macromolecular protein:RNA complexes to partition these nuclear condensates through biophysical processes that involve liquid-liquid phase separation (LLPS) has also gained attention recently. The paraspeckle, which is scaffolded by the architectural long-non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) plays central roles in RNA processing and metabolism and has been linked dynamically to TDP-43. In this mini-review, we outline essential early and recent insights in relation to TDP-43 proteinopathies. We then appraise the relationships between TDP-43 and NEAT1 in the context of neuronal paraspeckles and neuronal stress. We highlight key areas for investigation based on recent advances in our understanding of how TDP-43 affects neuronal function, especially in relation to messenger ribosomal nucleic acid (mRNA) splicing. Finally, we offer perspectives that should be considered for translational pipelines in order to improve health outcomes for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Deusdedit Tusubira
- Department of Biochemistry, Mbarara University of Science and Technology, Mbarara, Uganda,*Correspondence: Deusdedit Tusubira, ; orcid.org/0000-0002-4698-424X
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom,Institute for Health Research, Liverpool John Moores University, Liverpool, United Kingdom,Kehinde Ross, ; orcid.org/0000-0003-0252-1152
| |
Collapse
|
9
|
Chiang WC, Fang YS, Lye YS, Weng TY, Ganesan K, Huang SH, Chang LY, Chou SC, Chen YR. Hyperphosphorylation-Mimetic TDP-43 Drives Amyloid Formation and Possesses Neuronal Toxicity at the Oligomeric Stage. ACS Chem Neurosci 2022; 13:2599-2612. [PMID: 36007056 DOI: 10.1021/acschemneuro.1c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
TDP-43 proteinopathies cover a range of neurodegenerative diseases, including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Hyperphosphorylated TDP-43 was found within the inclusion bodies in disease lesions; however, the role of hyperphosphorylation and the toxic species are still ambiguous. To characterize the hyperphosphorylation effect of TDP-43, here, we employed five serine mutations implicated in the diseases at serine locations 379, 403, 404, 409, and 410 in the C-terminus to aspartate (S5D) and to alanine (S5A). We systematically characterized the conformation, liquid-liquid phase separation, oligomerization, and fibrillization of TDP-43 variants. Results revealed that the recombinant TDP-43 variants readily formed structurally similar spherical oligomers, as evidenced by circular dichroism spectroscopy, fluorescence spectroscopy, the TDP-43 oligomer-specific antibody assay, dynamic light scattering, and transmission electron microscopy. After incubation, only the phosphor-mimic S5D TDP-43 formed thioflavin-positive amyloid fibrils, whereas wild-type and S5A TDP-43 formed amorphous aggregates. We also examined membrane disruption, the cytotoxicity of human neuroblastoma, and the synaptic loss of primary neurons induced by oligomers and large aggregates of TDP-43. The results showed that all oligomeric TDP-43 variants were toxic regardless of hyperphosphorylation, but the fibrils and amorphous aggregates were not. Overall, our results demonstrated the hyperphosphorylation effect on fibril formation and the toxicity attributed from TDP-43 oligomers. This study facilitates the understanding and therapeutic development for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Wan-Chin Chiang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Yu-Sheng Fang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Kuang-Fu Rd., Sec. 2., Hsinchu 30013, Taiwan
| | - Yuh Shen Lye
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Yu Weng
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Kiruthika Ganesan
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Shih-Han Huang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Lan-Yun Chang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Shih-Chieh Chou
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Kuang-Fu Rd., Sec. 2., Hsinchu 30013, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
10
|
Murray HC, Osterman C, Bell P, Vinnell L, Curtis MA. Neuropathology in chronic traumatic encephalopathy: a systematic review of comparative post-mortem histology literature. Acta Neuropathol Commun 2022; 10:108. [PMID: 35933388 PMCID: PMC9356428 DOI: 10.1186/s40478-022-01413-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/23/2022] [Indexed: 11/10/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive head trauma and is characterised by the perivascular accumulation of hyperphosphorylated tau (p-tau) in the depths of cortical sulci. CTE can only be diagnosed postmortem and the cellular mechanisms of disease causation remain to be elucidated. Understanding the full scope of the pathological changes currently identified in CTE is necessary to identify areas requiring further research. This systematic review summarises the current literature on CTE pathology from postmortem human tissue histology studies published until 31 December 2021. Publications were included if they quantitively or qualitatively compared postmortem human tissue pathology in CTE to neuropathologically normal cases or other neurodegenerative diseases such as Alzheimer's disease (AD). Pathological entities investigated included p-tau, beta-amyloid, TDP-43, Lewy bodies, astrogliosis, microgliosis, axonopathy, vascular dysfunction, and cell stress. Of these pathologies, p-tau was the most frequently investigated, with limited reports on other pathological features such as vascular dysfunction, astrogliosis, and microgliosis. Consistent increases in p-tau, TDP-43, microgliosis, axonopathy, and cell stress were reported in CTE cases compared to neuropathologically normal cases. However, there was no clear consensus on how these pathologies compared to AD. The CTE cases used for these studies were predominantly from the VA-BU-CLF brain bank, with American football and boxing as the most frequent sources of repetitive head injury exposure. Overall, this systematic review highlights gaps in the literature and proposes three priorities for future research including: 1. The need for studies of CTE cases with more diverse head injury exposure profiles to understand the consistency of pathology changes between different populations. 2. The need for more studies that compare CTE with normal ageing and AD to further clarify the pathological signature of CTE for diagnostic purposes and to understand the disease process. 3. Further research on non-aggregate pathologies in CTE, such as vascular dysfunction and neuroinflammation. These are some of the least investigated features of CTE pathology despite being implicated in the acute phase response following traumatic head injury.
Collapse
Affiliation(s)
- Helen C. Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Chelsie Osterman
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Paige Bell
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Luca Vinnell
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Maurice A. Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| |
Collapse
|
11
|
Koyano S, Yagishita S, Tada M, Doi H, Uchihara T, Tanaka F. Parallel Appearance of Polyglutamine and Transactivation-Responsive DNA-Binding Protein 43 and Their Complementary Subcellular Localization in Brains of Patients With Spinocerebellar Ataxia Type 2. J Neuropathol Exp Neurol 2022; 81:535-544. [PMID: 35511239 DOI: 10.1093/jnen/nlac032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is caused by mutations in the ATXN2 gene in which toxic effects are triggered by expanded polyglutamine repeats within ataxin-2. SCA2 is accompanied by motor neuron degeneration as occurs in amyotrophic lateral sclerosis (ALS). We investigated the distribution patterns of ataxin-2 and transactivation-responsive DNA-binding protein 43 (TDP-43), a major disease-related protein in ALS, in the CNS of 3 SCA2 patients. Phosphorylated TDP-43 (pTDP-43)-positive lesions were widely distributed throughout the CNS and generally overlapped with 1C2 (expanded polyglutamine)-immunoreactive lesions. This distribution pattern is different from the pattern in limbic-predominant age-related TDP-43 encephalopathy. In SCA2, double immunostaining of TDP-43 and 1C2 in motor neurons revealed 3 staining patterns: cytoplasmic 1C2 and nuclear TDP-43, nucleocytoplasmic 1C2 and nuclear TDP-43, and nuclear 1C2 and cytoplasmic TDP-43, which reflect the early, active, and final stages of pathological change, respectively. The translocation of TDP-43 from the nucleus to the cytoplasm along with the translocation of 1C2 in the opposite direction indicates that nuclear accumulation of the disease-specific protein ataxin-2 affects the intracellular dynamics of TDP-43. Such a close interrelationship between mutant ataxin-2 and TDP-43 in the cell might account for the similarity of their distribution in the CNS of patients with SCA2.
Collapse
Affiliation(s)
- Shigeru Koyano
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Neurology, Yokohama Minami Kyosai Hospital, Yokohama, Kanagawa, Japan
| | - Saburo Yagishita
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Toshiki Uchihara
- Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Neurology Clinic with Neuromorphomics Laboratory, Nitobe-Memorial Nakano General Hospital, Tokyo, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
12
|
Mukherjee A, Al-Lahham R, Corkins ME, Samanta S, Schmeichel AM, Singer W, Low PA, Govindaraju T, Soto C. Identification of Multicolor Fluorescent Probes for Heterogeneous Aβ Deposits in Alzheimer's Disease. Front Aging Neurosci 2022; 13:802614. [PMID: 35185519 PMCID: PMC8852231 DOI: 10.3389/fnagi.2021.802614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022] Open
Abstract
Accumulation of amyloid-beta (Aβ) into amyloid plaques and hyperphosphorylated tau into neurofibrillary tangles (NFTs) are pathological hallmarks of Alzheimer's disease (AD). There is a significant intra- and inter-individual variability in the morphology and conformation of Aβ aggregates, which may account in part for the extensive clinical and pathophysiological heterogeneity observed in AD. In this study, we sought to identify an array of fluorescent dyes to specifically probe Aβ aggregates, in an effort to address their diversity. We screened a small library of fluorescent probes and identified three benzothiazole-coumarin derivatives that stained both vascular and parenchymal Aβ deposits in AD brain sections. The set of these three dyes allowed the visualization of Aβ deposits in three different colors (blue, green and far-red). Importantly, two of these dyes specifically stained Aβ deposits with no apparent staining of hyperphosphorylated tau or α-synuclein deposits. Furthermore, this set of dyes demonstrated differential interactions with distinct types of Aβ deposits present in the same subject. Aβ aggregate-specific dyes identified in this study have the potential to be further developed into Aβ imaging probes for the diagnosis of AD. In addition, the far-red dye we identified in this study may serve as an imaging probe for small animal imaging of Aβ pathology. Finally, these dyes in combination may help us advance our understanding of the relation between the various Aβ deposits and the clinical diversity observed in AD.
Collapse
Affiliation(s)
- Abhisek Mukherjee
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Rabab Al-Lahham
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mark E. Corkins
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sourav Samanta
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | | | - Wolfgang Singer
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Phillip A. Low
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Claudio Soto
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
13
|
Wegiel J, Flory M, Kuchna I, Nowicki K, Wegiel J, Ma SY, Zhong N, Bobrowicz TW, de Leon M, Lai F, Silverman WP, Wisniewski T. Developmental deficits and staging of dynamics of age associated Alzheimer's disease neurodegeneration and neuronal loss in subjects with Down syndrome. Acta Neuropathol Commun 2022; 10:2. [PMID: 34983655 PMCID: PMC8728914 DOI: 10.1186/s40478-021-01300-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
The increased life expectancy of individuals with Down syndrome (DS) is associated with increased prevalence of trisomy 21-linked early-onset Alzheimer's disease (EOAD) and dementia. The aims of this study of 14 brain regions including the entorhinal cortex, hippocampus, basal ganglia, and cerebellum in 33 adults with DS 26-72 years of age were to identify the magnitude of brain region-specific developmental neuronal deficits contributing to intellectual deficits, to apply this baseline to identification of the topography and magnitude of neurodegeneration and neuronal and volume losses caused by EOAD, and to establish age-based staging of the pattern of genetically driven neuropathology in DS. Both DS subject age and stage of dementia, themselves very strongly correlated, were strong predictors of an AD-associated decrease of the number of neurons, considered a major contributor to dementia. The DS cohort was subclassified by age as pre-AD stage, with 26-41-year-old subjects with a full spectrum of developmental deficit but with very limited incipient AD pathology, and 43-49, 51-59, and 61-72-year-old groups with predominant prevalence of mild, moderately severe, and severe dementia respectively. This multiregional study revealed a 28.1% developmental neuronal deficit in DS subjects 26-41 years of age and 11.9% AD-associated neuronal loss in DS subjects 43-49 years of age; a 28.0% maximum neuronal loss at 51-59 years of age; and a 11.0% minimum neuronal loss at 61-72 years of age. A total developmental neuronal deficit of 40.8 million neurons and AD-associated neuronal loss of 41.6 million neurons reflect a comparable magnitude of developmental neuronal deficit contributing to intellectual deficits, and AD-associated neuronal loss contributing to dementia. This highly predictable pattern of pathology indicates that successful treatment of DS subjects in the fourth decade of life may prevent AD pathology and functional decline.
Collapse
Affiliation(s)
- Jerzy Wegiel
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Michael Flory
- New York State Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY USA
| | - Izabela Kuchna
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Krzysztof Nowicki
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Jarek Wegiel
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Shuang Yong Ma
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Nanbert Zhong
- New York State Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY USA
| | | | - Mony de Leon
- Department of Radiology, Weill Cornell Medicine, New York, NY USA
| | - Florence Lai
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Wayne P. Silverman
- Department of Pediatrics, Irvine Medical Center, University of California, Irvine, CA USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and Psychiatry, NYU Grossman School of Medicine, New York, NY 10016 USA
| |
Collapse
|
14
|
Hiskens MI, Vella RK, Schneiders AG, Fenning AS. Minocycline improves cognition and molecular measures of inflammation and neurodegeneration following repetitive mTBI. Brain Inj 2021; 35:831-841. [PMID: 33818227 DOI: 10.1080/02699052.2021.1909139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To compare the neuroprotective effects of minocycline treatment in a murine model of mTBI on measures of spatial learning and memory, neuroinflammation, excitotoxicity, and neurodegeneration. DESIGN Adult male C57BL/6 J mice were randomly assigned into vehicle control, vehicle with repetitive mTBI, minocycline without mTBI, or minocycline with repetitive mTBI groups. METHODS A validated mouse model of repetitive impact-induced rotational acceleration was used to deliver 15 mTBIs across 23 days. Cognition was assessed via Morris water maze (MWM) testing, and mRNA analysis investigated MAPT, GFAP, AIF1, GRIA1, TARDBP, TNF, and NEFL genes. Assessment was undertaken 48 h and 3 months following final mTBI. RESULTS In the chronic phase of recovery, MWM testing revealed impairment in the vehicle mTBI group compared to unimpacted controls (p < .01) that was not present in the minocycline mTBI group, indicating chronic neuroprotection. mRNA analysis revealed AIF1 elevation in the acute cortex (p < .01) and chronic hippocampus (p < .01) of the vehicle mTBI group, with minocycline treatment leading to improved markers of microglial activation and inflammation in the chronic stage of recovery. CONCLUSIONS These data suggest that minocycline treatment alleviated some mTBI pathophysiology and clinical features at chronic time-points.
Collapse
Affiliation(s)
- Matthew I Hiskens
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton 4701, Australia
| | - Rebecca K Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton 4701, Australia
| | - Anthony G Schneiders
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton 4701, Australia
| | - Andrew S Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton 4701, Australia
| |
Collapse
|
15
|
Hiskens MI, Schneiders AG, Vella RK, Fenning AS. Repetitive mild traumatic brain injury affects inflammation and excitotoxic mRNA expression at acute and chronic time-points. PLoS One 2021; 16:e0251315. [PMID: 33961674 PMCID: PMC8104440 DOI: 10.1371/journal.pone.0251315] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/24/2021] [Indexed: 12/30/2022] Open
Abstract
The cumulative effect of mild traumatic brain injuries (mTBI) can result in chronic neurological damage, however the molecular mechanisms underpinning this detriment require further investigation. A closed head weight drop model that replicates the biomechanics and head acceleration forces of human mTBI was used to provide an exploration of the acute and chronic outcomes following single and repeated impacts. Adult male C57BL/6J mice were randomly assigned into one of four impact groups (control; one, five and 15 impacts) which were delivered over 23 days. Outcomes were assessed 48 hours and 3 months following the final mTBI. Hippocampal spatial learning and memory assessment revealed impaired performance in the 15-impact group compared with control in the acute phase that persisted at chronic measurement. mRNA analyses were performed on brain tissue samples of the cortex and hippocampus using quantitative RT-PCR. Eight genes were assessed, namely MAPT, GFAP, AIF1, GRIA1, CCL11, TARDBP, TNF, and NEFL, with expression changes observed based on location and follow-up duration. The cortex and hippocampus showed vulnerability to insult, displaying upregulation of key excitotoxicity and inflammation genes. Serum samples showed no difference between groups for proteins phosphorylated tau and GFAP. These data suggest that the cumulative effect of the impacts was sufficient to induce mTBI pathophysiology and clinical features. The genes investigated in this study provide opportunity for further investigation of mTBI-related neuropathology and may provide targets in the development of therapies that help mitigate the effects of mTBI.
Collapse
Affiliation(s)
- Matthew I. Hiskens
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
- Mackay Institute of Research and Innovation, Mackay Hospital and Health Service, Mackay, Queensland, Australia
| | - Anthony G. Schneiders
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Rebecca K. Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Andrew S. Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| |
Collapse
|
16
|
Celecoxib in a Preclinical Model of Repetitive Mild Traumatic Brain Injury: Hippocampal Learning Deficits Persist with Inflammatory and Excitotoxic Neuroprotection. TRAUMA CARE 2021. [DOI: 10.3390/traumacare1010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Repetitive mild traumatic brain injuries (mTBIs) contribute to inflammation-induced neurodegeneration. Cycloxygenase (COX) enzymes produce inflammatory cytokines that influence the microglia response to neurotrauma. Celecoxib is a selective COX-2 inhibitor that is prescribed in some conditions of mTBI to alleviate symptoms of concussion, and has shown benefits in neurodegenerative conditions. We investigated molecular pathways of neuroinflammation in response to celecoxib treatment in a mouse model of repetetive mTBI. Fifteen mTBIs were delivered over 23 days in adult male C57BL/6J mice in one of four groups (control, celecoxib without impact, celecoxib with impact, and vehicle with impact). Cognitive function was assessed at 48 h and three months following the final mTBI. Morris Water Maze testing revealed impaired hippocampal spatial learning performance in the celecoxib treatment with the impact group compared to the vehicle with impact control in the acute phase, with celecoxib treatment providing no improvement compared with the control at chronic testing; mRNA analysis of the cerebral cortex and hippocampus revealed expression change, indicating significant improvement in microglial activation, inflammation, excitotoxicity, and neurodegeneration at chronic measurement. These data suggest that, in the acute phase following injury, celecoxib protected against neuroinflammation, but exacerbated clinical cognitive disturbance. Moreover, while there was evidence of neuroprotective alleviation of mTBI pathophysiology at chronic measurement, there remained no change in clinical features.
Collapse
|
17
|
Postupna N, Rose SE, Gibbons LE, Coleman NM, Hellstern LL, Ritchie K, Wilson AM, Cudaback E, Li X, Melief EJ, Beller AE, Miller JA, Nolan AL, Marshall DA, Walker R, Montine TJ, Larson EB, Crane PK, Ellenbogen RG, Lein ES, Dams-O'Connor K, Keene CD. The Delayed Neuropathological Consequences of Traumatic Brain Injury in a Community-Based Sample. Front Neurol 2021; 12:624696. [PMID: 33796061 PMCID: PMC8008107 DOI: 10.3389/fneur.2021.624696] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
The late neuropathological effects of traumatic brain injury have yet to be fully elucidated, particularly with respect to community-based cohorts. To contribute to this critical gap in knowledge, we designed a multimodal neuropathological study, integrating traditional and quantitative approaches to detect pathologic changes in 532 consecutive brain autopsies from participants in the Adult Changes in Thought (ACT) study. Diagnostic evaluation including assessment for chronic traumatic encephalopathy (CTE) and quantitative immunoassay-based methods were deployed to examine levels of pathological (hyperphosphorylated) tau (pTau) and amyloid (A) β in brains from ACT participants with (n = 107) and without (n = 425) history of remote TBI with loss of consciousness (w/LOC). Further neuropathological assessments included immunohistochemistry for α-synuclein and phospho-TDP-43 pathology and astro- (GFAP) and micro- (Iba1) gliosis, mass spectrometry analysis of free radical injury, and gene expression evaluation (RNA sequencing) in a smaller sub-cohort of matched samples (49 cases with TBI and 49 non-exposed matched controls). Out of 532 cases, only 3 (0.6%-none with TBI w/LOC history) showed evidence of the neuropathologic signature of chronic traumatic encephalopathy (CTE). Across the entire cohort, the levels of pTau and Aβ showed expected differences for brain region (higher levels in temporal cortex), neuropathological diagnosis (higher in participants with Alzheimer's disease), and APOE genotype (higher in participants with one or more APOE ε4 allele). However, no differences in PHF-tau or Aβ1-42 were identified by Histelide with respect to the history of TBI w/LOC. In a subset of TBI cases with more carefully matched control samples and more extensive analysis, those with TBI w/LOC history had higher levels of hippocampal pTau but no significant differences in Aβ, α-synuclein, pTDP-43, GFAP, Iba1, or free radical injury. RNA-sequencing also did not reveal significant gene expression associated with any measure of TBI exposure. Combined, these findings suggest long term neuropathological changes associated with TBI w/LOC may be subtle, involve non-traditional pathways of neurotoxicity and neurodegeneration, and/or differ from those in autopsy cohorts specifically selected for neurotrauma exposure.
Collapse
Affiliation(s)
- Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Shannon E. Rose
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Laura E. Gibbons
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Natalie M. Coleman
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Leanne L. Hellstern
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Kayla Ritchie
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Angela M. Wilson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Eiron Cudaback
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Xianwu Li
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Erica J. Melief
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Allison E. Beller
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | | | - Amber L. Nolan
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Desiree A. Marshall
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Rod Walker
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States
| | - Thomas J. Montine
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Eric B. Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States
| | - Paul K. Crane
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Richard G. Ellenbogen
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | - Edward S. Lein
- Allen Institute for Brain Science, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | - Kristen Dams-O'Connor
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
18
|
Costanza A, Radomska M, Zenga F, Amerio A, Aguglia A, Serafini G, Amore M, Berardelli I, Ojio Y, Nguyen KD. Severe Suicidality in Athletes with Chronic Traumatic Encephalopathy: A Case Series and Overview on Putative Ethiopathogenetic Mechanisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18030876. [PMID: 33498520 PMCID: PMC7908343 DOI: 10.3390/ijerph18030876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) results from repetitive brain injuries and is a common neurotraumatic sequela in contact sports. CTE is often accompanied by neuropsychiatric symptoms, which could escalate to suicidal ideation (SI) and suicidal behaviour (SB). Nevertheless, fairly limited emphasis about the association between suicidality and CTE exists in medical literature. Here, we report two cases of retired professional athletes in high contact sports (boxing and ice hockey) who have developed similar clinical trajectories characterized by progressive neuropsychiatric symptoms compatible with a CTE diagnosis and subsequent SB in its severe forms (medical serious suicide attempt (SA) and completed suicide). In addition to the description of outlining clinical, neuropsychological, neuroimaging, and differential diagnosis elements related to these cases, we also hypothesized some mechanisms that might augment the suicide risk in CTE. They include those related to neurobiological (neuroanatomic/neuroinflammatory) dysfunctions as well as those pertaining to psychiatry and psychosocial maladaptation to neurotraumas and retirement from professional competitive activity. Findings described here can provide clinical pictures to improve the identification of patients with CTE and also potential mechanistic insights to refine the knowledge of eventual severe SB development, which might enable its earlier prevention.
Collapse
Affiliation(s)
- Alessandra Costanza
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), 1211 Geneva, Switzerland
- Department of Psychiatry, ASO Santi Antonio e Biagio e Cesare Arrigo Hospital, 15121 Alessandria, Italy
- Correspondence:
| | - Michalina Radomska
- Faculty of Psychology, University of Geneva (UNIGE), 1206 Geneva, Switzerland;
| | - Francesco Zenga
- Department of Neurosurgery, City of Health and Science Hospital, 10126 Torino, Italy;
| | - Andrea Amerio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Psychiatry, Tufts University, Boston, MA 02111, USA
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Isabella Berardelli
- Suicide Prevention Center, Department of Neurosciences, Mental Health and Sensory Organs, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy;
| | - Yasutaka Ojio
- National Center of Neurology and Psychiatry, Department of Community Mental Health Law, National Institute of Mental Health, Tokyo 187-8553, Japan;
| | - Khoa D. Nguyen
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA 94304, USA;
- Tranquis Therapeutics, Palo Alto, CA 94304, USA
- Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
19
|
Abstract
Due to the growing number of chronic traumatic encephalopathy (CTE) cases in the military and contact sports, defining the cellular and molecular substrate of this disorder is crucial. Most classic neuropathological investigations describe cortical tau and, to a lesser extent, amyloid lesions, which may underlie the clinical sequela associated with CTE. The application of modern molecular biologic technology to postmortem human brain tissue has made it possible to evaluate the genetic signature of specific neuronal phenotypes at different stages of CTE pathology. Most recently, molecular pathobiology has been used in the field of CTE, with an emphasis on the cholinergic neurons located within the nucleus basalis of Meynert, which develop tau pathology and are associated with cognitive dysfunction similar to that found in Alzheimer's disease (AD). Quantitative findings derived from single-cell transcript investigations provide clues to our understanding of the selective vulnerability of neurons containing AD-like tau pathology at different stages of CTE. Since human tissue-based studies provide a gold standard for the field of CTE, continued molecular pathological studies are needed to reveal novel drug targets for the treatment of this disorder.
Collapse
|
20
|
Adams JW, Alosco ML, Mez J, Alvarez VE, Huber BR, Tripodis Y, Adler CH, Kubilius C, Cormier KA, Mathais R, Nicks R, Kelley HJ, Saltiel N, Uretsky M, Nair E, Aytan N, Cherry JD, Nowinski CJ, Kowall NW, Goldstein LE, Dwyer B, Katz DI, Cantu RC, Stern RA, McKee AC, Stein TD. Association of probable REM sleep behavior disorder with pathology and years of contact sports play in chronic traumatic encephalopathy. Acta Neuropathol 2020; 140:851-862. [PMID: 32939646 PMCID: PMC7669574 DOI: 10.1007/s00401-020-02206-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
Probable rapid eye movement (REM) sleep behavior disorder (pRBD) is a synucleinopathy-associated parasomnia in which loss of REM sleep muscle atonia results in motor behavior during REM sleep, including dream enactment. Traumatic brain injury is independently associated with increased risk of pRBD and Lewy body disease, and both pRBD and Lewy body disease are often observed in chronic traumatic encephalopathy (CTE). However, the frequency and pathological substrate of pRBD in CTE have not been formally studied and remain unknown. Of the total sample of 247 men, age at death of 63.1 ± 18.8 years (mean ± SD), 80 [32%] were determined by informant report to have symptoms of pRBD. These participants had played more years of contact sports (18.3 ± 11.4) than those without pRBD (15.1 ± 6.5; P = 0.02) and had an increased frequency of Lewy body disease (26/80 [33%] vs 28/167 [17%], P = 0.005). Of the 80 participants with pRBD, 54 [68%] did not have Lewy body disease; these participants were more likely to have neurofibrillary tangles and pretangles in the dorsal and median raphe (41 of 49 [84%] non-LBD participants with pRBD symptoms vs 90 of 136 [66%] non-LBD participants without pRBD symptoms, P = 0.02), brainstem nuclei with sleep regulatory function. Binary logistic regression modeling in the total study sample showed that pRBD in CTE was associated with dorsal and median raphe nuclei neurofibrillary tangles (OR = 3.96, 95% CI [1.43, 10.96], P = 0.008), Lewy body pathology (OR = 2.36, 95% CI [1.18, 4.72], P = 0.02), and years of contact sports participation (OR = 1.04, 95% CI [1.00, 1.08], P = 0.04). Overall, pRBD in CTE is associated with increased years of contact sports participation and may be attributable to Lewy body and brainstem tau pathologies.
Collapse
Affiliation(s)
- Jason W Adams
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Bertrand R Huber
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Charles H Adler
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
| | - Carol Kubilius
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Kerry A Cormier
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Rebecca Mathais
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Raymond Nicks
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Hunter J Kelley
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Nicole Saltiel
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Madeline Uretsky
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Evan Nair
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Nurgul Aytan
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Christopher J Nowinski
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
| | - Neil W Kowall
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Lee E Goldstein
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Brigid Dwyer
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Brain Injury Program, Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Douglas I Katz
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Brain Injury Program, Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Robert C Cantu
- Concussion Legacy Foundation, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Emerson Hospital, Concord, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA.
- Department of Veterans Affairs Medical Center, Bedford, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
21
|
TDP-43 interacts with amyloid-β, inhibits fibrillization, and worsens pathology in a model of Alzheimer's disease. Nat Commun 2020; 11:5950. [PMID: 33230138 PMCID: PMC7683652 DOI: 10.1038/s41467-020-19786-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
TDP-43 inclusions are found in many Alzheimer’s disease (AD) patients presenting faster disease progression and greater brain atrophy. Previously, we showed full-length TDP-43 forms spherical oligomers and perturbs amyloid-β (Aβ) fibrillization. To elucidate the role of TDP-43 in AD, here, we examined the effect of TDP-43 in Aβ aggregation and the attributed toxicity in mouse models. We found TDP-43 inhibited Aβ fibrillization at initial and oligomeric stages. Aβ fibrillization was delayed specifically in the presence of N-terminal domain containing TDP-43 variants, while C-terminal TDP-43 was not essential for Aβ interaction. TDP-43 significantly enhanced Aβ’s ability to impair long-term potentiation and, upon intrahippocampal injection, caused spatial memory deficit. Following injection to AD transgenic mice, TDP-43 induced inflammation, interacted with Aβ, and exacerbated AD-like pathology. TDP-43 oligomers mostly colocalized with intracellular Aβ in the brain of AD patients. We conclude that TDP-43 inhibits Aβ fibrillization through its interaction with Aβ and exacerbates AD pathology. TDP-43 inclusions are observed in Alzheimer’s disease. Here the authors show that TDP-43 interacts with amyloid-β and inhibits fibrillization in vitro and exacerbates Alzheimer’s disease pathology in animal models.
Collapse
|
22
|
Van Schoor E, Koper MJ, Ospitalieri S, Dedeene L, Tomé SO, Vandenberghe R, Brenner D, Otto M, Weishaupt J, Ludolph AC, Van Damme P, Van Den Bosch L, Thal DR. Necrosome-positive granulovacuolar degeneration is associated with TDP-43 pathological lesions in the hippocampus of ALS/FTLD cases. Neuropathol Appl Neurobiol 2020; 47:328-345. [PMID: 32949047 DOI: 10.1111/nan.12668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/04/2020] [Indexed: 01/11/2023]
Abstract
AIM Granulovacuolar degeneration (GVD) in Alzheimer's disease (AD) involves the necrosome, which is a protein complex consisting of phosphorylated receptor-interacting protein kinase 1 (pRIPK1), pRIPK3 and phosphorylated mixed lineage kinase domain-like protein (pMLKL). Necrosome-positive GVD was associated with neuron loss in AD. GVD was recently linked to the C9ORF72 mutation in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with transactive response DNA-binding protein (TDP-43) pathology (FTLD-TDP). Therefore, we investigated whether GVD in cases of the ALS-FTLD-TDP spectrum (ALS/FTLD) shows a similar involvement of the necrosome as in AD, and whether it correlates with diagnosis, presence of protein aggregates and cell death in ALS/FTLD. METHODS We analysed the presence and distribution of the necrosome in post-mortem brain and spinal cord of ALS and FTLD-TDP patients (n = 30) with and without the C9ORF72 mutation, and controls (n = 22). We investigated the association of the necrosome with diagnosis, the presence of pathological protein aggregates and neuronal loss. RESULTS Necrosome-positive GVD was primarily observed in hippocampal regions of ALS/FTLD cases and was associated with hippocampal TDP-43 inclusions as the main predictor of the pMLKL-GVD stage, as well as with the Braak stage of neurofibrillary tangle pathology. The central cortex and spinal cord, showing motor neuron loss in ALS, were devoid of any accumulation of pRIPK1, pRIPK3 or pMLKL. CONCLUSIONS Our findings suggest a role for hippocampal TDP-43 pathology as a contributor to necrosome-positive GVD in ALS/FTLD. The absence of necroptosis-related proteins in motor neurons in ALS argues against a role for necroptosis in ALS-related motor neuron death.
Collapse
Affiliation(s)
- E Van Schoor
- Laboratory of Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium.,Laboratory of Neurobiology, Department of Neurosciences, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium.,Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - M J Koper
- Laboratory of Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium.,Center for Brain & Disease Research, VIB, Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium
| | - S Ospitalieri
- Laboratory of Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium
| | - L Dedeene
- Laboratory of Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium.,Laboratory of Neurobiology, Department of Neurosciences, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium.,Center for Brain & Disease Research, VIB, Leuven, Belgium.,Laboratory for Molecular Neurobiomarker Research, Department of Neurosciences, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium.,Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - S O Tomé
- Laboratory of Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium
| | - R Vandenberghe
- Laboratory of Cognitive Neurology, Department of Neurosciences, KU Leuven (University of Leuven), Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - D Brenner
- Department of Neurology, Ulm University, Ulm, Germany
| | - M Otto
- Department of Neurology, Ulm University, Ulm, Germany
| | - J Weishaupt
- Department of Neurology, Ulm University, Ulm, Germany
| | - A C Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
| | - P Van Damme
- Laboratory of Neurobiology, Department of Neurosciences, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium.,Center for Brain & Disease Research, VIB, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - L Van Den Bosch
- Laboratory of Neurobiology, Department of Neurosciences, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium.,Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - D R Thal
- Laboratory of Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
23
|
The Neuropathological Diagnosis of Alzheimer's Disease-The Challenges of Pathological Mimics and Concomitant Pathology. Brain Sci 2020; 10:brainsci10080479. [PMID: 32722332 PMCID: PMC7463915 DOI: 10.3390/brainsci10080479] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
The definitive diagnosis of Alzheimer's disease (AD) rests with post-mortem neuropathology despite the advent of more sensitive scanning and the search for reliable biomarkers. Even though the classic neuropathological features of AD have been known for many years, it was only relatively recently that more sensitive immunohistochemistry for amyloid beta (Aβ) and hyperphosphorylated tau (HP-tau) replaced silver-staining techniques. However, immunohistochemistry against these and other proteins has not only allowed a more scientific evaluation of the pathology of AD but also revealed some mimics of HP-tau pathological patterns of AD, including age-related changes, argyrophilic grain disease and chronic traumatic encephalopathy. It also highlighted a number of cases of AD with significant additional pathology including Lewy bodies, phosphorylated TDP-43 (p-TDP-43) positive neuronal cytoplasmic inclusions and vascular pathology. This concomitant pathology can cause a number of challenges including the evaluation of the significance of each pathological entity in the make-up of the clinical symptoms, and the threshold of each individual pathology to cause dementia. It also raises the possibility of underlying common aetiologies. Furthermore, the concomitant pathologies could provide explanations as to the relative failure of clinical trials of anti-Aβ therapy in AD patients.
Collapse
|
24
|
A Systematic Review of Genotype-Phenotype Correlation across Cohorts Having Causal Mutations of Different Genes in ALS. J Pers Med 2020; 10:jpm10030058. [PMID: 32610599 PMCID: PMC7564886 DOI: 10.3390/jpm10030058] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis is a rare and fatal neurodegenerative disease characterised by progressive deterioration of upper and lower motor neurons that eventually culminates in severe muscle atrophy, respiratory failure and death. There is a concerning lack of understanding regarding the mechanisms that lead to the onset of ALS and as a result there are no reliable biomarkers that aid in the early detection of the disease nor is there an effective treatment. This review first considers the clinical phenotypes associated with ALS, and discusses the broad categorisation of ALS and ALS-mimic diseases into upper and lower motor neuron diseases, before focusing on the genetic aetiology of ALS and considering the potential relationship of mutations of different genes to variations in phenotype. For this purpose, a systematic review is conducted collating data from 107 original published clinical studies on monogenic forms of the disease, surveying the age and site of onset, disease duration and motor neuron involvement. The collected data highlight the complexity of the disease's genotype-phenotype relationship, and thus the need for a nuanced approach to the development of clinical assays and therapeutics.
Collapse
|
25
|
Tomé SO, Vandenberghe R, Ospitalieri S, Van Schoor E, Tousseyn T, Otto M, von Arnim CAF, Thal DR. Distinct molecular patterns of TDP-43 pathology in Alzheimer's disease: relationship with clinical phenotypes. Acta Neuropathol Commun 2020; 8:61. [PMID: 32349792 PMCID: PMC7189555 DOI: 10.1186/s40478-020-00934-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
The co-existence of multiple pathologies and proteins is a common feature in the brains of cognitively impaired elderly individuals. Transactive response DNA-binding protein (TDP-43) has been discovered to accumulate in limbic brain regions of a portion of late-onset Alzheimer's disease (AD) patients, in addition to amyloid-β and τ protein. However, it is not yet known whether the TDP-43 species in the AD brain differ in their composition, when compared among different AD cases and to frontotemporal lobar degeneration cases with TDP-43 inclusions (FTLD-TDP). Furthermore, it is not known whether TDP-43 pathology in AD is related to symptoms of the frontotemporal dementia (FTD) spectrum. In this study, we investigated the molecular pattern of TDP-43 lesions with five different antibodies against different phosphorylated (pTDP-43) and non-phosphorylated TDP-43 epitopes. We analyzed a cohort of 97 autopsy cases, including brains from 20 non-demented individuals, 16 cognitively normal pathologically-defined preclinical AD (p-preAD), 51 neuropathologically-confirmed AD cases and 10 FTLD-TDP cases as positive controls. We observed distinct neuropathological patterns of TDP-43 among AD cases. In 11 neuropathologically-confirmed AD cases we found dystrophic neurites (DNs), neuronal cytoplasmic inclusions (NCIs) and/or neurofibrillary tangle (NFT)-like lesions not only positive for pTDP-43409/410, but also for pTDP-43 phosphorylated at serines 403/404 (pTDP-43403/404) and non-phosphorylated, full-length TDP-43, as seen with antibodies against C-terminal TDP-43 and N-terminal TDP-43. These cases were referred to as ADTDP + FL because full-length TDP-43 was presumably present in the aggregates. FTLD-TDP cases showed a similar molecular TDP-43 pattern. A second pattern, which was not seen in FTLD-TDP, was observed in most of p-preAD, as well as 30 neuropathologically-confirmed AD cases, which mainly exhibited NFTs and NCIs stained with antibodies against TDP-43 phosphorylated at serines 409/410 (pTDP-43409, pTDP-43409/410). Because only phosphorylated C-terminal species of TDP-43 could be detected in the lesions we designated these AD cases as ADTDP + CTF. Ten AD cases did not contain any TDP-43 pathology and were referred to as ADTDP-. The different TDP-43 patterns were associated with clinically typical AD symptoms in 80% of ADTDP + CTF cases, 63,6% of ADTDP + FL and 100% of the ADTDP- cases. On the other hand, clinical symptoms characteristic for FTD were observed in 36,4% of ADTDP + FL, in 16,6% of the ADTDP + CTF, and in none of the ADTDP- cases. Our findings provide evidence that TDP-43 aggregates occurring in AD cases vary in their composition, suggesting the distinction of different molecular patterns of TDP-43 pathology ranging from ADTDP- to ADTDP + CTF and ADTDP + FL with possible impact on their clinical picture, i.e. a higher chance for FTD-like symptoms in ADTDP + FL cases.
Collapse
Affiliation(s)
- Sandra O Tomé
- Department of Imaging and Pathology - Laboratory of Neuropathology, and Leuven Brain Institute, KU-Leuven, O&N IV, Herestraat 49, box 1032, 3000, Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurosciences - Laboratory of Cognitive Neurology, KU- Leuven, Leuven, Belgium
- Department of Neurology, UZ Leuven, Leuven, Belgium
| | - Simona Ospitalieri
- Department of Imaging and Pathology - Laboratory of Neuropathology, and Leuven Brain Institute, KU-Leuven, O&N IV, Herestraat 49, box 1032, 3000, Leuven, Belgium
| | - Evelien Van Schoor
- Department of Imaging and Pathology - Laboratory of Neuropathology, and Leuven Brain Institute, KU-Leuven, O&N IV, Herestraat 49, box 1032, 3000, Leuven, Belgium
- Department of Neurosciences - Laboratory for Neurobiology, KU-Leuven and Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Thomas Tousseyn
- Department of Imaging and Pathology - Translational Cell and Tissue Research Unit, KU-Leuven, Leuven, Belgium
- Department of Pathology, UZ Leuven, Leuven, Belgium
| | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Germany
| | - Christine A F von Arnim
- Department of Neurology, Ulm University, Ulm, Germany
- Department of Geriatrics, Göttingen University, Göttingen, Germany
| | - Dietmar Rudolf Thal
- Department of Imaging and Pathology - Laboratory of Neuropathology, and Leuven Brain Institute, KU-Leuven, O&N IV, Herestraat 49, box 1032, 3000, Leuven, Belgium.
- Department of Pathology, UZ Leuven, Leuven, Belgium.
| |
Collapse
|
26
|
Smith DH, Johnson VE, Trojanowski JQ, Stewart W. Chronic traumatic encephalopathy - confusion and controversies. Nat Rev Neurol 2020; 15:179-183. [PMID: 30664683 DOI: 10.1038/s41582-018-0114-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The term chronic traumatic encephalopathy (CTE) has recently entered public consciousness via media reports and even a Hollywood movie. However, in contrast to general impressions, the incidence of CTE is unknown, the clinical diagnostic criteria have not been agreed upon and the current neuropathological characterization of CTE is acknowledged as preliminary. Additionally, few studies have compared the pathologies of CTE with those of other neurodegenerative disorders or of age-matched controls. Consequently, disagreement continues about the neuropathological aspects that make CTE unique. Furthermore, CTE is widely considered to be a consequence of exposure to repeated head blows, but evidence suggests that a single moderate or severe traumatic brain injury can also induce progressive neuropathological changes. These unresolved aspects of CTE underlie disparate claims about its clinical and pathological features, leading to confusion among the public and health-care professionals alike.
Collapse
Affiliation(s)
- Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, UK.,Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
27
|
Van Ommeren R, Hazrati LN. Pathological Assessment of Chronic Traumatic Encephalopathy: Review of Concepts and Methodology. Acad Forensic Pathol 2019; 8:555-564. [PMID: 31240059 DOI: 10.1177/1925362118797729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/01/2018] [Indexed: 11/17/2022]
Abstract
Chronic traumatic encephalopathy (CTE) has become a topic of considerable interest in recent years, with wide-ranging implications for athletes, military members, and other groups exposed to frequent concussive or subconcussive head trauma. The condition has been subject to intensive neuropathological characterization by various groups, with assessment methodologies and staging criteria proposed. Clinical characterization of symptoms has also been performed, but has not yet been definitively formalized. While efforts are underway to develop in vivo markers of tauopathies including CTE, these remain experimental at this time, necessitating postmortem analysis for definitive diagnosis. The putative link between development of cognitive and behavioral dysfunction and neuropathological findings of CTE may prompt requests for postmortem assessment in the forensic setting. Here, we review current concepts in CTE research, describe histopathological findings in CTE, and describe methodologies for pathological assessment of CTE which may be useful to the forensic pathologist.
Collapse
|
28
|
Risling M, Smith D, Stein TD, Thelin EP, Zanier ER, Ankarcrona M, Nilsson P. Modelling human pathology of traumatic brain injury in animal models. J Intern Med 2019; 285:594-607. [PMID: 30963638 PMCID: PMC9351987 DOI: 10.1111/joim.12909] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is caused by a head impact with a force exceeding regular exposure from normal body movement which the brain normally can accommodate. People affected include, but are not restricted to, sport athletes in American football, ice hockey, boxing as well as military personnel. Both single and repetitive exposures may affect the brain acutely and can lead to chronic neurodegenerative changes including chronic traumatic encephalopathy associated with the development of dementia. The changes in the brain following TBI include neuroinflammation, white matter lesions, and axonal damage as well as hyperphosphorylation and aggregation of tau protein. Even though the human brain gross anatomy is different from rodents implicating different energy transfer upon impact, especially rotational forces, animal models of TBI are important tools to investigate the changes that occur upon TBI at molecular and cellular levels. Importantly, such models may help to increase the knowledge of how the pathologies develop, including the spreading of tau pathologies, and how to diagnose the severity of the TBI in the clinic. In addition, animal models are helpful in the development of novel biomarkers and can also be used to test potential disease-modifying compounds in a preclinical setting.
Collapse
Affiliation(s)
- M Risling
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - D Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - T D Stein
- VA Boston Healthcare System, Boston, MA, USA.,Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - E P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - E R Zanier
- Department of Neuroscience, Mario Negri Institute, IRCCS Milano, Milano, Italy
| | - M Ankarcrona
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - P Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
29
|
Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 2019; 568:420-423. [PMID: 30894745 PMCID: PMC6472968 DOI: 10.1038/s41586-019-1026-5] [Citation(s) in RCA: 484] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy that is associated with repetitive head impacts or exposure to blast waves. First described as punch-drunk syndrome and dementia pugilistica in retired boxers1-3, CTE has since been identified in former participants of other contact sports, ex-military personnel and after physical abuse4-7. No disease-modifying therapies currently exist, and diagnosis requires an autopsy. CTE is defined by an abundance of hyperphosphorylated tau protein in neurons, astrocytes and cell processes around blood vessels8,9. This, together with the accumulation of tau inclusions in cortical layers II and III, distinguishes CTE from Alzheimer's disease and other tauopathies10,11. However, the morphologies of tau filaments in CTE and the mechanisms by which brain trauma can lead to their formation are unknown. Here we determine the structures of tau filaments from the brains of three individuals with CTE at resolutions down to 2.3 Å, using cryo-electron microscopy. We show that filament structures are identical in the three cases but are distinct from those of Alzheimer's and Pick's diseases, and from those formed in vitro12-15. Similar to Alzheimer's disease12,14,16-18, all six brain tau isoforms assemble into filaments in CTE, and residues K274-R379 of three-repeat tau and S305-R379 of four-repeat tau form the ordered core of two identical C-shaped protofilaments. However, a different conformation of the β-helix region creates a hydrophobic cavity that is absent in tau filaments from the brains of patients with Alzheimer's disease. This cavity encloses an additional density that is not connected to tau, which suggests that the incorporation of cofactors may have a role in tau aggregation in CTE. Moreover, filaments in CTE have distinct protofilament interfaces to those of Alzheimer's disease. Our structures provide a unifying neuropathological criterion for CTE, and support the hypothesis that the formation and propagation of distinct conformers of assembled tau underlie different neurodegenerative diseases.
Collapse
|
30
|
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2019; 12:25. [PMID: 30837838 PMCID: PMC6382748 DOI: 10.3389/fnmol.2019.00025] [Citation(s) in RCA: 473] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a versatile RNA/DNA binding protein involved in RNA-related metabolism. Hyper-phosphorylated and ubiquitinated TDP-43 deposits act as inclusion bodies in the brain and spinal cord of patients with the motor neuron diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). While the majority of ALS cases (90-95%) are sporadic (sALS), among familial ALS cases 5-10% involve the inheritance of mutations in the TARDBP gene and the remaining (90-95%) are due to mutations in other genes such as: C9ORF72, SOD1, FUS, and NEK1 etc. Strikingly however, the majority of sporadic ALS patients (up to 97%) also contain the TDP-43 protein deposited in the neuronal inclusions, which suggests of its pivotal role in the ALS pathology. Thus, unraveling the molecular mechanisms of the TDP-43 pathology seems central to the ALS therapeutics, hence, we comprehensively review the current understanding of the TDP-43's pathology in ALS. We discuss the roles of TDP-43's mutations, its cytoplasmic mis-localization and aberrant post-translational modifications in ALS. Also, we evaluate TDP-43's amyloid-like in vitro aggregation, its physiological vs. pathological oligomerization in vivo, liquid-liquid phase separation (LLPS), and potential prion-like propagation propensity of the TDP-43 inclusions. Finally, we describe the various evolving TDP-43-induced toxicity mechanisms, such as the impairment of endocytosis and mitotoxicity etc. and also discuss the emerging strategies toward TDP-43 disaggregation and ALS therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Basant K. Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
31
|
Ling H, Neal JW, Revesz T. Evolving concepts of chronic traumatic encephalopathy as a neuropathological entity. Neuropathol Appl Neurobiol 2018; 43:467-476. [PMID: 28664614 DOI: 10.1111/nan.12425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/20/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a long-term neurodegenerative consequence of repetitive head impacts which can only be definitively diagnosed in post-mortem. Recently, the consensus neuropathological criteria for the diagnosis of CTE was published requiring the presence of the accumulation of abnormal tau in neurons and astroglia distributed around small blood vessels at the depths of cortical sulci in an irregular pattern as the mandatory features. The clinical diagnosis and antemortem prediction of CTE pathology remain challenging if not impossible due to the common co-existing underlying neurodegenerative pathologies and the lack of specific clinical pointers and reliable biomarkers. This review summarizes the historical evolution of CTE as a neuropathological entity and highlights the latest advances and future directions of research studies on the topic of CTE.
Collapse
Affiliation(s)
- H Ling
- Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, University College London, London, UK.,Reta Lila Weston Institute for Neurological Studies, UCL Institute of Neurology, London, UK.,Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - J W Neal
- Department of Cellular Pathology, Cardiff University, Wales, UK
| | - T Revesz
- Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, University College London, London, UK.,Reta Lila Weston Institute for Neurological Studies, UCL Institute of Neurology, London, UK.,Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
32
|
Nelson PT, Abner EL, Patel E, Anderson S, Wilcock DM, Kryscio RJ, Van Eldik LJ, Jicha GA, Gal Z, Nelson RS, Nelson BG, Gal J, Azam MT, Fardo DW, Cykowski MD. The Amygdala as a Locus of Pathologic Misfolding in Neurodegenerative Diseases. J Neuropathol Exp Neurol 2018; 77:2-20. [PMID: 29186501 DOI: 10.1093/jnen/nlx099] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
Over the course of most common neurodegenerative diseases the amygdala accumulates pathologically misfolded proteins. Misfolding of 1 protein in aged brains often is accompanied by the misfolding of other proteins, suggesting synergistic mechanisms. The multiplicity of pathogenic processes in human amygdalae has potentially important implications for the pathogenesis of Alzheimer disease, Lewy body diseases, chronic traumatic encephalopathy, primary age-related tauopathy, and hippocampal sclerosis, and for the biomarkers used to diagnose those diseases. Converging data indicate that the amygdala may represent a preferential locus for a pivotal transition from a relatively benign clinical condition to a more aggressive disease wherein multiple protein species are misfolded. Thus, understanding of amygdalar pathobiology may yield insights relevant to diagnoses and therapies; it is, however, a complex and imperfectly defined brain region. Here, we review aspects of amygdalar anatomy, connectivity, vasculature, and pathologic involvement in neurodegenerative diseases with supporting data from the University of Kentucky Alzheimer's Disease Center autopsy cohort. Immunohistochemical staining of amygdalae for Aβ, Tau, α-synuclein, and TDP-43 highlight the often-coexisting pathologies. We suggest that the amygdala may represent an "incubator" for misfolded proteins and that it is possible that misfolded amygdalar protein species are yet to be discovered.
Collapse
Affiliation(s)
- Peter T Nelson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Erin L Abner
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Ela Patel
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Sonya Anderson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Donna M Wilcock
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Richard J Kryscio
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Linda J Van Eldik
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Gregory A Jicha
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Zsombor Gal
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Ruth S Nelson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Bela G Nelson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Jozsef Gal
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Md Tofial Azam
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - David W Fardo
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Matthew D Cykowski
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
33
|
Iacono D, Shively SB, Edlow BL, Perl DP. Chronic Traumatic Encephalopathy: Known Causes, Unknown Effects. Phys Med Rehabil Clin N Am 2017; 28:301-321. [PMID: 28390515 DOI: 10.1016/j.pmr.2016.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic traumatic encephalopathy (CTE) is a neuropathologic diagnosis typically made in human brains with a history of repetitive traumatic brain injury (rTBI). It remains unknown whether CTE occurs exclusively after rTBI, or whether a single TBI (sTBI) can cause CTE. Similarly, it is unclear whether impact (eg, motor vehicle accidents) and non-impact (eg, blasts) types of energy transfer trigger divergent or common pathologies. While it is established that a history of rTBI increases the risk of multiple neurodegenerative diseases (eg, dementia, parkinsonism, and CTE), the possible pathophysiologic and molecular mechanisms underlying these risks have yet to be elucidated.
Collapse
Affiliation(s)
- Diego Iacono
- Brain Tissue Repository & Neuropathology Core, Center for Neuroscience and Regenerative Medicine (CNRM), Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Road, Bethesda, MD 20814, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), 6720A Rockledge Dr #100, Bethesda, MD 20817, USA
| | - Sharon B Shively
- Brain Tissue Repository & Neuropathology Core, Center for Neuroscience and Regenerative Medicine (CNRM), Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Road, Bethesda, MD 20814, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), 6720A Rockledge Dr #100, Bethesda, MD 20817, USA; Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Brian L Edlow
- Department of Neurology, Massachusetts General Hospital, 175 Cambridge Street - Suite 300, Boston, MA 02114, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - Daniel P Perl
- Brain Tissue Repository & Neuropathology Core, Center for Neuroscience and Regenerative Medicine (CNRM), Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
34
|
Jaber SM, Polster BM. An in vitro model yields 'importin' new insights into chronic traumatic encephalopathy: damaged astrocytes stop 'thrombospondin' to the injury: An Editorial Highlight for 'Defective synthesis and release of astrocytic thrombospondin-1 mediates the neuronal TDP-43 proteinopathy, resulting in defects in neuronal integrity associated with chronic traumatic encephalopathy: in vitro studies'. J Neurochem 2017; 140:531-535. [PMID: 28074610 DOI: 10.1111/jnc.13906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/11/2016] [Indexed: 01/08/2023]
Abstract
Read the highlighted article 'Defective synthesis and release of astrocytic thrombospondin-1 mediates the neuronal TDP-43 proteinopathy, resulting in defects in neuronal integrity associated with chronic traumatic encephalopathy: in vitro studies' on page 645.
Collapse
Affiliation(s)
- Sausan M Jaber
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Brian M Polster
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Johnson VE, Stewart W, Arena JD, Smith DH. Traumatic Brain Injury as a Trigger of Neurodegeneration. ADVANCES IN NEUROBIOLOGY 2017; 15:383-400. [PMID: 28674990 DOI: 10.1007/978-3-319-57193-5_15] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although millions of individuals suffer a traumatic brain injury (TBI) worldwide each year, it is only recently that TBI has been recognized as a major public health problem. Beyond the acute clinical manifestations, there is growing recognition that a single severe TBI (sTBI) or repeated mild TBIs (rTBI) can also induce insidious neurodegenerative processes, which may be associated with early dementia, in particular chronic traumatic encephalopathy (CTE). Identified at autopsy examination in individuals with histories of exposure to sTBI or rTBI, CTE is recognized as a complex pathology featuring both macroscopic and microscopic abnormalities. These include cavum septum pellucidum, brain atrophy and ventricular dilation, together with pathologies in tau, TDP-43, and amyloid-β. However, the establishment and characterization of CTE as a distinct disease entity is in its infancy. Moreover, the relative "dose" of TBI, such as the frequency and severity of injury, associated with risk of CTE remains unknown. As such, there is a clear and pressing need to improve the recognition and diagnosis of CTE and to identify mechanistic links between TBI and chronic neurodegeneration.
Collapse
Affiliation(s)
- Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William Stewart
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK.,University of Glasgow, Glasgow, G12 8QQ, UK
| | - John D Arena
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
36
|
Troakes C, Smyth R, Noor F, Maekawa S, Killick R, King A, Al-Sarraj S. Clusterin expression is upregulated following acute head injury and localizes to astrocytes in old head injury. Neuropathology 2016; 37:12-24. [PMID: 27365216 DOI: 10.1111/neup.12320] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 01/20/2023]
Abstract
There is mounting evidence linking traumatic brain injury (TBI) to neurodegeneration. Clusterin (apolipoprotein J or ApoJ) is a complement inhibitor that appears to have a neuroprotective effect in response to tissue damage and has been reported to be upregulated in Alzheimer's disease. Here we investigated the time course and cellular expression pattern of clusterin in human TBI. Tissue from 32 patients with TBI of varying survival times (from under 30 min to 10 months) was examined using immunohistochemistry for clusterin alongside other markers of neurodegeneration and neuroinflammation. TBI cases were compared to ischemic brain damage, Alzheimer's disease and controls. Double immunofluorescence was carried out in order to examine cellular expression. Clusterin was initially expressed in an axonal location less than 30 min following TBI and increased in intensity and the frequency of deposits with increasing survival time up to 24 h, after which it appeared to reduce in intensity but was still evident several weeks after injury. Clusterin was first evident in astrocytes after 45 min, being increasingly seen up to 48 h but remaining intense in TBI cases with long survival times. Our results suggest clusterin plays a role in modulating the inflammatory response of acute and chronic TBI and that it is a useful marker for TBI, particularly in cases with short survival times. Its prominent accumulation in astrocytes, alongside a mounting inflammatory response and activation of microglial cells supports a potential role in the neurodegenerative changes that occur as a result of TBI.
Collapse
Affiliation(s)
- Claire Troakes
- Basic and Clinical Neuroscience Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Rachel Smyth
- Basic and Clinical Neuroscience Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Farzana Noor
- Basic and Clinical Neuroscience Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Satomi Maekawa
- Basic and Clinical Neuroscience Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Richard Killick
- Old Age Psychiatry Department, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andrew King
- Basic and Clinical Neuroscience Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Clinical Neuropathology Department, King's College Hospital NHS Foundation Trust, London, UK
| | - Safa Al-Sarraj
- Basic and Clinical Neuroscience Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Clinical Neuropathology Department, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
37
|
Lagarde J, Hamelin L, Hahn V, Habert MO, Seilhean D, Duyckaerts C, Sarazin M. Progressive Supranuclear Palsy Syndrome and Semantic Dementia in Neuropathologically Proven Lewy Body Disease: A Report of Two Cases. J Alzheimers Dis 2016; 47:95-101. [PMID: 26402758 DOI: 10.3233/jad-150203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The impact of neuropathological lesions on the clinical symptoms and progression of Lewy body disease (LBD) remains unclear. To address this issue, we describe two illustrative cases of autopsy-proven LBD that presented atypical phenotypes of progressive supranuclear palsy syndrome and semantic dementia. Postmortem examination revealed diffuse LBD with massive brainstem involvement in case 1, whereas Lewy bodies predominated in the amygdala and neocortex in case 2. Alzheimer's disease pathology was present in both cases, and TDP-43 inclusions were noted in case 2. These cases illustrate two contrasted clinical presentations and highlight the heterogeneity within the underlying proteinopathies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julien Lagarde
- Neurology of Memory and Language Unit, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - Lorraine Hamelin
- Neurology of Memory and Language Unit, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - Valé Hahn
- Neurology of Memory and Language Unit, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - Marie-Odile Habert
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Service de Médecine Nucléaire and Université Pierre et Marie Curie-Paris 6, INSERM, UMR-S 678, Paris, France
| | - Danielle Seilhean
- Laboratoire de Neuropathologie Escourolle, Assistance Publique-Hôpitaux de Paris, Université Pierre and Marie Curie, and Institut du Cerveau et de la Moelle, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Charles Duyckaerts
- Laboratoire de Neuropathologie Escourolle, Assistance Publique-Hôpitaux de Paris, Université Pierre and Marie Curie, and Institut du Cerveau et de la Moelle, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Marie Sarazin
- Neurology of Memory and Language Unit, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| |
Collapse
|
38
|
Ojo JO, Mouzon B, Algamal M, Leary P, Lynch C, Abdullah L, Evans J, Mullan M, Bachmeier C, Stewart W, Crawford F. Chronic Repetitive Mild Traumatic Brain Injury Results in Reduced Cerebral Blood Flow, Axonal Injury, Gliosis, and Increased T-Tau and Tau Oligomers. J Neuropathol Exp Neurol 2016; 75:636-55. [PMID: 27251042 DOI: 10.1093/jnen/nlw035] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Indexed: 12/14/2022] Open
Abstract
Exposure to repetitive mild traumatic brain injury (mTBI) is a risk factor for chronic traumatic encephalopathy, which is characterized by patchy deposition of hyperphosphorylated tau aggregates in neurons and astrocytes at the depths of cortical sulci. We developed an mTBI paradigm to explore effects of repetitive concussive-type injury over several months in mice with a human tau genetic background (hTau). Two injuries were induced in the hTau mice weekly over a period of 3 or 4 months and the effects were compared with those in noninjured sham animals. Behavioral and in vivo measures and detailed neuropathological assessments were conducted 6 months after the first injury. Our data confirm impairment in cerebral blood flow and white matter damage. This was accompanied by a 2-fold increase in total tau levels and mild increases in tau oligomers/conformers and pTau (Thr231) species in brain gray matter. There was no evidence of neurofibrillary/astroglial tangles, neuropil threads, or perivascular foci of tau immunoreactivity. There were neurobehavioral deficits (ie, disinhibition and impaired cognitive performance) in the mTBI animals. These data support the relevance of this new mTBI injury model for studying the consequences of chronic repetitive mTBI in humans, and the role of tau in TBI.
Collapse
Affiliation(s)
- Joseph O Ojo
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS).
| | - Benoit Mouzon
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Moustafa Algamal
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Paige Leary
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Cillian Lynch
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Laila Abdullah
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - James Evans
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Michael Mullan
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Corbin Bachmeier
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - William Stewart
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Fiona Crawford
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| |
Collapse
|
39
|
Hay J, Johnson VE, Smith DH, Stewart W. Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:21-45. [PMID: 26772317 DOI: 10.1146/annurev-pathol-012615-044116] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Almost a century ago, the first clinical account of the punch-drunk syndrome emerged, describing chronic neurological and neuropsychiatric sequelae occurring in former boxers. Thereafter, throughout the twentieth century, further reports added to our understanding of the neuropathological consequences of a career in boxing, leading to descriptions of a distinct neurodegenerative pathology, termed dementia pugilistica. During the past decade, growing recognition of this pathology in autopsy studies of nonboxers who were exposed to repetitive, mild traumatic brain injury, or to a single, moderate or severe traumatic brain injury, has led to an awareness that it is exposure to traumatic brain injury that carries with it a risk of this neurodegenerative disease, not the sport or the circumstance in which the injury is sustained. Furthermore, the neuropathology of the neurodegeneration that occurs after traumatic brain injury, now termed chronic traumatic encephalopathy, is acknowledged as being a complex, mixed, but distinctive pathology, the detail of which is reviewed in this article.
Collapse
Affiliation(s)
- Jennifer Hay
- School of Medicine and.,Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
| | - Victoria E Johnson
- Penn Center for Brain Injury and Repair, and Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Douglas H Smith
- Penn Center for Brain Injury and Repair, and Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - William Stewart
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, United Kingdom; .,Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
| |
Collapse
|
40
|
Mufson EJ, Perez SE, Nadeem M, Mahady L, Kanaan NM, Abrahamson EE, Ikonomovic MD, Crawford F, Alvarez V, Stein T, McKee AC. Progression of tau pathology within cholinergic nucleus basalis neurons in chronic traumatic encephalopathy: A chronic effects of neurotrauma consortium study. Brain Inj 2016; 30:1399-1413. [PMID: 27834536 PMCID: PMC5348250 DOI: 10.1080/02699052.2016.1219058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To test the hypothesis that the nucleus basalis of Meynert (nbM), a cholinergic basal forebrain (CBF) cortical projection system, develops neurofibrillary tangles (NFTs) during the progressive pathological stages of chronic traumatic encephalopathy (CTE) in the brain of athletes. METHOD To characterize NFT pathology, tau-antibodies marking early, intermediate and late stages of NFT development in CBF tissue obtained at autopsy from eighteen former athletes and veterans with a history of repetitive mild traumatic brain injury (TBI) were used. RESULTS Analysis revealed that cholinergic nbM neurons develop intracellular tau-immunoreactive changes progressively across the pathological stages of CTE. In particular, there was an increase in pre-tangle (phosphorylated pS422) and oligomeric (TOC1 and TNT1) forms of tau in stage IV compared to stage II CTE cases. The nbM neurons also displayed pathologic TDP-43 inclusions and diffuse extracellular and vascular amyloid-β (Aβ) deposits in CTE. A higher percentage of pS422/p75NTR, pS422 and TNT1 labelled neurons were significantly correlated with age at symptom onset, interval between symptom onset and death and age at death. CONCLUSION The development of NFTs within the cholinergic nbM neurons could contribute to an axonal disconnection in CTE. Further studies are needed to determine the mechanism driving NFT formation in the nbM neurons and its relation to chronic cognitive dysfunction in CTE.
Collapse
Affiliation(s)
| | - Sylvia E. Perez
- Dept. Neurobiology, Barrow Neurological Institute, Phoenix, AZ
| | - Muhammad Nadeem
- Dept. Neurobiology, Barrow Neurological Institute, Phoenix, AZ
| | - Laura Mahady
- Dept. Neurobiology, Barrow Neurological Institute, Phoenix, AZ
| | - Nicholas M. Kanaan
- Dept. Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Eric E. Abrahamson
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - Milos D. Ikonomovic
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA
| | | | - Victor Alvarez
- VA Boston HealthCare System; Alzheimer Disease Center and CTE Program and Depts. Neurology and Pathology, Boston Univ. Sch. Med., Boston, MA
| | - Thor Stein
- VA Boston HealthCare System; Alzheimer Disease Center and CTE Program and Depts. Neurology and Pathology, Boston Univ. Sch. Med., Boston, MA
| | - Ann C. McKee
- VA Boston HealthCare System; Alzheimer Disease Center and CTE Program and Depts. Neurology and Pathology, Boston Univ. Sch. Med., Boston, MA
| |
Collapse
|
41
|
Bieniek KF, Ross OA, Cormier KA, Walton RL, Soto-Ortolaza A, Johnston AE, DeSaro P, Boylan KB, Graff-Radford NR, Wszolek ZK, Rademakers R, Boeve BF, McKee AC, Dickson DW. Chronic traumatic encephalopathy pathology in a neurodegenerative disorders brain bank. Acta Neuropathol 2015; 130:877-89. [PMID: 26518018 DOI: 10.1007/s00401-015-1502-4] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/23/2015] [Accepted: 10/25/2015] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disorder linked to repetitive traumatic brain injury (TBI) and characterized by deposition of hyperphosphorylated tau at the depths of sulci. We sought to determine the presence of CTE pathology in a brain bank for neurodegenerative disorders for individuals with and without a history of contact sports participation. Available medical records of 1721 men were reviewed for evidence of past history of injury or participation in contact sports. Subsequently, cerebral cortical samples were processed for tau immunohistochemistry in cases with a documented history of sports exposure as well as age- and disease-matched men and women without such exposure. For cases with available frozen tissue, genetic analysis was performed for variants in APOE, MAPT, and TMEM106B. Immunohistochemistry revealed 21 of 66 former athletes had cortical tau pathology consistent with CTE. CTE pathology was not detected in 198 individuals without exposure to contact sports, including 33 individuals with documented single-incident TBI sustained from falls, motor vehicle accidents, domestic violence, or assaults. Among those exposed to contact sports, those with CTE pathology did not differ from those without CTE pathology with respect to noted clinicopathologic features. There were no significant differences in genetic variants for those with CTE pathology, but we observed a slight increase in MAPT H1 haplotype, and there tended to be fewer homozygous carriers of the protective TMEM106B rs3173615 minor allele in those with sports exposure and CTE pathology compared to those without CTE pathology. In conclusion, this study has identified a small, yet significant, subset of individuals with neurodegenerative disorders and concomitant CTE pathology. CTE pathology was only detected in individuals with documented participation in contact sports. Exposure to contact sports was the greatest risk factor for CTE pathology. Future studies addressing clinical correlates of CTE pathology are needed.
Collapse
Affiliation(s)
- Kevin F Bieniek
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA
- Mayo Graduate School, Mayo Clinic, 200 First St., Rochester, MN, 55905, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA
| | - Kerry A Cormier
- VA Boston HealthCare System, 150 South Huntington Ave, Boston, MA, 02130, USA
| | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA
| | | | - Amelia E Johnston
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA
| | - Pamela DeSaro
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA
| | - Kevin B Boylan
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA
| | - Neill R Graff-Radford
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ann C McKee
- VA Boston HealthCare System, 150 South Huntington Ave, Boston, MA, 02130, USA
- Department of Neurology and Pathology, Boston University Alzheimer's Disease Center and CTE Program, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA.
| |
Collapse
|
42
|
Neltner JH, Abner EL, Jicha GA, Schmitt FA, Patel E, Poon LW, Marla G, Green RC, Davey A, Johnson MA, Jazwinski SM, Kim S, Davis D, Woodard JL, Kryscio RJ, Van Eldik LJ, Nelson PT. Brain pathologies in extreme old age. Neurobiol Aging 2015; 37:1-11. [PMID: 26597697 DOI: 10.1016/j.neurobiolaging.2015.10.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/28/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022]
Abstract
With an emphasis on evolving concepts in the field, we evaluated neuropathologic data from very old research volunteers whose brain autopsies were performed at the University of Kentucky Alzheimer's Disease Center, incorporating data from the Georgia Centenarian Study (n = 49 cases included), Nun Study (n = 17), and University of Kentucky Alzheimer's Disease Center (n = 11) cohorts. Average age of death was 102.0 (range: 98-107) years overall. Alzheimer's disease pathology was not universal (62% with "moderate" or "frequent" neuritic amyloid plaque densities), whereas frontotemporal lobar degeneration was absent. By contrast, some hippocampal neurofibrillary tangles (including primary age-related tauopathy) were observed in every case. Lewy body pathology was seen in 16.9% of subjects and hippocampal sclerosis of aging in 20.8%. We describe anatomic distributions of pigment-laden macrophages, expanded Virchow-Robin spaces, and arteriolosclerosis among Georgia Centenarians. Moderate or severe arteriolosclerosis pathology, throughout the brain, was associated with both hippocampal sclerosis of aging pathology and an ABCC9 gene variant. These results provide fresh insights into the complex cerebral multimorbidity, and a novel genetic risk factor, at the far end of the human aging spectrum.
Collapse
Affiliation(s)
- Janna H Neltner
- Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY, USA
| | - Erin L Abner
- Department of Epidemiology, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Gregory A Jicha
- Department of Epidemiology, University of Kentucky, Lexington, KY, USA; Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Frederick A Schmitt
- Department of Epidemiology, University of Kentucky, Lexington, KY, USA; Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Ela Patel
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Leonard W Poon
- Institute of Gerontology, The University of Georgia, Athens, GA, USA
| | - Gearing Marla
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Robert C Green
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adam Davey
- Department of Epidemiology and Biostatistics, Temple University, Philadelphia, PA, USA
| | - Mary Ann Johnson
- Institute of Gerontology, The University of Georgia, Athens, GA, USA
| | - S Michal Jazwinski
- Department of Medicine, Tulane Center for Aging, Tulane University, New Orleans, LA, USA
| | - Sangkyu Kim
- Department of Medicine, Tulane Center for Aging, Tulane University, New Orleans, LA, USA
| | - Daron Davis
- Department of Pathology, Baptist Health Care, Lexington, KY, USA
| | - John L Woodard
- Department of Psychology, Wayne State University, Detroit MI, USA
| | - Richard J Kryscio
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Statistics, University of Kentucky, Lexington, KY, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
43
|
Lourenco GF, Janitz M, Huang Y, Halliday GM. Long noncoding RNAs in TDP-43 and FUS/TLS-related frontotemporal lobar degeneration (FTLD). Neurobiol Dis 2015. [DOI: 10.1016/j.nbd.2015.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
44
|
Riley DO, Robbins CA, Cantu RC, Stern RA. Chronic traumatic encephalopathy: contributions from the Boston University Center for the Study of Traumatic Encephalopathy. Brain Inj 2015; 29:154-63. [PMID: 25587744 DOI: 10.3109/02699052.2014.965215] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Chronic Traumatic Encephalopathy (CTE) is a neurodegenerative disease associated with repetitive brain trauma (RBT). Initially described in boxers, CTE has now been found in other contact sport athletes with a history of RBT. In recent years, there has been tremendous media attention regarding CTE, primarily because of the deaths of high profile American football players who were found to have CTE upon neuropathological examination. However, the study of CTE remains in its infancy. This review focuses on research from the Centre for the Study of Traumatic Encephalopathy (CSTE) at Boston University. METHODS This study reviews the formation of the CSTE, major CSTE publications and current ongoing research projects at the CSTE. RESULTS The neuropathology of CTE has been well-described. Current research focuses on: methods of diagnosing the disease during life (including the development of biomarkers), examination of CTE risk factors (including genetic susceptibility and head impact exposure variables); description of the clinical presentation of CTE; development of research diagnostic criteria for Traumatic Encephalopathy Syndrome; and assessment of mechanism and pathogenesis. CONCLUSIONS Current research at the BU CSTE is aimed at increasing understanding of the long-term consequences of repetitive head impacts and attempting to begin to answer several of the unanswered questions regarding CTE.
Collapse
Affiliation(s)
- David O Riley
- Centre for the Study of Traumatic Encephalopathy, Boston University School of Medicine , Boston, MA , USA
| | | | | | | |
Collapse
|
45
|
Serrano GE, Sabbagh MN, Sue LI, Hidalgo JA, Schneider JA, Bedell BJ, Van Deerlin VM, Suh E, Akiyama H, Joshi AD, Pontecorvo MJ, Mintun MA, Beach TG. Positive florbetapir PET amyloid imaging in a subject with frequent cortical neuritic plaques and frontotemporal lobar degeneration with TDP43-positive inclusions. J Alzheimers Dis 2015; 42:813-21. [PMID: 24927705 DOI: 10.3233/jad-140162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abnormal neuronal accumulation and modification of TAR DNA binding protein 43 (TDP-43) have recently been discovered to be defining histopathological features of particular subtypes of frontotemporal dementia and amyotrophic lateral sclerosis, and are also common in aging, particularly coexisting with hippocampal sclerosis and Alzheimer's disease pathology. This case report describes a 72 year old Hispanic male with no family history of neurological disease, who presented at age 59 with obsessive behavior, anxiety, agitation, and dysphasia. Positron emission tomography imaging using the amyloid ligand 18F florbetapir (Amyvid) was positive. Postmortem examination revealed frequent diffuse and neuritic amyloid plaques throughout the cerebral cortex, thalamus, and striatum, Braak stage II neurofibrillary degeneration, and frequent frontal and temporal cortex TDP-43-positive neurites with rare nuclear inclusions. The case is unusual and instructive because of the co-existence of frequent cortical and diencephalic amyloid plaques with extensive TDP-43-positive histopathology in the setting of early-onset dementia and because it demonstrates that a positive cortical amyloid imaging signal in a subject with dementia does not necessarily establish that Alzheimer's disease is the sole cause.
Collapse
Affiliation(s)
| | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | | | - Barry J Bedell
- Biospective Inc. and Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Eunran Suh
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
46
|
Tan RH, Kril JJ, Fatima M, McGeachie A, McCann H, Shepherd C, Forrest SL, Affleck A, Kwok JBJ, Hodges JR, Kiernan MC, Halliday GM. TDP-43 proteinopathies: pathological identification of brain regions differentiating clinical phenotypes. Brain 2015; 138:3110-22. [PMID: 26231953 DOI: 10.1093/brain/awv220] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 06/14/2015] [Indexed: 11/14/2022] Open
Abstract
The pathological sequestration of TAR DNA-binding protein 43 (TDP-43, encoded by TARDBP) into cytoplasmic pathological inclusions characterizes the distinct clinical syndromes of amyotrophic lateral sclerosis and behavioural variant frontotemporal dementia, while also co-occurring in a proportion of patients with Alzheimer's disease, suggesting that the regional concentration of TDP-43 pathology has most relevance to specific clinical phenotypes. This has been reflected in the three different pathological staging schemes for TDP-43 pathology in these different clinical syndromes, with none of these staging schemes including a preclinical phase similar to that which has proven beneficial in other neurodegenerative diseases. To apply each of these three staging schemes for TDP-43 pathology, the clinical phenotype must be known undermining the potential predictive value of the pathological examination. The present study set out to test whether a more unified approach could accurately predict clinical phenotypes based solely on the regional presence and severity of TDP-43 pathology. The selection of brain regions of interest was based on key regions routinely sampled for neuropathological assessment under current consensus criteria that have also been used in the three TDP-43 staging schemes. The severity of TDP-43 pathology in these regions of interest was assessed in four clinicopathological phenotypes: amyotrophic lateral sclerosis (n = 27, 47-78 years, 15 males), behavioural variant frontotemporal dementia (n = 15, 49-82 years, seven males), Alzheimer's disease (n = 26, 51-90 years, 11 males) and cognitively normal elderly individuals (n = 17, 80-103 years, nine males). Our results demonstrate that the presence of TDP-43 in the hypoglossal nucleus discriminates patients with amyotrophic lateral sclerosis with an accuracy of 98%. The severity of TDP-43 deposited in the anterior cingulate cortex identifies patients with behavioural variant frontotemporal dementia with an accuracy of 99%. This identification of regional pathology associated with distinct clinical phenotypes suggests key regions on which probabilistic pathological criteria, similar to those currently available for Alzheimer's disease and dementia with Lewy bodies, can be developed for TDP-43 proteinopathies. We propose and validate a simplified probabilistic statement that involves grading the presence of TDP-43 in the hypoglossal nucleus and the severity of TDP-43 in the anterior cingulate for the pathological identification of TDP-43 proteinopathy cases with clinical amyotrophic lateral sclerosis and behavioural variant frontotemporal dementia.
Collapse
Affiliation(s)
- Rachel H Tan
- 1 Neuroscience Research Australia, Sydney, Australia 2 UNSW Medicine, University of New South Wales, Sydney, Australia
| | - Jillian J Kril
- 3 Discipline of Pathology, Sydney Medical School, The University of Sydney, Australia 4 Discipline of Medicine, Sydney Medical School, The University of Sydney, Australia
| | - Manaal Fatima
- 1 Neuroscience Research Australia, Sydney, Australia 2 UNSW Medicine, University of New South Wales, Sydney, Australia 3 Discipline of Pathology, Sydney Medical School, The University of Sydney, Australia
| | - Andrew McGeachie
- 1 Neuroscience Research Australia, Sydney, Australia 2 UNSW Medicine, University of New South Wales, Sydney, Australia
| | | | - Claire Shepherd
- 1 Neuroscience Research Australia, Sydney, Australia 2 UNSW Medicine, University of New South Wales, Sydney, Australia
| | - Shelley L Forrest
- 3 Discipline of Pathology, Sydney Medical School, The University of Sydney, Australia
| | - Andrew Affleck
- 1 Neuroscience Research Australia, Sydney, Australia 2 UNSW Medicine, University of New South Wales, Sydney, Australia
| | - John B J Kwok
- 1 Neuroscience Research Australia, Sydney, Australia 2 UNSW Medicine, University of New South Wales, Sydney, Australia
| | - John R Hodges
- 1 Neuroscience Research Australia, Sydney, Australia 2 UNSW Medicine, University of New South Wales, Sydney, Australia 5 ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia
| | - Matthew C Kiernan
- 6 Brain and Mind Research Institute, Sydney Medical School, The University of Sydney, Australia
| | - Glenda M Halliday
- 1 Neuroscience Research Australia, Sydney, Australia 2 UNSW Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
47
|
Abstract
Accumulation of phosphorylated tau (p-tau) is accepted by many as a long-term consequence of repetitive mild neurotrauma based largely on brain findings in boxers (dementia pugilistica) and, more recently, former professional athletes, military service members, and others exposed to repetitive head trauma. The pathogenic construct is also largely accepted and suggests that repetitive head trauma (typically concussions or subconcussive forces) acts on brain parenchyma to produce a deleterious neuroinflammatory cascade, encompassing p-tau templating, transsynaptic neurotoxicity, progressive neurodegenerative disease, and associated clinical features. Some caution before accepting these concepts and assumptions is warranted, however. The association between the history of concussion and findings of p-tau at autopsy is unclear. Concussions and subconcussive head trauma exposure are poorly defined in available cases, and the clinical features reported in chronic traumatic encephalopathy are not at present distinguishable from other disorders. Because control groups are limited, the idea that p-tau drives the disease process via protein templating or some other mechanism is preliminary. Much additional research in chronic traumatic encephalopathy is needed to determine if it has unique neuropathology and clinical features, the extent to which the neuropathologic alterations cause the clinical features, and whether it can be identified accurately in a living person.
Collapse
|
48
|
Portbury SD, Adlard PA. Traumatic Brain Injury, Chronic Traumatic Encephalopathy, and Alzheimer’s Disease: Common Pathologies Potentiated by Altered Zinc Homeostasis. J Alzheimers Dis 2015; 46:297-311. [DOI: 10.3233/jad-143048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
McKee AC, Stein TD, Kiernan PT, Alvarez VE. The neuropathology of chronic traumatic encephalopathy. Brain Pathol 2015; 25:350-64. [PMID: 25904048 PMCID: PMC4526170 DOI: 10.1111/bpa.12248] [Citation(s) in RCA: 373] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022] Open
Abstract
Repetitive brain trauma is associated with a progressive neurological deterioration, now termed as chronic traumatic encephalopathy (CTE). Most instances of CTE occur in association with the play of sports, but CTE has also been reported in association with blast injuries and other neurotrauma. Symptoms of CTE include behavioral and mood changes, memory loss, cognitive impairment and dementia. Like many other neurodegenerative diseases, CTE is diagnosed with certainty only by neuropathological examination of brain tissue. CTE is a tauopathy characterized by the deposition of hyperphosphorylated tau (p-tau) protein as neurofibrillary tangles, astrocytic tangles and neurites in striking clusters around small blood vessels of the cortex, typically at the sulcal depths. Severely affected cases show p-tau pathology throughout the brain. Abnormalities in phosphorylated 43 kDa TAR DNA-binding protein are found in most cases of CTE; beta-amyloid is identified in 43%, associated with age. Given the importance of sports participation and physical exercise to physical and psychological health as well as disease resilience, it is critical to identify the genetic risk factors for CTE as well as to understand how other variables, such as stress, age at exposure, gender, substance abuse and other exposures, contribute to the development of CTE.
Collapse
Affiliation(s)
- Ann C. McKee
- VA Boston Healthcare SystemBoston UniversityBostonMA
- Department of Pathology and Laboratory ScienceBoston University School of MedicineBoston UniversityBostonMA
- Department of NeurologyBoston University School of MedicineBoston UniversityBostonMA
- Boston University Alzheimer's Disease CenterBoston UniversityBostonMA
- Chronic Traumatic Encephalopathy Center ProgramBoston UniversityBostonMA
| | - Thor D. Stein
- VA Boston Healthcare SystemBoston UniversityBostonMA
- Department of Pathology and Laboratory ScienceBoston University School of MedicineBoston UniversityBostonMA
- Boston University Alzheimer's Disease CenterBoston UniversityBostonMA
- Chronic Traumatic Encephalopathy Center ProgramBoston UniversityBostonMA
| | - Patrick T. Kiernan
- Department of NeurologyBoston University School of MedicineBoston UniversityBostonMA
- Chronic Traumatic Encephalopathy Center ProgramBoston UniversityBostonMA
| | - Victor E. Alvarez
- Department of NeurologyBoston University School of MedicineBoston UniversityBostonMA
- Chronic Traumatic Encephalopathy Center ProgramBoston UniversityBostonMA
| |
Collapse
|
50
|
Esopenko C, Levine B. Aging, neurodegenerative disease, and traumatic brain injury: the role of neuroimaging. J Neurotrauma 2015; 32:209-20. [PMID: 25192426 PMCID: PMC4321975 DOI: 10.1089/neu.2014.3506] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a highly prevalent condition with significant effects on cognition and behavior. While the acute and sub-acute effects of TBI recover over time, relatively little is known about the long-term effects of TBI in relation to neurodegenerative disease. This issue has recently garnered a great deal of attention due to publicity surrounding chronic traumatic encephalopathy (CTE) in professional athletes, although CTE is but one of several neurodegenerative disorders associated with a history of TBI. Here, we review the literative on neurodegenerative disorders linked to remote TBI. We also review the evidence for neuroimaging changes associated with unhealthy brain aging in the context of remote TBI. We conclude that neuroimaging biomarkers have significant potential to increase understanding of the mechanisms of unhealthy brain aging and neurodegeneration following TBI, with potential for identifying those at risk for unhealthy brain aging prior to the clinical manifestation of neurodegenerative disease.
Collapse
Affiliation(s)
- Carrie Esopenko
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Brian Levine
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
- Departments of Psychology and Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|