1
|
de Freitas RL, Acunha RM, Bendaña-Córdoba FR, Medeiros P, Melo-Thomas L, Coimbra NC. Nitric oxide-signalling affects panic-like defensive behaviour and defensive antinociception neuromodulation in the prelimbic cerebral cortex. Brain Res 2024; 1844:149134. [PMID: 39097217 DOI: 10.1016/j.brainres.2024.149134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
RATIONALE The prelimbic division (PrL) of the medial prefrontal cortex (mPFC) is a key structure in panic. OBJECTIVES To evaluate the role of nitric oxide (NO) in defensive behaviour and antinociception. METHODS Either Nω-propyl-L-arginine (NPLA) or Carboxy-PTIO was microinjected in the PrL cortex, followed by hypothalamic treatment with bicuculline. The exploratory behaviours, defensive reactions and defensive antinociception were recorded. Encephalic c-Fos protein was immunolabelled after escape behaviour. RESULTS NPLA (an inhibition of nNOs) decreased panic-like responses and innate fear-induced antinociception. The c-PTIO (a membrane-impermeable NO scavenger) decreased the escape behaviour. PrL cortex pre-treatment with c-PTIO at all doses decreased defensive antinociception. c-Fos protein was labelled in neocortical areas, limbic system, and mesencephalic structures. CONCLUSION The NPLA and c-PTIO in the PrL/mPFC decreased the escape behaviour and defensive antinociception organised by medial hypothalamic nuclei. The oriented escape behaviour recruits neocortical areas, limbic system, and mesencephalic structures. These findings suggest that the organisation of defensive antinociception recruits NO-signalling mechanisms within the PrL cortex. Furthermore, the present findings also support the role of NO as a retrograde messenger in the PrL cortex during panic-like emotional reactions.
Collapse
Affiliation(s)
- Renato Leonardo de Freitas
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Institute of Neuroscience and Behaviour (INeC) Ophidiarium, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901, Brazil; Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy; Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Str. Gabriel Monteiro da Silva, 700, Alfenas, 37130-000 Minas Gerais (MG), Brazil.
| | - Renata Moreira Acunha
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Fernando René Bendaña-Córdoba
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Priscila Medeiros
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Department of General and Specialized Nursing, University of São Paulo at Ribeirão Preto College of Nursing (EERP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Liana Melo-Thomas
- Marburg Centre for Mind, Brain, and Behaviour (MCMBB) of the Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany; Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, D-35032 Marburg, Germany
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Institute of Neuroscience and Behaviour (INeC) Ophidiarium, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901, Brazil.
| |
Collapse
|
2
|
Alaniz L, Shams A, Sayadi L, Pakvasa M, Stulginski A, Cordero J, Prabhakar N, Wang E. Modernizing ED Care: Virtual Reality Enhances the Patient Experience during Minor Wide-awake Hand Procedures. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5790. [PMID: 38706467 PMCID: PMC11068151 DOI: 10.1097/gox.0000000000005790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/12/2024] [Indexed: 05/07/2024]
Abstract
Background Minor procedures in the emergency department (ED) can be distressing for patients. The emergence of virtual reality (VR) offers a promising new tool by immersing patients in an engaging three-dimensional world. Prior studies have shown VR's effectiveness during procedures in reducing pain, anxiety, and procedure duration but have not assessed its efficacy in the ED. This study aims to evaluate the efficacy of VR in managing pain and anxiety during ED minor hand procedures. Methods This was a prospective, interventional study at a level I trauma center examining adult patients requiring minor hand procedures. Patients were provided the Oculus Quest 2 VR headset, offering various immersive three-dimensional experiences. Pre- and postprocedure surveys assessed previous VR use, anxiety and pain levels, VR efficacy, and possible adverse effects. Responses were rated on a 10-point Likert scale with paired t tests used to compare scores. Results The study included sixteen patients, seven of whom were first-time VR users. Patients experienced a significant decrease in both anxiety and pain levels. Survey results indicated overall benefits from VR in several aspects, with no adverse effects reported, and unanimous patient recommendation of the VR experience to others. Conclusions VR is an effective tool to optimize the patient experience during ED hand procedures. The study observed a significant decrease in anxiety and a declining trend in pain levels. Patients believed VR helped manage their pain and would recommend it to others. Given the benefits and high safety profile, VR should become a standard offering in ED minor hand procedures.
Collapse
Affiliation(s)
- Leonardo Alaniz
- From the School of Medicine, University of California Irvine, Irvine, Calif
- Department of Plastic Surgery, University of California Irvine Medical Center, Orange, Calif
| | - Abtin Shams
- Department of Plastic Surgery, University of California Irvine Medical Center, Orange, Calif
| | - Lohrasb Sayadi
- Department of Plastic Surgery, University of California Irvine Medical Center, Orange, Calif
| | - Mikhail Pakvasa
- Department of Plastic Surgery, University of California Irvine Medical Center, Orange, Calif
| | - Avril Stulginski
- From the School of Medicine, University of California Irvine, Irvine, Calif
| | - Justin Cordero
- University of California Riverside, School of Medicine, Riverside, Calif
| | - Nikhil Prabhakar
- Department of Plastic Surgery, University of California Irvine Medical Center, Orange, Calif
| | - Eric Wang
- Department of Plastic Surgery, University of California Irvine Medical Center, Orange, Calif
- Plastic Surgery, Long Beach Veterans Affairs, Long Beach, Calif
| |
Collapse
|
3
|
Zhuang Y, Zhao K, Fu X. The temporal effect of uncertain context on the perceptual processing of painful and non-painful stimulation. Biol Psychol 2024; 185:108729. [PMID: 38092220 DOI: 10.1016/j.biopsycho.2023.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Uncertainty has been demonstrated to influence the perception of noxious stimuli, but little is known about the effects of prolonged uncertain contexts on the perception of painful and non-painful stimuli. To address this knowledge gap, the present study utilized a cue-based NPU-threat task, where uncertain and certain trials were separated into distinct blocks. The objective was to investigate the impact of uncertain contexts on the temporal dynamics of electroencephalogram (EEG) activity during the processing of painful and non-painful stimuli. The results revealed that the influence of uncertain contexts on neural responses extends beyond painful trials and is also evident in non-painful trials. In uncertain contexts, it has been observed that painful stimuli elicit larger P2 amplitudes and late beta band (13-30 Hz) event-related desynchronization (ERD) around 500-700 ms. However, in certain contexts, painful stimuli evoke stronger late gamma band (50-70 Hz) event-related synchronization (ERS) around 600-700 ms. For non-painful trials, in uncertain contexts, significantly higher amplitudes of the late positive potential (LPP) component and delta-theta band (2-7 Hz) ERS were observed compared to certain non-painful stimuli. These findings demonstrate that uncertain contexts exert a significant impact on the processing of both painful and non-painful stimuli, and this influence is mediated by distinct neural mechanisms.
Collapse
Affiliation(s)
- Yun Zhuang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaolan Fu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Noseda R, Villanueva L. Central generators of migraine and autonomic cephalalgias as targets for personalized pain management: Translational links. Eur J Pain 2023; 27:1126-1138. [PMID: 37421221 PMCID: PMC10979820 DOI: 10.1002/ejp.2158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Migraine oscillates between different states in association with internal homeostatic functions and biological rhythms that become more easily dysregulated in genetically susceptible individuals. Clinical and pre-clinical data on migraine pathophysiology support a primary role of the central nervous system (CNS) through 'dysexcitability' of certain brain networks, and a critical contribution of the peripheral sensory and autonomic signalling from the intracranial meningeal innervation. This review focuses on the most relevant back and forward translational studies devoted to the assessment of CNS dysfunctions involved in primary headaches and discusses the role they play in rendering the brain susceptible to headache states. METHODS AND RESULTS We collected a body of scientific literature from human and animal investigations that provide a compelling perspective on the anatomical and functional underpinnings of the CNS in migraine and trigeminal autonomic cephalalgias. We focus on medullary, hypothalamic and corticofugal modulation mechanisms that represent strategic neural substrates for elucidating the links between trigeminovascular maladaptive states, migraine triggering and the temporal phenotype of the disease. CONCLUSION It is argued that a better understanding of homeostatic dysfunctional states appears fundamental and may benefit the development of personalized therapeutic approaches for improving clinical outcomes in primary headache disorders. SIGNIFICANCE This review focuses on the most relevant back and forward translational studies showing the crucial role of top-down brain modulation in triggering and maintaining primary headache states and how these central dysfunctions may interact with personalized pain management strategies.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Luis Villanueva
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris-Cité, Team Imaging Biomarkers of Brain Disorders (IMA-Brain), INSERM U1266, Paris, France
| |
Collapse
|
5
|
Bannister K, Hughes S. One size does not fit all: towards optimising the therapeutic potential of endogenous pain modulatory systems. Pain 2023; 164:e5-e9. [PMID: 35594517 PMCID: PMC9756434 DOI: 10.1097/j.pain.0000000000002697] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Kirsty Bannister
- Central Modulation of Pain Lab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sam Hughes
- Pain Modulation Lab, Brain Research, and Imaging Centre (BRIC), School of Psychology, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
6
|
Stress-induced hyperalgesia instead of analgesia in patients with chronic musculoskeletal pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 13:100110. [PMID: 36561877 PMCID: PMC9764253 DOI: 10.1016/j.ynpai.2022.100110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Many individuals with chronic musculoskeletal pain (CMP) show impairments in their pain-modulatory capacity. Although stress plays an important role in chronic pain, it is not known if stress-induced analgesia (SIA) is affected in patients with CMP. We investigated SIA in 22 patients with CMP and 18 pain-free participants. Pain thresholds, pain tolerance and suprathreshold pain ratings were examined before and after a cognitive stressor that typically induces pain reduction (SIA). Whereas the controls displayed a significant increase in pain threshold in response to the stressor, the patients with CMP showed no analgesia. In addition, increased pain intensity ratings after the stressor indicated hyperalgesia (SIH) in the patients with CMP compared to controls. An exploratory analysis showed no significant association of SIA or SIH with spatial pain extent. We did not observe significant changes in pain tolerance or pain unpleasantness ratings after the stressor in patients with CMP or controls. Our data suggest that altered stress-induced pain modulation is an important mechanism involved in CMP. Future studies need to clarify the psychobiological mechanisms of these stress-induced alterations in pain processing and determine the role of contributing factors such as early childhood trauma, catastrophizing, comorbidity with mental disorders and genetic predisposition.
Collapse
|
7
|
Lee JY, You T, Lee CH, Im GH, Seo H, Woo CW, Kim SG. Role of anterior cingulate cortex inputs to periaqueductal gray for pain avoidance. Curr Biol 2022; 32:2834-2847.e5. [PMID: 35609604 DOI: 10.1016/j.cub.2022.04.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/07/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022]
Abstract
Although pain-related excessive fear is known to be a key factor in chronic pain disability, which involves the anterior cingulate cortex (ACC), little is known about the downstream circuits of the ACC for fear avoidance in pain processing. Using behavioral experiments and functional magnetic resonance imaging with optogenetics at 15.2 T, we demonstrate that the ACC is a part of the abnormal circuit changes in chronic pain and its downstream circuits are closely related to modulating sensorimotor integration and generating active movement rather than carrying sensory information. The projection from the ACC to the dorsolateral and lateral parts of the periaqueductal gray (dl/lPAG) especially enhances both reflexive and active avoidance behavior toward pain. Collectively, our results indicate that increased signals from the ACC to the dl/lPAG might be critical for excessive fear avoidance in chronic pain disability.
Collapse
Affiliation(s)
- Jeong-Yun Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea.
| | - Taeyi You
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choong-Hee Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Heewon Seo
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea; Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44704, USA
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
8
|
Seamans JK, Floresco SB. Event-based control of autonomic and emotional states by the anterior cingulate cortex. Neurosci Biobehav Rev 2021; 133:104503. [PMID: 34922986 DOI: 10.1016/j.neubiorev.2021.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/25/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022]
Abstract
Despite being an intensive area of research, the function of the anterior cingulate cortex (ACC) remains somewhat of a mystery. Human imaging studies implicate the ACC in various cognitive functions, yet surgical ACC lesions used to treat emotional disorders have minimal lasting effects on cognition. An alternative view is that ACC regulates autonomic states, consistent with its interconnectivity with autonomic control regions and that stimulation evokes changes in autonomic/emotional states. At the cellular level, ACC neurons are highly multi-modal and promiscuous, and can represent a staggering array of task events. These neurons nevertheless combine to produce highly event-specific ensemble patterns that likely alter activity in downstream regions controlling emotional and autonomic tone. Since neuromodulators regulate the strength of the ensemble activity patterns, they would regulate the impact these patterns have on downstream targets. Through these mechanisms, the ACC may determine how strongly to react to the very events its ensembles represent. Pathologies arise when specific event-related representations gain excessive control over autonomic/emotional states.
Collapse
Affiliation(s)
- Jeremy K Seamans
- Depts. of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6B2T5, Canada.
| | - Stan B Floresco
- Depts. of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6B2T5, Canada
| |
Collapse
|
9
|
McPhee ME, Graven-Nielsen T. Medial Prefrontal High-Definition Transcranial Direct Current Stimulation to Improve Pain Modulation in Chronic Low Back Pain: A Pilot Randomized Double-blinded Placebo-Controlled Crossover Trial. THE JOURNAL OF PAIN 2021; 22:952-967. [PMID: 33676009 DOI: 10.1016/j.jpain.2021.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Chronic low back pain (CLBP) is highly disabling, but often without identifiable source. Focus has been on impaired anti-nociceptive mechanisms contributing to pain maintenance, though methods of targeting this impairment remain limited. This randomised-controlled cross-over pilot trial used active versus sham medial prefrontal cortex (mPFC) high-definition transcranial direct current stimulation (HD-tDCS) for 3-consecutive days to improve descending pain inhibitory function. Twelve CLBP patients were included with an average visual analogue scale (VAS) pain intensity of 3.0 ± 1.5 and pain duration of 5.3 ± 2.6 years. Pressure pain thresholds (PPTs), conditioned pain modulation (CPM), and temporal summation of pain (TSP) assessed by cuff algometry, as well as pain symptomatology (intensity, unpleasantness, quality, disability) and related psychological features (pain catastrophizing, anxiety, affect), were assessed on Day1 before 3 consecutive days of HD-tDCS sessions (each 20 minutes), at 24-hours (Day 4) and 2-weeks (Day 21) following final HD-tDCS. Blinding was successful. No significant differences in psychophysical (PPT, CPM, TSP), symptomatology or psychological outcomes were observed between active and sham HD-tDCS on Day4 and Day21. CPM-effects at Day 1 negatively correlated with change in CPM-effect at Day4 following active HD-tDCS (P = .002). Lack of efficacy was attributed to several factors, not least that patients did not display impaired CPM at baseline. TRIAL REGISTRATION: : ClinicalTrials.gov (NCT03864822). PERSPECTIVE: Medial prefrontal HD-tDCS did not alter pain, psychological nor psychophysical outcomes, though correlational analysis suggested response may depend on baseline pain inhibitory efficacy, with best potential effects in patients with severe impairments in descending pain inhibitory mechanisms. Future work should focus on appropriate patient selection and optimising stimulation targeting.
Collapse
Affiliation(s)
- Megan E McPhee
- Center for Neuroplasticity and Pain (CNAP), Aalborg University, Denmark
| | | |
Collapse
|
10
|
Schmitgen A, Saal J, Sankaran N, Desai M, Joseph I, Starr P, Chang EF, Shirvalkar P. Musical Hallucinations in Chronic Pain: The Anterior Cingulate Cortex Regulates Internally Generated Percepts. Front Neurol 2021; 12:669172. [PMID: 34017308 PMCID: PMC8129573 DOI: 10.3389/fneur.2021.669172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
The anterior cingulate cortex (ACC) has been extensively implicated in the functional brain network underlying chronic pain. Electrical stimulation of the ACC has been proposed as a therapy for refractory chronic pain, although, mechanisms of therapeutic action are still unclear. As stimulation of the ACC has been reported to produce many different behavioral and perceptual responses, this region likely plays a varied role in sensory and emotional integration as well as modulating internally generated perceptual states. In this case series, we report the emergence of subjective musical hallucinations (MH) after electrical stimulation of the ACC in two patients with refractory chronic pain. In an N-of-1 analysis from one patient, we identified neural activity (local field potentials) that distinguish MH from both the non-MH condition and during a task involving music listening. Music hallucinations were associated with reduced alpha band activity and increased gamma band activity in the ACC. Listening to similar music was associated with different changes in ACC alpha and gamma power, extending prior results that internally generated perceptual phenomena are supported by circuits in the ACC. We discuss these findings in the context of phantom perceptual phenomena and posit a framework whereby chronic pain may be interpreted as a persistent internally generated percept.
Collapse
Affiliation(s)
- Ashlyn Schmitgen
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
| | - Jeremy Saal
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
| | - Narayan Sankaran
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Maansi Desai
- Department of Speech, Language, and Hearing Science, University of Texas at Austin, Austin, TX, United States
| | - Isabella Joseph
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
| | - Philip Starr
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Edward F. Chang
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Prasad Shirvalkar
- Division of Pain Medicine, Department of Anesthesiology and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
- UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
11
|
Xiao X, Ding M, Zhang YQ. Role of the Anterior Cingulate Cortex in Translational Pain Research. Neurosci Bull 2021; 37:405-422. [PMID: 33566301 PMCID: PMC7954910 DOI: 10.1007/s12264-020-00615-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
As the most common symptomatic reason to seek medical consultation, pain is a complex experience that has been classified into different categories and stages. In pain processing, noxious stimuli may activate the anterior cingulate cortex (ACC). But the function of ACC in the different pain conditions is not well discussed. In this review, we elaborate the commonalities and differences from accumulated evidence by a variety of pain assays for physiological pain and pathological pain including inflammatory pain, neuropathic pain, and cancer pain in the ACC, and discuss the cellular receptors and signaling molecules from animal studies. We further summarize the ACC as a new central neuromodulation target for invasive and non-invasive stimulation techniques in clinical pain management. The comprehensive understanding of pain processing in the ACC may lead to bridging the gap in translational research between basic and clinical studies and to develop new therapies.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Institute of Science and Technology for Brain-Inspired Intelligence, Behavioral and Cognitive Neuroscience Center, Fudan University, Shanghai, 200433, China.
| | - Ming Ding
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Institute of Science and Technology for Brain-Inspired Intelligence, Behavioral and Cognitive Neuroscience Center, Fudan University, Shanghai, 200433, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science; Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Cortical Modulation of Nociception. Neuroscience 2021; 458:256-270. [PMID: 33465410 DOI: 10.1016/j.neuroscience.2021.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/28/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Nociception is the neuronal process of encoding noxious stimuli and could be modulated at peripheral, spinal, brainstem, and cortical levels. At cortical levels, several areas including the anterior cingulate cortex (ACC), prefrontal cortex (PFC), ventrolateral orbital cortex (VLO), insular cortex (IC), motor cortex (MC), and somatosensory cortices are involved in nociception modulation through two main mechanisms: (i) a descending modulatory effect at spinal level by direct corticospinal projections or mostly by activation of brainstem structures (i.e. periaqueductal grey matter (PAG), locus coeruleus (LC), the nucleus of raphe (RM) and rostroventral medulla (RVM)); and by (ii) cortico-cortical or cortico-subcortical interactions. This review summarizes evidence related to the participation of the aforementioned cortical areas in nociception modulation and different neurotransmitters or neuromodulators that have been studied in each area. Besides, we point out the importance of considering intracortical neuronal populations and receptors expression, as well as, nociception-induced cortical changes, both functional and connectional, to better understand this modulatory effect. Finally, we discuss the possible mechanisms that could potentiate the use of cortical stimulation as a promising procedure in pain alleviation.
Collapse
|
13
|
Mills EP, Akhter R, Di Pietro F, Murray GM, Peck CC, Macey PM, Henderson LA. Altered Brainstem Pain Modulating Circuitry Functional Connectivity in Chronic Painful Temporomandibular Disorder. THE JOURNAL OF PAIN 2020; 22:219-232. [PMID: 32896638 DOI: 10.1016/j.jpain.2020.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 08/12/2020] [Accepted: 08/22/2020] [Indexed: 11/29/2022]
Abstract
There is evidence from preclinical models of chronic pain and human psychophysical investigations to suggest that alterations in endogenous brainstem pain-modulation circuit functioning are critical for the initiation and/or maintenance of pain. Whilst preclinical models have begun to explore the functioning of this circuitry in chronic pain, little is known about such functioning in humans with chronic pain. The aim of this investigation was to determine whether individuals with chronic non-neuropathic pain, painful temporomandibular disorders (TMD), display alterations in brainstem pain-modulating circuits. Using resting-state functional magnetic resonance imaging, we performed static and dynamic functional connectivity (FC) analyses to assess ongoing circuit function in 16 TMD and 45 control subjects. We calculated static FC as the correlation of functional magnetic resonance imaging signals between regions over the entire scan and dynamic FC as the correlation of signals in short (50s) windows. Compared with controls, TMD subjects showed significantly greater (static) FC between the rostral ventromedial medulla and both the subnucleus reticularis dorsalis and the region that receives orofacial nociceptive afferents, the spinal trigeminal nucleus. No differences were found in other brainstem pain-modulating regions such as the midbrain periaqueductal gray matter and locus coeruleus. We also identified that TMD subjects experience greater variability in the dynamic functional connections between the rostral ventromedial medulla and both the subnucleus reticularis dorsalis and spinal trigeminal nucleus. These changes may underlie enhanced descending pain-facilitating actions over the region that receives nociceptive afferents, ultimately leading to enhanced nociceptive transmission to higher brain regions and thus contributing to the ongoing perception of pain. PERSPECTIVE: Psychophysical studies suggest that brainstem pain-modulation circuits contribute to the maintenance of chronic pain. We report that individuals with painful TMD display altered static and dynamic FC within the brainstem pain-modulation network. Modifying this circuitry may alter an individual's ongoing pain.
Collapse
Affiliation(s)
- Emily P Mills
- Department of Anatomy and Histology, University of Sydney, Sydney, New South Wales, Australia
| | - Rahena Akhter
- Sydney Dental School, University of Sydney, Sydney, New South Wales, Australia
| | - Flavia Di Pietro
- Department of Anatomy and Histology, University of Sydney, Sydney, New South Wales, Australia
| | - Greg M Murray
- Sydney Dental School, University of Sydney, Sydney, New South Wales, Australia
| | - Chris C Peck
- Sydney Dental School, University of Sydney, Sydney, New South Wales, Australia
| | - Paul M Macey
- UCLA School of Nursing and Brain Research Institute, University of California, Los Angeles, California
| | - Luke A Henderson
- Department of Anatomy and Histology, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
14
|
Supraspinal Opioid Circuits Differentially Modulate Spinal Neuronal Responses in Neuropathic Rats. Anesthesiology 2020; 132:881-894. [PMID: 31977518 DOI: 10.1097/aln.0000000000003120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The anterior cingulate cortex and central nucleus of the amygdala connect widely with brainstem nuclei involved in descending modulation, including the rostral ventromedial medulla. Endogenous opioids in these circuits participate in pain modulation. The hypothesis was that a differential opioidergic role for the brain nuclei listed in regulation of spinal neuronal responses because separable effects on pain behaviors in awake animals were previously observed. METHODS This study utilized in vivo electrophysiology to determine the effects of morphine microinjection into the anterior cingulate cortex, right or left central nucleus of the amygdala, or the rostral ventromedial medulla on spinal wide dynamic range neuronal responses in isoflurane-anesthetized, male Sprague-Dawley rats. Ongoing activity in the ventrobasal thalamus was also measured. In total, 33 spinal nerve ligated and 26 control age- and weight-matched control rats were used. RESULTS Brainstem morphine reduced neuronal firing to 60-g von Frey stimulation in control rats (to 65 ± 12% of control response (means ± 95% CI), P < 0.001) with a greater inhibition in neuropathic rats (to 53 ± 17% of control response, P < 0.001). Contrasting anterior cingulate cortex morphine had only marginal modulatory effects on spinal neuronal responses with limited variance in effect between control and neuropathic rats. The inhibitory effects of morphine in the central nucleus of the amygdala were dependent on pain state and laterality; only right-side morphine reduced neuronal firing to 60-g stimulation in neuropathic rats (to 65 ± 14% of control response, P = 0.001). In addition, in neuropathic rats elevated ongoing neuronal activity in the ventral posterolateral thalamus was not inhibited by anterior cingulate cortex morphine, in contrast to evoked responses. CONCLUSIONS Cumulatively the data support opioid modulation of evoked responses predominately through a lateralized output from the right amygdala, as well as from the brainstem that is enhanced in injured conditions. Minimal modulation of dorsal horn responses was observed after anterior cingulate cortex opioid administration regardless of injury state.
Collapse
|
15
|
Abstract
While the acute sensation of pain is protective, signaling the presence of actual or potential bodily harm, its persistence is unpleasant. When pain becomes chronic, it has limited evolutionarily advantage. Despite the differing nature of acute and chronic pain, a common theme is that sufferers seek pain relief. The possibility to medicate pain types as varied as a toothache or postsurgical pain reflects the diverse range of mechanism(s) by which pain-relieving "analgesic" therapies may reduce, eliminate, or prevent pain. Systemic application of an analgesic able to cross the blood-brain barrier can result in pain modulation via interaction with targets at different sites in the central nervous system. A so-called supraspinal mechanism of action indicates manipulation of a brain-defined circuitry. Pre-clinical studies demonstrate that, according to the brain circuitry targeted, varying therapeutic pain-relieving effects may be observed that relate to an impact on, for example, sensory and/or affective qualities of pain. In many cases, this translates to the clinic. Regardless of the brain circuitry manipulated, modulation of brain processing often directly impacts multiple aspects of nociceptive transmission, including spinal neuronal signaling. Consideration of supraspinal mechanisms of analgesia and ensuing pain relief must take into account nonbrain-mediated effects; therefore, in this review, the supraspinally mediated analgesic actions of opioidergic, anti-convulsant, and anti-depressant drugs are discussed. The persistence of poor treatment outcomes and/or side effect profiles of currently used analgesics highlight the need for the development of novel therapeutics or more precise use of available agents. Fully uncovering the complex biology of nociception, as well as currently used analgesic mechanism(s) and site(s) of action, will expedite this process.
Collapse
Affiliation(s)
- K Bannister
- Department of Pharmacology and Therapeutics, Institute of Psychiatry, Psychology and Neuroscience, Wolfson CARD, Guy's Campus, King's College London, London, SE1 1UL, UK.
| | - A H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| |
Collapse
|
16
|
Peng W, Huang X, Liu Y, Cui F. Predictability modulates the anticipation and perception of pain in both self and others. Soc Cogn Affect Neurosci 2020; 14:747-757. [PMID: 31236566 PMCID: PMC6778834 DOI: 10.1093/scan/nsz047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/02/2019] [Accepted: 06/17/2019] [Indexed: 01/28/2023] Open
Abstract
Predictability has been suggested to modulate both the anticipation and perception of self-pain. Considering the overlapping neural circuits between self-pain and other-pain perceptions, the present study investigated how the predictability of forthcoming pain modulates the anticipation and perception of self-pain and other-pain. We used a balanced, within-participant experimental design in which a visual cue indicating the recipient, intensity and predictability of an upcoming painful electrical stimulation was presented before its delivery. Subjective ratings and electroencephalography activities to the anticipation and perception of self-pain and other-pain were recorded and compared between certain and uncertain conditions. Results showed that predictability affected the perception of self-pain and other-pain in a similar manner such that the differences in behavioral ratings and event-related potentials to high-intensity and low-intensity pain were significantly reduced when the intensity was uncertain. The strengths of predictability-induced modulation of self-pain and other-pain perceptions were positively correlated with each other. Furthermore, predictability also modulated the anticipation of both self-pain and other-pain such that pre-stimulus high-frequency α-oscillation power at sensorimotor electrodes contralateral to the stimulation side was maximally suppressed when anticipating certain high-intensity pain. These findings demonstrate that predictability-induced modulation on pain anticipation and perception was similarly applied to both self-pain and other-pain.
Collapse
Affiliation(s)
- Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoxuan Huang
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Yang Liu
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Fang Cui
- School of Psychology, Shenzhen University, Shenzhen, 518060, China.,Center for Brain Disorders and Cognitive Neuroscience, Shenzhen, 518060, China.,Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
17
|
Liu J, Chen L, Tu Y, Chen X, Hu K, Tu Y, Lin M, Xie G, Chen S, Huang J, Liu W, Wu J, Xiao T, Wilson G, Lang C, Park J, Tao J, Kong J. Different exercise modalities relieve pain syndrome in patients with knee osteoarthritis and modulate the dorsolateral prefrontal cortex: A multiple mode MRI study. Brain Behav Immun 2019; 82:253-263. [PMID: 31472246 DOI: 10.1016/j.bbi.2019.08.193] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/08/2019] [Accepted: 08/27/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Knee osteoarthritis (KOA) is a common degenerative joint disease with no satisfactory intervention. Recently, both physical and mindfulness exercises have received considerable attention for their implications in KOA pain management, and the dorsolateral prefrontal cortex (DLPFC) has displayed a critical role in pain modulation. This study aimed to comparatively investigate the modulation effects of different exercises using multidisciplinary measurements. METHODS 140 KOA patients were randomized into Tai Chi, Baduanjin, stationary cycling, or health education control groups for 12 weeks. Knee Injury and Osteoarthritis Outcome Score (KOOS), resting state functional magnetic resonance imaging (fMRI), structural MRI, and serum biomarkers were measured at baseline and at the end of the study. RESULTS We found: 1) increased KOOS pain subscores (pain reduction) and serum programmed cell death protein 1 (PD-1) levels in the three exercise groups compared to the control group; 2) decreased resting state functional connectivity (rsFC) of the DLPFC-supplementary motor area (SMA) and increased rsFC between the DLPFC and anterior cingulate cortex in all exercise groups compared to the control group; 3) significant associations between DLPFC-SMA rsFC with KOOS pain subscores and serum PD-1 levels at baseline; 4) significantly increased grey matter volume in the SMA in the Tai Chi and stationary cycling groups, and a trend toward significant increase in the Baduanjin group compared to the control group; 5) significant DLPFC rsFC differences among different exercise groups; and 6) that baseline DLPFC-SMA rsFC can predict the effect of mind-body exercise on pain improvement in KOA. CONCLUSION Our results suggest that different exercises can modulate both common and unique DLPFC (cognitive control) pathways, and altered DLPFC-SMA rsFC is associated with serum biomarker levels. Our findings also highlight the potentials of neuroimaging biomarkers in predicting the therapeutic effect of mind-body exercises on KOA pain.
Collapse
Affiliation(s)
- Jiao Liu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yiheng Tu
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Xiangli Chen
- Department of Rehabilitation Psychology and Special Education, University of Wisconsin-Madison, 53706, USA
| | - Kun Hu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Youxue Tu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Meiqin Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Guanli Xie
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Shanjia Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jinsong Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Tianshen Xiao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Georgia Wilson
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Courtney Lang
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Joel Park
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Jing Tao
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
18
|
Patel R, Dickenson AH. A study of cortical and brainstem mechanisms of diffuse noxious inhibitory controls in anaesthetised normal and neuropathic rats. Eur J Neurosci 2019; 51:952-962. [PMID: 31518451 PMCID: PMC7079135 DOI: 10.1111/ejn.14576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 12/30/2022]
Abstract
Diffuse noxious inhibitory controls (DNIC) are a mechanism of endogenous descending pain modulation and are deficient in a large proportion of chronic pain patients. However, the pathways involved remain only partially determined with several cortical and brainstem structures implicated. This study examined the role of the dorsal reticular nucleus (DRt) and infralimbic (ILC) region of the medial prefrontal cortex in DNIC. In vivo electrophysiology was performed to record from dorsal horn lamina V/VI wide dynamic range neurones with left hind paw receptive fields in anaesthetised sham‐operated and L5/L6 spinal nerve‐ligated (SNL) rats. Evoked neuronal responses were quantified in the presence and absence of a conditioning stimulus (left ear clamp). In sham rats, DNIC were reproducibly recruited by a heterotopically applied conditioning stimulus, an effect that was absent in neuropathic rats. Intra‐DRt naloxone had no effect on spinal neuronal responses to dynamic brush, punctate mechanical, evaporative cooling and heat stimuli in sham and SNL rats. In addition, intra‐DRt naloxone blocked DNIC in sham rats, but had no effect in SNL rats. Intra‐ILC lidocaine had no effect on spinal neuronal responses to dynamic brush, punctate mechanical, evaporative cooling and heat stimuli in sham and SNL rats. However, differential effects were observed in relation to the expression of DNIC; intra‐ILC lidocaine blocked activation of DNIC in sham rats but restored DNIC in SNL rats. These data suggest that the ILC is not directly involved in mediating DNIC but can modulate its activation and that DRt involvement in DNIC requires opioidergic signalling.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
19
|
Lv Q, Wu F, Gan X, Yang X, Zhou L, Chen J, He Y, Zhang R, Zhu B, Liu L. The Involvement of Descending Pain Inhibitory System in Electroacupuncture-Induced Analgesia. Front Integr Neurosci 2019; 13:38. [PMID: 31496944 PMCID: PMC6712431 DOI: 10.3389/fnint.2019.00038] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic pain is a major health problem, which can impair quality of life and reduce productivity. Electroacupuncture (EA), a modality of medicine based on the theories of Traditional Chinese Medicine (TCM), presents great therapeutic effects on chronic pain. Its clinical application has gained increasing popularity, and in parallel, more research has been performed on the mechanisms of EA-induced analgesia. The past decades have seen enormous advances both in neuronal circuitry of needle-insertion and in its molecular mechanism. EA may block pain by activating the descending pain inhibitory system, which originates in the brainstem and terminates at the spinal cord. This review article synthesizes corresponding studies to elucidate how EA alleviate pain via the mediation of this descending system. Much emphasis has been put on the implication of descending serotonergic and noradrenergic pathways in the process of pain modulation. Also, other important transmitters and supraspinal regions related to analgesic effects of EA have been demonstrated. Finally, it should be noticed that there exist some shortcomings involved in the animal experimental designed for EA, which account for conflicting results obtained by different studies.
Collapse
Affiliation(s)
- Qiuyi Lv
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Fengzhi Wu
- Journal Center of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiulun Gan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqin Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zhou
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Chen
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yinjia He
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Rong Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Bixiu Zhu
- Department of Nephrology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Lanying Liu
- Department of Nephrology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
20
|
Peng W, Peng H, Lu J, Fan B, Cui F. Others' Pain Appraisals Modulate the Anticipation and Experience of Subsequent Pain. Neuroscience 2019; 410:16-28. [PMID: 31078688 DOI: 10.1016/j.neuroscience.2019.04.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
The present study investigated how pain appraisals from other individuals modulated self-pain anticipation and perception. Appraisals of pain intensity from 10 other individuals were presented before the participants received identical electrical pain stimulation themselves. In reality, the presented other's pain appraisals, with either low or high in mean and variance, were generated by the experimenter, and were randomly paired with the subsequent electrical stimulation at either low or high intensity. Specifically, the mean and variance of others' pain appraisals were manipulated to induce participants' expectation and certainty to the upcoming pain. Subjective ratings of pain intensity and electroencephalographic (EEG) responses to the electrical stimulation, as well as anticipatory EEG activities measured prior to the onset of electrical stimulation, were compared. Results showed that the mean and variance of others' pain appraisal modulated the subjective pain ratings and the affective-motivational P2 responses elicited by the electrical stimulation, as well as anticipatory sensorimotor α-oscillation measured before the onset of pain stimulation. When the mean of others' pain appraisal was low, higher variance suppressed the sensorimotor α-oscillations and enhanced subsequent pain perception. In contrast, when the mean was high, the higher variance enhanced sensorimotor α-oscillations and suppressed subsequent pain perception. These results demonstrated that others' pain appraisals can modulate both of the anticipation and perception of first-hand pain. It also suggested that the top-down modulation of others' pain appraisals on pain perception could be partially driven by the different brain states during the anticipation stage, as captured by the prestimulus sensorimotor α-oscillations.
Collapse
Affiliation(s)
- Weiwei Peng
- College of Psychology, Shenzhen University, Shenzhen, China
| | - Huini Peng
- College of Psychology, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, China
| | - Juanzhi Lu
- College of Psychology, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, China
| | - Bi Fan
- College of Management, Shenzhen University, Shenzhen, China
| | - Fang Cui
- College of Psychology, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, China.
| |
Collapse
|
21
|
Xiao X, Zhang YQ. A new perspective on the anterior cingulate cortex and affective pain. Neurosci Biobehav Rev 2018; 90:200-211. [DOI: 10.1016/j.neubiorev.2018.03.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 12/24/2022]
|
22
|
Solstrand Dahlberg L, Linnman CN, Lee D, Burstein R, Becerra L, Borsook D. Responsivity of Periaqueductal Gray Connectivity Is Related to Headache Frequency in Episodic Migraine. Front Neurol 2018; 9:61. [PMID: 29487563 PMCID: PMC5816750 DOI: 10.3389/fneur.2018.00061] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/24/2018] [Indexed: 01/17/2023] Open
Abstract
Migraineurs show hypersensitivity to sensory stimuli at various stages throughout the migraine cycle. A number of putative processes have been implicated including a dysfunction in the descending pain modulatory system in which the periaqueductal gray (PAG) is considered to play a crucial role. Recurring migraine attacks could progressively perturb this system, lowering the threshold for future attacks, and contribute to disease chronification. Here, we investigated PAG connectivity with other brain regions during a noxious thermal stimulus to determine changes in migraineurs, and associations with migraine frequency. 21 episodic migraine patients and 22 matched controls were included in the study. During functional MRI, a thermode was placed on the subjects' temple delivering noxious and non-noxious heat stimuli. A psychophysiological interaction (PPI) analysis was carried out to examine pain-induced connectivity of the PAG with other brain regions. The PPI analysis showed increased PAG connectivity with the S1 face representation area and the supplementary motor area, an area involved with pain expectancy, in patients with higher frequency of migraine attacks. PAG connectivity with regions involved with the descending pain modulatory system (i.e., prefrontal cortex) was decreased in the migraineurs versus healthy individuals. Our results suggest that high frequency migraineurs may have diminished resistance to cephalic pain and a less efficient inhibitory pain modulatory response to external stressor (i.e., noxious heat). The findings support the notion that in migraine there is less effective pain modulation (viz., decreased pain inhibition or increased pain facilitation), potentially contributing to increased occurrence of attacks/chronification of migraine.
Collapse
Affiliation(s)
- Linda Solstrand Dahlberg
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Clas N Linnman
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Danielle Lee
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States
| | - Rami Burstein
- Department of Anesthesiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Lino Becerra
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - David Borsook
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Liu Y, Wang L, Lao J, Zhao X. Changes in microRNA expression in the brachial plexus avulsion model of neuropathic pain. Int J Mol Med 2017; 41:1509-1517. [PMID: 29286067 PMCID: PMC5819907 DOI: 10.3892/ijmm.2017.3333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/27/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to perform microRNA (miRNA/miR) expression profiling of the thalamus (T), the anterior cingulate (AC), the dorsal horn of the spinal cord (DHSC) and the blood (B) in post‑complete brachial plexus avulsion (CBPA) pain model, and analyze biological functions. Neuropathic pain was induced in Sprague‑Dawley rats by CBPA. Animal behavioral tests were performed to differentiate the pain and control groups. DHSC, T, AC and B tissues were collected from the two groups for miRNA array analysis. The predicted mRNA targets were investigated by Gene Ontology analysis and pathway analysis. The results revealed that in the post‑CBPA pain model, there were 10 differentially expressed miRNAs revealed among 4 different tissues. A total of 4 microRNAs in the AC and 3 microRNAs in the T were shown to be significantly upregulated. The functions of the differentially expressed miRNAs in the AC and T were synergetic in the aspect of positive regulation of neuron apoptotic process, inhibition of long‑term potentiation and formation of synapse plasticity. miR‑30c‑1‑3p and its predicted genes [calcium/calmodulin dependent protein kinase IIβ (Camk2b) and protein kinase Cγ (Prkcg)] existed in the AC and T groups with significant changes in expression. There were 2 miRNAs in the DHSC and B groups, respectively, with significant downregulation. The function of the change in miRNAs in the DHSC group was opposite to that in the AC and T groups. The differentially expressed microRNAs in the B group were revealed to be negative for the regulation of cell apoptosis. In conclusion, the central nerve groups (AC and T) and the peripheral nerve group (DHSC) exhibited contrasting effects on synapse plasticity and neuron apoptosis. miR‑30c‑1‑3p and its predicted genes (Camk2b and Prkcg) existed in the AC and T groups with significant changes in expression.
Collapse
Affiliation(s)
- Yuzhou Liu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Le Wang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jie Lao
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xin Zhao
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
24
|
Decrease in NMDA receptor-signalling activity in the anterior cingulate cortex diminishes defensive behaviour and unconditioned fear-induced antinociception elicited by GABAergic tonic inhibition impairment in the posterior hypothalamus. Eur Neuropsychopharmacol 2017; 27:1120-1131. [PMID: 28939165 DOI: 10.1016/j.euroneuro.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 11/20/2022]
Abstract
Acute γ-aminobutyric acid (GABA) disinhibition in the posterior hypothalamus (PH) elicits defensive reactions that are considered anxiety- and panic attack-like behaviour, and these defensive reactions are followed by antinociception. Evidence indicates that the PH connects with the medial prefrontal cortex, particularly the anterior cingulate cortex (ACC), which seems to regulate these unconditioned fear-induced defensive responses. However, few studies have shown the participation of cortical regions in the control of behavioural and antinociceptive responses organised by diencephalic structures. It has been suggested that the glutamatergic system can mediate this cortical influence, as excitatory imbalance is believed to play a role in both defensive mechanisms. Thus, the aim of the present study was to investigate the involvement of ACC glutamatergic connections via blockade of local N-methyl-D-aspartate (NMDA) receptors to elaborate panic-like defensive behaviours and unconditioned fear-induced antinociception organised by PH neurons. Wistar rats were treated with microinjections of 0.9% NaCl or LY235959 (a selective NMDA receptor antagonist) in the ACC at different concentrations (2, 4 and 8 nmol/0.2μL), followed by GABAA receptor blockade in the PH. Defensive reactions were analysed for 20min, and the nociceptive threshold was then measured at 10-min intervals for 60min. Pretreatment of the ACC with LY235959 reduced both panic-like defensive behaviour and fear-induced antinociception evoked by PH GABAergic disinhibition. Our findings suggest that ACC NMDA receptor-signalled glutamatergic inputs play a relevant role in the organisation of anxiety- and panic attack-like behaviours and in fear-induced antinociception.
Collapse
|
25
|
Abstract
It is documented that sensory transmission, including pain, is subject to endogenous inhibitory and facilitatory modulation at the dorsal horn of the spinal cord. Descending facilitation has received a lot of attention, due to its potentially important roles in chronic pain. Recent investigation using neurobiological approaches has further revealed the link between cortical potentiation and descending facilitation. Cortical-spinal top-down facilitation, including those relayed through brainstem neurons, provides powerful control for pain transmission at the level of the spinal cord. It also provides the neuronal basis to link emotional disorders such as anxiety, depression, and loss of hope to somatosensory pain and sufferings. In this review, I will review a brief history of the discovery of brainstem-spinal descending facilitation and explore new information and hypothesis for descending facilitation in chronic pain.
Collapse
Affiliation(s)
- Min Zhuo
- 1 Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,2 Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Cholinergic/opioid interaction in anterior cingulate cortex reduces the nociceptive response of vocalization in guinea pigs. Brain Res 2017; 1671:131-137. [DOI: 10.1016/j.brainres.2017.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/11/2017] [Accepted: 07/16/2017] [Indexed: 01/22/2023]
|
27
|
Martins I, Tavares I. Reticular Formation and Pain: The Past and the Future. Front Neuroanat 2017; 11:51. [PMID: 28725185 PMCID: PMC5497058 DOI: 10.3389/fnana.2017.00051] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/19/2017] [Indexed: 01/10/2023] Open
Abstract
The involvement of the reticular formation (RF) in the transmission and modulation of nociceptive information has been extensively studied. The brainstem RF contains several areas which are targeted by spinal cord afferents conveying nociceptive input. The arrival of nociceptive input to the RF may trigger alert reactions which generate a protective/defense reaction to pain. RF neurons located at the medulla oblongata and targeted by ascending nociceptive information are also involved in the control of vital functions that can be affected by pain, namely cardiovascular control. The RF contains centers that belong to the pain modulatory system, namely areas involved in bidirectional balance (decrease or enhancement) of pain responses. It is currently accepted that the imbalance of pain modulation towards pain facilitation accounts for chronic pain. The medullary RF has the peculiarity of harboring areas involved in bidirectional pain control namely by the existence of specific neuronal populations involved in antinociceptive or pronociceptive behavioral responses, namely at the rostroventromedial medulla (RVM) and the caudal ventrolateral medulla (VLM). Furthermore the dorsal reticular nucleus (also known as subnucleus reticularis dorsalis; DRt) may enhance nociceptive responses, through a reverberative circuit established with spinal lamina I neurons and inhibit wide-dynamic range (WDR) neurons of the deep dorsal horn. The components of the triad RVM-VLM-DRt are reciprocally connected and represent a key gateway for top-down pain modulation. The RVM-VLM-DRt triad also represents the neurobiological substrate for the emotional and cognitive modulation of pain, through pathways that involve the periaqueductal gray (PAG)-RVM connection. Collectively, we propose that the RVM-VLM-DRt triad represents a key component of the “dynamic pain connectome” with special features to provide integrated and rapid responses in situations which are life-threatening and involve pain. The new available techniques in neurobiological studies both in animal and human studies are producing new and fascinating data which allow to understand the complex role of the RF in pain modulation and its integration with several body functions and also how the RF accounts for chronic pain.
Collapse
Affiliation(s)
- Isabel Martins
- Departamento de Biomedicina, Faculdade de Medicina do PortoPorto, Portugal.,Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Universidade do PortoPorto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), Universidade do PortoPorto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S)Porto, Portugal
| | - Isaura Tavares
- Departamento de Biomedicina, Faculdade de Medicina do PortoPorto, Portugal.,Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Universidade do PortoPorto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), Universidade do PortoPorto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S)Porto, Portugal
| |
Collapse
|
28
|
Coimbra NC, Calvo F, Almada RC, Freitas RL, Paschoalin-Maurin T, dos Anjos-Garcia T, Elias-Filho DH, Ubiali WA, Lobão-Soares B, Tracey I. Opioid neurotransmission modulates defensive behavior and fear-induced antinociception in dangerous environments. Neuroscience 2017; 354:178-195. [DOI: 10.1016/j.neuroscience.2017.04.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
|
29
|
Tsuda M, Koga K, Chen T, Zhuo M. Neuronal and microglial mechanisms for neuropathic pain in the spinal dorsal horn and anterior cingulate cortex. J Neurochem 2017; 141:486-498. [DOI: 10.1111/jnc.14001] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Makoto Tsuda
- Department of Life Innovation; Graduate School of Pharmaceutical Sciences; Kyushu University; Fukuoka Japan
| | - Kohei Koga
- Department of Neurophysiology; Hirosaki University Graduate School of Medicine; Hirosaki Japan
- Department of Physiology; University of Toronto; Toronto Canada
| | - Tao Chen
- Department of Physiology; University of Toronto; Toronto Canada
- Department of Anatomy, Histology and Embryology; Fourth Military Medical University; Xi'an Shaanxi China
- Center for Neuron and Disease; Frontier Institutes of Science and Technology; Xi'an Jiaotong University; Xi'an Shanxi China
| | - Min Zhuo
- Department of Physiology; University of Toronto; Toronto Canada
- Center for Neuron and Disease; Frontier Institutes of Science and Technology; Xi'an Jiaotong University; Xi'an Shanxi China
| |
Collapse
|
30
|
The medullary dorsal reticular nucleus as a relay for descending pronociception induced by the mGluR5 in the rat infralimbic cortex. Neuroscience 2017; 349:341-354. [PMID: 28300633 DOI: 10.1016/j.neuroscience.2017.02.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 11/22/2022]
Abstract
Metabotropic glutamate receptor 5 (mGluR5) activation in the infralimbic cortex (IL) induces pronociceptive behavior in healthy and monoarthritic rats. Here we studied whether the medullary dorsal reticular nucleus (DRt) and the spinal TRPV1 are mediating the IL/mGluR5-induced spinal pronociception and whether the facilitation of pain behavior is correlated with changes in spinal dorsal horn neuron activity. For drug administrations, all animals had a cannula in the IL as well as a cannula in the DRt or an intrathecal catheter. Heat-evoked paw withdrawal was used to assess pain behavior in awake animals. Spontaneous and heat-evoked discharge rates of single DRt neurons or spinal dorsal horn wide-dynamic range (WDR) and nociceptive-specific (NS) neurons were evaluated in lightly anesthetized animals. Activation of the IL/mGluR5 facilitated nociceptive behavior in both healthy and monoarthritic animals, and this effect was blocked by lidocaine or GABA receptor agonists in the DRt. IL/mGluR5 activation increased spontaneous and heat-evoked DRt discharge rates in healthy but not monoarthritic rats. In the spinal dorsal horn, IL/mGluR5 activation increased spontaneous activity of WDR neurons in healthy animals only, whereas heat-evoked responses of WDR and NS neurons were increased in both experimental groups. Intrathecally administered TRPV1 antagonist prevented the IL/mGluR5-induced pronociception in both healthy and monoarthritic rats. The results suggest that the DRt is involved in relaying the IL/mGluR5-induced spinal pronociception in healthy control but not monoarthritic animals. Spinally, the IL/mGluR5-induced behavioral heat hyperalgesia is mediated by TRPV1 and associated with facilitated heat-evoked responses of WDR and NS neurons.
Collapse
|
31
|
Stroman PW, Bosma RL, Cotoi AI, Leung RH, Kornelsen J, Lawrence-Dewar JM, Pukall CF, Staud R. Continuous Descending Modulation of the Spinal Cord Revealed by Functional MRI. PLoS One 2016; 11:e0167317. [PMID: 27907094 PMCID: PMC5132188 DOI: 10.1371/journal.pone.0167317] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/13/2016] [Indexed: 12/18/2022] Open
Abstract
Spontaneous variations in spinal cord activity may arise from regulation of any of a number of functions including sensory, motor, and autonomic control. Here, we use functional MRI (fMRI) of healthy participants to identify properties of blood oxygenation-level dependent (BOLD) variations in the spinal cord in response to knowledge that either a noxious stimulus is impending, or that no stimulus is to be expected. Expectation of a noxious stimulus, or no stimulus, is shown to have a significant effect on wide-spread BOLD signal variations in the spinal cord over the entire time period of the fMRI acquisition. Coordination of BOLD responses between/within spinal cord and brainstem regions are also influenced by this knowledge. We provide evidence that such signal variations are the result of continuous descending modulation of spinal cord function. BOLD signal variations in response to noxious stimulation of the hand are also shown, as in previous studies. The observation of both continuous and reactive BOLD responses to emotional/cognitive factors and noxious peripheral stimulation may have important implications, not only for our understanding of endogenous pain modulation, but also in showing that spinal cord activity is under continuous regulatory control.
Collapse
Affiliation(s)
- Patrick W. Stroman
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Physics, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| | - Rachael L. Bosma
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Andreea I. Cotoi
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Roxanne H. Leung
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | | | | | - Caroline F. Pukall
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Department of Psychology, Queen’s University, Kingston, Ontario, Canada
| | - Roland Staud
- Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
32
|
Unravelling cortico-hypothalamic pathways regulating unconditioned fear-induced antinociception and defensive behaviours. Neuropharmacology 2016; 113:367-385. [PMID: 27717879 DOI: 10.1016/j.neuropharm.2016.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 09/26/2016] [Accepted: 10/01/2016] [Indexed: 12/30/2022]
Abstract
The medial prefrontal cortex can influence unconditioned fear-induced defensive mechanisms organised by diencephalic neurons that are under tonic GABAergic inhibition. The posterior hypothalamus (PH) is involved with anxiety- and panic attack-like responses. To understand this cortical mediation, our study characterised anterior cingulate cortex (ACC)-PH pathways and investigated the effect of ACC local inactivation with lidocaine. We also investigated the involvement of PH ionotropic glutamate receptors in the defensive behaviours and fear-induced antinociception by microinjecting NBQX (an AMPA/kainate receptor antagonist) and LY235959 (a NMDA receptor antagonist) into the PH. ACC pretreatment with lidocaine decreased the proaversive effect and antinociception evoked by GABAA receptor blockade in the PH, which suggests that there may be descending excitatory pathways from this cortical region to the PH. Microinjections of both NBQX and LY235959 into the PH also attenuated defensive and antinociceptive responses. This suggests that the blockade of AMPA/kainate and NMDA receptors reduces the activity of glutamatergic efferent pathways. Both inputs from the ACC to the PH and glutamatergic hypothalamic short links disinhibited by intra-hypothalamic GABAA receptors blockade are potentially implicated. Microinjection of a bidirectional neurotracer in the PH showed a Cg1-PH pathway and PH neuronal reciprocal connections with the periaqueductal grey matter. Microinjections of an antegrade neurotracer into the Cg1 showed axonal fibres and glutamatergic vesicle-immunoreactive terminal boutons surrounding both mediorostral-lateroposterior thalamic nucleus and PH neuronal perikarya. These data suggest a critical role played by ACC-PH glutamatergic pathways and AMPA/kainate and NMDA receptors in the panic attack-like reactions and antinociception organised by PH neurons.
Collapse
|
33
|
Thompson T, Correll CU, Gallop K, Vancampfort D, Stubbs B. Is Pain Perception Altered in People With Depression? A Systematic Review and Meta-Analysis of Experimental Pain Research. THE JOURNAL OF PAIN 2016; 17:1257-1272. [PMID: 27589910 DOI: 10.1016/j.jpain.2016.08.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/02/2016] [Accepted: 08/10/2016] [Indexed: 12/23/2022]
Abstract
Although clinical studies suggest depressed patients may be more vulnerable to pain, experimental research is equivocal. This meta-analysis aimed to clarify whether depression is associated with altered pain perception in response to noxious stimulation and to identify factors that might influence this association. A search of major electronic databases was conducted to identify experimental studies investigating pain response in depressed participants versus healthy control participants using established pain outcome measures. Random effects meta-analysis of standardized mean differences was conducted on data from 32 studies (N = 1,317). For high-intensity noxious stimulation, overall pain tolerance was similar across depressed and control groups (Hedges g = .09, P = .71, studies = 10). For low-intensity stimulation, a small, but statistically significant higher mean sensory threshold (g = .35, P = .01, studies = 9) and pain threshold (g = .32, P = .02, studies = 25) was observed in depressed participants, suggesting diminished pain. However, considerable heterogeneity in the direction and magnitude of effects was observed, indicating a likely condition-specific effect of depression on pain. Subgroup analysis found that pain threshold/tolerance was increased in depression for exteroceptive (cutaneous) stimulation but decreased for interoceptive (ischemic) stimulation, but that substantial heterogeneity remained. Overall, results provide some support for altered pain processing in depression, but suggest this link is dependent upon modality and additional, unidentified factors. PERSPECTIVE This meta-analysis of experimental studies suggests potential effects of depression on pain perception are variable and likely to depend upon multiple factors. The contrasting pattern for ischemic versus other noxious stimuli suggests that stimulus modality is a key factor, which could help explain discrepancies across clinical and experimental findings.
Collapse
Affiliation(s)
- Trevor Thompson
- Faculty of Education and Health, University of Greenwich, London, United Kingdom.
| | - Christoph U Correll
- Zucker Hillside Hospital, Long Island Jewish Medical Center, Glen Oaks, New York
| | | | - Davy Vancampfort
- UPC Z.org, KU Leuven, Kortenberg, Belgium; Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, United Kingdom; Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
34
|
Luchting B, Heyn J, Woehrle T, Rachinger-Adam B, Kreth S, Hinske LC, Azad SC. Differential expression of P2X7 receptor and IL-1β in nociceptive and neuropathic pain. J Neuroinflammation 2016; 13:100. [PMID: 27145808 PMCID: PMC4857287 DOI: 10.1186/s12974-016-0565-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/27/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Despite substantial progress, pathogenesis and therapy of chronic pain are still the focus of many investigations. The ATP-gated P2X7 receptor (P2X7R) has previously been shown to play a central role in animal models of nociceptive inflammatory and neuropathic pain. Recently, we found that the adaptive immune system is involved in the pathophysiology of chronic nociceptive and neuropathic pain in humans. So far, data regarding P2X7R expression patterns on cells of the adaptive immune system of pain patients are scarce. We therefore analyzed the P2X7R expression on peripheral blood lymphocytes and monocytes, as well as serum levels of IL-1β in patients suffering from chronic nociceptive and neuropathic pain in comparison to healthy volunteers in order to identify individuals who might benefit from a P2X7R modulating therapy. METHODS P2X7R messenger RNA (mRNA) and protein expression were determined in patients with either chronic nociceptive low back pain (CLBP) or neuropathic pain (NeP), and in healthy volunteers by quantitative real-time PCR (qPCR) and by fluorescence-assisted cell-sorting (FACS), respectively. IL-1β serum levels were measured with a multiplex cytokine assay. RESULTS Compared to healthy volunteers, P2X7R mRNA (1.6-fold, p = 0.038) and protein levels were significantly increased on monocytes (NeP: 24.6 ± 6.2, healthy volunteers: 17.0 ± 5.4; p = 0.002) and lymphocytes (NeP: 21.8 ± 6.5, healthy volunteers: 15.6 ± 5.2; p = 0.009) of patients with NeP, but not in patients with CLBP. Similarly, IL-1β serum concentrations were significantly elevated only in NeP patients (1.4-fold, p = 0.04). CONCLUSIONS A significant upregulation of P2X7R and increased IL-1β release seems to be a particular phenomenon in patients with NeP. P2X7R inhibitors may therefore represent a potential option for the treatment of this frequently intractable type of pain. German Clinical Trial Register (DRKS): Registration Trial DRKS00005954.
Collapse
Affiliation(s)
- Benjamin Luchting
- Department of Anesthesiology and Pain Medicine, LMU-Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Jens Heyn
- Department of Anesthesiology and Pain Medicine, LMU-Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| | - Tobias Woehrle
- Department of Anesthesiology and Pain Medicine, LMU-Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Banafscheh Rachinger-Adam
- Department of Anesthesiology and Pain Medicine, LMU-Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Simone Kreth
- Department of Anesthesiology and Pain Medicine, LMU-Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Ludwig C Hinske
- Department of Anesthesiology and Pain Medicine, LMU-Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Shahnaz C Azad
- Department of Anesthesiology and Pain Medicine, LMU-Munich, Marchioninistrasse 15, 81377, Munich, Germany
| |
Collapse
|
35
|
Youssef AM, Macefield VG, Henderson LA. Cortical influences on brainstem circuitry responsible for conditioned pain modulation in humans. Hum Brain Mapp 2016; 37:2630-44. [PMID: 27104478 DOI: 10.1002/hbm.23199] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/25/2016] [Accepted: 03/18/2016] [Indexed: 11/07/2022] Open
Abstract
Conditioned pain modulation (CPM) is a powerful endogenous analgesic mechanism which can completely inhibit incoming nociceptor signals at the primary synapse. The circuitry responsible for CPM lies within the brainstem and involves the subnucleus reticularis dorsalis (SRD). While the brainstem is critical for CPM, the cortex can significantly modulate its expression, likely via the brainstem circuitry critical for CPM. Since higher cortical regions such as the anterior, mid-cingulate, and dorsolateral prefrontal cortices are activated by noxious stimuli and show reduced activations during other analgesic responses, we hypothesized that these regions would display reduced responses during CPM analgesia. Furthermore, we hypothesized that functional connectivity strength between these cortical regions and the SRD would be stronger in those that express CPM analgesia compared with those that do not. We used functional magnetic resonance imaging to determine sites recruited during CPM expression and their influence on the SRD. A lack of CPM analgesia was associated with greater signal intensity increases during each test stimulus in the presence of the conditioning stimulus compared to test stimuli alone in the mid-cingulate and dorsolateral prefrontal cortices and increased functional connectivity with the SRD. In contrast, those subjects exhibiting CPM analgesia showed no change in the magnitude of signal intensity increases in these cortical regions or strength of functional connectivity with the SRD. These data suggest that during multiple or widespread painful stimuli, engagement of the prefrontal and cingulate cortices prevents the generation of CPM analgesia, raising the possibility altered responsiveness in these cortical regions underlie the reduced CPM observed in individuals with chronic pain. Hum Brain Mapp 37:2630-2644, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrew M Youssef
- Department of Anatomy and Histology, University of Sydney, Sydney, 2006, Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - Luke A Henderson
- Department of Anatomy and Histology, University of Sydney, Sydney, 2006, Australia
| |
Collapse
|
36
|
Russo JF, Sheth SA. Deep brain stimulation of the dorsal anterior cingulate cortex for the treatment of chronic neuropathic pain. Neurosurg Focus 2016; 38:E11. [PMID: 26030699 DOI: 10.3171/2015.3.focus1543] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic neuropathic pain is estimated to affect 3%-4.5% of the worldwide population. It is associated with significant loss of productive time, withdrawal from the workforce, development of mood disorders such as depression and anxiety, and disruption of family and social life. Current medical therapeutics often fail to adequately treat chronic neuropathic pain. Deep brain stimulation (DBS) targeting subcortical structures such as the periaqueductal gray, the ventral posterior lateral and medial thalamic nuclei, and the internal capsule has been investigated for the relief of refractory neuropathic pain over the past 3 decades. Recent work has identified the dorsal anterior cingulate cortex (dACC) as a new potential neuromodulation target given its central role in cognitive and affective processing. In this review, the authors briefly discuss the history of DBS for chronic neuropathic pain in the United States and present evidence supporting dACC DBS for this indication. They review existent literature on dACC DBS and summarize important findings from imaging and neurophysiological studies supporting a central role for the dACC in the processing of chronic neuropathic pain. The available neurophysiological and empirical clinical evidence suggests that dACC DBS is a viable therapeutic option for the treatment of chronic neuropathic pain and warrants further investigation.
Collapse
Affiliation(s)
- Jennifer F Russo
- 1Columbia University College of Physicians and Surgeons and.,2Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Sameer A Sheth
- 2Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| |
Collapse
|
37
|
Becerra L, Veggeberg R, Prescot A, Jensen JE, Renshaw P, Scrivani S, Spierings ELH, Burstein R, Borsook D. A 'complex' of brain metabolites distinguish altered chemistry in the cingulate cortex of episodic migraine patients. NEUROIMAGE-CLINICAL 2016; 11:588-594. [PMID: 27158591 PMCID: PMC4846856 DOI: 10.1016/j.nicl.2016.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/14/2016] [Accepted: 03/28/2016] [Indexed: 12/22/2022]
Abstract
Despite the prevalence of migraine, the pathophysiology of the disease remains unclear. Current understanding of migraine has alluded to the possibility of a hyperexcitable brain. The aim of the current study is to investigate human brain metabolite differences in the anterior cingulate cortex (ACC) during the interictal phase in migraine patients. We hypothesized that there may be differences in levels of excitatory neurotransmitters and/or their derivatives in the migraine cohort in support of the theory of hyperexcitability in migraine. 2D J-resolved proton magnetic resonance spectroscopy (1H-MRS) data were acquired on a 3 Tesla (3 T) MRI from a voxel placed over the ACC of 32 migraine patients (MP; 23 females, 9 males, age 33 ± 9.6 years) and 33 healthy controls (HC; 25 females, 8 males, age 32 ± 9.6 years). Amplitude correlation matrices were constructed for each subject to evaluate metabolite discriminability. ProFit-estimated metabolite peak areas were normalized to a water reference signal to assess subject differences. The initial analysis of variance (ANOVA) was performed to test for group differences for all metabolites/creatine (Cre) ratios between healthy controls and migraineurs but showed no statistically significant differences. In addition, we used a multivariate approach to distinguish migraineurs from healthy subjects based on the metabolite/Cre ratio. A quadratic discriminant analysis (QDA) model was used to identify 3 metabolite ratios sufficient to minimize minimum classification error (MCE). The 3 selected metabolite ratios were aspartate (Asp)/Cre, N-acetyl aspartate (NAA)/Cre, and glutamine (Gln)/Cre. These findings are in support of a ‘complex’ of metabolite alterations, which may underlie changes in neuronal chemistry in the migraine brain. Furthermore, the parallel changes in the three-metabolite ‘complex’ may confer more subtle but biological processes that are ongoing. The data also support the current theory that the migraine brain is hyperexcitable even in the interictal state. 3 T MRI was used to acquire 2D J-resolved proton magnetic resonance spectroscopy. Metabolite alterations are reported in the anterior cingulate cortex of episodic migraineurs. The complex of metabolites may reflect multiple chemical changes in migraineurs. The observed chemical changes support the theory that the brain of migraineurs is hyperexcitable.
Collapse
Affiliation(s)
- L Becerra
- Pain/Analgesia Imaging Neuroscience (P.A.I.N.) Group, Department of Anesthesia Critical Care and Pain Medicine, Boston Children's Hospital, Center for Pain and the Brain, Harvard Medical School, Waltham, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - R Veggeberg
- Pain/Analgesia Imaging Neuroscience (P.A.I.N.) Group, Department of Anesthesia Critical Care and Pain Medicine, Boston Children's Hospital, Center for Pain and the Brain, Harvard Medical School, Waltham, MA, USA; Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - A Prescot
- Department of Radiology, University of Utah, School of Medicine, Salt Lake City, UT, USA; VISN 19 MIRECC, Salt Lake City, UT, USA
| | - J E Jensen
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - P Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA; VISN 19 MIRECC, Salt Lake City, UT, USA
| | - S Scrivani
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - E L H Spierings
- Department of Neurology, Tufts Medical Center, Boston, MA, USA
| | - R Burstein
- Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - D Borsook
- Pain/Analgesia Imaging Neuroscience (P.A.I.N.) Group, Department of Anesthesia Critical Care and Pain Medicine, Boston Children's Hospital, Center for Pain and the Brain, Harvard Medical School, Waltham, MA, USA; Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA; Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
38
|
Evidence for a central mode of action for etoricoxib (COX-2 inhibitor) in patients with painful knee osteoarthritis. Pain 2016; 157:1634-1644. [DOI: 10.1097/j.pain.0000000000000562] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
David-Pereira A, Puga S, Gonçalves S, Amorim D, Silva C, Pertovaara A, Almeida A, Pinto-Ribeiro F. Metabotropic glutamate 5 receptor in the infralimbic cortex contributes to descending pain facilitation in healthy and arthritic animals. Neuroscience 2015; 312:108-19. [PMID: 26548413 DOI: 10.1016/j.neuroscience.2015.10.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/30/2022]
Abstract
The involvement of the prefrontal cortex in pain processing has been recently addressed. We studied the role of the infralimbic cortex (IL) and group I metabotropic glutamate receptors (mGluRs) in descending modulation of nociception in control and monoarthritic (ARTH) conditions. Nociception was assessed using heat-induced paw withdrawal while drugs were microinjected in the IL of rats. Local anesthesia of the IL or the adjacent prelimbic cortex (PL) facilitated nociception, indicating that IL and PL are tonically promoting spinal antinociception. Phasic activation with glutamate (GLU) revealed opposing roles of the PL and IL; GLU in the PL had a fast antinociceptive action, while in the IL it had a slow onset pronociceptive action. IL administration of a local anesthetic or GLU produced identical results in ARTH and control animals. An mGluR5 agonist in the IL induced a pronociceptive effect in both groups, while mGluR5 antagonists had no effect in controls but induced antinociception in ARTH rats. Activation of the IL mGluR1 (through co-administration of mGluR1/5 agonist and mGluR5 antagonist) did not alter nociception in controls but induced antinociception in ARTH animals. IL administration of an mGluR1 antagonist failed to alter nociception in either experimental group. Finally, mGluR5 but not mGluR1 antagonists blocked the pronociceptive action of GLU in both groups. The results indicate that IL contributes to descending modulation of nociception. mGluR5 in the IL enhance nociception in healthy control and monoarthritic animals, an effect that is tonic in ARTH. Moreover, activation of IL mGluR1s attenuates nociception following the development of monoarthritis.
Collapse
Affiliation(s)
- A David-Pereira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - S Puga
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - S Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - D Amorim
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - C Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A Pertovaara
- Biomedicum Helsinki, Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland
| | - A Almeida
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - F Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
40
|
Luedtke K, Rushton A, Wright C, Jürgens T, Polzer A, Mueller G, May A. Effectiveness of transcranial direct current stimulation preceding cognitive behavioural management for chronic low back pain: sham controlled double blinded randomised controlled trial. BMJ 2015; 350:h1640. [PMID: 25883244 PMCID: PMC4399394 DOI: 10.1136/bmj.h1640] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To evaluate the effectiveness of transcranial direct current stimulation alone and in combination with cognitive behavioural management in patients with non-specific chronic low back pain. DESIGN Double blind parallel group randomised controlled trial with six months' follow-up conducted May 2011-March 2013. Participants, physiotherapists, assessors, and analyses were blinded to group allocation. SETTING Interdisciplinary chronic pain centre. PARTICIPANTS 135 participants with non-specific chronic low back pain >12 weeks were recruited from 225 patients assessed for eligibility. INTERVENTION Participants were randomised to receive anodal (20 minutes to motor cortex at 2 mA) or sham transcranial direct current stimulation (identical electrode position, stimulator switched off after 30 seconds) for five consecutive days immediately before cognitive behavioural management (four week multidisciplinary programme of 80 hours). MAIN OUTCOMES MEASURES Two primary outcome measures of pain intensity (0-100 visual analogue scale) and disability (Oswestry disability index) were evaluated at two primary endpoints after stimulation and after cognitive behavioural management. RESULTS Analyses of covariance with baseline values (pain or disability) as covariates showed that transcranial direct current stimulation was ineffective for the reduction of pain (difference between groups on visual analogue scale 1 mm (99% confidence interval -8.69 mm to 6.3 mm; P=0.68)) and disability (difference between groups 1 point (-1.73 to 1.98; P=0.86)) and did not influence the outcome of cognitive behavioural management (difference between group 3 mm (-10.32 mm to 6.73 mm); P=0.58; difference between groups on Oswestry disability index 0 point (-2.45 to 2.62); P=0.92). The stimulation was well tolerated with minimal transitory side effects. CONCLUSIONS This results of this trial on the effectiveness of transcranial direct current stimulation for the reduction of pain and disability do not support its clinical use for managing non-specific chronic low back pain.Trial registration Current controlled trials ISRCTN89874874.
Collapse
Affiliation(s)
- Kerstin Luedtke
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Alison Rushton
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Christine Wright
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Tim Jürgens
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Astrid Polzer
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Gerd Mueller
- Backpain Clinic "Am Michel", Ludwig-Erhard-Str.18, 20459 Hamburg, Germany
| | - Arne May
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
41
|
Yasuda S, Yoshida M, Yamagata H, Iwanaga Y, Suenaga H, Ishikawa K, Nakano M, Okuyama S, Furukawa Y, Furukawa S, Ishikawa T. Imipramine ameliorates pain-related negative emotion via induction of brain-derived neurotrophic factor. Cell Mol Neurobiol 2014; 34:1199-208. [PMID: 25156823 DOI: 10.1007/s10571-014-0097-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/04/2014] [Indexed: 01/09/2023]
Abstract
Depression-like behavior is often complicated by chronic pain. Antidepressants including imipramine (IMI) are widely used to treat chronic pain, but the mechanisms are not fully understood. Brain-derived neurotrophic factor (BDNF) is a neuromodulator that reduces depression by regulating synaptic transmission. We aimed to characterize the antidepressant effects of IMI without analgesia based on BDNF (trkB)-mediated signaling and gene expression in chronic pain. A chronic constriction injury (CCI) model was constructed in Sprague-Dawley (SD) rats. IMI (5 mg/kg, i.p.) was administered from day 10 after CCI. The pain response was assessed using the paw withdrawal latency (PWL) and depression was judged from the immobility time in a forced swim test. Anti-BDNF antibody, K252a, or 5,7-dihydroxytryptamine (5,7-DHT) were used to examine the antidepressant effects of imipramine. Changes in pERK1/2 (immunohistochemistry), 5-HT and BDNF (ELISA), and BDNF mRNA (RT-PCR) were measured in the anterior cingulate cortex (ACC), rostral ventromedial medulla (RVM), and spinal cord. After CCI, rats showed decreased PWL and increased immobility time. A low dose of IMI reduced the immobility time without having analgesic effects. This antidepressant effect was reversed by anti-BDNF antibody, K252a, and 5,7-DHT. IMI reduced excessive activation of pERK1/2 associated with decreased pCREB and BDNF mRNA, and these changes were reversed by 5,7-DHT. These results show that IMI reduces pain-related negative emotion without influencing pain and that this effect is diminished by denervation of 5-HT neurons and by anti-BDNF treatment. IMI also normalizes derangement of ERK/CREB coupling, which leads to induction of BDNF. This suggests a possible interaction between 5-HT and BDNF.
Collapse
Affiliation(s)
- Seiko Yasuda
- Division of Neurosciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Stress-induced hyperalgesia. Prog Neurobiol 2014; 121:1-18. [DOI: 10.1016/j.pneurobio.2014.06.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 05/17/2014] [Accepted: 06/29/2014] [Indexed: 12/25/2022]
|
43
|
Frank D, Dewitt M, Hudgens-Haney M, Schaeffer D, Ball B, Schwarz N, Hussein A, Smart L, Sabatinelli D. Emotion regulation: Quantitative meta-analysis of functional activation and deactivation. Neurosci Biobehav Rev 2014; 45:202-11. [DOI: 10.1016/j.neubiorev.2014.06.010] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 12/30/2022]
|
44
|
Zugaib J, Coutinho MR, Ferreira MD, Menescal-de-Oliveira L. Glutamate/GABA balance in ACC modulates the nociceptive responses of vocalization: An expression of affective-motivational component of pain in guinea pigs. Physiol Behav 2014; 126:8-14. [DOI: 10.1016/j.physbeh.2013.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/28/2013] [Accepted: 12/17/2013] [Indexed: 01/30/2023]
|
45
|
Ikeda H, Takasu S, Murase K. Contribution of anterior cingulate cortex and descending pain inhibitory system to analgesic effect of lemon odor in mice. Mol Pain 2014; 10:14. [PMID: 24555533 PMCID: PMC3936890 DOI: 10.1186/1744-8069-10-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 01/13/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Affections are thought to regulate pain perception through the descending pain inhibitory system in the central nervous system. In this study, we examined in mice the affective change by inhalation of the lemon oil, which is well used for aromatherapy, and the effect of lemon odor on pain sensation. We also examined the anterior cingulate cortex (ACC) and descending pain inhibitory system to such regulation of pain. RESULTS In the elevated plus maze, the time spent in the open arms was increased by inhalation of lemon oil. The pain behavior induced by injection of formalin into the hind paw was decreased. By inhalation of lemon oil, the number of c-Fos expression by formalin injection was significantly increased in the ACC, periaqueductal grey (PAG), nucleu raphe magnus (NRM) and locus ceruleus, and decreased in the spinal dorsal horn (SDH). The destruction of the ACC with ibotenic acid led to prevent the decrease of formalin-evoked nocifensive behavior in mice exposed to lemon oil. In these mice, the change of formalin-induced c-Fos expression in the ACC, lateral PAG, NRM and SDH by lemon odor was also prevented. Antagonize of dopamine D1 receptor in the ACC prevented to the analgesic effect of lemon oil. CONCLUSIONS These results suggest that the analgesic effect of lemon oil is induced by dopamine-related activation of ACC and the descending pain inhibitory system.
Collapse
Affiliation(s)
- Hiroshi Ikeda
- Department of Human and Artificial Intelligence Systems, Graduate School of Engineering, and Research and Education Program for Life Science, University of Fukui, 3-9-1 Bunkyo, 910-8507 Fukui, Japan.
| | | | | |
Collapse
|
46
|
Huang ZX, Lu ZJ, Ma WQ, Wu FX, Zhang YQ, Yu WF, Zhao ZQ. Involvement of RVM-expressed P2X7 receptor in bone cancer pain: mechanism of descending facilitation. Pain 2014; 155:783-791. [PMID: 24447511 DOI: 10.1016/j.pain.2014.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 01/03/2014] [Accepted: 01/14/2014] [Indexed: 01/02/2023]
Abstract
Patients with bone cancer commonly experience bone pain that is severe, intolerable, and difficult to manage. The rostral ventromedial medulla (RVM) plays an important role in the development of chronic pain via descending facilitation of spinal nociception. The compelling evidence shows that glial P2X7 receptor (P2X7R) is involved in the induction and maintenance of chronic pain syndromes. The present study explored the mechanism of glial activation and P2X7R expression underlying the induction of bone cancer pain. The results demonstrated that microglia and astrocytes in the RVM were markedly activated in bone cancer rats, and the expression of P2X7R was significantly upregulated. Injection of Brilliant Blue G (BBG), an inhibitor of P2X7R, into the RVM significantly alleviated pain behaviors of cancer rats, which was supported by intra-RVM injection of RNA interference targeting the P2X7R in the RVM. It is suggested that activation of microglia-expressed P2X7R in the RVM contributes to bone cancer pain. Given that 5-HT in the RVM is involved in modulating spinal nociception, changes in 5-HT and Fos expression were addressed in the spinal cord. Inhibition of P2X7R by BBG or small-interference RNA targeting P2X7 in the RVM markedly reduced 5-HT level and Fos expression in the spinal cord. The data clearly suggest that the activation of microglial P2X7R in the RVM contributes to the development of bone cancer pain via upregulation of spinal 5HT levels by the descending pain facilitatory system.
Collapse
Affiliation(s)
- Zhang Xiang Huang
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China Department of Anesthesiology, Kunming General Hospital of Chengdu Military Command, Yunnan, China Unit of Pain Research, Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Involvement of prelimbic medial prefrontal cortex in panic-like elaborated defensive behaviour and innate fear-induced antinociception elicited by GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei: role of the endocannabinoid CB1 receptor. Int J Neuropsychopharmacol 2013; 16:1781-98. [PMID: 23521775 DOI: 10.1017/s1461145713000163] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
It has been shown that GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei (DMH and VMH, respectively) induces elaborated defensive behavioural responses accompanied by antinociception, which has been utilized as an experimental model of panic attack. Furthermore, the prelimbic (PL) division of the medial prefrontal cortex (MPFC) has been related to emotional reactions and the processing of nociceptive information. The aim of the present study was to investigate the possible involvement of the PL cortex and the participation of local cannabinoid CB1 receptors in the elaboration of panic-like reactions and in innate fear-induced antinociception. Elaborated fear-induced responses were analysed during a 10-min period in an open-field test arena. Microinjection of the GABAA receptor antagonist bicuculline into the DMH/VMH evoked panic-like behaviour and fear-induced antinociception, which was decreased by microinjection of the non-selective synaptic contact blocker cobalt chloride in the PL cortex. Moreover, microinjection of AM251 (25, 100 or 400 pmol), an endocannabinoid CB1 receptor antagonist, into the PL cortex also attenuated the defensive behavioural responses and the antinociception that follows innate fear behaviour elaborated by DMH/VMH. These data suggest that the PL cortex plays an important role in the organization of elaborated forward escape behaviour and that this cortical area is also involved in the elaboration of innate fear-induced antinociception. Additionally, CB1 receptors in the PL cortex modulate both panic-like behaviours and fear-induced antinociception elicited by disinhibition of the DMH/VMH through microinjection of bicuculline.
Collapse
|
48
|
Pain and analgesia: the value of salience circuits. Prog Neurobiol 2013; 104:93-105. [PMID: 23499729 DOI: 10.1016/j.pneurobio.2013.02.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 02/07/2023]
Abstract
Evaluating external and internal stimuli is critical to survival. Potentially tissue-damaging conditions generate sensory experiences that the organism must respond to in an appropriate, adaptive manner (e.g., withdrawal from the noxious stimulus, if possible, or seeking relief from pain and discomfort). The importance we assign to a signal generated by a noxious state, its salience, reflects our belief as to how likely the underlying situation is to impact our chance of survival. Importantly, it has been hypothesized that aberrant functioning of the brain circuits which assign salience values to stimuli may contribute to chronic pain. We describe examples of this phenomenon, including 'feeling pain' in the absence of a painful stimulus, reporting minimal pain in the setting of major trauma, having an 'analgesic' response in the absence of an active treatment, or reporting no pain relief after administration of a potent analgesic medication, which may provide critical insights into the role that salience circuits play in contributing to numerous conditions characterized by persistent pain. Collectively, a refined understanding of abnormal activity or connectivity of elements within the salience network may allow us to more effectively target interventions to relevant components of this network in patients with chronic pain.
Collapse
|
49
|
de Freitas RL, Salgado-Rohner CJ, Biagioni AF, Medeiros P, Hallak JEC, Crippa JAS, Coimbra NC. NMDA and AMPA/Kainate Glutamatergic Receptors in the Prelimbic Medial Prefrontal Cortex Modulate the Elaborated Defensive Behavior and Innate Fear-Induced Antinociception Elicited by GABAA Receptor Blockade in the Medial Hypothalamus. Cereb Cortex 2013; 24:1518-28. [DOI: 10.1093/cercor/bht001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
50
|
The transition from acute to chronic pain: might intensive care unit patients be at risk? Ann Intensive Care 2012; 2:36. [PMID: 22898192 PMCID: PMC3488025 DOI: 10.1186/2110-5820-2-36] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/15/2012] [Indexed: 12/14/2022] Open
Abstract
Pain remains a significant problem for patients hospitalized in intensive care units (ICUs). As research has shown, for some of these patients pain might even persist after discharge and become chronic. Exposure to intense pain and stress during medical and nursing procedures could be a risk factor that contributes to the transition from acute to chronic pain, which is a major disruption of the pain neurological system. New evidence suggests that physiological alterations contributing to chronic pain states take place both in the peripheral and central nervous systems. The purpose of this paper is to: 1) review cutting-edge theories regarding pain and mechanisms that underlie the transition from acute to chronic pain, such as increases in membrane excitability of peripheral and central nerve fibers, synaptic plasticity, and loss of the function of descending inhibitory pain fibers; 2) provide information on the association between the immune system and pain and its crucial contribution to development of chronic pain syndromes, and 3) discuss mechanisms at brain levels in the nervous system and their contribution to affective (i.e., emotional) states associated with chronic pain conditions. Finally, we will offer suggestions for ICU clinical interventions to attempt to prevent the transition from acute to chronic pain.
Collapse
|