1
|
Ren Y, Gao G, Ding G, Zhang Y, Zhao P, Wang J. Temporal approach to identifying ectomycorrhizal community associated with Mongolian pine in a desert environment, northern China. Microbiol Spectr 2023; 11:e0202623. [PMID: 37707453 PMCID: PMC10580992 DOI: 10.1128/spectrum.02026-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/12/2023] [Indexed: 09/15/2023] Open
Abstract
To date, the ectomycorrhizal (EM) fungi community has been widely investigated with aging plantations affected by the pedologic factors. However, knowledge on the effects of phenology induced by climatic factors across the age range remains poorly understood on an intra-annual scale. Here, we sampled the fine roots of Mongolian pine (Pinus sylvestris var. mongolica) plantations at different stages of the growing season (from April to September) across three stand ages (27, 34, and 44 yr) in the Mu Us Desert, Northwest China. We aim to disentangle the community composition and structure of EM fungi, as well as the impact of climate on EM fungi. We observed that the 173 distinct EM fungal operational taxonomic units (OTUs) were identified. Geopora, Inocybe, Tomentella, and Tuber were the most frequent, and their dominance was maintained as stand aging. The richness and community composition were not significantly different with stand aging (P > 0.05). Host phenology and stand age are two important factors that have shaped the EM fungal community. The growing stage affected the beta diversity of the EM fungal community more than stand age, and this variation of the EM fungal community was closely related to seasonal climate, particularly precipitation. This improved information will provide a theoretical basis for the reforestation and rehabilitation of the Mongolian pine plantations using mycorrhizal techniques. IMPORTANCE Ectomycorrhizal (EM) fungi are particularly important for host plants in a desert ecosystem. With a high degree of plasticity, EM fungi are largely influenced by host plant and environmental variables and fundamentally contribute to the ability of individuals to adapt to environmental changes. Therefore, the EM fungi are important for Mongolian pine (Pinus sylvestris var. mongolica) plantation in a desert ecosystem. Although previous studies have concluded that multiple endogenous and exogenous processes ultimately lead to species-specific temporal patterns in EM fungal populations. We still neglect the effect of host phenology on EM fungal activity. The significance of our study is the interplay between climate-driven EM fungi and plant phenology.
Collapse
Affiliation(s)
- Yue Ren
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Guanglei Gao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Engineering Research Center of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Guodong Ding
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Engineering Research Center of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Ying Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Engineering Research Center of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Peishan Zhao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Jiayuan Wang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Apirajkamol NB, Hogarty TM, Mainali B, Taylor PW, Walsh TK, Tay WT. Virulence of Beauveria sp. and Metarhizium sp. fungi towards fall armyworm (Spodoptera frugiperda). Arch Microbiol 2023; 205:328. [PMID: 37676308 PMCID: PMC10495518 DOI: 10.1007/s00203-023-03669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
The development of effective pest management strategies for Spodoptera frugiperda is a high priority for crop protection across its invasive ranges. Here, we examined six Beauveria and five Metarhizium fungal isolates against this pest. Two Beauveria isolates (B-0571, B-1311) induced high mortality toward 3rd and 6th instar caterpillars and adults. For B-0571 mortality was 82.81 ± 5.75%, 61.46 ± 6.83%, and 93.75 ± 3.61%, and 73.72 ± 2.51%, 71.88 ± 5.41%, and 97.92 ± 2.08% for B-1311, with deaths in caterpillars largely occurring under 24 h (3rd instar control 0.74 ± 0.33%, B-0571 73.96 ± 7.85% and B-1311 62.08 ± 3.67%; 6th instar control 0%, B-0571 66.67% ± 11.02% and B-1311 62.5% ± 9.55%). Infection from both Beauveria isolates fully prevented reproduction in surviving S. frugiperda females. In contrast, all five Metarhizium isolates tested and the remaining four Beauveria isolates exhibited lower virulence. The discovery of two highly virulent Beauveria fungal isolates to S. frugiperda opens avenues to develop novel biological control tools against this highly invasive pest.
Collapse
Affiliation(s)
- Nonthakorn Beatrice Apirajkamol
- Applied BioSciences, Macquarie University, Sydney, NSW, 2109, Australia.
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia.
| | - Timothy Michael Hogarty
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| | - Bishwo Mainali
- Applied BioSciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Thomas Kieran Walsh
- Applied BioSciences, Macquarie University, Sydney, NSW, 2109, Australia
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| | - Wee Tek Tay
- Applied BioSciences, Macquarie University, Sydney, NSW, 2109, Australia
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| |
Collapse
|
3
|
Dahl MB, Kreyling J, Petters S, Wang H, Mortensen MS, Maccario L, Sørensen SJ, Urich T, Weigel R. Warmer winters result in reshaping of the European beech forest soil microbiome (bacteria, archaea and fungi)-With potential implications for ecosystem functioning. Environ Microbiol 2023. [PMID: 36752534 DOI: 10.1111/1462-2920.16347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
In temperate regions, climate warming alters temperature and precipitation regimes. During winter, a decline in insulating snow cover changes the soil environment, where especially frost exposure can have severe implications for soil microorganisms and subsequently for soil nutrient dynamics. Here, we investigated winter climate change responses in European beech forests soil microbiome. Nine study sites with each three treatments (snow exclusion, insolation, and ambient) were investigated. Long-term adaptation to average climate was explored by comparing across sites. Triplicated treatment plots were used to evaluate short-term (one single winter) responses. Community profiles of bacteria, archaea and fungi were created using amplicon sequencing. Correlations between the microbiome, vegetation and soil physicochemical properties were found. We identify core members of the forest-microbiome and link them to key processes, for example, mycorrhizal symbiont and specialized beech wood degraders (fungi) and nitrogen cycling (bacteria, archaea). For bacteria, the shift of the microbiome composition due to short-term soil temperature manipulations in winter was similar to the community differences observed between long-term relatively cold to warm conditions. The results suggest a strong link between the changes in the microbiomes and changes in environmental processes, for example, nitrogen dynamics, driven by variations in winter climate.
Collapse
Affiliation(s)
- Mathilde Borg Dahl
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Juergen Kreyling
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Sebastian Petters
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Haitao Wang
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Martin Steen Mortensen
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lorrie Maccario
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren J Sørensen
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Robert Weigel
- Plant Ecology, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| |
Collapse
|
4
|
Marčiulynienė D, Marčiulynas A, Mishcherikova V, Lynikienė J, Gedminas A, Franic I, Menkis A. Principal Drivers of Fungal Communities Associated with Needles, Shoots, Roots and Adjacent Soil of Pinus sylvestris. J Fungi (Basel) 2022; 8:1112. [PMID: 36294677 PMCID: PMC9604598 DOI: 10.3390/jof8101112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 01/25/2023] Open
Abstract
The plant- and soil-associated microbial communities are critical to plant health and their resilience to stressors, such as drought, pathogens, and pest outbreaks. A better understanding of the structure of microbial communities and how they are affected by different environmental factors is needed to predict and manage ecosystem responses to climate change. In this study, we carried out a country-wide analysis of fungal communities associated with Pinus sylvestris growing under different environmental conditions. Needle, shoot, root, mineral, and organic soil samples were collected at 30 sites. By interconnecting the high-throughput sequencing data, environmental variables, and soil chemical properties, we were able to identify key factors that drive the diversity and composition of fungal communities associated with P. sylvestris. The fungal species richness and community composition were also found to be highly dependent on the site and the substrate they colonize. The results demonstrated that different functional tissues and the rhizosphere soil of P. sylvestris are associated with diverse fungal communities, which are driven by a combination of climatic (temperature and precipitation) and edaphic factors (soil pH), and stand characteristics.
Collapse
Affiliation(s)
- Diana Marčiulynienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Adas Marčiulynas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Valeriia Mishcherikova
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Jūratė Lynikienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Artūras Gedminas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Iva Franic
- Department of Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, P.O. Box 190, SE-23422 Lomma, Sweden;
| | - Audrius Menkis
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007 Uppsala, Sweden;
| |
Collapse
|
5
|
Schön ME, Abarenkov K, Garnica S. Host generalists dominate fungal communities associated with alpine knotweed roots: a study of Sebacinales. PeerJ 2022; 10:e14047. [PMID: 36217381 PMCID: PMC9547586 DOI: 10.7717/peerj.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 08/22/2022] [Indexed: 01/19/2023] Open
Abstract
Bistorta vivipara is a widespread herbaceous perennial plant with a discontinuous pattern of distribution in arctic, alpine, subalpine and boreal habitats across the northern Hemisphere. Studies of the fungi associated with the roots of B. vivipara have mainly been conducted in arctic and alpine ecosystems. This study examined the fungal diversity and specificity from root tips of B. vivipara in two local mountain ecosystems as well as on a global scale. Sequences were generated by Sanger sequencing of the internal transcribed spacer (ITS) region followed by an analysis of accurately annotated nuclear segments including ITS1-5.8S-ITS2 sequences available from public databases. In total, 181 different UNITE species hypotheses (SHs) were detected to be fungi associated with B. vivipara, 73 of which occurred in the Bavarian Alps and nine in the Swabian Alps-with one SH shared among both mountains. In both sites as well as in additional public data, individuals of B. vivipara were found to contain phylogenetically diverse fungi, with the Basidiomycota, represented by the Thelephorales and Sebacinales, being the most dominant. A comparative analysis of the diversity of the Sebacinales associated with B. vivipara and other co-occurring plant genera showed that the highest number of sebacinoid SHs were associated with Quercus and Pinus, followed by Bistorta. A comparison of B. vivipara with plant families such as Ericaceae, Fagaceae, Orchidaceae, and Pinaceae showed a clear trend: Only a few species were specific to B. vivipara and a large number of SHs were shared with other co-occurring non-B. vivipara plant species. In Sebacinales, the majority of SHs associated with B. vivipara belonged to the ectomycorrhiza (ECM)-forming Sebacinaceae, with fewer SHs belonging to the Serendipitaceae encompassing diverse ericoid-orchid-ECM-endophytic associations. The large proportion of non-host-specific fungi able to form a symbiosis with other non-B. vivipara plants could suggest that the high fungal diversity in B. vivipara comes from an active recruitment of their associates from the co-occurring vegetation. The non-host-specificity suggests that this strategy may offer ecological advantages; specifically, linkages with generalist rather than specialist fungi. Proximity to co-occurring non-B. vivipara plants can maximise the fitness of B. vivipara, allowing more rapid and easy colonisation of the available habitats.
Collapse
Affiliation(s)
- Max Emil Schön
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany,Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Sigisfredo Garnica
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
6
|
Cook K, Taylor AD, Sharma J, Taylor DL. Inter-annual Persistence of Canopy Fungi Driven by Abundance Despite High Spatial Turnover. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02104-7. [PMID: 36048179 DOI: 10.1007/s00248-022-02104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
While it is now well established that fungal community composition varies spatially at a variety of scales, temporal turnover of fungi is less well understood. Here we studied inter-annual community compositional changes of fungi in a rainforest tree canopy environment. We tracked fungal community shifts over 3 years in three substrate types (live bryophytes, dead bryophytes, and host tree bark) and compared these changes to amounts of community turnover seen at small spatial scales in the same system. The effect of substrate type on fungal community composition was stronger than that of sampling year, which was very small but significant. Although levels of temporal turnover varied among substrates, with greater turnover in live bryophytes than other substrates, the amount of turnover from year to year was comparable to what is seen at spatial distances between 5 and 9 cm for the same substrate. Stability of communities was largely driven by a few fungi with high relative abundances. A majority of fungal occurrences were at low relative abundances (≤ 0.1%). These fungi tended to be short lived and persisted to following years ≤ 50% of the time, depending on substrate. Their presence and persistence are likely impacted by stochastic processes like dispersal limitation and disturbance. Most samples contained only one or a few fungi at high relative abundance (≥ 10%) that persisted half or more of the time. These more abundant and persistent fungi are expected to have sustained functional interactions within the canopy ecosystem.
Collapse
Affiliation(s)
- Kel Cook
- Department of Biology, University of New Mexico, Castetter Hall 1480, MSC03-2020, 219 Yale Blvd NE, Albuquerque, NM, 87131-0001, USA.
| | - Andrew D Taylor
- Department of Biology, University of Hawai'i at Manoa, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI, 96822, USA
| | - Jyotsna Sharma
- Department of Plant and Soil Science, Texas Tech University, Bayer Plant Science Building, Room 219, 2911 15th Street, Mail Stop 2122, Lubbock, TX, 79409-2122, USA
| | - D Lee Taylor
- Department of Biology, University of New Mexico, Castetter Hall 1480, MSC03-2020, 219 Yale Blvd NE, Albuquerque, NM, 87131-0001, USA
| |
Collapse
|
7
|
Medel-Ortiz R, Garibay-Orijel R, Argüelles-Moyao A, Mata G, Kerrigan RW, Bessette AE, Geml J, Angelini C, Parra LA, Chen J. Agaricus macrochlamys, a New Species from the (Sub)tropical Cloud Forests of North America and the Caribbean, and Agaricus fiardii, a New Synonym of Agaricus subrufescens. J Fungi (Basel) 2022; 8:664. [PMID: 35887421 PMCID: PMC9319268 DOI: 10.3390/jof8070664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Agaricus is a genus of fungi in the family Agaricaceae, with several highly priced edible and medicinal species. Here we describe Agaricus macrochlamys, a new species, in A. sect. Arvenses, sympatric and morphologically cryptic with the edible and medicinally cultivated mushroom, A. subrufescens. Phylogenetic analyses showed that A. macrochlamys is closely related to A. subrufescens, and that A. fiardii is a new synonym of A. subrufescens. Despite being morphologically cryptic, A. macrochlamys can be distinguished from A. subrufescens by several ITS and tef1α species-specific markers and a 4-bp insertion in the tef1α sequence. Furthermore, A. subrufescens is a cosmopolitan species, while A. macrochlamys distribution is so far restricted to Mexico, the Dominican Republic, and the United States.
Collapse
Affiliation(s)
- Rosario Medel-Ortiz
- Centro de Investigación en Micología Aplicada, Universidad Veracruzana, Xalapa 91070, Mexico;
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.G.-O.); (A.A.-M.)
| | - Andrés Argüelles-Moyao
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.G.-O.); (A.A.-M.)
| | - Gerardo Mata
- Instituto de Ecología, A. C. Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Mexico;
| | | | | | - József Geml
- ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Leányka u. 6. G. épület, H-3300 Eger, Hungary;
| | - Claudio Angelini
- Jardín Botánico Nacional Dr. Rafael Ma. Moscoso, Apartado 21-9, Santo Domingo 10602, Dominican Republic;
- Independent Researcher, Via Cappuccini 78/8, 33170 Pordenone, Italy
| | - Luis A. Parra
- Independent Researcher, Avda. Miranda do Douro 7, 5° G, 09400 Aranda de Duero, Spain;
| | - Jie Chen
- Facultad de Ciencias Biológicas y Agropecuarias, Peñuela, Universidad Veracruzana, Amatlán de los Reyes 94945, Mexico
| |
Collapse
|
8
|
Zhou Z, Zheng M, Xia J, Wang C. Nitrogen addition promotes soil microbial beta diversity and the stochastic assembly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150569. [PMID: 34597552 DOI: 10.1016/j.scitotenv.2021.150569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/17/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen (N) deposition is one of major environmental concerns and alters the microbial communities in the pedosphere. A central debate in governing microbial community is on the relative importance of deterministic (ecological selection) vs. stochastic processes (dispersal, drift, diversification or speciation), which consequently limited our understanding of microbial assembly in response to N addition. Here, we conducted a global analysis of high-throughput sequencing data to reveal the mechanisms of N-addition effects on soil microbial communities. The results show that N addition significantly shifted the microbial community structure and promoted microbial beta diversity, particularly in the N-limited ecosystems. Changes in microbial structure and beta diversity increased significantly as the N addition rate, study duration, and the degree of soil acidification increased. The stochastic processes are more important than the deterministic processes for microbial community assembly, while N addition significantly increase the importance of stochastic processes whether the phylogenetic relationship is considered or not. Overall, the current study highlights the important of ecological stochasticity in regulating microbial assembly under N deposition scenarios.
Collapse
Affiliation(s)
- Zhenghu Zhou
- Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Mianhai Zheng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jianyang Xia
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, State Key Laboratory of Estuarine and Coastal Research, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Chuankuan Wang
- Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
9
|
Potapov AM, Beaulieu F, Birkhofer K, Bluhm SL, Degtyarev MI, Devetter M, Goncharov AA, Gongalsky KB, Klarner B, Korobushkin DI, Liebke DF, Maraun M, Mc Donnell RJ, Pollierer MM, Schaefer I, Shrubovych J, Semenyuk II, Sendra A, Tuma J, Tůmová M, Vassilieva AB, Chen T, Geisen S, Schmidt O, Tiunov AV, Scheu S. Feeding habits and multifunctional classification of soil‐associated consumers from protists to vertebrates. Biol Rev Camb Philos Soc 2022; 97:1057-1117. [DOI: 10.1111/brv.12832] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Anton M. Potapov
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Frédéric Beaulieu
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri‐Food Canada Ottawa ON K1A 0C6 Canada
| | - Klaus Birkhofer
- Department of Ecology Brandenburg University of Technology Karl‐Wachsmann‐Allee 6 03046 Cottbus Germany
| | - Sarah L. Bluhm
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Maxim I. Degtyarev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Miloslav Devetter
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Anton A. Goncharov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Konstantin B. Gongalsky
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Bernhard Klarner
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Daniil I. Korobushkin
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Dana F. Liebke
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Mark Maraun
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Rory J. Mc Donnell
- Department of Crop and Soil Science Oregon State University Corvallis OR 97331 U.S.A
| | - Melanie M. Pollierer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Ina Schaefer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Julia Shrubovych
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
- Institute of Systematics and Evolution of Animals PAS Slawkowska 17 Pl 31‐016 Krakow Poland
- State Museum Natural History of NAS of Ukraine Teatralna 18 79008 Lviv Ukraine
| | - Irina I. Semenyuk
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
- Joint Russian‐Vietnamese Tropical Center №3 Street 3 Thang 2, Q10 Ho Chi Minh City Vietnam
| | - Alberto Sendra
- Colecciones Entomológicas Torres‐Sala, Servei de Patrimoni Històric, Ajuntament de València València Spain
- Departament de Didàctica de les Cièncias Experimentals i Socials, Facultat de Magisteri Universitat de València València Spain
| | - Jiri Tuma
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
- Biology Centre CAS, Institute of Entomology Branisovska 1160/31 370 05 Ceske Budejovice Czech Republic
| | - Michala Tůmová
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Anna B. Vassilieva
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Ting‐Wen Chen
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Stefan Geisen
- Department of Nematology Wageningen University & Research 6700ES Wageningen The Netherlands
| | - Olaf Schmidt
- UCD School of Agriculture and Food Science University College Dublin Belfield Dublin 4 Ireland
| | - Alexei V. Tiunov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use Büsgenweg 1 37077 Göttingen Germany
| |
Collapse
|
10
|
Zubairi T, Jabeen K, Khalid S, Iqbal S. Isolation and molecular characterization of causal agent of blue mold on Allium cepa L. and its control by Pennisetum flaccidum Griseb. Saudi J Biol Sci 2021; 28:6774-6781. [PMID: 34866976 PMCID: PMC8626295 DOI: 10.1016/j.sjbs.2021.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/02/2022] Open
Abstract
Blue mold pathogen, isolated from infected Allium cepa L., was identified as a Penicillium species through morphological and molecular characterisation. Internal Transcribed spacer (ITS) region of ribosomal DNA (rDNA) was utilised for DNA sequencing. Basic Local Alignment Search Tool (BLAST) analysis has found the maximum similarity index of the fungus to be 82.39% with the Uncultured Penicillium clone (Accession: MF535522). So, the isolated Penicillium specie is the first reported specie of the genus that infects onion. A phylogenetic tree was constructed to establish a relationship of the isolated fungus with the most relevant species reported on GenBank. Extracts of Pennisetum flaccidum Griseb. were evaluated against the isolated fungus as a potential biocontrol agent. Among the five tested methanol concentrations (0.5%, 1%, 1.5%, 2% and 2.5%) of each plant part (root, inflorescence and foliage), 0.5% root extract showed maximum growth retardation, i.e. 89%. For bioassay-guided fractionation, the root extract was partitioned in n-hexane, chloroform, n-butanol and ethyl acetate. Ethyl acetate (1%) was proved to be the most potent one. Phytochemical screening has confirmed the occurrence of terpenoids, tannins, saponins and alkaloids. The applied molecular approach has deduced that the Penicillium specie collected from Pakistan might be novel. This study can be concluded that P. flaccidum contains potent phytochemicals which might be used as antifungal agent against Penicillium species.
Collapse
Affiliation(s)
- Tehzeeb Zubairi
- Department of Botany, Lahore College for Women University, Lahore 54000, Pakistan
| | - Khajista Jabeen
- Department of Botany, Lahore College for Women University, Lahore 54000, Pakistan
| | - Sana Khalid
- Department of Botany, Lahore College for Women University, Lahore 54000, Pakistan.,Institute of Agricultural Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Sumera Iqbal
- Department of Botany, Lahore College for Women University, Lahore 54000, Pakistan
| |
Collapse
|
11
|
Bowman EA, Arnold AE. Drivers and implications of distance decay differ for ectomycorrhizal and foliar endophytic fungi across an anciently fragmented landscape. THE ISME JOURNAL 2021; 15:3437-3454. [PMID: 34099878 PMCID: PMC8630060 DOI: 10.1038/s41396-021-01006-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 07/30/2020] [Accepted: 05/04/2021] [Indexed: 02/05/2023]
Abstract
Fungal communities associated with plants often decrease in similarity as the distance between sampling sites increases (i.e., they demonstrate distance decay). In the southwestern USA, forests occur in highlands separated from one another by warmer, drier biomes with plant and fungal communities that differ from those at higher elevations. These disjunct forests are broadly similar in climate to one another, offering an opportunity to examine drivers of distance decay in plant-associated fungi across multiple ecologically similar yet geographically disparate landscapes. We examined ectomycorrhizal and foliar endophytic fungi associated with a dominant forest tree (Pinus ponderosa) in forests across ca. 550 km of geographic distance from northwestern to southeastern Arizona (USA). Both guilds of fungi showed distance decay, but drivers differed for each: ectomycorrhizal fungi are constrained primarily by dispersal limitation, whereas foliar endophytes are constrained by specific environmental conditions. Most ectomycorrhizal fungi were found in only a single forested area, as were many endophytic fungi. Such regional-scale perspectives are needed for baseline estimates of fungal diversity associated with forest trees at a landscape scale, with attention to the sensitivity of different guilds of fungal symbionts to decreasing areas of suitable habitat, increasing disturbance, and related impacts of climate change.
Collapse
Affiliation(s)
- Elizabeth A. Bowman
- grid.134563.60000 0001 2168 186XSchool of Plant Sciences, The University of Arizona, Tucson, AZ USA
| | - A. Elizabeth Arnold
- grid.134563.60000 0001 2168 186XSchool of Plant Sciences, The University of Arizona, Tucson, AZ USA ,grid.134563.60000 0001 2168 186XDepartment of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ USA
| |
Collapse
|
12
|
Anderson VM, Wendt KL, Najar FZ, McCall LI, Cichewicz RH. Building Natural Product Libraries Using Quantitative Clade-Based and Chemical Clustering Strategies. mSystems 2021; 6:e0064421. [PMID: 34698546 PMCID: PMC8547436 DOI: 10.1128/msystems.00644-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022] Open
Abstract
The success of natural product-based drug discovery is predicated on having chemical collections that offer broad coverage of metabolite diversity. We propose a simple set of tools combining genetic barcoding and metabolomics to help investigators build natural product libraries aimed at achieving predetermined levels of chemical coverage. It was found that such tools aided in identifying overlooked pockets of chemical diversity within taxa, which could be useful for refocusing collection strategies. We have used fungal isolates identified as Alternaria from a citizen-science-based soil collection to demonstrate the application of these tools for assessing and carrying out predictive measurements of chemical diversity in a natural product collection. Within Alternaria, different subclades were found to contain nonequivalent levels of chemical diversity. It was also determined that a surprisingly modest number of isolates (195 isolates) was sufficient to afford nearly 99% of Alternaria chemical features in the data set. However, this result must be considered in the context that 17.9% of chemical features appeared in single isolates, suggesting that fungi like Alternaria might be engaged in an ongoing process of actively exploring nature's metabolic landscape. Our results demonstrate that combining modest investments in securing internal transcribed spacer (ITS)-based sequence information (i.e., establishing gene-based clades) with data from liquid chromatography-mass spectrometry (i.e., generating feature accumulation curves) offers a useful route to obtaining actionable insights into chemical diversity coverage trends in a natural product library. It is anticipated that these outcomes could be used to improve opportunities for accessing bioactive molecules that serve as the cornerstone of natural product-based drug discovery. IMPORTANCE Natural product drug discovery efforts rely on libraries of organisms to provide access to diverse pools of compounds. Actionable strategies to rationally maximize chemical diversity, rather than relying on serendipity, can add value to such efforts. Readily implementable biological (i.e., ITS sequence analysis) and chemical (i.e., mass spectrometry-based feature and scaffold measurements) diversity assessment tools can be employed to monitor and adjust library development tactics in real time. In summary, metabolomics-driven technologies and simple gene-based specimen barcoding approaches have broad applicability to building chemically diverse natural product libraries.
Collapse
Affiliation(s)
- Victoria M. Anderson
- Natural Products Discovery Group, University of Oklahoma, Norman, Oklahoma, USA
- Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Karen L. Wendt
- Natural Products Discovery Group, University of Oklahoma, Norman, Oklahoma, USA
- Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Fares Z. Najar
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Chemistry and Biochemistry Bioinformatics Core, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, USA
| | - Robert H. Cichewicz
- Natural Products Discovery Group, University of Oklahoma, Norman, Oklahoma, USA
- Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
13
|
Runte GC, Smith AH, Moeller HV, Bogar LM. Spheres of Influence: Host Tree Proximity and Soil Chemistry Shape rRNA, but Not DNA, Communities of Symbiotic and Free-Living Soil Fungi in a Mixed Hardwood-Conifer Forest. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.641732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Host and symbiont diversity are inextricably linked across partnerships and ecosystems, with degree of partner reliance governing the strength of this correlation. In many forest soils, symbiotic ectomycorrhizal fungi coexist and compete with free-living saprotrophic fungi, with the outcomes of these interactions shaping resource availability and competitive outcomes for the trees aboveground. Traditional approaches to characterizing these communities rely on DNA sequencing of a ribosomal precursor RNA gene (the internal transcribed spacer region), but directly sequencing the precursor rRNA may provide a more functionally relevant perspective on the potentially active fungal communities. Here, we map ectomycorrhizal and saprotrophic soil fungal communities through a mixed hardwood-conifer forest to assess how above- and belowground diversity linkages compare across these differently adapted guilds. Using highly spatially resolved transects (sampled every 2 m) and well-mapped stands of varying host tree diversity, we sought to understand the relative influence of symbiosis versus environment in predicting fungal diversity measures. Canopy species in this forest included two oaks (Quercus agrifolia and Quercus douglasii) and one pine (Pinus sabiniana). At the scale of our study, spatial turnover in rRNA-based communities was much more predictable from measurable environmental attributes than DNA-based communities. And while turnover of ectomycorrhizal fungi and saprotrophs were predictable by the presence and abundance of different canopy species, they both responded strongly to soil nutrient characteristics, namely pH and nitrogen availability, highlighting the niche overlap of these coexisting guilds and the strong influence of aboveground plants on belowground fungal communities.
Collapse
|
14
|
Mitchell JK, Garrido-Benavent I, Quijada L, Pfister DH. Sareomycetes: more diverse than meets the eye. IMA Fungus 2021; 12:6. [PMID: 33726866 PMCID: PMC7961326 DOI: 10.1186/s43008-021-00056-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/16/2021] [Indexed: 01/16/2023] Open
Abstract
Since its resurrection, the resinicolous discomycete genus Sarea has been accepted as containing two species, one with black apothecia and pycnidia, and one with orange. We investigate this hypothesis using three ribosomal (nuITS, nuLSU, mtSSU) regions from and morphological examination of 70 specimens collected primarily in Europe and North America. The results of our analyses support separation of the traditional Sarea difformis s.lat. and Sarea resinae s.lat. into two distinct genera, Sarea and Zythia. Sarea as circumscribed is shown to conservatively comprise three phylospecies, with one corresponding to Sarea difformis s.str. and two, morphologically indistinguishable, corresponding to the newly combined Sarea coeloplata. Zythia is provisionally maintained as monotypic, containing only a genetically and morphologically variable Z. resinae. The new genus Atrozythia is erected for the new species A. klamathica. Arthrographis lignicola is placed in this genus on molecular grounds, expanding the concept of Sareomycetes by inclusion of a previously unknown type of asexual morph. Dating analyses using additional marker regions indicate the emergence of the Sareomycetes was roughly concurrent with the diversification of the genus Pinus, suggesting that this group of fungi emerged to exploit the newly-available resinous ecological niche supplied by Pinus or another, extinct group of conifers. Our phylogeographic studies also permitted us to study the introductions of these fungi to areas where they are not native, including Antarctica, Cape Verde, and New Zealand and are consistent with historical hypotheses of introduction.
Collapse
Affiliation(s)
- James K Mitchell
- Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA. .,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA, 02138, USA.
| | - Isaac Garrido-Benavent
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE) & Dept. Botànica i Geologia, Universitat de València, C/ Dr. Moliner 50, 46100-Burjassot, València, Spain
| | - Luis Quijada
- Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Donald H Pfister
- Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
15
|
Fire and local factors shape ectomycorrhizal fungal communities associated with Pinus ponderosa in mountains of the Madrean Sky Island Archipelago. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2020.101013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Rodríguez-Gutiérrez I, Garibay-Orijel R, Santiago-Morales B, Lindig-Cisneros R. Comparación entre las abundancias de esporomas y ectomicorrizas del género Laccaria en Ixtlán de Juárez, Oaxaca. REV MEX BIODIVERS 2020. [DOI: 10.22201/ib.20078706e.2020.91.3340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Kennedy PG, Gagne J, Perez-Pazos E, Lofgren LA, Nguyen NH. Does fungal competitive ability explain host specificity or rarity in ectomycorrhizal symbioses? PLoS One 2020; 15:e0234099. [PMID: 32810132 PMCID: PMC7433872 DOI: 10.1371/journal.pone.0234099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 11/28/2022] Open
Abstract
Two common ecological assumptions are that host generalist and rare species are poorer competitors relative to host specialist and more abundant counterparts. While these assumptions have received considerable study in both plant and animals, how they apply to ectomycorrhizal fungi remains largely unknown. To investigate how interspecific competition may influence the anomalous host associations of the rare ectomycorrhizal generalist fungus, Suillus subaureus, we conducted a seedling bioassay. Pinus strobus seedlings were inoculated in single- or two-species treatments of three Suillus species: S. subaureus, S. americanus, and S. spraguei. After 4 and 8 months of growth, seedlings were harvested and scored for mycorrhizal colonization as well as dry biomass. At both time points, we found a clear competitive hierarchy among the three ectomycorrhizal fungal species: S. americanus > S. subaureus > S. spraguei, with the competitive inferior, S. spraguei, having significantly delayed colonization relative to S. americanus and S. subaureus. In the single-species treatments, we found no significant differences in the dry biomasses of P. strobus seedlings colonized by each Suillus species, suggesting none was a more effective plant symbiont. Taken together, these results indicate that the rarity and anomalous host associations exhibited by S. subaureus in natural settings are not driven by inherently poor competitive ability or host growth promotion, but that the timing of colonization is a key factor determining the outcome of ectomycorrhizal fungal competitive interactions.
Collapse
Affiliation(s)
- Peter G. Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Joe Gagne
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eduardo Perez-Pazos
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Lotus A. Lofgren
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, United States of America
| | - Nhu H. Nguyen
- Department of Tropical Plant & Soil Sciences, University of Hawai’i, Manoa, Manoa, Honolulu, Hawai’i, United States of America
| |
Collapse
|
18
|
Xing P, Xu Y, Gao T, Li G, Zhou J, Xie M, Ji R. The community composition variation of Russulaceae associated with the Quercus mongolica forest during the growing season at Wudalianchi City, China. PeerJ 2020; 8:e8527. [PMID: 32095355 PMCID: PMC7023826 DOI: 10.7717/peerj.8527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/07/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Most species of the Russulaceae are ectomycorrhizal (ECM) fungi, which are widely distributed in different types of forest ecology and drive important ecological and economic functions. Little is known about the composition variation of the Russulaceae fungal community aboveground and in the root and soil during the growing season (June-October) from a Quercus mongolica forest. In this study, we investigated the changes in the composition of the Russulaceae during the growing season of this type of forest in Wudalianchi City, China. METHODS To achieve this, the Sanger sequencing method was used to identify the Russulaceae aboveground, and the high-throughput sequencing method was used to analyze the species composition of the Russulaceae in the root and soil. Moreover, we used the Pearson correlation analysis, the redundancy analysis and the multivariate linear regression analysis to analyze which factors significantly affected the composition and distribution of the Russulaceae fungal community. RESULTS A total of 56 species of Russulaceae were detected in the Q. mongolica forest, which included 48 species of Russula, seven species of Lactarius, and one species of Lactifluus. Russula was the dominant group. During the growing season, the sporocarps of Russula appeared earlier than those of Lactarius. The number of species aboveground exhibited a decrease after the increase and were significantly affected by the average monthly air temperature (r = -0.822, p = 0.045), average monthly relative humidity (r = -0.826, p = 0.043), monthly rainfall (r = 0.850, p = 0.032), soil moisture (r = 0.841, p = 0.036) and soil organic matter (r = 0.911, p = 0.012). In the roots and soils under the Q. mongolica forest, the number of species did not show an apparent trend. The number of species from the roots was the largest in September and the lowest in August, while those from the soils were the largest in October and the lowest in June. Both were significantly affected by the average monthly air temperature (r2 = 0.6083, p = 0.040) and monthly rainfall (r2 = 0.6354, p = 0.039). Moreover, the relative abundance of Russula and Lactarius in the roots and soils showed a linear correlation with the relative abundance of the other fungal genera.
Collapse
Affiliation(s)
- Pengjie Xing
- Engineering Research Center of Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yang Xu
- Engineering Research Center of Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Tingting Gao
- Engineering Research Center of Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Guanlin Li
- Engineering Research Center of Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Jijiang Zhou
- Engineering Research Center of Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Mengle Xie
- Engineering Research Center of Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Life Science College, Northeast Normal University, Changchun, China
| | - Ruiqing Ji
- Engineering Research Center of Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| |
Collapse
|
19
|
R. Carrino-Kyker S, P. Coyle K, A. Kluber L, J. Burke D. Fungal and Bacterial Communities Exhibit Consistent Responses to Reversal of Soil Acidification and Phosphorus Limitation over Time. Microorganisms 2019; 8:E1. [PMID: 31861322 PMCID: PMC7022789 DOI: 10.3390/microorganisms8010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/16/2023] Open
Abstract
Chronic acid deposition affects many temperate hardwood forests of the northeastern United States, reduces soil pH and phosphorus (P) availability, and can alter the structure and function of soil microbial communities. The strategies that microorganisms possess for survival in acidic, low P soil come at a carbon (C) cost. Thus, how microbial communities respond to soil acidification in forests may be influenced by plant phenological stage as C allocation belowground varies; however, this remains largely unexplored. In this study, we examined microbial communities in an ecosystem level manipulative experiment where pH and/or P availability were elevated in three separate forests in Northeastern Ohio. Tag-encoded pyrosequencing was used to examine bacterial and fungal community structure at five time points across one year corresponding to plant phenological stages. We found significant effects of pH treatment and time on fungal and bacterial communities in soil. However, we found no interaction between pH treatment and time of sampling for fungal communities and only a weak interaction between pH elevation and time for bacterial communities, suggesting that microbial community responses to soil pH are largely independent of plant phenological stage. In addition, fungal communities were structured largely by site, suggesting that fungi were responding to differences between the forests, such as plant community differences.
Collapse
Affiliation(s)
- Sarah R. Carrino-Kyker
- The Holden Arboretum, Kirtland, OH 44094, USA; (L.A.K.); (D.J.B.)
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Kaitlin P. Coyle
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Laurel A. Kluber
- The Holden Arboretum, Kirtland, OH 44094, USA; (L.A.K.); (D.J.B.)
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - David J. Burke
- The Holden Arboretum, Kirtland, OH 44094, USA; (L.A.K.); (D.J.B.)
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
20
|
Gavito ME, Leyva-Morales R, Vega-Peña EV, Arita H, Jairus T, Vasar M, Öpik M. Local-scale spatial diversity patterns of ectomycorrhizal fungal communities in a subtropical pine-oak forest. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Bruns TD, Hale ML, Nguyen NH. Rhizopogon olivaceotinctus increases its inoculum potential in heated soil independent of competitive release from other ectomycorrhizal fungi. Mycologia 2019; 111:936-941. [PMID: 31603384 DOI: 10.1080/00275514.2019.1657354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Rhizopogon olivaceotinctus is a rarely collected ectomycorrhizal fungus that has been found primarily in California and southern Oregon. Prior work has shown that it (i) is common in soil spore banks associated with pine forests from these areas; (ii) is rare or absent on trees in undisturbed forests in these same areas; (iii) exhibits an increased abundance on pine seedlings following fire or experimental soil heating; and (iv) has spores that are more resistant to heat than those of several other ectomycorrhizal species tested to date. Here, we reject the hypothesis that the increased abundance of the species following soil heating is caused only by reduced competition with other ectomycorrnizal fungi and show instead that heating alone significantly increases the inoculum potential of its spores. We argue that this is likely caused by heat stimulation of the spores, a process that has precedent in saprotrophic fungi and plant seeds. This result, in combination with those of previous studies, shows that Rhizopogon olivaceotinctus is well adapted to fire.
Collapse
Affiliation(s)
- Thomas D Bruns
- Department of Plant and Microbial Biology, University of California Berkeley, California 94720-3102
| | - Maren L Hale
- Department of Plant and Microbial Biology, University of California Berkeley, California 94720-3102
| | - Nhu H Nguyen
- Department of Tropical Plant and Soil Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i 96922
| |
Collapse
|
22
|
Burke DJ, Carrino‐Kyker SR, Burns JH. Is it climate or chemistry? Soil fungal communities respond to soil nutrients in a multi‐year high‐resolution analysis. Ecosphere 2019. [DOI: 10.1002/ecs2.2896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- David J. Burke
- The Holden Arboretum Kirtland Ohio 44094 USA
- The Department of Biology Case Western Reserve University Cleveland Ohio 44106 USA
| | | | - Jean H. Burns
- The Department of Biology Case Western Reserve University Cleveland Ohio 44106 USA
| |
Collapse
|
23
|
Pec GJ, Cahill, Jr. JF. Large-scale insect outbreak homogenizes the spatial structure of ectomycorrhizal fungal communities. PeerJ 2019; 7:e6895. [PMID: 31123638 PMCID: PMC6512761 DOI: 10.7717/peerj.6895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/02/2019] [Indexed: 11/20/2022] Open
Abstract
Ectomycorrhizal fungi (plant symbionts) are diverse and exist within spatially variable communities that play fundamental roles in the functioning of terrestrial ecosystems. However, the underlying ecological mechanisms that maintain and regulate the spatial structuring of ectomycorrhizal fungal communities are both complex and remain poorly understood. Here, we use a gradient of mountain pine beetle (Dendroctonus ponderosae) induced tree mortality across eleven stands in lodgepole pine (Pinus contorta) forests of western Canada to investigate: (i) the degree to which spatial structure varies within this fungal group, and (ii) how these patterns may be driven by the relative importance of tree mortality from changes in understory plant diversity, productivity and fine root biomass following tree death. We found that the homogeneity of the ectomycorrhizal fungal community increased with increasing tree death, aboveground understory productivity and diversity. Whereas, the independent effect of fine root biomass, which declined along the same gradient of tree mortality, increased the heterogeneity of the ectomycorrhizal fungal community. Together, our results demonstrate that large-scale biotic disturbance homogenizes the spatial patterns of ectomycorrhizal fungal communities.
Collapse
Affiliation(s)
- Gregory J. Pec
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, United States of America
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
24
|
Piculell BJ, José Martínez-García P, Nelson CD, Hoeksema JD. Association mapping of ectomycorrhizal traits in loblolly pine (Pinus taeda L.). Mol Ecol 2019; 28:2088-2099. [PMID: 30632641 DOI: 10.1111/mec.15013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 11/30/2022]
Abstract
To understand how diverse mutualisms coevolve and how species adapt to complex environments, a description of the underlying genetic basis of the traits involved must be provided. For example, in diverse coevolving mutualisms, such as the interaction of host plants with a suite of symbiotic mycorrhizal fungi, a key question is whether host plants can coevolve independently with multiple species of symbionts, which depends on whether those interactions are governed independently by separate genes or pleiotropically by shared genes. To provide insight into this question, we employed an association mapping approach in a clonally replicated field experiment of loblolly pine (Pinus taeda L.) to identify genetic components of host traits governing ectomycorrhizal (EM) symbioses (mycorrhizal traits). The relative abundances of different EM fungi as well as the total number of root tips per cm root colonized by EM fungi were analyzed as separate mycorrhizal traits of loblolly pine. Single-nucleotide polymorphisms (SNPs) within candidate genes of loblolly pine were associated with loblolly pine mycorrhizal traits, mapped to the loblolly pine genome, and their putative protein function obtained when available. The results support the hypothesis that ectomycorrhiza formation is governed by host genes of large effect that apparently have independent influences on host interactions with different symbiont species.
Collapse
Affiliation(s)
- Bridget J Piculell
- Department of Biology, University of Mississippi, University, Mississippi.,Department of Biology, College of Charleston, Charleston, South Carolina
| | | | - C Dana Nelson
- USDA Forest Service, Southern Institute of Forest Genetics, Saucier, Mississippi.,Forest Health Research and Education Center, Lexington, Kentucky
| | - Jason D Hoeksema
- Department of Biology, University of Mississippi, University, Mississippi
| |
Collapse
|
25
|
Miyamoto Y, Narimatsu M, Nara K. Effects of climate, distance, and a geographic barrier on ectomycorrhizal fungal communities in Japan: A comparison across Blakiston's Line. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Bowman EA, Arnold AE. Distributions of ectomycorrhizal and foliar endophytic fungal communities associated with Pinus ponderosa along a spatially constrained elevation gradient. AMERICAN JOURNAL OF BOTANY 2018; 105:687-699. [PMID: 29756204 DOI: 10.1002/ajb2.1072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Understanding distributions of plant-symbiotic fungi is important for projecting responses to environmental change. Many coniferous trees host ectomycorrhizal fungi (EM) in association with roots and foliar endophytic fungi (FE) in leaves. We examined how EM and FE associated with Pinus ponderosa each vary in abundance, diversity, and community structure over a spatially constrained elevation gradient that traverses four plant communities, 4°C in mean annual temperature, and 15 cm in mean annual precipitation. METHODS We sampled 63 individuals of Pinus ponderosa in 10 sites along a 635 m elevation gradient that encompassed a geographic distance of 9.8 km. We used standard methods to characterize each fungal group (amplified and sequenced EM from root tips; isolated and sequenced FE from leaves). KEY RESULTS Abundance and diversity of EM were similar across sites, but community composition and distributions of the most common EM differed with elevation (i.e., with climate, soil chemistry, and plant communities). Abundance and composition of FE did not differ with elevation, but diversity peaked in mid-to-high elevations. CONCLUSIONS Our results suggest relatively tight linkages between EM and climate, soil chemistry, and plant communities. That FE appear less linked with these factors may speak to limitations of a culture-based approach, but more likely reflects the small spatial scale encompassed by our study. Future work should consider comparable methods for characterizing these functional groups, and additional transects to understand relationships of EM and FE to environmental factors that are likely to shift as a function of climate change.
Collapse
Affiliation(s)
- Elizabeth A Bowman
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - A Elizabeth Arnold
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
27
|
Arana-Gabriel Y, Burrola-Aguilar C, Garibay-Orijel R, Matías-Ferrer N, Franco-Maass S, Mata G. Genetic characterization, evaluation of growth and production of biomass of strains from wild edible mushrooms of Lyophyllum of Central Mexico. Braz J Microbiol 2018; 49:632-640. [PMID: 29482997 PMCID: PMC6112054 DOI: 10.1016/j.bjm.2017.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/23/2017] [Accepted: 12/13/2017] [Indexed: 10/24/2022] Open
Abstract
The present study conducted a genetic characterization and determined growth rate and biomass production in solid and liquid media, using strains obtained from wild edible sporomes of Lyophyllum that grow in high mountains. Vegetative isolation was used to obtain a total of four strains, which were divided into two clades within the section Difformia: Lyophyllum sp. and Lyophyllum aff. shimeji. Growth rate and biomass production were influenced by both the culture media and the strains. In a potato dextrose agar medium, the strains presented a higher growth rate, while in a malt extract-peptone and yeast agar medium, the growth rate was lower, but with a higher biomass production that was equal to that in the malt extract-peptone and yeast liquid medium.
Collapse
Affiliation(s)
- Yolanda Arana-Gabriel
- Universidad Autónoma del Estado de México, Facultad de Ciencias, Centro de Investigación en Recursos Bióticos, Toluca, Mexico
| | - Cristina Burrola-Aguilar
- Universidad Autónoma del Estado de México, Facultad de Ciencias, Centro de Investigación en Recursos Bióticos, Toluca, Mexico.
| | - Roberto Garibay-Orijel
- Universidad Nacional Autónoma de México, Instituto de Biología, Ciudad de México, Mexico
| | - Noemí Matías-Ferrer
- Universidad Nacional Autónoma de México, Instituto de Biología, Ciudad de México, Mexico
| | - Sergio Franco-Maass
- Universidad Autónoma del Estado de México, Instituto de Ciencias Agropecuarias y Rurales, Toluca, Mexico
| | | |
Collapse
|
28
|
Ibrahim M, Sieber TN, Schlegel M. Communities of fungal endophytes in leaves of Fraxinus ornus are highly diverse. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2017.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Ectomycorrhizal community composition and structure of a mature red alder ( Alnus rubra ) stand. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2017.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
30
|
Henry C, Raivoarisoa JF, Razafimamonjy A, Ramanankierana H, Andrianaivomahefa P, Ducousso M, Selosse MA. Transfer to forest nurseries significantly affects mycorrhizal community composition of Asteropeia mcphersonii wildings. MYCORRHIZA 2017; 27:321-330. [PMID: 27928691 DOI: 10.1007/s00572-016-0750-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/22/2016] [Indexed: 06/06/2023]
Abstract
Mycorrhizal symbiosis is extremely important for tree growth, survival and resistance after transplantation particularly in Madagascar where deforestation is a major concern. The importance of mycorrhizal symbiosis is further increased when soil conditions at the planting site are limiting. To identify technical itineraries capable of improving ecological restoration in Madagascar, we needed to obtain native ectomycorrhizal (ECM) saplings with a wide diversity of ECM fungi. To this end, we transplanted ECM seedlings from the wild (wildlings) to a nursery. Using molecular characterisation of internal transcribed spacer (ITS) rDNA, we tested the effect of transplanting Asteropeia mcphersonii wildlings on ECM communities after 8 months of growth in the nursery. With or without the addition of soil from the site where the seedlings were sampled to the nursery substrate, we observed a dramatic change in the composition of fungal communities with a decrease in the ECM infection rate, a tremendous increase in the abundance of an operational taxonomic unit (OTU) taxonomically close to the order Trechisporales and the disappearance of all OTUs of Boletales. Transplanting to the nursery and/or to nursery conditions was shown to be incompatible with the survival and even less with the development in the nursery of most ECM fungi naturally associated with A. mcphersonii wildings.
Collapse
Affiliation(s)
- Charline Henry
- AgroParisTech, Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD/INRA/CIRAD/Montpellier SupAgro/Université Montpellier, TA10J, 34398, Montpellier Cedex 5, France
| | - Jeanne-Françoise Raivoarisoa
- Ambatovy, Immeuble Tranofitaratra-7ème étage, rue Ravoninahitriniarivo-Ankorondrano, 101, Antananarivo, Madagascar
| | - Angélo Razafimamonjy
- Ambatovy, Immeuble Tranofitaratra-7ème étage, rue Ravoninahitriniarivo-Ankorondrano, 101, Antananarivo, Madagascar
| | - Heriniaina Ramanankierana
- Laboratoire de Microbiologie de l'environnement, Centre National de Recherches sur l'Environnement, Antananarivo, Madagascar
| | - Paul Andrianaivomahefa
- Ambatovy, Immeuble Tranofitaratra-7ème étage, rue Ravoninahitriniarivo-Ankorondrano, 101, Antananarivo, Madagascar
| | - Marc Ducousso
- CIRAD, Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD/INRA/CIRAD/Montpellier SupAgro/Université Montpellier, TA10C, 34398, Montpellier Cedex 5, France.
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP50, 75005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| |
Collapse
|
31
|
Raja H, Miller AN, Pearce CJ, Oberlies NH. Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. JOURNAL OF NATURAL PRODUCTS 2017; 80:756-770. [PMID: 28199101 PMCID: PMC5368684 DOI: 10.1021/acs.jnatprod.6b01085] [Citation(s) in RCA: 391] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 05/17/2023]
Abstract
Fungi are morphologically, ecologically, metabolically, and phylogenetically diverse. They are known to produce numerous bioactive molecules, which makes them very useful for natural products researchers in their pursuit of discovering new chemical diversity with agricultural, industrial, and pharmaceutical applications. Despite their importance in natural products chemistry, identification of fungi remains a daunting task for chemists, especially those who do not work with a trained mycologist. The purpose of this review is to update natural products researchers about the tools available for molecular identification of fungi. In particular, we discuss (1) problems of using morphology alone in the identification of fungi to the species level; (2) the three nuclear ribosomal genes most commonly used in fungal identification and the potential advantages and limitations of the ITS region, which is the official DNA barcoding marker for species-level identification of fungi; (3) how to use NCBI-BLAST search for DNA barcoding, with a cautionary note regarding its limitations; (4) the numerous curated molecular databases containing fungal sequences; (5) the various protein-coding genes used to augment or supplant ITS in species-level identification of certain fungal groups; and (6) methods used in the construction of phylogenetic trees from DNA sequences to facilitate fungal species identification. We recommend that, whenever possible, both morphology and molecular data be used for fungal identification. Our goal is that this review will provide a set of standardized procedures for the molecular identification of fungi that can be utilized by the natural products research community.
Collapse
Affiliation(s)
- Huzefa
A. Raja
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Andrew N. Miller
- Illinois
Natural History Survey, University of Illinois, Champaign, Illinois 61820, United States
| | - Cedric J. Pearce
- Mycosynthetix,
Inc., 505 Meadowland
Drive, Suite 103, Hillsborough, North Carolina 27278, United States
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
32
|
Baeza-Guzmán Y, Medel-Ortiz R, Garibay-Orijel R. Caracterización morfológica y genética de los hongos ectomicorrízicos asociados a bosques de Pinus hartwegii en el Parque Nacional Cofre de Perote, Veracruz. REV MEX BIODIVERS 2017. [DOI: 10.1016/j.rmb.2017.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Smith ME, Trappe JM, Rizzo DM. Genea,GenabeaandGilkeyagen. nov.: ascomata and ectomycorrhiza formation in aQuercuswoodland. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Matthew E. Smith
- Department of Plant Pathology, University of California at Davis, Davis, California 95616
| | - James M. Trappe
- Department of Forest Science, Oregon State University, Corvallis, Oregon 97331-5752
| | - David M. Rizzo
- Department of Plant Pathology, University of California at Davis, Davis, California 95616
| |
Collapse
|
34
|
Izzo A, Nguyen DT, Bruns TD. Spatial structure and richness of ectomycorrhizal fungi colonizing bioassay seedlings from resistant propagules in a Sierra Nevada forest: comparisons using two hosts that exhibit different seedling establishment patterns. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Thomas D. Bruns
- Department of Plant and Microbial Biology, 321, Koshland Hall, University of California, Berkeley, California 94720-3102
| |
Collapse
|
35
|
Chen J, Cui B, He S, Cooper JA, Barrett MD, Chen J, Song J, Dai Y. Molecular phylogeny and global diversity of the remarkable genusBondarzewia(Basidiomycota, Russulales). Mycologia 2017; 108:697-708. [PMID: 27091389 DOI: 10.3852/14-216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/17/2016] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Shuanghui He
- Institute of Microbiology, Beijing Forestry University, Beijing 100083, China
| | | | - Matthew D. Barrett
- Botanic Gardens and Parks Authority, Fraser Ave, West Perth 6005, Australia
| | - Junliang Chen
- Science and Research Center for Edible Fungi of Qingyuan County, Qingyuan 323800, China
| | | | - Yucheng Dai
- Institute of Microbiology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
36
|
Argüelles-Moyao A, Garibay-Orijel R, Márquez-Valdelamar LM, Arellano-Torres E. Clavulina-Membranomyces is the most important lineage within the highly diverse ectomycorrhizal fungal community of Abies religiosa. MYCORRHIZA 2017; 27:53-65. [PMID: 27562509 DOI: 10.1007/s00572-016-0724-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 08/03/2016] [Indexed: 06/06/2023]
Abstract
Abies religiosa is an endemic conifer of Mexico, where its monodominant forests are the winter refuge of the monarch butterfly. Due to climate change, it has been estimated that by 2090, A. religiosa populations will decline by 96.5 %. To achieve success, reforestation programs should consider its ectomycorrhizal (ECM) fungi. We used ITS nrDNA sequences to identify the ECM fungi associated with A. religiosa and, based on its abundance and frequency, determined the diversity and community structure in a pure A. religiosa forest near Mexico City. Using sequence metadata, we inferred the species geographic distribution and host preferences. We conducted phylogenetic analyses of the Clavulinaceae (the most important family). The ECM community held 83 species, among which the richest genera were Inocybe (21 species), Tomentella (10 species), and Russula (8 species). Besides its low species richness, the Clavulina-Membranomyces lineage was the most dominant family. Clavulina cf. cinerea and Membranomyces sp. exhibited the highest relative abundance and relative frequency values. Phylogenetic analyses placed the Clavulinaceae genotypes in three different clades: one within Membranomyces and two within Clavulina. A meta-analysis showed that the majority of the ECM fungi (45.78 %) associated with A. religiosa in Mexico have also been sequenced from North America and are shared by Pinaceae and Fagaceae. In contrast, because they have not been sequenced previously, 32.2 % of the species have a restricted distribution. Here, we highlight the emerging pattern that the Clavulina-Membranomyces lineage is dominant in several ECM communities in the Neotropics, including Aldinia and Dicymbe legume tropical forests in the Guyana Shield, the Alnus acuminata subtropical communities, and the A. religiosa temperate forests in Mexico.
Collapse
Affiliation(s)
- Andrés Argüelles-Moyao
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Del. Coyoacán, DF, C.P. 04510, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio B, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Del. Coyoacan, DF, C.P. 04510, México
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Del. Coyoacán, DF, C.P. 04510, México.
| | - Laura Margarita Márquez-Valdelamar
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Del. Coyoacán, DF, C.P. 04510, México
| | - Elsa Arellano-Torres
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Del. Coyoacán, DF, C.P. 04510, México
| |
Collapse
|
37
|
Ong JW, Li H, Sivasithamparam K, Dixon KW, Jones MG, Wylie SJ. Novel Endorna-like viruses, including three with two open reading frames, challenge the membership criteria and taxonomy of the Endornaviridae. Virology 2016; 499:203-211. [DOI: 10.1016/j.virol.2016.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/11/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
|
38
|
|
39
|
Chen J, Cui B, Dai Y. Global diversity and molecular systematics of Wrightoporia s.l. ( Russulales, Basidiomycota). PERSOONIA 2016; 37:21-36. [PMID: 28232759 PMCID: PMC5315289 DOI: 10.3767/003158516x689666] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 06/04/2015] [Indexed: 11/25/2022]
Abstract
Wrightoporia accommodates polypores producing finely asperulate and amyloid basidiospores, and causing white rot. Thirty-nine species have been described or transferred to this genus; however, only a few species have been referred to molecular phylogeny. In this study, about 140 worldwide specimens of Wrightoporia s.l. were studied morphologically, and ITS and/or nLSU regions from 37 samples, representing 19 species, were sequenced for phylogenetic analysis. Six clades of Wrightoporia s.l. were recognized. The Wrightoporia s.str. clade includes W. avellanea, W. lenta (the generic type) and W. subavellanea. Three clades segregating from Wrightoporia s.str. were proposed separately as three new genera, namely Larssoniporia gen. nov., Pseudowrightoporia gen. nov. and Wrightoporiopsis gen. nov. Two other clades were named after Amylonotus and Amylosporus. According to phylogenetic and morphological evidence, species previously treated in Wrightoporia were transferred to Amylonotus, Amylosporus and the new genera, or were retained as members of Wrightoporia s.l. because no good solution for these species could be found so far. In addition, one new species in Larssoniporia, three new species in Pseudowrightoporia and two new species in Wrightoporiopsis were described. Identification keys to the six genera and species in Amylonotus, Amylosporus, Larssoniporia, Pseudowrightoporia, Wrightoporia and Wrightoporiopsis are provided, respectively.
Collapse
Affiliation(s)
- J.J. Chen
- Institute of Microbiology and Beijing Key Laboratory for Forest Pest Control, P.O.Box 61, Beijing Forestry University, Beijing 100083, China
| | - B.K. Cui
- Institute of Microbiology and Beijing Key Laboratory for Forest Pest Control, P.O.Box 61, Beijing Forestry University, Beijing 100083, China
| | - Y.C. Dai
- Institute of Microbiology and Beijing Key Laboratory for Forest Pest Control, P.O.Box 61, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
40
|
DNA barcoding for identification of consumer-relevant mushrooms: A partial solution for product certification? Food Chem 2016; 214:383-392. [PMID: 27507489 DOI: 10.1016/j.foodchem.2016.07.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 06/03/2016] [Accepted: 07/09/2016] [Indexed: 02/06/2023]
Abstract
One challenge in the dietary supplement industry is confirmation of species identity for processed raw materials, i.e. those modified by milling, drying, or extraction, which move through a multilevel supply chain before reaching the finished product. This is particularly difficult for samples containing fungal mycelia, where processing removes morphological characteristics, such that they do not present sufficient variation to differentiate species by traditional techniques. To address this issue, we have demonstrated the utility of DNA barcoding to verify the taxonomic identity of fungi found commonly in the food and dietary supplement industry; such data are critical for protecting consumer health, by assuring both safety and quality. By using DNA barcoding of nuclear ribosomal internal transcribed spacer (ITS) of the rRNA gene with fungal specific ITS primers, ITS barcodes were generated for 33 representative fungal samples, all of which could be used by consumers for food and/or dietary supplement purposes. In the majority of cases, we were able to sequence the ITS region from powdered mycelium samples, grocery store mushrooms, and capsules from commercial dietary supplements. After generating ITS barcodes utilizing standard procedures accepted by the Consortium for the Barcode of Life, we tested their utility by performing a BLAST search against authenticate published ITS sequences in GenBank. In some cases, we also downloaded published, homologous sequences of the ITS region of fungi inspected in this study and examined the phylogenetic relationships of barcoded fungal species in light of modern taxonomic and phylogenetic studies. We anticipate that these data will motivate discussions on DNA barcoding based species identification as applied to the verification/certification of mushroom-containing dietary supplements.
Collapse
|
41
|
Benucci GMN, Lefevre C, Bonito G. Characterizing root-associated fungal communities and soils of Douglas-fir (Pseudotsuga menziesii) stands that naturally produce Oregon white truffles (Tuber oregonense and Tuber gibbosum). MYCORRHIZA 2016; 26:367-376. [PMID: 26743427 DOI: 10.1007/s00572-015-0677-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Many truffle species in the genus Tuber are endemic to North America. Some of these have commercial value such as Tuber oregonense and Tuber gibbosum, commonly known as Oregon white truffles. Most of what is known about the ecology of these truffles comes from observational data. These truffle species form ectomycorrhizas with Douglas-fir (Pseudotsuga menziesii) and sometimes fruit abundantly in early successional forest regrowth. The goal of this study was to characterize fungal communities and soils associated with truffle-producing Douglas-fir sites. We extracted DNA from roots of five trees at four different truffle-producing Douglas-fir sites (n = 20). We amplified the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA (nrDNA) and sequenced amplicons with 454 pyrosequencing. After quality filtering, we assembled 15,713 sequences into 150 fungal operational taxonomic units (OTUs). Pezizomycetes (Tuber and Pyronemataceae) were the most abundant taxa detected followed by Helotiales. Agaricomycetes represented most by Thelephoraceae, Russulaceae, and Inocybaceae were also abundant. A total of five Tuber species were detected. T. oregonense was the most abundant OTU, followed by T. gibbosum and Wilcoxina mikolae. Fungal root endophytes were also detected and well represented by Chalara and Phialocephala spp. Fungal community structure and soil chemistry differed between sites. This study represents the first characterization of the fungal communities in Douglas-fir stands producing Oregon white truffles. We found that Tuber species can be dominant ectomycorrhizal symbionts of Douglas-fir. Truffle fungi are also important in forest health, food webs, and as a non-timber forest resource that can contribute to rural economies.
Collapse
Affiliation(s)
| | | | - Gregory Bonito
- Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
42
|
Rúa MA, Wilson EC, Steele S, Munters AR, Hoeksema JD, Frank AC. Associations between Ectomycorrhizal Fungi and Bacterial Needle Endophytes in Pinus radiata: Implications for Biotic Selection of Microbial Communities. Front Microbiol 2016; 7:399. [PMID: 27065966 PMCID: PMC4815291 DOI: 10.3389/fmicb.2016.00399] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/14/2016] [Indexed: 02/01/2023] Open
Abstract
Studies of the ecological and evolutionary relationships between plants and their associated microbes have long been focused on single microbes, or single microbial guilds, but in reality, plants associate with a diverse array of microbes from a varied set of guilds. As such, multitrophic interactions among plant-associated microbes from multiple guilds represent an area of developing research, and can reveal how complex microbial communities are structured around plants. Interactions between coniferous plants and their associated microbes provide a good model system for such studies, as conifers host a suite of microorganisms including mutualistic ectomycorrhizal (ECM) fungi and foliar bacterial endophytes. To investigate the potential role ECM fungi play in structuring foliar bacterial endophyte communities, we sampled three isolated, native populations of Monterey pine (Pinus radiata), and used constrained analysis of principal coordinates to relate the community matrices of the ECM fungi and bacterial endophytes. Our results suggest that ECM fungi may be important factors for explaining variation in bacterial endophyte communities but this effect is influenced by population and environmental characteristics, emphasizing the potential importance of other factors - biotic or abiotic - in determining the composition of bacterial communities. We also classified ECM fungi into categories based on known fungal traits associated with substrate exploration and nutrient mobilization strategies since variation in these traits allows the fungi to acquire nutrients across a wide range of abiotic conditions and may influence the outcome of multi-species interactions. Across populations and environmental factors, none of the traits associated with fungal foraging strategy types significantly structured bacterial assemblages, suggesting these ECM fungal traits are not important for understanding endophyte-ECM interactions. Overall, our results suggest that both biotic species interactions and environmental filtering are important for structuring microbial communities but emphasize the need for more research into these interactions.
Collapse
Affiliation(s)
- Megan A. Rúa
- Department of Biology, University of Mississippi, OxfordMS, USA
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, KnoxvilleTN, USA
| | - Emily C. Wilson
- Life and Environmental Sciences and Sierra Nevada Research Institute, School of Natural Sciences, University of California, Merced, MercedCA, USA
| | - Sarah Steele
- Department of Biology, University of Mississippi, OxfordMS, USA
| | - Arielle R. Munters
- Life and Environmental Sciences and Sierra Nevada Research Institute, School of Natural Sciences, University of California, Merced, MercedCA, USA
| | | | - Anna C. Frank
- Life and Environmental Sciences and Sierra Nevada Research Institute, School of Natural Sciences, University of California, Merced, MercedCA, USA
| |
Collapse
|
43
|
Matsuoka S, Kawaguchi E, Osono T. Temporal distance decay of similarity of ectomycorrhizal fungal community composition in a subtropical evergreen forest in Japan. FEMS Microbiol Ecol 2016; 92:fiw061. [PMID: 26989126 DOI: 10.1093/femsec/fiw061] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2016] [Indexed: 11/13/2022] Open
Abstract
Community compositions of ectomycorrhizal (ECM) fungi are known to show spatial distance decay of similarity, which arises from both deterministic niche-based processes and stochastic spatial-based processes (e.g. dispersal limitation). Recent studies have highlighted the importance of incorporating the spatial-based processes in the study of community ecology of ECM fungi. However, few studies have investigated the temporal distance decay of similarity of ECM fungal communities. More specifically, the role of stochastic temporal-based processes, which could drive the temporal distance decay of similarity independently of niche-based processes, in the temporal variation of the communities remains unclear. Here we investigated ECM fungi associated with roots of Castanopsis sieboldii at 3-month intervals over a 2-year period. We found that dissimilarity of the ECM fungal community composition was significantly correlated with temporal distance but not with environmental distance among sampling dates. Both climatic and temporal variables significantly explained the temporal variation of the community composition. These results suggest that temporal variations of ECM fungi can be affected not only by niche-based processes but also by temporal-based processes. Our findings imply that priority effects may play important roles in the temporal turnover of ECM fungal community at the site.
Collapse
Affiliation(s)
- Shunsuke Matsuoka
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Shiga, Japan
| | - Eri Kawaguchi
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Osono
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Shiga, Japan
| |
Collapse
|
44
|
Mata G, Medel R, Callac P, Billette C, Garibay-Orijel R. Primer registro de Agaricus bisporus (Basidiomycota, Agaricaceae) silvestre en Tlaxcala y Veracruz, México. REV MEX BIODIVERS 2016. [DOI: 10.1016/j.rmb.2016.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Fernandez CW, Kennedy PG. Revisiting the 'Gadgil effect': do interguild fungal interactions control carbon cycling in forest soils? THE NEW PHYTOLOGIST 2016; 209:1382-94. [PMID: 26365785 DOI: 10.1111/nph.13648] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/17/2015] [Indexed: 05/15/2023]
Abstract
In forest ecosystems, ectomycorrhizal and saprotrophic fungi play a central role in the breakdown of soil organic matter (SOM). Competition between these two fungal guilds has long been hypothesized to lead to suppression of decomposition rates, a phenomenon known as the 'Gadgil effect'. In this review, we examine the documentation, generality, and potential mechanisms involved in the 'Gadgil effect'. We find that the influence of ectomycorrhizal fungi on litter and SOM decomposition is much more variable than previously recognized. To explain the inconsistency in size and direction of the 'Gadgil effect', we argue that a better understanding of underlying mechanisms is required. We discuss the strengths and weaknesses of each of the primary mechanisms proposed to date and how using different experimental methods (trenching, girdling, microcosms), as well as considering different temporal and spatial scales, could influence the conclusions drawn about this phenomenon. Finally, we suggest that combining new research tools such as high-throughput sequencing with experiments utilizing natural environmental gradients will significantly deepen our understanding of the 'Gadgil effect' and its consequences on forest soil carbon and nutrient cycling.
Collapse
Affiliation(s)
- Christopher W Fernandez
- Departments of Plant Biology and Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| | - Peter G Kennedy
- Departments of Plant Biology and Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| |
Collapse
|
46
|
Corrales A, Arnold AE, Ferrer A, Turner BL, Dalling JW. Variation in ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical montane forest. MYCORRHIZA 2016; 26:1-17. [PMID: 25940407 DOI: 10.1007/s00572-015-0641-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
Neotropical montane forests are often dominated by ectomycorrhizal (EM) tree species, yet the diversity of their EM fungal communities remains poorly explored. In lower montane forests in western Panama, the EM tree species Oreomunnea mexicana (Juglandaceae) forms locally dense populations in forest otherwise characterized by trees that form arbuscular mycorrhizal (AM) associations. The objective of this study was to compare the composition of EM fungal communities associated with Oreomunnea adults, saplings, and seedlings across sites differing in soil fertility and the amount and seasonality of rainfall. Analysis of fungal nrITS DNA (nuclear ribosomal internal transcribed spacers) revealed 115 EM fungi taxa from 234 EM root tips collected from adults, saplings, and seedlings in four sites. EM fungal communities were equally species-rich and diverse across Oreomunnea developmental stages and sites, regardless of soil conditions or rainfall patterns. However, ordination analysis revealed high compositional turnover between low and high fertility/rainfall sites located ca. 6 km apart. The EM fungal community was dominated by Russula (ca. 36 taxa). Cortinarius, represented by 14 species and previously reported to extract nitrogen from organic sources under low nitrogen availability, was found only in low fertility/high rainfall sites. Phylogenetic diversity analyses of Russula revealed greater evolutionary distance among taxa found on sites with contrasting fertility and rainfall than was expected by chance, suggesting that environmental differences among sites may be important in structuring EM fungal communities. More research is needed to evaluate whether EM fungal taxa associated with Oreomunnea form mycorrhizal networks that might account for local dominance of this tree species in otherwise diverse forest communities.
Collapse
Affiliation(s)
- Adriana Corrales
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA.
| | - A Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Astrid Ferrer
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA
| | - Benjamin L Turner
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Republic of Panama
| | - James W Dalling
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Republic of Panama
| |
Collapse
|
47
|
Mundra S, Bahram M, Tedersoo L, Kauserud H, Halvorsen R, Eidesen PB. Temporal variation of Bistorta vivipara-associated ectomycorrhizal fungal communities in the High Arctic. Mol Ecol 2015; 24:6289-302. [PMID: 26547806 DOI: 10.1111/mec.13458] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 01/24/2023]
Abstract
Ectomycorrhizal (ECM) fungi are important for efficient nutrient uptake of several widespread arctic plant species. Knowledge of temporal variation of ECM fungi, and the relationship of these patterns to environmental variables, is essential to understand energy and nutrient cycling in Arctic ecosystems. We sampled roots of Bistorta vivipara ten times over two years; three times during the growing-season (June, July and September) and twice during winter (November and April) of both years. We found 668 ECM OTUs belonging to 25 different ECM lineages, whereof 157 OTUs persisted throughout all sampling time-points. Overall, ECM fungal richness peaked in winter and species belonging to Cortinarius, Serendipita and Sebacina were more frequent in winter than during summer. Structure of ECM fungal communities was primarily affected by spatial factors. However, after accounting for spatial effects, significant seasonal variation was evident revealing correspondence with seasonal changes in environmental conditions. We demonstrate that arctic ECM richness and community structure differ between summer (growing-season) and winter, possibly due to reduced activity of the core community, and addition of fungi adapted for winter conditions forming a winter-active fungal community. Significant month × year interactions were observed both for fungal richness and community composition, indicating unpredictable between-year variation. Our study indicates that addressing seasonal changes requires replication over several years.
Collapse
Affiliation(s)
- Sunil Mundra
- The University Centre in Svalbard, P.O. Box 156, Longyearbyen, NO-9171, Norway.,Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, Oslo, NO-0316, Norway
| | - Mohammad Bahram
- Institute of Ecology and Earth Sciences, Tartu University, 14A Ravila, Tartu, 50411, Estonia.,Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, SE 75236, Sweden
| | - Leho Tedersoo
- Natural History Museum, University of Tartu, 14A Ravila, Tartu, 50411, Estonia
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, Oslo, NO-0316, Norway
| | - Rune Halvorsen
- Natural History Museum, University of Oslo, Oslo, Norway
| | | |
Collapse
|
48
|
Ectomycorrhizal fungal communities in Nothofagus nervosa ( Raulí ): A comparison between domesticated and naturally established specimens in a native forest of Patagonia, Argentina. FUNGAL ECOL 2015. [DOI: 10.1016/j.funeco.2015.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Ryberg M. Molecular operational taxonomic units as approximations of species in the light of evolutionary models and empirical data from Fungi. Mol Ecol 2015; 24:5770-7. [DOI: 10.1111/mec.13444] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/23/2015] [Accepted: 10/27/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Martin Ryberg
- Systematic Biology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 75236 Uppsala Sweden
| |
Collapse
|
50
|
Zhou LW. Fulvifomes imbricatus and F. thailandicus (Hymenochaetales, Basidiomycota): two new species from Thailand based on morphological and molecular evidence. Mycol Prog 2015. [DOI: 10.1007/s11557-015-1116-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|