1
|
Chatterjee N, Sharma R, Kale PR, Trehanpati N, Ramakrishna G. Is the liver resilient to the process of ageing? Ann Hepatol 2024; 30:101580. [PMID: 39276981 DOI: 10.1016/j.aohep.2024.101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
The liver's unique regenerative capacity, immunotolerant feature, and polyploidy status distinguish it as a metabolic organ unlike any other in the body. Despite aging, the liver generally exhibits fewer pathological abnormalities than other organs (such as the kidney), maintaining its functions near-normal balanced manner. Subtle changes in the liver, including reduced blood flow, detoxification alterations, pseudo-capillarization, and lipofuscin deposition, may occur with chronological age. Research indicates that carefully selected liver grafts from octogenarian donors can perform well post-transplant, emphasizing instances where age doesn't necessarily compromise liver function. Notably, a recent report suggests that the liver is a youthful organ, with hepatocytes averaging an age of only 3 years. Despite the liver's impressive regenerative capabilities and cellular reserve, a lingering question persists: how does the liver maintain its youthful characteristic amidst the chronological aging of the entire organism? The various adaptive mechanism possibly include:(a) cellular hypertrophy to maintain physiological capacity even before proliferation initiates, (b) the "ploidy conveyor" as a genetic adaptation to endure aging-related stress, (c) sustained telomere length indicative of youthfulness (d) active extracellular matrix remodelling for normal cellular functioning, (e) Mitochondria-Endoplasmic Reticulum based metabolic adaptation and (c) cellular plasticity as fitness mechanisms for healthy aging. However, it is crucial to note that aged livers may have compromised regenerative capacity and chronic liver disease is often associated with declining function due to premature hepatocyte senescence. This review delves into varied cellular adaptations sustaining liver homeostasis with chronological aging and briefly explores the role of accelerated hepatocyte aging as a precursor to chronic liver disease.
Collapse
Affiliation(s)
- Nirupama Chatterjee
- Artemis Education and Research Foundation, Artemis Health Institute, Sector 51 Gurugram, India
| | - Rishabh Sharma
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana Amity Education Valley, Panchgaon, Manesar Gurugram, HR 122413, India
| | - Pratibha R Kale
- Department of Clinical Microbiology, Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, India.
| |
Collapse
|
2
|
Howes AM, Dea NC, Ghosh D, Krishna K, Wang Y, Li Y, Morrison B, Toussaint KC, Dawson MR. Fibroblast senescence-associated extracellular matrix promotes heterogeneous lung niche. APL Bioeng 2024; 8:026119. [PMID: 38855444 PMCID: PMC11161856 DOI: 10.1063/5.0204393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Senescent cell accumulation in the pulmonary niche is associated with heightened susceptibility to age-related disease, tissue alterations, and ultimately a decline in lung function. Our current knowledge of senescent cell-extracellular matrix (ECM) dynamics is limited, and our understanding of how senescent cells influence spatial ECM architecture changes over time is incomplete. Herein is the design of an in vitro model of senescence-associated extracellular matrix (SA-ECM) remodeling using a senescent lung fibroblast-derived matrix that captures the spatiotemporal dynamics of an evolving senescent ECM architecture. Multiphoton second-harmonic generation microscopy was utilized to examine the spatial and temporal dynamics of fibroblast SA-ECM remodeling, which revealed a biphasic process that established a disordered and heterogeneous architecture. Additionally, we observed that inhibition of transforming growth factor-β signaling during SA-ECM remodeling led to improved local collagen fiber organization. Finally, we examined patient samples diagnosed with pulmonary fibrosis to further tie our results of the in vitro model to clinical outcomes. Moreover, we observed that the senescence marker p16 is correlated with local collagen fiber disorder. By elucidating the temporal dynamics of SA-ECM remodeling, we provide further insight on the role of senescent cells and their contributions to pathological ECM remodeling.
Collapse
Affiliation(s)
| | - Nova C. Dea
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| | - Deepraj Ghosh
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| | - Krishangi Krishna
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA
| | - Yanxi Li
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| | - Braxton Morrison
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| | - Kimani C. Toussaint
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Michelle R. Dawson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| |
Collapse
|
3
|
Tsai CW, Chen TY, Wang JH, Young TH. Effect of Chitosan on Synovial Membrane Derived Cells and Anterior Cruciate Ligament Fibroblasts. Tissue Eng Part A 2024. [PMID: 38695112 DOI: 10.1089/ten.tea.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024] Open
Abstract
Previously, chitosan reduces the senescence-related phenotypes in human foreskin fibroblasts through the transforming growth factor beta (TGF-β) pathway, and enhances the proliferation and migration capabilities of these cells are demonstrated. In this study, we examined whether the senescence-delaying effect of chitosan could be applied to primary knee-related fibroblasts, such as human synovial membrane derived cells (SCs) and anterior cruciate ligament fibroblasts (ACLs). These two types of cells were obtained from donors who needed ACL reconstruction or knee replacement. We found that chitosan treatment effectively reduced aging-associated β-galactosidase (SA-β-gal)-positive cells, downregulated the expression of senescence-related proteins pRB and p53, and enhanced the 5-bromo-2'-deoxyuridine (BrdU) incorporation ability of SCs and ACLs. Moreover, chitosan could make SCs secret more glycosaminoglycans (GAGs) and produce type I collagen. The ability of ACLs to close the wound was also enhanced, and the TGF-β and alpha smooth muscle actin (αSMA) protein expression decreased after chitosan treatment. In summary, chitosan not only delayed the senescence but also enhanced the functions of SCs and ACLs, which is beneficial to the application of chitosan in cell expansion in vitro and cell therapy.
Collapse
Affiliation(s)
- Ching-Wen Tsai
- Department of Biomedical Engineering , National Taiwan University, Taipei, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Tzung-Yu Chen
- Department of Biomedical Engineering , National Taiwan University, Taipei, Taiwan
| | - Jyh-Horng Wang
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering , National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Matveeva D, Kashirina D, Ezdakova M, Larina I, Buravkova L, Ratushnyy A. Senescence-Associated Alterations in Matrisome of Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:5332. [PMID: 38791371 PMCID: PMC11120844 DOI: 10.3390/ijms25105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
The process of aging is intimately linked to alterations at the tissue and cellular levels. Currently, the role of senescent cells in the tissue microenvironment is still being investigated. Despite common characteristics, different cell populations undergo distinctive morphofunctional changes during senescence. Mesenchymal stem cells (MSCs) play a pivotal role in maintaining tissue homeostasis. A multitude of studies have examined alterations in the cytokine profile that determine their regulatory function. The extracellular matrix (ECM) of MSCs is a less studied aspect of their biology. It has been shown to modulate the activity of neighboring cells. Therefore, investigating age-related changes in the MSC matrisome is crucial for understanding the mechanisms of tissue niche ageing. This study conducted a broad proteomic analysis of the matrisome of separated fractions of senescent MSCs, including the ECM, conditioned medium (CM), and cell lysate. This is the first time such an analysis has been conducted. It has been established that there is a shift in production towards regulatory molecules and a significant downregulation of the main structural and adhesion proteins of the ECM, particularly collagens, fibulins, and fibrilins. Additionally, a decrease in the levels of cathepsins, galectins, S100 proteins, and other proteins with cytoprotective, anti-inflammatory, and antifibrotic properties has been observed. However, the level of inflammatory proteins and regulators of profibrotic pathways increases. Additionally, there is an upregulation of proteins that can directly cause prosenescent effects on microenvironmental cells (SERPINE1, THBS1, and GDF15). These changes confirm that senescent MSCs can have a negative impact on other cells in the tissue niche, not only through cytokine signals but also through the remodeled ECM.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrey Ratushnyy
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia; (D.M.); (D.K.); (M.E.); (I.L.); (L.B.)
| |
Collapse
|
5
|
Park SC, Lee YS, Cho KA, Kim SY, Lee YI, Lee SR, Lim IK. What matters in aging is signaling for responsiveness. Pharmacol Ther 2023; 252:108560. [PMID: 37952903 DOI: 10.1016/j.pharmthera.2023.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Biological responsiveness refers to the capacity of living organisms to adapt to changes in both their internal and external environments through physiological and behavioral mechanisms. One of the prominent aspects of aging is the decline in this responsiveness, which can lead to a deterioration in the processes required for maintenance, survival, and growth. The vital link between physiological responsiveness and the essential life processes lies within the signaling systems. To devise effective strategies for controlling the aging process, a comprehensive reevaluation of this connecting loop is imperative. This review aims to explore the impact of aging on signaling systems responsible for responsiveness and introduce a novel perspective on intervening in the aging process by restoring the compromised responsiveness. These innovative mechanistic approaches for modulating altered responsiveness hold the potential to illuminate the development of action plans aimed at controlling the aging process and treating age-related disorders.
Collapse
Affiliation(s)
- Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea.
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea; Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea.
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Yun-Il Lee
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea; Interdisciplinary Engineering Major, Department of Interdisciplinary Studies, DGIST, Daegu 42988, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea; Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - In Kyoung Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
6
|
Reich H, Savage-Dunn C. Signaling circuits and the apical extracellular matrix in aging: connections identified in the nematode Caenorhabditis elegans. Am J Physiol Cell Physiol 2023; 325:C1201-C1211. [PMID: 37721005 PMCID: PMC10861026 DOI: 10.1152/ajpcell.00195.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Numerous conserved signaling pathways play critical roles in aging, including insulin/IGF-1, TGF-β, and Wnt pathways. Some of these pathways also play prominent roles in the formation and maintenance of the extracellular matrix. The nematode Caenorhabditis elegans has been an enduringly productive system for the identification of conserved mechanisms of biological aging. Recent studies in C. elegans highlight the regulatory circuits between conserved signaling pathways and the extracellular matrix, revealing a bidirectional relationship between these factors and providing a platform to address how regulation of and by the extracellular matrix can impact lifespan and organismal health during aging. These discoveries provide new opportunities for clinical advances and novel therapeutic strategies.
Collapse
Affiliation(s)
- Hannah Reich
- Department of Biology, Queens College, City University of New York, Flushing, New York, United States
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, City University of New York, Flushing, New York, United States
- PhD Program in Biology, The Graduate Center, City University of New York, New York, New York, United States
| |
Collapse
|
7
|
Ratushnyy AY, Buravkova LB. Microgravity Effects and Aging Physiology: Similar Changes or Common Mechanisms? BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1763-1777. [PMID: 38105197 DOI: 10.1134/s0006297923110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 12/19/2023]
Abstract
Despite the use of countermeasures (including intense physical activity), cosmonauts and astronauts develop muscle atony and atrophy, cardiovascular system failure, osteopenia, etc. All these changes, reminiscent of age-related physiological changes, occur in a healthy person in microgravity quite quickly - within a few months. Adaptation to the lost of gravity leads to the symptoms of aging, which are compensated after returning to Earth. The prospect of interplanetary flights raises the question of gravity thresholds, below which the main physiological systems will decrease their functional potential, similar to aging, and affect life expectancy. An important role in the aging process belongs to the body's cellular reserve - progenitor cells, which are involved in physiological remodeling and regenerative/reparative processes of all physiological systems. With age, progenitor cell count and their regenerative potential decreases. Moreover, their paracrine profile becomes pro-inflammatory during replicative senescence, disrupting tissue homeostasis. Mesenchymal stem/stromal cells (MSCs) are mechanosensitive, and therefore deprivation of gravitational stimulus causes serious changes in their functional status. The review compares the cellular effects of microgravity and changes developing in senescent cells, including stromal precursors.
Collapse
Affiliation(s)
- Andrey Yu Ratushnyy
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia.
| | - Ludmila B Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| |
Collapse
|
8
|
Mebratu YA, Soni S, Rosas L, Rojas M, Horowitz JC, Nho R. The aged extracellular matrix and the profibrotic role of senescence-associated secretory phenotype. Am J Physiol Cell Physiol 2023; 325:C565-C579. [PMID: 37486065 PMCID: PMC10511170 DOI: 10.1152/ajpcell.00124.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal lung disease that is primarily found in the elderly population, and several studies have demonstrated that aging is the major risk factor for IPF. IPF is characterized by the presence of apoptosis-resistant, senescent fibroblasts that generate an excessively stiff extracellular matrix (ECM). The ECM profoundly affects cellular functions and tissue homeostasis, and an aberrant ECM is closely associated with the development of lung fibrosis. Aging progressively alters ECM components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction through the expression of factors linked to a senescence-associated secretary phenotype (SASP). There is growing evidence that SASP factors affect various cell behaviors and influence ECM turnover in lung tissue through autocrine and/or paracrine signaling mechanisms. Since life expectancy is increasing worldwide, it is important to elucidate how aging affects ECM dynamics and turnover via SASP and thereby promotes lung fibrosis. In this review, we will focus on the molecular properties of SASP and its regulatory mechanisms. Furthermore, the pathophysiological process of ECM remodeling by SASP factors and the influence of an altered ECM from aged lungs on the development of lung fibrosis will be highlighted. Finally, recent attempts to target ECM alteration and senescent cells to modulate fibrosis will be introduced.NEW & NOTEWORTHY Aging is the most prominent nonmodifiable risk factor for various human diseases including Idiopathic pulmonary fibrosis. Aging progressively alters extracellular matrix components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction. In this review, we will discuss the pathological impact of aging and senescence on lung fibrosis via senescence-associated secretary phenotype factors and potential therapeutic approaches to limit the progression of lung fibrosis.
Collapse
Affiliation(s)
- Yohannes A Mebratu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Sourabh Soni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Lorena Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Richard Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
9
|
Mavrogonatou E, Papadopoulou A, Pratsinis H, Kletsas D. Senescence-associated alterations in the extracellular matrix: deciphering their role in the regulation of cellular function. Am J Physiol Cell Physiol 2023; 325:C633-C647. [PMID: 37486063 DOI: 10.1152/ajpcell.00178.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The extracellular matrix (ECM) is a dynamic structural network that provides a physical scaffolding, as well as biochemical factors that maintain normal tissue homeostasis and thus its disruption is implicated in many pathological conditions. On the other hand, senescent cells express a particular secretory phenotype, affecting the composition and organization of the surrounding ECM and modulating their microenvironment. As accumulation of senescent cells may be linked to the manifestation of several age-related conditions, senescence-associated ECM alterations may serve as targets for novel anti-aging treatment modalities. Here, we will review characteristic changes in the ECM elicited by cellular senescence and we will discuss the complex interplay between ECM and senescent cells, in relation to normal aging and selected age-associated pathologies.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Adamantia Papadopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| |
Collapse
|
10
|
Park JYC, King A, Björk V, English BW, Fedintsev A, Ewald CY. Strategic outline of interventions targeting extracellular matrix for promoting healthy longevity. Am J Physiol Cell Physiol 2023; 325:C90-C128. [PMID: 37154490 DOI: 10.1152/ajpcell.00060.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The extracellular matrix (ECM), composed of interlinked proteins outside of cells, is an important component of the human body that helps maintain tissue architecture and cellular homeostasis. As people age, the ECM undergoes changes that can lead to age-related morbidity and mortality. Despite its importance, ECM aging remains understudied in the field of geroscience. In this review, we discuss the core concepts of ECM integrity, outline the age-related challenges and subsequent pathologies and diseases, summarize diagnostic methods detecting a faulty ECM, and provide strategies targeting ECM homeostasis. To conceptualize this, we built a technology research tree to hierarchically visualize possible research sequences for studying ECM aging. This strategic framework will hopefully facilitate the development of future research on interventions to restore ECM integrity, which could potentially lead to the development of new drugs or therapeutic interventions promoting health during aging.
Collapse
Affiliation(s)
- Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Aaron King
- Foresight Institute, San Francisco, California, United States
| | | | - Bradley W English
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | | | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
11
|
Statzer C, Park JYC, Ewald CY. Extracellular Matrix Dynamics as an Emerging yet Understudied Hallmark of Aging and Longevity. Aging Dis 2023; 14:670-693. [PMID: 37191434 DOI: 10.14336/ad.2022.1116] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/16/2022] [Indexed: 05/17/2023] Open
Abstract
The biomechanical properties of extracellular matrices (ECM) and their consequences for cellular homeostasis have recently emerged as a driver of aging. Here we review the age-dependent deterioration of ECM in the context of our current understanding of the aging processes. We discuss the reciprocal interactions of longevity interventions with ECM remodeling. And the relevance of ECM dynamics captured by the matrisome and the matreotypes associated with health, disease, and longevity. Furthermore, we highlight that many established longevity compounds promote ECM homeostasis. A large body of evidence for the ECM to qualify as a hallmark of aging is emerging, and the data in invertebrates is promising. However, direct experimental proof that activating ECM homeostasis is sufficient to slow aging in mammals is lacking. We conclude that further research is required and anticipate that a conceptual framework for ECM biomechanics and homeostasis will provide new strategies to promote health during aging.
Collapse
Affiliation(s)
- Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
12
|
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell 2023; 186:243-278. [PMID: 36599349 DOI: 10.1016/j.cell.2022.11.001] [Citation(s) in RCA: 1796] [Impact Index Per Article: 898.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 01/05/2023]
Abstract
Aging is driven by hallmarks fulfilling the following three premises: (1) their age-associated manifestation, (2) the acceleration of aging by experimentally accentuating them, and (3) the opportunity to decelerate, stop, or reverse aging by therapeutic interventions on them. We propose the following twelve hallmarks of aging: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. These hallmarks are interconnected among each other, as well as to the recently proposed hallmarks of health, which include organizational features of spatial compartmentalization, maintenance of homeostasis, and adequate responses to stress.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Linda Partridge
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Altos Labs, Cambridge, UK
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
13
|
Tabibzadeh S. Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins. Aging Dis 2022; 13:1664-1714. [PMID: 36465174 PMCID: PMC9662275 DOI: 10.14336/ad.2022.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 09/29/2024] Open
Abstract
According to the cell centric hypotheses, the deficits that drive aging occur within cells by age dependent progressive damage to organelles, telomeres, biologic signaling pathways, bioinformational molecules, and by exhaustion of stem cells. Here, we amend these hypotheses and propose an eco-centric model for geroplasticity (aging plasticity including aging reversal). According to this model, youth and aging are plastic and require constant maintenance, and, respectively, engage a host of endogenous rejuvenating (rejuvenins) and gero-inducing [geriatrin] factors. Aging in this model is akin to atrophy that occurs as a result of damage or withdrawal of trophic factors. Rejuvenins maintain and geriatrins adversely impact cellular homeostasis, cell fitness, and proliferation, stem cell pools, damage response and repair. Rejuvenins reduce and geriatrins increase the age-related disorders, inflammatory signaling, and senescence and adjust the epigenetic clock. When viewed through this perspective, aging can be successfully reversed by supplementation with rejuvenins and by reducing the levels of geriatrins.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA
| |
Collapse
|
14
|
Vidović T, Ewald CY. Longevity-Promoting Pathways and Transcription Factors Respond to and Control Extracellular Matrix Dynamics During Aging and Disease. FRONTIERS IN AGING 2022; 3:935220. [PMID: 35874275 PMCID: PMC9301135 DOI: 10.3389/fragi.2022.935220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 05/28/2023]
Abstract
Aging is one of the largest risk factors for cancer, type 2 diabetes, osteoarthritis, cardiovascular diseases, and other age-related pathologies. Here, we give a detailed description of the interplay of chronic age-related pathologies with the remodeling of the extracellular matrix during disease development and progression. Longevity-promoting signaling pathways slow or prevent age-related diseases. In particular, we focus on the mTOR signaling pathway, sirtuins, and canonical longevity-promoting transcription factors, such as FOXO, NF-κB, and Nrf2. We extend our analysis using chromatin immunoprecipitation (ChIP) sequencing and transcriptomic data and report that many established and emerging longevity-promoting transcription factors, such as CREB1, FOXO1,3, GATA1,2,3,4, HIF1A, JUN, KLF4, MYC, NFE2L2/Nrf2, RELA/NF-κB, REST, STAT3,5A, and TP53/p53, directly regulate many extracellular matrix genes and remodelers. We propose that modulation of these pathways increases lifespan and protects from age-related diseases in part due to their effects on extracellular matrix remodeling. Therefore, to successfully treat age-related diseases, it is necessary to better understand the connection between extracellular matrix components and longevity pathways.
Collapse
Affiliation(s)
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
15
|
Sohn JY, Kwak HJ, Rhim JH, Yeo EJ. AMP-activated protein kinase-dependent nuclear localization of glyceraldehyde 3-phosphate dehydrogenase in senescent human diploid fibroblasts. Aging (Albany NY) 2022; 14:4-27. [PMID: 35020602 PMCID: PMC8791203 DOI: 10.18632/aging.203825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key glycolytic enzyme that participates in various cellular events, such as DNA repair and apoptosis. The functional diversity of GAPDH depends on its intracellular localization. Because AMP-activated protein kinase (AMPK) regulates the nuclear translocation of GAPDH in young cells and AMPK activity significantly increases during aging, we investigated whether altered AMPK activity is involved in the nuclear localization of GAPDH in senescent cells. Age-dependent nuclear translocation of GAPDH was confirmed by confocal laser scanning microscopy in human diploid fibroblasts (HDFs) and by immunohistochemical analysis in aged rat skin cells. Senescence-induced nuclear localization was reversed by lysophosphatidic acid but not by platelet-derived growth factor. The extracellular matrix from young cells also induced the nuclear export of GAPDH in senescent HDFs. An activator of AMPK, 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), increased the level of nuclear GAPDH, whereas an inhibitor of AMPK, Compound C, decreased the level of nuclear GAPDH in senescent HDFs. Transfection with AMPKα siRNA prevented nuclear translocation of GAPDH in senescent HDFs. The stimulatory effect of AICAR and serum depletion on GAPDH nuclear translocation was reduced in AMPKα1/α2-knockout mouse embryonic fibroblasts. Overall, increased AMPK activity may play a role in the senescence-associated nuclear translocation of GAPDH.
Collapse
Affiliation(s)
- Jee Young Sohn
- Department of Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Hyeok-Jin Kwak
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Ji Heon Rhim
- Bio-New Material Development, NineBioPharm Co., Ltd., Cheongju 28161, Republic of Korea
| | - Eui-Ju Yeo
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
16
|
Guan Y, Yang B, Xu W, Li D, Wang S, Ren Z, Zhang J, Zhang T, Liu XZ, Li J, Li C, Meng F, Han F, Wu T, Wang Y, Peng J. Cell-derived extracellular matrix materials for tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1007-1021. [PMID: 34641714 DOI: 10.1089/ten.teb.2021.0147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The involvement of cell-derived extracellular matrix (CDM) in assembling tissue engineering scaffolds has yielded significant results. CDM possesses excellent characteristics, such as ideal cellular microenvironment mimicry and good biocompatibility, which make it a popular research direction in the field of bionanomaterials. CDM has significant advantages as an expansion culture substrate for stem cells, including stabilization of phenotype, reversal of senescence, and guidance of specific differentiation. In addition, the applications of CDM-assembled tissue engineering scaffolds for disease simulation and tissue organ repair are comprehensively summarized; the focus is mainly on bone and cartilage repair, skin defect or wound healing, engineered blood vessels, peripheral nerves, and periodontal tissue repair. We consider CDM a highly promising bionic biomaterial for tissue engineering applications and propose a vision for its comprehensive development.
Collapse
Affiliation(s)
- Yanjun Guan
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Boyao Yang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Wenjing Xu
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Dongdong Li
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Sidong Wang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Zhiqi Ren
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Jian Zhang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Tieyuan Zhang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Xiu-Zhi Liu
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Junyang Li
- Nankai University School of Medicine, 481107, Tianjin, Tianjin, China.,Chinese PLA General Hospital, 104607, Beijing, Beijing, China;
| | - Chaochao Li
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Fanqi Meng
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China.,Peking University People's Hospital, 71185, Department of spine surgery, Beijing, China;
| | - Feng Han
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Tong Wu
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Yu Wang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China.,Nantong University, 66479, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China;
| | - Jiang Peng
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China.,Nantong University, 66479, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China;
| |
Collapse
|
17
|
Selman M, Pardo A. Fibroageing: An ageing pathological feature driven by dysregulated extracellular matrix-cell mechanobiology. Ageing Res Rev 2021; 70:101393. [PMID: 34139337 DOI: 10.1016/j.arr.2021.101393] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Ageing is a multifactorial biological process leading to a progressive decline of physiological functions. The process of ageing includes numerous changes in the cells and the interactions between cell-cell and cell-microenvironment remaining as a critical risk factor for the development of chronic degenerative diseases. Systemic inflammation, known as inflammageing, increases as a consequence of ageing contributing to age-related morbidities. But also, persistent and uncontrolled activation of fibrotic pathways, with excessive accumulation of extracellular matrix (ECM) and organ dysfunction is markedly more frequent in the elderly. In this context, we introduce here the concept of Fibroageing, that is, the propensity to develop tissue fibrosis associated with ageing, and propose that ECM is a key player underlying this process. During ageing, molecules of the ECM become damaged through many modifications including glycation, crosslinking, and accumulation, leading to matrix stiffness which intensifies ageing-associated alterations. We provide a framework with some mechanistic hypotheses proposing that stiff ECM, in addition to the well-known activation of fibrotic positive feedback loops, affect several of the hallmarks of ageing, such as cell senescence and mitochondrial dysfunction, and in this context, is a key mechanism and a driver thread of Fibroageing.
Collapse
|
18
|
Guo G, Watterson S, Zhang SD, Bjourson A, McGilligan V, Peace A, Rai TS. The role of senescence in the pathogenesis of atrial fibrillation: A target process for health improvement and drug development. Ageing Res Rev 2021; 69:101363. [PMID: 34023420 DOI: 10.1016/j.arr.2021.101363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/24/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022]
Abstract
Cellular senescence is a state of growth arrest that occurs after cells encounter various stresses. Senescence contributes to tumour suppression, embryonic development, and wound healing. It impacts on the pathology of various diseases by secreting inflammatory chemokines, immune modulators and other bioactive factors. These secretory biosignatures ultimately cause inflammation, tissue fibrosis, immunosenescence and many ageing-related diseases such as atrial fibrillation (AF). Because the molecular mechanisms underpinning AF development remain unclear, current treatments are suboptimal and have serious side effects. In this review, we summarize recent results describing the role of senescence in AF. We propose that senescence factors induce AF and have a causative role. Hence, targeting senescence and its secretory phenotype may attenuate AF.
Collapse
|
19
|
De Luca M, Mandala M, Rose G. Towards an understanding of the mechanoreciprocity process in adipocytes and its perturbation with aging. Mech Ageing Dev 2021; 197:111522. [PMID: 34147549 DOI: 10.1016/j.mad.2021.111522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/29/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Adipose tissue (AT) is a complex organ, with multiple functions that are essential for maintaining metabolic health. A feature of AT is its capability to expand in response to physiological challenges, such as pregnancy and aging, and during chronic states of positive energy balance occurring throughout life. AT grows through adipogenesis and/or an increase in the size of existing adipocytes. One process that is required for healthy AT growth is the remodeling of the extracellular matrix (ECM), which is a necessary step to restore mechanical homeostasis and maintain tissue integrity and functionality. While the relationship between mechanobiology and adipogenesis is now well recognized, less is known about the role of adipocyte mechanosignaling pathways in AT growth. In this review article, we first summarize evidence linking ECM remodelling to AT expansion and how its perturbation is associated to a metabolically unhealthy phenotype. Subsequently, we highlight findings suggesting that molecules involved in the dynamic, bidirectional process (mechanoreciprocity) enabling adipocytes to sense changes in the mechanical properties of the ECM are interconnected to pathways regulating lipid metabolism. Finally, we discuss processes through which aging may influence the ability of adipocytes to appropriately respond to alterations in ECM composition.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Maurizio Mandala
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| |
Collapse
|
20
|
Sacher F, Feregrino C, Tschopp P, Ewald CY. Extracellular matrix gene expression signatures as cell type and cell state identifiers. Matrix Biol Plus 2021; 10:100069. [PMID: 34195598 PMCID: PMC8233473 DOI: 10.1016/j.mbplus.2021.100069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Transcriptomic signatures based on cellular mRNA expression profiles can be used to categorize cell types and states. Yet whether different functional groups of genes perform better or worse in this process remains largely unexplored. Here we test the core matrisome - that is, all genes coding for structural proteins of the extracellular matrix - for its ability to delineate distinct cell types in embryonic single-cell RNA-sequencing (scRNA-seq) data. We show that even though expressed core matrisome genes correspond to less than 2% of an entire cellular transcriptome, their RNA expression levels suffice to recapitulate essential aspects of cell type-specific clustering. Notably, using scRNA-seq data from the embryonic limb, we demonstrate that core matrisome gene expression outperforms random gene subsets of similar sizes and can match and exceed the predictive power of transcription factors. While transcription factor signatures generally perform better in predicting cell types at early stages of chicken and mouse limb development, i.e., when cells are less differentiated, the information content of the core matrisome signature increases in more differentiated cells. Moreover, using cross-species analyses, we show that these cell type-specific signatures are evolutionarily conserved. Our findings suggest that each cell type produces its own unique extracellular matrix, or matreotype, which becomes progressively more refined and cell type-specific as embryonic tissues mature.
Collapse
Affiliation(s)
- Fabio Sacher
- Laboratory of Regulatory Evolution, DUW Zoology, University of Basel, Basel CH-4051, Switzerland
| | - Christian Feregrino
- Laboratory of Regulatory Evolution, DUW Zoology, University of Basel, Basel CH-4051, Switzerland
| | - Patrick Tschopp
- Laboratory of Regulatory Evolution, DUW Zoology, University of Basel, Basel CH-4051, Switzerland
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
21
|
Hiebert P. The Nrf2 transcription factor: A multifaceted regulator of the extracellular matrix. Matrix Biol Plus 2021; 10:100057. [PMID: 34195594 PMCID: PMC8233472 DOI: 10.1016/j.mbplus.2021.100057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
The transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) is widely recognized as a master regulator of the cellular stress response by facilitating the transcription of cytoprotective genes. As such, the Nrf2 pathway is critical in guarding the cell from the harmful effects of excessive reactive oxygen species/reactive nitrogen species (ROS/RNS) and in maintaining cellular redox balance. While excessive ROS/RNS are harmful to the cell, physiological levels of ROS/RNS play important roles in regulating numerous signaling pathways important for normal cellular function, including the synthesis of extracellular matrix (ECM). Recent advances have underscored the importance of ROS/RNS, and by extension, factors that influence redox-balance such as Nrf2, in regulating ECM production and deposition. In addition to reducing the oxidative burden in the cell, the discovery that Nrf2 can also directly target genes that regulate and form the ECM has cemented it as a multifaceted player in the regulation of ECM proteins, and provides new insight into its potential usefulness as a target for treating ECM-related pathologies. Reactive oxygen/nitrogen species regulate extracellular matrix. Nrf2 can directly target extracellular matrix gene transcription. Regulation of extracellular matrix by Nrf2 potentially impacts tissue repair/cancer.
Collapse
Affiliation(s)
- Paul Hiebert
- Institute for Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
22
|
Connective Tissue and Fibroblast Senescence in Skin Aging. J Invest Dermatol 2021; 141:985-992. [PMID: 33563466 DOI: 10.1016/j.jid.2020.11.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
There is increasing evidence that skin aging is significantly enforced by the accumulation of senescent dermal fibroblasts. Various stressors damaging macromolecules inside and outside fibroblasts are responsible. In addition, NK cells fail to adequately remove senescent (SEN) fibroblasts from tissues. SEN fibroblasts by the release of the proinflammatory, tissue degrading senescent-associated secretory phenotype factors and vesicles with distinct cargo impact on their endogenous niche and spread senescence and skin aging. In this review, we will further discuss less noticed facets, including the plasticity of distinct dermal fibroblast phenotypes, the underestimated impact of the extracellular matrix itself, and the depletion of fibroblast subsets on skin homeostasis and aging.
Collapse
|
23
|
Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules - A missing hallmark of aging. Ageing Res Rev 2020; 62:101097. [PMID: 32540391 DOI: 10.1016/j.arr.2020.101097] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/05/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Damage accumulation in long-living macromolecules (especially extracellular matrix (ECM) proteins, nuclear pore complex (NPC) proteins, and histones) is a missing hallmark of aging. Stochastic non-enzymatic modifications of ECM trigger cellular senescence as well as many other hallmarks of aging affect organ barriers integrity and drive tissue fibrosis. The importance of it for aging makes it a key target for interventions. The most promising of them can be AGE inhibitors (chelators, O-acetyl group or transglycating activity compounds, amadorins and amadoriases), glucosepane breakers, stimulators of elastogenesis, and RAGE antagonists.
Collapse
Affiliation(s)
- Alexander Fedintsev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Alexey Moskalev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia.
| |
Collapse
|
24
|
Cárdenas-León CG, Mäemets-Allas K, Kuuse K, Salazar-Olivo LA, Jaks V. Enhanced proliferative capacity of human preadipocytes achieved by an optimized cultivating method that induces transient activity of hTERT. Biochem Biophys Res Commun 2020; 529:455-461. [PMID: 32703451 DOI: 10.1016/j.bbrc.2020.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/04/2020] [Indexed: 11/19/2022]
Abstract
Human mesenchymal stromal cells (MSC) are an important tool for basic and translational research. Large amounts of MSC are required for in vitro and in vivo studies, however, the limited life-span and differentiation ability in vitro hamper their optimal use. Here we report that 1:1 mixture of L15 and mTeSR1 culture media increased the life-span of IPI-SA3-C4, a normal non-immortalized human subcutaneous preadipocyte strain by 20% while retaining their adipogenic capacity and stable karyotype. The increased proliferative capacity was accompanied by increased expression of the stem markers POU5F1, SOX2, MYC and hTERT, and inhibition of hTERT activity abolished the growth advantage of L15-mTeSR1. Consequently, the described MSC culture would considerably enhance the utility of MSC for in vitro studies.
Collapse
Affiliation(s)
- Claudia G Cárdenas-León
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Kati Kuuse
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Luis A Salazar-Olivo
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Estonia; Dermatology Clinic, Tartu University Hospital, Tartu, Estonia.
| |
Collapse
|
25
|
Papadopoulou A, Kanioura A, Petrou PS, Argitis P, Kakabakos SE, Kletsas D. Reacquisition of a spindle cell shape does not lead to the restoration of a youthful state in senescent human skin fibroblasts. Biogerontology 2020; 21:695-708. [PMID: 32533368 DOI: 10.1007/s10522-020-09886-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/05/2020] [Indexed: 01/01/2023]
Abstract
Senescent fibroblasts are characterized by their inability to proliferate and by a pro-inflammatory and catabolic secretory phenotype, which contributes to age-related pathologies. Furthermore, senescent fibroblasts when cultured under classical conditions in vitro are also characterized by striking morphological changes, i.e. they lose the youthful spindle-like appearance and become enlarged and flattened, while their nuclei from elliptical become oversized and highly lobulated. Knowing the strong relation between cell shape and function, we cultured human senescent fibroblasts on photolithographed Si/poly(vinyl alcohol) (PVA) micro-patterned surfaces in order to restore the classical spindle-like geometry and subsequently to investigate whether the changes in senescent cells' morphology are the cause of their functional alterations. Interestingly, under these conditions senescent cells' nuclei do not revert to the classical elliptical phenotype. Furthermore, enforced spindle-shaped senescent cells retained their deteriorated proliferative ability, and maintained the increased gene expression of the cell cycle inhibitors p16Ink4a and p21Waf1. In addition, Si/PVA-patterned-grown senescent fibroblasts preserved their senescence-associated phenotype, as evidenced by the overexpression of inflammatory and catabolic genes such as IL6, IL8, ICAM1 and MMP1 and MMP9 respectively, which was further manifested by an intense downregulation of fibroblasts' most abundant extracellular matrix component Col1A, compared to their young counterparts. These data indicate that the restoration of the spindle-like shape in senescent human fibroblasts is not able to directly alter major functional traits and restore the youthful phenotype.
Collapse
Affiliation(s)
- Adamantia Papadopoulou
- Laboratory of Cell Proliferation & Ageing, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", P. Grigoriou Str, Ag. Paraskevi, 15341, Athens, Greece
| | - Anastasia Kanioura
- Immunoassays/Immunosensors Laboratory, Institute of Nuclear and Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research "Demokritos", P. Grigoriou Str, Ag. Paraskevi, 15341, Athens, Greece
| | - Panagiota S Petrou
- Immunoassays/Immunosensors Laboratory, Institute of Nuclear and Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research "Demokritos", P. Grigoriou Str, Ag. Paraskevi, 15341, Athens, Greece
| | - Panagiotis Argitis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", P. Grigoriou Str, Ag. Paraskevi, 15341, Athens, Greece
| | - Sotirios E Kakabakos
- Immunoassays/Immunosensors Laboratory, Institute of Nuclear and Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research "Demokritos", P. Grigoriou Str, Ag. Paraskevi, 15341, Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation & Ageing, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", P. Grigoriou Str, Ag. Paraskevi, 15341, Athens, Greece.
| |
Collapse
|
26
|
Barré BP, Hallin J, Yue JX, Persson K, Mikhalev E, Irizar A, Holt S, Thompson D, Molin M, Warringer J, Liti G. Intragenic repeat expansion in the cell wall protein gene HPF1 controls yeast chronological aging. Genome Res 2020; 30:697-710. [PMID: 32277013 PMCID: PMC7263189 DOI: 10.1101/gr.253351.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 04/09/2020] [Indexed: 01/02/2023]
Abstract
Aging varies among individuals due to both genetics and environment, but the underlying molecular mechanisms remain largely unknown. Using a highly recombined Saccharomyces cerevisiae population, we found 30 distinct quantitative trait loci (QTLs) that control chronological life span (CLS) in calorie-rich and calorie-restricted environments and under rapamycin exposure. Calorie restriction and rapamycin extended life span in virtually all genotypes but through different genetic variants. We tracked the two major QTLs to the cell wall glycoprotein genes FLO11 and HPF1 We found that massive expansion of intragenic tandem repeats within the N-terminal domain of HPF1 was sufficient to cause pronounced life span shortening. Life span impairment by HPF1 was buffered by rapamycin but not by calorie restriction. The HPF1 repeat expansion shifted yeast cells from a sedentary to a buoyant state, thereby increasing their exposure to surrounding oxygen. The higher oxygenation altered methionine, lipid, and purine metabolism, and inhibited quiescence, which explains the life span shortening. We conclude that fast-evolving intragenic repeat expansions can fundamentally change the relationship between cells and their environment with profound effects on cellular lifestyle and longevity.
Collapse
Affiliation(s)
| | - Johan Hallin
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Jia-Xing Yue
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Karl Persson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | | | | | - Sylvester Holt
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Dawn Thompson
- Ginkgo Bioworks Incorporated, Boston, Massachusetts 02210, USA
| | - Mikael Molin
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| |
Collapse
|
27
|
Mavrogonatou E, Pratsinis H, Kletsas D. The role of senescence in cancer development. Semin Cancer Biol 2020; 62:182-191. [DOI: 10.1016/j.semcancer.2019.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
|
28
|
Ewald CY. The Matrisome during Aging and Longevity: A Systems-Level Approach toward Defining Matreotypes Promoting Healthy Aging. Gerontology 2019; 66:266-274. [PMID: 31838471 PMCID: PMC7214094 DOI: 10.1159/000504295] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Accumulation of damage is generally considered the cause of aging. Interventions that delay aging mobilize mechanisms that protect and repair cellular components. Consequently, research has been focused on studying the protective and homeostatic mechanisms within cells. However, in humans and other multicellular organisms, cells are surrounded by extracellular matrices (ECMs), which are important for tissue structure, function, and intercellular communication. During aging, components of the ECM become damaged through fragmentation, glycation, crosslinking, and accumulation of protein aggregation, all of which contribute to age-related pathologies. Interestingly, placing senescent cells into a young ECM rejuvenates them. Furthermore, we found that many longevity-assurances pathways reactivate de novo synthesis of ECM proteins during aging. This raises the question of what constitutes a young ECM to reverse aging or maintain health? In order to make inroads to answering this question, I suggest a systems-level approach of quantifying the matrisome or ECM compositions reflecting health, pathology, or phenotype and propose a novel term, the "matreotype," to describe this. The matreotype is defined as the composition and modification of ECM or matrisome proteins associated with or caused by a phenotype, such as longevity, or a distinct and acute physiological state, as observed during aging or disease. Every cell type produces its unique ECM. Intriguingly, cancer-cell types can even be identified based on their unique ECM composition. Thus, the matreotype reflects cellular identity and physiological status. Defined matreotypes could be used as biomarkers or prognostic factors for disease or health status during aging with potential relevance for personalized medicine. Treatment with biologics that alter ECM-to-cell mechanotransduction might be a strategy to reverse age-associated pathologies. An understanding of how to reverse from an old to a young matreotype might point toward novel strategies to rejuvenate cells and help maintain tissue homeostasis to promote health during aging.
Collapse
Affiliation(s)
- Collin Yvès Ewald
- ETH Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland,
| |
Collapse
|
29
|
Zhao J, Jiang X, Yan L, Lin J, Guo H, Yu S, Ye B, Zhu J, Zhang W. Retinoic acid inducible gene-I slows down cellular senescence through negatively regulating the integrin β3/p38 MAPK pathway. Cell Cycle 2019; 18:3378-3392. [PMID: 31595820 PMCID: PMC6927694 DOI: 10.1080/15384101.2019.1677074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023] Open
Abstract
Retinoic acid inducible gene-I (Rig-I) has been well documented as a cytosolic pattern recognition receptor that can sense viral RNA ligands to initiate the interferon-mediated antiviral immunity. However, little is known about the biological behaviors of Rig-I devoid of viral infection. Herein, we investigated the roles of Rig-I in the regulation of cellular senescence. In comparison to wild-type counterparts, Rig-I-/- mice displayed the accelerated loss of hair, less responsiveness to gentle physical stimuli and shorten survival time. Likewise, Rig-I deficiency rendered mouse embryonic fibroblasts (MEFs) more susceptible to the serial passages-associated replicative senescence. By performing a transcriptome analysis, we identified integrins at the intersections of biological pathways affected by Rig-I. Among these, integrin β3 was negatively regulated by Rig-I, and significantly upregulated with the occurrence of senescence. Gene silencing of Itgb3 (encoding integrin β3) retarded the progression of cellular senescence in both WT and Rig-I-/- MEFs. Notably, this effect was more prominent in Rig-I-/- MEFs. Furthermore, p38 MAPK was a key downstream molecule for integrin β3-mediated senescence, and overactivated in senescent Rig-I-/- MEFs. Taken together, Rig-I deficiency contributes to cellular senescence through amplifying integrin β3/p38 MAPK signaling. Our findings provide the evidence that Rig-I is a key regulator of cellular senescence, which will be helpful in better understanding its function without viral infection.Abbreviations: Rig-I: retinoic acid inducible gene-I; SASP: senescence-associated secretory phenotype; ECM: extracellular matrix; Itgb3: integrin beta 3; PRR: pattern recognition receptor; MEFs: mouse embryonic fibroblasts; Il-1β: interleukin-1 beta; Il-6: interleukin-6; Il-8: interleukin-8; Cxcl1: chemokine (C-X-C motif) ligand 1; Ccl2: chemokine (C-C motif) ligand 2; WT, wild type; BM: bone marrow; MAPK: mitogen-activated protein kinase; ERK: extracellular signal-regulated kinases; JNK: Jun N-terminal kinases; SA-β-gal: senescence-associated β-galactosidase; qPCR: quantitative reverse-transcription PCR; PBS: phosphate-buffered saline.
Collapse
Affiliation(s)
- Junmei Zhao
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xinyi Jiang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Li Yan
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jian Lin
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Hezhou Guo
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Shanhe Yu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Baixin Ye
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jiang Zhu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Wu Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Fat Grafting into Younger Recipients Improves Volume Retention in an Animal Model. Plast Reconstr Surg 2019; 143:1067-1075. [PMID: 30730498 DOI: 10.1097/prs.0000000000005483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Soft-tissue deficits associated with various craniofacial anomalies can be addressed by fat grafting, although outcomes remain unpredictable. Furthermore, consensus does not exist for timing of these procedures. Whereas some advocate approaching soft-tissue reconstruction after the underlying skeletal foundation has been corrected, other studies have suggested that earlier grafting may exploit a younger recipient niche that is more conducive to fat graft survival. As there is a dearth of research investigating effects of recipient age on fat graft volume retention, this study compared the effectiveness of fat grafting in younger versus older animals through a longitudinal, in vivo analysis. METHODS Human lipoaspirate from three healthy female donors was grafted subcutaneously over the calvaria of immunocompromised mice. Volume retention over 8 weeks was evaluated using micro-computed tomography at three experimental ages: 3 weeks, 6 months, and 1 year. Histologic examination was performed on explanted grafts to evaluate graft health and vascularity. Recipient-site vascularity was also evaluated by confocal microscopy. RESULTS The greatest retention of fat graft volume was noted in the youngest group compared with both older groups (p < 0.05) at 6 and 8 weeks after grafting. Histologic and immunohistochemical analyses revealed that improved retention in younger groups was associated with greater fat graft integrity and more robust vascularization. CONCLUSION The authors' study provides evidence that grafting fat into a younger recipient site correlates with improved volume retention over time, suggesting that beginning soft-tissue reconstruction with fat grafting in patients at an earlier age may be preferable to late correction.
Collapse
|
31
|
Pardo-Saganta A, Calvo IA, Saez B, Prosper F. Role of the Extracellular Matrix in Stem Cell Maintenance. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-0149-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Nrf2-Mediated Fibroblast Reprogramming Drives Cellular Senescence by Targeting the Matrisome. Dev Cell 2018; 46:145-161.e10. [PMID: 30016619 DOI: 10.1016/j.devcel.2018.06.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/14/2018] [Accepted: 06/14/2018] [Indexed: 01/06/2023]
Abstract
Nrf2 is a key regulator of the antioxidant defense system, and pharmacological Nrf2 activation is a promising strategy for cancer prevention and promotion of tissue repair. Here we show, however, that activation of Nrf2 in fibroblasts induces cellular senescence. Using a combination of transcriptomics, matrix proteomics, chromatin immunoprecipitation and bioinformatics we demonstrate that fibroblasts with activated Nrf2 deposit a senescence-promoting matrix, with plasminogen activator inhibitor-1 being a key inducer of the senescence program. In vivo, activation of Nrf2 in fibroblasts promoted re-epithelialization of skin wounds, but also skin tumorigenesis. The pro-tumorigenic activity is of general relevance, since Nrf2 activation in skin fibroblasts induced the expression of genes characteristic for cancer-associated fibroblasts from different mouse and human tumors. Therefore, activated Nrf2 qualifies as a marker of the cancer-associated fibroblast phenotype. These data highlight the bright and the dark sides of Nrf2 and the need for time-controlled activation of this transcription factor.
Collapse
|
33
|
Park JT, Kang HT, Park CH, Lee YS, Cho KA, Park SC. A crucial role of ROCK for alleviation of senescence-associated phenotype. Exp Gerontol 2018; 106:8-15. [DOI: 10.1016/j.exger.2018.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 01/24/2023]
|
34
|
De Luca M. The role of the cell-matrix interface in aging and its interaction with the renin-angiotensin system in the aged vasculature. Mech Ageing Dev 2018; 177:66-73. [PMID: 29626500 DOI: 10.1016/j.mad.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022]
Abstract
The extracellular matrix (ECM) is an intricate network that provides structural and anchoring support to cells in order to stabilize cell morphology and tissue architecture. The ECM also controls many aspects of the cell's dynamic behavior and fate through its ongoing, bidirectional interaction with cells. These interactions between the cell and components of the surrounding ECM are implicated in several biological processes, including development and adult tissue repair in response to injury, throughout the lifespan of multiple species. The present review gives an overview of the growing evidence that cell-matrix interactions play a pivotal role in the aging process. The focus of the first part of the article is on recent studies using cell-derived decellularized ECM, which strongly suggest that age-related changes in the ECM induce cellular senescence, a well-recognized hallmark of aging. This is followed by a review of findings from genetic studies indicating that changes in genes involved in cell-ECM adhesion and matrix-mediated intracellular signaling cascades affect longevity. Finally, mention is made of novel data proposing an intricate interplay between cell-matrix interactions and the renin-angiotensin system that may have a significant impact on mammalian arterial stiffness with age.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Webb 451-1720 2nd Ave S, Birmingham, AL, 35294-3360, USA.
| |
Collapse
|
35
|
Zhou L, Chen X, Liu T, Zhu C, Si M, Jargstorf J, Li M, Pan G, Gong Y, Luo ZP, Yang H, Pei M, He F. SIRT1-dependent anti-senescence effects of cell-deposited matrix on human umbilical cord mesenchymal stem cells. J Tissue Eng Regen Med 2018; 12:e1008-e1021. [PMID: 28107614 PMCID: PMC9805355 DOI: 10.1002/term.2422] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/07/2016] [Accepted: 01/17/2017] [Indexed: 01/03/2023]
Abstract
Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are considered an attractive cell source for tissue regeneration. However, environmental oxidative stress can trigger premature senescence in MSCs and thus compromises their regenerative potential. Extracellular matrix (ECM) derived from MSCs has been shown to facilitate cell proliferation and multi-lineage differentiation. This investigation evaluated the effect of cell-deposited decellularized ECM (DECM) on oxidative stress-induced premature senescence in UC-MSCs. Sublethal dosages of H2 O2 , ranging from 50 μm to 200 μm, were used to induce senescence in MSCs. We found that DECM protected UC-MSCs from oxidative stress-induced premature senescence. When treated with H2 O2 at the same concentration, cell proliferation of DECM-cultured UC-MSCs was twofold higher than those on standard tissue culture polystyrene (TCPS). After exposure to 100 μm H2 O2 , fewer senescence-associated β-galactosidase-positive cells were observed on DECM than those on TCPS (17.6 ± 4.0% vs. 60.4 ± 6.2%). UC-MSCs cultured on DECM also showed significantly lower levels of senescence-related regulators, such as p16INK4α and p21. Most importantly, DECM preserved the osteogenic differentiation potential of UC-MSCs with premature senescence. The underlying molecular mechanisms involved the silent information regulator type 1 (SIRT1)-dependent signalling pathway, confirmed by the fact that the SIRT1 inhibitor nicotinamide counteracted the DECM-mediated anti-senescent effect. Collagen type I, rather than fibronectin, partially contributed to the protective effect of decellularized matrix. These findings provide a new strategy of using stem cell-deposited matrix to overcome the challenge of cellular senescence and to facilitate the clinical application of MSCs in regenerative medicine. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Long Zhou
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China,Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xi Chen
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China,School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Caihong Zhu
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
| | - Michelle Si
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China,Departments of Biology and Chemistry, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Joseph Jargstorf
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China,Department of Biology, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Mao Li
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China,Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guoqing Pan
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
| | - Yihong Gong
- School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Zong-Ping Luo
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China,Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huilin Yang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China,Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, Morgantown, WV, USA
| | - Fan He
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, China,Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
36
|
Tsai CW, Chiang IN, Wang JH, Young TH. Chitosan delaying human fibroblast senescence through downregulation of TGF-β signaling pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1852-1863. [DOI: 10.1080/21691401.2017.1394873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ching-Wen Tsai
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - I-Ni Chiang
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jyh-Horng Wang
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
37
|
Mavrogonatou E, Pratsinis H, Papadopoulou A, Karamanos NK, Kletsas D. Extracellular matrix alterations in senescent cells and their significance in tissue homeostasis. Matrix Biol 2017; 75-76:27-42. [PMID: 29066153 DOI: 10.1016/j.matbio.2017.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 12/16/2022]
Abstract
Normal cells after a defined number of successive divisions or after exposure to genotoxic stresses are becoming senescent, characterized by a permanent growth arrest. In addition, they secrete increased levels of pro-inflammatory and catabolic mediators, collectively termed "senescence-associated secretory phenotype". Furthermore, senescent cells exhibit an altered expression and organization of many extracellular matrix components, leading to specific remodeling of their microenvironment. In this review we present the current knowledge on extracellular matrix alterations associated with cellular senescence and critically discuss certain characteristic examples, highlighting the ambiguous role of senescent cells in the homeostasis of various tissues under both normal and pathologic conditions.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Adamantia Papadopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece.
| |
Collapse
|
38
|
Hwang ES, Ok JS, Song S. Chemical and Physical Approaches to Extend the Replicative and Differentiation Potential of Stem Cells. Stem Cell Rev Rep 2017; 12:315-26. [PMID: 27085715 DOI: 10.1007/s12015-016-9652-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell therapies using mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) are increasing in regenerative medicine, with applications to a growing number of aging-associated dysfunctions and degenerations. For successful therapies, a certain mass of cells is needed, requiring extensive ex vivo expansion of the cells. However, the proliferation of both MSCs and EPCs is limited as a result of telomere shortening-induced senescence. As cells approach senescence, their proliferation slows down and differentiation potential decreases. Therefore, ways to delay senescence and extend the replicative lifespan these cells are needed. Certain proteins and pathways play key roles in determining the replicative lifespan by regulating ROS generation, damage accumulation, or telomere shortening. And, their agonists and gene activators exert positive effects on lifespan. In many of the treatments, importantly, the lifespan is extended with the retention of differentiation potential. Furthermore, certain culture conditions, including the use of specific atmospheric conditions and culture substrates, exert positive effects on not only the proliferation rate, but also the extent of proliferation and differentiation potential as well as lineage determination. These strategies and known underlying mechanisms are introduced in this review, with an evaluation of their pros and cons in order to facilitate safe and effective MSC expansion ex vivo.
Collapse
Affiliation(s)
- Eun Seong Hwang
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdaero 163, Seoul, 02504, Republic of Korea.
| | - Jeong Soo Ok
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdaero 163, Seoul, 02504, Republic of Korea
| | - SeonBeom Song
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdaero 163, Seoul, 02504, Republic of Korea
| |
Collapse
|
39
|
Han JA, Kim JI. Analysis of Gene Expression in Human Dermal Fibroblasts Treated with Senescence-Modulating COX Inhibitors. Genomics Inform 2017. [PMID: 28638310 PMCID: PMC5478708 DOI: 10.5808/gi.2017.15.2.56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that NS-398, a cyclooxygenase-2 (COX-2)-selective inhibitor, inhibited replicative cellular senescence in human dermal fibroblasts and skin aging in hairless mice. In contrast, celecoxib, another COX-2-selective inhibitor, and aspirin, a non-selective COX inhibitor, accelerated the senescence and aging. To figure out causal factors for the senescence-modulating effect of the inhibitors, we here performed cDNA microarray experiment and subsequent Gene Set Enrichment Analysis. The data showed that several senescence-related gene sets were regulated by the inhibitor treatment. NS-398 up-regulated gene sets involved in the tumor necrosis factor β receptor pathway and the fructose and mannose metabolism, whereas it down-regulated a gene set involved in protein secretion. Celecoxib up-regulated gene sets involved in G2M checkpoint and E2F targets. Aspirin up-regulated the gene set involved in protein secretion, and down-regulated gene sets involved in RNA transcription. These results suggest that COX inhibitors modulate cellular senescence by different mechanisms and will provide useful information to understand senescence-modulating mechanisms of COX inhibitors.
Collapse
Affiliation(s)
- Jeong A Han
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Jong-Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| |
Collapse
|
40
|
Inoue T, Tanaka M, Masuda S, Ohue-Kitano R, Yamakage H, Muranaka K, Wada H, Kusakabe T, Shimatsu A, Hasegawa K, Satoh-Asahara N. Omega-3 polyunsaturated fatty acids suppress the inflammatory responses of lipopolysaccharide-stimulated mouse microglia by activating SIRT1 pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:552-560. [DOI: 10.1016/j.bbalip.2017.02.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/02/2017] [Accepted: 02/18/2017] [Indexed: 10/20/2022]
|
41
|
Evolution of Microbial Quorum Sensing to Human Global Quorum Sensing: An Insight into How Gap Junctional Intercellular Communication Might Be Linked to the Global Metabolic Disease Crisis. BIOLOGY 2016; 5:biology5020029. [PMID: 27314399 PMCID: PMC4929543 DOI: 10.3390/biology5020029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/25/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022]
Abstract
The first anaerobic organism extracted energy for survival and reproduction from its source of nutrients, with the genetic means to ensure protection of its individual genome but also its species survival. While it had a means to communicate with its community via simple secreted molecules (“quorum sensing”), the eventual shift to an aerobic environment led to multi-cellular metazoan organisms, with evolutionary-selected genes to form extracellular matrices, stem cells, stem cell niches, and a family of gap junction or “connexin” genes. These germinal and somatic stem cells responded to extracellular signals that triggered intra-cellular signaling to regulate specific genes out of the total genome. These extra-cellular induced intra-cellular signals also modulated gap junctional intercellular communication (GJIC) in order to regulate the new cellular functions of symmetrical and asymmetrical cell division, cell differentiation, modes of cell death, and senescence. Within the hierarchical and cybernetic concepts, differentiated by neurons organized in the brain of the Homo sapiens, the conscious mind led to language, abstract ideas, technology, myth-making, scientific reasoning, and moral decision–making, i.e., the creation of culture. Over thousands of years, this has created the current collision between biological and cultural evolution, leading to the global “metabolic disease” crisis.
Collapse
|
42
|
Abstract
As the world population rises, osteoporotic fracture is an emerging global threat to the well-being of elderly patients. The process of fracture healing by intramembranous ossification or/and endochondral ossification involve many well-orchestrated events including the signaling, recruitment and differentiation of mesenchymal stem cells (MSCs) during the early phase; formation of a hard callus and extracellular matrix, angiogenesis and revascularization during the mid-phase; and finally callus remodeling at the late phase of fracture healing. Through clinical and animal research, many of these factors are shown to be impaired in osteoporotic bone. Animal studies related to post-menopausal estrogen deficient osteoporosis (type I) have shown healing to be prolonged with decreased levels of MSCs and decreased levels of angiogenesis. Moreover, the expression of estrogen receptor (ER) was shown to be delayed in ovariectomy-induced osteoporotic fracture. This might be related to the observed difference in mechanical sensitivity between normal and osteoporotic bones, which requires further experiments to elucidate. In mice fracture models related to senile osteoporosis (type II), it was observed that chondrocyte and osteoblast differentiation were impaired; and that transplantation of juvenile bone marrow would result in enhanced callus formation. Other factors related to angiogenesis and vasculogenesis have also been noted to be impaired in aged models, affecting the degradation of cartilaginous matrixes and vascular invasion; the result is changes in matrix composition and growth factors concentrations that ultimately impairs healing during age-related osteoporosis. Most osteoporotic related fractures occur at metaphyseal sites clinically, and reports have indicated that differences exist between diaphyseal and metaphyseal fractures. An animal model that satisfies three main criteria (metaphyseal region, plate fixation, osteoporosis) is suggested for future research for more comprehensive understanding of the impairment in osteoporotic fractures. Therefore, a metaphyseal fracture or osteotomy that achieves complete discontinuity fixed with metal implants is suggested on ovariectomized aged rodent models.
Collapse
Affiliation(s)
- Wing Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.
| | - Theodore Miclau
- Department of Orthopaedic Surgery, University of California, San Francisco, Orthopaedic Trauma Institute, University of California, San Francisco/San Francisco General Hospital, San Francisco, CA94110, United States
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Frank F Yang
- Department of Orthopaedic Surgery, University of California, San Francisco, Orthopaedic Trauma Institute, University of California, San Francisco/San Francisco General Hospital, San Francisco, CA94110, United States
| | - Volker Alt
- Department of Trauma Surgery, Giessen University Hospital, Giessen-Marburg, Germany
| |
Collapse
|
43
|
Yang KE, Jang H, Hwang I, Chung Y, Choi J, Lee T, Chung Y, Lee M, Lee MY, Yeo E, Jang I. Phenyl 2-pyridyl ketoxime induces cellular senescence-like alterations via nitric oxide production in human diploid fibroblasts. Aging Cell 2016; 15:245-55. [PMID: 26696133 PMCID: PMC4783342 DOI: 10.1111/acel.12429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2015] [Indexed: 12/15/2022] Open
Abstract
Phenyl-2-pyridyl ketoxime (PPKO) was found to be one of the small molecules enriched in the extracellular matrix of near-senescent human diploid fibroblasts (HDFs). Treatment of young HDFs with PPKO reduced the viability of young HDFs in a dose- and time-dependent manner and resulted in senescence-associated β-galactosidase (SA-β-gal) staining and G2/M cell cycle arrest. In addition, the levels of some senescence-associated proteins, such as phosphorylated ERK1/2, caveolin-1, p53, p16(ink4a), and p21(waf1), were elevated in PPKO-treated cells. To monitor the effect of PPKO on cell stress responses, reactive oxygen species (ROS) production was examined by flow cytometry. After PPKO treatment, ROS levels transiently increased at 30 min but then returned to baseline at 60 min. The levels of some antioxidant enzymes, such as catalase, peroxiredoxin II and glutathione peroxidase I, were transiently induced by PPKO treatment. SOD II levels increased gradually, whereas the SOD I and III levels were biphasic during the experimental periods after PPKO treatment. Cellular senescence induced by PPKO was suppressed by chemical antioxidants, such as N-acetylcysteine, 2,2,6,6-tetramethylpiperidinyloxy, and L-buthionine-(S,R)-sulfoximine. Furthermore, PPKO increased nitric oxide (NO) production via inducible NO synthase (iNOS) in HDFs. In the presence of NOS inhibitors, such as L-NG-nitroarginine methyl ester and L-NG-monomethylarginine, PPKO-induced transient NO production and SA-β-gal staining were abrogated. Taken together, these results suggest that PPKO induces cellular senescence in association with transient ROS and NO production and the subsequent induction of senescence-associated proteins.
Collapse
Affiliation(s)
- Kyeong Eun Yang
- Drug & Disease Target Group Division of Bioconvergence Analysis Korea Basic Science Institute Daejeon 305‐333 Korea
| | - Hyun‐Jin Jang
- Drug & Disease Target Group Division of Bioconvergence Analysis Korea Basic Science Institute Daejeon 305‐333 Korea
| | - In‐Hu Hwang
- Department of Physiology Korea University College of Medicine Seoul 02841 Korea
| | - Young‐Ho Chung
- Drug & Disease Target Group Division of Bioconvergence Analysis Korea Basic Science Institute Daejeon 305‐333 Korea
| | - Jong‐Soon Choi
- Drug & Disease Target Group Division of Bioconvergence Analysis Korea Basic Science Institute Daejeon 305‐333 Korea
| | - Tae‐Hoon Lee
- Department of Oral Biochemistry Dental Science Research Institute Chonnam National University Gwangju 500‐757 Korea
| | - Yun‐Jo Chung
- Center for University‐Wide Research Facilities Chonbuk National University Jeonju Korea
| | - Min‐Seung Lee
- Department of Biochemistry College of Medicine Gachon University Inchon 406‐799 Korea
| | - Mi Young Lee
- KM Convergence Research Division Korea Institute of Oriental Medicine Daejeon 305‐811 Korea
| | - Eui‐Ju Yeo
- Department of Biochemistry College of Medicine Gachon University Inchon 406‐799 Korea
| | - Ik‐Soon Jang
- Drug & Disease Target Group Division of Bioconvergence Analysis Korea Basic Science Institute Daejeon 305‐333 Korea
| |
Collapse
|
44
|
Bae YU, Choi JH, Nagy A, Sung HK, Kim JR. Antisenescence effect of mouse embryonic stem cell conditioned medium through a PDGF/FGF pathway. FASEB J 2015; 30:1276-86. [PMID: 26675707 DOI: 10.1096/fj.15-278846] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022]
Abstract
Cellular senescence, an irreversible state of growth arrest, underlies organismal aging and age-related diseases. Recent evidence suggests that aging intervention based on inhibition of cellular senescence might be a promising strategy for treatment of aging and age-related diseases. Embryonic stem cells (ESCs) and ESC conditioned medium (CM) have been suggested as a desirable source for regenerative medicine. However, effects of ESC-CM on cellular senescence remain to be determined. We found that treatment of senescent human dermal fibroblasts with CM from mouse ESCs (mESCs) decreases senescence phenotypes. We found that platelet-derived growth factor BB in mESC-CM plays a critical role in antisenescence effect of mESC-CM through up-regulation of fibroblast growth factor 2. We confirmed that mESC-CM treatment accelerates the wound-healing process by down-regulating senescence-associated p53 expression in in vivo models. Taken together, our results suggest that mESC-CM has the ability to suppress cellular senescence and maintain proliferative capacity. Therefore, this strategy might emerge as a novel therapeutic strategy for aging and age-related diseases.
Collapse
Affiliation(s)
- Yun-Ui Bae
- *Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, and Department of Pathology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; and Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Joon-Hyuk Choi
- *Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, and Department of Pathology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; and Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Andras Nagy
- *Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, and Department of Pathology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; and Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Hoon-Ki Sung
- *Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, and Department of Pathology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; and Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jae-Ryong Kim
- *Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, and Department of Pathology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; and Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Tsai CW, Kao YT, Chiang IN, Wang JH, Young TH. Chitosan Treatment Delays the Induction of Senescence in Human Foreskin Fibroblast Strains. PLoS One 2015; 10:e0140747. [PMID: 26465338 PMCID: PMC4605659 DOI: 10.1371/journal.pone.0140747] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/30/2015] [Indexed: 12/25/2022] Open
Abstract
Fibroblasts have been extensively used as a model to study cellular senescence. The purpose of this study was to investigate whether the human foreskin fibroblast aging process could be regulated by using the biomaterial chitosan. Fibroblasts cultured on commercial tissue culture polystyrene (TCPS) entered senescence after 55–60 population doublings (PDs), and were accompanied by larger cell shape, higher senescence-associated β-galactosidase (SA β-gal) activity, lower proliferation capacity, and upregulation of senescence-associated molecular markers p21, p53, retinoblastoma (pRB), and p16. Before senescence was reached, PD48 cells were collected from TCPS and seeded on chitosan for three days (PD48-Cd3) to form multicellular spheroids. The protein expression of senescence-associated secretory phenotypes (SASPs) and senescence-associated molecular markers of these cells in PD48-Cd3 spheroids were downregulated significantly. Following chitosan treatment, fibroblasts reseeded on TCPS showed lower SA β-gal activity, increased cellular motility, and a higher proliferation ability of 70–75 PDs. These phenotypic changes were not accompanied by colonies forming in soft agar and a continuous decrease in the senescence-associated proteins p53 and pRB which act as a barrier to tumorigenesis. These results demonstrate that chitosan treatment could delay the induction of senescence which may be useful and safe for future tissue engineering applications.
Collapse
Affiliation(s)
- Ching-Wen Tsai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan, No.1, Sec. 1, Jen - Ai Rd., Taipei 100, Taiwan
| | - Yu-Ting Kao
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan, No.1, Sec. 1, Jen - Ai Rd., Taipei 100, Taiwan
| | - I-Ni Chiang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan, No.1, Sec. 1, Jen - Ai Rd., Taipei 100, Taiwan
- Department of Urology, National Taiwan University Hospital, Taipei 100, Taiwan, No.7, Chung-Shan S. Rd., Taipei 100, Taiwan
| | - Jyh-Horng Wang
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei 100, Taiwan, No.7, Chung-Shan S. Rd., Taipei 100, Taiwan
- * E-mail: (JHW); (THY)
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan, No.1, Sec. 1, Jen - Ai Rd., Taipei 100, Taiwan
- * E-mail: (JHW); (THY)
| |
Collapse
|
46
|
Chang CW, Dalgliesh AJ, López JE, Griffiths LG. Cardiac extracellular matrix proteomics: Challenges, techniques, and clinical implications. Proteomics Clin Appl 2015. [PMID: 26200932 DOI: 10.1002/prca.201500030] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Extracellular matrix (ECM) has emerged as a dynamic tissue component, providing not only structural support, but also functionally participating in a wide range of signaling events during development, injury, and disease remodeling. Investigation of dynamic changes in cardiac ECM proteome is challenging due to the relative insolubility of ECM proteins, which results from their macromolecular nature, extensive post-translational modification (PTM), and tendency to form protein complexes. Finally, the relative abundance of cellular and mitochondrial proteins in cardiac tissue further complicates cardiac ECM proteomic approaches. Recent developments of various techniques to enrich and analyze ECM proteins are playing a major role in overcoming these challenges. Application of cardiac ECM proteomics in disease tissues can further provide spatial and temporal information relevant to disease diagnosis, prognosis, treatment, and engineering of therapeutic candidates for cardiac repair and regeneration.
Collapse
Affiliation(s)
- Chia Wei Chang
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ailsa J Dalgliesh
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Javier E López
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Leigh G Griffiths
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
47
|
Lynch K, Pei M. Age associated communication between cells and matrix: a potential impact on stem cell-based tissue regeneration strategies. Organogenesis 2015; 10:289-98. [PMID: 25482504 DOI: 10.4161/15476278.2014.970089] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A recent paper demonstrated that decellularized extracellular matrix (DECM) deposited by synovium-derived stem cells (SDSCs), especially from fetal donors, could rejuvenate human adult SDSCs in both proliferation and chondrogenic potential, in which expanded cells and corresponding culture substrate (such as DECM) were found to share a mutual reaction in both elasticity and protein profiles (see ref. (1) ). It seems that young DECM may assist in the development of culture strategies that optimize proliferation and maintain "stemness" of mesenchymal stem cells (MSCs), helping to overcome one of the primary difficulties in MSC-based regenerative therapies. In this paper, the effects of age on the proliferative capacity and differentiation potential of MSCs are reviewed, along with the ability of DECM from young cells to rejuvenate old cells. In an effort to highlight some of the potential molecular mechanisms responsible for this phenomenon, we discuss age-related changes to extracellular matrix (ECM)'s physical properties and chemical composition.
Collapse
Key Words
- ACAN, aggrecan
- ADSC, adipose derived mesenchymal stem cell
- ALP, alkaline phosphatase
- BMSC, bone marrow derived mesenchymal stem cell
- CBFA1, core binding factor α 1
- CFU-OB, colony forming unit of osteoblasts
- COL2A1, collagen type 2 alpha1
- DECM, decellularized extracellular matrix
- ECM, extracellular matrix
- ESC, embryonic stem cell
- FGF2, fibroblast growth factor basic
- GAG, glycosaminoglycan
- HGF, hepatocyte growth factor
- HSC, haematopoietic stem cell
- IGF-I, insulin-like growth factor I
- LOXL1, lysyl oxidase-like 1
- LPL, lipopolysaccharide
- LV, left ventricle
- MMP, matrix metalloproteinase
- MSC, mesenchymal stem cell
- ON, osteonectin
- PPARG, peroxisome proliferator active receptor gamma
- ROS, reactive oxygen species
- RUNX2, runt-related transcription factor 2
- SD, Sprague-Dawley
- SDSC, synovium derived stem cell
- SIS-ECM, small intestinal submucosa extracellular matrix
- SOX9, SRY (sex determining region-Y)-box 9
- SPARC, secreted protein, acidic and rich in cysteine
- TGFβ, transforming growth factor β
- TIMP, tissue inhibitor of metalloproteinases
- UDSC, umbilical cord derived mesenchymal stem cell
- VEGF, vascular endothelial growth factor
- aging
- differentiation
- extracellular matrix
- mRNA, mRNA
- mesenchymal stem cells
- miRNA, micro-RNA
- microenvironment
- proliferation
- tissue engineering
Collapse
Affiliation(s)
- Kevin Lynch
- a Stem Cell and Tissue Engineering Laboratory; Department of Orthopaedics ; West Virginia University ; Morgantown , WV USA
| | | |
Collapse
|
48
|
Li J, He F, Pei M. Chondrogenic priming of human fetal synovium-derived stem cells in an adult stem cell matrix microenvironment. Genes Dis 2015; 2:337-346. [PMID: 30258873 PMCID: PMC6147170 DOI: 10.1016/j.gendis.2015.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/29/2015] [Indexed: 02/08/2023] Open
Abstract
Cartilage defects are a challenge to treat clinically due to the avascular nature of cartilage. Low immunogenicity and extensive proliferation and multidifferentiation potential make fetal stem cells a promising source for regenerative medicine. In this study, we aimed to determine whether fetal synovium-derived stem cells (FSDSCs) exhibited replicative senescence and whether expansion on decellularized extracellular matrix (dECM) deposited by adult SDSCs (AECM) promoted FSDSCs' chondrogenic potential. FSDSCs from passage 2 and 9 were compared for chondrogenic potential, using Alcian blue staining for sulfated glycosaminoglycans (GAGs), biochemical analysis for DNA and GAG amounts, and real-time PCR for chondrogenic genes including ACAN and COL2A1. Passage 3 FSDSCs were expanded for one passage on plastic flasks (PL), AECM, or dECM deposited by fetal SDSCs (FECM). During expansion, cell proliferation was evaluated using flow cytometry for proliferation index, stem cell surface markers, and resistance to hydrogen peroxide. During chondrogenic induction, expanded FSDSCs were evaluated for tri-lineage differentiation capacity. We found that cell expansion enhanced FSDSCs' chondrogenic potential at least up to passage 9. Expansion on dECMs promoted FSDSCs' proliferative and survival capacity and adipogenic differentiation but not osteogenic capacity. AECM-primed FSDSCs exhibited an enhanced chondrogenic potential.
Collapse
Affiliation(s)
- Jingting Li
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA.,Division of Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA
| | - Fan He
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA.,Division of Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA.,Orthopaedic Institute, Soochow University, Suzhou 215007, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA.,Division of Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
49
|
Kular JK, Basu S, Sharma RI. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng 2014; 5:2041731414557112. [PMID: 25610589 PMCID: PMC4883592 DOI: 10.1177/2041731414557112] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/28/2014] [Indexed: 12/23/2022] Open
Abstract
The extracellular matrix is a structural support network made up of diverse proteins, sugars and other components. It influences a wide number of cellular processes including migration, wound healing and differentiation, all of which is of particular interest to researchers in the field of tissue engineering. Understanding the composition and structure of the extracellular matrix will aid in exploring the ways the extracellular matrix can be utilised in tissue engineering applications especially as a scaffold. This review summarises the current knowledge of the composition, structure and functions of the extracellular matrix and introduces the effect of ageing on extracellular matrix remodelling and its contribution to cellular functions. Additionally, the current analytical technologies to study the extracellular matrix and extracellular matrix–related cellular processes are also reviewed.
Collapse
Affiliation(s)
- Jaspreet K Kular
- Department of Chemical Engineering, University of Bath, Bath, UK ; Centre for Regenerative Medicine, University of Bath, Bath, UK
| | - Shouvik Basu
- Department of Chemical Engineering, University of Bath, Bath, UK
| | - Ram I Sharma
- Department of Chemical Engineering, University of Bath, Bath, UK ; Centre for Regenerative Medicine, University of Bath, Bath, UK ; Centre for Sustainable Chemical Technologies, University of Bath, Bath, UK
| |
Collapse
|
50
|
Hwang ES. Senescence suppressors: their practical importance in replicative lifespan extension in stem cells. Cell Mol Life Sci 2014; 71:4207-19. [PMID: 25052377 PMCID: PMC11113678 DOI: 10.1007/s00018-014-1685-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/23/2014] [Accepted: 07/14/2014] [Indexed: 02/06/2023]
Abstract
Recent animal and clinical studies report promising results for the therapeutic utilization of stem cells in regenerative medicine. Mesenchymal stem cells (MSCs), with their pluripotent nature, have advantages over embryonic stem cells in terms of their availability and feasibility. However, their proliferative activity is destined to slow by replicative senescence, and the limited proliferative potential of MSCs not only hinders the preparation of sufficient cells for in vivo application, but also draws a limitation on their potential for differentiation. This calls for the development of safe and efficient means to increase the proliferative as well as differentiation potential of MSCs. Recent advances have led to a better understanding of the underlying mechanisms and significance of cellular senescence, facilitating ways to manipulate the replicative lifespan of a variety of primary cells, including MSCs. This paper introduces a class of proteins that function as senescence suppressors. Like tumor suppressors, these proteins are lost in senescence, while their forced expression delays the onset of senescence. Moreover, treatments that increase the expression or the activity of senescence suppressors, therefore, cause expansion of the replicative and differentiation potential of MSCs. The nature of the activities and putative underlying mechanisms of the senescence suppressors will be discussed to facilitate their evaluation.
Collapse
Affiliation(s)
- Eun Seong Hwang
- Department of Life Science, University of Seoul, Dongdaemungu, Jeonnongdong 90, Seoul, 130-743, Republic of Korea,
| |
Collapse
|