1
|
Zhou YW, Zhao X, Ni L, Cao P, Leng WB, Zhu Q, Gou HF, Zhang J, Li XF, Qiu M. Dynamic ctDNA-based analysis of drug-resistant gene alterations at RAS/BRAF wild-type metastatic colorectal cancer patients after cetuximab plus chemotherapy as the first-line treatment. Int Immunopharmacol 2024; 131:111887. [PMID: 38503018 DOI: 10.1016/j.intimp.2024.111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The purpose of this study was to explore the dynamic changes of genomic mutations and their correlations with the efficacy in metastatic colorectal cancer (mCRC) patients treated with cetuximab plus mFOLFOX as the first-line treatment. METHODS We included mCRC patients from January 2018 to October 2020 as a studied cohort which were treated with cetuximab plus mFOLFOX as first line therapy. Blood samples were collected for circulating tumor DNA (ctDNA) test at three timepoints: before the first-line therapy(baseline), at the time of first-line progression and at the time of second-line progression. Progression-free survival was considered as the primary endpoint while objective response rate and overall survival were determined as the secondary endpoints. RESULTS Totally 39 patients received first-line treatment, of which 25 patients entered the second-line treatment, while 10 patients entered the third-line treatment. The median follow-up time was 16.4 months (95 %CI, 14.8-19.3). Along the treatment from first-line progress disease (PD) to second-line PD, proportions of TP53 (12/18, 67 %), APC (10/18, 56 %), FBXW7 (3/18, 17 %), and AMER1 (2/18, 11 %) were gradually increased according to results of single nucleotide variation (SNV). CONCLUSIONS Resistant gene mutations caused by anti-EGFR drugs in RAS/BRAF wild-type mCRC patients can be observed by dynamic ctDNA analysis. TP53 and AMER1 mutations, tumor mutational burden (TMB) levels, and TP53/AMER1 co-mutation may predict the efficacy of the first-line cetuximab-contained treatment. Situations of genetic mutations were differentiated from first-line PD to second-line PD, which indicated that mutation detection may contribute to predict prognosis of mCRC patients.
Collapse
Affiliation(s)
- Yu-Wen Zhou
- Department of Colorectal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Zhao
- Department of Colorectal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Ni
- Department of Oncology, Mianyang Central Hospital, Sichuan Province, China
| | - Peng Cao
- Department of Colorectal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Bing Leng
- Department of Colorectal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Zhu
- Department of Abdominal Oncology, Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu 610041, Sichuan Province, China
| | - Hong-Feng Gou
- Department of Abdominal Oncology, Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu 610041, Sichuan Province, China
| | - Jiao Zhang
- Genecast Biotechnology Co., Ltd., 88 Danshan Road, Xidong Chuangrong Building, Suite C, 1310-1318, Xishan District, Wuxi City, Jiangsu 214104, China
| | - Xiao-Fen Li
- Department of Abdominal Oncology, Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu 610041, Sichuan Province, China
| | - Meng Qiu
- Department of Colorectal Cancer, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Tsai HL, Lin CC, Sung YC, Chen SH, Chen LT, Jiang JK, Wang JY. The emergence of RAS mutations in patients with RAS wild-type mCRC receiving cetuximab as first-line treatment: a noninterventional, uncontrolled multicenter study. Br J Cancer 2023; 129:947-955. [PMID: 37488448 PMCID: PMC10491612 DOI: 10.1038/s41416-023-02366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
ABSRTACT BACKGROUND: Patients treated with anti-epidermal growth factor receptor (anti-EGFR) will ultimately develop acquired resistance promoted by clonal selection, mainly the emergence of mutations in the MAPK pathway (mostly RAS mutations). Baseline assessment of RAS mutations in the blood of patients correlates well with RAS tumour tissue testing and is currently an alternative option in routine clinical practice to guide first-line therapy. The aim of this study was the prevalence of acquired genomic alterations detected in the auxiliary tool of ctDNA testing and investigated the role of RAS ctDNA status for detecting tumour response and predicting benefit to anti-EGFR therapy. METHODS Only patients with concordant wild-type formalin-fixed, paraffin-embedded (FFPE) tumour tissue and baseline ctDNA RAS wild-type were included. RAS mutations in plasma were evaluated using MassARRAY platform. Blood samples were collected at baseline, every 3 months during first-line treatment, and at disease progression. The primary endpoint was the detection rate of RAS mutations during cetuximab treatment. The correlation between response and survival outcomes and the emergence of circulating RAS mutations was also analysed. RESULTS The detection rate of RAS mutations during treatment was 9.3% (10/108). RAS mutations detection occurred a median of 3 months prior to radiologic documentation. The subgroup of patients with RAS mutations exhibited significantly inferior progression-free survival and overall survival (P = 0.002 and 0.027, respectively) but the baseline characteristics, response rates, disease control rates, and metastatectomy were not significant (all P > 0.05). CONCLUSIONS We demonstrated that RAS ctDNA status might be a valuable biomarker for detecting early tumour response and predicting benefit to anti-EGFR therapy. CLINICAL TRIAL REGISTRATION NCT03401957 (January 17, 2018).
Collapse
Affiliation(s)
- Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Chi Lin
- Division of Colorectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Chung Sung
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
- Division of Hematology/Oncology, Internal Medicine, Cathay General Hospital, Taipei, Taiwan
| | - Shang-Hung Chen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Division of Medical Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jeng-Kai Jiang
- Division of Colorectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung, Taiwan.
| |
Collapse
|
3
|
Ali JH, Walter M. Combining old and new concepts in targeting telomerase for cancer therapy: transient, immediate, complete and combinatory attack (TICCA). Cancer Cell Int 2023; 23:197. [PMID: 37679807 PMCID: PMC10483736 DOI: 10.1186/s12935-023-03041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Telomerase can overcome replicative senescence by elongation of telomeres but is also a specific element in most cancer cells. It is expressed more vastly than any other tumor marker. Telomerase as a tumor target inducing replicative immortality can be overcome by only one other mechanism: alternative lengthening of telomeres (ALT). This limits the probability to develop resistance to treatments. Moreover, telomerase inhibition offers some degree of specificity with a low risk of toxicity in normal cells. Nevertheless, only one telomerase antagonist reached late preclinical studies. The underlying causes, the pitfalls of telomerase-based therapies, and future chances based on recent technical advancements are summarized in this review. Based on new findings and approaches, we propose a concept how long-term survival in telomerase-based cancer therapies can be significantly improved: the TICCA (Transient Immediate Complete and Combinatory Attack) strategy.
Collapse
Affiliation(s)
- Jaber Haj Ali
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany.
| |
Collapse
|
4
|
Rashid K, Ahmad A, Meerasa SS, Khan AQ, Wu X, Liang L, Cui Y, Liu T. Cancer stem cell-derived exosome-induced metastatic cancer: An orchestra within the tumor microenvironment. Biochimie 2023; 212:1-11. [PMID: 37011805 DOI: 10.1016/j.biochi.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/20/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Although the mechanisms as well as pathways associated with cancer stem cell (CSC) maintenance, expansion, and tumorigenicity have been extensively studied and the role of tumor cell (TC)-derived exosomes in this process is well understood, there is a paucity of research focusing specifically on the functional mechanisms of CSC-derived exosomes (CSC-Exo)/-exosomal-ncRNAs and their impact on malignancy. This shortcoming needs to be addressed, given that these vesicular and molecular components of CSCs could have a great impact on the cancer initiation, progression, and recurrence through their interaction with other key tumor microenvironment (TME) components, such as MSCs/MSC-Exo and CAFs/CAF-Exo. In particular, understanding CSCs/CSC-Exo and its crosstalk with MSCs/MSC-Exo or CAFs/CAF-Exo that are associated with the proliferation, migration, differentiation, angiogenesis, and metastasis through an enhanced process of self-renewal, chemotherapy as well as radiotherapy resistance may aid cancer treatment. This review contributes to this endeavor by summarizing the characteristic features and functional mechanisms of CSC-Exo/MSC-Exo/CAF-Exo and their mutual impact on cancer progression and therapy resistance.
Collapse
Affiliation(s)
- Khalid Rashid
- Department of Cancer Biology, Faculty of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Aqeel Ahmad
- Department of Medical Biochemistry, College of Medicine, Shaqra University, Shaqra, Saudi Arabia.
| | - Semmal Syed Meerasa
- Department of Physiology, College of Medicine, Shaqra University, Shaqra, Saudi Arabia
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Xiaobo Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Liang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuehong Cui
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Xu Z, Yang J, Xin X, Liu C, Li L, Mei X, Li M. Merits and challenges of iPSC-derived organoids for clinical applications. Front Cell Dev Biol 2023; 11:1188905. [PMID: 37305682 PMCID: PMC10250752 DOI: 10.3389/fcell.2023.1188905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have entered an unprecedented state of development since they were first generated. They have played a critical role in disease modeling, drug discovery, and cell replacement therapy, and have contributed to the evolution of disciplines such as cell biology, pathophysiology of diseases, and regenerative medicine. Organoids, the stem cell-derived 3D culture systems that mimic the structure and function of organs in vitro, have been widely used in developmental research, disease modeling, and drug screening. Recent advances in combining iPSCs with 3D organoids are facilitating further applications of iPSCs in disease research. Organoids derived from embryonic stem cells, iPSCs, and multi-tissue stem/progenitor cells can replicate the processes of developmental differentiation, homeostatic self-renewal, and regeneration due to tissue damage, offering the potential to unravel the regulatory mechanisms of development and regeneration, and elucidate the pathophysiological processes involved in disease mechanisms. Herein, we have summarized the latest research on the production scheme of organ-specific iPSC-derived organoids, the contribution of these organoids in the treatment of various organ-related diseases, in particular their contribution to COVID-19 treatment, and have discussed the unresolved challenges and shortcomings of these models.
Collapse
Affiliation(s)
- Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
- Department of Clinical Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaxu Yang
- Department of Neonatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xianyi Xin
- Department of Pediatric Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chengrun Liu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Xianglin Mei
- Department of pathology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Gao X, Xu H, Ye Z, Chen X, Wang X, Chang Q, Gu Y. PDGFRβ targeted innovative imaging probe for pancreatic adenocarcinoma detection. Talanta 2023; 255:124225. [PMID: 36587427 DOI: 10.1016/j.talanta.2022.124225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
The 5-year survival rate for pancreatic adenocarcinoma (PA) is less than 10%, making it one of the most lethal forms of cancer. Early-stage diagnosis and resection of the incipient lesions could increase the 4-year survival rate of PA up to 78%. Platelet-derived growth factor receptor β (PDGFRβ), an oncogenic key regulator for migration, proliferation and angiogenesis of cancer cells, has been proved to be aberrantly expressed in the majority of PA. Herein, by amino acid substitution strategy and surface plasmon resonance (SPR) analysis, we designed a novel PDGFRβ-targeting peptide (YQGX-10) with high affinity (Kd = 227.7 nM) and coupled it with a near-infrared fluorescent (NIRF) dye MPA for precisely detection of PA. Great binding affinity and specificity were displayed in a series of in vitro assays. NIRF imaging experiments demonstrated that the synthesized probe could be highly accumulated in xenograft and orthotopic BxPC-3 tumors and provide favorable tumor contrast in the mice, offering a potential novel approach for the early diagnosis of PA. Moreover, YQGX-10 could visualize tumor boundaries and minor lesions in BxPC-3 xenograft mice, shedding a new light on NIRF-guided tumor resection of PA. In addition, we successfully constructed the radioactive probe 99mTc-HYNIC-YQGX-10 for the diagnosis of PA with high specificity and sensitivity. In summary, the probe warrants further exploration for clinical translation in the early diagnosis and NIRF-guided surgery of PA.
Collapse
Affiliation(s)
- Xin Gao
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Haoran Xu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Zhuoyi Ye
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Xin Chen
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Xin Wang
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Qi Chang
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China.
| |
Collapse
|
7
|
Lai V, Neshat SY, Rakoski A, Pitingolo J, Doloff JC. Drug delivery strategies in maximizing anti-angiogenesis and anti-tumor immunity. Adv Drug Deliv Rev 2021; 179:113920. [PMID: 34384826 DOI: 10.1016/j.addr.2021.113920] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Metronomic chemotherapy has been shown to elicit anti-tumor immune response and block tumor angiogenesis distinct from that observed with maximal tolerated dose (MTD) therapy. This review delves into the mechanisms behind anti-tumor immunity and seeks to identify the differential effect of dosing regimens, including daily low-dose and medium-dose intermittent chemotherapy (MEDIC), on both innate and adaptive immune populations involved in observed anti-tumor immune response. Given reports of VEGF/VEGFR blockade antagonizing anti-tumor immunity, drug choice, dose, and selective delivery determined by advanced formulations/vehicles are highlighted as potential sources of innovation for identifying anti-angiogenic modalities that may be combined with metronomic regimens without interrupting key immune players in the anti-tumor response. Engineered drug delivery mechanisms that exhibit extended and local release of anti-angiogenic agents both alone and in combination with chemotherapeutic treatments have also been demonstrated to elicit a potent and potentially systemic anti-tumor immune response, favoring tumor regression and stasis over progression. This review examines this interplay between various cancer models, the host immune response, and select anti-cancer agents depending on drug dosing, scheduling/regimen, and delivery modality.
Collapse
Affiliation(s)
- Victoria Lai
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah Y Neshat
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amanda Rakoski
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - James Pitingolo
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua C Doloff
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Division of Cancer Immunology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
8
|
Zhou J, Ji Q, Li Q. Resistance to anti-EGFR therapies in metastatic colorectal cancer: underlying mechanisms and reversal strategies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:328. [PMID: 34663410 PMCID: PMC8522158 DOI: 10.1186/s13046-021-02130-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/22/2021] [Indexed: 12/28/2022]
Abstract
Cetuximab and panitumumab are monoclonal antibodies (mAbs) against epidermal growth factor receptor (EGFR) that are effective agents for metastatic colorectal cancer (mCRC). Cetuximab can prolong survival by 8.2 months in RAS wild-type (WT) mCRC patients. Unfortunately, resistance to targeted therapy impairs clinical use and efficiency. The mechanisms of resistance refer to intrinsic and extrinsic alterations of tumours. Multiple therapeutic strategies have been investigated extensively to overcome resistance to anti-EGFR mAbs. The intrinsic mechanisms include EGFR ligand overexpression, EGFR alteration, RAS/RAF/PI3K gene mutations, ERBB2/MET/IGF-1R activation, metabolic remodelling, microsatellite instability and autophagy. For intrinsic mechanisms, therapies mainly cover the following: new EGFR-targeted inhibitors, a combination of multitargeted inhibitors, and metabolic regulators. In addition, new cytotoxic drugs and small molecule compounds increase the efficiency of cetuximab. Extrinsic alterations mainly disrupt the tumour microenvironment, specifically immune cells, cancer-associated fibroblasts (CAFs) and angiogenesis. The directions include the modification or activation of immune cells and suppression of CAFs and anti-VEGFR agents. In this review, we focus on the mechanisms of resistance to anti-EGFR monoclonal antibodies (anti-EGFR mAbs) and discuss diverse approaches to reverse resistance to this therapy in hopes of identifying more mCRC treatment possibilities.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing Ji
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qi Li
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
9
|
Lee NK, Kothandan VK, Kothandan S, Byun Y, Hwang SR. Exosomes and Cancer Stem Cells in Cancer Immunity: Current Reports and Future Directions. Vaccines (Basel) 2021; 9:vaccines9050441. [PMID: 34062950 PMCID: PMC8147426 DOI: 10.3390/vaccines9050441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs), which have the capacity to self-renew and differentiate into various types of cells, are notorious for their roles in tumor initiation, metastasis, and therapy resistance. Thus, underlying mechanisms for their survival provide key insights into developing effective therapeutic strategies. A more recent focus has been on exosomes that play a role in transmitting information between CSCs and non-CSCs, resulting in activating CSCs for cancer progression and modulating their surrounding microenvironment. The field of CSC-derived exosomes (CSCEXs) for different types of cancer is still under exploration. A deeper understanding and further investigation into CSCEXs’ roles in tumorigenicity and the identification of novel exosomal components are necessary for engineering exosomes for the treatment of cancer. Here, we review the features of CSCEXs, including surface markers, cargo, and biological or physiological functions. Further, reports on the immunomodulatory effects of CSCEXs are summarized, and exosome engineering for CSC-targeting is also discussed.
Collapse
Affiliation(s)
- Na-Kyeong Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (N.-K.L.); (Y.B.)
| | - Vinoth Kumar Kothandan
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea;
| | - Sangeetha Kothandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600073, India;
| | - Youngro Byun
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (N.-K.L.); (Y.B.)
| | - Seung-Rim Hwang
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea;
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
- Correspondence:
| |
Collapse
|
10
|
The critical role of peroxiredoxin-2 in colon cancer stem cells. Aging (Albany NY) 2021; 13:11170-11187. [PMID: 33819194 PMCID: PMC8109100 DOI: 10.18632/aging.202784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Colon cancer stem cells (CCSCs) play an important role in facilitating colon cancer occurrence, metastasis and drug resistance. The results of our previous studies confirmed that the well-studied antioxidant gene peroxiredoxin-2 (PRDX2) promotes colon cancer progression. However, the underlying function and mechanisms associated with PRDX2 remodeling in the context of CCSCs have remained poorly studied. In our present study, we demonstrated that PRDX2 is highly expressed in CD133/CD44-positive colon cancer tissues and spheroid CD133+CD44+ CCSCs. PRDX2 overexpression was shown to be closely correlated with CD133+CD44+ CCSCs in colon cancer. Furthermore, PRDX2 depletion markedly suppressed CD133+CD44+ CCSC stemness maintenance, tumor initiation, migration and invasion and liver metastasis. Furthermore, the expression of various EMT markers and Wnt/β-catenin signaling proteins was altered after PRDX2 inhibition. In addition, PRDX2 knockdown led to increased ROS production in CD133+CD44+ CCSCs, sensitizing CCSCs to oxidative stress and chemotherapy. These results suggest that PRDX2 could be a possible therapeutic target in CCSCs.
Collapse
|
11
|
Jiapaer S, Furuta T, Dong Y, Kitabayashi T, Sabit H, Zhang J, Zhang G, Tanaka S, Kobayashi M, Hirao A, Nakada M. Identification of 2-Fluoropalmitic Acid as a Potential Therapeutic Agent Against Glioblastoma. Curr Pharm Des 2021; 26:4675-4684. [PMID: 32348209 DOI: 10.2174/1381612826666200429092742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/20/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Glioblastomas (GBMs) are aggressive malignant brain tumors. Although chemotherapy with temozolomide (TMZ) can extend patient survival, most patients eventually demonstrate resistance. Therefore, novel therapeutic agents that overcome TMZ chemoresistance are required to improve patient outcomes. PURPOSE Drug screening is an efficient method to find new therapeutic agents from existing drugs. In this study, we explored a novel anti-glioma agent by drug screening and analyzed its function with respect to GBM treatment for future clinical applications. METHODS Drug libraries containing 1,301 diverse chemical compounds were screened against two glioma stem cell (GSC) lines for drug candidate selection. The effect of selected agents on GSCs and glioma was estimated through viability, proliferation, sphere formation, and invasion assays. Combination therapy was performed to assess its ability to enhance TMZ cytotoxicity against GBM. To clarify the mechanism of action, we performed methylation-specific polymerase chain reaction, gelatin zymography, and western blot analysis. RESULTS The acyl-CoA synthetase inhibitor 2-fluoropalmitic acid (2-FPA) was selected as a candidate anti-glioma agent. 2-FPA suppressed the viability and stem-like phenotype of GSCs. It also inhibited proliferation and invasion of glioma cell lines. Combination therapy of 2-FPA with TMZ synergistically enhanced the efficacy of TMZ. 2-FPA suppressed the expression of phosphor-ERK, CD133, and SOX-2; reduced MMP-2 activity; and increased methylation of the MGMT promoter. CONCLUSION 2-FPA was identified as a potential therapeutic agent against GBM. To extend these findings, physiological studies are required to examine the efficacy of 2-FPA against GBM in vivo.
Collapse
Affiliation(s)
- Shabierjiang Jiapaer
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Takuya Furuta
- Department of Pathology, Kurume University, Kurume, Japan
| | - Yu Dong
- Shenzhen SAMII Medical Center, Shenzhen, Guangdong Province, China
| | | | - Hemragul Sabit
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Jiakang Zhang
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Guangtao Zhang
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Shingo Tanaka
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masahiko Kobayashi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
12
|
Kana SI, Essani K. Immuno-Oncolytic Viruses: Emerging Options in the Treatment of Colorectal Cancer. Mol Diagn Ther 2021; 25:301-313. [PMID: 33713031 DOI: 10.1007/s40291-021-00517-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 12/18/2022]
Abstract
Colorectal cancer is the third most common neoplasm in the world and the third leading cause of cancer-related deaths in the USA. A safer and more effective therapeutic intervention against this malignant carcinoma is called for given the limitations and toxicities associated with the currently available treatment modalities. Immuno-oncolytic or oncolytic virotherapy, the use of viruses to selectively or preferentially kill cancer cells, has emerged as a potential anticancer treatment modality. Oncolytic viruses act as double-edged swords against the tumors through the direct cytolysis of cancer cells and the induction of antitumor immunity. A number of such viruses have been tested against colorectal cancer, in both preclinical and clinical settings, and many have produced promising results. Oncolytic virotherapy has also shown synergistic antitumor efficacy in combination with conventional treatment regimens. In this review, we describe the status of this therapeutic approach against colorectal cancer at both preclinical and clinical levels. Successes with and the challenges of using oncolytic viruses, both as monotherapy and in combination therapy, are also highlighted.
Collapse
Affiliation(s)
- Sadia Islam Kana
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008-5410, USA
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008-5410, USA.
| |
Collapse
|
13
|
Epithelial Ovarian Cancer and Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1330:21-32. [PMID: 34339028 DOI: 10.1007/978-3-030-73359-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Epithelial ovarian cancer is a lethal gynecological cancer. It is related to high mortality because the majority of the patients present in advanced stage and because of the high recurrence rates of the disease. Recurrent ovarian cancer is classified according to the time interval between the last platinum-based chemotherapy and the occurrence of recurrence, to platinum-sensitive and platinum-resistant. Many theories tried to explain development of resistance to platinum-based therapy. "Cancer stem cells" is one of these theories and is being currently under investigation by many groups. This chapter will demonstrate the suggested contribution of cancer stem cells to the development of recurrent ovarian cancer.
Collapse
|
14
|
Mechanisms of cancer stem cell therapy. Clin Chim Acta 2020; 510:581-592. [PMID: 32791136 DOI: 10.1016/j.cca.2020.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are responsible for carcinogenesis and tumorigenesis and are involved in drug and radiation resistance, metastasis, tumor relapse and initiation. Remarkably, they have other abilities such as inheritance of self-renewal and de-differentiation. Hence, targeting CSCs is considered a potential anti-cancer therapeutic strategy. Recent advances in the identification of biomarkers to recognize CSCs and the development of new techniques to evaluate tumorigenic and carcinogenic roles of CSCs are instrumental to this approach. Elucidation of signaling pathways that regulate CSCs colony progression and drug resistance are critical in establishing effective targeted therapies. CSCs play a central key role in immunomodulation, immune evasion and effector immunity, which alters immune system balancing. These include mTOR, SHH, NOTCH and Wnt/β-catering in cancer progression. In this review article, we discuss the importance of these CSCs pathways in cancer therapy.
Collapse
|
15
|
The role of CD133 expression of cancer stem cells on radiotherapy response in early stage glottic cancers. Eur Arch Otorhinolaryngol 2020; 277:3121-3126. [PMID: 32519080 DOI: 10.1007/s00405-020-06106-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE To investigate the relationship between CD133 positivity and radiotherapy (RT) response in early stage glottic laryngeal cancers. METHODS Thirty seven patients with early-stage glottic laryngeal carcinoma who were treated with primary RT were evaluated. Patients with regular follow-up of at least 3 years were included in the study. Patients who had previously received chemotherapy for laryngeal surgery or underwent surgery were excluded. The patients were divided into two groups as recurrent and non-recurrent. These two groups were compared in terms of CD133 expression by immunohistochemical method. RESULTS There were 37 patients in the study. Ten patients had recurrence and seven (70%) had CD133 positive and three had CD133 negative. Of 27 patients who had no recurrence, 16 (59%) had CD133 positive and 11 (41%) had CD133 negative. 7 (70%) of ten patients with recurrence were found to be positive for CD133; There was no statistically significant difference between recurrent and non-recurrent patient groups in terms of CD133 positivity (p > 0.05). There was no correlation between the final CD133 score and recurrence status as well (p > 0.05). CONCLUSION There was no relationship between radiotherapy response and CD133 staining in early-stage glottic laryngeal cancers. It is the largest study about CD133 and RT sensitivity in early stage glottic carcinomas.
Collapse
|
16
|
Kim DJ, Moon JY, Kim SM, Seo JW, Lee YH, Jung SW, Kim K, Kim YG, Lim SJ, Lee S, Son Y, Lee SH. Substance P Improves Renal Ischemia Reperfusion Injury Through Modulating Immune Response. Front Immunol 2020; 11:600. [PMID: 32391002 PMCID: PMC7190869 DOI: 10.3389/fimmu.2020.00600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/16/2020] [Indexed: 12/28/2022] Open
Abstract
Substance P (SP), an injury-inducible messenger that mobilizes bone marrow stem cells and modulates the immune response, has been suggested as a novel target for therapeutic agents. We evaluated the role of SP as an immune cell modulator during the progression of renal ischemic/reperfusion injury (IRI). Unilateral IRI induced the transient expression of endogenous SP and the infiltration of CCR7+ M1 macrophages in injured kidneys. However, SP altered the intrarenal macrophage polarization from CCR7+ M1 macrophages to CD206+ M2 macrophages in injured kidneys. SP also modulated bone marrow-derived neutrophils and mesenchymal stromal cells after IRI. SP treatment for 4 weeks starting one week after unilateral IRI significantly preserved kidney size and length and normal tubular structures and alleviated necrotic tubules, inflammation, apoptosis, and tubulointerstitial fibrosis. The beneficial effects of SP were accompanied by attenuation of intrarenal recruitment of CD4, CD8, and CD20 cells and abnormal angiogenesis. The immunomodulatory effect of SP suggested that SP could be a promising therapeutic target for preventing the progression of acute kidney injury to chronic kidney disease.
Collapse
Affiliation(s)
- Dong-Jin Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea.,Laboratory of Tissue Engineering, Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University Global Campus, Yongin, South Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Su-Mi Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Jung-Woo Seo
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Kipyo Kim
- Division of Nephrology and Hypertension, Department of Internal Medicine, College of Medicine, Inha University, Incheon, South Korea
| | - Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Sung-Jig Lim
- Department of Pathology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | | | - Youngsook Son
- Laboratory of Tissue Engineering, Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University Global Campus, Yongin, South Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
17
|
Gzil A, Zarębska I, Bursiewicz W, Antosik P, Grzanka D, Szylberg Ł. Markers of pancreatic cancer stem cells and their clinical and therapeutic implications. Mol Biol Rep 2019; 46:6629-6645. [PMID: 31486978 DOI: 10.1007/s11033-019-05058-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/31/2019] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer (PC) is the fourth most common cause of death among all cancers. Poor prognosis of PC may be caused by a prevalence of cancer stem cells (CSCs). CSCs are a population of cancer cells showing stem cell-like characteristics. CSCs have the ability to self-renew and may initiate tumorigenesis. PC CSCs express markers such as CD133, CD24, CD44, DCLK1, CXCR4, ESA, Oct4 and ABCB1. There is a wide complexity of interaction and relationships between CSC markers in PC. These markers are negative prognostic factors and are connected with tumor recurrence and clinical progression. Additionally, PC CSCs are resistant to treatment with gemcitabine. Thus, most current therapies for PC are ineffective. Numerous studies have shown, that targeting of these proteins may increase both disease-free and overall survival in PC.
Collapse
Affiliation(s)
- Arkadiusz Gzil
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland.
| | - Izabela Zarębska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
| | - Wiktor Bursiewicz
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
- Department of Pathomorphology, Military Clinical Hospital, Bydgoszcz, Poland
| |
Collapse
|
18
|
The Brain Penetrating and Dual TORC1/TORC2 Inhibitor, RES529, Elicits Anti-Glioma Activity and Enhances the Therapeutic Effects of Anti-Angiogenetic Compounds in Preclinical Murine Models. Cancers (Basel) 2019; 11:cancers11101604. [PMID: 31640252 PMCID: PMC6826425 DOI: 10.3390/cancers11101604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background. Glioblastoma multiforme (GBM) is a devastating disease showing a very poor prognosis. New therapeutic approaches are needed to improve survival and quality of life. GBM is a highly vascularized tumor and as such, chemotherapy and anti-angiogenic drugs have been combined for treatment. However, as treatment-induced resistance often develops, our goal was to identify and treat pathways involved in resistance to treatment to optimize the treatment strategies. Anti-angiogenetic compounds tested in preclinical and clinical settings demonstrated recurrence associated to secondary activation of the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway. Aims. Here, we determined the sensitizing effects of the small molecule and oral available dual TORC1/TORC2 dissociative inhibitor, RES529, alone or in combination with the anti-VEGF blocking antibody, bevacizumab, or the tyrosine kinase inhibitor, sunitinib, in human GBM models. Results. We observed that RES529 effectively inhibited dose-dependently the growth of GBM cells in vitro counteracting the insurgence of recurrence after bevacizumab or sunitinib administration in vivo. Combination strategies were associated with reduced tumor progression as indicated by the analysis of Time to Tumor Progression (TTP) and disease-free survival (DSF) as well as increased overall survival (OS) of tumor bearing mice. RES529 was able to reduce the in vitro migration of tumor cells and tubule formation from both brain-derived endothelial cells (angiogenesis) and tumor cells (vasculogenic mimicry). Conclusions. In summary, RES529, the first dual TORC1/TORC2 dissociative inhibitor, lacking affinity for ABCB1/ABCG2 and having good brain penetration, was active in GBM preclinical/murine models giving credence to its use in clinical trial for patients with GBM treated in association with anti-angiogenetic compounds.
Collapse
|
19
|
Mathematical modeling of drug-induced receptor internalization in the HER2-positive SKBR3 breast cancer cell-line. Sci Rep 2019; 9:12709. [PMID: 31481718 PMCID: PMC6722142 DOI: 10.1038/s41598-019-49019-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
About 20% of breast cancer tumors over-express the HER2 receptor. Trastuzumab, an approved drug to treat this type of breast cancer, is a monoclonal antibody directly binding at the HER2 receptor and ultimately inhibiting cancer cell growth. The goal of our study was to understand the early impact of trastuzumab on HER2 internalization and recycling in the HER2-overexpressing breast cancer cell line SKBR3. To this end, fluorescence microscopy, monitoring the amount of HER2 expression in the plasma membrane, was combined with mathematical modeling to derive the flux of HER2 receptors from and to the membrane. We constructed a dynamic multi-compartment model based on ordinary differential equations. To account for cancer cell heterogeneity, a first, dynamic model was expanded to a second model including two distinct cell phenotypes, with implications for different conformational states of HER2, i.e. monomeric or homodimeric. Our mathematical model shows that the hypothesis of fast constitutive HER2 recycling back to the plasma membrane does not match the experimental data. It conclusively describes the experimental observation that trastuzumab induces sustained receptor internalization in cells with membrane ruffles. It is also concluded that for rare, non-ruffled (flat) cells, HER2 internalization occurs three orders of magnitude slower than for the bulk, ruffled cell population.
Collapse
|
20
|
Younis MA, Khalil IA, Abd Elwakil MM, Harashima H. A Multifunctional Lipid-Based Nanodevice for the Highly Specific Codelivery of Sorafenib and Midkine siRNA to Hepatic Cancer Cells. Mol Pharm 2019; 16:4031-4044. [DOI: 10.1021/acs.molpharmaceut.9b00738] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mahmoud A. Younis
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ikramy A. Khalil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mahmoud M. Abd Elwakil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
21
|
Antrodia cinnamomea Enhances Chemo-Sensitivity of 5-FU and Suppresses Colon Tumorigenesis and Cancer Stemness via Up-Regulation of Tumor Suppressor miR-142-3p. Biomolecules 2019; 9:biom9080306. [PMID: 31349708 PMCID: PMC6723279 DOI: 10.3390/biom9080306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022] Open
Abstract
5-Fluorouracil (5-FU) regimen remains the backbone of the first-line agent to treat colon cancer, but often these patients develop resistance. Cancer stem cells (CSC's) are considered as one of the key contributors in the development of drug resistance and tumor recurrence. We aimed to provide preclinical evidence for Antrodia cinnamomea (AC), as a potential in suppressing colon cancer CSC's to overcome 5-FU drug-resistant. In-vitro assays including cell viability, colony formation, AC + 5-FU drug combination index and tumor sphere generation were applied to determine the inhibitory effect of AC. Mouse xenograft models also incorporated to evaluate in vivo effect of AC. AC treatment significantly inhibited the proliferation, colony formation and tumor sphere generation. AC also inhibited the expression of oncogenic markers (NF-κB, and C-myc), EMT/metastasis markers (vimentin and MMP3) and stemness associated markers (β-catenin, SOX-2 and Nanog). Sequential treatment of AC and 5-FU synergized and reduces colon cancer viability both in vivo and in vitro. Mechanistically, AC mediated anti-tumor effect was associated with an increased level of tumor suppressor microRNAs especially, miR142-3p. AC can be a potent synergistic adjuvant, down-regulates cancer stemness genes and enhances the antitumor ability of 5-FU by stimulating apoptosis-associated genes, suppressing inflammation and metastasis genes through miR142-3p in colon cancer.
Collapse
|
22
|
Benyettou F, Prakasam T, Ramdas Nair A, Witzel II, Alhashimi M, Skorjanc T, Olsen JC, Sadler KC, Trabolsi A. Potent and selective in vitro and in vivo antiproliferative effects of metal-organic trefoil knots. Chem Sci 2019; 10:5884-5892. [PMID: 31360392 PMCID: PMC6582759 DOI: 10.1039/c9sc01218d] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023] Open
Abstract
A set of metal-organic trefoil knots (M-TKs) generated by metal-templated self-assembly of a simple pair of chelating ligands were well tolerated in vitro by non-cancer cells but were significantly more potent than cisplatin in both human cancer cells--including those resistant to cisplatin--and in zebrafish embryos. In cultured cells, M-TKs generated reactive oxygen species that triggered apoptosis via the mitochondrial pathway without directly disrupting the cell-membrane or damaging nuclear DNA. The cytotoxicity and wide scope for structural variation of M-TKs indicate the potential of synthetic metal-organic knots as a new field of chemical space for pharmaceutical design and development.
Collapse
Affiliation(s)
- Farah Benyettou
- Program in Chemistry , New York University Abu Dhabi , UAE .
| | | | | | | | - Marwa Alhashimi
- Program in Chemistry , New York University Abu Dhabi , UAE .
| | - Tina Skorjanc
- Program in Chemistry , New York University Abu Dhabi , UAE .
| | - John-Carl Olsen
- Department of Chemistry , University of Rochester , Rochester , New York , USA
| | | | - Ali Trabolsi
- Program in Chemistry , New York University Abu Dhabi , UAE .
| |
Collapse
|
23
|
Razak S, Alam I, Afsar T, Abulmeaty MMA, Almajwal A, Jahan S. A Prospective Evaluation of Serum Vitamin D (1, 25(OH)2 D3) and Endogenous Sex Hormone Levels in Colorectal Cancer Patients. Front Oncol 2019; 9:468. [PMID: 31214508 PMCID: PMC6558010 DOI: 10.3389/fonc.2019.00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/15/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Data on 25-OH VD concentrations and the associated factors in colorectal cancer (CRC) patients are scarce and need to be investigated. Methods: A total of 200 CRC patients participated in this cross-sectional study conducted in Pakistan. Socio-demographic and other health data were collected in a pretested questionnaire. Serum measurements of Vitamin D (1, 25(OH)2 D3) levels and hormones were performed. Association of age, sex, primary site, effects of hormone therapy and stage of disease and selected reproductive health indicators on vitamin D status were primarily scrutinized by univariate analysis. Results: Mean age of the population was 55.3 years (±15.6; Range: 20–90 years). Estradiol concentration was considerably elevated in young females compared to young male patients (p < 0.001). The concentrations of FSH, LH testosterone and estradiol were significantly lower in post-menopausal female CRC patients as compared to their male counterparts of old age (p, for all trends < 0.05). Both LH and FSH showed significant gender difference but only in older patients. Level of estrogen was markedly decreased in older post-menopausal CRC patients compared to premenopausal CRC patients, which might be associated with CRC progression. In the group of women, who “ever used hormone therapy” had differences of statistical significance (p, for all trends < 0.05) in their mean serum 25-OH VD concentrations, while in the group of women who “never used hormone therapy” had non-significant differences in their mean serum 25-OH VD concentrations (p, for all trends > 0.05). High 25-OH VD concentrations were observed in women who had their menarche at the age of 15 years or more. Nulliparous women had the highest mean 25-OH VD concentrations as compared to unparious or multiparious women. In addition, women having their menopause at 40–44 years of age had the highest 25-OH VD concentrations, although the difference was not significant (p = 0.08). Women who “never used any oral contraceptive” had higher 25-OH VD concentrations as compared to those “whoever used oral contraceptives.” Conclusion: Our findings suggest that vitamin D has a positive effect on the development of CRC through the mediation of hormones. Other health and reproductive traits that affect hormone levels may have an indirect effect on the development of CRC. Further potential studies that directly evaluate levels of circulating hormones and hormone therapy in women in association to 25-OH VD concentrations, as well as their possible role in colorectal cancer risk, would be vastly edifying.
Collapse
Affiliation(s)
- Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- *Correspondence: Suhail Razak ;
| | - Iftikhar Alam
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud M. A. Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sarwat Jahan
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
24
|
Acetyl-11-keto-β-boswellic acid suppresses docetaxel-resistant prostate cancer cells in vitro and in vivo by blocking Akt and Stat3 signaling, thus suppressing chemoresistant stem cell-like properties. Acta Pharmacol Sin 2019; 40:689-698. [PMID: 30171201 DOI: 10.1038/s41401-018-0157-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022] Open
Abstract
Acquired docetaxel-resistance of prostate cancer (PCa) remains a clinical obstacle due to the lack of effective therapies. Acetyl-11-keto-β-boswellic acid (AKBA) is a pentacyclic triterpenic acid isolated from the fragrant gum resin of the Boswellia serrata tree, which has shown intriguing antitumor activity against human cell lines established from PCa, colon cancer, malignant glioma, and leukemia. In this study, we examined the effects of AKBA against docetaxel-resistant PCa in vitro and in vivo as well as its anticancer mechanisms. We showed that AKBA dose-dependently inhibited cell proliferation and induced cell apoptosis in docetaxel-resistant PC3/Doc cells; its IC50 value in anti-proliferation was ∼17 μM. Furthermore, AKBA dose-dependently suppressed the chemoresistant stem cell-like properties of PC3/Doc cells, evidenced by significant decrease in the ability of mammosphere formation and down-regulated expression of a number of stemness-associated genes. The activation of Akt and Stat3 signaling pathways was remarkably enhanced in PC3/Doc cells, which contributed to their chemoresistant stem-like phenotype. AKBA (10-30 μM) dose-dependently suppressed the activation of Akt and Stat3 signaling pathways in PC3/Doc cells. In contrast, overexpression of Akt and Stat3 significantly attenuated the inhibition of AKBA on PC3/Doc cell proliferation. In docetaxel-resistant PCa homograft mice, treatment with AKBA significantly suppresses the growth of homograft RM-1/Doc, equivalent to its human PC3/Doc, but did not decrease their body weight. In summary, we demonstrate that AKBA inhibits the growth inhibition of docetaxel-resistant PCa cells in vitro and in vivo via blocking Akt and Stat3 signaling, thus suppressing their cancer stem cell-like properties.
Collapse
|
25
|
Li H, Wang L, Shi S, Xu Y, Dai X, Li H, Wang J, Zhang Q, Wang Y, Sun S, Li Y. The Prognostic and Clinicopathologic Characteristics of OCT4 and Lung Cancer: A Meta-Analysis. Curr Mol Med 2019; 19:54-75. [PMID: 30854966 DOI: 10.2174/1566524019666190308163315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/24/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
Objective:The relationship between OCT4 and clinicopathological features in lung cancer is shown to be controversial in recent publications. Therefore, we conducted this meta-analysis to quantitatively investigate the prognostic and clinicopathological characteristics of OCT4 in lung cancer.Methods:A comprehensive literature search of the PubMed, EMBASE, Cochrane Library, WOS, CNKI and Wanfang databases was performed to identify studies. Correlations between OCT4 expression and survival outcomes or clinicopathological features were analyzed using meta-analysis methods.Results:Twenty-one studies with 2523 patients were included. High OCT4 expression showed a poorer overall survival (OS) (univariate: HR= 2.00, 95% CI = (1.68, 2.39), p<0.0001; multivariate: HR= 2.43, 95% CI = (1.67, 3.55), p<0.0001) and median overall survival (MSR = 0.51, 95% CI = (0.44, 0.58), p < 0.0001), disease-free survival (DFS) (HR= 2.18, 95% CI = (1.30, 3.67), p = 0.003) and poorer disease-specific survival (DSS) (HR= 2.23, 95% CI = (1.21, 4.11), p = 0.010). Furthermore, high OCT4 expression was found to be related with lower 5 year disease-specific survival rate (OR= 0.24, 95% CI = (0.14, 0.41), p<0.0001) and 10 year overall survival rate (OR= 0.22, 95% CI = (0.12, 0.40), p=0.0001). Additionally, OCT4-high expression was also strongly associated with higher clinical TNM stage, lymph node metastasis, tumor distant metastasis, higher histopathologic grade, but not related with gender, smoking status, tumor size and histologic type of lung cancer.Conclusion:OCT4 over-expression in lung cancer was strongly related to poorer clinicopathological features and worse survival outcomes, which suggests that OCT4 could be a valuable prognostic marker in lung cancer.
Collapse
Affiliation(s)
- Hui Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Liwen Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shupeng Shi
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yadong Xu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuejiao Dai
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hongru Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jing Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiong Zhang
- Reproductive Department, Xiangya Hospital, Central South University, Changsha, China
| | - Yonggang Wang
- Reproductive Department, Xiangya Hospital, Central South University, Changsha, China
| | - Shuming Sun
- School of Life Sciences, Central South University, Changsha, 410008, China
| | - Yanping Li
- Reproductive Department, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Pereira CV, Duarte M, Silva P, Bento da Silva A, Duarte CMM, Cifuentes A, García-Cañas V, Bronze MR, Albuquerque C, Serra AT. Polymethoxylated Flavones Target Cancer Stemness and Improve the Antiproliferative Effect of 5-Fluorouracil in a 3D Cell Model of Colorectal Cancer. Nutrients 2019; 11:E326. [PMID: 30717428 PMCID: PMC6412836 DOI: 10.3390/nu11020326] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
Polymethoxylated flavones (PMFs) from citrus fruits are reported to present anticancer potential. However, there is a lack of information regarding their effect on cancer stem cell (CSC) populations, which has been recognized as responsible for tumor initiation, relapse, and chemoresistance. In this study, we evaluated the effect of an orange peel extract (OPE) and its main PMFs, namely, nobiletin, sinensetin, tangeretin, and scutellarein tetramethylether in targeting cell proliferation and stemness using a 3D cell model of colorectal cancer composed of HT29 cell spheroids cultured for 7 days in stirred conditions. Soft agar assay, ALDH1 activity, and relative quantitative gene expression analysis of specific biomarkers were carried out to characterize the stemness, self-renewal, and mesenchymal features of HT29 cell spheroids. Then, the impact of OPE and PMFs in reducing cell proliferation and modulating cancer stemness and self-renewal was assessed. Results showed that, when compared with monolayer cultures, HT29 cell spheroids presented higher ALDH1 activity (81.97% ± 5.27% compared to 63.55% ± 17.49% for 2D), upregulation of CD44, PROM1, SOX9, and SNAI1 genes (1.83 ± 0.34, 2.54 ± 0.51, 2.03 ± 0.15, and 6.12 ± 1.59 times) and high self-renewal capability (352 ± 55 colonies compared to 253 ± 42 for 2D). Incubation with OPE (1 mg/mL) significantly inhibited cell proliferation and modulated cancer stemness and self-renewal ability: colony formation, ALDH1 activity, and the expression of cancer stemness biomarkers PROM1 and LGR5 were significantly reduced (0.66 ± 0.15 and 0.51 ± 0.14 times, respectively). Among all PMFs, tangeretin was the most efficient in targeting the CSC population by decreasing colony formation and the expression of PROM1 and LGR5. Scutellarein tetramethylether was shown to modulate markers of mesenchymal/metastatic transition (increasing CDH1 and reducing ZEB1 and SNAI1) and nobiletin was capable of downregulating PROM1 and SNAI1 expression. Importantly, all PMFs and OPE were shown to synergistically interact with 5-fluorouracil, improving the antiproliferative response of this drug.
Collapse
Affiliation(s)
- Carolina V Pereira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
| | - Marlene Duarte
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E (IPOLFG, EPE), 1099-023 Lisboa, Portugal.
| | - Patrícia Silva
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E (IPOLFG, EPE), 1099-023 Lisboa, Portugal.
| | - Andreia Bento da Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal.
- Faculdade de Farmácia da Universidade de Lisboa, Av das Forças Armadas, 1649-019 Lisboa, Portugal.
| | - Catarina M M Duarte
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal.
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Calle Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Virginia García-Cañas
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CIAL, CSIC) Calle Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Maria R Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal.
- Faculdade de Farmácia da Universidade de Lisboa, Av das Forças Armadas, 1649-019 Lisboa, Portugal.
| | - Cristina Albuquerque
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E (IPOLFG, EPE), 1099-023 Lisboa, Portugal.
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal.
| |
Collapse
|
27
|
Therapeutic targeting of lipid synthesis metabolism for selective elimination of cancer stem cells. Arch Pharm Res 2018; 42:25-39. [PMID: 30536027 DOI: 10.1007/s12272-018-1098-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/01/2018] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) are believed to have an essential role in tumor resistance and metastasis; however, no therapeutic strategy for the selective elimination of CSCs has been established. Recently, several studies have shown that the metabolic regulation for ATP synthesis and biological building block generation in CSCs are different from that in bulk cancer cells and rather similar to that in normal tissue stem cells. To take advantage of this difference for CSC elimination therapy, many studies have tested the effect of blocking these metabolism. Two specific processes for lipid biosynthesis, i.e., fatty acid unsaturation and cholesterol biosynthesis, have been shown to be very effective and selective for CSC targets. In this review, lipid metabolism specific to CSCs are summarized. In addition, how monounsaturated fatty acid and cholesterol synthesis may contribute to CSC maintenance are discussed. Specifically, the molecular mechanism required for lipid synthesis and essential for stem cell biology is highlighted. The limit and preview of the lipid metabolism targeting for CSCs are also discussed.
Collapse
|
28
|
Barkeer S, Chugh S, Karmakar S, Kaushik G, Rauth S, Rachagani S, Batra SK, Ponnusamy MP. Novel role of O-glycosyltransferases GALNT3 and B3GNT3 in the self-renewal of pancreatic cancer stem cells. BMC Cancer 2018; 18:1157. [PMID: 30466404 PMCID: PMC6251200 DOI: 10.1186/s12885-018-5074-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Glycosylation plays a critical role in the aggressiveness of pancreatic cancer (PC). Emerging evidences indicate significant involvement of cancer stem cells (CSCs) in PC aggressiveness. However, the importance of glycosylation in pancreatic cancer stem cells (PCSCs) is yet to be addressed. Hence, we evaluated the potential role of glycosylation in maintenance of stemness of PCSCs. METHODS Effect of glycosylation specific inhibitors on growth and PCSCs of PC cells was assessed by MTT assay and Side Population (SP) analysis. Isolated PCSCs/SP were characterized using molecular and functional assays. Expression of tumor-associated carbohydrate antigens (TACAs) was analyzed in PCSCs by western blotting. Effect of tunicamycin on PCSCs was analyzed by tumorsphere, clonogenicity, migration assay and immunoblotting for CSCs markers. The differential expression of glycogenes in PCSCs compared to non-CSCs were determined by RT-qPCR, immunoblotting and immunofluorescence. Co-expression of GALNT3 and B3GNT3 with CD44v6 was assessed in progression stages of KrasG12D; Pdx-1-Cre (KC) and KrasG12D; p53R172H; Pdx-1-Cre (KPC) tumors by immunofluorescence. Transient and CRISPR/Cas9 silencing of GALNT3 and B3GNT3 was performed to examine their effect on CSCs maintenance. RESULTS Inhibition of glycosylation decreased growth and CSCs/SP in PC cells. PCSCs overexpressed CSC markers (CD44v6, ESA, SOX2, SOX9 and ABCG2), exhibited global expressional variation of TACAs and showed higher self-renewal potential. Specifically, N-glycosylation inhibition, significantly decreased tumorsphere formation, migration, and clonogenicity of PCSCs, as well as hypo-glycosylated CD44v6 and ESA. Of note, glycosyltransferases (GFs), GALNT3 and B3GNT3, were significantly overexpressed in PCSCs and co-expressed with CD44v6 at advanced PDAC stages in KC and KPC tumors. Further, GALNT3 and B3GNT3 knockdown led to a decrease in the expression of cell surface markers (CD44v6 and ESA) and self-renewal markers (SOX2 and OCT3/4) in PCSCs. Interestingly, CD44v6 was modified with sialyl Lewis a in PCSCs. Finally, CRISPR/Cas9-mediated GALNT3 KO significantly decreased self-renewal, clonogenicity, and migratory capacity in PCSCs. CONCLUSIONS Taken together, for the first time, our study showed the importance of glycosylation in mediating growth, stemness, and maintenance of PCSCs. These results indicate that elevated GALNT3 and B3GNT3 expression in PCSCs regulate stemness through modulating CSC markers.
Collapse
Affiliation(s)
- Srikanth Barkeer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Seema Chugh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Saswati Karmakar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Garima Kaushik
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198 USA
| |
Collapse
|
29
|
Razak S, Afsar T, Ullah A, Almajwal A, Alkholief M, Alshamsan A, Jahan S. Taxifolin, a natural flavonoid interacts with cell cycle regulators causes cell cycle arrest and causes tumor regression by activating Wnt/ β -catenin signaling pathway. BMC Cancer 2018; 18:1043. [PMID: 30367624 PMCID: PMC6204009 DOI: 10.1186/s12885-018-4959-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/16/2018] [Indexed: 01/23/2023] Open
Abstract
Background New approaches for the prevention of colon cancer perseveres an essential necessity. Though, resistance to existing chemo-preventive drugs is moderately predominant in colon carcinogenesis. Taxifolin (dihydroquercetin) is a flavononol, have shown virile biological activities against few cancers. The current study was designed to investigate and equate antitumor activity of Taxifolin (TAX) in colorectal cancer cell lines and in HCT116 xenograft model in a comprehensive approach. Methods Two human colorectal cancer cell lines HCT116 and HT29, were used. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazoliumbromide (MMT) protocol was performed to elucidate the impact of TAX and β- catenin inhibitor (FH535) on the viability of HCT116 and HT29 cell lines. Apoptosis /cell cycle assay was performed. Data interpretation was done with a FACScan (Becton Dickinson, NJ). About 1 × 104 cells per sample were harvested. Histograms of DNA were analyzed with ModiFitLT software (verity Software House, ME, USA). Western blotting and RT-PCR were performed for protein and gene expression respectively in in vitro and in vivo. Results We found that TAX induced cytotoxicity in colorectal cells in a dose-dependent manner and time dependent approach. Further, our data validated that administration of TAX to human colorectal cancer HCT116 and HT29 cells resulted in cell growth arrest, variation in molecules controlling cell cycle operative in the G2 phase of the cell cycle and apoptosis in a concentration dependent approach. Further our results concluded that TAX administration decreases expression of β-catenin gene, AKT gene and Survivin gene and protein expression in in vitro and in vivo. Conclusion Our findings proposed that targeting β-catenin gene may encourage the alterations of cell cycle and cell cycle regulators. Wnt/β-catenin signaling pathway possibly takes part in the genesis and progression of colorectal cancer cells through regulating cell cycle and the expression of cell cycle regulators. Electronic supplementary material The online version of this article (10.1186/s12885-018-4959-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suhail Razak
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan. .,Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Asad Ullah
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Musaed Alkholief
- Nanomedicine research unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aws Alshamsan
- Nanomedicine research unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sarwat Jahan
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
30
|
JIAPAER S, FURUTA T, TANAKA S, KITABAYASHI T, NAKADA M. Potential Strategies Overcoming the Temozolomide Resistance for Glioblastoma. Neurol Med Chir (Tokyo) 2018; 58:405-421. [PMID: 30249919 PMCID: PMC6186761 DOI: 10.2176/nmc.ra.2018-0141] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a highly malignant type of primary brain tumor with a high mortality rate. Although the current standard therapy consists of surgery followed by radiation and temozolomide (TMZ), chemotherapy can extend patient's post-operative survival but most cases eventually demonstrate resistance to TMZ. O6-methylguanine-DNA methyltransferase (MGMT) repairs the main cytotoxic lesion, as O6-methylguanine, generated by TMZ, can be the main mechanism of the drug resistance. In addition, mismatch repair and BER also contribute to TMZ resistance. TMZ treatment can induce self-protective autophagy, a mechanism by which tumor cells resist TMZ treatment. Emerging evidence also demonstrated that a small population of cells expressing stem cell markers, also identified as GBM stem cells (GSCs), contributes to drug resistance and tumor recurrence owing to their ability for self-renewal and invasion into neighboring tissue. Some molecules maintain stem cell properties. Other molecules or signaling pathways regulate stemness and influence MGMT activity, making these GCSs attractive therapeutic targets. Treatments targeting these molecules and pathways result in suppression of GSCs stemness and, in highly resistant cases, a decrease in MGMT activity. Recently, some novel therapeutic strategies, targeted molecules, immunotherapies, and microRNAs have provided new potential treatments for highly resistant GBM cases. In this review, we summarize the current knowledge of different resistance mechanisms, novel strategies for enhancing the effect of TMZ, and emerging therapeutic approaches to eliminate GSCs, all with the aim to produce a successful GBM treatment and discuss future directions for basic and clinical research to achieve this end.
Collapse
Affiliation(s)
| | - Takuya FURUTA
- Department of Pathology, Kurume University, Kurume, Fukuoka, Japan
| | - Shingo TANAKA
- Department of Neurosurgery, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | - Mitsutoshi NAKADA
- Department of Neurosurgery, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
31
|
Guanziroli E, Venegoni L, Fanoni D, Cavicchini S, Coggi A, Ferrero S, Gianotti R, Berti E, Del Gobbo A. Immunohistochemical expression and prognostic role of CD10, CD271 and Nestin in primary and recurrent cutaneous melanoma. Ital J Dermatol Venerol 2018; 156:68-72. [PMID: 30251808 DOI: 10.23736/s2784-8671.18.06145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND CD10, CD271 and Nestin, which are proteins associated with tumor-initiating properties and/or progression potential, have not been specifically studied on malignant melanoma (MM) with cutaneous recurrences. METHODS We evaluated the expression of CD10, CD271 and Nestin in 27 tumor samples from 16 patients. These tumor samples corresponded to 6 primary melanomas which developed 11 ITM and 10 primary melanomas without recurrences at 10-year follow-up from specimens obtained from surgical excisions of patients referred to the Unit of Dermatology, Department of Medical-Surgical and Transplant Physiopathology, University of Milan, between 2006 and 2016. RESULTS We demonstrated a higher expression of CD271 and Nestin in primary tumors which recurred than control population, Nestin was expressed with significantly higher percentages in primary tumors than recurrences, and CD10 expression was statistically significant correlated with disease-free survival: cases with a lower score recurred lately than cases with higher scores. CONCLUSIONS Our preliminary results suggested that CD271 and Nestin can be considered early biomarkers for the development of ITM, Nesting can be useful in differentiating primary MM from cutaneous recurrences and CD10 is associated with a rapid disease progression and may be considered a potential prognostic marker.
Collapse
Affiliation(s)
- Elena Guanziroli
- Unit of Dermatology, Department of Medical-Surgical and Transplant Physiopathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy -
| | - Luigia Venegoni
- Department of Medical-Surgical and Transplant Physiopathology, University of Milan, Milan, Italy
| | - Daniele Fanoni
- Unit of Dermatology, Department of Medical-Surgical and Transplant Physiopathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Cavicchini
- Unit of Dermatology, Department of Medical-Surgical and Transplant Physiopathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonella Coggi
- Unit of Dermatology, Department of Medical-Surgical and Transplant Physiopathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Ferrero
- Unit of Pathological Anatomy, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Raffaele Gianotti
- Department of Medical-Surgical and Transplant Physiopathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Emilio Berti
- Department of Medical-Surgical and Transplant Physiopathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Del Gobbo
- Unit of Pathological Anatomy, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
32
|
Cho KJ, Park EJ, Kim MS, Joo YH. Characterization of FaDu-R, a radioresistant head and neck cancer cell line, and cancer stem cells. Auris Nasus Larynx 2018; 45:566-573. [DOI: 10.1016/j.anl.2017.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/22/2017] [Accepted: 07/11/2017] [Indexed: 11/15/2022]
|
33
|
Jokela TA, Engelsen AST, Rybicka A, Pelissier Vatter FA, Garbe JC, Miyano M, Tiron C, Ferariu D, Akslen LA, Stampfer MR, Lorens JB, LaBarge MA. Microenvironment-Induced Non-sporadic Expression of the AXL and cKIT Receptors Are Related to Epithelial Plasticity and Drug Resistance. Front Cell Dev Biol 2018; 6:41. [PMID: 29719832 PMCID: PMC5913284 DOI: 10.3389/fcell.2018.00041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/23/2018] [Indexed: 12/13/2022] Open
Abstract
The existence of rare cancer cells that sporadically acquire drug-tolerance through epigenetic mechanisms is proposed as one mechanism that drives cancer therapy failure. Here we provide evidence that specific microenvironments impose non-sporadic expression of proteins related to epithelial plasticity and drug resistance. Microarrays of robotically printed combinatorial microenvironments of known composition were used to make cell-based functional associations between microenvironments, which were design-inspired by normal and tumor-burdened breast tissues, and cell phenotypes. We hypothesized that specific combinations of microenvironment constituents non-sporadically impose the induction of the AXL and cKIT receptor tyrosine kinase proteins, which are known to be involved in epithelial plasticity and drug-tolerance, in an isogenic human mammary epithelial cell (HMEC) malignant progression series. Dimension reduction analysis reveals type I collagen as a dominant feature, inducing expression of both markers in pre-stasis finite lifespan HMECs, and transformed non-malignant and malignant immortal cell lines. Basement membrane-associated matrix proteins, laminin-111 and type IV collagen, suppress AXL and cKIT expression in pre-stasis and non-malignant cells. However, AXL and cKIT are not suppressed by laminin-111 in malignant cells. General linear models identified key factors, osteopontin, IL-8, and type VIα3 collagen, which significantly upregulated AXL and cKIT, as well as a plasticity-related gene expression program that is often observed in stem cells and in epithelial-to-mesenchymal-transition. These factors are co-located with AXL-expressing cells in situ in normal and breast cancer tissues, and associated with resistance to paclitaxel. A greater diversity of microenvironments induced AXL and cKIT expression consistent with plasticity and drug-tolerant phenotypes in tumorigenic cells compared to normal or immortal cells, suggesting a reduced perception of microenvironment specificity in malignant cells. Microenvironment-imposed reprogramming could explain why resistant cells are seemingly persistent and rapidly adaptable to multiple classes of drugs. These results support the notion that specific microenvironments drive drug-tolerant cellular phenotypes and suggest a novel interventional avenue for preventing acquired therapy resistance.
Collapse
Affiliation(s)
- Tiina A. Jokela
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Population Sciences, Center for Cancer and Aging, City of Hope, Duarte, CA, United States
| | - Agnete S. T. Engelsen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Agata Rybicka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - James C. Garbe
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Masaru Miyano
- Department of Population Sciences, Center for Cancer and Aging, City of Hope, Duarte, CA, United States
| | - Crina Tiron
- Regional Institute of Oncology, Iasi, Romania
| | - Dan Ferariu
- Regional Institute of Oncology, Iasi, Romania
| | - Lars A. Akslen
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Martha R. Stampfer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - James B. Lorens
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Mark A. LaBarge
- Department of Population Sciences, Center for Cancer and Aging, City of Hope, Duarte, CA, United States
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
34
|
Bianchini C, Ciorba A, Pelucchi S, Piva R, Pastore A. Targeted Therapy in Head and Neck Cancer. TUMORI JOURNAL 2018; 97:137-41. [DOI: 10.1177/030089161109700201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aims and background This review focuses on recent advances in understanding the molecular mechanisms at the basis of cancer initiation and progression in the head and neck and also discusses the possible development of targeted cellular strategies. Intrinsic and acquired resistance of cancer cells to current conventional treatments, as well as recurrence, represent a major challenge in treating and curing the most aggressive and metastatic tumors also in the head and neck. Even though in some hematologic malignancies (i.e., non-Hodgkin's lymphomas) antibodies specifically designed to target tumor-specific cells have already been introduced, in solid tumors molecular targeted therapy is now entering clinical practice. Methods A Pub Med database systematic review. Results and conclusions Molecular targeting could achieve specific damage to cancer cells, at the same time preserving functionally important tissues. This could offer new prospectives in primary and adjuvant treatment also of head and neck tumors.
Collapse
Affiliation(s)
| | - Andrea Ciorba
- ENT Department, University Hospital of
Ferrara, Ferrara
| | | | - Roberta Piva
- Molecular Biology Section, Department
of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
35
|
Parekh A, Das D, Das S, Dhara S, Biswas K, Mandal M, Das S. Bioimpedimetric analysis in conjunction with growth dynamics to differentiate aggressiveness of cancer cells. Sci Rep 2018; 8:783. [PMID: 29335481 PMCID: PMC5768811 DOI: 10.1038/s41598-017-18965-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022] Open
Abstract
Determination of cancer aggressiveness is mainly assessed in tissues by looking at the grade of cancer. There is a lack of specific method to determine aggressiveness of cancer cells in vitro. In our present work, we have proposed a bio-impedance based non-invasive method to differentiate aggressive property of two breast cancer cell lines. Real-time impedance analysis of MCF-7 (less aggressive) and MDA-MB-231 cells (more aggressive) demonstrated unique growth pattern. Detailed slope-analysis of impedance curves at different growth phases showed that MDA-MB-231 had higher proliferation rate and intrinsic resistance to cell death, when allowed to grow in nutrient and space limiting conditions. This intrinsic nature of death resistance of MDA-MB-231 was due to modulation and elongation of filopodia, which was also observed during scanning electron microscopy. Results were also similar when validated by cell cycle analysis. Additionally, wavelet based analysis was used to demonstrate that MCF-7 had lesser micromotion based cellular activity, when compared with MDA-MB-231. Combined together, we hypothesize that analysis of growth rate, death resistance and cellular energy, through bioimpedance based analysis can be used to determine and compare aggressiveness of multiple cancer cell lines. This further opens avenues for extrapolation of present work to human tumor tissue samples.
Collapse
Affiliation(s)
- Aditya Parekh
- School of Medical Science and Technology, IIT Kharagpur, West Bengal, India
| | - Debanjan Das
- Department of Electronics and Communications Engineering, DSPM IIIT, Naya Raipur, India
| | - Subhayan Das
- School of Medical Science and Technology, IIT Kharagpur, West Bengal, India
| | - Santanu Dhara
- School of Medical Science and Technology, IIT Kharagpur, West Bengal, India
| | - Karabi Biswas
- Department of Electrical Engineering, IIT Kharagpur, West Bengal, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, IIT Kharagpur, West Bengal, India.
| | - Soumen Das
- School of Medical Science and Technology, IIT Kharagpur, West Bengal, India.
| |
Collapse
|
36
|
Peckys DB, Korf U, Wiemann S, de Jonge N. Liquid-phase electron microscopy of molecular drug response in breast cancer cells reveals irresponsive cell subpopulations related to lack of HER2 homodimers. Mol Biol Cell 2017; 28:mbc.E17-06-0381. [PMID: 28794264 PMCID: PMC5687022 DOI: 10.1091/mbc.e17-06-0381] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 12/31/2022] Open
Abstract
The development of drug resistance in cancer poses a major clinical problem. An example is human epidermal growth factor receptor 2 (HER2) overexpressing breast cancer often treated with anti-HER2 antibody therapies, such as trastuzumab. Since drug resistance is rooted mainly in tumor cell heterogeneity, we examined the drug effect in different subpopulations of SKBR3 breast cancer cells, and compared the results with a drug resistant cell line, HCC1954. Correlative light microscopy and liquid-phase scanning transmission electron microscopy (STEM) were used to quantitatively analyze HER2 responses upon drug binding, whereby many tens of whole cells were imaged. Trastuzumab was found to selectively cross-link and down regulate HER2 homodimers from the plasma membranes of bulk cancer cells. In contrast, HER2 resided mainly as monomers in rare subpopulations of resting- and cancer stem cells (CSCs), and these monomers were not internalized after drug binding. The HER2 distribution was hardly influenced by trastuzumab for the HCC1954 cells. These findings show that resting cells and CSCs are irresponsive to the drug, and thus point towards a molecular explanation behind the origin of drug resistance. This analytical method is broadly applicable to study membrane protein interactions in the intact plasma membrane, while accounting for cell heterogeneity.
Collapse
Affiliation(s)
- Diana B Peckys
- Department of Biophysics, Saarland University, D-66421 Homburg, Germany
| | - Ulrike Korf
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Niels de Jonge
- INM - Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Department of Physics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
37
|
Su YK, Shih PH, Lee WH, Bamodu OA, Wu ATH, Huang CC, Tzeng YM, Hsiao M, Yeh CT, Lin CM. Antrodia cinnamomea sensitizes radio-/chemo-therapy of cancer stem-like cells by modulating microRNA expression. JOURNAL OF ETHNOPHARMACOLOGY 2017; 207:47-56. [PMID: 28602756 DOI: 10.1016/j.jep.2017.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The discovery of many tissue-specific cancer stem cells (CSCs) continues to attract scientific attention. These CSCs are considered to be associated with chemo- and radio-resistance, and consequently, failure of conventional anticancer therapies. The recent demonstration of several microRNAs as enhancers of tumorigenicity via modulation of epithelial-mesenchymal transition and cancer stemness, makes them putative novel therapeutic target in oncology. Antrodia cinnamomea is a Chinese traditional medicine with several biological functions including anti-inflammation, antioxidant, and cancer prevention. However, the anti-CSC capability of A. Cinnamomea is not clear yet. AIM OF THE STUDY To investigate the inhibitory effect of A. cinnamomea mycelium and extract on CSCs derived from various human cancer cell lines using our in-house therapeutics and human genome-wide miRNA screening panels. MATERIALS AND METHODS A broad range of human cancer cell lines, including the acute monocytic leukemia (THP-1), glioblastoma multiforme (GBM 8401), lung carcinoma (A549), breast adenocarcinoma (MDA-MB-231), hepatoblastoma (HepG2), colorectal adenocarcinoma (SW620), and foreskin fibroblast (HS68), were exposed to A. cinnamomea in this study. CD133+ CSCs generated from the cell lines were characterized and isolated by flow cytometry, effect of chemo- and radiotherapy was assessed using the MTT assay, while the RT-PCR and human genome wide qRT-PCR determined the differential gene expression patterns. A comparative analysis of the anticancer effect of A. cinnamomea and Cisplatin, Taxol, or irradiation was also performed. RESULTS Our results indicated that A. cinnamomea mycelium and its ethyl acetate extracts showed anti-proliferation effects against all types of CSCs, especially the lung, breast, and head and neck squamous cell carcinoma CSCs. Furthermore, CSCs treatment with A. cinnamomea combined with irradiation or chemotherapeutics demonstrated significant anti-cancer effect. We also established an association between the CSC-inhibitory effect of A. cinnamomea and significant downregulation of several microRNAs and cancer stemness expression levels in brain and breast CSCs. More importantly, higher CD133 expression is associated with poor prognosis in glioblastoma and breast cancer patients. CONCLUSION Herein, we demonstrate the putative role of A. cinnamomea as an effective ethnopharmacologic therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Yu-Kai Su
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ping-Hsiao Shih
- Department of Pediatrics, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Cancer Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chih Huang
- Department of Life Science, National Taitung University, Taitung, Taiwan
| | - Yew-Min Tzeng
- Department of Life Science, National Taitung University, Taitung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Tai Yeh
- Cancer Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| | - Chien-Min Lin
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
38
|
Lu S, Dong Z. Overexpression of secretory phospholipase A2-IIa supports cancer stem cell phenotype via HER/ERBB-elicited signaling in lung and prostate cancer cells. Int J Oncol 2017; 50:2113-2122. [PMID: 28440478 DOI: 10.3892/ijo.2017.3964] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/10/2017] [Indexed: 11/06/2022] Open
Abstract
Resistance to conventional chemotherapies remains a significant clinical challenge in treatment of cancer. The cancer stem cells (CSCs) have properties necessary for tumor initiation, resistance to therapy, and progression. HER/ERBB‑elicited signaling supports CSC properties. Our previous studies revealed that secretory phospholipase A2 group IIa (sPLA2‑IIa) is overexpressed in both prostate and lung cancer cells, leading to an aberrant high level in the interstitial fluid, i.e., tumor microenvironment and blood. HER/ERBB-PI3K-Akt-NF-κB signaling stimulates sPLA2‑IIa overexpression, and in turn, sPLA2‑IIa activates EGFR family receptors and HER/ERBB-elicited signaling and stimulates sPLA2‑IIa overexpression in a positive feedback manner. The present study determined the molecular mechanisms of sPLA2‑IIa in stimulating HER/ERBB-elicited signaling and supporting CSC properties. We found that sPLA2‑IIa binds both EGFR and HER3 demonstrated by co-immunoprecipitation experiments and also indirectly interacts with HER2, suggesting that sPLA2‑IIa functions as a ligand for both EGFR and HER3. Furthermore, both side population CSCs from non-small cell lung cancer (NSCLC) A549 and H1975 cells and ALDH1‑high CSCs from castration-resistant prostate cancer (CRPC) 22Rv1 cells overexpress sPLA2‑IIa and produce tumors when inoculated into subcutis of nude mice. Given an aberrant high level of sPLA2‑IIa in the tumor microenvironment that should be much higher than that in the blood, our findings support the notion that sPLA2‑IIa functions as a ligand for EGFR family receptors and supports CSC properties via HER/ERBB-elicited signaling, which may contribute to resistance to therapy and cancer progression.
Collapse
Affiliation(s)
- Shan Lu
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhongyun Dong
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
39
|
Barat S, Chen X, Cuong Bui K, Bozko P, Götze J, Christgen M, Krech T, Malek NP, Plentz RR. Gamma-Secretase Inhibitor IX (GSI) Impairs Concomitant Activation of Notch and Wnt-Beta-Catenin Pathways in CD44 + Gastric Cancer Stem Cells. Stem Cells Transl Med 2017; 6:819-829. [PMID: 28186678 PMCID: PMC5442767 DOI: 10.1002/sctm.16-0335] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/19/2016] [Accepted: 10/05/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSC) are associated with tumor resistance and are characterized in gastric cancer (GC). Studies have indicated that Notch and wnt-beta-catenin pathways are crucial for CSC development. Using CD44+ CSCs, we investigated the role of these pathways in GC carcinogenesis. We performed cell proliferation, wound healing, invasion, tumorsphere, and apoptosis assays. Immunoblot analysis of downstream signaling targets of Notch and wnt-beta-catenin were tested after gamma-secretase inhibitor IX (GSI) treatment. Immunohistochemistry, immunofluorescence, and Fluorescence activated cell sorting (FACS) were used to determine CD44 and Hairy enhancer of split-1 (Hes1) expression in human GC tissues. CD44+ CSCs were subcutaneously injected into NMR-nu/nu mice and treated with vehicle or GSI. GC patients with expression of CD44 and Hes1 showed overall reduced survival. CD44+ CSCs showed high expression of Hes1. GSI treatment showed effective inhibition of cell proliferation, migration, invasion, tumor sphere formation of CD44+ CSCs, and induced apoptosis. Importanly, Notch1 was found to be important in mediating a crosstalk between Notch and wnt-beta-catenin in CD44+ CSCs. Our study highlights a crosstalk between Notch and wnt-beta-catenin in gastric CD44+ CSCs. Expression of CD44 and Hes1 is associated with patient overall survival. GSI could be an alternative drug to treat GC. Stem Cells Translational Medicine 2017;6:819-829.
Collapse
Affiliation(s)
- Samarpita Barat
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Xi Chen
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Khac Cuong Bui
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Przemyslaw Bozko
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Julian Götze
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | | | - Till Krech
- Institute of Pathology, Universitötsklinik Hamburg Eppendorf, Hamburg, Germany
| | - Nisar P Malek
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Ruben R Plentz
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| |
Collapse
|
40
|
Zhang Y, Sun B, Zhao X, Sun H, Cui W, Liu Z, Yao X, Dong X. Spheres derived from the human SN12C renal cell carcinoma cell line are enriched in tumor initiating cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:163. [PMID: 27756344 PMCID: PMC5070383 DOI: 10.1186/s13046-016-0442-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/11/2016] [Indexed: 01/06/2023]
Abstract
Background Recently, tumor initiating cells (TICs), which possess self-renewal and other stem cell properties, are regarded as the cause of tumor initiation, recurrence and metastasis. The isolation and identification of TICs could help to develop novel therapeutic strategies. Methods In this study, we isolated spheroid cells from human renal cell carcinoma (RCC) cell line SN12C in stem cell-conditioned medium. The stemness characteristics of spheroid cells, including tumorigenicity, self-renewal, proliferation and aldehyde dehydrogenase (ALDH) activity were evaluated; the expression levels of stemness genes and related proteins were assessed. Furthermore, study examined the differentiation of TICs into endothelial cells and the relationship between TICs and EMT. Results Our data demonstrated that spheroid cells cultured in defined serum-free medium possessed TIC properties, such as high tumorigenic capacity, upregulation of TIC-related genes and proteins, persistent self-renewal and extensive proliferation. Furthermore, spheroid cells were more aggressive in growth, invasion, scratch recovery, clonogenic survival and high aldehyde dehydrogenase (ALDH) activity. Interestingly, a marked increase in tumor vascularity compared to adherent tumors in vivo, and spheroid cells can differentiate into functional endothelial-like cells in vitro suggesting a role of tumor initiating cells in tumor angiogenesis. The spheroid cells also demonstrated down-regulated E-cadherin and up-regulated Vimentin expression, which is the typical phenotype of EMT. Conclusions These results suggest that spheroid cells with tumor initiating cells-like characteristics contributed to tumor generation, progression, high tumorigenicity, pro-angiogenic capability and relationship with EMT. Further experiments using more refined selection criteria such as a combination of two or multiple markers would be useful to specifically identify and purify TICs.
Collapse
Affiliation(s)
- Yanhui Zhang
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Baocun Sun
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China. .,Department of Pathology, Tianjin Medical University, Tianjin, 300070, China. .,Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin, 300052, China.
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Huizhi Sun
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Wei Cui
- Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Zhiyong Liu
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Xin Yao
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin, 300052, China
| |
Collapse
|
41
|
Sousa AM, Grandgenett PM, David L, Almeida R, Hollingsworth MA, Santos-Silva F. Reflections on MUC1 glycoprotein: the hidden potential of isoforms in carcinogenesis. APMIS 2016; 124:913-924. [PMID: 27538373 DOI: 10.1111/apm.12587] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/03/2016] [Indexed: 12/13/2022]
Abstract
Mucin 1 (MUC1) has been described as the renaissance molecule due to the large set of functions it displays in both normal and neoplastic cells. This membrane-tethered glycoprotein is overexpressed and aberrantly glycosylated in most epithelial cancers, being involved in several processes related with malignant phenotype acquisition. With a highly polymorphic structure, both in the polypeptide and glycan counterparts, MUC1 variability has been associated with susceptibility to several diseases, including cancer. Biochemical features and biological functions have been characterized upon the full-length MUC1 protein, remaining to clarify the real impact on cell dynamics of the plethora of MUC1 isoforms. This review aims to encompass a detailed characterization of MUC1 role in carcinogenesis, highlighting recent findings in cell differentiation and uncovering new evidences of MUC1 isoforms involvement in malignant phenotype.
Collapse
Affiliation(s)
- Andreia M Sousa
- i3S-Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. .,IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Disease, Omaha, NE, USA
| | - Leonor David
- i3S-Institute of Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Raquel Almeida
- i3S-Institute of Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences of the University of Porto, Porto, Portugal
| | | | - Filipe Santos-Silva
- i3S-Institute of Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
42
|
Jäger K, Walter M. Therapeutic Targeting of Telomerase. Genes (Basel) 2016; 7:genes7070039. [PMID: 27455328 PMCID: PMC4962009 DOI: 10.3390/genes7070039] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/16/2016] [Accepted: 06/24/2016] [Indexed: 12/20/2022] Open
Abstract
Telomere length and cell function can be preserved by the human reverse transcriptase telomerase (hTERT), which synthesizes the new telomeric DNA from a RNA template, but is normally restricted to cells needing a high proliferative capacity, such as stem cells. Consequently, telomerase-based therapies to elongate short telomeres are developed, some of which have successfully reached the stage I in clinical trials. Telomerase is also permissive for tumorigenesis and 90% of all malignant tumors use telomerase to obtain immortality. Thus, reversal of telomerase upregulation in tumor cells is a potential strategy to treat cancer. Natural and small-molecule telomerase inhibitors, immunotherapeutic approaches, oligonucleotide inhibitors, and telomerase-directed gene therapy are useful treatment strategies. Telomerase is more widely expressed than any other tumor marker. The low expression in normal tissues, together with the longer telomeres in normal stem cells versus cancer cells, provides some degree of specificity with low risk of toxicity. However, long term telomerase inhibition may elicit negative effects in highly-proliferative cells which need telomerase for survival, and it may interfere with telomere-independent physiological functions. Moreover, only a few hTERT molecules are required to overcome senescence in cancer cells, and telomerase inhibition requires proliferating cells over a sufficient number of population doublings to induce tumor suppressive senescence. These limitations may explain the moderate success rates in many clinical studies. Despite extensive studies, only one vaccine and one telomerase antagonist are routinely used in clinical work. For complete eradication of all subpopulations of cancer cells a simultaneous targeting of several mechanisms will likely be needed. Possible technical improvements have been proposed including the development of more specific inhibitors, methods to increase the efficacy of vaccination methods, and personalized approaches. Telomerase activation and cell rejuvenation is successfully used in regenerative medicine for tissue engineering and reconstructive surgery. However, there are also a number of pitfalls in the treatment with telomerase activating procedures for the whole organism and for longer periods of time. Extended cell lifespan may accumulate rare genetic and epigenetic aberrations that can contribute to malignant transformation. Therefore, novel vector systems have been developed for a 'mild' integration of telomerase into the host genome and loss of the vector in rapidly-proliferating cells. It is currently unclear if this technique can also be used in human beings to treat chronic diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Kathrin Jäger
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany.
| | - Michael Walter
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany.
- Labor Berlin-Charité Vivantes Services GmbH, Sylter Str. 2, Berlin 13353, Germany.
| |
Collapse
|
43
|
Banerjee K, Basu S, Das S, Sinha A, Biswas MK, Choudhuri SK. Induction of intrinsic and extrinsic apoptosis through oxidative stress in drug-resistant cancer by a newly synthesized Schiff base copper chelate. Free Radic Res 2016; 50:426-46. [PMID: 26733073 DOI: 10.3109/10715762.2015.1136062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Multidrug resistance (MDR) in cancer represents a variety of strategies employed by tumor cells to evade the beneficial cytotoxic effects of structurally different anticancer drugs and thus confers impediments to the successful treatment of cancers. Efflux of drugs by MDR protein-1, functional P-glycoprotein and elevated level of reduced glutathione confer resistance to cell death or apoptosis and thus provide a possible therapeutic target for overcoming MDR in cancer. Previously, we reported that a Schiff base ligand, potassium-N-(2-hydroxy 3-methoxy-benzaldehyde)-alaninate (PHMBA) overcomes MDR in both in vivo and in vitro by targeting intrinsic apoptotic/necrotic pathway through induction of reactive oxygen species (ROS). The present study describes the synthesis and spectroscopic characterization of a copper chelate of Schiff base, viz., copper (II)-N-(2-hydroxy-3-methoxy-benzaldehyde)-alaninate (CuPHMBA) and the underlying mechanism of cell death induced by CuPHMBA in vitro. CuPHMBA kills both the drug-resistant and sensitive cell types irrespective of their drug resistance phenotype. The cell death induced by CuPHMBA follows apoptotic pathway and moreover, the cell death is associated with intrinsic mitochondrial and extrinsic receptor-mediated pathways. Oxidative stress plays a pivotal role in the process as proved by the fact that antioxidant enzyme; polyethylene glycol conjugated-catalase completely blocked CuPHMBA-induced ROS generation and abrogated cell death. To summarize, the present work provides a compelling rationale for the future clinical use of CuPHMBA, a redox active copper chelate in the treatment of cancer patients, irrespective of their drug-resistance status.
Collapse
Affiliation(s)
- Kaushik Banerjee
- a Department of In Vitro Carcinogenesis and Cellular Chemotherapy , Chittaranjan National Cancer Institute , Kolkata , West Bengal , India
| | - Soumya Basu
- a Department of In Vitro Carcinogenesis and Cellular Chemotherapy , Chittaranjan National Cancer Institute , Kolkata , West Bengal , India
| | - Satyajit Das
- a Department of In Vitro Carcinogenesis and Cellular Chemotherapy , Chittaranjan National Cancer Institute , Kolkata , West Bengal , India
| | - Abhinaba Sinha
- a Department of In Vitro Carcinogenesis and Cellular Chemotherapy , Chittaranjan National Cancer Institute , Kolkata , West Bengal , India
| | - Manas Kumar Biswas
- b Department of Chemistry , Ramakrishna Mission Residential College , Kolkata , West Bengal , India
| | - Soumitra Kumar Choudhuri
- a Department of In Vitro Carcinogenesis and Cellular Chemotherapy , Chittaranjan National Cancer Institute , Kolkata , West Bengal , India
| |
Collapse
|
44
|
Mimeault M, Rachagani S, Muniyan S, Seshacharyulu P, Johansson SL, Datta K, Lin MF, Batra SK. Inhibition of hedgehog signaling improves the anti-carcinogenic effects of docetaxel in prostate cancer. Oncotarget 2016; 6:3887-903. [PMID: 25682877 PMCID: PMC4414161 DOI: 10.18632/oncotarget.2932] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022] Open
Abstract
The establishment of docetaxel-based chemotherapeutic treatments has improved the survival of castration-resistant prostate cancer (CRPC) patients. However, most patients develop resistance supporting the development of therapy. The current study was undertaken to establish the therapeutic benefit to target hedgehog signaling cascade using GDC-0449 to improve the efficacy of chemotherapeutic drug, docetaxel. Here, we show that the combination of GDC-0449 plus docetaxel inhibited the proliferation of WPE1-NB26 cells and PC3 cells via a blockade of G1 and G2M phases. The combined treatment significantly inhibited PC cell migration in vitro. Moreover, the apoptotic effect induced by GDC-0449 plus docetaxel on PC3 cells was mediated, at least partly, via the mitochondrial membrane depolarization, H2O2 production and caspase cascade activation. Interestingly, GDC-0449 was effective at inhibiting the prostasphere formation, inducing the prostasphere disintegration and apoptotic death of side population (SP) from PC3 cells and reversing the resistance of SP cells to docetaxel. In addition, GDC-0449 plus docetaxel also have shown a greater anti-tumoral growth inhibitory effect on PC3 cell xenografts. These findings support the use of the hedgehog inhibitor GDC-0449, which is currently in clinical trials, for improving the anticarcinogenic efficacy of docetaxel-based chemotherapeutic treatments against locally advanced, AI and metastatic PC.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Sonny L Johansson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
45
|
Zhang BB, Wang DG, Guo FF, Xuan C. Mitochondrial membrane potential and reactive oxygen species in cancer stem cells. Fam Cancer 2015; 14:19-23. [PMID: 25266577 DOI: 10.1007/s10689-014-9757-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) are believed as the initiators of the occurrence, development and recurrence of malignant tumors. Targeting this unique cell population would provide a less toxic approach than regular chemotherapeutic agents that kill bulk rapid proliferating tumor cells and also normal cells which divide rapidly. To date, major research effort has been aimed at identifying and eradicating CSC population. The metabolism heterogeneity of mitochondria in CSCs shows a big promise for cancer research. Of them, mitochondrial membrane potential (Δψm), reflecting the functional status of the mitochondrion is proved to be highly related to cancer malignancy. Reactive oxygen species, mainly produced from mitochondria, are also increased in many types of cancer cells. However, their statuses in CSCs remain poorly understood. Here we shall review the mitochondrial membrane potential and reactive oxygen species of CSCs and propose the novel potential targets for cancer therapy.
Collapse
Affiliation(s)
- Bei-bei Zhang
- Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | | | | | | |
Collapse
|
46
|
Jin C, Zou T, Li J, Chen X, Liu X, Wang Y, Wang X, Che Y, Wang X, Sriplung H. Side population cell level in human breast cancer and factors related to disease-free survival. Asian Pac J Cancer Prev 2015; 16:991-6. [PMID: 25735394 DOI: 10.7314/apjcp.2015.16.3.991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED Side population (SP) cells have stem cell-like properties with a capacity for self-renewal and are resistant to chemotherapy and radiotherapy. Therefore the presence of SP cells in human breast cancer probably has prognostic value. OBJECTIVE To investigate the characteristics of SP cells and identify the relationship between the SP cells levels and clinico-pathological parameters of the breast tumor and disease-free survival (DFS) in breast cancer patients. MATERIALS AND METHODS A total of 122 eligible breast cancer patients were consecutively recruited from January 1, 2006 to December 31, 2007 at Yunnan Tumor Hospital. All eligible subjects received conventional treatment and were followed up for seven years. Predictors of recurrence and/or metastasis and DFS were analyzed using Cox regression analysis. Human breast cancer cells were also obtained from fresh human breast cancer tissue and cultured by the nucleic acid dye Hoechst33342 with Verapami. Flow cytometry (FCM) was employed to isolate the cells of SP and non-SP types. RESULTS In this study, SP cells were identified using flow cytometric analysis with Hoechst 33342 dye efflux. Adjusted for age, tumor size, lymph nodal status, histological grade, the Cox model showed a higher risk of recurrence and/or metastasis positively associated with the SP cell level (1.75, 1.02-2.98), as well as with axillary lymph node metastasis (2.99, 1.76-5.09), pathology invasiveness type (1.7, 1.14-2.55), and tumor volume doubling time (TVDT) (1.54, 1.01-2.36). CONCLUSIONS The SP cell level is independently associated with tumor progression and clinical outcome after controlling for other pathological factors. The axillary lymph node status, TVDT and the status of non-invasive or invasive tumor independently predict the prognosis of breast cancer.
Collapse
Affiliation(s)
- Cg Jin
- Cancer Research Institute, Yunnan Cancer Hospital, China E-mail :
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ramasamy TS, Ayob AZ, Myint HHL, Thiagarajah S, Amini F. Targeting colorectal cancer stem cells using curcumin and curcumin analogues: insights into the mechanism of the therapeutic efficacy. Cancer Cell Int 2015; 15:96. [PMID: 26457069 PMCID: PMC4599442 DOI: 10.1186/s12935-015-0241-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/07/2015] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is one of the commonest cancers in the world and it is also a common cause of cancer-related death worldwide. Despite advanced treatment strategies, the disease is rarely cured completely due to recurrence. Evidence shows that this is due to a small population of cells, called cancer stem cells (CSCs), in the tumour mass that have the self-renewal and differentiation potential to give rise to a new tumour population. Many pre-clinical and clinical studies have used curcumin and its analogues as anti-cancer agents in various types of cancer, including colorectal cancer. Intriguingly, curcumin and its analogues have also recently been shown to be effective in lowering tumour recurrence by targeting the CSC population, hence inhibiting tumour growth. In this review, we highlight the efficacy of curcumin and its analogues in targeting colorectal CSC and also the underlying molecular mechanism involved. Curcumin, in the presence or absence of other anti-cancer agents, has been shown to reduce the size of tumour mass and growth in both in vivo and in vitro studies by affecting many intracellular events that are associated with cancer progression and CSC formation. An insight into the molecular mechanism has unraveled the mode of action via which curcumin could affect the key regulators in CSC, importantly; (1) the signaling pathways, including Wnt/β-catenin, Sonic Hedgehog, Notch and PI3K/Akt/mTOR, (2) microRNA and (3) the epithelial-mesenchymal transition at multiple levels. Therefore, curcumin could play a role as chemosensitiser whereby the colorectal CSCs are now sensitised towards the anti-cancer therapy, therefore, combination therapy using anti-cancer agent with curcumin could be much more effective than treatment using a single cancer agent. This potential treatment modality can be further developed by employing an effective delivery system using a nanotechnology based approach to treat colorectal cancer.
Collapse
Affiliation(s)
- Thamil Selvee Ramasamy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia ; Cell and Molecular Biology Laboratory, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ain Zubaidah Ayob
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia ; Cell and Molecular Biology Laboratory, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hsu Hsu Lynn Myint
- Faculty of Medicine and Health Science, School of Healthy Aging, Medical Aesthetics and Regenerative Medicine, UCSI University, Kuala Lumpur, Malaysia
| | - Sharmanee Thiagarajah
- Faculty of Medicine and Health Science, School of Healthy Aging, Medical Aesthetics and Regenerative Medicine, UCSI University, Kuala Lumpur, Malaysia
| | - Farahnaz Amini
- Faculty of Medicine and Health Science, School of Healthy Aging, Medical Aesthetics and Regenerative Medicine, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
48
|
Gayyed MF, Tawfiek ER. Utility of SOX2 and Livin Co-Expression in the Prognosis of Bladder Cancer With Bilharzial and Non-Bilharzial Bladder Status. World J Oncol 2015; 6:446-455. [PMID: 28983346 PMCID: PMC5624670 DOI: 10.14740/wjon942w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the expression of SOX2, a key transcription factor and livin, an apoptotic inhibitor in bladder transitional cell carcinoma (TCC) and squamous cell carcinoma (SCC). Moreover, their prognostic significance was assessed. METHODS The expressions of SOX2 and livin in 82 TCC and 35 SCC cases were detected by immunohistochemistry. RESULTS SOX2 and livin were over-expressed in tumor tissues as compared to the corresponding adjacent non-neoplastic tissues. SOX2 and livin expressions were significantly associated with high tumor grade (P = 0.002 and P = 0.007, respectively) and high tumor stage (P = 0.027 and P = 0.033, respectively). No significant correlation was found between tumor and other clinicopathological factors such as age, gender and schistosomal status. Univariate analysis revealed that TCC and SCC patients with high SOX2 or livin expressions were significantly related to overall survival (P < 0.001, P = 0.025 for TCC patients and P = 0.041, P = 0.021 for SCC patients, respectively). Multivariate survival analysis further demonstrated that SOX2 expression was an independent prognostic factor for TCC patients (P = 0.015). CONCLUSIONS SOX2 and livin may contribute to the progression of bladder carcinoma. SOX2/livin pathway regulates cancer stem cell survival so it could be targeting as an effective therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
| | - Ehab Rifat Tawfiek
- Department of Urology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
49
|
Zhao ZG, Jin JY, Zhang AM, Zhang LP, Wang XX, Sun JG, Chen ZT. MicroRNA profile of tumorigenic cells during carcinogenesis of lung adenocarcinoma. J Cell Biochem 2015; 116:458-66. [PMID: 25359683 DOI: 10.1002/jcb.24999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 10/20/2014] [Indexed: 12/19/2022]
Abstract
To obtain microRNA (miRNA) profile and clarify their biological function in tumorigenic Sca-1(+) CD34(+) cells during carcinogenesis of lung adenocarcinoma. After intranasal infection with recombinant Adeno-Cre viruses (AdV-Cre), lung adenocarcinoma was identified pathologically in Lox-stop-lox Kras (LSL-Kras) G12D mice. Sca-1(+) CD34(+) cells were sorted by flow cytometry and tested for tumor-initiating ability, self-renewal and tumorigenicity. MiRNA profiles were obtained using microarray and further confirmed by real-time RT-PCR (qRT-PCR). MiRNA functions were predicted bioinformatically, and miR-294 function was verified to explore its role in tumor migration and invasion. Lung adenocarcinoma was induced in LSL-Kras G12D mice within 30 days. In vivo, the tumorigenicity of Sca-1(+) CD34(+) cells was 25 times stronger than Sca-1(-) CD34(-) cells. During tumorigenesis of lung adenocarcinoma, the expression of 145 miRNAs in Sca-1(+) CD34(+) cells increased and 72 miRNAs decreased (P < 0.01). Four successively up-regulated miRNAs (miR-15a*, miR-203, miR-294 and miR-295*) and three successively down-regulated ones (miR-19b, miR-483 and miR-615-5p) were identified. Among them, miR-294 could constitutively bind to 3'-UTR of matrix metalloproteinase 3 (MMP3), and down-regulate MMP3 protein expression. MiR-294 also significantly inhibited migration and invasion of Lewis lung cancer cells. MiRNAs are characteristically expressed in tumor-initiating Sca-1(+) CD34(+) cells of lung adenocarcinoma, and may play important roles during the carcinogenesis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhen-guo Zhao
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | |
Collapse
|
50
|
Luo GH, Liu H, Luo L, Liu J, Yang XS, Wang YD, Sun ZL, Xia SJ. Re-epithelialization of the prostatic urethra after two-micron laser resection of the prostate. Asian J Androl 2015; 18:151-3. [PMID: 26178394 PMCID: PMC4736348 DOI: 10.4103/1008-682x.154993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Shu-Jie Xia
- Department of Urology Surgery, Institute of Urology, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|