1
|
Safronov BV, Szucs P. Novel aspects of signal processing in lamina I. Neuropharmacology 2024; 247:109858. [PMID: 38286189 DOI: 10.1016/j.neuropharm.2024.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
The most superficial layer of the spinal dorsal horn, lamina I, is a key element of the nociceptive processing system. It contains different types of projection neurons (PNs) and local-circuit neurons (LCNs) whose functional roles in the signal processing are poorly understood. This article reviews recent progress in elucidating novel anatomical features and physiological properties of lamina I PNs and LCNs revealed by whole-cell recordings in ex vivo spinal cord. This article is part of the Special Issue on "Ukrainian Neuroscience".
Collapse
Affiliation(s)
- Boris V Safronov
- Neuronal Networks Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Neuroscience Research Group, Debrecen, Hungary
| |
Collapse
|
2
|
Targowska-Duda KM, Peters D, Marcus JL, Zribi G, Toll L, Ozawa A. Functional and anatomical analyses of active spinal circuits in a mouse model of chronic pain. Pain 2024; 165:685-697. [PMID: 37820238 PMCID: PMC10922047 DOI: 10.1097/j.pain.0000000000003068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/29/2023] [Indexed: 10/13/2023]
Abstract
ABSTRACT Decades of efforts in elucidating pain mechanisms, including pharmacological, neuroanatomical, and physiological studies have provided insights into how nociceptive information transmits from the periphery to the brain and the locations receiving nociceptive signals. However, little is known about which specific stimulus-dependent activated neurons, amongst heterogeneous neural environments, discriminatively evoke the cognate pain behavior. We here shed light on the population of neurons in the spinal cord activated by a painful stimulus to identify chronic pain-dependent activated neuronal subsets using Fos2A-iCreER (TRAP2) mice. We have found a large number of neurons activated by a normally nonpainful stimulus in the spinal cord of spinal nerve-ligated mice, compared with sham. Neuronal activation was observed in laminae I and II outer under heat hyperalgesia. A large number of neurons in laminae II inner were activated in both mechanical allodynia and heat hyperalgesia conditions, while mechanical allodynia tends to be the only stimulus that activates cells at lamina II inner dorsal region. Neuroanatomical analyses using spinal cell markers identified a large number of spinal inhibitory neurons that are recruited by both mechanical allodynia and heat hyperalgesia. Of interest, spinal neurons expressing calretinin, calbindin, and parvalbumin were activated differently with distinct pain modalities (ie, mechanical allodynia vs heat hyperalgesia). Chemogenetic inhibition of those activated neurons significantly and specifically reduced the response to the pain stimulus associated with the stimulus modality originally given to the animals. These findings support the idea that spinal neuronal ensembles underlying nociceptive transmission undergo dynamic changes to regulate selective pain responses.
Collapse
Affiliation(s)
- Katarzyna M. Targowska-Duda
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, 33431, United States
- Department of Biopharmacy, Medical University of Lublin, Lublin, 20-093, Poland
| | - Darian Peters
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, 33431, United States
| | - Jason L. Marcus
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, 33431, United States
| | - Gilles Zribi
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, 33431, United States
| | - Lawrence Toll
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, 33431, United States
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Akihiko Ozawa
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, 33431, United States
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
3
|
Miranda CO, Hegedüs K, Kis G, Antal M. Synaptic Targets of Glycinergic Neurons in Laminae I-III of the Spinal Dorsal Horn. Int J Mol Sci 2023; 24:ijms24086943. [PMID: 37108107 PMCID: PMC10139066 DOI: 10.3390/ijms24086943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
A great deal of evidence supports the inevitable importance of spinal glycinergic inhibition in the development of chronic pain conditions. However, it remains unclear how glycinergic neurons contribute to the formation of spinal neural circuits underlying pain-related information processing. Thus, we intended to explore the synaptic targets of spinal glycinergic neurons in the pain processing region (laminae I-III) of the spinal dorsal horn by combining transgenic technology with immunocytochemistry and in situ hybridization accompanied by light and electron microscopy. First, our results suggest that, in addition to neurons in laminae I-III, glycinergic neurons with cell bodies in lamina IV may contribute substantially to spinal pain processing. On the one hand, we show that glycine transporter 2 immunostained glycinergic axon terminals target almost all types of excitatory and inhibitory interneurons identified by their neuronal markers in laminae I-III. Thus, glycinergic postsynaptic inhibition, including glycinergic inhibition of inhibitory interneurons, must be a common functional mechanism of spinal pain processing. On the other hand, our results demonstrate that glycine transporter 2 containing axon terminals target only specific subsets of axon terminals in laminae I-III, including nonpeptidergic nociceptive C fibers binding IB4 and nonnociceptive myelinated A fibers immunoreactive for type 1 vesicular glutamate transporter, indicating that glycinergic presynaptic inhibition may be important for targeting functionally specific subpopulations of primary afferent inputs.
Collapse
Affiliation(s)
- Camila Oliveira Miranda
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztina Hegedüs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gréta Kis
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
4
|
Encoding of inflammatory hyperalgesia in mouse spinal cord. Pain 2023; 164:443-460. [PMID: 36149026 DOI: 10.1097/j.pain.0000000000002727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Inflammation modifies the input-output properties of peripheral nociceptive neurons such that the same stimulus produces enhanced nociceptive firing. This increased nociceptive output enters the superficial dorsal spinal cord (SDH), an intricate neuronal network composed largely of excitatory and inhibitory interneurons and a small percentage of projection neurons. The SDH network comprises the first central nervous system network integrating noxious information. Using in vivo calcium imaging and a computational approach, we characterized the responsiveness of the SDH network in mice to noxious stimuli in normal conditions and investigated the changes in SDH response patterns after acute burn injury-induced inflammation. We show that the application of noxious heat stimuli to the hind paw of naïve mice results in an overall increase in SDH network activity. Single-cell response analysis reveals that 70% of recorded neurons increase or suppress their activity, while ∼30% of neurons remain nonresponsive. After acute burn injury and the development of inflammatory hyperalgesia, application of the same noxious heat stimuli leads to the activation of previously nonresponding neurons and desuppression of suppressed neurons. We further demonstrate that an increase in afferent activity mimics the response of the SDH network to noxious heat stimuli under inflammatory conditions. Using a computational model of the SDH network, we predict that the changes in SDH network activity result in overall increased activity of excitatory neurons, amplifying the output from SDH to higher brain centers. We suggest that during acute local peripheral inflammation, the SDH network undergoes dynamic changes promoting hyperalgesia.
Collapse
|
5
|
Natale CA, Christie MJ, Aubrey KR. Spinal glycinergic currents are reduced in a rat model of neuropathic pain following partial nerve ligation but not chronic constriction injury. J Neurophysiol 2023; 129:333-341. [PMID: 36541621 DOI: 10.1152/jn.00451.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Animal models have consistently indicated that central sensitization and the development of chronic neuropathic pain are linked to changes to inhibitory signaling in the dorsal horn of the spinal cord. However, replication of data investigating the cellular mechanisms that underlie these changes remains a challenge and there is still a lack of understanding about what aspects of spinal inhibitory transmission most strongly contribute to the disease. Here, we compared the effect of two different sciatic nerve injuries commonly used to generate rodent models of neuropathic pain on spinal glycinergic signaling. Using whole cell patch-clamp electrophysiology in spinal slices, we recorded from neurons in the lamina II of the dorsal horn and evoked inhibitory postsynaptic currents with a stimulator in lamina III, where glycinergic cell bodies are concentrated. We found that glycine inputs onto radial neurons were reduced following partial nerve ligation (PNL) of the sciatic nerve, consistent with a previous report. However, this finding was not replicated in animals that underwent chronic constriction injury (CCI) to the same nerve region. To limit the between-experiment variability, we kept the rat species, sex, and age consistent and had a single investigator carry out the surgeries. These data show that PNL and CCI cause divergent spinal signaling outcomes in the cord and add to the body of evidence suggesting that treatments for neuropathic pain should be triaged according to nerve injury or cellular dysfunction rather than the symptoms of the disease.NEW & NOTEWORTHY Neuropathic pain models are used in preclinical research to investigate the mechanisms underlying allodynia, a common symptom of neuropathic pain, and to test, develop, and validate therapies for persistent pain. We demonstrate that a glycinergic dysfunction is consistently associated with partial nerve ligation but not the chronic constriction injury model. This suggests that the cellular effects produced by each injury are distinct and that data from different neuropathic pain models should be considered separately.
Collapse
Affiliation(s)
- Claudia A Natale
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Macdonald J Christie
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Karin R Aubrey
- Pain Management Research, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia.,Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
6
|
Sun L, Tong CK, Morgenstern TJ, Zhou H, Yang G, Colecraft HM. Targeted ubiquitination of sensory neuron calcium channels reduces the development of neuropathic pain. Proc Natl Acad Sci U S A 2022; 119:e2118129119. [PMID: 35561213 PMCID: PMC9171802 DOI: 10.1073/pnas.2118129119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
Neuropathic pain caused by lesions to somatosensory neurons due to injury or disease is a widespread public health problem that is inadequately managed by small-molecule therapeutics due to incomplete pain relief and devastating side effects. Genetically encoded molecules capable of interrupting nociception have the potential to confer long-lasting analgesia with minimal off-target effects. Here, we utilize a targeted ubiquitination approach to achieve a unique posttranslational functional knockdown of high-voltage-activated calcium channels (HVACCs) that are obligatory for neurotransmission in dorsal root ganglion (DRG) neurons. CaV-aβlator comprises a nanobody targeted to CaV channel cytosolic auxiliary β subunits fused to the catalytic HECT domain of the Nedd4-2 E3 ubiquitin ligase. Subcutaneous injection of adeno-associated virus serotype 9 encoding CaV-aβlator in the hind paw of mice resulted in the expression of the protein in a subset of DRG neurons that displayed a concomitant ablation of CaV currents and also led to an increase in the frequency of spontaneous inhibitory postsynaptic currents in the dorsal horn of the spinal cord. Mice subjected to spare nerve injury displayed a characteristic long-lasting mechanical, thermal, and cold hyperalgesia underlain by a dramatic increase in coordinated phasic firing of DRG neurons as reported by in vivo Ca2+ spike recordings. CaV-aβlator significantly dampened the integrated Ca2+ spike activity and the hyperalgesia in response to nerve injury. The results advance the principle of targeting HVACCs as a gene therapy for neuropathic pain and demonstrate the therapeutic potential of posttranslational functional knockdown of ion channels achieved by exploiting the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Linlin Sun
- Department of Anesthesiology, Columbia University Medical Center, New York, NY 10032
| | - Chi-Kun Tong
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032
| | - Travis J. Morgenstern
- Department of Molecular Pharmacology and Therapeutics, Columbia University Medical Center, New York, NY 10032
| | - Hang Zhou
- Department of Anesthesiology, Columbia University Medical Center, New York, NY 10032
| | - Guang Yang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY 10032
| | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032
- Department of Molecular Pharmacology and Therapeutics, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
7
|
Bardoni R. Experimental Protocols and Analytical Procedures for Studying Synaptic Transmission in Rodent Spinal Cord Dorsal Horn. Curr Protoc 2022; 2:e409. [PMID: 35435326 DOI: 10.1002/cpz1.409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synaptic modulation and plasticity are key mechanisms underlying pain transmission in the spinal cord and supra-spinal centers. The study and understanding of these phenomena are fundamental to investigating both acute nociception and maladaptive changes occurring in chronic pain. This article describes experimental protocols and analytical methods utilized in electrophysiological studies to investigate synaptic modulation and plasticity at the first station of somatosensory processing, the spinal cord dorsal horn. Protocols useful for characterizing the nature of synaptic inputs, the site of modulation (pre- versus postsynaptic), and the presence of short-term synaptic plasticity are presented. These methods can be employed to study the physiology of acute nociception, the pathological mechanisms of persistent inflammatory and neuropathic pain, and the pharmacology of receptors and channels involved in pain transmission. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Spinal cord dissection and acute slice preparation Basic Protocol 2: Stimulation of the dorsal root and extracellular recording (compound action potentials and field potentials) Basic Protocol 3: Patch-clamp recording from dorsal horn neurons: action potential firing patterns and evoked synaptic inputs Basic Protocol 4: Analysis of parameters responsible for changes in synaptic efficacy Basic Protocol 5: Recording and analysis of currents mediated by astrocytic glutamate.
Collapse
Affiliation(s)
- Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi, Modena, Italy
| |
Collapse
|
8
|
Sapio MR, Kim JJ, Loydpierson AJ, Maric D, Goto T, Vazquez FA, Dougherty MK, Narasimhan R, Muhly WT, Iadarola MJ, Mannes AJ. The Persistent Pain Transcriptome: Identification of Cells and Molecules Activated by Hyperalgesia. THE JOURNAL OF PAIN 2021; 22:1146-1179. [PMID: 33892151 PMCID: PMC9441406 DOI: 10.1016/j.jpain.2021.03.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022]
Abstract
During persistent pain, the dorsal spinal cord responds to painful inputs from the site of injury, but the molecular modulatory processes have not been comprehensively examined. Using transcriptomics and multiplex in situ hybridization, we identified the most highly regulated receptors and signaling molecules in rat dorsal spinal cord in peripheral inflammatory and post-surgical incisional pain models. We examined a time course of the response including acute (2 hours) and longer term (2 day) time points after peripheral injury representing the early onset and instantiation of hyperalgesic processes. From this analysis, we identify a key population of superficial dorsal spinal cord neurons marked by somatotopic upregulation of the opioid neuropeptide precursor prodynorphin, and 2 receptors: the neurokinin 1 receptor, and anaplastic lymphoma kinase. These alterations occur specifically in the glutamatergic subpopulation of superficial dynorphinergic neurons. In addition to specific neuronal gene regulation, both models showed induction of broad transcriptional signatures for tissue remodeling, synaptic rearrangement, and immune signaling defined by complement and interferon induction. These signatures were predominantly induced ipsilateral to tissue injury, implying linkage to primary afferent drive. We present a comprehensive set of gene regulatory events across 2 models that can be targeted for the development of non-opioid analgesics. PERSPECTIVE: The deadly impact of the opioid crisis and the need to replace morphine and other opioids in clinical practice is well recognized. Embedded within this research is an overarching goal of obtaining foundational knowledge from transcriptomics to search for non-opioid analgesic targets. Developing such analgesics would address unmet clinical needs.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Jenny J Kim
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Amelia J Loydpierson
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, NIH, Bethesda, Maryland
| | - Taichi Goto
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland; National Institute of Nursing Research, Symptom Management Branch, NIH, Bethesda, Maryland; Japan Society for the Promotion of Science Overseas Research Fellowship, Tokyo, Japan
| | - Fernando A Vazquez
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Mary K Dougherty
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Radhika Narasimhan
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Wallis T Muhly
- National Institute of Nursing Research, Symptom Management Branch, NIH, Bethesda, Maryland; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael J Iadarola
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland.
| | - Andrew J Mannes
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| |
Collapse
|
9
|
Miranda CO, Hegedüs K, Wildner H, Zeilhofer HU, Antal M. Morphological and neurochemical characterization of glycinergic neurons in laminae I-IV of the mouse spinal dorsal horn. J Comp Neurol 2021; 530:607-626. [PMID: 34382691 DOI: 10.1002/cne.25232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022]
Abstract
A growing body of experimental evidence shows that glycinergic inhibition plays vital roles in spinal pain processing. In spite of this, however, our knowledge about the morphology, neurochemical characteristics, and synaptic relations of glycinergic neurons in the spinal dorsal horn is very limited. The lack of this knowledge makes our understanding about the specific contribution of glycinergic neurons to spinal pain processing quite vague. Here we investigated the morphology and neurochemical characteristics of glycinergic neurons in laminae I-IV of the spinal dorsal horn using a GlyT2::CreERT2-tdTomato transgenic mouse line. Confirming previous reports, we show that glycinergic neurons are sparsely distributed in laminae I-II, but their densities are much higher in lamina III and especially in lamina IV. First in the literature, we provide experimental evidence indicating that in addition to neurons in which glycine colocalizes with GABA, there are glycinergic neurons in laminae I-II that do not express GABA and can thus be referred to as glycine-only neurons. According to the shape and size of cell bodies and dendritic morphology, we divided the tdTomato-labeled glycinergic neurons into three and six morphological groups in laminae I-II and laminae III-IV, respectively. We also demonstrate that most of the glycinergic neurons co-express neuronal nitric oxide synthase, parvalbumin, the receptor tyrosine kinase RET, and the retinoic acid-related orphan nuclear receptor β (RORβ), but there might be others that need further neurochemical characterization. The present findings may foster our understanding about the contribution of glycinergic inhibition to spinal pain processing.
Collapse
Affiliation(s)
- Camila Oliveira Miranda
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Hegedüs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Zeilhofer HU, Werynska K, Gingras J, Yévenes GE. Glycine Receptors in Spinal Nociceptive Control-An Update. Biomolecules 2021; 11:846. [PMID: 34204137 PMCID: PMC8228028 DOI: 10.3390/biom11060846] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Diminished inhibitory control of spinal nociception is one of the major culprits of chronic pain states. Restoring proper synaptic inhibition is a well-established rational therapeutic approach explored by several pharmaceutical companies. A particular challenge arises from the need for site-specific intervention to avoid deleterious side effects such as sedation, addiction, or impaired motor control, which would arise from wide-range facilitation of inhibition. Specific targeting of glycinergic inhibition, which dominates in the spinal cord and parts of the hindbrain, may help reduce these side effects. Selective targeting of the α3 subtype of glycine receptors (GlyRs), which is highly enriched in the superficial layers of the spinal dorsal horn, a key site of nociceptive processing, may help to further narrow down pharmacological intervention on the nociceptive system and increase tolerability. This review provides an update on the physiological properties and functions of α3 subtype GlyRs and on the present state of related drug discovery programs.
Collapse
Affiliation(s)
- Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland;
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir Prelog Weg, CH-8093 Zürich, Switzerland
- Drug Discovery Network Zurich, University of Zurich and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Karolina Werynska
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland;
| | - Jacinthe Gingras
- Homology Medicines Inc., 1 Patriots Park, Bedford, MA 01730, USA;
| | - Gonzalo E. Yévenes
- Department of Physiology, University of Concepción, Concepción 4070386, Chile;
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8320000, Chile
| |
Collapse
|
11
|
Kronschläger MT, Siegert ASM, Resch FJ, Rajendran PS, Khakh BS, Sandkühler J. Lamina-specific properties of spinal astrocytes. Glia 2021; 69:1749-1766. [PMID: 33694249 PMCID: PMC8252791 DOI: 10.1002/glia.23990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Abstract
Astrocytes are indispensable for proper neuronal functioning. Given the diverse needs of neuronal circuits and the variety of tasks astrocytes perform, the perceived homogeneous nature of astrocytes has been questioned. In the spinal dorsal horn, complex neuronal circuitries regulate the integration of sensory information of different modalities. The dorsal horn is organized in a distinct laminar manner based on termination patterns of high‐ and low‐threshold afferent fibers and neuronal properties. Neurons in laminae I (L1) and II (L2) integrate potentially painful, nociceptive information, whereas neurons in lamina III (L3) and deeper laminae integrate innocuous, tactile information from the periphery. Sensory information is also integrated by an uncharacterized network of astrocytes. How these lamina‐specific characteristics of neuronal circuits of the dorsal horn are of functional importance for properties of astrocytes is currently unknown. We addressed if astrocytes in L1, L2, and L3 of the upper dorsal horn of mice are differentially equipped for the needs of neuronal circuits that process sensory information of different modalities. We found that astrocytes in L1 and L2 were characterized by a higher density, higher expression of GFAP, Cx43, and GLAST and a faster coupling speed than astrocytes located in L3. L1 astrocytes were more responsive to Kir4.1 blockade and had higher levels of AQP4 compared to L3 astrocytes. In contrast, basic membrane properties, network formation, and somatic intracellular calcium signaling were similar in L1–L3 astrocytes. Our data indicate that the properties of spinal astrocytes are fine‐tuned for the integration of nociceptive versus tactile information.
Collapse
Affiliation(s)
- Mira T Kronschläger
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Physiology, David Geffen Schoof of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Anna S M Siegert
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Felix J Resch
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Pradeep S Rajendran
- UCLA Cardiac Arrhythmia Center, Neurocardiology Research Program of Excellence, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen Schoof of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Spinal Inhibitory Interneurons: Gatekeepers of Sensorimotor Pathways. Int J Mol Sci 2021; 22:ijms22052667. [PMID: 33800863 PMCID: PMC7961554 DOI: 10.3390/ijms22052667] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
The ability to sense and move within an environment are complex functions necessary for the survival of nearly all species. The spinal cord is both the initial entry site for peripheral information and the final output site for motor response, placing spinal circuits as paramount in mediating sensory responses and coordinating movement. This is partly accomplished through the activation of complex spinal microcircuits that gate afferent signals to filter extraneous stimuli from various sensory modalities and determine which signals are transmitted to higher order structures in the CNS and to spinal motor pathways. A mechanistic understanding of how inhibitory interneurons are organized and employed within the spinal cord will provide potential access points for therapeutics targeting inhibitory deficits underlying various pathologies including sensory and movement disorders. Recent studies using transgenic manipulations, neurochemical profiling, and single-cell transcriptomics have identified distinct populations of inhibitory interneurons which express an array of genetic and/or neurochemical markers that constitute functional microcircuits. In this review, we provide an overview of identified neural components that make up inhibitory microcircuits within the dorsal and ventral spinal cord and highlight the importance of inhibitory control of sensorimotor pathways at the spinal level.
Collapse
|
13
|
García-Magro N, Negredo P, Martin YB, Nuñez Á, Avendaño C. Modulation of mechanosensory vibrissal responses in the trigeminocervical complex by stimulation of the greater occipital nerve in a rat model of trigeminal neuropathic pain. J Headache Pain 2020; 21:96. [PMID: 32762640 PMCID: PMC7410158 DOI: 10.1186/s10194-020-01161-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background Stimulation of the occipital or trigeminal nerves has been successfully used to treat chronic refractory neurovascular headaches such as migraine or cluster headache, and painful neuropathies. Convergence of trigeminal and occipital sensory afferents in the ‘trigeminocervical complex’ (TCC) from cutaneous, muscular, dural, and visceral sources is a key mechanism for the input-induced central sensitization that may underlie the altered nociception. Both excitatory (glutamatergic) and inhibitory (GABAergic and glycinergic) mechanisms are involved in modulating nociception in the spinal and medullary dorsal horn neurons, but the mechanisms by which nerve stimulation effects occur are unclear. This study was aimed at investigating the acute effects of electrical stimulation of the greater occipital nerve (GON) on the responses of neurons in the TCC to the mechanical stimulation of the vibrissal pad. Methods Adult male Wistar rats were used. Neuronal recordings were obtained in laminae II-IV in the TCC in control, sham and infraorbital chronic constriction injury (CCI-IoN) animals. The GON was isolated and electrically stimulated. Responses to the stimulation of vibrissae by brief air pulses were analyzed before and after GON stimulation. In order to understand the role of the neurotransmitters involved, specific receptor blockers of NMDA (AP-5), GABAA (bicuculline, Bic) and Glycine (strychnine, Str) were applied locally. Results GON stimulation produced a facilitation of the response to light facial mechanical stimuli in controls, and an inhibition in CCI-IoN cases. AP-5 reduced responses to GON and vibrissal stimulation and blocked the facilitation of GON on vibrissal responses found in controls. The application of Bic or Str significantly reduced the facilitatory effect of GON stimulation on the response to vibrissal stimulation in controls. However, the opposite effect was found when GABAergic or Glycinergic transmission was prevented in CCI-IoN cases. Conclusions GON stimulation modulates the responses of TCC neurons to light mechanical input from the face in opposite directions in controls and under CCI-IoN. This modulation is mediated by GABAergic and Glycinergic mechanisms. These results will help to elucidate the neural mechanisms underlying the effectiveness of nerve stimulation in controlling painful craniofacial disorders, and may be instrumental in identifying new therapeutic targets for their prevention and treatment.
Collapse
Affiliation(s)
- Nuria García-Magro
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain.,Programme in Neuroscience, Doctoral School, Autonoma University of Madrid, Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Yasmina B Martin
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223, Madrid, Spain
| | - Ángel Nuñez
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Carlos Avendaño
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain.
| |
Collapse
|
14
|
Hughes DI, Todd AJ. Central Nervous System Targets: Inhibitory Interneurons in the Spinal Cord. Neurotherapeutics 2020; 17:874-885. [PMID: 33029722 PMCID: PMC7641291 DOI: 10.1007/s13311-020-00936-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Pain is a percept of critical importance to our daily survival. In most cases, it serves both an adaptive function by helping us respond appropriately in a potentially hostile environment and also a protective role by alerting us to tissue damage. Normally, it is evoked by the activation of peripheral nociceptive nerve endings and the subsequent relay of information to distinct cortical and sub-cortical regions, but under pathological conditions that result in chronic pain, it can become spontaneous. Given that one in three chronic pain patients do not respond to the treatments currently available, the need for more effective analgesics is evident. Two principal obstacles to the development of novel analgesic therapies are our limited understanding of how neuronal circuits that comprise these pain pathways transmit and modulate sensory information under normal circumstances and how these circuits change under pathological conditions leading to chronic pain states. In this review, we focus on the role of inhibitory interneurons in setting pain thresholds and, in particular, how disinhibition in the spinal dorsal horn can lead to aberrant sensory processing associated with chronic pain states.
Collapse
Affiliation(s)
- David I Hughes
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland.
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
15
|
Mayhew JA, Callister RJ, Walker FR, Smith DW, Graham BA. Aging alters signaling properties in the mouse spinal dorsal horn. Mol Pain 2020; 15:1744806919839860. [PMID: 30845881 PMCID: PMC6537084 DOI: 10.1177/1744806919839860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A well-recognized relationship exists between aging and increased susceptibility
to chronic pain conditions, underpinning the view that pain signaling pathways
differ in aged individuals. Yet despite the higher prevalence of altered pain
states among the elderly, the majority of preclinical work studying mechanisms
of aberrant sensory processing are conducted in juvenile or young adult animals.
This mismatch is especially true for electrophysiological studies where patch
clamp recordings from aged tissue are generally viewed as particularly
challenging. In this study, we have undertaken an electrophysiological
characterization of spinal dorsal horn neurons in young adult (3–4 months) and
aged (28–32 months) mice. We show that patch clamp data can be routinely
acquired in spinal cord slices prepared from aged animals and that the
excitability properties of aged dorsal horn neurons differ from recordings in
tissue prepared from young animals. Specifically, aged dorsal horn neurons more
readily exhibit repetitive action potential discharge, indicative of a more
excitable phenotype. This observation was accompanied by a decrease in the
amplitude and charge of spontaneous excitatory synaptic input to dorsal horn
neurons and an increase in the contribution of GABAergic signaling to
spontaneous inhibitory synaptic input in aged recordings. While the functional
significance of these altered circuit properties remains to be determined,
future work should seek to assess whether such features may render the aged
dorsal horn more susceptible to aberrant injury or disease-induced signaling and
contribute to increased pain in the elderly.
Collapse
Affiliation(s)
- J A Mayhew
- 1 Faculty of Health, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia.,2 Hunter Medical Research Institute, New Lambton Heights, Australia
| | - R J Callister
- 1 Faculty of Health, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia.,2 Hunter Medical Research Institute, New Lambton Heights, Australia
| | - F R Walker
- 1 Faculty of Health, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia.,2 Hunter Medical Research Institute, New Lambton Heights, Australia
| | - D W Smith
- 1 Faculty of Health, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia.,2 Hunter Medical Research Institute, New Lambton Heights, Australia
| | - B A Graham
- 1 Faculty of Health, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia.,2 Hunter Medical Research Institute, New Lambton Heights, Australia
| |
Collapse
|
16
|
Lee KY, Ratté S, Prescott SA. Excitatory neurons are more disinhibited than inhibitory neurons by chloride dysregulation in the spinal dorsal horn. eLife 2019; 8:e49753. [PMID: 31742556 PMCID: PMC6887484 DOI: 10.7554/elife.49753] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/18/2019] [Indexed: 01/22/2023] Open
Abstract
Neuropathic pain is a debilitating condition caused by the abnormal processing of somatosensory input. Synaptic inhibition in the spinal dorsal horn plays a key role in that processing. Mechanical allodynia - the misperception of light touch as painful - occurs when inhibition is compromised. Disinhibition is due primarily to chloride dysregulation caused by hypofunction of the potassium-chloride co-transporter KCC2. Here we show, in rats, that excitatory neurons are disproportionately affected. This is not because chloride is differentially dysregulated in excitatory and inhibitory neurons, but, rather, because excitatory neurons rely more heavily on inhibition to counterbalance strong excitation. Receptive fields in both cell types have a center-surround organization but disinhibition unmasks more excitatory input to excitatory neurons. Differences in intrinsic excitability also affect how chloride dysregulation affects spiking. These results deepen understanding of how excitation and inhibition are normally balanced in the spinal dorsal horn, and how their imbalance disrupts somatosensory processing.
Collapse
Affiliation(s)
- Kwan Yeop Lee
- Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - Stéphanie Ratté
- Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - Steven A Prescott
- Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
| |
Collapse
|
17
|
Freitag FB, Ahemaiti A, Jakobsson JET, Weman HM, Lagerström MC. Spinal gastrin releasing peptide receptor expressing interneurons are controlled by local phasic and tonic inhibition. Sci Rep 2019; 9:16573. [PMID: 31719558 PMCID: PMC6851355 DOI: 10.1038/s41598-019-52642-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/18/2019] [Indexed: 11/09/2022] Open
Abstract
Dorsal horn gastrin-releasing peptide receptor (GRPR) neurons have a central role in itch transmission. Itch signaling has been suggested to be controlled by an inhibitory network in the spinal dorsal horn, as increased scratching behavior can be induced by pharmacological disinhibition or ablation of inhibitory interneurons, but the direct influence of the inhibitory tone on the GRPR neurons in the itch pathway have not been explored. Here we have investigated spinal GRPR neurons through in vitro and bioinformatical analysis. Electrophysiological recordings revealed that GRPR neurons receive local spontaneous excitatory inputs transmitted by glutamate and inhibitory inputs by glycine and GABA, which were transmitted either by separate glycinergic and GABAergic synapses or by glycine and GABA co-releasing synapses. Additionally, all GRPR neurons received both glycine- and GABA-induced tonic currents. The findings show a complex inhibitory network, composed of synaptic and tonic currents that gates the excitability of GRPR neurons, which provides direct evidence for the existence of an inhibitory tone controlling spontaneous discharge in an itch-related neuronal network in the spinal cord. Finally, calcium imaging revealed increased levels of neuronal activity in Grpr-Cre neurons upon application of somatostatin, which provides direct in vitro evidence for disinhibition of these dorsal horn interneurons.
Collapse
Affiliation(s)
- Fabio B Freitag
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | - Hannah M Weman
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
18
|
Pain Inhibits GRPR Neurons via GABAergic Signaling in the Spinal Cord. Sci Rep 2019; 9:15804. [PMID: 31676846 PMCID: PMC6825123 DOI: 10.1038/s41598-019-52316-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/11/2019] [Indexed: 11/30/2022] Open
Abstract
It has been known that algogens and cooling could inhibit itch sensation; however, the underlying molecular and neural mechanisms remain poorly understood. Here, we show that the spinal neurons expressing gastrin releasing peptide receptor (GRPR) primarily comprise excitatory interneurons that receive direct and indirect inputs from C and Aδ fibers and form contacts with projection neurons expressing the neurokinin 1 receptor (NK1R). Importantly, we show that noxious or cooling agents inhibit the activity of GRPR neurons via GABAergic signaling. By contrast, capsaicin, which evokes a mix of itch and pain sensations, enhances both excitatory and inhibitory spontaneous synaptic transmission onto GRPR neurons. These data strengthen the role of GRPR neurons as a key circuit for itch transmission and illustrate a spinal mechanism whereby pain inhibits itch by suppressing the function of GRPR neurons.
Collapse
|
19
|
Gradwell MA, Callister RJ, Graham BA. Reviewing the case for compromised spinal inhibition in neuropathic pain. J Neural Transm (Vienna) 2019; 127:481-503. [PMID: 31641856 DOI: 10.1007/s00702-019-02090-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
A striking and debilitating property of the nervous system is that damage to this tissue can cause chronic intractable pain, which persists long after resolution of the initial insult. This neuropathic form of pain can arise from trauma to peripheral nerves, the spinal cord, or brain. It can also result from neuropathies associated with disease states such as diabetes, human immunodeficiency virus/AIDS, herpes, multiple sclerosis, cancer, and chemotherapy. Regardless of the origin, treatments for neuropathic pain remain inadequate. This continues to drive research into the underlying mechanisms. While the literature shows that dysfunction in numerous loci throughout the CNS can contribute to chronic pain, the spinal cord and in particular inhibitory signalling in this region have remained major research areas. This review focuses on local spinal inhibition provided by dorsal horn interneurons, and how such inhibition is disrupted during the development and maintenance of neuropathic pain.
Collapse
Affiliation(s)
- M A Gradwell
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - R J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - B A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia.
| |
Collapse
|
20
|
Kloc ML, Pradier B, Chirila AM, Kauer JA. NMDA receptor activation induces long-term potentiation of glycine synapses. PLoS One 2019; 14:e0222066. [PMID: 31498817 PMCID: PMC6733442 DOI: 10.1371/journal.pone.0222066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/21/2019] [Indexed: 01/12/2023] Open
Abstract
Of the fast ionotropic synapses, glycinergic synapses are the least well understood, but are vital for the maintenance of inhibitory signaling in the brain and spinal cord. Glycinergic signaling comprises half of the inhibitory signaling in the spinal cord, and glycinergic synapses are likely to regulate local nociceptive processing as well as the transmission to the brain of peripheral nociceptive information. Here we have investigated the rapid and prolonged potentiation of glycinergic synapses in the superficial dorsal horn of young male and female mice after brief activation of NMDA receptors (NMDARs). Glycinergic inhibitory postsynaptic currents (IPSCs) evoked with lamina II-III stimulation in identified GABAergic neurons in lamina II were potentiated by bath-applied Zn2+ and were depressed by the prostaglandin PGE2, consistent with the presence of both GlyRα1- and GlyRα3-containing receptors. NMDA application rapidly potentiated synaptic glycinergic currents. Whole-cell currents evoked by exogenous glycine were also readily potentiated by NMDA, indicating that the potentiation results from altered numbers or conductance of postsynaptic glycine receptors. Repetitive depolarization alone of the postsynaptic GABAergic neuron also potentiated glycinergic synapses, and intracellular EGTA prevented both NMDA-induced and depolarization-induced potentiation of glycinergic IPSCs. Optogenetic activation of trpv1 lineage afferents also triggered NMDAR-dependent potentiation of glycinergic synapses. Our results suggest that during peripheral injury or inflammation, nociceptor firing during injury is likely to potentiate glycinergic synapses on GABAergic neurons. This disinhibition mechanism may be engaged rapidly, altering dorsal horn circuitry to promote the transmission of nociceptive information to the brain.
Collapse
Affiliation(s)
- Michelle L. Kloc
- Dept. of Pharmacology, Physiology and Biotechnology, Brown Institute for Brain Science, Brown University, Providence, RI, United States of America
| | - Bruno Pradier
- Dept. of Pharmacology, Physiology and Biotechnology, Brown Institute for Brain Science, Brown University, Providence, RI, United States of America
| | - Anda M. Chirila
- Dept. of Pharmacology, Physiology and Biotechnology, Brown Institute for Brain Science, Brown University, Providence, RI, United States of America
| | - Julie A. Kauer
- Dept. of Pharmacology, Physiology and Biotechnology, Brown Institute for Brain Science, Brown University, Providence, RI, United States of America
- * E-mail: ,
| |
Collapse
|
21
|
Mazzone GL, Nistri A. Modulation of extrasynaptic GABAergic receptor activity influences glutamate release and neuronal survival following excitotoxic damage to mouse spinal cord neurons. Neurochem Int 2019; 128:175-185. [PMID: 31051211 DOI: 10.1016/j.neuint.2019.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/08/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Excitotoxic levels of released glutamate trigger a cascade of deleterious cellular events leading to delayed neuronal death. This phenomenon implies extensive dysregulation in the balance between network excitation and inhibition. Our hypothesis was that enhancing network inhibition should prevent excitotoxicity and provide neuroprotection. To test this notion, we used mouse organotypic spinal slice cultures and explored if excitotoxicity caused by the potent glutamate analogue kainate was blocked by pharmacological increase in GABAA receptor activity. To this end we monitored (with a biosensor) real-time glutamate release following 1 h kainate application and quantified neuronal survival 24 h later. Glutamate release evoked by kainate was strongly decreased by the allosteric GABAA modulator midazolam (10 nM) or the GABA agonist THIP (10 μM), leading to neuroprotection. On the contrary, much higher glutamate release was induced by the GABA antagonist bicuculline (20 μM) that inhibits synaptic and extrasynaptic GABAA receptors. Gabazine (20 μM), an antagonist of synaptic GABAA receptors, had no effect on glutamate release or neuroprotection. No effect was observed with the glycine antagonist strychnine or the glycine agonist L-alanine. These findings indicate that enhancement of GABA receptor activity was an effective tool to counteract excitotoxic death in spinal networks. In view of the potent activity by THIP, preferentially acting on extrasynaptic GABAA receptors, the present data imply a significant role for extrasynaptic GABAA receptors in sparing spinal cord neurons from injury.
Collapse
Affiliation(s)
- Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina.
| | - Andrea Nistri
- Neuroscience Dept., International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
22
|
McLaughlin C, Clements J, Oprişoreanu AM, Sylantyev S. The role of tonic glycinergic conductance in cerebellar granule cell signalling and the effect of gain-of-function mutation. J Physiol 2019; 597:2457-2481. [PMID: 30875431 DOI: 10.1113/jp277626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/14/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS A T258F mutation of the glycine receptor increases the receptor affinity to endogenous agonists, modifies single-channel conductance and shapes response decay kinetics. Glycine receptors of cerebellar granule cells play their functional role not continuously, but when the granule cell layer starts receiving a high amount of excitatory inputs. Despite their relative scarcity, tonically active glycine receptors of cerebellar granule cells make a significant impact on action potential generation and inter-neuronal crosstalk, and modulate synaptic plasticity in neural networks; extracellular glycine increases probability of postsynaptic response occurrence acting at NMDA receptors and decreases this probability acting at glycine receptors. Tonic conductance through glycine receptors of cerebellar granule cells is a yet undiscovered element of the biphasic mechanism that regulates processing of sensory inputs in the cerebellum. A T258F point mutation disrupts this biphasic mechanism, thus illustrating the possible role of the gain-of-function mutations of the glycine receptor in development of neural pathologies. ABSTRACT Functional glycine receptors (GlyRs) have been repeatedly detected in cerebellar granule cells (CGCs), where they deliver exclusively tonic inhibitory signals. The functional role of this signalling, however, remains unclear. Apart from that, there is accumulating evidence of the important role of GlyRs in cerebellar structures in development of neural pathologies such as hyperekplexia, which can be triggered by GlyR gain-of-function mutations. In this research we initially tested functional properties of GlyRs, carrying the yet understudied T258F gain-of-function mutation, and found that this mutation makes significant modifications in GlyR response to endogenous agonists. Next, we clarified the role of tonic GlyR conductance in neuronal signalling generated by single CGCs and by neural networks in cell cultures and in living cerebellar tissue of C57Bl-6J mice. We found that GlyRs of CGCs deliver a significant amount of tonic inhibition not continuously, but when the cerebellar granule layer starts receiving substantial excitatory input. Under these conditions tonically active GlyRs become a part of neural signalling machinery allowing generation of action potential (AP) bursts of limited length in response to sensory-evoked signals. GlyRs of CGCs support a biphasic modulatory mechanism which enhances AP firing when excitatory input intensity is low, but suppresses it when excitatory input rises to a certain critical level. This enables one of the key functions of the CGC layer: formation of sensory representations and their translation into motor output. Finally, we have demonstrated that the T258F mutation in CGC GlyRs modifies single-cell and neural network signalling, and breaks a biphasic modulation of the AP-generating machinery.
Collapse
Affiliation(s)
- Catherine McLaughlin
- Gene Therapy Group, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - John Clements
- The John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, ACT 2601, Australia
| | - Ana-Maria Oprişoreanu
- Center for Discovery Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Sergiy Sylantyev
- Center for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| |
Collapse
|
23
|
Mostyn SN, Rawling T, Mohammadi S, Shimmon S, Frangos ZJ, Sarker S, Yousuf A, Vetter I, Ryan RM, Christie MJ, Vandenberg RJ. Development of an N-Acyl Amino Acid That Selectively Inhibits the Glycine Transporter 2 To Produce Analgesia in a Rat Model of Chronic Pain. J Med Chem 2019; 62:2466-2484. [PMID: 30714733 DOI: 10.1021/acs.jmedchem.8b01775] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inhibitors that target the glycine transporter 2, GlyT2, show promise as analgesics, but may be limited by their toxicity through complete or irreversible binding. Acyl-glycine inhibitors, however, are selective for GlyT2 and have been shown to provide analgesia in animal models of pain with minimal side effects, but are comparatively weak GlyT2 inhibitors. Here, we modify the simple acyl-glycine by synthesizing lipid analogues with a range of amino acid head groups in both l- and d-configurations, to produce nanomolar affinity, selective GlyT2 inhibitors. The potent inhibitor oleoyl-d-lysine (33) is also resistant to degradation in both human and rat plasma and liver microsomes, and is rapidly absorbed following an intraperitoneal injection to rats and readily crosses the blood-brain barrier. We demonstrate that 33 provides greater analgesia at lower doses, and does not possess the severe side effects of the very slowly reversible GlyT2 inhibitor, ORG25543 (2).
Collapse
Affiliation(s)
- Shannon N Mostyn
- Discipline of Pharmacology, School of Medical Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science , The University of Technology Sydney , Sydney , NSW 2007 , Australia
| | - Sarasa Mohammadi
- Discipline of Pharmacology, School of Medical Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Susan Shimmon
- School of Mathematical and Physical Sciences, Faculty of Science , The University of Technology Sydney , Sydney , NSW 2007 , Australia
| | - Zachary J Frangos
- Discipline of Pharmacology, School of Medical Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Subhodeep Sarker
- Discipline of Pharmacology, School of Medical Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Arsalan Yousuf
- Discipline of Pharmacology, School of Medical Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Irina Vetter
- Institute for Molecular Bioscience & School of Pharmacy , The University of Queensland , Brisbane , Qld 4072 , Australia
| | - Renae M Ryan
- Discipline of Pharmacology, School of Medical Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Macdonald J Christie
- Discipline of Pharmacology, School of Medical Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Robert J Vandenberg
- Discipline of Pharmacology, School of Medical Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| |
Collapse
|
24
|
Gao H, Korim WS, Yao ST, Heesch CM, Derbenev AV. Glycinergic neurotransmission in the rostral ventrolateral medulla controls the time course of baroreflex-mediated sympathoinhibition. J Physiol 2018; 597:283-301. [PMID: 30312491 DOI: 10.1113/jp276467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/11/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS To maintain appropriate blood flow to various tissues of the body under a variety of physiological states, autonomic nervous system reflexes regulate regional sympathetic nerve activity and arterial blood pressure. Our data obtained in anaesthetized rats revealed that glycine released in the rostral ventrolateral medulla (RVLM) plays a critical role in maintaining arterial baroreflex sympathoinhibition. Manipulation of brainstem nuclei with known inputs to the RVLM (nucleus tractus solitarius and caudal VLM) unmasked tonic glycinergic inhibition in the RVLM. Whole-cell, patch clamp recordings demonstrate that both GABA and glycine inhibit RVLM neurons. Potentiation of neurotransmitter release from the active synaptic inputs in the RVLM produced saturation of GABAergic inhibition and emergence of glycinergic inhibition. Our data suggest that GABA controls threshold excitability, wherreas glycine increases the strength of inhibition under conditions of increased synaptic activity within the RVLM. ABSTRACT The arterial baroreflex is a rapid negative-feedback system that compensates changes in blood pressure by adjusting the output of presympathetic neurons in the rostral ventrolateral medulla (RVLM). GABAergic projections from the caudal VLM (CVLM) provide a primary inhibitory input to presympathetic RVLM neurons. Although glycine-dependent regulation of RVLM neurons has been proposed, its role in determining RVLM excitability is ill-defined. The present study aimed to determine the physiological role of glycinergic neurotransmission in baroreflex function, identify the mechanisms for glycine release, and evaluate co-inhibition of RVLM neurons by GABA and glycine. Microinjection of the glycine receptor antagonist strychnine (4 mm, 100 nL) into the RVLM decreased the duration of baroreflex-mediated inhibition of renal sympathetic nerve activity (control = 12 ± 1 min; RVLM-strychnine = 5.1 ± 1 min), suggesting that RVLM glycine plays a critical role in regulating the time course of sympathoinhibition. Blockade of output from the nucleus tractus solitarius and/or disinhibition of the CVLM unmasked tonic glycinergic inhibition of the RVLM. To evaluate cellular mechanisms, RVLM neurons were retrogradely labelled (prior injection of pseudorabies virus PRV-152) and whole-cell, patch clamp recordings were obtained in brainstem slices. Under steady-state conditions GABAergic inhibition of RVLM neurons predominated and glycine contributed less than 25% of the overall inhibition. By contrast, stimulation of synaptic inputs in the RVLM decreased GABAergic inhibition to 53%; and increased glycinergic inhibition to 47%. Thus, under conditions of increased synaptic activity in the RVLM, glycinergic inhibition is recruited to strengthen sympathoinhibition.
Collapse
Affiliation(s)
- Hong Gao
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Willian S Korim
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Song T Yao
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Cheryl M Heesch
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA.,Brain Institute, Tulane University, New Orleans, LA, USA
| |
Collapse
|
25
|
Shehab S, Rehmathulla S, Javed H. A single GABA neuron receives contacts from myelinated primary afferents of two adjacent peripheral nerves. A possible role in neuropathic pain. J Comp Neurol 2018; 526:2984-2999. [PMID: 30069880 DOI: 10.1002/cne.24509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/19/2022]
Abstract
GAD67-EGFP mice were used in a series of experiments to provide anatomical evidence for the role of the reduction in myelinated primary afferent input to GABA spinal neurons in the production of neuropathic pain following peripheral L5 nerve injury. First, we confirmed that L5 injury in these mice produced mechanical and thermal hyperalgesia in the ipsilateral foot. Second, we injected a mixture of cholera toxin subunit-B (CTb) and isolectin B4 (IB4) in the sciatic nerve to selectively label its myelinated and unmyelinated primary afferents. Results showed that primary afferents of sciatic nerve extend from L2-L6 spinal segments. Third, we determined the central terminations of myelinated primary afferents of L4 and L5 spinal nerves following CTb injection in either nerve. The myelinated primary afferents of both nerves terminated in the corresponding and two to three rostral spinal segments with some fibers descending to terminate in the segment caudal to the level at which they entered indicating an intermingling of their terminals at the dorsal horn of the spinal cord. Fourthly, we injected CTb in L5 nerve and CTb HRP-conjugate in L4 nerve. Confocal microscopy and subsequent image analyses showed that individual EGFP-labeled neurons in L4 segment receive myelinated primary afferent contacts from both L4 and L5 nerves. Eliminating inputs from L5 nerve following its injury would result in less involvement of spinal GABA neurons which would very likely initiate neuronal sensitization in L4 segment. This could lead to the development of hyperalgesia in response to the stimulation of the adjacent uninjured L4 nerve.
Collapse
Affiliation(s)
- Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sumisha Rehmathulla
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
26
|
Shi Y, Chen Y, Wang Y. Kir2.1 Channel Regulation of Glycinergic Transmission Selectively Contributes to Dynamic Mechanical Allodynia in a Mouse Model of Spared Nerve Injury. Neurosci Bull 2018; 35:301-314. [PMID: 30203408 DOI: 10.1007/s12264-018-0285-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/20/2018] [Indexed: 11/25/2022] Open
Abstract
Neuropathic pain is a chronic debilitating symptom characterized by spontaneous pain and mechanical allodynia. It occurs in distinct forms, including brush-evoked dynamic and filament-evoked punctate mechanical allodynia. Potassium channel 2.1 (Kir2.1), which exhibits strong inward rectification, is and regulates the activity of lamina I projection neurons. However, the relationship between Kir2.1 channels and mechanical allodynia is still unclear. In this study, we first found that pretreatment with ML133, a selective Kir2.1 inhibitor, by intrathecal administration, preferentially inhibited dynamic, but not punctate, allodynia in mice with spared nerve injury (SNI). Intrathecal injection of low doses of strychnine, a glycine receptor inhibitor, selectively induced dynamic, but not punctate allodynia, not only in naïve but also in ML133-pretreated mice. In contrast, bicuculline, a GABAA receptor antagonist, induced only punctate, but not dynamic, allodynia. These results indicated the involvement of glycinergic transmission in the development of dynamic allodynia. We further found that SNI significantly suppressed the frequency, but not the amplitude, of the glycinergic spontaneous inhibitory postsynaptic currents (gly-sIPSCs) in neurons on the lamina II-III border of the spinal dorsal horn, and pretreatment with ML133 prevented the SNI-induced gly-sIPSC reduction. Furthermore, 5 days after SNI, ML133, either by intrathecal administration or acute bath perfusion, and strychnine sensitively reversed the SNI-induced dynamic, but not punctate, allodynia and the gly-sIPSC reduction in lamina IIi neurons, respectively. In conclusion, our results suggest that blockade of Kir2.1 channels in the spinal dorsal horn selectively inhibits dynamic, but not punctate, mechanical allodynia by enhancing glycinergic inhibitory transmission.
Collapse
Affiliation(s)
- Yiqian Shi
- Department of Neurology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Yangyang Chen
- Department of Neurology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
27
|
Brewer CL, Baccei ML. Enhanced Postsynaptic GABA B Receptor Signaling in Adult Spinal Projection Neurons after Neonatal Injury. Neuroscience 2018; 384:329-339. [PMID: 29885525 PMCID: PMC6053268 DOI: 10.1016/j.neuroscience.2018.05.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/28/2018] [Accepted: 05/30/2018] [Indexed: 12/19/2022]
Abstract
Clinical and basic science research have revealed persistent effects of early-life injury on nociceptive processing and resulting pain sensitivity. While recent work has identified clear deficits in fast GABAA- and glycine receptor-mediated inhibition in the adult spinal dorsal horn after neonatal tissue damage, the effects of early injury on slow, metabotropic inhibition within spinal pain circuits are poorly understood. Here we provide evidence that neonatal surgical incision significantly enhances postsynaptic GABAB receptor signaling within the mature superficial dorsal horn (SDH) in a cell type-dependent manner. In vitro patch-clamp recordings were obtained from identified lamina I projection neurons and GABAergic interneurons in the SDH of adult female mice following hindpaw incision at postnatal day (P)3. Early tissue damage increased the density of the outward current evoked by baclofen, a selective GABAB receptor agonist, in projection neurons but not inhibitory interneurons. This could reflect enhanced postsynaptic expression of downstream G protein-coupled inward-rectifying potassium channels (GIRKs), as the response to the GIRK agonist ML297 was greater in projection neurons from neonatally incised mice compared to naive littermate controls. Meanwhile, presynaptic GABAB receptor-mediated reduction of spontaneous neurotransmitter release onto both neuronal populations was unaffected by early-life injury. Collectively, our findings suggest that ascending nociceptive transmission to the adult brain is under stronger control by spinal metabotropic inhibition in the aftermath of neonatal tissue damage.
Collapse
Affiliation(s)
- Chelsie L Brewer
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Mark L Baccei
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.
| |
Collapse
|
28
|
TAFA4 Reverses Mechanical Allodynia through Activation of GABAergic Transmission and Microglial Process Retraction. Cell Rep 2018. [DOI: 10.1016/j.celrep.2018.02.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
29
|
Gradwell MA, Boyle KA, Callister RJ, Hughes DI, Graham BA. Heteromeric α/β glycine receptors regulate excitability in parvalbumin-expressing dorsal horn neurons through phasic and tonic glycinergic inhibition. J Physiol 2017; 595:7185-7202. [PMID: 28905384 PMCID: PMC5709328 DOI: 10.1113/jp274926] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/01/2017] [Indexed: 11/21/2022] Open
Abstract
Key points Spinal parvalbumin‐expressing interneurons have been identified as a critical source of inhibition to regulate sensory thresholds by gating mechanical inputs in the dorsal horn. This study assessed the inhibitory regulation of the parvalbumin‐expressing interneurons, showing that synaptic and tonic glycinergic currents dominate, blocking neuronal or glial glycine transporters enhances tonic glycinergic currents, and these manipulations reduce excitability. Synaptically released glycine also enhanced tonic glycinergic currents and resulted in decreased parvalbumin‐expressing interneuron excitability. Analysis of the glycine receptor properties mediating inhibition of parvalbumin neurons, as well as single channel recordings, indicates that heteromeric α/β subunit‐containing receptors underlie both synaptic and tonic glycinergic currents. Our findings indicate that glycinergic inhibition provides critical control of excitability in parvalbumin‐expressing interneurons in the dorsal horn and represents a pharmacological target to manipulate spinal sensory processing.
Abstract The dorsal horn (DH) of the spinal cord is an important site for modality‐specific processing of sensory information and is essential for contextually relevant sensory experience. Parvalbumin‐expressing inhibitory interneurons (PV+ INs) have functional properties and connectivity that enables them to segregate tactile and nociceptive information. Here we examine inhibitory drive to PV+ INs using targeted patch‐clamp recording in spinal cord slices from adult transgenic mice that express enhanced green fluorescent protein in PV+ INs. Analysis of inhibitory synaptic currents showed glycinergic transmission is the dominant form of phasic inhibition to PV+ INs. In addition, PV+ INs expressed robust glycine‐mediated tonic currents; however, we found no evidence for tonic GABAergic currents. Manipulation of extracellular glycine by blocking either, or both, the glial and neuronal glycine transporters markedly decreased PV+ IN excitability, as assessed by action potential discharge. This decreased excitability was replicated when tonic glycinergic currents were increased by electrically activating glycinergic synapses. Finally, we show that both phasic and tonic forms of glycinergic inhibition are mediated by heteromeric α/β glycine receptors. This differs from GABAA receptors in the dorsal horn, where different receptor stoichiometries underlie phasic and tonic inhibition. Together these data suggest both phasic and tonic glycinergic inhibition regulate the output of PV+ INs and contribute to the processing and segregation of tactile and nociceptive information. The shared stoichiometry for phasic and tonic glycine receptors suggests pharmacology is unlikely to be able to selectively target each form of inhibition in PV+ INs. Spinal parvalbumin‐expressing interneurons have been identified as a critical source of inhibition to regulate sensory thresholds by gating mechanical inputs in the dorsal horn. This study assessed the inhibitory regulation of the parvalbumin‐expressing interneurons, showing that synaptic and tonic glycinergic currents dominate, blocking neuronal or glial glycine transporters enhances tonic glycinergic currents, and these manipulations reduce excitability. Synaptically released glycine also enhanced tonic glycinergic currents and resulted in decreased parvalbumin‐expressing interneuron excitability. Analysis of the glycine receptor properties mediating inhibition of parvalbumin neurons, as well as single channel recordings, indicates that heteromeric α/β subunit‐containing receptors underlie both synaptic and tonic glycinergic currents. Our findings indicate that glycinergic inhibition provides critical control of excitability in parvalbumin‐expressing interneurons in the dorsal horn and represents a pharmacological target to manipulate spinal sensory processing.
Collapse
Affiliation(s)
- M A Gradwell
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - K A Boyle
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - R J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - D I Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - B A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| |
Collapse
|
30
|
Abstract
The exteroceptive somatosensory system is important for reflexive and adaptive behaviors and for the dynamic control of movement in response to external stimuli. This review outlines recent efforts using genetic approaches in the mouse to map the spinal cord circuits that transmit and gate the cutaneous somatosensory modalities of touch, pain, and itch. Recent studies have revealed an underlying modular architecture in which nociceptive, pruritic, and innocuous stimuli are processed by distinct molecularly defined interneuron cell types. These include excitatory populations that transmit information about both innocuous and painful touch and inhibitory populations that serve as a gate to prevent innocuous stimuli from activating the nociceptive and pruritic transmission pathways. By dissecting the cellular composition of dorsal-horn networks, studies are beginning to elucidate the intricate computational logic of somatosensory transformation in health and disease.
Collapse
Affiliation(s)
- Stephanie C Koch
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| | - David Acton
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| |
Collapse
|
31
|
Opposite, bidirectional shifts in excitation and inhibition in specific types of dorsal horn interneurons are associated with spasticity and pain post-SCI. Sci Rep 2017; 7:5884. [PMID: 28724992 PMCID: PMC5517549 DOI: 10.1038/s41598-017-06049-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/01/2017] [Indexed: 11/23/2022] Open
Abstract
Spasticity, a common complication after spinal cord injury (SCI), is frequently accompanied by chronic pain. The physiological origin of this pain (critical to its treatment) remains unknown, although spastic motor dysfunction has been related to the hyperexcitability of motoneurons and to changes in spinal sensory processing. Here we show that the pain mechanism involves changes in sensory circuits of the dorsal horn (DH) where nociceptive inputs integrate for pain processing. Spasticity is associated with the DH hyperexcitability resulting from an increase in excitation and disinhibition occurring in two respective types of sensory interneurons. In the tonic-firing inhibitory lamina II interneurons, glutamatergic drive was reduced while glycinergic inhibition was potentiated. In contrast, excitatory drive was boosted to the adapting-firing excitatory lamina II interneurons while GABAergic and glycinergic inhibition were reduced. Thus, increased activity of excitatory DH interneurons coupled with the reduced excitability of inhibitory DH interneurons post-SCI could provide a neurophysiological mechanism of central sensitization and chronic pain associated with spasticity.
Collapse
|
32
|
Functional Synaptic Integration of Forebrain GABAergic Precursors into the Adult Spinal Cord. J Neurosci 2017; 36:11634-11645. [PMID: 27852772 DOI: 10.1523/jneurosci.2301-16.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 01/17/2023] Open
Abstract
Spinal cord transplants of embryonic cortical GABAergic progenitor cells derived from the medial ganglionic eminence (MGE) can reverse mechanical hypersensitivity in the mouse models of peripheral nerve injury- and paclitaxel-induced neuropathic pain. Here, we used electrophysiology, immunohistochemistry, and electron microscopy to examine the extent to which MGE cells integrate into host circuitry and recapitulate endogenous inhibitory circuits. Whether the transplants were performed before or after nerve injury, the MGE cells developed into mature neurons and exhibited firing patterns characteristic of subpopulations of cortical and spinal cord inhibitory interneurons. Conversely, the transplanted cells preserved cortical morphological and neurochemical properties. We also observed a robust anatomical and functional synaptic integration of the transplanted cells into host circuitry in both injured and uninjured animals. The MGE cells were activated by primary afferents, including TRPV1-expressing nociceptors, and formed GABAergic, bicuculline-sensitive, synapses onto host neurons. Unexpectedly, MGE cells transplanted before injury prevented the development of mechanical hypersensitivity. Together, our findings provide direct confirmation of an extensive, functional synaptic integration of MGE cells into host spinal cord circuits. This integration underlies normalization of the dorsal horn inhibitory tone after injury and may be responsible for the prophylactic effect of preinjury transplants. SIGNIFICANCE STATEMENT Spinal cord transplants of embryonic cortical GABAergic interneuron progenitors from the medial ganglionic eminence (MGE), can overcome the mechanical hypersensitivity produced in different neuropathic pain models in adult mice. Here, we examined the properties of transplanted MGE cells and the extent to which they integrate into spinal cord circuitry. Using electrophysiology, immunohistochemistry, and electron microscopy, we demonstrate that MGE cells, whether transplanted before or after nerve injury, develop into inhibitory neurons, are activated by nociceptive primary afferents, and form GABA-A-mediated inhibitory synapses with the host. Unexpectedly, cells transplanted into naive spinal cord prevented the development of nerve-injury-induced mechanical hypersensitivity. These results illustrate the remarkable plasticity of adult spinal cord and the potential of cell-based therapies against neuropathic pain.
Collapse
|
33
|
Inhibition Mediated by Glycinergic and GABAergic Receptors on Excitatory Neurons in Mouse Superficial Dorsal Horn Is Location-Specific but Modified by Inflammation. J Neurosci 2017; 37:2336-2348. [PMID: 28130358 DOI: 10.1523/jneurosci.2354-16.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 12/21/2016] [Accepted: 01/16/2017] [Indexed: 11/21/2022] Open
Abstract
The superficial dorsal horn is the synaptic termination site for many peripheral sensory fibers of the somatosensory system. A wide range of sensory modalities are represented by these fibers, including pain, itch, and temperature. Because the involvement of local inhibition in the dorsal horn, specifically that mediated by the inhibitory amino acids GABA and glycine, is so important in signal processing, we investigated regional inhibitory control of excitatory interneurons under control conditions and peripheral inflammation-induced mechanical allodynia. We found that excitatory interneurons and projection neurons in lamina I and IIo are dominantly inhibited by GABA while those in lamina IIi and III are dominantly inhibited by glycine. This was true of identified neuronal subpopulations: neurokinin 1 receptor-expressing (NK1R+) neurons in lamina I were GABA-dominant while protein kinase C gamma-expressing (PKCγ+) neurons at the lamina IIi-III border were glycine-dominant. We found this pattern of synaptic inhibition to be consistent with the distribution of GABAergic and glycinergic neurons identified by immunohistochemistry. Following complete Freund's adjuvant injection into mouse hindpaw, the frequency of spontaneous excitatory synaptic activity increased and inhibitory synaptic activity decreased. Surprisingly, these changes were accompanied by an increase in GABA dominance in lamina IIi. Because this shift in inhibitory dominance was not accompanied by a change in the number of inhibitory synapses or the overall postsynaptic expression of glycine receptor α1 subunits, we propose that the dominance shift is due to glycine receptor modulation and the depressed function of glycine receptors is partially compensated by GABAergic inhibition.SIGNIFICANCE STATEMENT Pain associated with inflammation is a sensation we would all like to minimize. Persistent inflammation leads to cellular and molecular changes in the spinal cord dorsal horn, including diminished inhibition, which may be responsible for enhance excitability. Investigating inhibition in the dorsal horn following peripheral inflammation is essential for development of improved ways to control the associated pain. In this study, we have elucidated regional differences in inhibition of excitatory interneurons in mouse dorsal horn. We have also discovered that the dominating inhibitory neurotransmission within specific regions of dorsal horn switches following peripheral inflammation and the accompanying hypersensitivity to thermal and mechanical stimuli. Our novel findings contribute to a more complete understanding of inflammatory pain.
Collapse
|
34
|
Abstract
It has been recently proposed that α5-subunit containing GABAA receptors (α5-GABAA receptors) that mediate tonic inhibition might be involved in pain. The purpose of this study was to investigate the contribution of α5-GABAA receptors in the loss of GABAergic inhibition and in formalin-induced, complete Freund's adjuvant (CFA)-induced and L5 and L6 spinal nerve ligation-induced long-lasting hypersensitivity. Formalin or CFA injection and L5 and L6 spinal nerve ligation produced long-lasting allodynia and hyperalgesia. Moreover, formalin injection impaired the rate-dependent depression of the Hofmann reflex. Peripheral and intrathecal pretreatment or post-treatment with the α5-GABAA receptor antagonist, L-655,708 (0.15-15 nmol), prevented and reversed, respectively, these long-lasting behaviors. Formalin injection increased α5-GABAA receptor mRNA expression in the spinal cord and dorsal root ganglia (DRG) mainly at 3 days. The α5-GABAA receptors were localized in the dorsal spinal cord and DRG colabeling with NeuN, CGRP, and IB4 which suggests their presence in peptidergic and nonpeptidergic neurons. These receptors were found mainly in small and medium sized neurons. Formalin injection enhanced α5-GABAA receptor fluorescence intensity in spinal cord and DRG at 3 and 6 days. Intrathecal administration of L-655,708 (15 nmol) prevented and reversed formalin-induced impairment of rate-dependent depression. These results suggest that α5-GABAA receptors play a role in the loss of GABAergic inhibition and contribute to long-lasting secondary allodynia and hyperalgesia.
Collapse
|
35
|
Glycinergic dysfunction in a subpopulation of dorsal horn interneurons in a rat model of neuropathic pain. Sci Rep 2016; 6:37104. [PMID: 27841371 PMCID: PMC5107903 DOI: 10.1038/srep37104] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/10/2016] [Indexed: 12/03/2022] Open
Abstract
The development of neuropathic pain involves persistent changes in signalling within pain pathways. Reduced inhibitory signalling in the spinal cord following nerve-injury has been used to explain sensory signs of neuropathic pain but specific circuits that lose inhibitory input have not been identified. This study shows a specific population of spinal cord interneurons, radial neurons, lose glycinergic inhibitory input in a rat partial sciatic nerve ligation (PNL) model of neuropathic pain. Radial neurons are excitatory neurons located in lamina II of the dorsal horn, and are readily identified by their morphology. The amplitude of electrically-evoked glycinergic inhibitory post-synaptic currents (eIPSCs) was greatly reduced in radial neurons following nerve-injury associated with increased paired-pulse ratio. There was also a reduction in frequency of spontaneous IPSCs (sIPSCs) and miniature IPSCs (mIPSC) in radial neurons without significantly affecting mIPSC amplitude. A subtype selective receptor antagonist and western blots established reversion to expression of the immature glycine receptor subunit GlyRα2 in radial neurons after PNL, consistent with slowed decay times of IPSCs. This study has important implications as it identifies a glycinergic synaptic connection in a specific population of dorsal horn neurons where loss of inhibitory signalling may contribute to signs of neuropathic pain.
Collapse
|
36
|
Perez-Sanchez J, Lorenzo LE, Lecker I, Zurek AA, Labrakakis C, Bridgwater EM, Orser BA, De Koninck Y, Bonin RP. α5GABAAReceptors Mediate Tonic Inhibition in the Spinal Cord Dorsal Horn and Contribute to the Resolution Of Hyperalgesia. J Neurosci Res 2016; 95:1307-1318. [DOI: 10.1002/jnr.23981] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/02/2016] [Accepted: 10/06/2016] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Irene Lecker
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto Ontario Canada
| | | | - Charalampos Labrakakis
- Department of Biological Applications and Technology; University of Ioannina; Ioannina Greece
| | | | - Beverley A. Orser
- University of Toronto, Department of Physiology; Toronto Ontario Canada
- University of Toronto, Department of Anesthesia; Toronto Ontario Canada
- Department of Anesthesia; Sunnybrook Health Sciences Centre; Toronto Ontario Canada
| | - Yves De Koninck
- Institut Universitaire en Santé Mentale de Québec; Québec Canada
- Department of Psychiatry and Neuroscience; Université Laval; Québec Canada
| | - Robert P. Bonin
- Institut Universitaire en Santé Mentale de Québec; Québec Canada
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
37
|
Baccei ML. Rewiring of Developing Spinal Nociceptive Circuits by Neonatal Injury and Its Implications for Pediatric Chronic Pain. CHILDREN-BASEL 2016; 3:children3030016. [PMID: 27657152 PMCID: PMC5039476 DOI: 10.3390/children3030016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/09/2016] [Accepted: 09/16/2016] [Indexed: 11/16/2022]
Abstract
Significant evidence now suggests that neonatal tissue damage can evoke long-lasting changes in pain sensitivity, but the underlying cellular and molecular mechanisms remain unclear. This review highlights recent advances in our understanding of how injuries during a critical period of early life modulate the functional organization of synaptic networks in the superficial dorsal horn (SDH) of the spinal cord in a manner that favors the excessive amplification of ascending nociceptive signaling to the brain, which likely contributes to the generation and/or maintenance of pediatric chronic pain. These persistent alterations in synaptic function within the SDH may also contribute to the well-documented "priming" of developing pain pathways by neonatal tissue injury.
Collapse
Affiliation(s)
- Mark L Baccei
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.
| |
Collapse
|
38
|
Neuronal networks and nociceptive processing in the dorsal horn of the spinal cord. Neuroscience 2016; 338:230-247. [PMID: 27595888 DOI: 10.1016/j.neuroscience.2016.08.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/23/2016] [Accepted: 08/28/2016] [Indexed: 12/31/2022]
Abstract
The dorsal horn (DH) of the spinal cord receives a variety of sensory information arising from the inner and outer environment, as well as modulatory inputs from supraspinal centers. This information is integrated by the DH before being forwarded to brain areas where it may lead to pain perception. Spinal integration of this information relies on the interplay between different DH neurons forming complex and plastic neuronal networks. Elements of these networks are therefore potential targets for new analgesics and pain-relieving strategies. The present review aims at providing an overview of the current knowledge on these networks, with a special emphasis on those involving interlaminar communication in both physiological and pathological conditions.
Collapse
|
39
|
Oh SM, Bhattarai JP, Han SK, Park SJ. Effects of hypotaurine on substantia gelatinosa neurons of the trigeminal subnucleus caudalis in immature mice. Amino Acids 2016; 48:2843-2853. [PMID: 27573934 DOI: 10.1007/s00726-016-2321-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/22/2016] [Indexed: 12/18/2022]
Abstract
To understand the action and mechanism of hypotaurine, an immediate precursor of taurine, on orofacial nociceptive processing, we examined the direct effects and receptor types involved in hypotaurine-induced responses using the whole-cell patch clamp technique in the substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) of immature mice. Under the condition of high-chloride pipette solution, hypotaurine elicited inward currents or upward deflections of membrane potential, which increased in a concentration-dependent manner (30-3000 μM) with the EC50 of 663.8 and 337.6 μM, respectively. The responses to 300 µM hypotaurine were reproducible and recovered upon washout. The 300 µM hypotaurine-induced currents were maintained in the presence of TTX, CNQX, and AP5, indicating direct postsynaptic action of hypotaurine on SG neurons. Responses to both low (300 µM) and high (1 or 3 mM) concentrations of hypotaurine were completely and reversibly blocked by the glycine receptor antagonist strychnine (2 µM), but unaffected by the GABAA receptor antagonist gabazine (3 µM) which blocks synaptic GABAA receptors at low concentration. Furthermore, responses to 300 µM hypotaurine and a maximal concentration of glycine (3 mM) were not additive, indicating that hypotaurine and glycine act on the same receptor. Hypotaurine-induced currents were partially antagonized by picrotoxin (50 µM) which blocks homomeric glycine receptors and by bicuculline (10 µM) which is an antagonist of α2 subunit-containing glycine receptors. These results suggest that hypotaurine-induced responses were mediated by glycine receptor activation in the SG neurons and hypotaurine might be used as an effective therapeutics for orofacial pain.
Collapse
Affiliation(s)
- Sun Mi Oh
- Department of Oral Physiology and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, 664-14, 1 Ga, Deokjin-Dong, Jeonbuk, Jeonju, 561-756, Republic of Korea
| | - Janardhan Prasad Bhattarai
- Department of Oral Physiology and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, 664-14, 1 Ga, Deokjin-Dong, Jeonbuk, Jeonju, 561-756, Republic of Korea
| | - Seong Kyu Han
- Department of Oral Physiology and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, 664-14, 1 Ga, Deokjin-Dong, Jeonbuk, Jeonju, 561-756, Republic of Korea
| | - Soo Joung Park
- Department of Oral Physiology and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, 664-14, 1 Ga, Deokjin-Dong, Jeonbuk, Jeonju, 561-756, Republic of Korea.
| |
Collapse
|
40
|
Smith KM, Boyle KA, Mustapa M, Jobling P, Callister RJ, Hughes DI, Graham BA. Distinct forms of synaptic inhibition and neuromodulation regulate calretinin-positive neuron excitability in the spinal cord dorsal horn. Neuroscience 2016; 326:10-21. [PMID: 27045594 PMCID: PMC4919388 DOI: 10.1016/j.neuroscience.2016.03.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/26/2016] [Accepted: 03/25/2016] [Indexed: 01/12/2023]
Abstract
CR+ spinal dorsal horn neurons form excitatory (Typical) and inhibitory (Atypical) subpopulations. Typical neurons received mixed (GABAergic and glycinergic) inhibition. Atypical neurons received inhibition dominated by glycine. Noradrenaline and serotonin evoke responses in Typical but not Atypical neurons. Enkephalins evoke responses in Atypical but not typical neurons.
The dorsal horn (DH) of the spinal cord contains a heterogenous population of neurons that process incoming sensory signals before information ascends to the brain. We have recently characterized calretinin-expressing (CR+) neurons in the DH and shown that they can be divided into excitatory and inhibitory subpopulations. The excitatory population receives high-frequency excitatory synaptic input and expresses delayed firing action potential discharge, whereas the inhibitory population receives weak excitatory drive and exhibits tonic or initial bursting discharge. Here, we characterize inhibitory synaptic input and neuromodulation in the two CR+ populations, in order to determine how each is regulated. We show that excitatory CR+ neurons receive mixed inhibition from GABAergic and glycinergic sources, whereas inhibitory CR+ neurons receive inhibition, which is dominated by glycine. Noradrenaline and serotonin produced robust outward currents in excitatory CR+ neurons, predicting an inhibitory action on these neurons, but neither neuromodulator produced a response in CR+ inhibitory neurons. In contrast, enkephalin (along with selective mu and delta opioid receptor agonists) produced outward currents in inhibitory CR+ neurons, consistent with an inhibitory action but did not affect the excitatory CR+ population. Our findings show that the pharmacology of inhibitory inputs and neuromodulator actions on CR+ cells, along with their excitatory inputs can define these two subpopulations further, and this could be exploited to modulate discrete aspects of sensory processing selectively in the DH.
Collapse
Affiliation(s)
- K M Smith
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia
| | - K A Boyle
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - M Mustapa
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - P Jobling
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia
| | - R J Callister
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia
| | - D I Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - B A Graham
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
41
|
Breitinger U, Breitinger HG. Augmentation of glycine receptor alpha3 currents suggests a mechanism for glucose-mediated analgesia. Neurosci Lett 2016; 612:110-115. [DOI: 10.1016/j.neulet.2015.11.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 11/16/2022]
|
42
|
King AE, Woodhouse A, Kirkcaldie MT, Vickers JC. Excitotoxicity in ALS: Overstimulation, or overreaction? Exp Neurol 2016; 275 Pt 1:162-71. [DOI: 10.1016/j.expneurol.2015.09.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/30/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
|
43
|
Petitjean H, Pawlowski SA, Fraine SL, Sharif B, Hamad D, Fatima T, Berg J, Brown CM, Jan LY, Ribeiro-da-Silva A, Braz JM, Basbaum AI, Sharif-Naeini R. Dorsal Horn Parvalbumin Neurons Are Gate-Keepers of Touch-Evoked Pain after Nerve Injury. Cell Rep 2015; 13:1246-1257. [PMID: 26527000 PMCID: PMC6038918 DOI: 10.1016/j.celrep.2015.09.080] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/04/2015] [Accepted: 09/25/2015] [Indexed: 01/01/2023] Open
Abstract
Neuropathic pain is a chronic debilitating disease that results from nerve damage, persists long after the injury has subsided, and is characterized by spontaneous pain and mechanical hypersensitivity. Although loss of inhibitory tone in the dorsal horn of the spinal cord is a major contributor to neuropathic pain, the molecular and cellular mechanisms underlying this disinhibition are unclear. Here, we combined pharmacogenetic activation and selective ablation approaches in mice to define the contribution of spinal cord parvalbumin (PV)-expressing inhibitory interneurons in naive and neuropathic pain conditions. Ablating PV neurons in naive mice produce neuropathic pain-like mechanical allodynia via disinhibition of PKCγ excitatory interneurons. Conversely, activating PV neurons in nerve-injured mice alleviates mechanical hypersensitivity. These findings indicate that PV interneurons are modality-specific filters that gate mechanical but not thermal inputs to the dorsal horn and that increasing PV inter-neuron activity can ameliorate the mechanical hypersensitivity that develops following nerve injury.
Collapse
Affiliation(s)
- Hugues Petitjean
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, H3G0B1 QC, Canada
| | | | - Steven Li Fraine
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, H3G0B1 QC, Canada
| | - Behrang Sharif
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, H3G0B1 QC, Canada
| | - Doulia Hamad
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, H3G0B1 QC, Canada
| | - Tarheen Fatima
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, H3G0B1 QC, Canada
| | - Jim Berg
- Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, 1550 4th Street, RH-490D, San Francisco, CA 94158, USA
| | - Claire M Brown
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, H3G0B1 QC, Canada; Advanced BioImaging Facility, McGill University, H3G0B1 QC, Canada
| | - Lily-Yeh Jan
- Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, 1550 4th Street, RH-490D, San Francisco, CA 94158, USA
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, H3G1Y6 QC, Canada; Department of Anatomy and Cell Biology, McGill University, H3A0C7 QC, Canada
| | - Joao M Braz
- Department of Anatomy, University of California, San Francisco, 1550 4th Street, RH-348E, San Francisco, CA 94158, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, 1550 4th Street, RH-348E, San Francisco, CA 94158, USA
| | - Reza Sharif-Naeini
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, H3G0B1 QC, Canada.
| |
Collapse
|
44
|
Betelli C, MacDermott AB, Bardoni R. Transient, activity dependent inhibition of transmitter release from low threshold afferents mediated by GABAA receptors in spinal cord lamina III/IV. Mol Pain 2015; 11:64. [PMID: 26463733 PMCID: PMC4605127 DOI: 10.1186/s12990-015-0067-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/06/2015] [Indexed: 12/20/2022] Open
Abstract
Background Presynaptic GABAA receptors (GABAARs) located on central terminals of low threshold afferent fibers are thought to be involved in the processing of touch and possibly in the generation of tactile allodynia in chronic pain. These GABAARs mediate primary afferent depolarization (PAD) and modulate transmitter release. The objective of this study was to expand our understanding of the presynaptic inhibitory action of GABA released onto primary afferent central terminals following afferent stimulation. Results We recorded evoked postsynaptic excitatory responses (eEPSCs and eEPSPs) from lamina III/IV neurons in spinal cord slices from juvenile rats (P17–P23, either sex), while stimulating dorsal roots. We investigated time and activity dependent changes in glutamate release from low threshold A fibers and the impact of these changes on excitatory drive. Blockade of GABAARs by gabazine potentiated the second eEPSC during a train of four afferent stimuli in a large subset of synapses. This resulted in a corresponding increase of action potential firing after the second stimulus. The potentiating effect of gabazine was due to inhibition of endogenously activated presynaptic GABAARs, because it was not prevented by the blockade of postsynaptic GABAARs through intracellular perfusion of CsF. Exogenous activation of presynaptic GABAARs by muscimol depressed evoked glutamate release at all synapses and increased paired pulse ratio (PPR). Conclusions These observations suggest that afferent driven release of GABA onto low threshold afferent terminals is most effective following the first action potential in a train and serves to suppress the initial strong excitatory drive onto dorsal horn circuitry.
Collapse
Affiliation(s)
- Chiara Betelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi, 287, 41125, Modena, Italy.
| | - Amy B MacDermott
- Departments of Physiology and Cellular Biophysics, Neuroscience, Columbia University, 630 W. 168th Street, New York, NY, 10032, USA.
| | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi, 287, 41125, Modena, Italy.
| |
Collapse
|
45
|
|
46
|
Eckle VS, Grasshoff C, Mirakaj V, O'Neill PM, Berry NG, Leuwer M, Antkowiak B. 4-bromopropofol decreases action potential generation in spinal neurons by inducing a glycine receptor-mediated tonic conductance. Br J Pharmacol 2015; 171:5790-801. [PMID: 25131750 DOI: 10.1111/bph.12880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 07/29/2014] [Accepted: 08/11/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Impaired function of spinal strychnine-sensitive glycine receptors gives rise to chronic pain states and movement disorders. Therefore, increased activity of glycine receptors should help to treat such disorders. Although compounds targeting glycine receptors with a high selectivity are lacking, halogenated analogues of propofol have recently been considered as potential candidates. Therefore we asked whether 4-bromopropofol attenuated the excitability of spinal neurons by promoting glycine receptor-dependent inhibition. EXPERIMENTAL APPROACH The actions of sub-anaesthetic concentrations of propofol and 4-bromopropofol were investigated in spinal tissue cultures prepared from mice. Drug-induced alterations in action potential firing were monitored by extracellular multi-unit recordings. The effects on GABAA and glycine receptor-mediated inhibition were quantified by whole-cell voltage-clamp recordings. KEY RESULTS Low concentrations of 4-bromopropofol (50 nM) reduced action potential activity of ventral horn neurons by about 30%, compared with sham-treated slices. This effect was completely abolished by strychnine (1 μM). In voltage-clamped neurons, 4-bromopropofol activated glycine receptors, generating a tonic current of 65 ± 10 pA, while GABAA - and glycine receptor-mediated synaptic transmission remained unaffected. CONCLUSIONS AND IMPLICATIONS The highest glycine levels in the CNS are found in the ventral horn of the spinal cord, a region mediating pain-induced motor reflexes and participating in the control of muscle tone. 4-Bromopropofol may serve as a starting point for the development of non-sedative, non-addictive, muscle relaxants and analgesics to be used to treat low back pain.
Collapse
Affiliation(s)
- V S Eckle
- Experimental Anaesthesiology Section, Department of Anaesthesiology and Intensive Care, Eberhard-Karls-University, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Park J, Trinh VN, Sears-Kraxberger I, Li KW, Steward O, Luo ZD. Synaptic ultrastructure changes in trigeminocervical complex posttrigeminal nerve injury. J Comp Neurol 2015; 524:309-22. [PMID: 26132987 DOI: 10.1002/cne.23844] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
Trigeminal nerves collecting sensory information from the orofacial area synapse on second-order neurons in the dorsal horn of subnucleus caudalis and cervical C1/C2 spinal cord (Vc/C2, or trigeminocervical complex), which is critical for sensory information processing. Injury to the trigeminal nerves may cause maladaptive changes in synaptic connectivity that plays an important role in chronic pain development. Here we examined whether injury to the infraorbital nerve, a branch of the trigeminal nerves, led to synaptic ultrastructural changes when the injured animals have developed neuropathic pain states. Transmission electron microscopy was used to examine synaptic profiles in Vc/C2 at 3 weeks postinjury, corresponding to the time of peak behavioral hypersensitivity following chronic constriction injury to the infraorbital nerve (CCI-ION). Using established criteria, synaptic profiles were classified as associated with excitatory (R-), inhibitory (F-), and primary afferent (C-) terminals. Each type was counted within the superficial dorsal horn of the Vc/C2 and the means from each rat were compared between sham and injured animals; synaptic contact length was also measured. The overall analysis indicates that rats with orofacial pain states had increased numbers and decreased mean synaptic length of R-profiles within the Vc/C2 superficial dorsal horn (lamina I) 3 weeks post-CCI-ION. Increases in the number of excitatory synapses in the superficial dorsal horn of Vc/C2 could lead to enhanced activation of nociceptive pathways, contributing to the development of orofacial pain states.
Collapse
Affiliation(s)
- John Park
- Department of Pharmacology, University of California Irvine, School of Medicine, Irvine, California, 92697
| | - Van Nancy Trinh
- Department of Anesthesiology & Perioperative Care, University of California Irvine, School of Medicine, Irvine, California, 92697
| | - Ilse Sears-Kraxberger
- Reeve-Irvine Research Center, University of California Irvine, School of Medicine, Irvine, California, 92697
| | - Kang-Wu Li
- Department of Anesthesiology & Perioperative Care, University of California Irvine, School of Medicine, Irvine, California, 92697
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California Irvine, School of Medicine, Irvine, California, 92697
| | - Z David Luo
- Department of Pharmacology, University of California Irvine, School of Medicine, Irvine, California, 92697.,Department of Anesthesiology & Perioperative Care, University of California Irvine, School of Medicine, Irvine, California, 92697.,Reeve-Irvine Research Center, University of California Irvine, School of Medicine, Irvine, California, 92697
| |
Collapse
|
48
|
Zhang TC, Janik JJ, Peters RV, Chen G, Ji RR, Grill WM. Spinal sensory projection neuron responses to spinal cord stimulation are mediated by circuits beyond gate control. J Neurophysiol 2015; 114:284-300. [PMID: 25972582 PMCID: PMC4507960 DOI: 10.1152/jn.00147.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/06/2015] [Indexed: 12/26/2022] Open
Abstract
Spinal cord stimulation (SCS) is a therapy used to treat intractable pain with a putative mechanism of action based on the Gate Control Theory. We hypothesized that sensory projection neuron responses to SCS would follow a single stereotyped response curve as a function of SCS frequency, as predicted by the Gate Control circuit. We recorded the responses of antidromically identified sensory projection neurons in the lumbar spinal cord during 1- to 150-Hz SCS in both healthy rats and neuropathic rats following chronic constriction injury (CCI). The relationship between SCS frequency and projection neuron activity predicted by the Gate Control circuit accounted for a subset of neuronal responses to SCS but could not account for the full range of observed responses. Heterogeneous responses were classifiable into three additional groups and were reproduced using computational models of spinal microcircuits representing other interactions between nociceptive and nonnociceptive sensory inputs. Intrathecal administration of bicuculline, a GABAA receptor antagonist, increased spontaneous and evoked activity in projection neurons, enhanced excitatory responses to SCS, and reduced inhibitory responses to SCS, suggesting that GABAA neurotransmission plays a broad role in regulating projection neuron activity. These in vivo and computational results challenge the Gate Control Theory as the only mechanism underlying SCS and refine our understanding of the effects of SCS on spinal sensory neurons within the framework of contemporary understanding of dorsal horn circuitry.
Collapse
Affiliation(s)
- Tianhe C Zhang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | | | - Ryan V Peters
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Gang Chen
- Department of Neurobiology, Duke University, Durham, North Carolina; Department of Anesthesiology, Duke University, Durham, North Carolina; and
| | - Ru-Rong Ji
- Department of Neurobiology, Duke University, Durham, North Carolina; Department of Anesthesiology, Duke University, Durham, North Carolina; and
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, North Carolina; Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina; Department of Neurobiology, Duke University, Durham, North Carolina; Department of Surgery, Duke University, Durham, North Carolina;
| |
Collapse
|
49
|
Synaptic Inhibition and Disinhibition in the Spinal Dorsal Horn. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:359-83. [DOI: 10.1016/bs.pmbts.2014.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Eckle VS, Rudolph U, Antkowiak B, Grasshoff C. Propofol modulates phasic and tonic GABAergic currents in spinal ventral horn interneurones. Br J Anaesth 2014; 114:491-8. [PMID: 25150989 DOI: 10.1093/bja/aeu269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Surgical interventions like skin incisions trigger withdrawal reflexes which require motor neurones and local circuit interneurones in the spinal ventral horn. This region plays a key role in mediating immobilizing properties of the GABAergic anaesthetic propofol. However, it is unclear how propofol modulates GABA(A) receptors in the spinal ventral horn and whether tonic or phasic inhibition is involved. METHODS Organotypic spinal cord tissue slices were prepared from mice. Whole-cell recordings were performed for quantifying effects of propofol on GABA(A) receptor-mediated phasic transmission and tonic conductance. RESULTS Propofol increased GABAergic phasic transmission by a prolongation of the decay time constant in a concentration-dependent manner. The amount of the charge transferred per inhibitory post-synaptic current, described by the area under the curve, was significantly augmented by 1 µM propofol (P<0.01). A GABA(A) receptor-mediated tonic current was not induced by 1 µM propofol but at a concentration of 5 µM (P<0.05). CONCLUSIONS Propofol depresses ventral horn interneurones predominantly by phasic rather than by tonic GABA(A) receptor-mediated inhibition. However, the present results suggest that the involvement of a tonic inhibition might contribute to the efficacy of propofol to depress nociceptive reflexes at high concentrations of the anaesthetic.
Collapse
Affiliation(s)
- V S Eckle
- Experimental Anaesthesiology Section, Department of Anaesthesiology and Intensive Care, Eberhard-Karls-University, Tübingen, Germany
| | - U Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital and Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - B Antkowiak
- Experimental Anaesthesiology Section, Department of Anaesthesiology and Intensive Care, Eberhard-Karls-University, Tübingen, Germany
| | - C Grasshoff
- Experimental Anaesthesiology Section, Department of Anaesthesiology and Intensive Care, Eberhard-Karls-University, Tübingen, Germany
| |
Collapse
|